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Abstract

It is a big challenge to design mixture proportions of the high-performance concrete due
to highly nonhomogeneous relationships and coherent among many components. Although
machine learning (ML) algorithms have been employed effectively to solve this problem, they
are black box models and do not show an explicit relation between the compressive strength and
mixture proportions. In order to overcome this inherent weakness, this paper proposes general
semi-empirical formulas involving nondimensionalization and optimisation techniques. The
optimisation process employs the Nelder-Mead simplex algorithm and takes into account the
behaviour of uncertain variables, which may occur in experimental data. Successful compressive
strength predictions of five datasets with high accuracy in compared to available ML models
indicate that the proposed framework has the universal capacity, which can be used for various
datasets. Furthermore, the explicit relation of semi-empirical formulas may be a useful tool for
engineers and researchers in this area for the prediction purposes.

Keywords: High-performance concrete (HPC), semi-empirical formulas,
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1. Introduction

High-performance concrete (HPC) materials have been widely used in long-span bridges,
high-rise buildings, dams, etc. These materials are often included blast-furnace (BF) slag,
fly ash (FLA), silica fume (SF) and other supplementary substance such as super-plasticizer
[1, 2]. The proportioning of each component can be tailored to meet imposed target strengths
and performance [3]. Due to highly nonhomogeneous mixture, it is difficult to select mixture
proportions and then predict the concrete compressive strength (CCS). The use of machine
learning and statistical approaches to reduce the error between predicted and experimental
data has received significant attention. Over the last two decades, various machine learning
algorithms have been employed to propose an accurate and effective models for the HPC’s
strength. The two most popular ones are related to Neural Networks (NN) with single layer
[4], multi-layer [5, 6] or combination with Monte Carlo stochastic sampling [7] as well as
Artificial Neural Networks (ANNs) with fuzzy-ARTMAP type [8], multi-layer [9, 10] and with
modified firefly algorithm [11]. Notably, Yeh [12, 13] presented the list of experimental data
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of HPC with 1030/1133 samples, in which mixture proportions had eight input variables, and
one output variable as CCS. Thanks for his contribution, these datasets have been widely
used by many researchers in this area. There are also different ML models that can be used
to predict strengths of HPC which include support vector machine (SVM) [14, 15], ensemble
computational techniques such as random forest (RF) [16], adaptive boosting [17], gradient
boosting (GB) [18] and boosting smooth transition regression trees [19] and data-mining [20].
Besides, some authors combined ANNS and fuzzy logic [21, 22], ANNs and regression analysis
[23] or used various models such as linear regression, ANNs and SVM [24, 25]. Young et al.
[26] used NN, GB, RF and SVM models to predict the CCS of more than 10,000 samples based
on actual mixtures and considered industrial importance. More details related to ML models
can be found in recent publications ([27], [28]). Although they have advantage benefits such
as high accuracy, easy application and robustness, etc, they are black box models and do not
provide details how input variables are being combined to make predictions. An explicit relation
between the CCS and input variables cannot be found thus it is not easy to use. Therefore,
many complicated mathematical models have been developed to propose it. Yeh and Lien
[29] presented genetic operation tree model, which combined of the operation tree and genetic
algorithm to calculate the CCS. These gene expression programmings (GEP) were applied to
derive various models for the strength prediction of the HPC by Lim et al. [30], Tsai and Lin
[31], Gandomi and Alavi [32] and Mousavi et al. [33, 34]. Due to advantage of ANNs, some
researchers combined them with GEP ([35], [36]) or with fuzzy logic ([37]). It should be noted
that explicit equations in these papers are quite complicated using cumbersome mathematics
formulations, which are sometime difficult to use. Based on the correlation coefficients of
proportioning of each component, CCS can also be predicted using linear, non-linear and
metaheuristic regression methods [38, 39]. Bharatkumar et al. [40] investigated the effects of
water content and mineral admixture of the of HPC to modify mix design procedure. Bhanja
and Sengupta [41] developed relationship between the 28-day CCS of SF concrete with water-
to-cement and SF replacement ratio. Namyong et al. [42] presented the regression equation
for CCS of in-situ normal concrete (18-27MPa) based on cement, water-cement and fine/coarse
aggregate. Videla and Gaedicke [43] combined hyperbolic function for strength evolution and
exponential one for mixture design parameters for CCS of portland BF cement HPC. Zain and
Abd [44] developed a multiple non-linear regression model to predict the strength of the HPC.
It should be noted that these formulas in references [40–44] only use for one specific concrete
material. Besides, the experiment data may contain some errors in mixture proportions and
testing process ([26]), thus it is important to consider uncertain variables in the prediction
model. The present study focuses on proposing a general semi-empirical framework that can
predict accurately the CCS for different normal and HPCs with various mixture proportions and
take into account the uncertain variables. These two main contributions are briefly highlighted
as follows.

Firstly, this paper uses nondimensionalization and optimisation techniques to solve this
complicated problem. Four dimensionless variables, which are weight of volume ratios and/or
linear combination of existing components, is carefully selected to make sure that they are
consistent with the physical terms. The optimal set of semi-empirical coefficients are searched
using the means of optimisation techniques. The Nelder–Mead simplex algorithm, which is
heuristic search method, is employed to find the optimum of cost function in a multidimensional
space.

Secondly, the proposed method takes into account the behaviour of uncertain variables.
While making laboratory-produced concrete samples, due to variance within proportion, mix-
ture, and testing process, the experiment data may contain errors. Thus, a simple white Gaus-
sian noise model is employed, in which the noise is assumed to be an independent, identically
distributed with zero mean, and variance.
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The proposed formulas are validated with five popular existing datasets, which have different
mixture proportions. The obtained results are reasonably comparable with previous ones,
especially for those using GEP and ANNs. The highest coefficient of determination (R2) and
a20-index, are for Dataset 3 with value of 0.9555 and 0.9310 and the lowest ones are for Dataset
1 with value of 0.8567 and 0.7527, respectively. The complex relationship between mixture
proportion and CCS of the HPC can be predicted accurately by using the semi-empirical
formulas, which provide a better understanding of how predictions are made.

The remaining of this study is outlined as follows. Section 2 provides a details of research
methodology. Results of the predictive models and discussion are presented in Section 3.
Section 4 draws some limitations and proposes future works. Finally, some concluding remarks
are given in Section 5.

2. Research Methodology

This section focuses on two main contributions, which are nondimensionalization and opti-
misation techniques, of the proposed method. Besides, the behaviour of uncertain variables is
also mentioned here. A general dataset of the HPC normally consists of several input variables
including cement (C), water (W), blast-furnace slag (BF), fly ash (FLA), silica fume (SF),
super-plasticizer (SP), high rate water reducing agent (HRWRA), air entraining agent content,
which is the amount of air as a percentage of concrete volume (AE (%)), coarse aggregate
(CA), fine aggregate (FA), Age of testing (Age), etc. Based on the correlation coefficients, the
effect of each input variable to the CCS as output variable is different. In polynomial regression
approach, one either uses all the variables to build the model which usually leads to a very
long and too complicated polynomial equation or usually selects high correlation variables and
ignore the others that leads to a low accuracy model. In this paper, a new set of dimensionless
variables, α, β, γ, δ, which are ratios defined in terms of weight of volume and/or linear com-
bination of existing variables, is carefully selected to make sure that they are consistent with
the physical terms as below:

α =
C

W
, (1a)

β =
FA

a1CA
+ a2, (1b)

γ =
a3C + a4BF + a5SF + a6FLA

a7W + a8SP + a9HRWRA
+ a10AE, (1c)

δ =
(1 + Age)

1day
. (1d)

It should be noted that in Eq. (1d), Age can be 1, 14, 28, 56, 90 and 365 days and 1 day
is divided to make δ become dimensionless variable.

The proposed semi-empirical formula for the CCS is a linear combination of highly nonlinear
terms of the dimensionless variables, as follows

yp = fCCS = f(a,b; Θ) = b1 + b2α
b3 + b4β

b5 + b6 (log γ)b7 + b8δ
b9 . (2)

Here Θ = (α, β, γ, δ), is the dimensionless variables, a = ai, i = 1 . . . 10, and b = bj, j = 1 . . . 9
are semi-empirical coefficients. The sum-square-error cost function, J(a,b), is defined as:

J(a,b; Θ) =
∑

(y − fCCS)2, (3)
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where y is the CCS from experimental data.
The behaviour of uncertain variables is introduced by adding noise in the experimental

data. Here, a simple white Gaussian noise model [45, 46], i.e. ε ∼ N(µ, σ2
nI) is employed,

in which the noise is assumed to be an independent, identically distributed with zero mean
(µ = 0), and variance (σ2

n). For ease of discussion and consistent, the noise variance is defined
as a fraction of mean over standard deviation of experimental data:

σ2
n =

mean(y)

std(y)
. (4)

Thus, the ‘real’ data with noise is generated synthetically as follows

yreal = y + ε. (5)

Hence, the sum-square-error cost function becomes

J(a,b; Θ) =
∑

(yreal − fCCS)2. (6)

Note that fCCS is a linear combination of various highly nonlinear terms. Therefore, the
optimal set of semi-empirical coefficients are searched using the means of optimisation tech-
niques. In this paper, the Nelder–Mead simplex algorithm, which is heuristic search method, is
employed to find the optimum of cost function in a multidimensional space. Based on a direct
search method, it is often used for nonlinear optimisation problems in which the derivatives of
variables might not be found (for more details, refer to references [47, 48]). In particular, the
minimum of cost function is needed to find:

min
a,b

J(a,b; Θ), (7)

using ‘fminsearch’ toolbox in MATLAB, with a suitable initial search condition.
The procedure of this approach consists of two stages: training and testing. A dataset is

first collected and cleaning. The cleaned dataset is then divided into a portion of 80% − 20%
for train and test sets. The training process is performed by adding 50% noise to the ideal
target y. The testing one is taken place by introducing 4 levels of noise, from level-0 to level-3,
corresponding to 0%, 10%, 50% and 100% noise, which is added to both training and testing
sets.

The performance of the model is evaluated using four standard criteria, namely
Coefficient of determination (R2)

R2 =

 n
∑
yyp − (

∑
y)(
∑
yp)√

n(
∑
y2) − (

∑
y)2
√
n(
∑
y2p) − (

∑
yp)2

2

, (8)

Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

∣∣yi − yip
∣∣ , (9)

Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(
yi − yip

)2
, (10)
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where y and yp are the true and predicted values, and n indicates the number of data samples.
The a20-index, which has the advantage of a physical engineering meaning proposed by

[49]:

a20-index =
n20

n
, (11)

where n20 is the number of data samples, whose ratios of experimental and predicted value
are in the range of 0.80 and 1.20. As a perfect model, a20-index is close to be the unity. It
illustrates the number of samples that have the predicted values within a deviation of ±20%
comparing to experimental ones.

The procedure of this approach is summarised in Algorithm: Semi-empirical Procedure.

Algorithm: Semi-empirical Procedure

Given a dataset S with n samples.

1. Cleaning data

• Checking duplicate and remove if any

• Checking NA/N and impute with mean value if any

• Checking outliers using IQR criteria and remove if any

• Randomly split the cleaned data into training (80%) and testing (20%).

2. Training

• Carefully check the availability of input variables to define α, β, γ, δ and
fCCS as mentioned in Eqs. (1) and (2), respectively.

• If a variable does not exist, the corresponding coefficients can be set to zero.

• Adding white noise into the training set.

• Solving the sum-square-error cost in Eqs. (6) and (7) to find the
semi-empirical coefficients a,b.

3. Testing

• Checking the MAE,RMSE, R2 and a20-index of the training set.

• Adding some noise levels to the training and testing sets and checking
MAE,RMSE, R2, and a20-index.

• If the criteria is not satisfied, return to step 2 and modify the proposed
formula and go on.

3. Numerical examples

In this section, the proposed prediction formulas are applied for some reliable datasets with
various input variables, which are from eight to ten, to show the universal capacity of the
present approach. The performance is evaluated using four standard criteria, R2, MAE, RMSE
and a20-index, which illustrate a strong correlation between the predicted and experimental
data. The obtained results are compared with those available in the literature to validate the
semi-empirical formulas.
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3.1. Datasets of the HPC

Five datasets with concrete compressive strength (CCS) as the output variable and various
input variables are considered. Dataset 1 consists of 1030 testing results, which are collected
by Yeh [12] for different mixtures with eight input variables including C, W, BF, FLA, SP,
CA, FA, and Age. Figure 1 shows the correlation heat-map and outliers1 of Dataset 1. It is
clear that there is no really dominant variables that have strong correlation with the CCS. The
Age variable has extremely outliers that can affect to the model performance. Dataset 2 with
a total of 200 samples is collected by Videla and Gaedicke [43]. The CCS can be predicted by
nine input variables, namely, C, W, SF, SP, HRWRA, AE, CA, FA and Age. It is clear from
Figure 2 that only the Age has strong correlation with CCS. There is no extremely outliers
that can affect to the performance of our model. Dataset 3 consists of 144 testing results,
which are collected by Lam et al. [50] and later Pala et al. [3] with eight input variables,
namely, TCM, W, FLAR, SFR, HRWRA, FA, CA, and Age. Figure 3 shows that most of the
all variables have strong correlation with the CCS except for SF. There is no extremely outliers
that can affect to the performance of our model. Dataset 4 is combined of Datasets 2 and 3 to
show the versatility of the proposed formula. This dataset has ten input variables, C, W, SF,
SP, HRWRA, AE, CA, FA and Age. It is noticed that the range of AE is small, however, its
correlation is weak positive linear relationship to the CCS as illustrated in Figure 4. Finally,
Dataset 5 with a total of 104 samples is collected by Lim et al. [30] with seven input variables,
W/B, W, fine aggregate to total aggregate ratio (S/A), FLAR, AE and SP. Figure 5 shows
that most of the variables have strong correlation with the CCS except for FLA, W, and S/A.
The statistical information about input and output variables of each dataset can be found in
Table 1.

3.2. Results and discussions

By using Algorithm: Semi-empirical Procedure, after the cleaning step, there are 892, 195,
144, 339 and 101 cleaned samples, which are randomly split to 714, 156, 115, 271 and 81 for
training and then 178, 39, 29, 68 and 20 for testing for Datasets 1–5, respectively. It is from
Eqs. (1) and (2) that four dimensionless variables, α, β, γ, δ and corresponding coefficients a,b
of semi-empirical formulas are found. These values for each dataset are given in Tables 2 and
3.

Table 4 presents the four criteria to evaluate the performance of training and testing sets.
It should be noted that to train the model, the noise level-2 is added to the target y. The
reason to use this level is to ensure that the model is able to represent the behaviour of the
target variable at both end (0% and 100%) of the noise. The consistency between training
and testing results indicates that there is no overfitting in the training process. It can be
seen from this table that the proposed semi-empirical formulas perform outstanding with five
datasets with the lowest values of R2 = 0.8316 and a20-index = 0.6758 for the testing set
of Dataset 1 with noise at level-3, which implies that a significant correlation between the
predicted and experiment data ([51]). Among five datasets, the best performance with the
highest values of R2 = 0.9555 and a20-index = 0.9310 for the testing set of Dataset 3 with
noise at level-1. Because of combining between Datasets 2 and 3, the performance of Dataset
4 has slightly reduced to R2 = 0.8996 and a20-index = 0.7971 for noise at level-1. Besides, it
is clear that the model with noise level-1 shows outstanding performance thus it is selected to
do the interpretative analysis.

Table 5 shows the validation of semi-empirical formulas with the previous studies [3, 25, 28,
30–32, 34, 43], which used different approach for each dataset. While Lim et al. [30], Tsai and

1It would be notice that the proposed approach does not apply any transformation data techniques. However,
range of values of the box-plots seems to be hard to observe due to the difference in value ranges of inputs.
Hence, all the box-plot figures are applied log-scaled x-axis to increase the visibility.
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Lin [31], Gandomi and Alavi [34], Mousavi et al. [32] and Videla and Gaedicke [43] derived
explicit equations for compressive strength of HPC, Pala et al. [3], Chou and Pham [25] and
Asteris et al. [28] solved this problem by using ANNs. It can be seen that the obtained results
with noise level-1 are reasonably comparable with previous ones, especially for those using
GEP and Multi-GGP. The results for Dataset 1 agree very well with those from Asteris et al.
[28] in terms of R2 and a20-index. Although R2 from previous studies using ANNs is slightly
higher than that of this one, the explicit relation of semi-empirical formula could be benefit in
practice. Due to interpretable models, they provide a better understanding of how predictions
are made. The correlation plot between the actual and predicted output for Datasets 1-5 shows
an excellent performance and is very close to the ideal line as shown in Figures 6–10. It can
be concluded that the present novel approach is simple and suitable various datasets with very
high accuracy.

Before conducting parameter study, it is necessary to explore the feature importance of
the dataset. Feature importance scores can be used to determine the highest/lowest interest
in design mixture proportions and helps to understand which input variables need to pay
more attention than others. They can be calculated using linear models and decision trees
i.e., CART, Random Forest, XGBoost. Figure 11 shows the feature importance of Dataset
1, 2, 3 and 5 extracted from XGBoost Feature Importance [52]. The dash-line indicates 70%
important level. For Dataset 1, it can be seen that C and Age are the two most significant
effects, while CA appears to be the least important input variables. Surprisingly when there is
only one feature important for Dataset 2, 3, and 5. In particular, Age is the most important
variable in Dataset 2, although HRWRA can also worth to consider. TCM is the only candidate
for Dataset 3. While SP is the important factor in Dataset 5, though W/B can also play a
important role on the outcome of the CCS.

Figure 12 presents the CCS with respect to W/B ratio for different days with a specific
mixture of Dataset 1 (BF/B = 0%, FLA/B = 0%, SP/B = 0% and CA/FA = 1.1, 1.3 and 1.8).
As expected in the left figure, smooth curves follow the same trends for various days (7, 14,
28, 56 and 90) and already pass over some points in Dataset 1, which verifies the accuracy of
semi-empirical formula. The response of the proposed model is further investigated for various
days (91, 180, 270 and 360), where only a few data points are available. The plot in the right
figure confirms again that the overfitting problems, which usually happens due to an insufficient
data, are not occurring here since all curves follow the exactly same way.

Effects of BF and FLA on the CCS with respect to W/B ratio are plotted in Figure 13.
The dash-line is for the predicted CCS with BF/B = 0% (left) and FLA/B = 0% (right) while
the solid-line is for BF/B = 30% (left) and FLA/B = 30% (right). It should be mentioned
that due to the group of CCS curves very near to each other, the dots which represent the
experimental data are not added to the plots to avoid confusion. It can be seen that the CCS
increases with the increase of SP and decreases when BF and/or FLA are used.

For a specific mixture of Dataset 2 (W/B = 30%, SF/B = 10%, SP/B = 0.5%, AE =
2%, HRWRA/B = 1.8% and CA/FA = 1.7, 1.9 and 2.1), the CCS increases completely with
increased CA/FA ratio as illustrated in Figure 14. Effects of SP and FLA on the CCS with
respect to W/B ratio for different days (7, 28 and 56) of Dataset 3 are shown in Figure 15 with
(FLA/B = 0, 20%, SP/B = 0, 5%, CA/FA = 2). It implies that SP enhances the CCS and
when FLA is used, the CCS decreases. Finally, it should be noted again that all smooth curves
in Figures 12–15 from Datasets 1-3 always go through at least few points in the datasets, which
confirms the accuracy of the semi-empirical formula proposed in this paper.

4. Limitations and future work

The proposed semi-empirical equations are applied in the tenth-dimensional space defined
by the ten parameters which effect the development of the compressive strength of the normal
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and high performance concrete. In fact, the derived optimum semi-empirical equations are ap-
plicable for parameters, whose values range between the lowest and highest ones as presented in
Table 1. In other words, the proposed semi-empirical equations learns the inputs-output rela-
tionship in the optimum sense, and can generalise their predictions to new data once achieving
the optimal coefficients. However, if the unseen data is out of bound of the learning model,
the inaccurate predictions are expected. For example, for Dataset 1, due to experimental data
for W/B ratios over 0.6 and SP/B over 4% are sparse, it is proposed to limit the use of the
proposed equations only for W/B ratios between 0.30 and 0.60 while regarding the SP/B,
the proposed equations are valid for values less than 4%. It means that more experiments in
certain area are needed to achieve the best equations for this dataset. For Datasets 2 and 3,
similar suggestions are recommended for W/B ratios between 0.25 and 0.37, and 0.3 and 0.5,
respectively.

Besides, performing nondimensionalisation and optimisation techniques to obtain semi-
empirical equations of compressive concrete strength are mathematically straightforward. How-
ever, selecting of correct/accurate dimensionless variables is not a trivial task and requires con-
siderably analysis/judgement and experience. For each extra nondimensional variable added
to the formula, the computation and complexity of the solution will increase. Optimal the set
of dimensionless variables is therefore necessary and will be carried to future work.

Furthermore, it should be mentioned that the accuracy of the proposed model depends
on quality of datasets, which relates to number, variability of inputs and meaningful to the
prediction. Therefore, feature engineering and feature selection will be an essential tool for
future study, which helps preparing a suitable and reliable input variables and thus enhancing
the overall performance of the predictor model.

5. Conclusion

In this paper, optimum semi-empirical framework is proposed for to predict the compressive
strength of the normal and high performance concrete various types datasets from eight to ten
parameters. Four dimensionless variables, which are weighted ratios and/or linear combination
of existing ones, is carefully selected and then Nelder-Mead simplex algorithm is employed as
optimisation process. The technique shows significant advantage in reducing the number of
independent variables and can deal with various mixture proportions. In order to consider some
errors within mixture proportions and testing process, the behaviour of uncertain variables is
included by adding noise effect using a simple white Gaussian noise model. The performance
of five datasets proved that the semi-empirical formulas are capable of predicting accurately
the data with certain noises. Although the results are slightly higher error than those from
available machine learning models, their explicit relation may be benefit for the prediction
purposes. Due to interpretable models, they provide a better understanding of how predictions
are made. Successful predictions of the compressive strength of five datasets indicate the
proposed optimum semi-empirical equations are useful tool for researchers, engineers, and for
supporting the teaching and interpretation of the behaviour concrete materials as they reveal
their strongly non-linear nature in the tenth-dimensional space.
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Figure 1: Correlation heat-map and boxplot outliers of features for Dataset 1 with 1030 samples.
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Figure 11: Feature importance of Dataset 1, 2, 3, and 5 extracted from XGBoost library.
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Table 1: Statistical input variables of the datasets.

Attribute Unit Minimum Maximum Mean SD*

Dataset 1: 1030 samples ([12])
Cement (C) kg/m3 102.0 540.0 281.2 104.5
Water content (W) kg/m3 121.8 247.0 181.6 21.4
Blast-furnace slag (BF) kg/m3 0.0 359.4 73.9 86.3
Fly ash (FLA) kg/m3 0.0 200.1 54.2 64.0
Super-plasticizer (SP) kg/m3 0.0 32.2 6.2 6.0
Coarse aggregate (CA) kg/m3 801.0 1145.0 972.9 77.8
Fine aggregate (FA) kg/m3 594.0 992.6 773.6 80.2
Age of testing (Age) day 1.0 365.0 45.7 63.2
Binder (B)=C+ BF+ FLA kg/m3 200.0 640.0 409.2 92.8
W/B % 23.5 90.0 46.9 12.7
Concrete compressive strength (CCS) MPa 2.3 82.6 35.8 16.7

Dataset 2: 200 samples [43]
Cement (C) kg/m3 1105.0 1173.0 1136.2 21.4
Water content (W) kg/m3 160 168 164.7 2.1
Silica fume (SF) kg/m3 0.0 59 24.9 18.2
Super-plasticizer (SP) kg/m3 2.2 3.3 2.7 0.3
High rate water reducing agent (HRWRA) kg/m3 6.7 14.5 9.3 1.9
Air entraining agent content (AE) % 1.3 2.5 1.8 0.3
Coarse aggregate (CA kg/m3 1105.0 1173.0 1136.2 21.4
Fine aggregate (FA) kg/m3 488.0 700.0 602.5 59.1
Age of testing (Age) day 1.0 56.0 18.9 20.9
Binder (B)=C+ SF kg/m3 446.0 661.0 542.5 64.7
W/B % 25.0 37.1 30.8 3.7
Concrete compressive strength (CCS) MPa 21.2 113.7 66.8 23.6

Dataset 3: 144 samples [3, 50]
Total cementitious material (TCM, B) kg/m3 400.0 500.0 436.7 45.1
Water content (W) lt/m3 150.0 205.0 171.7 24.0
Fly ash replacement (FLAR) % 0.0 55.0 25.0 19.1
Silica fume replacement (SFR) % 0.0 5.0 1.9 2.4
High rate water reducing agent (HRWRA) lt/m3 0.0 13.0 4.9 4.0
Fine aggregate (FA) kg/m3 536.0 724.0 639.4 54.9
Coarse aggregate (CA) kg/m3 1086.0 1157.0 1125.0 29.5
Age of samples (Age) day 3.0 180.0 60.7 61.3
W/B % 30.0 50.0 40.0 8.2
Concrete compressive strength (CCS) MPa 7.8 107.8 56.6 23.8

Dataset 4: 344 samples [3, 43, 50]
Cement (C) kg/m3 180.0 659.0 434.6 123.5
Water content (W) kg/m3 150 205 167.6 16
Silica fume (SF) kg/m3 0.0 59 17.9 17.6
Super-plasticizer (SP) kg/m3 0 3.3 1.6 1.4
High rate water reducing agent (HRWRA) kg/m3 0 14.5 7.4 3.7
Air entraining agent content (AE) % 1.3 2.5 1.8 0.3
Coarse aggregate (CA kg/m3 1186.0 1173.0 1131.5 25.7
Fine aggregate (FA) kg/m3 488.0 724.0 617.9 36.4
Age of testing (Age) day 1.0 180 36.4 47.4
Binder (B)=C + SF + FLA kg/m3 400.0 661.0 498.2 77.5
W/B % 25 50.0 34.6 7.5
Concrete compressive strength (CCS) MPa 21.2 113.7 66.8 23.6

Dataset 5: 104 samples [30]
Water-to-binder (W/B) % 30.0 45.0 37.6 5.6
Water content (W) kg/m3 160.0 180.0 170.0 8.2
Fine aggregate to total aggregate (s/a) % 37.0 53.0 46.0 3.6
Fly ash replacement (FLAR) % 0.0 20.0 10.1 8.3
Air entraining agent content (AE) % 0.0 0.1 0.1 0.0
Super-plasticizer content (SP) kg/m3 1.9 8.5 4.5 2.3
Concrete compressive strength (CCS) MPa 38.0 74.0 52.7 9.4
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Table 2: Input variables and four dimensionless variables, α, β, γ, δ for five datasets.

Dataset Input variables α β α δ

1
C, W, BF, FLA, C

W

FA

a1CA
+ a2

a3C + a4BF + a6FLA

a7W + a8SP

(1 + Age)

1daySP, CA, FA, Age

2
C, W, SF, SP, HRWRA C

W

FA

a1CA
+ a2

a3C + a5SF

a7W + a8SP + a9HRWRA
+ a10AE

(1 + Age)

1dayAE, CA, FA, Age

3
TCM, W, FLAR, SFR, TCM

W

FA

a1CA
+ a2

TCM(a3 + a5SFR + a6FLAR)

a7W + a9HRWRA

(1 + Age)

1dayHRWRA, CA, FA, Age

4
C, W, SF, FLA, HRWRA, C

W

FA

a1CA
+ a2

a3C + a5SF + a6FLA

a7W + a8SP + a9HRWRA
+ a10AE

(1 + Age)

1daySP, AE, CA, FA, Age

5
W/B, W, s/a, FLA, B

W
a1s/a+ a2

B(a3 + a6FLAR)

a7W + a8SP
+ a10AE

1
AE, SP
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Table 3: Coefficients a,b of the semi-empirical equations.

Dataset i 1 2 3 4 5 6 7 8 9 10

1
a 3.6×107 378.07 12.38 40.62 0 23.94 0.02 -7.4×10−3 0 0
b -68.92 91.04 0.23 -2.73 0.72 3.56 1.52 89.62 0.09 0

2
a -1.27 2.05 0.12 0 0.02 0 -6.33 0.28 0.49 -1.41
b -698.02 -106.07 0.44 -22.74 -306.81 101.82 0.7 836.89 0.02 0

3
a -2.36×103 2388.23 3.70 0 0.19 -0.32 0.42 0 0.04 0
b -276.89 -474.81 0.50 -1.65 -16.55 6.33 3.63 666.93 0.02 0

4
a -5.7×108 0.02 1.12 0 0.21 0.09 0.40 -0.49 -1.42 -16.52
b -58.61 -0.11 4.58 -0.40 -1.52 4.13 3.37 215.08 0.06 0

5
a 1.28 2.63 0.70 0 0 -0.17 0.29 -1.79 0 -7.64
b -29.17 -6.39e-09 17.99 2.35 2.64 2.38 3.76 0 0 0
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Table 4: Performance criteria of five datasets with various noise levels.

R2 RMSE MAE a20-index

Dataset Noise (%) train test train test train test train test

1

0 0.8444 0.8564 6.2934 5.9786 4.9052 4.4937 0.6776 0.7417
10 0.8443 0.8567 6.2954 5.9681 4.9058 4.4822 0.6831 0.7527
50 0.8410 0.8539 6.3800 6.0413 4.9856 4.4903 0.6913 0.7197
100 0.8289 0.8316 6.6753 6.4774 5.2255 4.9599 0.6762 0.6758

2

0 0.9289 0.9241 6.2006 6.4748 5.1728 5.4531 0.9359 0.8974
10 0.9287 0.9256 6.2051 6.4263 5.1778 5.3946 0.9359 0.8974
50 0.9236 0.9176 6.4309 6.7391 5.3266 5.7546 0.9294 0.8974
100 0.9138 0.9291 6.8443 6.3219 5.6216 5.2241 0.9230 0.8974

3

0 0.9493 0.9544 5.2843 5.2392 4.0145 3.7656 0.9304 0.9310
10 0.9492 0.9555 5.2976 5.1757 4.0316 3.7117 0.9304 0.9310
50 0.9515 0.9540 5.1927 5.2147 4.0223 3.8016 0.9217 0.8620
100 0.9429 0.9518 5.6255 5.5808 4.4103 4.2241 0.9130 0.9310

4

0 0.9109 0.8995 5.5953 6.2951 7.1402 7.8478 0.8401 0.8115
10 0.9103 0.8996 5.6105 6.2914 7.1587 7.8545 0.8363 0.7971
50 0.9085 0.8895 5.6584 6.7261 7.2457 8.2731 0.8472 0.7826
100 0.9029 0.8983 5.8904 6.0330 7.4492 7.7707 0.8254 0.8405

5

0 0.94535 0.9261 1.7454 1.9211 2.2631 2.6879 1.0000 1.0000
10 0.94146 0.9191 1.7771 2.0597 2.3025 2.8073 1.0000 1.0000
50 0.87593 0.7774 2.6783 3.8272 3.4739 4.7797 1.0000 1.0000
100 0.78156 0.6987 4.0305 4.8212 5.0136 6.3677 0.9506 0.9000
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Table 5: Comparison of the performance of semi-empirical formula in four datasets.

Dataset Reference R2 RMSE MAE a20-index

1

Present 0.8567 5.968 4.482 0.752
Gandomi and Alavi [34] (GEPa) 0.8354 - 5.190 -
Mousavi et al. [32] (Multi-GGPb) 0.8046 7.310 5.480 -
Asteris et al. [28] (GPRc) 0.8858 - - 0.757
Chou and Pham [25] (ANNsd) 0.8649 6.329 4.421 -

2
Present 0.9256 6.426 5.394 0.897
Chou and Pham [25] (ANNsd) 0.9584 4.783 3.660 -
Videla and Gaedicke [43] (Hyp-Expe) 0.9600 - 5.000 -

3
Present 0.9555 5.175 3.711 0.931
Pala et al. [3] (ANNse) 0.9980 - - -
Chou and Pham [25] (ANNse) 0.9860 5.867 4.992 -

5

Present 0.9191 2.059 2.807 1.000
Tsai and Lin [31] (WGPf) 0.9570 2.180 - -
Lim et al. [30] (MRg) 0.9530 - - -
Chou and Pham [25] (ANNse) 0.9741 1.548 1.156 -

a GEP: Gene Expression Programming.
b Multi-GGP: Multi-gene Genetic Programming.
c GPR: Gaussian Process Regression.
d ANNs: Artificial Neural Networks.
e Hyp-Exp: Combination of hyperbolic and exponential equation
f WGP: Weighted genetic programming
g MR: Multi Regression modeling
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