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The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding cat-
alyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at
different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive tar-
get for the development of new virulence blockers. Although DSB systems have been extensively studied
across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to rec-
ognize and interact with such a wide range of substrates. This review summarizes the current knowledge
on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and sub-
strates associated with bacterial virulence. The structurally and functionally diverse set of bacterial pro-
teins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and
secondary structure elements of these substrates are analyzed to identify common elements recognized
by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also
offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA
targeted anti-microbials.
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Fig. 1. The DSB machinery in E. coli K-12. A. DsbA/B oxidative pathway. Unfolded
cysteine-containing proteins are oxidized by the periplasmic protein DsbA, which is
reduced during this process and is in turn re-oxidized by the inner membrane
protein DsbB. B. DsbC/D isomerization pathway. DsbC proofreads and re-shuffles
non-native disulfide bonds in misfolded substrates. The inner membrane protein
DsbD maintains DsbC in its reduced form in the oxidizing periplasmic environment.
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1. Introduction

Bacteria rely on the production of a wide range of virulence fac-
tors to adapt to different environments, surpass host immune
responses and colonize and invade host cells [1–3]. These virulence
factors are often secreted or cell surface proteins that include
disulfide bonds (DSB) in their three-dimensional structures, which
provide stability in the hostile, protease-rich extracellular environ-
ment [4,5]. Disulfide bonds are catalyzed by the disulfide bond
forming enzyme A (DsbA) of the DSB system in a process known
as oxidative protein folding [4,5]. The discovery of DsbA (EcDsbA)
within the periplasmic space of Escherichia coli, provided the first
experimental basis for a catalytic mechanism of disulfide bond for-
mation in Gram-negative bacteria [6]. The reliance on this disulfide
bond formation machinery for the correct functioning of several
bacterial proteins, including virulence factors, has been directly
shown in a number of in vitro and cell-based assays [7]. Further-
more, several studies have demonstrated that mutants defective
in the DSB oxidative folding pathway throughout diverse bacterial
pathogens, have reduced virulence phenotypes in animal infection
models [6,8–19]. Since the discovery of the DSB system in E. coli K-
12, the study of these systems has been expanded to include
diverse Gram-negative and Gram-positive bacteria [4,5,20–22].
However, how this important DSB forming enzyme interacts with
a great array of structurally diverse protein substrates is still poorly
understood. In this review we summarize current knowledge on
DsbA systems, particularly focusing on how DsbA proteins interact
with partner oxidases and virulence substrates. Through an exten-
sive bioinformatic analysis we define common features present in
the highly diverse set of DsbA substrates.
1.1. The archetypal DSB machinery in prokaryotes

The DSB system was first characterized and has been best stud-
ied in the Gram-negative bacterium Escherichia coli K-12 [6]. This
prototypical DSB system consists of two different pathways: (i)
The DSB oxidation pathway (Fig. 1A), where the oxidoreductase
enzyme DsbA introduces disulfide bonds between consecutive cys-
teines in unfolded substrates as they are translocated into the peri-
plasm [6]; and (ii) the DSB isomerization pathway (Fig. 1B), where
non-native disulfide bonds are proofread and corrected [23,24] by
the isomerase enzyme DsbC [25]. For each one of these pathways,
the active oxidized state of DsbA and the active reduced state of
DsbC are maintained by the proteins DsbB and DsbD, respectively
[7,26–29]. DsbB is an integral membrane protein with two
periplasmic loops, each containing two pairs of redox active cys-
teines required for DsbA re-oxidation. DsbD is a multidomain
membrane protein with two periplasmic domains flanking a trans-
membrane domain. These membrane proteins display high sub-
strate specificity for DsbA and DsbC, respectively, allowing for
both opposite redox pathways to function independently in the
shared periplasmic compartment.
2. The thiol oxidase DsbA from E. coli K-12

EcDsbA, as revealed by its crystal structure, is composed of two
domains: a thioredoxin (TRX) domain, and a helical domain
(Fig. 2A) [30]. The TRX domain consists of four b-strands and two
a-helices (b2a1b3 and b4b5a7 motif), a structural scaffold character-
istic of disulfide oxidoreductases, while the helical domain (a2-a6),
which is inserted within the TRX domain, is comprised of five a-
helices (a three-helical bundle with two additional helices). The
active site of EcDsbA siting within the TRX domain is composed
of a conserved CXXC motif (Cys30-Pro31-His32-Cys33). With an
unusually low pKa of 3.5 [31], the N-terminal Cys30 exists as a thi-
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olate ion in the reduced form at physiological pH. This Cys30 thio-
late is stabilized by a number of polar interactions such as (i) a
hydrogen bond with the thiol of Cys33 (ii) hydrogen bonds with
the backbone amide nitrogens of Cys30 and His32; and (iii) elec-
trostatic interactions with the side chain of His32 [32]. Addition-
ally, the partial positive charge from the dipole of the a1 helix,
where the active site is located, has also been suggested to stabilize
the Cys30 thiolate [32]. This results in superior stability of the
reduced form of DsbA and a stronger tendency to oxidize sub-
strates. Another key feature of the TRX domain is a cis-proline loop
(Val-cis-Pro), which is spatially close to the active site. This feature
is thought to be important for the correct binding of substrates
and/or DsbA-substrate complex resolution, along with influencing
the redox properties of thioredoxin fold proteins [33–35] (Fig. 2A).
Examination of EcDsbA’s electrostatic surface shows a hydrophobic
groove present in the TRX domain (Fig. 2A), which has been shown
to interact with its cognate membrane partner EcDsbB [27,30,36].
Similarly, the surface of the EcDsbA helical domain forms a large
hydrophobic patch located immediately above the active site
(Fig. 2A). This patch has been shown to interact with substrates
and is thought to provide stability and specificity for substrate
binding [36]. The hydrophobic nature of the surface surrounding
the active site is consistent with its ability to catalyze folding of
a broad range of unfolded or partially folded substrates along with
interacting with the periplasmic loop of DbsB [4,24,36–38].
2.1. Diversity of DsbA oxidative proteins across bacteria

DSB systems are widespread across non-pathogenic and patho-
genic bacteria [4,5] and the characterization of DSB systems and
DsbA enzymes across diverse species has revealed structural and
active site differences within the DsbA family of proteins [20]. A
combined structural and bioinformatics analysis highlighted that
the most notable of these differences is the arrangement of the
b-strand (b1) preceding the TRX domain, which divides DsbAs into
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two major classes, class I with b-sheet topology of 3–2–4–5–1
(Fig. 2A and B) and class II with a topology of 1–3–2–4–5 (Fig. 2C
and D), throughout most Gram-negative and Gram-positive bacte-
ria [39]. These classes are further split into the Ia, Ib, IIa and IIb
subclasses based on variations of surface features surrounding
their active sites [39]. The canonical EcDsbA is grouped into class
Ia (Fig. 2A), which also includes DsbA proteins from other impor-
tant human pathogens such as Salmonella enterica serovar Typhi-
murium (Se), Klebsiella pneumoniae (Kp), Vibrio cholerae (Vc) and
Proteus mirabilis (Pm) [40]. DsbA proteins from this class share an
extended hydrophobic groove adjacent to the active site mapping
at the b4b5a7 region of the TRX domain (Fig. 2A), that is involved
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in the interaction with DsbB for reoxidation [27]. The same groove
is shorter in members of class Ib such as Burkholderia pseudomallei
(BpsDsbA) (Fig. 2B) [39]. Consistent with the similarity between
DsbA proteins from class Ia, it has been found that other class Ia
DsbAs such as SeDsbA, KpDsbA, VcDsbA and PmDsbA can fully com-
plement EcDsbA in vitro and in vivo [40–44], while DsbA proteins
from class Ib such as BpsDsbA and Pseudomonas aeruginosa (Pa)
DsbA can only partially complement EcDsbA [17,45]. Class II DsbA
proteins, such as Staphylococcus aureus (SaDsbA) and Wolbachia
pipientis (WpDsbA1), further deviate from the canonical EcDsbA
by featuring the most truncated hydrophobic groove and a highly
charged electrostatic surface surrounding the active site (Fig. 2C,
2D) [39]. Unsurprisingly, among the four structurally characterized
class II DsbAs, only SaDsbA is able to partially restore EcDsbA activ-
ity in vivo [46]. A more recent analysis investigating the phyloge-
netic relationship of 20 structurally characterised DsbA
homologues from diverse bacteria, assigned DsbA proteins into
three main clades, with the first and second being equivalent to
previously defined class Ia and class Ib DsbAs [39], and the third
more taxonomically diverse clade consisting of structurally diver-
gent EcDsbA proteins [47].

In addition to being structurally diverse, there is also significant
divergence in the redox properties of DsbA-like proteins (Table 1).
For instance, DsbA1 from Neisseria meningitidis (Nm) has a redox
potential of �79 mV and a pKa of 3.0 for the N-terminal nucle-
ophilic cysteine [48]. In contrast, DsbA1 from W. pipientis
(WpDsbA1) is much less oxidizing with a redox potential of
�163 mV and a pKa of 4.7 [49]. Previous studies have demon-
strated that the XX dipeptide sequence in the active site CXXC
motif and the residue preceding the cis-Pro motif modulate these
redox potentials and pKa of the N-terminal nucleophilic cysteine
[34,50]. However, these motifs are not the sole determinants of
the redox properties. For example, BpsDsbA and PaDsbA share
the same CPHC motif and Val-cis-Pro sequence as the EcDsbA,
but they are more oxidizing (Eo’�94 mV) than EcDsbA (Eo’-
�122 mV) and display lower pKa values of the nucleophilic cys-
teine. Overall, variations in the active site sequence, three-
dimensional structure, surface charge and redox characteristics
collectively contribute to the unique features of each DsbA and
likely define their substrate specificities [35].
2.2. Functional redundancy of DsbA homologues

Genome-wide screening for DSB homologues has revealed that
the classical model of bacterial oxidative folding from E. coli K-12 is
Fig. 2. Structural variation of DsbA proteins across bacteria. A. Cartoon represen-
tation (left) of E. coli EcDsbA (PDB ID: 1FVK) (subclass Ia) showing the thioredoxin
(TRX) domain (white), a-helical domain (cyan) and sulfur atoms of the active site
cysteine residues (yellow). Secondary structure elements are indicated. Inset shows
the close-up view of the EcDsbA catalytic site with the characteristic CXXC catalytic
motif (Cys-Pro-His-Cys) and Val-cis-Pro motif. B. Cartoon representation (left) and
electrostatic surface representation (right) of B. pseudomallei BpsDsbA (subclass Ib)
(PDB ID: 4K2D). BpsDsbA has a more truncated groove adjacent to the active site
relative to that of EcDsbA due to a deletion in a7 and the loop connecting a7 and b5.
C. Cartoon representation (left) and electrostatic surface representation (right) of S.
aureus SaDsbA (subclass IIa) (PDB ID:3BCI). SaDsbA displays a more truncated
groove relative to that of BpsDsbA due to a substantial deletion in a7 and the loop
connecting a7 and b4. The surface close to the active site is negatively charged. D.
Cartoon representation (left) and electrostatic surface representation (right) of W.
pipientis WpDsbA1 (subclass IIb) (PDB ID:3F4R). WpDsbA1 does not have a well-
defined groove and features a positively charged surface adjacent to the active site.
Electrostatic surface potential is contoured between �5 (red) and +5 (blue) kT/e.
The hydrophobic grooves and hydrophobic patch are indicated with black arrows.
The active site in the electrostatic representation is indicated as a yellow circle. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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Table 1
Summary of redox properties of DsbA proteins across bacteria.

Organism Protein name CXXC Eo’ (mV) pKa Ref

E. coli K-12 DsbA CPHC �122 3.4 [30,31]
V. cholerae DsbA (TcpG) CPHC �116 – [43,51]
S. aureus DsbA CPYC �132 3.4 [46,52]
X. fastidiosa DsbA CPHC �94 – [53]
UPEC CFT073 DsbL CPFC �95 – [54]
W. pipientis wMel DsbA1 CYHC �163 4.7 [49]
N. meningitidis MC58 DsbA3 CVHC �87 – [48,55]

DsbA1 CPHC �89 3 [48,55]
Bacillus subtilis 168 DsbA (BdbD) CPSC �80 ~3.5 [56]
P. aeruginosa DsbA CPHC �94 – [45]
S. enterica Typhimurium SL1344 SrgA CPPC �154 4.7 [41]

DsbA CPHC �126 3.3 [41]
DsbL CPFC �97 3.8 [41]
BcfH CSWC �101, �151 – [57]

B. pseudomallei DsbA CPHC �92 2.83 [17]
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not universally conserved across bacterial species [4,58]. Bioinfor-
matic and functional studies have revealed that many bacteria
encode more than one DsbA [4,5,19]. Examples include uropatho-
genic E. coli (UPEC) strain CFT073 that possesses a canonical DsbA
and an accessory DsbA homologue DsbL [19,54] or the widely dis-
tributed facultative anaerobe Shewanella oneidensis, which has a
complex DSB machinery with four DsbA (DsbA1-4) and two DsbB
(DsbB1-2) homologues [59]. Similarly, Salmonella enterica (Se)
encodes four DsbA-like proteins [41], namely DsbA, DsbL, SrgA
[42], a virulence plasmid-encoded DsbA-like protein, and ScsC
[60,61], a DsbA-like protein that protects against copper toxicity
[57,62]. These Salmonella DsbA paralogues were found to share
low sequence identity along with significant differences in their
surface features and redox properties [41]. More recently, a novel
DSB-like protein from Salmonella enterica termed BcfH has been
identified and characterized. Interestingly, BcfH has been shown
to form a trimeric structure, exceptionally uncommon among the
thioredoxin superfamily members. Additionally, BcfH has both
thiol oxidase and disulfide isomerase activities contributing to Sal-
monella fimbrial biogenesis [57].

Based on current published evidence, it appears that in bacteria
with multiple DsbA homologues, there is always one homologue
that acts as the primary disulfide donor capable of oxidizing a wide
range of substrates, whilst other DsbAs are dedicated for specific
substrates [5]. While many bacteria possess an extended collection
of accessory DsbA homologues with differing specificities to cat-
alyze the oxidation of selective substrates [4], some DsbA homo-
logues have shown a level of functional redundancy. Such is the
case of UPEC DsbL (EcDsbL) that possesses a positively charged sur-
face surrounding the active site that serves as a specific oxidase of
the periplasmic protein arylsulfate sulfotransferase (ASST) [54].
The astA gene is a UPEC-associated gene and its expression is
upregulated during urinary tract infections. Although less oxidiz-
ing in nature than EcDsbL (Eo’�95 mV), EcDsbA (Eo’�120 mV) has
also been found to oxidize ASST at a similar rate in vitro [63]. Con-
versely, it has also been observed that EcDsbL can partially comple-
ment EcDsbA in vivo [19,54]. Similarly, DsbA homologues from the
pathogen Salmonella enterica serovar Typhimurium, SeDsbA,
SeSrgA and SeDsbL, are all able to complement each other in restor-
ing bacterial motility and plasmid-encoded fimbriae (Pef) produc-
tion in vivo [41], irrespective of sharing low sequence identity and
having considerably different redox potentials (Eo’ of �126 mV,
�154 mV and �97 mV, respectively) [41]. Despite this functional
redundancy, the flagella system is considered a substrate of
SeDsbA, and PefA a substrate of SeSrgA [42]. Although it is still
not fully understood why some bacterial genomes encode multiple
and functionally redundant DsbA homologues, one possibility
could be that under a given set of growth conditions, a single type
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of DsbA is insufficient to drive efficient oxidative folding. This
hypothesis seems to be supported by the co-expression of viru-
lence factors and their specific oxidases as it has been seen with
DsbL/ASST and SrgA/PefA [42,54].
3. The redox interaction between DsbA and DsbB

The systematic oxidation of substrates in the periplasm by DsbA
proteins largely relies on the efficient reoxidation of the enzyme by
the membrane embedded protein DsbB [27]. Due to the fast-
resolving nature of the mixed disulfide formed between DsbA
and DsbB (Fig. 3), it has been particularly challenging to study this
interaction at the atomic level. However, a study involving the
active site mutant Cys33Ala of EcDsbA was able to successfully trap
EcDsbB in a disulfide-linked intermediate form [27]. This hallmark
crystal structure of the intermediate complex offered for the first
time, molecular insights into the protein–protein interaction
between DsbA and DsbB (PDB ID: 2HI7, 2ZUP) [27,64], confirming
the formation of a mixed disulfide bond between Cys104 of EcDsbB
and the nucleophilic Cys30 of EcDsbA. Additionally, the protein–
protein interaction interface was shown to be mediated by the sec-
ond periplasmic loop of the transmembrane protein EcDsbB (P2). A
high shape complementarity is observed between the N-terminal
end of the P2 periplasmic loop of EcDsbB (Pro100-Thr103) and
the hydrophobic groove of EcDsbA, which is formed by the active
site CPHC motif, the cis-Pro motif (L2 loop) and L3 loop (Fig. 3A),
while the other end of the P2 periplasmic loop (Asp105-Phe106)
of EcDsbB interacts with the hydrophobic patch of EcDsbA via
backbone hydrogen bonds with the L2 loop and hydrophobic inter-
actions with the L1 loop. Overall, the DsbA-DsbB binding interface
spans the helical domain and the thioredoxin domain of DsbA. The
hinge bending motions of the two domains have been suggested to
promote the protein–protein interactions and disulfide bond catal-
ysis [32]. Interestingly, binding of EcDsbB to EcDsbA does not seem
to induce major conformational changes in EcDsbA with a root
mean square deviation (RMSD) value of 0.788 Å over 176 Ca atoms
when overlaid with apo EcDsbA (PDB ID:1FVK) [65], with most of
the structural shifts located in flexible loop regions of the protein.

The binding mode of the EcDsbA-EcDsbB interaction was fur-
ther validated by a crystal structure of EcDsbA Cys33Ala mutant
in complex with an optimized heptapeptide (PFATCDS) derived
from the P2 loop of EcDsbB [66]. The EcDsbA-peptide complex
strongly resembles the interactions observed in the EcDsbA-
EcDsbB protein–protein complex (Fig. 3B). Alanine-scanning muta-
genesis of the EcDsbB 9-mer P2 based peptide (PSPFATCDF)
showed that the cysteine residue (equivalent to Cys104 in EcDsbB),
contributed most to the binding affinity with EcDsbA [66], suggest-



Fig. 3. Interaction between DsbA and DsbB. A. Crystal structure of the EcDsbA-EcDsbB complex (PDB ID: 2ZUP). Only the DsbA-interacting segment of the DsbB periplasmic
loop P2 (purple) is shown for clarity. The dashed line indicates the omitted DsbB protein. Left panel: EcDsbA is shown as colored surface, EcDsbA residues located within 4 Å of
EcDsbB are shaded in blue. Residue number of EcDsbB is labelled in the figure. Right panel: EcDsbA residues located within 4 Å of DsbB are shown as sticks. Sulfur atoms of the
active site cysteines are shown as yellow spheres. Surface loops L1, L2, L3 and CPHC active site are labelled in each structure. B. Crystal structure of EcDsbA in complex with an
optimized heptapeptide (PFATCDS) derived from EcDsbB (PDB ID: 4TKY). C. Crystal structure of PmDsbA C30S mutant in complex with an optimized heptapeptide (PWATCDS)
from PmDsbB (PDB ID: 4OD7). D. Crystal structure of BpsDsbA in complex a BpsDsbB-derived peptide (GFSCGF) (PDB ID: 5VYO). E. Crystal structure of XfDsbA in complex with
a DsbB-like peptide (PDB ID: 2REM). For B-E, DsbA is shown as colored surface, DsbA residues located within 4 Å of DsbB are shaded in blue. Sulfur atoms of the active site
cysteines are shown as yellow spheres. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ing that the peripheral hydrophobic interactions may only serve to
specifically recognize EcDsbB and position the cysteine in the cor-
rect orientation for disulfide bond formation.

Despite the structural variation amongst DsbA homologues and
the low sequence conservation in residues at the DsbB binding
interface, the characterized DsbA-DsbB peptide complexes from
different bacteria have shown a conserved binding site, which
spans across the DsbA hydrophobic patch and hydrophobic groove
adjacent to the active site (Fig. 3B-E). Indeed, a study on Proteus
mirabilis DsbA (PmDsbA) Cys30Ser mutant co-crystallized with an
optimized heptapeptide derived from the P2 periplasmic loop of
PmDsbB (PWATCDS) [40] showed that although the peptide does
not form the mixed disulfide with PmDsbA, the binding mode is
strikingly similar to that of the EcDsbA-EcDsbB complex. This com-
plex also supports the significance of the non-disulfide interactions
in DsbB binding (Fig. 3C). Similarly, a complex between BpsDsbA, a
distant homologue of EcDsbA with a truncated hydrophobic
groove, and a BpsDsbB-derived peptide showed the peptide bind-
ing to BpsDsbA in a very similar manner to its E. coli counterpart
(Fig. 3D) [20,67]. These findings, in addition to a crystal structure
of Xylella fastidiosa (Xf) DsbA crystallized with a DsbB-like peptide
[53] (Fig. 3E), highlight the conservation of this binding mode
across bacterial species. Notably, in these structures, all DsbB pep-
tides form backbone hydrogen bonds with the L2 loop of DsbA,
which seems to facilitate the presentation of the cysteine residue
for efficient disulfide bond exchange.

Based on observations of the DsbA-DsbB/DsbB-peptide interac-
tions from different Gram-negative bacteria, it is tempting to pro-
pose that the conserved DsbB-interacting interface on DsbA
4729
consists of the L1 loop, the active site CXXC motif, the cis-Pro motif
(L2 loop), and the hydrophobic groove (L3 loop) (Fig. 3). However,
since all DsbAs in these characterized complexes belong to class I
DsbAs, it remains to be determined whether class II DsbAs interact
with DsbB in a similar manner given their more pronounced struc-
tural and surface variations.

4. The DsbA-substrate interaction

As part of the oxidative folding process in Gram-negative bacte-
ria, DsbA introduces disulfide bonds into newly synthesized
polypeptides immediately after they are translocated into the peri-
plasm through the Sec channel [68]. The DsbA-catalyzed thiol-
disulfide exchange reaction appears to proceed via a biomolecular
nucleophilic substitution reaction (SN2) mechanism in two steps
(Fig. 4). In the first step, the deprotonated cysteine of the substrate
attacks the DsbA Cys30 sulfur atom that is participating in a Cys30-
Cys33 disulfide bond. This leads to a DsbA-substrate intermediate
complex with a disulfide bond between the DsbA Cys30 and the
substrate cysteine. In the second step, a second cysteine in the sub-
strate is deprotonated and attacks the sulfur atom of the substrate
cysteine in the mixed disulfide bond, resolving the complex and
producing oxidized substrate and reduced DsbA [68–70].

Due to the extremely short-lived nature of the mixed disulfide
between DsbA and a substrate, it has been challenging to capture
and characterize DsbA-substrate complexes at the atomic level.
At present the only two structurally characterized DsbA-
substrate peptide complexes offer a glimpse into the molecular
determinants underlying the DsbA-substrate interactions. In one



Fig. 4. EcDsbA-catalyzed substrate oxidation. This thiol-disulfide exchange reaction
is understood to proceed via a biomolecular nucleophilic substitution reaction (SN2)
mechanism involving the attack of the deprotonated cysteine of the substrate to the
DsbA Cys30 sulfur atom involved in the Cys30-Cys33 disulfide bond. This leads to
the formation of the DsbA-substrate intermediate complex. In the second step, a
second cysteine in the substrate is deprotonated and attacks the sulfur atom of the
substrate cysteine in the mixed disulfide bond, resolving the complex and
producing oxidized substrate and reduced DsbA N-Cys refers to N-terminal cysteine
of the active site CXXC motif, C-Cys refers to C-terminal cysteine of the active site
CXXC motif.

ig. 5. Crystal structures of the DsbA-substrate complexes. A. Crystal structure of
cDsbA in complex with an autotransporter SigA-derived peptide. (PDB ID: 3DKS).
eft panel: DsbA is shown as colored surface, EcDsbA residues located within 4 Å of
he SigA peptide are shaded in blue. Residue number of the SigA peptide is labelled
the figure. Right panel: EcDsbA residues located within 4 Å of EcDsbB are labelled

nd shown as purple sticks. Sulfur atoms of the active site cysteines are shown as
ellow spheres. Surface loops L1, L2, L3 and CPHC active site are labelled. B. Crystal
tructure of AbDsbA in complex with E. coli elongation factor EF-Tu (PDB ID: 4P3Y).
nly the AbDsbA-interacting segment of EF-Tu is shown for clarity. Left panel:
atalytic face of AbDsbA, sulfur atoms of the active site cysteines are shown as
ellow spheres. Right panel: non-catalytic face of AbDsbA. DsbA is presented as grey
urface, DsbA residues located within 4 Å of EF-Tu are shaded in blue. (For
terpretation of the references to colour in this figure legend, the reader is referred

o the web version of this article.)
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study, a peptide derived from the autotransporter protein SigA of
Shigella flexneri was trapped in a complex with EcDsbA by substi-
tuting the native cysteine of the peptide with a homoserine (Hse)
[36,71]. This modification allowed for the formation of a stable
complex through a non-labile covalent bond between the Hse of
the peptide and the reactive Cys30 of EcDsbA. The crystal structure
of the complex revealed that the SigA peptide mainly interacts
with the active site and the hydrophobic patch (L1, L2 loops) of
DsbA (Fig. 5A). This interaction is comparable with that displayed
by the DsbA-DsbB complexes, where the binding site of the sub-
strate also spans the helical domain and thioredoxin domain, and
where the backbone hydrogen bonds between the L2 loop of DsbA
and the N-terminal segment of SigA peptide (Hse6-Gln7-Lys8)
mimic the interactions in the DsbA-DsbB complexes, suggesting a
conserved DsbA-substrate recognition mechanism. However,
unlike DsbB, the C-terminal segment of the SigA peptide does not
extend into the hydrophobic groove below the active site but
instead sits on the top of it. Interestingly, the lack of interactions
between Cys30 and His32 in the mixed intermediate, allows the
sidechain of the His32 to be less constrained where in the case of
the SigA peptide, it forms p-p stacking interactions between the
Phe4 of the peptide and His32 of DsbA (Fig. 5A).

In another study, the crystal structure of Acinetobacter bauman-
nii DsbA (AbDsbA) in complex with the E. coli elongation factor EF-
4730
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Tu uncovered a very uncommon substrate binding region that does
not involve the disulfide exchange reaction [72]. For this complex,
EF-Tu binds tightly to a groove sandwiched between the thiore-
doxin domain and the helical domain on the non-catalytic face of
AbDsbA (Fig. 5B). Although the activity of AbDsbA is shown to be
reduced in the presence of EcEF-Tu in vitro (E. coli and A. baumannii
EF-Tu share 85% sequence identity), the physiological relevance of
this allosteric interaction is still unclear.
5. Structural variability of DsbA substrates

Compared to DsbA proteins, DsbA substrates are highly variable
and structurally less conserved [44]. The identification of potential
DsbA substrates has been made possible by using (i) two dimen-
sional gel electrophoresis to compare wild type and DdsbA strains;
(ii) substrate trapping by modification of the C-terminal cysteine
present in the active site of DsbA proteins or (iii) mutating the
cis�Pro residue (cis�Pro151 in EcDsbA) adjacent to the active site
to threonine to trap stable enzyme-substrate intermediate com-
plexes [23,73–75].



Table 2
Structurally characterized DsbA substrates.

Organism Substrate PDB code S–Sa Structural locationb

Cys1 Cys2

Bordetella pertussis S1 subunit 1BCP: chain A 41–202 a-Helix Loop
Bordetella pertussis S2 subunit 1BCP: chain B 23–87

120–134
Loop
b-Sheet

b-Sheet
b-Sheet

192–199 Loop Loop
Erwinia chrysanthemi CelZ 1AIW 4–16 Loop Loop
Erwinia chrysanthemi PelC 1AIR 72–155

329–352
a-Helix
a-Helix

b-Sheet
Loop

Escherichia coli (UPEC) ASST 3ELQ 418–424 Loop Loop
Escherichia coli (UPEC) PapD 3DPA 207–212 Loop b-Sheet
Escherichia coli (EPEC) BfpA 1ZWT 94–144 a-Helix Loop
Escherichia coli (EPEC) EscC 3GR5 136–155 Loop a-Helix
Escherichia coli (ETEC) EltB 1B44 9–86 a-Helix b-Sheet
Escherichia coli (ETEC) STb 1EHS 10–48c

21–36c
Loop
a-Helix

Loop
Loop

Escherichia coli YodA 1OEE 103–128 b-Sheet Loop
Escherichia coli FtsN 1UTA 252–312 Loop Loop
Escherichia coli OmpA 2MQE 290–302 Loop a-Helix
Escherichia coli RcsF 2Y1B 74–118c

109–124c
b-Sheet
b-Sheet

b-Sheet
b-Sheet

Escherichia coli ZnuA 2OGW 252–306 Loop a-Helix
Escherichia coli LivK 1USG 53–78 Loop Loop
Escherichia coli Bla 3JYI 77–123 a-Helix a-Helix
Escherichia coli Pbp4 2EX9 168–178

217–234
a-Helix
Loop

Loop
b-Sheet

Escherichia coli PhoA 1ALK 169–179
286–336

Loop
Loop

Loop
a-Helix

Escherichia coli DppA 1DPE 6–234
422–435

b-Sheet
Loop

Loop
Loop

Klebsiella oxytoca PulS 4A56 53–107 Loop a-Helix
Pseudomonas aeruginosa LasB 1EZM 30–58

270–297
Loop
a-Helix

Loop
Loop

Pseudomonas aeruginosa PilA 1OQW 129–142 b-Sheet Loop
Pseudomonas aeruginosa LipA 1EX9 183–235 Loop Loop
Shigella flexneri LptD 4Q35 31–724c

173–725c
a-Helix
Loop

Loop
Loop

Vibrio cholerae CtxB 1CHP 9–86 a-Helix b-Sheet
Vibrio cholerae TcpA 1OQV 120–186 a-Helix Loop
Yersinia pestis Caf1M 1P5U 101–140 b-Sheet b-Sheet

a Amino acid position of cysteines that form a disulfide bond in the mature form of each substrate.
b Secondary structure location of cysteines that form disulfide bonds.
c Substrates with non-consecutive disulfide bonds and therefore would require a combined action of DsbA and DsbC.
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To date, the exquisite diversity of the DsbA substrates has not
been comprehensively analyzed. Although it is accepted that DsbA
enzymes catalyze disulfide bond formation in unfolded proteins as
they are transported through the cytoplasmic membrane [68], we
sought to understand what types of secondary and tertiary struc-
tures require disulfide bonds for stability and are folded by DsbA.
With the knowledge that not all cysteine residues participate in
disulfide bonds, this observation could allow for a better prediction
of which proteins and local structures acquire disulfide bonds. To
gain a better understanding of the structural class of substrate pro-
teins folded by DsbA, a protein dataset was constructed containing
43 pathogenicity associated substrates that have been previously
functionally characterized (Table S1) [4,5,20]. Among these 43 sub-
strates, 28 have three-dimensional structures available in the Pro-
tein Data Bank (PDB) (Table 2). These 28 substrates with known
structures, were then classified with the CATH-Gene3D Protein
Structure Classification Database v4.2 [76,77] at: (i) class level
according to their secondary structure content; (ii) architecture
level according to the secondary structure arrangement in three-
dimensional space independent of connectivity; (iii) topology/fold
level according to their topological connections and number of sec-
ondary structures [76,78].

The 28 DsbA substrates, which collectively encompass 32 pro-
tein domains harboring disulfide bonds (S2 subunit, DppA, LptD
4731
and LasB substrates, each have two domains with disulfides,
(Table 2)), were found to be organized into three different classes
according to the secondary structure content, with slightly more
than half having a ab-structures (59%), followed by mainly b-
sheets (31%) and mainly a-helix (10%) (Fig. 6, Table S1). At the
architecture level, 11 different architectures were identified,
with ~56% showing a sandwich type architecture (22% 2-layer
sandwich, 19% 3-layer (aba) sandwich, 12% sandwich and 3% 3-
layer (bba) sandwich) (Fig. 6). Finally, this analysis found 25 differ-
ent folds at the topology level, with the immunoglobulin (Ig-),
Rossman and oligonucleotide/oligosaccharide binding (OB-) folds
being the most prominent type among the structurally character-
ized DsbA substrates.

The Ig-fold is widely distributed in nature, present in verte-
brates, invertebrates, plants, fungi, parasites, bacteria and viruses
[79]. This fold is characterized by a pair of b-sheets often linked
by a disulfide bond and composed of antiparallel b-strands sur-
rounding a central hydrophobic core [80] (Fig. 7B, Caf1M). The
wide occurrence of the Ig-fold has been attributed to its functional
plasticity and its specific structural characteristics that confer sta-
bility and resistance to proteolysis [80]. Our structural classifica-
tion of DsbA substrates revealed that proteins with an Ig-fold
include the periplasmic fimbrial chaperones PapD from E. coli,
one of the first examples of Ig-fold proteins identified in bacteria



Fig. 6. CATH classification of disulfide bond containing domains from structurally characterised DsbA substrates. Classification of DsbA substrates by class according to:
Secondary structure content (inner circle), substrates divided into mainly a-helices (a) (cyan), mainly b-sheets (b) (raspberry) and a combination of both (ab) (deep teal);
Architecture (middle circle), substrates divided into 11 different architectures; and Topology (outer circle), DsbA substrates display 25 different folds at the topology level.
EPEC: Enteropathogenic E. coli; ETEC: Enterotoxigenic E. coli; UPEC: Uropathogenic E. coli; NTC: N-terminal domain; CTD: C-terminal domain. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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[81,82], and Caf1M from Y. pestis [83] involved in the process of
adhesion [84]; and ASST from E. coli [63] involved in the detoxifi-
cation of phenolic compounds.

The OB-fold (Fig. 7B, CtxB) varies from between 70 and 150
amino acids in length and is characterized by 5 highly coiled
antiparallel b-sheets arranged into b barrels, with an a-helix
capped at one end and a binding cleft at the other. Proteins show-
casing this type of fold have the ability to establish protein-DNA, -
RNA or -protein interactions and so are usually involved in a num-
ber of cellular processes such as DNA replication and repair, and
activation of the DNA-damage checkpoint pathways [85–87]. DsbA
substrates found to have this type of fold include secreted toxins
such as CtxB from V. cholerae [87–89], EltB from E. coli [87,90],
and the N-terminal domain of S2 subunit from B. pertussis [91,92].

The Rossmann fold (Fig. 6, LipA) is one of the most common
folds found in proteins of the ab class [93]. This fold is character-
ized by a conserved (bab) motif that works as a place of contact
with the ADP portion of dinucleotides, namely, FAD, NAD and
NADP. The overall Rossmann fold is composed of a single parallel
b-sheet constituted by two sets of b-a-b-a-b units that forms a
4732
3-layer (a/b/a) sandwich [93–95] (Fig. 7C). DsbA substrates found
to have this fold include LivK [96,97] and ZnuA [98] from E. coli
involved in the process of amino acid and metal transport (zinc)
respectively; and LipA [99] from P. aeruginosa involved in biofilm
formation.

Overall, although our substrate database only captures a very
small fraction of the DsbA interactome, this analysis clearly show-
cases the large array of structurally diverse substrates folded by
DsbA and highlights how DsbA proteins indiscriminately introduce
disulfide bonds in a plethora of proteins leading to different types
of protein folds.
5.1. Common features of DsbA substrates

Although DsbA introduces disulfide bonds to unfolded sub-
strates, we wondered what structural elements harbor DsbA medi-
ated disulfides. Using PDBsum [118] in combination with PyMol
we analyzed the three-dimensional structures of the 28 character-
ized substrates (Table 2), to identify the secondary structures that
contain disulfide bond forming cysteine residues. In particular, we



Fig. 7. Examples of DsbA substrates with different folds grouped by class. A. Cartoon representation of mainly a-helix class for substrates LasB (CTD) [100], STb [101] and PulS
[102]. Fold is highlighted in cyan, sulfur atoms from disulfide bonds shown as yellow spheres and the rest of the protein shown in white. B. Cartoon representation of mainly
b-sheets class for substrates PelC [103], CelZ [104], Caf1M [105], CtxB [88] and YodA [106]. Folds are highlighted in raspberry, sulfur atoms from disulfide bonds shown as
yellow spheres and the rest of the protein shown in white. C. Cartoon representation of ab class for substrates S1 subunit [92], RcsF [107], Pbp4 [108], S2 subunit (CTD) [92],
DppA (CTD) [109], LasB (NTD) [110], LipA [99], Bla [111], DppA (NTD) [109], BpfA [112], PhoA [113], OmpA [114], EscC [115], FtsN [116], LptD (NTD)[100] and PilA [117]. Folds
are highlighted in deep teal, sulfur atoms from disulfide bonds shown as yellow spheres and the rest of the protein shown in white. For each structure, substrate name,
organism of origin, fold and PDB codes are provided. NTD: N-terminal domain; CTD: C-terminal domain. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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focused on substrates with a single disulfide or consecutive disul-
fides, which would be directly formed by DsbA (three substrates,
E. coli STb, RcsF and LptD, each have two non-consecutive disulfide
bonds and therefore would require the combined action of DsbA
and DsbC). From this analysis, it was found that disulfide bonds
are formed between cysteine residues irrespective of their position
in their primary sequence (Table 2). Additionally, for 80.6% of the
total number of disulfide bonds found within these substrates, at
least one of the cysteines that forms a disulfide bond is harbored
within a loop, with the remaining 19.4% found either in an a-
helix or a b-sheet (Table 2) (Fig. 7). The presence of disulfide bonds
4733
in loops may ensure the local stability of these structural elements
that frequently harbor active site residues required for function
[119,120 121–123].

DsbA is thought to recognize the most N-terminal cysteine in
each disulfide bond forming cysteine pair, when proteins are deliv-
ered unfolded via the Sec system frequently in an N- to C-terminal
direction [6,68]. In order to investigate if there is a DsbA recogni-
tion motif, we specifically focused on EcDsbA substrates, as this
class Ia DsbA comprises the largest collection of structurally char-
acterised substrates for which we know the disulfide connectivity
(Table 2). For each one of these substrates, the first cysteine



Fig. 8. Enrichment of amino acids around cysteine residues of E. coli DsbA substrates and class I DsbA oxidases. A. Multiple sequence alignment of 10 amino acids preceding
and succeeding cysteine residues of substrates involved in interaction with EcDsbA. B. Multiple sequence alignment of 5 amino acid residues preceding and succeeding the
cysteine residues of DsbB involved in interaction with Class I DsbAs. For panels A and B sequences were colored frommost conserved (dark blue) to less conserved (light blue).
Conservation and consensus histograms are shown below each alignment. C. Position-specific enrichment of 10 amino acids preceding and succeeding the substrate cysteine
residues involved in interaction with EcDsbA. D. Position-specific enrichment of 5 amino acids preceding and succeeding the DsbB cysteine residues involved in interaction
with Class I DsbAs. For panels C and D, cysteine residues are shown at position 0 with preceding and succeeding amino acids shown as a Shannon logo type. The stack of
symbols at each position represents amino acids, with frequently observed amino acids shown as large symbols. Conserved and variable positions are represented as big and
small stacks respectively. Acidic amino acids (DE) are shown in red, neutral amino acids (QSTYNG) are shown in green, basic amino acids (HKR) are shown in blue and
aliphatic amino acids (IALVPFM) are shown in black. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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involved in the formation of a disulfide bond together with its
flanking 10 amino acids were extracted for analysis. These
sequences were then aligned using the software Jalview (V
2.10.5) (Fig. 8A). Additionally, the Shannon sequence logo gener-
ated with the online server Seq2Logo [124] was used to visualize
the frequency of amino acids preceding and succeeding the cys-
teine residues (Fig. 8C). No significant amino acid conservation
was observed among EcDsbA substrates, although a predominance
of small-medium uncharged amino acids were enriched surround-
ing the substrate target cysteines. The diversity of DsbA substrates
made the identification of a consensus motif challenging, however
this analysis informed about the chemical properties that under-
line EcDsbA-substrate interactions, which may be beneficial for
the development of inhibitors targeting the DsbA substrate recog-
nition site. It is important to note that this analysis may not be
applicable to substrates of other DsbA proteins, particularly those
interacting with DsbAs from classes other than Ia [39].

For comparison, we also analyzed the recognition site surround-
ing the DsbB cysteine known to interact with DsbA (first cysteine
residue in the second periplasmic loop). For this analysis, we
selected DsbB proteins from nine organisms containing class I
DsbAs, since previous work has shown that these DsbBs interact
with DsbA proteins in a similar mode (Fig. 3). The amino acid
sequences surrounding the DsbB cysteine residue directly interact-
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ing with DsbA were retrieved from Uniprot (Table S2). An align-
ment of these sequences was performed using Jalview (Fig. 8B)
followed by a position specific amino acid enrichment analysis
using Seq2Logo (Fig. 8D) [124]. These analyses revealed a
somewhat more conserved consensus sequence surrounding the
cysteine residue consisting of S(56%)–P(67%)–F(56%)–A(33%)–T(56%)–
C(100%)–D(56%)–F(56%). Although DsbB homologues are expected to
share higher sequence homology than a diverse set of substrates, this
finding reflects the somewhat different binding mode of the cognate
oxidases compared to protein substrates, whereby the presence of
aromatic residues neighboring the DsbB cysteine would facilitate
the interaction with the hydrophobic groove [27] characteristic of
class I DsbA proteins [39].
6. Summary and outlook

As the threat of antibiotic resistance continues to grow, it has
become increasingly important to understand the molecular mech-
anism of bacterial pathogenesis. The reliance of virulence factors
on DSB systems for their assembly, has indisputably linked these
proteins, primarily DsbA thiol oxidases to the bacterial pathogenic
potential. This, in addition to the wide distribution of DSBs across
bacteria, make these systems attractive targets to disrupt bacterial
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pathogenesis. In this review we have summarized the current
knowledge on DsbA proteins including their structural diversity
as well as their biochemical and functional properties. We have
particularly focused on the DsbA interactome; collating the current
understanding of how this enzyme interacts with cognate DsbB
oxidases and explored the sequence and structural diversity of
DsbA substrates. This detailed examination, has allowed us to iden-
tify that cysteine residues interacting with DsbA are primarily pre-
sent in loop regions of both substrates and cognate oxidases.
Furthermore, we have proposed a consensus motif recognized by
class I DsbA proteins in DsbB oxidases. Overall, a detailed under-
standing of how these important redox enzymes interact with
partner proteins, not only provides fundamental understanding
on the bacterial oxidative protein folding machinery but may offer
tools to allow the identification of so far unexplored DsbA
substrates.

As DsbA plays a pivotal role in bacterial virulence, inhibitors of
DsbA are being actively pursued as anti-microbial agents [125].
There are a number of advantages to targeting these redox
enzymes; firstly, in conditions where DsbAs are not essential for
viability or growth, their inhibition would reduce virulence and
likely impose low selection pressure for resistance development
[126]. Secondly, DsbA is present in the periplasm, which is more
accessible relative to cytoplasmic targets. Furthermore, all DsbA
inhibitors described so far target the hydrophobic groove of DsbA
[47,66,125,127–130], which is not present in human thioredoxin
or PDI. Therefore, despite DsbA belonging to the widespread
thioredoxin superfamily, DsbA-tailored inhibitors are less likely
to inhibit TRX-like proteins in humans. The detailed analysis of
the DsbA-substrate and DsbA-DsbB interactions described in this
work could therefore inform a number of international campaigns
in their efforts to designing specific inhibitors against DsbA
enzymes [47,66,125,127–130].
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