Title

Multiple short bouts of exercise are better than a single continuous bout for cardiometabolic health: a randomised crossover trial

Authors

Philip Shambrook ${ }^{\text {a }}$, Michael I Kingsley ${ }^{\text {ab }}$, Nicholas F Taylor c, Daniel W Wundersitza ${ }^{\text {a }}$, Claire E Wundersitz ${ }^{\text {d }}$, Brett A Gordon ${ }^{\text {a }}$.
${ }^{\text {a }}$ Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, Australia
${ }^{\mathrm{b}}$ Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
${ }^{\text {cS }}$ School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Australia
${ }^{d}$ Angliss Hospital Community Rehabilitation Program, Eastern Health, Melbourne, Australia.

Running Title: Accumulating exercise for cardiometabolic health.

Corresponding author:

Dr Brett Gordon (PhD)
Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University
PO Box 199, Bendigo, Victoria, Australia, 3552
T: +61 3 54447680; E: b.gordon@latrobe.edu.au

P Shambrook: ORCID 0000-0001-7862-3222
M I Kingsley: ORCID 0000-0002-1953-4067
N F Taylor: ORCID 0000-0001-9474-2504
D W Wundersitz: ORCID 0000-0002-7316-6373

C E Wundersitz: ORCID 0000-0003-2362-9197

B A Gordon; ORCID 0000-0001-8864-2128

Acknowledgments.

The authors would like to acknowledge the participants who committed their time to participate in this study, and the undergraduate and post-graduate students who helped in the data collection. This study was made possible by funding received from the La Trobe University Sport Exercise and Rehabilitation Research Focus Area. Philip Shambrook was supported by an Australian Government Research Training Program Scholarship. The authors have no competing interests to declare.

Abstract

Purpose: To compare the cardiometabolic responses to five consecutive days of daily postprandial exercise accumulated in three 10-minute bouts or a single 30-minute bout to a no-exercise control.

Methods. Ten insufficiently active adults completed three trials in a randomised order. Each trial comprised five consecutive days of 30 minutes of exercise either accumulated in three separate 10-minute bouts (ACC) after main meals; a single 30-minute bout after dinner (CONT); or a no-exercise control (NOEX). Glucose regulation was assessed from an oral glucose tolerance test. Applanation tonometry was used to assess pulse wave velocity (PWV) approximately 12 hours following completion of the final trial.

Results. Area under the two-hour glucose curve was similar for CONT (Mean; 95\%CI: 917 $\mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1} ; 815$ to 1019) and $\mathrm{ACC}\left(931 \mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1} ; 794\right.$ to $1068, \mathrm{p}=0.671$). Area under the two-hour insulin curve was greater following NOEX ($70328 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1} ; 30962$ to 109693) than ACC ($51313 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1}: 21822$ to $80806, \mathrm{p}=0.007$). Pulse wave velocity was lower for ACC ($5.96 \mathrm{~m} \cdot \mathrm{~s}^{-1}: 5.38$ to 6.53) compared to CONT ($6.93 \mathrm{~m} \cdot \mathrm{~s}^{-1}: 5.92$ to $7.94, \mathrm{p}$ $=0.31$) but not significantly lower for ACC compared to $\operatorname{NOEX}\left(6.52 \mathrm{~m} \cdot \mathrm{~s}^{-1}: 5.70\right.$ to $7.34, \mathrm{p}=$ 0.151)

Conclusion. Moderate-intensity walking completed as three separate 10-minute bouts after breakfast, lunch, and dinner compared to a single 30-minute bout after dinner were more effective at reducing markers of cardiometabolic health risk in insufficiently active, apparently healthy adults. Both exercise prescriptions were equally as effective at reducing postprandial glucose concentrations compared to a no-exercise control. Therefore, accumulating exercise in multiple short bouts after each main meal might be more advantageous for overall cardiometabolic health than a single bout after dinner only.

Keywords. Glycaemic regulation, physical activity, accumulated exercise, vascular compliance, postprandial, insulin.

Abbreviations.

ACC	Accumulated exercise
ANOVA	Analysis of variance
AUC	Area under the curve
CAVI	Cardio-ankle vascular index
CONT	Continuous exercise
ECG	Electrocardiograph
HbA1c	Glycated haemoglobin
Hg	Mercury
HRR	Heart rate reserve
HRV	Heart rate variability
MD	Mean Difference
$\mathrm{mmol} \cdot \mathrm{L}^{-1}$	Millimol per litre
NCD	Noncommunicable disease
NOEX	No exercise
$\mathrm{pmol} \cdot \mathrm{L}^{-1}$	Picamol per litre
PWV	Pulse wave velocity

T2DM Type 2 Diabetes Mellitus
$\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }} \quad$ Peak volume of oxygen consumed

Author contributions

PS, MK and BG conceived and designed the study. CW analysed the food diaries and prepared the individual food plans. MK developed the software to undertake the HRV analyses. PS, DW and BG conducted the experiments, PS, MK, NT and BG analysed the data and PS wrote the manuscript. All authors edited and approved the final manuscript.

Introduction

Insufficient physical activity is a well-established risk factor for the development of noncommunicable diseases (NCD) including cardiovascular disease and type 2 diabetes (World Health Organization 2018). Furthermore, known factors that increase the risk of NCDs such as obesity and hypertension are more likely to occur in people with low levels of physical activity participation (World Health Organization 2018). International physical activity guidelines have long advocated that individuals undertake regular exercise for health and fitness, yet worldwide up to 40% of adults fail to achieve recommended amounts of physical activity (World Health Organization 2018). Guidelines around the world, including the US and Australia, suggest that adults can accumulate the recommended amount of physical activity for health in multiple short bouts throughout the day (Piercy et al. 2018; Australian Government Department of Health 2014). Accumulating exercise might be an effective strategy for overcoming the most frequently stated reason for being insufficiently active, lack of time (Netz et al. 2008). Therefore, the notion that exercise can be accumulated in multiple short bouts for health and fitness is intuitively appealing.

Previous research comparing the effects of accumulating aerobic exercise in multiple short bouts throughout the day to a single bout once daily differ in their approach with respect to the number, intensity and duration of the bouts. In a 24 -week study involving 134 healthy, sedentary postmenopausal women the mean blood glucose declined more in the group undertaking two 15-minute bouts of walking than a group undertaking a single 30-minute bout without any stastically significant changes in fasting plasma insulin or the 2-hour insulin following a glucose tolerance test (Asikainen et al. 2003). Similarly, in a study involving women with type 2 diabetes mellitus (T2DM) Baynard et al. (2005) reported that a single day of 30 minutes of aerobic exercise undertaken as either a single bout or three 10-minute bouts did not differentially alter glucose control following an oral glucose tolerance test (OGTT). However, when studying nine people (seven male, two female) with insulin
resistance, six one-minute work bouts of treadmill walking at $90 \% \mathrm{HR}_{\max }$ with one minute recovery were reported to be as effective as a single 30-minute moderate-intensity bout at lowering glucose (Francois et al. 2014). Both Pahra et al. (2017) and Reynolds et al. (2016) concluded that accumulating exercise was more beneficial for measures of glucose regulation in participants with T2DM when the total amount (45 minutes and 30 minutes respectively) was completed in three separate bouts as opposed to one continuous bout, however it was unclear whether the intensity of each condition was matched. While exercise is widely accepted as a means to improve cardiometabolic health including glucose control and regulation, it has not yet been determined if accumulating exercise in multiple short bouts throughout the day is more or less benefical than a single bout undertaken once daily.

There is also yet to be consensus for when exercise should be completed in relation to a meal. Exercise in a fasted state has been suggested to reduce the lipaemic response to a meal while postprandial exercise reduces the glycaemic response to a meal (Haxhi et al. 2012). In the limited investigations of accumulated and single-bout exercise, both postprandial (Dipietro et al. 2013) and preprandial (Francois et al. 2014) exercise has been conducted with similar outcomes reported. However, the glycaemic response is likely to be transient with pre-breakfast exercise having no influence on postprandial glucose concentrations following lunch and minimal influence on postprandial glucose response to dinner (Francois et al. 2014). This supports earlier research suggesting that 45 minutes of moderate-intensity exercise initiated 45 minutes after consuming breakfast was effective at reducing glucose and insulin concentrations following breakfast but the effect did not persist following the lunch meal in adults with type 2 diabetes (Larsen et al. 1997). There is evidence to suggest that walking after an evening meal lowers blood glucose concentrations more than walking before the evening meal in adults with type 2 diabetes (Colberg et al. 2009). Therefore, to maximise glycaemic responses and to minimise differences associated with transient responses to exercise completed at different times of day, investigations of
accumulated and single-bout aerobic exercise might be better conducted with the singlebout completed after the evening meal on the same day.

Poor glycaemic control and regulation adversely affect heart rate variability (HRV) and pulse wave velocity (PWV: Benichou et al. 2018; Jarczok et al. 2013; Pober et al. 2004; Salomaa et al. 1995; Ashor et al. 2014). Pulse wave velocity, a surrogate measure of arterial stiffness (Van Bortel et al. 2012) was reported to be improved following aerobic exercise, with further improvements obtained at higher intensity (Ashor et al. 2014). Furthermore, Salomaa et al. (1995) reported that elevated insulin and glucose concentrations were negatively associated with arterial stiffness in a cross-sectional study involving over 4700 men and women aged 45 to 64 years. Similarly, Zheng et al. (2015) reported 30 minutes of aerobic moderateintensity exercise completed as a single bout and accumulated through two 15-minute bouts, with either 20 minutes or 60 minutes between bouts, reduced arterial stiffness amongst healthy young men. Exercise might be an effective intervention to reduce the negative effects of glycaemic dysfunction on HRV and PWV. Pober et al. (2004) reported that 60 minutes of continuous aerobic cycling improved cardiac autonomic function in healthy male volunteers.

Although the benefits of exercise on cardiometabolic health have been confirmed, there has been no agreement on how exercise should be prescribed (Shambrook et al. 2018; Oja et al. 2018) or whether exercise should be accumulated in multiple bouts throughout the day or completed as a single-continuous bout of equal duration. Therefore the primary aim of this study was to compare the glycaemic and cardiovascular responses to five days of 30 minutes of daily aerobic exercise accumulated in three 10-minute bouts after breakfast, lunch, and dinner, with a single 30-minute bout after dinner, and a no-exercise control in apparently healthy adults who did not meet current activity guidelines (Australian

Government Department of Health 2014; Piercy et al. 2018). A secondary aim was to investigate whether participants preferred exercise completed in multiple short bouts or as a single bout.

Method

Individuals were recruited to participate in this three-arm randomised controlled, cross-over trial. Adults aged 18 to 65 years were recruited through social media, posters on community noticeboards, and word-of-mouth. Participants were eligible to take part in the study if they were not meeting current physical activity recommendations (Piercy et al. 2018), were free from any diagnosed cardiometabolic disorder, not taking any medication for cardiac or glycaemic disorders, and had no contraindications to walking. Prospective participants were sent information about the study along with a seven-day food diary to be completed before pre-screening and baseline assessment. Participants provided written informed consent before any measures were collected. The study was approved by the La Trobe University Human Ethics Committee (HEC 15-034) and conducted in accordance with the Declaration of Helsinki.

A random number generator (www.randomization.com) was used to generate a blockrandomised trial order; the outcomes of which were placed in sealed opaque envelopes. The trial order was revealed to the participant and researchers on successful completion of pre-screening and baseline assessment. It was not possible to blind the participants or experimenters to the trial.

Sample size estimates were based on published data for glucose AUC from a study using similar exercise trials (Baynard et al. 2005). A priori power analysis using GPower 3.1
(Heinreich-Heine University, Dusseldorf, Germany) calculated that a sample size of 10 was sufficient to determine a medium effect (partial eta ${ }^{2} 0.06-0.13$) for a three-group repeated measures trial with a power of 0.80 and alpha level of 0.05 .

Pre-screening and baseline assessment were conducted during two separate laboratory visits. On the first visit, participants attended following an overnight fast and having abstained from any exercise for 48 hours. An Adult Pre-exercise Screening Tool (Exercise and Sport Science Australia et al. 2011) was used for health screening and risk stratification. Leisure-time physical activity was assessed using the long-form International Physical Activity Questionnaire (IPAQ Group 2010). Blood samples were collected from an antecubital vein to determine blood lipids, glycated haemoglobin (HbA1c), fasting plasma glucose, and fasting serum insulin. Baseline measurements of stature (Portable Stadiometer; Holtain, Wales), body mass (Model 770 1321004; Seca GmbH \& Co., Germany), and waist and hip girths were recorded. Participants unfamiliar with using a motorised treadmill were familiarised with this equipment.

On the second visit, participants were fitted with a 12-lead electrocardiograph (ECG; Cardiovit CS-200 Touch; Schiller AG, Baar, Switzerland) to monitor heart rate and rhythm during a graded exercise test. Participants undertook the Balke-Ware graded exercise text (Pescatello et al. 2013) to volitional exhaustion to determine $\mathrm{V}_{\text {2peak. }}$. Respiratory gases were collected and analysed throughout the graded exercise text with an automated metabolic cart (ParvoMedics TrueOne 2400; Sandy, UT). Participants' rating of perceived exertion (Borg's 6-20 scale; Borg 1982), heart rate, and manually obtained blood pressure were recorded at three-minute intervals throughout the test. The highest 30 -second continuous recorded values obtained during the graded exercise text were used to determine $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak. }}$. Following completion of the pre-screening and baseline assessment, an
accredited practising dietitian provided individual meal plans from the participants' sevenday food diaries. Meal plans were individually designed to simulate participants' usual diet and matched to their average energy intake and macronutrient composition. All food was produced and sourced from a local kitchen. The same individualised meal plan was provided to each participant for each trial week. Participants were fitted with an accelerometer (Actigraph GTX3; Actigraph LLC, Florida, USA), worn on a wrist band on the participants' non-dominant arm to record physical activity during each trial week. Participants were instructed to remove the accelerometer only to avoid immersion in water.

Participants completed each of the three trials for five consecutive days, 30 minutes after meals. The exercise trials required participants to undertake 30 minutes of moderateintensity walking at 55-70\% of heart rate reserve (HRR: Karvonen et al. (1957)) equivalent to a brisk walk at $4.0-6.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ (Piercy et al. 2018), as a single bout, 30 minutes after consuming the evening meal (CONT), or three separate 10 -minute bouts, 30 minutes after breakfast, lunch, and dinner (ACC). Heart rate (FT60; Polar OY, Finland) was recorded every minute throughout each trial and adjustments made as necessary to the treadmill speed or incline to ensure the required intensity was maintained. For the no-exercise control (NOEX), participants were required to remain seated for a total of 60 minutes following the dinner meal. A wash-out period of at least 14 days was imposed between trials to minimise potential carry-over effects between trials as previously implemented (Bally et al. 2016; Figure 1).

For all trials, participants attended the laboratory each Monday to Friday morning in a fasted state to consume their prescribed breakfast and then remain seated for 30 minutes.

Participants completing NOEX or CONT trials were given lunch and allowed to leave with instructions to eat lunch at approximately midday, then remain seated for 30 minutes.

Participants completing the ACC trial completed the first 10-minute bout of moderateintensity walking on the treadmill before leaving the laboratory. Participants completing ACC returned for their lunch, consumed their meal, then sat for 30 minutes before undertaking 10 minutes of moderate-intensity walking. All participants returned to the laboratory to consume their evening meal and sit for 30 minutes before completing the relevant condition. On the final morning of each trial week before eating breakfast, participants were fitted with a fivelead ambulatory ECG (FD12 plus; Schiller AG, Switzerland) to record cardiac electrical activity at a sampling rate of 1000 Hz for 24 hours. After the final exercise bout for the week, participants also completed the Physical Activity Enjoyment Scale (Kendzierski and DeCarlo 1991) to evaluate any preference towards either exercise mode. Participants were requested not to change their physical activity or dietary habits throughout the duration of their involvement in this study, which was confirmed verbally at the start of each trial week.

Approximately 12 hours after the final exercise bout of each trial week, participants attended the laboratory following an overnight fast for measurement of arterial stiffness as indicated by PWV, and to complete an OGTT. On arrival, participants assumed a supine position and rested for a minimum of five minutes in a darkened environment. Pulse wave velocity was determined using applanation tonometry according to the manufacturer's instructions (Sphygmocor® XCEL PWA \& PWV; AtCor Medical Holdings Ltd, Australia). A teflon cannula was inserted into an antecubital vein to allow regular blood sampling. An intial blood draw was taken for the analysis of fasting glucose and insulin. Participants had five minutes to consume an OGTT solution containing 75 g of glucose in 300 ml of water (Gluco Scan; Daniels Health, Australia). Additional blood samples were taken at 30, 60, 90, and 120 minutes following consumption of the solution for the analysis of plasma glucose and serum insulin. Participants remained seated throughout the OGTT. All blood was collected in BD vaccutainers ${ }^{\mathrm{TM}}$ (BD, UK) which were taken to a local pathology laboratory as soon as
possible after collection. The accelerometer, canula, and five-lead ambulatory ECG were removed after completion of the OGTT.

Two-hour glucose and insulin area under the curve (AUC) were calculated using the trapezoidal rule. Insulin sensitivity from the OGTT was determined using the Stumvoll insulin sensitivity index (SISI) (Stumvoll et al. 2000). Data from the SphygmoCor® applanation tonometry were downloaded to assess PWV, a surrogate indicator of arterial stiffness (Vlachopoulos et al. 2010), using Sphygmocor® XCEL software (AtCor Medical Holdings Ltd, Australia). Non-sinus cardiac cycles were excluded from the ECG data that were downloaded and analysed using Medilog Darwin V2 software (Schiller AG, Switzerland). The R-R intervals for all sinus beats (N-N intervals) along with the corresponding time coordinates (determined from the time at the beginning of each $\mathrm{N}-\mathrm{N}$ interval) were imported into a customised software package designed using LabVIEW software (LabVIEW 2016; National Instruments, UK). As previously reported (Kingsley et al. 2005), a 4 Hz sampling frequency was used to re-sample the RR interval data to provide uniformaly sampled data, before being de-trended and windowed using a Hanning window followed by Fast Fourier Transformation of 1 minute segments to provide an estimate of the power spectral density in HF bandwidth $(0.15-0.40 \mathrm{~Hz})$ and LF bandwith $(0.04-0.15 \mathrm{~Hz})$. The recommendations of the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (Camm et al. 1996) were followed to calculate frequency domain (LF, HF LF/HF power) and time domain (NNmean, NNSD, RMSSD NN50, pNN50) parameters.

Statistical analyses were carried out using IBM SPSS for Macintosh (V25 software; IBM Corp, Armonk, US). One-way repeated measures ANOVAs were performed to compare trial effects. Where appropriate, Bonferroni corrections were applied to account for multiple
comparisons. A paired samples t-test was conducted to evaluate participants' preference for the exercise trials. Tests were deemed statistically significant at alpha ≤ 0.05. Unless otherwise stated, all data are reported as mean \pm standard deviation or mean difference (95% confidence interval). Small $0.01-0.05$, medium $0.06-0.13$, and large >0.14 magnitude of effects were reported using partial eta ${ }^{2}$ (Cohen 1988).

Results

Ten adults ($\mathrm{m}=8, \mathrm{f}=2$ postmenopausal) completed all aspects of the study; their baseline characteristics are at Table 1. Participants were free of any diagnosed cardiometabolic disorder. From the IPAQ, only two participants reported they undertook moderate-intensity leisure-time exercise (for 80 minutes and 100 minutes per week respectively), and zero participants reported completing vigorous intensity exercise. Mean speed and treadmill incline for the ACC trial was $5.4 \pm 0.8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and $7.7 \pm 2.9 \%$ respectively, and for the CONT trial $5.1 \pm 0.6 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and $6.4 \pm 1.9 \%$ respectively. Participants were provided with the same individualised meal plans for each trial week comprising $230 \pm 54 \mathrm{~g} \cdot \mathrm{day}^{-1}$ carbohydrate, 114 $\pm 18 \mathrm{~g} \cdot$ day $^{-1}$ protein, and $88 \pm 19 \mathrm{~g} \cdot$ day $^{-1}$ fat for a mean daily energy content of 9072 ± 1205 $\mathrm{kJ} \cdot$ day $^{-1}$. Overall physical activity (step count) was not different between trials (NOEX 58039 ± 14585, CONT 61732 ± 15462, ACC $64644 \pm 13253, p=0.268$, partial $\left.^{\text {eta }}{ }^{2}=0.338\right)$.

Participants did not express a preference for either CONT (82 ± 19) or ACC $\left(83 \pm 18 ; \mathrm{t}_{(9)}=\right.$ $2.26, p=0.885$) exercise trials.

Fasting glucose and fasting insulin were not different between the trials (Table 2). There were large intervention effects for glucose $\operatorname{AUC}\left(\mathrm{F}_{(2,8)}=4.21, \mathrm{p}=0.010\right.$, partial eta ${ }^{2}=0.40$; Figure $2 A$) and insulin $A U C\left(F_{(2,8)}=5.29, p=0.057\right.$, partial eta ${ }^{2}=0.27$; Figure 2B). Glucose AUC following CONT ($917 \pm 142 \mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1}$) was not different from ACC $(931 \pm 191$ $\mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1} ; \mathrm{p}=0.671$). However, glucose AUC following NOEX ($1037 \pm 151 \mathrm{mmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-}$
$\left.{ }^{1}\right)$ was higher than CONT $(p=0.025)$ and higher than ACC $(p=0.016)$. Insulin AUC was lower following ACC $\left(51313 \pm 13037 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1}\right)$ than $\operatorname{NOEX}\left(70328 \pm 17401 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}\right.$; $p=0.007)$. However, insulin AUC following CONT ($66150 \pm 19185 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}^{-1}$) was not different to that for $\operatorname{NOEX}\left(70328 \pm 17401 \mathrm{pmol} \cdot \mathrm{L}^{-1} \cdot 2 \mathrm{~h}-1 ; \mathrm{p}=0.627\right)$. There was a large trial effect for insulin sensitivity that did not reach statistical significance (SISI: $F_{(2,8)}=2.61, p=$ 0.114; partial eta ${ }^{2}=0.225$, Table 2).

A large intervention effect was observed for $\operatorname{PWV}\left(\mathrm{F}_{(2,8)}=2.91, \mathrm{p}=0.047\right.$; partial eta ${ }^{2}=$ $0.29)$. Pairwise comparisons indicated a difference between CONT ($6.9 \pm 1.4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) and ACC ($6.0 \pm 0.8 \mathrm{~m} \cdot \mathrm{~s}^{-1} ; \mathrm{p}=0.031$), but not between NOEX $\left(6.5 \pm 1.2 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$ and CONT ($\mathrm{p}=$ $0.265)$ or NOEX and ACC $(p=0.151)$.

The exercise completed in these trials (CONT and ACC) did not result in a systematic change in HRV over the 24-hour measurement period when compared to no-exercise. The 24-hour HRV data for the time and frequency domains were not systematically different between the three trials (Table 3).

Discussion

The key finding from this study was that five days of moderate-intensity walking completed as three separate 10-minute bouts after breakfast, lunch, and dinner compared to a single 30-minute bout after dinner were more effective at reducing insulin requirements and pulse wave velocity in insufficiently active, apparently healthy adults. Both exercise prescriptions were equally as effective at reducing postprandial glucose concentrations compared to a no-exercise control. Furthermore, ACC (but not CONT) resulted in a lower insulin requirement than NOEX, even with similar reductions in glucose. It was also determined
that PWV was lower for ACC compared to CONT. This is an important finding as studies involving the effects of exercise on arterial stiffness have generally focused on longer duration continuous exercise bouts of 30 minutes or more. Taken together, these novel data suggest that accumulating exercise in multiple bouts throughout the day might be more beneficial for cardiometabolic health than a single bout of similar total duration after the evening meal only. However, whether these results would occur if exercise was completed prior to meal consumption was not assessed.

In the current study, only the ACC trial was associated with a reduced insulin requirement to facilitate a reduction in glucose. Elevated blood glucose has been demonstrated to increase arterial stiffness (Salomaa et al. 1995). As both the ACC and CONT trials experienced a reduction in glucose AUC, it might be inferred that the reduced insulin requirement following accumulated exercise in this study drove the reduction in arterial stiffness. This hypothesis is consistent with other research investigating the effects of increased insulin concentration on arterial stiffness. In a cross-sectional study of people with T2DM or prediabetes, Salomaa et al. (1995) reported that increases in fasting insulin were positively associated with increased arterial stiffness. This might be due to the residual effects of the insulin released following meal consumption during the separate exercise bouts having a cumulative effect greater on PWV than that from the single 30-minute bout.

Previous research has shown that the risk of cardiocascular events is reduced by $12-14 \%$ for every $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ reduction in PWV (Vlachopoulos et al. 2010). In the current study, PWV was $0.9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ lower when exercise was accumulated throughout the day compared to a single continuous bout, suggesting the result is likely clinically significant. In a systematic review and meta-analysis, Ashor et al. (2014) reported that aerobic exercise improved PWV noting that greater imporvements were observed at higher exercise intensities and in trials
of 10 weeks or more without noting whether the exercise was continuous or accumulated. Two 15-minute bouts of cycling separated by 20 minutes of rest acutely improved PWV compared to a resting control group but the absence of another group undertaking a single 30-minute bout of exercise render it difficult to make any comparision (Kobayashi et al. 2018). Although there has been minimal investigation of the effect of accumulating exercise on arterial stiffness, Okamoto et al. (2018) demonstrated that 30 minutes of treadmill walking, comprising five sets of 3 minutes at $30 \% \mathrm{VO}_{2 \max }$ and five sets of 3 minutes at 70% $\mathrm{VO}_{2 \text { max }}$, resulted in a more persistent reduction in PWV in healthy adults when compared to a single bout of continuous walking for 30 minutes at $50 \% \mathrm{VO}_{2 \text { max. }}$. The results from Okamoto et al. (2018) suggest that interval exercise might be better than continuous exercise for reducing PWV. Further research should investigate the effects of habitual accumulation of exercise compared to continuous exercise in order to allow a better determination of which method might be more efficacious in the long-term.

The findings from the current study confirm that exercise is beneficial for improving arterial stiffness. However, this study extends the findings of Zheng et al. (2015), as the results suggest that following multiple days of exercise, changes in PWV can be observed for at least 12 hours after the final exercise bout. Zheng et al. (2015) investigated the acute effects of single sessions of 30 minute continuous exercise bouts or two 15-minute bouts separated by 20 and 60 minutes respectively on arterial stiffness using the cardio-ankle vascular index (CAVI), measured immediately and 60 minutes after the trials. All exercise trials improved CAVI when measured immediately after the exercise had finished. However only the accumulated exercise with the bouts separated by 20 minutes showed a reduction in arterial stiffness when measured 60 minutes after the exercise had finished (Zheng et al. 2015). Therefore, it is possible that repeated bouts of exercise have an additive, accumulated effect on arterial function/compliance that is further enhanced if the exercise is accumulated in short bouts throughout the day on multiple consecutive days.

The current study and that by Zheng et al. (2015) both detected changes in PWV but used different measurement techniques that might make it difficult to directly compare the results. The CAVI is derived from a stiffness parameter (β) determined from the time and distance of pulses from the heart valve, popliteal, brachial, and ankle pulses. Blood-pressure cuffs with sensors are placed on both ankles, right knee, and upper arms. A phonocardiogram is placed at the second intercostal space on the sternal border and electrocardiogram leads placed on the wrists. In contrast the applanation tonometry technique of the Sphygmocor ${ }^{\circledR}$ utilises a cuff on the femoral artery and a tonometer placed over the carotid artery to determine the femoral-carotid pulse transit time. When comparing different techniques used to assess arterial stiffness Huck et al. (2007) suggested that the requirement to place various sensors and cuffs might have contributed to the greater variance in readings from CAVI technique compared to applanation tonometry measured PWV. Therefore, although both this study and that of Zheng et al. (2015) demonstrated that accumulating exercise had a beneficial effect on arterial stiffness, further research using similar exercise methodologies and techniques to measure arterial stiffness are required in order to confirm or refute the results.

In the current study, there was no evidence to suggest that five days of completing 30 minutes of moderate-intensity aerobic exercise, whether undertaken as a single bout or accumulated in multiple bouts, was sufficient to systematically influence HRV throughout the 24-hour period of measurement that included exercise trials with the same overall volume and intensity in both the CONT and ACC trials but also a no-exercise control. In a previous study of healthy young males completing 60 minutes of moderate-intensity aerobic exercise while consuming standardised meals, positive HRV changes were reported when collected under controlled resting conditions (Pober et al. 2004). In the current study HRV data was collected over a 24 -hour period to ensure any changes in HRV resulting from the different
exercise trials were captured that might have dissipated had the data been collected the following morning only. Interpretation of HRV during exercise is difficult as measures of sympathovagal activity at rest behave differently during exercise (Sandercock and Brodie 2006). Therefore, despite the inherent risks of introducing high levels of variance, it might be preferable to consider HRV data gathered over longer durations that embrace exercise as this reflects normal life activities. In the current study there was a high degree of variance in all measurements of HRV recorded, possibly as a result of the largely free-living conditions under which the participants took part in the study and also the apparently good health of the participants. Understanding how trials impact on free-living people is important, as research outcomes in well-controlled experiments might not be replicable beyond the wellcontrolled conditions of the laboratory. Furthermore, insights might be gained in how exercise can be used to reduce the risks of healthy people developing adverse cardiometabolic outcomes.

Although the results from this study suggest that postprandial exercise can reduce the risk of developing cardiometabolic health conditions, there are some limitations which should be considered. Only the effects of exercise completed 30 minutes after meals were assessed in this study. Future research should consider whether exercising sooner or later than 30 minutes after meals, and also before meals, might have different outcomes. Walking might not affect lipids or lipoproteins as neither were reported to change following 12 weeks of walking three days per week either accumulated as two 10-minute walks, or one 20-minute walk in healthy adults (Murtagh et al. 2005). Furthermore, accumulated exercise and singlebout exercise might be equally as effective at attenuating postprandial lipaemia (Murphy et al. 2009). Therefore, we did not assess the effects of walking on lipid profiles in this study but measuring it in future might be useful to add to the limited evidence base. While all participants consumed the same individually prepared diet for all trials, no attempt was made to match energy intakes or macronutrient content between participants or relative to
body mass. Neither was there any attempt to control how much energy participants expended beyond the laboratory other than recording their steps with an accelerometer and asking them to refrain from any exercise they did not normally undertake throughout their involvement in the study. Analysis of blood gases were not undertaken as part of this study as no changes were anticipated due to the exercise intensity (Burton et al. 2004). Blood gas analysis should be considered in future studies involving higher intensity exercise or participants with diabetes or other cardiometabolic disorders that might impact on the acidbase balance or gas partial pressures during exercise. Power was not calculated a priori for HRV, therefore differences might exist, but the study was possibly insufficiently powered to detect them.

Conclusion

This study of insufficiently active, apparently healthy adults found that 30 minutes of postprandial modetrate-intensity aerobic walking accumulated in three 10-minute bouts after meals significantly improved arterial stiffness while lowering insulin requirements in comparison to a single 30 -minute bout after the evening meal alone. There was no difference between the accumulated or continuous exercise prescriptions for 2-hour glucose AUC, but both trials were different from the no-exercise control. Therefore, accumulating exercise in multiple bouts throughout the day might be more beneficial than a single bout for reducing the risk of developing cardiometabolic diseases such as diabetes and cardiovascular disease.

Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC (2014) Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and metaanalysis of randomized controlled trials. PLoS One 9 (10):e110034. doi:10.1371/journal.pone. 0110034

Asikainen TM, Miilunpalo S, Kukkonen-Harjula K, Nenonen A, Pasanen M, Rinne M, UusiRasi K, Oja P, Vuori I (2003) Walking trials in postmenopausal women: effect of low doses of exercise and exercise fractionization on coronary risk factors. Scand J Med Sci Sports 13 (5):284-292. doi:10.1034/j.1600-0838.2003.00331.x

Australian Government Department of Health (2014) Australia's physical activity and sedentary behaviour guidelines.

Bally L, Zueger T, Buehler T, Dokumaci AS, Speck C, Pasi N, Ciller C, Paganini D, Feller K, Loher H (2016) Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study. Diabetologia 59 (4):776-784. doi:10.1007/s00125-015-3854-7

Baynard T, Franklin RM, Goulopoulou S, Carhart R, Kanaley JA (2005) Effect of a single vs multiple bouts of exercise on glucose control in women with type 2 diabetes. Metabolism 54 (8):989-994. doi:10.1016/j.metabol.2005.02.015

Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, Dutheil F (2018) Heart rate variability in type 2 diabetes mellitus: a systematic review and metaanalysis. PLoS One 13 (4):e0195166. doi:10.1371/journal.pone. 0195166

Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14 (5):377-381. doi:10.1249/00005768-198205000-00012

Burton DA, Stokes K, Hall GM (2004) Physiological effects of exercise. BJA Educ 4 (6):185188. doi:10.1093/bjaceaccp/mkh050

Camm AJ, Malik M, Bigger JT, Breithardt G, Cerutti S, Cohen RJ, Coumel P, Fallen EL, Kennedy HL, Kleiger R (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93 (5):1043-1065. doi:10.1111/j.1542-474x.1996.tb00275.x

Cohen J (1988) Statistical power analysis for the behavioral sciences. Second edn. Lawrence Erlbaum, Abingdon, UK

Colberg SR, Zarrabi L, Bennington L, Nakave A, Somma CT, Swain DP, Sechrist SR (2009) Postprandial walking is better for lowering the glycemic effect of dinner than predinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc 10 (6):394-397. doi:10.1016/j.jamda.2009.03.015

Dipietro L, Gribok A, Stevens MS, Hamm LF, Rumpler W (2013) Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care 36 (10):3262-3268. doi:10.2337/dc13-0084

Exercise and Sport Science Australia, Fitness Australia, Sports Science Australia (2011) Adult pre-exercise screening tool.

Francois ME, Baldi JC, Manning PJ, Lucas SJ, Hawley JA, Williams MJ, Cotter JD (2014) 'Exercise snacks' before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia 57 (7):1437-1445. doi:10.1007/s00125-014-3244-6

Haxhi J, Scotto di Palumbo A, Sacchetti M (2012) Exercising for metabolic control: is timing important? Ann Nutr Metab 62 (1):14-25. doi:10.1159/000343788

Huck CJ, Bronas UG, Williamson EB, Draheim CC, Duprez DA, Dengel DR (2007) Noninvasive measurements of arterial stiffness: repeatability and interrelationships with endothelial function and arterial morphology measures. Vasc Health Risk Manag 3 (3):343-349

IPAQ Group (2010) International Physical Activity Questionnaire. IPAQ Group. https://sites.google.com/site/theipaq/home. 2015

Jarczok MN, Li J, Mauss D, Fischer JE, Thayer JF (2013) Heart rate variability is associated with glycemic status after controlling for components of the metabolic syndrome. Int J Cardiol 167 (3):855-861. doi:10.1016/j.ijcard.2012.02.002

Karvonen MJ, Kentala E, Mustala O (1957) The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn 35 (3):307-315

Kendzierski D, DeCarlo KJ (1991) Physical activity enjoyment scale: two validation studies. J Sport Exerc Psychol 13 (1):50-64. doi:10.1123/jsep.13.1.50

Kingsley M, Lewis MJ, Marson R (2005) Comparison of polar 810 s and an ambulatory ECG system for RR interval measurement during progressive exercise. Int J Sports Med 26 (01):39-44. doi:10.1055/s-2004-817878

Kobayashi R, Hatakeyama H, Hashimoto Y, Okamoto T (2018) Acute effects of accumulated aerobic exercise on aortic and peripheral pulse wave velocity in young males. J Phys Ther Sci 30 (1):181-184. doi:10.1589/jpts.30.181

Larsen SJJ, Dela F, Kjær M, Galbo H (1997) The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia 40 (4):447-453. doi:10.1007/s001250050699

Murphy MH, Blair SN, Murtagh EM (2009) Accumulated versus continuous exercise for health benefit: a review of empirical studies. Sports Med 39 (1):29-43. doi:10.2165/00007256-200939010-00003

Murtagh EM, Boreham CAG, Nevill A, Hare LG, Murphy MH (2005) The effects of 60 minutes of brisk walking per week, accumulated in two different patterns, on cardiovascular risk. Prev Med 41 (1):92-97. doi:http://dx.doi.org/10.1016/j.ypmed.2004.10.008

Netz Y, Zeev A, Arnon M, Tenenbaum G (2008) Reasons attributed to omitting exercising: a population-based study. Int J Sport Exerc Psycol 6 (1):9-23. doi:10.1080/1612197X.2008.9671851

Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S (2018) Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med 52 (12):769-775. doi:10.1136/bjsports-2017-098558

Okamoto T, Min S-K, Sakamaki-Sunaga M (2018) Acute effect of interval walking on arterial stiffness in healthy young adults. Int J Sports Med 39 (07):495-501. doi:10.1055/a-0608-4476

Pahra D, Sharma N, Ghai S, Hajela A, Bhansali S, Bhansali A (2017) Impact of post-meal and one-time daily exercise in patient with type 2 diabetes mellitus: a randomized crossover study. Diabetol Metab Syndr 9 (1):64. doi:10.1186/s13098-017-0263-8

Pescatello LS, Arena R, Thompson PD (2013) ACSM's Guidelines for Exercise Testing and Prescription. 9th edn. Wolters Kluwer Health, Baltimore, MD

Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD (2018) The Physical Activity Guidelines for Americans. J Am Med Assoc 320 (19):2020-2028. doi:10.1001/jama.2018.14854

Pober DM, Braun B, Freedson PS (2004) Effects of a single bout of exercise on resting heart rate variability. Med Sci Sports Exerc 36 (7):1140-1148. doi:10.1249/01.MSS.0000132273.30827.9A

Reynolds AN, Mann JI, Williams S, Venn BJ (2016) Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia 59 (12):2572-2578. doi:10.1007/s00125-016-4085-2

Salomaa V, Riley W, Kark JD, Nardo C, Folsom AR (1995) Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. Circulation 91 (5):1432-1443. doi:10.1161/01.CIR.91.5.1432

Sandercock GRH, Brodie DA (2006) The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports 16:302-313. doi:10.1111/j.1600-0838.2006.00556.x

Shambrook P, Kingsley M, Taylor N, Gordon B (2018) Accumulated or continuous exercise for glycaemic regulation and control: a systematic review with meta-analysis. BMJ Open Sport Exerc Med 4 (1):e000470. doi:10.1136/bmjsem-2018-000470

Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, Renn W, Gerich $J(2000)$ Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 23 (3):295. doi:10.2337/diacare.23.3.295

Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank J, De Backer T, Filipovsky J, Huybrechts S, Mattace-Raso FU, Protogerou AD (2012) Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 30 (3):445-448. doi:10.1097/hjh.0b013e32834fa8b0

Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55 (13):1318-1327. doi:10.1016/j.jacc.2009.10.061

World Health Organization (2018) Global action plan on physical activity 2018-2030: more active people for a healthier world. World Health Organization,

Zheng L, Zhang X, Zhu W, Chen X, Wu H, Yan S (2015) Acute effects of moderate-intensity continuous and accumulated exercise on arterial stiffness in healthy young men. Eur J Appl Physiol 115 (1):177-185. doi:10.1007/s00421-014-3008-5

Table 1. Baseline characteristics of participants ($n=10,8 m, 2 f$).

Variable	Measure
Age (y)	50 ± 12.6
BMI ($\mathrm{kg} \cdot \mathrm{m}^{-2}$)	29.0 ± 5.4
Systolic blood pressure (mm Hg)	129 ± 13
Diastolic blood pressure (mm Hg)	86 ± 10
Waist (cm)	91.3 ± 15.8
Hip (cm)	106.1 ± 9.3
Waist/Hip ratio	0.9 ± 0.1
$\dot{\mathrm{V}} \mathrm{O}_{\text {2peak, }}\left(\mathrm{ml} \cdot \mathrm{min}^{-1} \cdot \mathrm{~kg}^{-1}\right)$	31.5 ± 7.1
HbA1. ${ }_{\text {c }}$ \%)	5.5 ± 0.2
Total Cholesterol ($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)	6.1 ± 1.1
HDL-C ($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)	1.3 ± 0.2
LDL-C ($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)	3.9 ± 0.6
Triglycerides ($\mathrm{mmol} \cdot \mathrm{L}^{-1}$)	2.2 ± 2.4

Note: BMI = Body Mass Index; HbA1 ${ }_{c}=$ Glycated Haemoglobin; HDL-C $=$ High Density Lipoprotein Cholesterol; LDL-C = Low Density Lipoprotein Cholesterol Values are mean \pm SD

Table 2. Measures of glucose control and insulin sensitivity.

Measure	NOEX	CONT	ACC	Partial eta 2	p
Fasting Glucose	4.9 ± 0.3	4.8 ± 0.4	5.0 ± 0.4	0.284	0.081
$\left(\mathrm{mmol} \cdot \mathrm{L}^{-1}\right.$)					
Fasting Insulin	48.0 ± 36.1	51.0 ± 32.23	34.9 ± 17.6	0.255	0.089
(pmol•L-1)					
Stumvoll ISI	0.07 ± 0.05	0.08 ± 0.04	0.09 ± 0.03	0.225	0.101
Note: ACC $=$ Accumulated exercise; CONT = Continuous exercise; ISI = Insulin					
sensitivity index; NOEX = No exercise					
Values are mean \pm SD					

Table 3. Measures of heart rate variability and vascular compliance. Heart rate variability measures obtained from 24-h ambulatory, five-lead ECG.
Pulse Wave Velocity measures obtained from SphygmoCor ${ }^{\circledR}$ applanation tonomotery.

Variable	NOEX	CONT	ACC	Partial eta ${ }^{2}$	p
NN50 (n)	4828 ± 3016	5147 ± 2998	6068 ± 4324	0.065	0.546
PNN50 (\%)	4.5 ± 3.5	5.0 ± 3.3	5.9 ± 4.5	0.069	0.525
RMSSD (ms)	24.2 ± 5.7	24.1 ± 6.6	26.6 ± 8.2	0.099	0.390
NNSD (ms)	37 ± 1	38 ± 1	42 ± 1	0.150	0.232
RRmean (ms)	770 ± 9	759 ± 9	790 ± 7	0.128	0.293
VLFpower (m•s $)$	510 ± 307	526 ± 278	624 ± 301	0.128	0.293
LFpower $\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$	889 ± 463	882 ± 579	1089 ± 742	0.131	0.283
HFpower $\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$	200 ± 98	204 ± 106	263 ± 231	0.090	0.428
LF/HF	4.4 ± 0.9	4.7 ± 1.4	4.5 ± 1.2	0.046	0.654
PWV $\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$	6.55 ± 1.2	6.9 ± 1.4	6.0 ± 0.8	0.288	0.047

[^0]Values are mean \pm SD

Figure 1. Study flow of participants during this three-arm randomised controlled, cross-over

Figure 2. Two-hour oral Glucose Tolerance Test. Fasted blood draw at Time = 0. Blood drawn at 30 minutes intervals following ingestion of oral glucose tolerance test solution for
measurement of A) Glucose and B) Insulin. Note: ACC = accumulated; CONT = continuous; NOEX = no exercise.

[^0]: Note: ACC = accumulated exercise; CONT = continuous exercise; NOEX = no exercise; n = number; NN50 = number of RR intervals differing by more than 50 milliseconds; PNN50 = percentage of RR intervals differing by more than 50 milliseconds; PWV = Pulse Wave Velocity; RMSSD = root mean squared difference of successive RR intervals; RRSD = standard deviation of RR intervals, RRmean = mean RR interval; VLF power = very low frequency power; LFpower = low frequency power; LF/HF = low frequency, high frequency ratio; PWV = pulse wave velocity.

