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Abstract
Soil microorganisms play crucial roles in soil nutrient cycling, carbon sequestration, fertility maintenance and crop health 
and production. To date, the responses of microorganisms, such as microbial activity, diversity, community structure and 
nutrient cycling processes, to biochar addition have been widely reported. However, the relationships between soil microbial 
groups (bacteria, fungi and microscopic fauna) and biochar physicochemical properties have not been summarized. In this 
review, we conclude that biochar affects soil microbial growth, diversity and community compositions by directly provid-
ing growth promoters for soil biota or indirectly changing soil basic properties. The porous structure, labile C, high pH and 
electrochemical properties of biochar play an important role in determining soil microbial abundance and communities, and 
their mediated N and P cycling processes, while the effects and underlying mechanisms vary with biochar types that are 
affected by pyrolysis temperature and feedstock type. Finally, we highlight some issues related to research methodology and 
subjects that are still poorly understood or controversial, and the perspectives for further research in microbial responses to 
biochar addition.
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1  Introduction

Biochar is the solid product of pyrolyzing biomass under the 
temperatures of 300–700 °C with limited oxygen (Lehmann 
and Joseph 2015). Biochar includes artificial biochar and 
natural biochar (usually formed by wildfire), and has a large 
range of physicochemical properties that are determined by 
pyrolysis condition and feedstock type. Due to its high alka-
linity, porous structure, stable C content and surface area, 
biochar is widely applied for soil fertility improvement, soil 
carbon sequestration, crop promotion and contaminated soil 
remediation (Caporaso et al. 2012; Lehmann and Joseph 
2012).

Over the last decade, the effects of biochar on soil 
microbial growth and communities, and the underlying 
mechanisms have been widely reported (Lehmann et al. 
2011; Muhammad et al. 2014; Palansooriya et al. 2019; Yu 
et al. 2020) because soil microorganisms carry out a range 
of important ecosystem functions, such as soil nutrient 
cycling and plant growth (Fierer 2017). Soil microorgan-
isms contribute greatly to decomposition of soil organic C, 
nitrification, denitrification and phosphorous solubilization, 
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and these processes are associated with soil fertility main-
tenance and global climate change (Fierer 2017). Further-
more, microorganisms interact with plant roots to enhance 
their nutrient uptake capacity and increase plant systemic 
resistance to environmental perturbation (e.g., pathogen 
invasion and drought), and finally benefit plant health and 
growth (Philippot et al. 2013). Bacteria are most diverse in 
terrestrial ecosystems and are susceptible to the availability 
of C sources and pH changes (Dai et al. 2018b). Most soil 
nutrient cycles, such as carbohydrate metabolism, C fixa-
tion, nitrification, denitrification and P solubilization, are 
primarily mediated by bacterial communities. Soil fungi, 
heterotrophic microorganisms, are saprophytic, parasitic or 
pathogenic (Madigan et al. 2008). They can either decom-
pose plant residues or influence plant health and production 
by forming arbuscular mycorrhiza or cause diseases (Elmer 
and Pignatello 2011; Liu et al. 2015). Soil fauna, a major 
component of soil food webs are the consumers of bacteria, 
fungi, algae and nematodes, and are as parasites of plants 
and animals (Geisen et al. 2018). The fauna can exert top-
down control effects and are affected by both soil properties 
(e.g., moisture, clay content and nutrient status) and associ-
ated bacterial and fungal communities (Xiong et al. 2018; 
Oliverio et al. 2020). Overall, any changes in soil proper-
ties, such as nutrient status, pH and texture, would alter the 
microbial abundance, diversity and communities and related 
functions. The effects of biochar on soil microbial biomass 
and communities have been widely reported across different 
biochar pyrolysis temperatures, biochar feedstocks, soil type 
and experimental condition.

The number of literature involved in biochar effects 
on soil biota increased rapidly from year 2011 to 2020 

(Fig.  1). Previous reviews have widely reported the 
responses of soil biota and mediated nutrient cycling to 
biochar addition, while the relationships between biochar 
physicochemical properties and microbial responses, i.e. 
underlying mechanisms, still need further summary. In 
addition, previous reviews/meta-analysis only synthe-
sized the responses of microbial community to biochar 
mainly based on the traditional techniques (e.g., PLFA 
and DGGE). With the recently rapid development of ana-
lytical techniques (e.g., high-throughput sequencing), we 
can observe the diversity and abundances of microorgan-
isms at a higher taxonomic resolution (e.g., bacteria and 
fungi) in biochar-amended soils. The roles of fungal and 
protist keystones in biochar-soil–plant continuum and spe-
cific biogeochemical processes such as P solubilization 
in biochar-amended soils should not be negligible, while 
most studies have focused on bacterial roles and the N 
cycling process. Therefore, this review attempts to resolve 
the above deficiencies. It aims to (1) summarize biochar 
unique physicochemical properties, such as porous struc-
ture, pH, labile C and electron shuttle, that play important 
roles in microbial growth, (2) identify the relationships 
between biochar properties and soil bacterial, fungal and 
fauna communities, and (3) synthesize the effects of bio-
chars on microbial-mediated soil N and P transformation 
processes and underlying mechanisms. Finally, the review 
highlights the issues related to research methodology and 
the need of further research.

Fig. 1   The number and propor-
tion of literatures involved in 
biochar effects on soil biota 
from year 2011 to 2020. The 
histograms presenting the 
number of biochar publications 
were corresponding to the left 
axis and the lines presenting the 
proportion of biochar publica-
tions were corresponding to the 
right axis
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2 � Relationship between biochar properties 
and microbial responses

Biochar can change soil physicochemical properties, which 
in turn alters soil microbial communities and related func-
tions via following ways (Fig. 2). First, biochar can serve as 
a potential porous habitat for microbial growth and protec-
tion from predators. Second, it provides carbon source (in 
particular labile C) and mineral nutrients for microorgan-
isms. Third, biochar changes soil basic properties such as 
increase in soil pH. Furthermore, it acts as an electron shut-
tle for microbial metabolisms (Dai et al. 2019; Saquing et al. 
2016; Wu et al. 2018).

2.1 � Porous structure

Biochar has porous aromatic structures that present high 
surface area and adsorption capacity. They can adsorb 
water, labile C and mineral nutrients from adjacent soils. 
The appropriate porous structure (i.e. macropores) can pro-
tect less competitive microorganisms from predator grazing 
(e.g., protists). Thus, microorganisms may use biochar par-
ticles as a habitat to colonize, grow and reproduce (Fig. 2). 
For instance, using a scanning electron microscope, Luo 
et al. (2013) observed the rich microbial colonization (i.e., 
diverse microbial shape and size) on the porous structure 
of lignocellulose-based biochar derived from Miscanthus 

giganteus. Dai et al. (2017a, b) showed that diverse micro-
organisms grew in manure-based biochar particles and that 
Actinobacteria with hyphae and spores were the dominant 
taxon in biochar particles, regardless of soil type. These 
studies also indicated that the presence of microorganisms 
is independent of biochar type and soil environments, as 
pyrolyzed biochar particles are always porous.

In general, the porosity and surface area of biochar 
increase with increasing pyrolysis temperature (Table 1) 
(Dai et al. 2013; Suliman et al. 2017). The microbial colo-
nization would be more diverse in biochars pyrolyzed at high 
temperatures. This was consistent with more diverse micro-
bial communities in manure biochar pyrolyzed at 700 °C 
compared to at 300 °C (Dai et al. 2017a, b). While the labile 
C reduces as pyrolysis temperature increases, biochar C 
availability also accounts greatly for microbial colonization 
(Table 1), which was supported by the higher number of 
microbes colonized in low-temperature biochar (Luo et al. 
2013). Overall, the microbial colonization has resulted from 
the overall effects of porous structure and labile C content. 
Furthermore, the effects of porous structure were not appar-
ent in aged biochar as soil succession, showed by sparse 
microbes being colonized in both external and internal sur-
faces of wood biochar aged for three years (Quilliam et al. 
2013). This suggests that aging may reduce the microbial 
colonization in biochar particles, as the porous structure may 
collapse during aging and the adsorbed nutrients may be 
largely consumed by microorganisms.

Fig. 2   The special physicochemical properties (i.e., pH, labile C, porous structure, electron shuttle and ash) of biochars that play important roles 
in altering the activity, diversity and community structure of bacteria, fungi and fauna
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2.2 � Labile C

The labile C, which can serve as C substrates for microbial 
growth and metabolism, increases with decreasing pyroly-
sis temperature and is higher in lignocellulose-based bio-
char than manure-based ash-rich biochar (Table 1) (Cross 
and Sohi 2011; Dai et al. 2016b). The labile C can directly 

increase the microbial population and alter microbial com-
munities by supplying energy sources such as carbohydrates. 
Some other bio-oils and condensates, such as polycyclic 
aromatic hydrocarbons, xylenol in labile C, are toxic to 
most microorganisms (Freddo et al. 2012), while they may 
selectively stimulate the growth of specific microorganisms 
(Table 2).

Table 1   The effects of pyrolysis temperature and feedstock type on biochar physicochemical properties that influence microbial communities

Biochar properties Pyrolysis 
temperature 
(from 300 °C to 
700 °C)

Feedstock type (from 
lignocellulose to manure)

References

pH Increase Increase Yuan et al. (2011), Enders et al. (2012), Dai et al. (2017a, b)
Labile C Decrease Decrease Cross and Sohi (2011), Enders et al. (2012), Spokas (2012)
Aromatic C Increase Decrease
Ash Increase Increase Lehmann and Joseph (2012), Novak et al. (2014), Dai et al. (2016b)
Porosity (Porous structure) Increase (may 

decrease from 
600 to 700 °C)

Decrease Tsai et al. (2012), Gray et al. (2014)

Electron shuttle Increase Decrease Kluepfel et al. (2014), Yu et al. (2015), Saquing et al. (2016), Sun 
et al. (2017), Yuan et al. (2019)Electron donor Decrease Decrease

Table 2   Current research status and future perspectives for biochar effects on soil microbial communities

Key topic Current research Future research

1. From relative abundance to absolute 
abundance

1. Widely using amplicon sequencing (e.g., 
16S and ITS sequencing);

2. Traditional methods, such as PLFA and 
DGGE

1. Using multi-omics, e.g., metagenomics, tran-
scriptomics, proteomics and metabolomics;

2. Measuring the absolute abundance of micro-
organisms, e.g., using modified 16S rRNA 
sequencing

2. From individual microorganism types to 
microbial interactions

1. Bacterial, fungal and fauna growth and 
biomass;

2. Bacterial, fungal and fauna diversity and 
community structure

1. Lack of investigation of virus;
2. Insufficient investigations of protist;
3. Focus on the food-web where microbial inter-

actions occur and find keystones responsive to 
biochar addition

3. From soil to biochar particles and char-
sphere

1. Microbial diversity, community structure, 
dominant taxa in biochar-soil continuum

2. The influencing factors, such as pH, labile 
C, porous structure

1. Microbial communities, dominant taxa and 
functions in biochar particles and colonization 
mechanisms

2. Distribution patterns of microbial com-
munities and functions across char-sphere 
gradients;

3. Differences in microbial communities and 
functions between biochar particles, char-
sphere and adjacent soils

4. From individual nutrient transforma-
tion processes to coupled transformation 
processes

1. Transformation processes of individual 
nutrients (C, N or P)

2. Abundances of transformation genes of 
individual nutrients (C, N or P)

1. Coupled transformation processes of nutri-
ents, such as C-P, N-P, C-N and C-N-P, and 
abundances of associated genes

2. Microbial anabolic and catabolic processes 
for C, N or P cycling

5. From microbial communities to plant 
growth and health

1. Microbial biomass, diversity and commu-
nity structure in bulk soils;

2. Microbial biomass, diversity and commu-
nity structure in rhizosphere

1. Specific microbial communities (e.g., 
N2-fixing bacteria, growth-promoting bacteria 
and arbuscular mycorrhiza) that benefit plant 
growth and health

2. Connections between specific microorgan-
isms and plant roots
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Dai et al. (2019) used acetone to extract the major fraction 
of labile C from manure biochar and found that acetone-
extracted C largely affected microbial biomass, commu-
nity structure and microbial-mediated N cycling processes 
in both farmland and forest soils (Dai et al. 2018a, 2019). 
These effects were significantly greater than the aromatic C 
and ashes of biochar, supporting the importance of labile C 
in determining microbial communities. Moreover, isotopic 
tracing methods also verified that the labile C fraction of 
biochar was highly associated with microbial respiration and 
community succession in different soils, regardless of bio-
char type and incubation condition (Luo et al. 2013, 2017; 
Watzinger et al. 2014). Although the aliphatic C (volatile 
matter) accounts for 13.2% to 70.0% of biochar (Enders et al. 
2012), microorganisms only utilize a small amount of the 
volatile matter (less than 5%), and the mineralization rate of 
labile C dramatically decreased to a minimum level during 
one year of incubation (Nguyen et al. 2014; Watzinger et al. 
2014). For instance, only 4.3% of the ryegrass biochar C 
was mineralized by microorganisms after 158 days of incu-
bation and only 0.45% of the biochar C was incorporated 
into microbial biomass (Maestrini et al. 2014). This implies 
that the effects of labile C on microbial communities are 
usually short-lived and diminishing over time. We point 
out that ash can supply inorganic nutrients for microbial 
growth and form organo-mineral bonds as the major driver 
for the microbial-metabolite stabilization (Fig. 2). However, 
the maximum content of ash from biochar only caused a 
small change in microbial communities (Dai et al. 2018a), 
again emphasizing the importance of labile C in determining 
microbial communities.

2.3 � Biochar pH

Biochar is usually alkaline (pH > 7.0), resulting in a large 
increase in soil pH, especially for acid soils. Its alkalinity 
increases with increasing pyrolysis temperature and in most 
cases the manure-based biochars have higher pH compared 
to lignocellulose-based biochars (Table 1) (Dai et al. 2013; 
Enders et al. 2012). In general, soil microbial growth, com-
munity changes and relevant functions were highly sensi-
tive to pH changes. An increase in bacterial growth and a 
decrease in fungal growth were observed with increasing 
soil pH at the gradient pH range of 4.0 to 8.3 (Rousk et al. 
2009). In addition, the diversity and community structure 
of bacteria and the relative abundance of dominant phyla 
revealed by 16S sequencing were positively associated with 
soil pH, while the fungi and protist were not responsive to 
soil pH (Oliverio et al. 2020; Rousk et al. 2010). The abun-
dances of bacterial phyla are also sensitive to pH, and for 
example the abundances of Acidobacteria are negatively 
related to soil pH (Madigan et al. 2008). Furthermore, the 
abundances of microbial genes involved in soil nutrient 

cycling, such as nitrification (e.g., amoA genes) and P min-
eralization (e.g., phoD genes), were affected by soil pH (Dai 
et al. 2020; DeForest and Otuya 2020).

Therefore, the effects of biochar on soil microbial com-
munities, in particular bacterial communities, via increas-
ing soil pH have been widely emphasized. For instance, the 
biochars with higher pH contributed greatly to the increases 
in bacterial diversity (Zhou et al. 2020). Also, the variances 
in bacterial communities after biochar addition were domi-
nantly determined by soil pH rather than other properties 
such as organic C, regardless of agricultural soils or forest 
soils (Dai et al. 2016a; Wang et al. 2020). Wildfire-produced 
biochar consistently showed the similar trends for microbial 
evolution/succession (Zackrisson et al. 1996), as microbi-
omes in biochar significantly interact with those in adjacent 
soils, and this interaction is ascribed to niche differentiation 
between habitat specialists in biochar and soil (Zhang et al. 
2021).

2.4 � Electrochemical properties

The electrochemical properties of biochar have received 
an increasing attention, due to its (1) redox-active moieties 
that enable biochar to donate and accept electrons and (2) 
graphite-like aromatic structures for electron transfer (Sun 
et al. 2017). Low pyrolysis temperatures (e.g., 400–500 °C) 
induce redox-active moieties (e.g., quinone and hydroqui-
none) dominated by electron donating, while high tempera-
tures (e.g., 650–800 °C) induce electron-accepting moieties 
and graphite-like aromatic structure (Table 1) (Kluepfel 
et al. 2014; Yu et al. 2015; Sun et al. 2018). Thus, biochar 
can act as an electron shuttle for microorganisms, which 
participate in redox reactions, such as nitrification and deni-
trification. The examples include the stimulated microbial 
reduction of Fe(III) oxyhydroxide mineral ferrihydrite by 
biochar (Kappler et al. 2014) and the suppression of N2O 
emission in biochar-amended soils (Harter et al. 2014). The 
oxidized biochar by H2O2 increased soil N2O emission rates, 
again indicating the suppressive effect of biochar redox-
active moieties on N2O emissions from soil denitrification 
(Yuan et al. 2019).

3 � Biochar effects on soil microbial activity, 
biomass and enzyme activities

3.1 � Biochar effects on soil CO2 evolution 
and microbial biomass

Biochar addition significantly affects soil CO2 evolution 
and microbial biomass by altering soil C substrate quality 
and quantity, while the effects are short-term and decrease 
over time as the C substrates are gradually consumed by 
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microorganisms. For example, the application of corn and 
nutshell biochars significantly enhanced the cumulative 
microbial respiration and C-use efficiencies during short-
term incubation (Khadem and Raiesi 2017; Xu et al. 2018b). 
The transitory and large increase in soil CO2 evolution after 
biochar addition is mainly attributed to: (1) increased micro-
bial respiration using labile C or toxic organic compounds 
as C substrates; (2) increased decomposition priming effect 
of native organic C pools in soil; and/or (3) the metabolism 
of microbial necromass by other microorganisms (Lehmann 
and Joseph 2015).

By contrast, some studies have reported that biochar 
has inhibiting effects or no effects on soil CO2 evolution 
(Zhou et al. 2017; Li et al. 2018; Chen et al. 2019). For 
instance, biochar application to a subtropical bamboo plan-
tation reduced soil microbial heterotrophic respiration (Li 
et al. 2018). This was attributed to increased aromatic C 
content and the decreased activities of β-glucosidase and 
cellobiohydrolase which are responsible for decomposition 
of carbohydrates and celluloses (Li et al. 2018). No changes 
in soil respiration in temperate forests and reduced micro-
bial respiration in paddy soils with the application at 40 t 
ha−1 also supported the inhibiting effects of biochar on soil 
CO2 evolution (Zhou et al. 2017; Chen et al. 2019). The 
decrease in CO2 evolution over time in incubation and field 
experiments is mainly attributed to: (1) the enhancement of 
C recalcitrancy and the decrease of labile C pool (Chen et al. 
2019), and (2) the presence of toxic compounds which are 
only utilized by a minority of microorganisms.

Our review showed that biochar addition significantly 
increased microbial biomass C and N (Fig. 3), which was 
consistent with the study of Pokharel et al. (2020). The 
microbial biomass C and N in biochar-amended soils were 
455 and 24.0 mg kg−1, while the biomass C and N in non-
amended soils were 412 and 20.2 mg kg−1, respectively 
(Fig. 3). In addition, we pointed out that biochar produced 
at low temperatures had larger increasing effects on micro-
bial biomass than those at high temperatures due to its 
higher content of labile C (Table 1), since biochar provides 
C substrates for microbial growth. This was supported by 
the increased microbial biomass C and N increased with 
the application of biochar pyrolyzed at 350 °C but were not 
affected by the biochars pyrolyzed at high temperatures of 
500 and 700 °C (Guo et al. 2020). In another study, increas-
ing application rate of wheat-straw biochar (350–550 °C) 
increased the amount of labile C which in turn increased 
microbial biomass C (Chen et al. 2016). Although biochars 
produced at high pyrolysis temperatures provide more living 
space for microorganisms, the abundant labile C substrates 
in biochars with low pyrolysis temperatures are the basic 
biogenic resource for the majority of microbial growth. 
Thus, we suppose the more important role of C substrates 
than porous structure in increasing microbial biomass.

3.2 � Biochar effects on soil microbial enzyme 
activities

Biochar affects the activities of soil extracellular enzymes 
which are responsible for organic C degradation and other 
important enzymes for N mineralization or P solubiliza-
tion. Such effects vary with biochar property, soil type 
and enzyme type (Zhang et al. 2019; Pokharel et al. 2020). 
A meta-analysis investigated the biochar effects on the 
activities of soil C-degrading enzymes and showed that 
biochar reduced the activities of total enzymes involved 
in C cycling by 6.3% (Zhang et al. 2019). The deceases 
were larger when biochar addition rates and pyrolysis tem-
perature increased (Zhang et al. 2019). These C-degrad-
ing enzymes include α-glucosidase, β-cellobiosidase and 
β-glucosidase (Chen et al. 2016). On the contrary, Infan 
et al. (2019) indicated that biochar at the application rate 
of 1% C (w/w) stimulated the activities of dehydroge-
nase, which was consistent with the increased dehydro-
genase activities by 19.8% in a meta-analysis (Pokharel 
et al. 2020). Some studies revealed that the activities of 
organic C-degrading enzymes reduced while those of C:N-
acquiring enzymes increased moderately with increasing 
pyrolysis temperature of biochar (Guo et al. 2020). We 
attributed the contrasting responses of C-cycling enzyme 
activities to the ratio of biochar labile C to recalcitrant C, 
which determines microbial C-use efficiency.

Contrasting effects of biochar on the activities of N 
mineralization or P solubilization enzymes were observed 
in our study (Fig. 3) and other studies (Chen et al. 2016, 
2020; Zhang et al. 2017). Based on a meta-analysis, bio-
char significantly increased the activities of urease and 
alkaline phosphatase by 23.1% and 25.4% (Pokharel et al. 
2020). Other individual observations also showed the sig-
nificant increase in the activities of urease, nitrite reduc-
tase, N-acetylglucosaminidase and alkaline phosphatase 
in different soils following biochar additions (Chen et al. 
2016, 2020; Zhang et al. 2017). However, the activities of 
N and P enzymes were related to the application rate and 
biochar type. For example, the addition of 10 mg kg−1 bio-
char stimulated the activities of alkaline phosphatase and 
urease, whereas 50 mg kg−1 inhibited alkaline phosphatase 
and invertase activities (Huang et al. 2017). Similarly, the 
activity of N acquisition (N-acq) enzyme increased with 
the application rate of 1% but was unaffected with the 
application rate of > 1%. In addition, biochars produced at 
pyrolysis temperature of 350–550 °C with a pH of > 10 and 
C/N ratio of < 50 increased the urease activity to a greater 
extent than those produced at other pyrolysis conditions 
(Pokharel et al. 2020).
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4 � Biochar effects on soil microbial diversity 
and community structure

4.1 � Soil bacterial diversity and community 
structure

Overall effects of biochar on soil bacterial diversity and 
community structure depend on biochar type, soil type and 
agricultural managements, such as crop type and planting 
duration (Abujabhah et al. 2016; Dai et al. 2016a; Her-
rmann et al. 2019; Liu et al. 2018; Yu et al. 2018a). With 
biochar type, the bacterial diversity was higher in forest soils 
amended with leaf biochar than with woodchip biochar, 
probably attributed to the higher pH with the leaf biochar 

(Zhou et al. 2020). The Proteobacteria was the dominant 
taxon in biochar pyrolyzed at low temperature (300 °C), 
while the Chloroflexi tended to be more prevalent in biochar 
pyrolyzed at high temperature (700 °C) (Dai et al. 2017a, 
b). Soil type impacted the responses of bacterial diversity 
and community structure to biochar addition. For instance, 
biochars at addition rates of 20 and 40 t ha−1 increased the 
relative abundance of Betaproteobacteria and Deltapro-
teobacteria in the soil with pH 4.89 and soil organic C of 
17.7 g kg−1, while decreased the abundance of Betaproteo-
bacteria and increased the abundance of Chloroflexi in the 
soil with pH 5.99 and soil organic C of 20.1 g kg−1. No 
significant changes were found in the soils with pH 6.21 
and soil organic C of 18.8 g  kg−1 (Chen et al. 2015). A 

Fig. 3   The effects of biochar on soil microbial biomass C and N, N 
mineralization rate, nitrification rate, microbial alpha diversity and 
the relative abundances of soil dominant bacterial and fungal taxa. 
“*”and “-”represent the significant and non-significant differences in 
microbial parameters between control and biochar-amended soils at 

p ≤ 0.05, respectively. The values above the black box are the average 
values of the microbial parameters, and the n represents the sample 
size. The references that provide the data are shown in the Supporting 
Information
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field experiment also showed that straw biochar increased 
the relative abundances of Proteobacteria and Chloroflexi 
in bulk soils while it enhanced the relative abundances of 
Gemmatimonadetes in rhizosphere soils (Cheng et al. 2019). 
Woolet and Whitman (2020) identified the positive respond-
ers, such as Nocardioides, Micromonospora, and Ramlibac-
ter, to biochar at the genus level by re-analyzing publicly 
available raw data from 16S Illumina sequencing, while 
most bacterial taxa did not consistently respond to biochar 
addition across soil types.

Crop type and planting duration also impacted the 
responses of bacterial diversity and community structure 
to biochar addition. For example, the addition of biochar 
increased the abundances of bacterial (16S rRNA) gene, 
and Gram +, Gram − and Pseudomonas bacteria in the 
soils planted with mash bean but not with wheat (Azeem 
et al. 2020). In cotton-cropping soils, biochar amendment 
increased the abundances of Sphingomonas and Pseu-
domonas in biochar-amended cotton soils compared to the 
un-amended control, while the abundances of these bacte-
ria decreased after continuous cropping for 11 years and 
14 years (Han et al. 2017). Nguyen et al. (2018) compared 
the differences in bacterial diversity and communities 
between newly applied (1 year) and aged biochar (9 year), 
and observed that the abundances of Cyanobacteria, 
N2-fixation bacteria, nitrification and denitrification bacteria 
were lower after 9 years of biochar history although the sim-
ilar bacterial diversity and community structure (e.g., Chao 
1 and Shannon index) were found between 1 and 9 years of 
biochar amendment (Nguyen et al. 2018). Although the vari-
able effects on bacterial diversity were reported, a new meta-
analysis concluded that the increased diversity was generally 
observed in acidic and sandy soils with biochar pyrolyzed 
under low temperature and derived from nutrient-rich feed-
stocks, as well as with low application rates (Li et al. 2020). 
Furthermore, our statistical analyses collected the abun-
dance of bacterial taxa from high-throughput sequencing 
from published literatures (references listed in Supporting 
Information) and showed that biochar significantly increased 
the bacterial alpha diversity and the relative abundances of 
Firmicutes and Proteobacteria and decreased the relative 
abundance of Acidobacteria by paired t test (Fig. 3). This 
synthesis gives a supplement to the understanding of bacte-
rial communities based on the traditional techniques.

4.2 � Soil fungal diversity and community structure

In general, the effects of biochar on fungal diversity and 
community structure have been widely assessed, while the 
soil dominant taxa of Basidiomycota and Ascomycota were 
not responsive to biochar addition (Fig. 3). At the functional 
perspective, fungi encompass three functional groups with 
saprotrophs, pathotrophs and symbiotrophs (Madigan et al. 

2008). Among them, saprotrophs decompose soil organic 
matter and biochar particles, and the pathotrophs cause crop 
diseases. The symbiotrophs promote plant growth by form-
ing the root-fungal mutualists in soil ecosystems.

Saprophytic fungi rely on C substrates as the energy 
source and hence biochar addition always enhances the 
growth of fungal saprotrophs. For instance, Dai et  al. 
(2018a) found that the labile C of biochar as a microbial C 
source increased the abundance of saprotroph, enhancing 
their competitive capacity with pathotrophs and symbio-
trophs, and finally decreased fungal diversity. The inorganic 
minerals and aromatic C had less effects compared to labile 
C. This indicates that C substance is likely more important to 
determine saprotroph growth rather than microbial habitats 
and mineral nutrients. Except the mineralization of biochar 
itself, biochar addition to soil may accelerate the decomposi-
tion of soil organic C (priming effects) mediated by fungal 
communities (Luo et al. 2011). For instance, the microbial 
succession altered from bacterial to fungal communities dur-
ing soil incubation with biochar, and Sordariomycetes and 
Tremellomycetes contributed more to soil priming effects in 
a late phase (i.e., 40 day) compared to bacterial communities 
(Yu et al. 2018b). Some studies report that saprophytic fungi 
have the capacity to utilize the recalcitrant C fraction of bio-
char when the labile-C substances have been utilized (Dai 
et al. 2018a). Overall, saprophytic fungi play an important 
role in soil C biochemical cycling by decomposing both soil 
organic C and biochar C.

Biochar can reduce plant disease by suppressing soil-
borne pathogens. Dai et al. (2018a) found that biochar favors 
the growth of saprotrophs over soil-borne fungal pathogens 
by providing labile C for saprotroph growth and enhance 
their competitive capacity to pathogens. The application 
of biochar for 3 years decreased the relative abundances of 
potential soil-borne plant pathogens (e.g. Fusarium) and 
suppressed crop diseases in a black soil (Yao et al. 2017). 
The infection of Fusarium on asparagus roots was sup-
pressed by coconut biochar (Matsubara et al. 2002) and 
hardwood-dust biochar (Elmer and Pignatello 2011). Other 
studies involved in the soil-borne pathogen suppression 
caused by biochar and the pathogens varied from the Phy-
tophthora spp. in tree seedlings (Zwart and Kim 2012) to 
Rhizoctonia solani in cucumber (Jaiswal et al. 2014). The 
possible mechanisms are described as follows. First, soil 
microorganisms promoted by biochar addition can compete 
the C resources with pathogens, produce toxic compounds 
to pathogens or parasitizing pathogens (Dai et al. 2018a; 
Graber et al. 2010). Second, biochar indirectly increases 
plant systemic resistance by supplying nutrients, improv-
ing root architecture and enhancing arbuscular mycorrhizal 
colonization (Lehmann and Joseph 2015).

Mycorrhizae are one of the ubiquitous symbiotrophs in 
soil–plant systems. They build a vast connection between 
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plant roots and soils to increase plant nutrient uptake, such 
as N, P and water (Elmer and Pignatello 2011). Biochar has 
been considered as a micro-habitat for mycorrhizal growth 
and interaction with plant roots (Ameloot et al. 2015), while 
most studies have reported the negative effects or no effects 
of biochar on mycorrhizae communities. For instance, bio-
chars significantly decreased the biomass of arbuscular 
mycorrhizal fungi (AMF) in a soil with low soil organic C 
(8.9 g C kg−1), while did not affect it in a soil with high soil 
organic C (16.1 g C kg−1). The poultry-litter biochar had 
larger decreasing effects on AMF biomass compared to pine-
chip biochars (Ameloot et al. 2015). Similarly, mycorrhizal 
colonization in tallgrass roots was suppressed by royal-oak 
biochar addition (5.2%) in the first year of study and had no 
effects in the second or third year (Biederman et al. 2017). 
This trend was also reported by Elzobair et al. (2016), show-
ing no effects of biochars on arbuscular mycorrhizal fungal 
colonization on corns in an Aridisol (Elzobair et al. 2016) 
and cowpea plants growing in Mollisol/Alfisol (Cobb et al. 
2018). Furthermore, biochars derived from switchgrass, 
hardwood, or softwood feedstocks all reduced the coloniza-
tion in roots of Allium porrum L. by the AMF (Han et al. 
2016). By contrast, for potato plants, straw biochar signifi-
cantly increased AMF root colonization, and plant N, P, and 
K uptake and plant biomass (Yang et al. 2020). Further work 
should be focused on understanding the underlying mecha-
nisms and design of the targeted biochar for mycorrhizal 
colonization.

4.3 � Soil fauna diversity and community structure

Soil fauna communities are the consumers of bacteria, fungi 
and other microorganisms. Biochar can change soil fauna 
communities and contribute greatly to soil nutrient cycling. 
For instance, biochar significantly increased the abundance 
of soil total nematodes and affected nematode community 
structure, with bacterivores dominant in the biochar treat-
ments based on a 5-year field experiment (Liu et al. 2020b). 
The altered nematode community by biochar contributed 
to the improvement of soil quality and the enhancement of 
productivity in yellow cinnamon soil (Liu et al. 2020b). A 
farm case study indicated that straw biochar increased protist 
population, but had no effect on earthworms (Hansen et al. 
2017). In a cultivated acidic soil, biochar only increased 
the flagellates abundance and had negative effects on the 
growth of nematodes, such as bacterivorous, fungivorous, 
and herbivorous and the amoebae (protists), indicating the 
detrimental effect on multitrophic levels of soil fauna (Liu 
et al. 2020a).

The mechanisms by which biochar affects soil fauna com-
munities are related to (1) specific biochar properties, (2) 
soil physicochemical property changes and (3) changes in 
soil bacterial and fungal communities. Noyce et al. (2016) 

showed that the microorganisms living in or around the 
biochars had higher diversity than the adjacent soil, in par-
ticular, with the dominant taxa of Aveolata superphylum 
from protist, suggesting that biochar particles provide a 
unique habitat for soil protists. Biochar-induced changes in 
soil physicochemical properties, such as soil pH, C avail-
ability and moisture, may affect fauna (e.g., protist) growth 
and community succession (Geisen et al. 2018). This was 
supported by the Asiloglu et al. (2021a) revealing that the 
increase in the relative abundance of Stramenopiles in bio-
char-amended soils was highly correlated with the increases 
in soil total pore volume and C/N ratio. The increases in the 
relative abundances of protists, such as Alveolata, Amoebo-
zoa and Excavata, were associated with increased soil pH 
and nutrient status (Asiloglu et al. 2021a). In addition, as 
the predators in food web, the shifts in bacterial and fungal 
communities after biochar addition would also affect the 
behaviors of fauna (Xiong et al. 2018). For instance, both 
poultry-litter and rice-husk biochars significantly altered soil 
bacterial communities and trophic interactions, resulting in 
the changes in protist communities and relevant N cycling 
processes (Asiloglu et al. 2021b).

5 � Biochar effects on soil microbial‑mediated 
nutrient transformation processes

5.1 � Soil microbial‑mediated N cycling

Biochar pH, labile C content, mineral N availability and elec-
trochemical properties play an important role in mediating 
soil N cycling (Fig. 4). Biochars increase soil pH (Yuan et al. 
2011) that can change the activity and community of nitrifi-
ers and affect soil nitrification and N2O emission (Yuan et al. 
2011; Liu et al. 2017; Yu et al. 2019). For example, Lin et al. 
(2017) found that straw biochar increased the abundance of 
the bacterial amoA genes (ammonia-oxidizing bacteria) in 
the nitrification process, due to the increased soil pH. The 
importance of biochar pH in determining N-cycling microor-
ganisms is clearly supported by a char-sphere study. Yu et al. 
(2019) found that soil pH and bacterial amoA abundance 
increased in the proximity to the biochar surface, while pH 
decreased with increasing the distance from the biochar. 
However, some studies have reported that the archaeal 
amoA abundance was not pH-sensitive or negatively cor-
related with soil pH (Hu et al. 2014; Nicol et al. 2008; Ying 
et al. 2017; Yu et al. 2021). This indicates that pH changes 
caused by biochar effects are mainly attributed to changes in 
AOB abundance and community. Although biochar contains 
a small amount of NH4

+, which is the substrate for nitrifica-
tion, the concentration of NH4

+ in biochar is approximately 
equivalent to soil NH4

+ concentration (Enders et al. 2012), 
except for biochar derived from high-ammonium feedstocks. 
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We assume that biochar addition does not change soil NH4
+ 

availability and not strongly affect soil nitrification. Fur-
thermore, due to the high adsorption capacity, biochar may 
adsorb NH4

+ from soils when N fertilization is applied, and 
reduce soil NH4

+ availability for nitrifiers compared to soils 
without biochar addition. This assumption has been verified 
by Yang et al. (2015) and Wang et al. (2015), reporting that 

biochar significantly decreased NH4
+-N availability and thus 

decreased nitrification and the abundance of ammonia-oxi-
dizing microorganisms, regardless of biochar and soil type 
(Wang et al. 2015; Yang et al. 2015).

Studies of the biochar effects on denitrification rates and 
denitrifier-mediated N2O emission are inconsistent, with the 
increased denitrification in some studies but decreased deni-
trification in others. Such discrepancies can be explained 
by the differences in labile C content and electrochemical 
properties of biochars used in different studies (Fig. 4). A 
meta-analysis showed that biochar overall increased the 
abundance of denitrification process and relevant genes of 
nirK, nirS and nosZ (Xiao et al. 2019), which was probably 
due to the amount of labile C in biochar. The labile C could 
be directly utilized by N-cycling heterotrophic denitrifiers. 
In addition, the labile C may stimulate the priming effects 
on decomposition of soil organic C, leading to a quick con-
sumption of O2 and formation of anaerobic localized sites 
in soil (Harter et al. 2014). Both processes can increase soil 
denitrification and hence N2O emission. Dai et al. (2019) 
showed that biochars with high labile C contents stimulated 
soil denitrification and had greater stimulatory effects on the 
abundances for denitrification genes, such as nirK, nirS, and 
nosZ and also N2O emission, compared with biochar with 
low labile C. The close positive relationships between N2O 
emission and biochar-increased dissolved organic C (Feng 
et al. 2018) and biochar volatile matter (Subedi et al. 2016) 
also indicated the C–N coupled cycling in soil denitrifica-
tion and N2O emission. As the labile C in biochar increased 
with decreasing pyrolysis temperature, we propose that 
the biochars produced at low pyrolysis temperatures (e.g., 
300 °C) contribute to denitrification and N2O emission to 
a greater extent than those produced at high temperatures. 
By contrast, due to its electrochemical properties, biochars, 
especially produced at high pyrolysis temperature (e.g., 
700 °C), were shown to reduce soil N2O emission (Kluepfel 
et al. 2014), as these biochars showed the greater electron-
accepting capacities. Therefore, biochars at high pyrolysis 
temperatures can compete for electrons with NO3

− during 
denitrification, whereas biochars produced at low pyrolysis 
temperatures act as electron donors and provide the elec-
trons for NO3

− reduction. This was also supported by the 
stimulated N2O emission under supply of low-temperature 
biochar (e.g., 300 °C) (Dai et al. 2019) and the inhibited N2O 
emission associated with the application of high-temperature 
biochar (e.g., 700 °C) (Harter et al. 2014, 2016). Although 
NO3

− is the substrate for denitrifiers, due to the low content 
of NO3

− in biochar and the negative charges in biochar sur-
face, the NO3

− in biochar does not significantly affect deni-
trification. Overall, the biochar with lower labile C content 
and higher electron-accepting capacity, usually produced at 
high pyrolysis temperatures, would induce low denitrifica-
tion and N2O emission (Fig. 4). Here, we pointed out that 

Fig. 4   The effects of biochar on soil nitrification, denitrification and 
P solubilization processes and the underlying mechanisms. “+”and 
“−”represent the stimulatory and inhibitory effects of biochar on 
nutrient transformation processes, respectively. “variable” and “/”rep-
resent the unknown and no effects of biochar on nutrient transforma-
tion processes, respectively
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the labile C of biochars mainly affected soil N2O production 
while the electron-accepting capacity stimulated the conver-
sion of N2O to N2, in particular in anaerobic conditions. 
This indicated that biochar produced at high pyrolysis tem-
peratures decreased the N2O/N2 emission ratio (Harter et al. 
2014, 2016; Dai et al. 2019).

5.2 � Soil microbial‑mediated P cycling

Microorganisms participate in soil P cycling. They can solu-
bilize inorganic P or release enzymes to mineralize organic 
P, and finally increase soil P availability (Khan et al. 2014). 
Biochar can affect soil P cycling through (1) directly provid-
ing labile P nutrient, especially for manure biochar (Novak 
et al. 2014); (2) improving soil P retention capacity to reduce 
P leaching (Liu et al. 2019; Yang et al. 2021) and (3) affect-
ing the activities and communities of P-solubilizing micro-
organisms. In this section, we discuss the effects of biochar 
on soil microbial communities and in turn the feedbacks of 
altered microbial communities to (1) soil P availability and 
(2) soil P fractions (Fig. 2).

Biochar can increase soil P availability via altering micro-
bial communities, as it can provide the suitable growth con-
dition (i.e., porous habitat and C supply as discussed above) 
for microorganisms (Fig. 4). For instance, the addition of 
rice-husk biochar enhanced soil P availability (Olsen-P) and 
the activities of related enzymes by enhancing the growth of 
P-solubilizing bacteria, such as Thiobacillus, Pseudomonas, 
and Flavobacterium, in a forest soil (Zhou et al. 2020). Leaf 
biochar increased the abundances of P-solubilizing bacte-
ria, such as Burkholderia-Paraburkholderia, Planctomyces, 
and Singulisphaera, thus boosting P availability in forest 
soils (Zhou et al. 2020). These changes may be attributed 
to increased soil pH and water-holding capacity (Liu et al. 
2017). Furthermore, Gao and DeLuca (2020) indicated that 
biochar shifted microbial communities from bacterial to 
fungal communities while fungi played an important role in 
solubilizing soil-fixed P and interactions with plant roots to 
enhance P acquisition. The changes in fungal communities 
and soil P availability were highly associated with biochar-
induced pH increase (Gao and DeLuca 2020). Regardless of 
P status in soil, biochar can increase soil total P concentra-
tions and dithionite-citrate-bicarbonate (DCB)-extractable 
P, leading to the improved growth of crops (Xu et al. 2019). 
Further investigation should be focused on the contribution 
percentages of these properties to the increase of soil P avail-
ability via changing microbial activities and communities.

Biochar can change soil P fractions and increase the 
labile P fraction by altering microbial communities and rel-
evant enzyme activities (Fig. 4). For instance, a microcosm 
experiment revealed that manure-based biochar changed soil 
P fractions by increasing soil orthophosphate and pyroph-
osphate and decreasing those of monoesters, in additional 

to increasing soil P availability (Jin et al. 2016). Biochar 
decreased the activity of acid phosphomonoesterase but 
increased the activities of alkaline phosphomonoesterase 
(responsible for mineralization of organic P), indicating 
that biochar may affect related microorganisms and their 
released enzymes by increasing soil pH (Jin et al. 2016). Xu 
et al. (2018a) showed that biochar application significantly 
increased fractions of H2O-soluble and NaOH-extract-
able inorganic P, and NaHCO3-extractable organic P, but 
decreased the NaHCO3‐extractable inorganic P fraction. 
This indicated that biochar addition assists microorganisms 
to solubilize the fixed P and increases microbial P immo-
bilization. The P immobilization is transitory and can be 
released after microbial mortality.

6 � Conclusion and perspectives

The application of biochar to soils has great potential to 
influence microbial communities and relevant functional 
processes and hence nutrient supply and plant growth 
enhancement. Biochar affects soil microbial growth, activ-
ity and communities by directly providing growth promoters 
(e.g. substrates and porous structures) for soil biota or indi-
rectly changing soil basic properties (e.g. pH). The porous 
structure, labile C, high pH and electrochemical properties 
of biochar dominantly affect soil microbial abundance, com-
munities and their mediated N and P cycling processes. Due 
to the high variances in biochar basic properties determined 
by pyrolysis temperature and feedstock type, the selection 
and application of biochar to alter microbial communities 
and mediate nutrient cycling should follow the specific agri-
cultural demands. However, some key aspects still require 
further investigations (Table 2).

As the rapid development of high-throughput sequencing 
techniques, such as 16S and ITS sequencing, a large num-
ber of literatures report the detailed changes in microbial 
taxonomic and phylogenetic communities caused by biochar. 
However, the microbial abundances are relative and only 
reveal the potential or dormant microbial communities. We 
recommend the multi-omics (combing meta-transcriptomics, 
meta-proteomics and meta-metabolomics) to investigate the 
active microbial communities. Alternatively, the improved 
methods of 16S sequencing (by adding an internal stand-
ard of Aliivibrio fischeri) (Smets et al. 2016) or an internal 
standard strain (ISS) HAAQ-GFP (Yang et al. 2018) that 
can obtain the absolute abundance of microbial taxa are 
recommended.

The effects of biochar on soil virus and protist commu-
nity are poorly understood, while virus and protists affect 
microbial bacterial and fungal communities by top-down 
control (Li et al. 2019). Soil viruses influence the ecology 
of soil biological communities by transferring genes, cause 
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microbial mortality and consequently participate in soil bio-
geochemical cycles (Hurst et al. 1980). Soil protist commu-
nities are the predators of bacteria and fungi, and their com-
munities are also affected by environmental perturbation. 
However, the interactions between communities of virus, 
protists, fungi and bacteria in microbial food-webs are still 
poorly understood. Recently, microbial network, especially 
the time-varying networks, has been reported to be a use-
ful tool to capture microbial interactions during microbial 
community succession (Faust et al. 2015). Given the micro-
bial key nodes in the networks, we can detect the respon-
sive microbial keystones in biochar-amended soils and try 
to control the growth of these keystones. As the accurate 
predictions of keystones from microbial networks are still 
contradictory (Berry and Widder 2014; Weiss et al. 2016), 
combining the classic experimental validation of keystones 
with time-varying networks is recommended.

Most studies have focused on examining the effects of 
biochar on soil indigenous microbial communities, while 
the microbial communities, dominant taxa and their func-
tions in biochar particles and char-sphere still require more 
investigations. The microorganisms that colonize on biochar 
particles participate in the biochar mineralization and affect 
biochar oxidation. They interact with soil indigenous micro-
organisms and consequently contribute to soil biogeochemi-
cal cycling (Dai et al. 2017a, b). The char-sphere is defined 
as the unique zone surrounding biochar particles with the 
properties, such as pH, porosity and nutrient status, differ-
ing from those of the bulk soil and the biochar particles (Pei 
et al. 2017; Quilliam et al. 2013). Investigation of the micro-
bial communities and dominant taxa in biochar particles and 
along the char-sphere would provide a comprehensive under-
standing of microbial taxonomic and functional distributions 
from biochar particles to adjacent soils.

Previous studies have mainly focused on microbial-
mediated individual nutrient cycling processes. In soil eco-
systems, C, N and P cycling are usually integrated, as the 
C:N:P stoichiometry in microbial biomass are relatively con-
strained to a narrow range (Cleveland and Liptzin 2007). 
The environmental disturbances such as biochar addition 
may disrupt the coupling of microbial C, N and P cycling by 
changing soil nutrient statue. For example, the enrichments 
of C substrates may induce microbial demand for N, which 
leads to increased mineralization of organic N or acquire-
ment of inorganic N from soils, or increased the mineraliza-
tion of organic P (Mooshammer et al. 2014). Therefore, we 
point out the importance of the investigation of C, N and P 
coupled functional genes or processes in biochar-amended 
soils. This provides novel insights into soil nutrient manage-
ment and plant growth after biochar amendments.

The alteration in soil microbial communities caused by 
biochar is linked tightly with agricultural food production. 
Plant rhizosphere is a special region where the complex 

interactions between plant root and microorganisms occur. 
This region provides a hotspot of microbial biomass and 
enzymatic activities (Mendes et al. 2013). The beneficial 
microorganisms including N2-fixing bacteria, growth-pro-
moting bacteria (PGPR) and arbuscular mycorrhiza can 
enhance plant defense and nutrient uptake capacity, and 
finally increase soil productivity (Lugtenberg 2015). How-
ever, how to build a healthy microbiome in the rhizosphere, 
control the pathogen and regulate the PGPR promotion 
or arbuscular mycorrhizal colonization still needs further 
investigation.
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