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Abstract 

Background:  Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive 
method for predicting milk composition and other novel traits from milk samples. While there have been many 
genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for 
individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand 
dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of 
these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the 
physico-chemical properties of milk.

Results:  Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 
1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with 
QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation 
information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations 
for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role 
in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we exam-
ined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This 
revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through 
their biological roles in lactation and their presumed impacts on the chemical composition of milk.

Conclusions:  This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understand-
ing of milk composition, presenting a larger number of QTL and putative causative genes and variants than found 
from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci 
of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of 
milk constituents.
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Background
Fourier-transform mid-infrared (FT-MIR) spectroscopy 
is a high-throughput and inexpensive method for pre-
dicting milk composition. The FT-MIR methodology 
determines the presence of specific chemical bonds in 
milk by measuring the absorbance of infrared light as the 
light interacts with molecules in the sample. Data from 
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FT-MIR spectroscopy comprises a spectrum of absorb-
ance values across the mid-infrared range that are readily 
available through routine milk testing. This technology is 
widely used to estimate the concentrations of major milk 
components such as fat and protein for incorporation 
into milk payment and animal evaluation systems. Over 
the last decade, there has been increased interest in using 
FT-MIR data to predict other milk composition and 
novel traits. Applications of FT-MIR spectroscopy as a 
phenotyping tool have been widely studied and reviewed 
[1–4]. Recent research includes studies of milk composi-
tion traits that are relevant to manufacturing traits [5–7], 
individual fatty acids and milk proteins [8, 9], and indi-
rect traits that are related to energy status [10, 11], preg-
nancy and fertility [12–14], methane emissions [15–17] 
and bovine tuberculosis [18].

Successful utilisation of FT-MIR data as a phenotyp-
ing tool depends on the strength of the phenotypic cor-
relation between the predicted trait, and the trait as 
measured by a benchmarked standard; and successful 
incorporation of FT-MIR predicted traits into breed-
ing programmes further depends on the heritability of 
the FT-MIR predicted trait, and the genetic correlation 
between the FT-MIR prediction and the benchmarked 
trait [19]. Studies have reported moderate to high herit-
ability estimates for a range of FT-MIR predicted traits, 
including fatty acids [20–22], milk proteins [9, 23], 
cheese-making and milk-coagulation properties [24–26], 
and lactoferrin concentrations [27, 28]. Studies of indi-
vidual FT-MIR spectra wavenumbers show that across 
most of the mid-infrared region, absorbances of indi-
vidual FT-MIR spectra wavenumbers are moderately 
to highly heritable [29–32]. This suggests that there is 
potential for achieving genetic gain through the direct 
use of FT-MIR spectra for selection, rather than selection 
on FT-MIR predicted milk composition traits, which are 
themselves a function of the absorbance spectra at vari-
ous wavenumbers.

Although there have been many genome-wide asso-
ciation studies (GWAS) for FT-MIR predicted milk 
composition traits such as fat, protein, and lactose con-
centrations [33–37], and individual fatty acid and protein 
fractions [38–40], there are comparatively few studies 
reporting GWAS results for individual FT-MIR wave-
number phenotypes [41–43]. Two such GWAS were con-
ducted on medium density SNP-chip (~ 50  k markers) 
genotypes for a subset of wavenumbers, which were iden-
tified either by clustering analysis [41], or by using phe-
notypic correlation structures and heritability estimates 
within each breed [43]. A third study explored relation-
ships between FT-MIR wavenumber phenotypes and a 
subset of SNPs that had previously been implicated in 
a GWAS of milk composition and fatty acid traits [42]. 

Across these studies, a number of FT-MIR wavenum-
ber QTL were identified. Most of the detected genomic 
regions had been previously reported in studies of major 
milk composition traits, but new regions with potential 
links to milk contents such as phosphorus, orotic acid 
or citric acid were identified [41]. Thus, these findings 
have demonstrated that it is possible to identify genomic 
regions that are specifically related to individual FT-MIR 
wavenumber phenotypes.

Previous studies have examined the effects of variants 
in individual genes and their encoded proteins on FT-
MIR wavenumber phenotypes [32, 42]. Wang et  al. [32] 
observed that the DGAT1 K232A polymorphism had 
highly significant effects on wavenumbers associated 
with carboxylic and ester C=O bond stretching, triglyc-
eride ester linkage C-O stretching and alkyl C-H stretch-
ing. In that same study, a polymorphism in the CSN3 
gene had effects on wavenumbers that coincided with 
amide II, amide III and phosphate bands, and a polymor-
phism in the PAEP gene had effects on wavenumbers in 
a mid-infrared band that was attributed to C-N stretch-
ing [32]. Similar effects were also observed by Benedet 
et al. [42], with an additional absorption band associated 
with unsaturated fatty acids that was reported for a poly-
morphism near CSN3. Across those studies, association 
patterns varied widely for loci in different genes, with 
DGAT1 having highly significant effects across many 
wavenumbers, while PAEP had significant effects across 
fewer wavenumbers that were concentrated within a 
small number of spectral bands. Assessing association 
patterns across the mid-infrared spectrum for a wider 
range of loci could improve our understanding of the 
impact that different genes have on the molecular struc-
ture of milk. Moreover, comparing these association pat-
terns could provide insights into commonalities in the 
way genes influence milk composition and how these 
impacts are detected.

The purpose of the current study was to investigate the 
underlying genetics of milk composition, by conducting 
GWAS on 895 individual FT-MIR wavenumber pheno-
types, and comparing these results to GWAS conducted 
on three FT-MIR predicted major milk composition traits. 
We report the use of a much larger sample (N = 38,085) 
than previous such studies and at a higher genomic resolu-
tion, with imputed whole-genome sequence consisting of 
17,873,880 variants. We further report molecular dissection 
of these signals through the use of variant annotation infor-
mation and a large mammary RNA-seq resource, identify-
ing candidate causative genes and variants for a substantial 
number of loci. Finally, we evaluated patterns of significance 
across the mid-infrared range for different loci, highlighting 
clusters of QTL that are broadly defined by the biochemical 
properties of the molecules that they encode.
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Methods
Study population, animals and milk samples
In total, 100,571 FT-MIR spectra records from individual 
milk test samples for 38,085 multi-breed and crossbred 
cows across 1645 herds were included for analysis. This 
dataset was a subset of a wider set of 2,044,094 FT-MIR 
spectra records analysed on six Bentley FTS (Chaska, 
MN, USA) instruments as part of routine milk test-
ing conducted by Livestock Improvement Corporation 
(LIC), over the period from September 2017 to May 2018 
[44]. Records were included in the present study if they 
passed outlier removal based on the Mahalanobis dis-
tance between each spectrum and the average within-
instrument spectra for each analyser, and had imputed 
sequence available for the cow from which the milk sam-
ple was taken. The pedigree-based breed composition 
of cows comprised 11,235 cows with ≥ 14/16 Holstein 
(HOL) or Friesian (FR) genetics; 5374 cows with ≥ 14/16 
Jersey (JE) genetics; 19,915 crossbred cows with HOL-
FR (≥ 3/16) and JE (≥ 3/16) genetics only; 17 cows 
with ≥ 14/16 Ayrshire (AY) genetics; and 1544 cows from 
other breeds or crosses. Individual FT-MIR wavenum-
bers were subjected to piecewise direct standardization 
[45], with standardization coefficients evaluated from 
16  weeks of reference sample calibration data collected 
across six Bentley instruments as in Tiplady et al. [44].

Pre‑adjustment of individual FT‑MIR wavenumber 
and predicted milk composition phenotypes
Prior to conducting GWAS, adjusted cow phenotypes 
were generated for 895 individual FT-MIR wavenumbers 
and three FT-MIR predicted milk composition traits. 
Adjusted phenotypes were generated from one or more 
test-day samples on the same cow by fitting repeated 
measures models in ASReml-R [46], comprising:

where yijkl is a test-day phenotype (e.g. absorbance for 
one wavenumber) for the i th individual in parity class j 
within the days in milk class k and the herd-by-test date 
group l ; µ is the overall mean; parityj is the fixed effect 
for parity j (5 classes: 1, 2, 3, 4, ≥ 5); dimk is the fixed 
effect for the days in milk class k (9 intervals of 30 days 
each from the start of lactation); HDl is the fixed effect 
for the herd by test day class l ; αm are breed linear regres-
sion coefficients for Holstein (HOL), Friesian (FR) and 
Jersey (JE) proportions and brdim are the corresponding 
breed proportions for individual i ; δn are heterosis lin-
ear regression coefficients between breeds (FRxJE, FRx-
HOL, JExHOL, FRxAY, JExAY, AYxHOL) and hetin are 
the corresponding heterosis proportions for individual i , 

(1)

yijkl =µ+ parityj + dimk +HDl +

∑
αmbrdim

+

∑
δnhetin + anmli + eijkl ,

according to sire and dam breed proportions; anmli is the 
random animal effect with anmli ~ N

(
0, Iσ 2

anml

)
 ; and eijkl 

is the random error effect with eijkl ∼ N
(
0, Iσ 2

e

)
 , where I 

is an identity matrix and σ 2
anml and σ 2

e  are the variances 
of the independent and identically distributed animal and 
error variances, respectively. Adjusted phenotypes were 
evaluated for individual i as y minus all the relevant fixed 
effects averaged over all observations for a cow, or equiv-
alently, the sum of the prediction of anmli and the aver-
age of the predicted error terms for all test-day records 
for the animal, i.e. ŷi(adj) = anmli + ēij..

Genotypes and imputation
Animals were genotyped on Illumina BovineHD 
(HD; N = 138; ~ 777  k SNP), Illumina BovineSNP50k 
(50  k; N = 4087; ~ 53  k SNP), and/or custom Gen-
eSeek Genomic Profiler LDv3 BeadChip (GGP; 
N = 33,976; ~ 26 k SNP) panels, with the resultant geno-
types imputed to sequence density as part of a wider 
set of 153,357 animals, as described by Jivanji et al. [47]. 
More detailed descriptions of SNP-chip data handling 
and imputation criteria are given below, and as a sum-
mary, this process consisted of step-wise imputation of 
animals to whole-genome sequence genotypes via refer-
ences of GGP, 50  k and HD genotypes. Whole-genome 
sequences for 565 animals had been mapped and called 
from the UMD3.1 Bos taurus reference genome using 
BWA-MEM (v0.78-r455) [48], and GATK (v3.2) [49] 
respectively, as previously described [35, 36, 47]. The 
pedigree-based breed composition of sequenced animals 
comprised 138 Holstein-Friesians, 99 Jerseys, 316 Hol-
stein–Friesian × Jersey crossbreeds and 12 from other 
breeds or crosses. Only variants located on Bos taurus 
autosomes were considered, and phasing with genotype 
probabilities was undertaken using Beagle 4.0 [50]. Vari-
ants were filtered to remove those for which the allelic R2 , 
defined as the estimated squared correlation between the 
most likely allele dosage and the true allele dosage [51] 
for missing genotypes was less than 0.95. This resulted in 
a sequence reference comprising 19,659,361 segregating 
variants spanning all 29 bovine autosomes.

SNP‑chip imputation references
The reference sets for SNP chip panels used at each 
imputation step were generated based on a uniform set of 
criteria. Genotypes were eligible for inclusion in a refer-
ence if the sample call rate was ≥ 0.95, and the proportion 
of Mendelian inconsistences observed between parent–
offspring pairs of genotypes was lower than 0.005. The 
50  k reference included eligible Illumina BovineSNP50 
BeadChip genotypes for all males, and females that were 
a dam of a genotyped sire or had at least five recorded 
progeny (46,621 SNPs; 10,786 animals). The GGP 
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reference included eligible GGP LD BeadChip genotypes 
for all males, and females that had recorded progeny 
(20,846 SNPs; 11,872 animals). Additional 50 k reference 
SNPs that were not on the GGP panel were also included 
as a background scaffold, resulting in a reference with 
57,493 SNPs across 11,872 animals. The HD reference 
included all available Illumina BovineHD BeadChip 
genotypes, predominantly from widely-used sires and/
or sequenced animals (N = 3389), with 675,321 SNPs 
remaining after eligibility filters were applied.

For all references, SNPs that were monomorphic 
or had a batch call rate lower than 0.9 were excluded. 
Quality checks were made to ensure that allele frequen-
cies in the reference population reflected those in the 
wider population. That is, for SNPs with a count of 
more than 1000 minor alleles in the overall population, 
the relationship between the minor allele frequency 
(MAF) in the reference population (MAFref) and the 
MAF in the overall population (MAFoverall) satisfied 
the criteria: |MAFref-MAFoverall|/MAFref < 0.4. This 
resulted in the removal of 12 SNPs from the Illumina 
BovineSNP50 BeadChip, and three SNPs from the GGP 
LDv3 BeadChip. In addition, for all references, SNPs 
that were in common with sequence variants with more 
than 30 × depth coverage were removed if the concord-
ance between genotype and sequencing calls was ≤ 0.7. 
Likewise, for GGP and 50  k references, any SNPs that 
were shared with the BovineHD panel were removed 
if the concordance between genotype calls from each 
panel was ≤ 0.7; and for the HD reference, any SNPs 
that were shared with the BovineSNP50 panel were 
removed if the genotypic concordance between panels 
was ≤ 0.7.

Imputation
All imputation steps were carried out ignoring pedi-
gree information using Beagle 4.0 [50]. Imputation of 
animals to GGP, 50  k and HD references was carried 
out using default parameters, except for window sizes 
which were adjusted to ensure that whole chromo-
somes were imputed as one window. After each impu-
tation step, SNPs with an allelic R2 < 0.7 were removed. 
Imputation to the sequence level was carried out by 
using default parameters except for window sizes which 
were set at 50,000 SNPs. The overall median imputa-
tion allelic R2 for the wider set of 153,357 animals was 
0.986, the same value for the set of 38,085 animals 
included in this study.

Genome‑wide association studies
Separate GWAS were conducted using the Bolt-LMM 
software [52] for each of the 898 pre-adjusted phenotypes 
that included the 895 FT-MIR wavenumber phenotypes 

and three FT-MIR predicted milk composition traits, 
namely, fat, lactose and protein concentrations (FP, LP, 
and PP). In total, 17,873,880 imputed sequence variants 
were included in each GWAS after applying a MAF 
threshold of 0.1%, based on allele frequencies in the study 
population of 38,085 animals. Mixed model association 
statistics were evaluated under an infinitesimal model (as 
defined by the Bolt-LMM software) to assess the additive 
effect of each SNP. A genomic relationship matrix (GRM) 
based on a subset of 43,851 SNPs was simultaneously fit-
ted to account for population structure. That subset of 
SNPs was derived by filtering the 50 k SNP-chip imputa-
tion reference (previously described) to exclude SNPs 
with a MAF lower than 0.1%. To avoid proximal contami-
nation, a leave-one-segment-out (LOSO) approach was 
used in the GWAS, with segments of 5 Mbp used to sub-
divide the autosomes. A conservative Bonferroni signifi-
cance threshold was used, which considered all tests 
across the 898 traits and 17,873,880 variants as inde-
pendent. Based on a genome-wide threshold of α = 0.01, 
the nominal p-value was 6.2e-13 and the corresponding 
Bonferroni threshold was –log10(6.2e-13) = 12.21. The 
proportion of phenotypic variance explained by each 
SNP was evaluated as 2pqa

2

σ 2
t

 where p is the frequency of 
the minor allele, q = 1− p , a is the estimated allele sub-
stitution effect, and σ 2

t  is the total phenotypic variance. 
Similarly, the proportion of genetic variance accounted 
for by each SNP was evaluated as 2pqa

2

σ 2
g

 where σ 2
g  is the 

estimated genetic variance according to SNP-based esti-
mates generated by the Bolt-LMM software.

To distinguish between multiple QTL segregating within 
the same region of a chromosome, an iterative conditional 
approach was undertaken for each phenotype. After run-
ning an initial GWAS that we refer to as the ‘base GWAS’, 
chromosomes with a significant p-value based on the Bon-
ferroni threshold were identified; and for each of these 
chromosomes, the most significant variant was identified 
and added to the set of covariates included in the next iter-
ation. These subsequent iterations were only conducted on 
chromosomes that retained significant effects, whereby the 
process was repeated until these analyses ceased to high-
light significant effects. For each of these iterations, the set 
of 43,851 SNPs representing genomic relationships con-
tinued to be fitted (using the LOSO approach) to account 
for population structure. These analyses resulted in a list of 
variants for each phenotype that aimed at capturing all the 
significant association analysis signals.

Gene expression phenotypes and eQTL identification
Gene expression phenotypes and the resulting eQTL 
were generated as part of a previously described study 
[36]. Briefly, tissue from 411 cows was used to conduct 
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high-depth mammary RNA-seq, yielding approximately 
89 million read pairs per sample. Reads were mapped 
to the UMD3.1 Bos taurus reference genome using the 
Tophat2 program (version 2.0.12) [53], and filtered to 
remove outliers based on a principal components analy-
sis of the gene expression values. Additional filters were 
applied to remove animals with excessively low call rates, 
and those with genotypes that were not concordant with 
sire or dam genotypes. This resulted in a dataset contain-
ing 357 animals, 62 of which were in common with the 
38,085 animals in the current study. Transformed gene 
expression phenotypes for genes overlapping 1-Mb win-
dows of whole-genome sequences were used to iden-
tify significant eQTL [36]. Genetic impacts on gene 
expression were evaluated by fitting a generalised least-
squares model that assessed the relationship between 
genotype and transformed gene expression phenotypes, 
with covariances between animals accounted for by the 
numerator relationship ( A ) matrix. Resulting χ2 statis-
tics with 1 degree of freedom were used to identify eQTL 
p-values. The Bonferroni significance threshold had been 
set at –log10(2.53e-07), based on α = 0.05, corrected for 
197,338 tests.

Identification of protein‑coding variants and co‑localized 
eQTL
Whole-genome sequence resolution genotypes within 
a 1-Mbp window were annotated using the SnpEff soft-
ware (version 4.1d; build 2015–04-13) [54] and Ensembl 
UMD3.1.78 gene annotations, to assess the candidacy of 
each wavenumber and predicted-trait QTL from the iter-
ative GWAS. To focus on the most plausible candidates, 
variants in QTL regions were filtered to include only 
those in high linkage disequilibrium (LD) ( R2 > 0.9) with 
a putative impact variant (PIV), where we have defined 
a PIV as being a splice region variant, or a moderate or 
high impact coding variant, according to the SnpEff clas-
sification. For variants in QTL regions that met these 
criteria, emphasis was placed on those with ‘highly sig-
nificant’ effects. That is, the correlation between the 
PIV and the QTL was in the range (0.975, 1] and the –
log10(p-value) for the effect was greater than 1.5 × the 
Bonferroni threshold; or the correlation between the 
PIV and the QTL was in the range (0.95, 0.975] and the 
–log10(p-value) for the effect was greater than 2 × the 
Bonferroni threshold; or the correlation between the 
PIV and the QTL was in the range (0.925, 0.95] and the 
–log10(p-value) for the effect was greater than 2.5 × the 
Bonferroni threshold. All other variants in QTL regions 
where the correlation between the PIV and the QTL was 
higher than 0.9, and the –log10(p-value) for the effect was 
greater than the Bonferroni threshold, were classified as 
‘moderately significant’.

Wavenumber and predicted-trait QTL were scruti-
nized to identify co-localized eQTL, following the meth-
odology of Lopdell et  al. [36]. This approach compares 
association statistics from the trait QTL to association 
statistics from variants in the same interval for an eQTL 
mapping to the same general locus, with the expectation 
that trait QTL underpinned by eQTL will have common 
top-associated variants, and/or will have similar pat-
terns of association across the wider spectrum of vari-
ants within that interval. Briefly, for each QTL from the 
iterative GWAS, any significant, pre-computed eQTL 
within the same 1-Mbp window were identified. To iden-
tify cases where trait and expression QTL shared the 
same top-associated variant, LD criteria were used to 
highlight tag variants that, at R2 > 0.9, were linked to the 
most significant, co-localized eQTL variant. To assess 
commonalities of association within the broader interval 
(i.e. beyond pairwise analysis of the top-associated trait 
QTL/eQTL tag variants), Pearson correlation coefficients 
between the log-scaled p-values of the trait QTL and all 
eQTL within the interval of interest were computed. To 
account for regional differences in LD structure, Pearson 
correlation coefficients were evaluated across the entire 
1-Mbp region of interest, and a smaller 500-kbp region, 
with the strongest correlation used to assess the rela-
tionship between the trait and expression QTL p-values. 
Trait QTL were filtered to those for which the Pearson 
correlation from either window was higher than 0.7.

FT‑MIR wavenumber association effect patterns for genes 
of interest
After conducting GWAS across FT-MIR wavenumbers, 
wavenumber QTL that were in strong LD with a PIV, or 
had a co-localized eQTL (as described in detail above) 
were identified. In cases where there were multiple can-
didate genes implicated for a QTL, the gene with a PIV 
in highest LD with the QTL was selected as representa-
tive of the locus. Where multiple loci were implicated for 
the same gene, the variant in highest LD with either the 
corresponding PIV or the top variant of the eQTL was 
used. For the identified genes, the –log10(p-values) for the 
representative tag variant were compiled across FT-MIR 
wavenumbers, creating significance ‘profiles’ that allowed 
patterns of association across the mid-infrared region to 
be compared between loci. To facilitate these compari-
sons and account for differences in p-value magnitudes 
between loci, the –log10(p-values) were scaled to sum to 
unity. Differences between scaled significance profiles 
for loci were evaluated based on the Euclidean distance 
between corresponding points on the profiles for pairs of 
genes, and clustering of the distances based on the larg-
est pairwise dissimilarity across elements was performed 
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using the hclust function in R (v4.0.2) [55] with default 
parameters.

Results
Sequence‑based genome‑wide association analysis
The first-round pre-iteration (base) GWAS, including 
17,873,880 imputed sequence variants, resulted in sig-
nificant associations for 37,779 variants for FP, 17,159 
variants for LP, and 36,067 variants for PP. The number 
of significant associations for individual FT-MIR wave-
numbers ranged from 50 to 60,242, with a mean and 
median of 24,505 and 25,895 variants, respectively. For 
18 of the 895 individual wavenumber phenotypes, the 
Bolt-LMM GWAS did not converge, due to insufficient 
genetic variation in the trait. Among the remaining wave-
numbers, 830 had at least one significant association 
in the base GWAS. The numbers of significant variants 
in the base GWAS for individual wavenumbers across 
the mid-infrared range are shown in Fig.  1. Regions of 
the spectrum associated with low signal-to-noise ratios 
and poor sample measurement repeatability, due to the 
water content in milk are shaded in blue, according to 
the definitions in Tiplady et al. [44]. Significant associa-
tions were identified across most of the spectrum, includ-
ing within regions that were commonly associated with 
low signal-to-noise ratios. Among the significant asso-
ciations observed, 17.0% were positioned within the 
first 3 Mbp of chromosome 14, which encompasses the 
DGAT1 gene that has been widely reported as impact-
ing many milk composition traits [56, 57]. For the FP and 
PP phenotypes, the proportion of significant associations 
that were positioned within the first 3 Mbp of chromo-
some 14 were 16.5% and 13.6%, respectively. None of the 

significant associations for the LP phenotype localized to 
that region.

In the base GWAS, individual FT-MIR wavenumber 
QTL were observed on 27 of the 29 bovine autosomes 
(Fig. 2) within 450 different 1-Mbp regions. In contrast, 
QTL for FT-MIR predicted milk composition traits 
were observed on 25 of the 29 autosomes (Fig. 3) within 
246 different 1-Mbp regions. The number of iterations 
required after the base GWAS until the analyses ceased 
to highlight significant effects for the FT-MIR wavenum-
ber phenotypes ranged from 0 to 10, with an average of 
3.9. For the FT-MIR predicted milk composition traits, 
FP, LP and PP, the number of iterations required after 
the base GWAS was 6, 8 and 7, respectively. For the FT-
MIR wavenumber phenotypes, all significant signals were 
captured by no more than 68 tag variants, with the mean 
and median number of tag variants required to capture 
the signal for an individual wavenumber being 26 and 29, 
respectively. For FT-MIR predictions of FP, LP and PP, 
all significant signals were captured by 55, 72 and 86 tag 
variants, respectively.

Identification of candidate causative variants
To identify candidate causative variants for wavenumber 
and predicted-trait QTL, we used functional annotation 
to find PIV in strong LD ( R2 > 0.9) with trait QTL from 
the GWAS iterations. Those criteria yielded 42 1-Mbp 
regions, encompassing 55 effects with a PIV for at least 
one FT-MIR wavenumber. Based on our categorisation 
of signals into moderately and highly significant groups, 
31 of the 55 wavenumber QTL were classified as highly 
significant. Details of these 31 effects are in Table 1. Man-
hattan plots of a 1-Mbp region centred on the QTL tag 

Fig. 1  Number of significant variants from GWAS for each individual FT-MIR wavenumber. Noise regions (blue) with low repeatability are defined as 
from 649 to 970 cm−1, from 1608 to 1682 cm−1, and from 3021 to 3849 cm−1
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variant for each of the 31 highly significant wavenumber 
QTL from the base GWAS are provided (see Additional 
file 1: Figure S1). Details of the wavenumber QTL classi-
fied as moderately significant are in Table S2 (see Addi-
tional file  2: Table  S2). Note that there are three effects 
where the locus has been identified as highly significant 
based on the LD with one or more other loci (Table 1), 
and moderately significant based on the LD with other 
loci (see Additional file  2: Table  S2). Effect sizes and 
MAF details for the tag SNP of the 31 highly significant 
wavenumber QTL are in Table S3 (see Additional file 2: 
Table S3). For each of these 31 QTL, the proportions of 
phenotypic and genetic variance that they account for 
across FT-MIR wavenumber and predicted composition 
traits are in Table S4 (see Additional file 2: Table S4). Of 

the 31 highly significant wavenumber QTL, 14 were iden-
tified in the base GWAS (Iteration 0). For the 17 highly 
significant wavenumber QTL identified in subsequent 
GWAS iterations after the base GWAS (Table 1), p-val-
ues at previous iterations for the phenotype, and p-values 
for the corresponding top chromosomal SNP in that iter-
ation are in Table S5 (see Additional file 2: Table S5).

For predicted composition traits, 27 effects with a 
PIV were identified within 15 1-Mbp regions. Of the 27 
predicted-trait QTL, 18 were classified as highly signifi-
cant. Details of these effects are in Table 2, with details of 
the QTL classified as moderately significant in Table S6 
(see Additional file  2: Table  S6). Effect sizes and MAF 
details for highly significant predicted-trait QTL are in 
Table S7 (see Additional file 2: Table S7). Details of highly 

Fig. 2  Manhattan plot showing association effects for FT-MIR wavenumbers. Consolidated association effects shown for FT-MIR wavenumbers. 
Chromosomes and genomic positions based on the UMD3.1 Bos taurus reference genome are represented on the x-axis. The strength of association 
signals is represented as the −log10(p-value) on the y-axis which has been truncated to facilitate visualisation of the results. The horizontal red line 
shows the Bonferroni significance threshold of −log10(6.3e–13)

Fig. 3  Manhattan plot showing association effects for FT-MIR predicted milk composition traits. Consolidated association effects shown for FT-MIR 
predicted milk production traits (Fat %, Lactose % and Protein %). Chromosomes and genomic positions based on the UMD3.1 Bos taurus reference 
genome are represented on the x-axis. The strength of association signals is represented as the −log10(p-value) on the y-axis which has been 
truncated to facilitate visualisation of the results. The horizontal red line shows the Bonferroni significance threshold of −log10(6.3e–13)
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Table 1  Peak variants for FT-MIR wavenumbers with highly significant protein sequence association effects

Chr Position Tag variant ID N of hits Top wvn  
(cm−1)

Iter P-value Protein 
coding variant 
ID

LD Gene Impact Description

3 7908611 rs137763930 11 940 1 6.7e−20 rs110560331 0.976 FCRLA L c.233-3 T > C

3 7931694 rs211402696 20 1462 2 1.2e−23 rs381714237 0.989 FCGR2B H c.899dupC

3 15411459 rs134900385 6 1022 1 4.3e−19 rs382689947 0.994 FAM189B M c.1237 T > C

3 15411459 rs134900385 6 1022 1 4.3e−19 rs134844772 0.990 GBA M c.1080C > A

3 15411459 rs134900385 6 1022 1 4.3 e−19 rs132659643 0.999 HCN3 M c.1699A > G

3 15411459 rs134900385 6 1022 1 4.3e−19 rs109330809 0.990 MTX1 L c.508-6 T > C

3 15517871 rs109328483 6 1007 1 4.4e−19 rs136761456 0.992 SCAMP3 M c.151G > C

3 15517871 rs109328483 6 1007 1 4.4e−19 rs43706482 0.994 THBS3 L c.2075-3 T > C

3 15550598 rs380597285 327 1462 0 1.3e−54 rs109816684 0.994 SLC50A1 L c.282 + 7G > A

5 75729880 rs384734208 50 1466 1 5.0e−47 rs207628090 0.930 CSF2RB M c.41 T > C

5 75758989 rs210094995 2 1447 0 5.8e−40 rs210937722 0.926 NCF4 M c.841G > C

5 118246868 rs136859160 308 1261 0 3.0e−44 rs456403270 0.937 TBC1D22A M c.1063C > T

6 38027010 rs43702337 455 1119 0 7.3e−948 rs43702337 1 ABCG2 M c.1742A > C

6 87181619 rs43703011 17 3633 2 2.5e−22 rs43703011 1 CSN2 M c.245C > A

6 87274397 rs378808772 3 1283 2 9.9e−51 rs43703010 0.974 CSN1S1 M c.620A > G

6 87390576 rs43703015 18 1473 1 4.0e−108 rs43703015 1 CSN3 M c.470 T > C

11 103304757 rs109625649 329 1593 0 1.2e−134 rs109625649 1 PAEP M c.401 T > C

11 104242578 rs207688357 11 1462 0 5.5e−33 rs207688357 1 ABO H c.233 + 1G > C

12 69612955 rs383509255 132 1716 0 6.4e−45 rs208744187 0.950 TGDS M c.204A > C

14 1726650 rs133611586 6 3514 1 1.6e−75 0.992 WDR97 L c.2656-5_2656-4insG

14 1732043 rs437406031 384 2846 1 6.3e−42 rs450710918 0.990 ENS..39978 M c.352G > A

14 1732043 rs437406031 384 2846 1 6.3e−42 rs476736066 0.997 MROH1 M c.3549G > C

14 1755742 rs384226556 5 2656 0 4.0e−20 rs209542297 0.9998 CPSF1 L c.4287 T > C

14 1802265 rs109234250 310 1716 0 1.5e−2607 rs109234250 1 DGAT1 M c.694G > A

14 1802265 rs109234250 310 1716 0 1.5e−2607 rs134364612 0.999 SLC52A2 M c.724A > G

14 66328304 rs446084949 19 1029 1 2.7e−20 rs446084949 1 SPAG1 M c.2044G > A

15 28347165 rs210034037 5 1537 0 7.7e−35 rs208325660 0.999 RNF214 M c.314G > A

15 53940444 rs382926661 23 1205 1 4.2e−19 rs380220394 0.993 DNAJB13 L c.69-4 T > C

16 24977696 rs111027377 62 2742 2 4.8e−25 rs109896036 0.988 MTARC1 L c.628-5C > T

16 24977696 rs111027377 62 2742 2 4.8e−25 rs110899826 0.988 MTARC1 M c.581C > G

19 42428366 rs209808022 4 1250 1 3.1e−25 rs209302038 0.991 KRT9 M c.196C > T

19 42488389 rs379667889 8 1447 0 7.8e−34 rs209756857 0.969 KRT42 L c.57 + 7C > T

19 42488389 rs379667889 8 1447 0 7.8e−34 rs383013355 0.963 KRT16 M c.896A > G

19 42488389 rs379667889 8 1447 0 7.8e−34 rs208923483 0.966 KRT17 M c.146G > C

19 42488389 rs379667889 8 1447 0 7.8e−34 rs385937063 0.966 KRT17 L c.1233C > T

19 43036265 rs210324533 11 1029 1 5.3e−43 rs207799702 0.944 KAT2A L c.700-7C > G

19 43036265 rs210324533 11 1029 1 5.3e−43 rs209410283 0.945 KCNH4 M c.408C > G

19 43036265 rs210324533 11 1029 1 5.3e−43 rs377779402 0.945 KCNH4 H c.2663 + 2 T > C

19 43053995 rs481837688 24 1212 1 6.6e−26 rs481837688 1 STAT5A M c.2305C > A

19 51303887 rs41921224 65 1499 0 1.9e−35 rs41921160 0.993 CCDC57 M c.1907 T > C

19 57087981 rs41920620 6 1216 0 1.8e−21 rs469721022 0.999 HID1 L c.1147-7G > C

28 6559147 rs133101552 3 1261 0 8.6e−23 rs133101552 1 KCNK1 M c.934C > A

29 41821270 rs207854419 14 1257 1 4.6e−30 rs384900272 0.998 NXF1 M c.1555G > A

Peak variants and association effects for FT-MIR wavenumbers classified as highly significant. Highly significant effects are classified such that: the –log10(p-value) for 
the effect was greater than 1.5 × the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was in the range (0.975, 1]; 
or the –log10(p-value) for the effect was greater than 2 × the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was 
in the range (0.95, 0.975]; or the –log10(p-value) for the effect was greater than 2.5 × the Bonferroni threshold and the correlation between the tag variant and the 
protein sequence variant was in the range (0.925, 0.95]. Bonferroni threshold: –log10(6.2e–13). N of hits: number of wavenumbers for which the variant was selected 
as the representative (most significant) tag variant for a peak. Iterations are defined relative to the base GWAS, with the base GWAS represented as iteration 0. L Low 
impact splice region variant, M  Moderate impact missense variant, H High impact splice donor
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significant predicted-trait QTL from iterations subse-
quent to the base GWAS in Table  S8 (see Additional 
file 2: Table S8).

Of all candidate protein coding mutations identified, 
we were particularly interested in those identified as hav-
ing a high impact according to the SnpEff classification, 
in which variants that are expected to strongly disrupt 
or ablate gene function could a priori be considered as 
excellent candidates for these QTL. Three such PIV from 
the wavenumber and predicted-trait QTL fit this defini-
tion, comprising frameshift mutations in the FCGR2B 
or KCNH4 genes, and a splice donor mutation in the 
ABO gene (Tables  1 and 2). Since this class of variants 

was likely to be enriched for annotation errors [58], we 
manually visualized mammary RNA-seq alignments for 
these mutations to help confirm their predicted impacts 
as disruptive of coding sequences. Although the FCGR2B 
rs381714237 variant was represented in the RNA-seq 
reads, the mutation appeared to be intronic. Annota-
tion of the KCNH4 mutation appeared similarly dubious, 
with limited evidence suggesting that it was localized in a 
mammary-expressed exon. The ABO rs207688357 muta-
tion was clearly localized in the donor site of the splice 
junction of intron/exon 5, with animals that carried the 
mutation showing activation of cryptic alternative splice 
sites. These alternative transcripts comprised an 8-bp 

Table 2  Peak variants for composite milk production traits with highly significant protein sequence association effects

Peak variants for composite milk production traits with highly significant protein sequence effects whereby: the –log10(p-value) for the effect was greater than 
1.5 × the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was in the range (0.975, 1]; or the –log10(p-value) for the 
effect was greater than 2 × the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was in the range (0.95, 0.975]; or 
the –log10(p-value) for the effect was greater than 2.5 × the Bonferroni threshold and the correlation between the tag variant and the protein sequence variant was in 
the range (0.925, 0.95]. Bonferroni threshold: –log10(6.2e–13). Iterations are defined relative to the base GWAS, with the base GWAS represented as iteration 0. FP Fat 
%, LP Lactose %, PP Protein %, L Low impact splice region variant, M Moderate impact missense variant, H High impact splice donor

Trait Chr Position Tag variant ID Iteration P-value Protein coding 
variant ID

LD Gene Impact Description

FP 5 75698283 rs385866519 1 4.0e−19 rs207628090 0.979 CSF2RB M c.41 T > C

FP 11 103304757 rs109625649 0 4.3e−46 rs109625649 1 PAEP M c.401 T > C

FP 12 69608900 rs211406918 0 4.2e−33 rs208744187 0.951 TGDS M c.204A > C

FP 14 1732043 rs437406031 1 7.2e−37 rs450710918 0.990 ENS..39978 M c.352G > A

FP 14 1732043 rs437406031 1 7.2e−37 rs476736066 0.997 MROH1 M c.3549G > C

FP 14 1800439 rs209876151 0 8.9e−2225 rs109326954 0.9999 DGAT1 M c.695C > A

FP 14 1800439 rs209876151 0 8.9e−2225 rs134364612 0.9998 SLC52A2 M c.724A > G

LP 3 15433518 rs109749506 1 1.3e−20 rs382689947 0.995 TENT5A M c.1237 T > C

LP 3 15433518 rs109749506 1 1.3e−20 rs134844772 0.992 GBA M c.1080C > A

LP 3 15433518 rs109749506 1 1.3e−20 rs109330809 0.992 MTX1 L c.508-6 T > C

LP 3 15545091 rs379353107 0 2.2e−42 rs109816684 0.998 SLC50A1 L c.282 + 7G > A

LP 6 38027010 rs43702337 0 9.0e−717 rs43702337 1 ABCG2 M c.1742A > C

LP 16 24983926 rs110162358 2 1.0e−19 rs109896036 0.999 MTARC1 L c.628-5C > T

LP 16 24983926 rs110162358 2 1.0e−19 rs110899826 0.999 MTARC1 M c.581C > G

LP 19 43036265 rs210324533 3 9.4e−40 rs207799702 0.944 KAT2A L c.700-7C > G

LP 19 43036265 rs210324533 3 9.4e−40 rs209410283 0.945 KCNH4 M c.408C > G

LP 19 43036265 rs210324533 3 9.4e−40 rs377779402 0.945 KCNH4 H c.2663 + 2 T > C

PP 3 15550598 rs380597285 0 1.7e−37 rs109816684 0.994 SLC50A1 L c.282 + 7G > A

PP 5 75758989 rs210094995 0 3.3e−34 rs209394772 0.935 CSF2RB M c.227G > A

PP 5 75758989 rs210094995 0 3.3e−34 rs210937722 0.926 NCF4 M c.841G > C

PP 5 118239754 rs384479185 2 3.9e−32 rs456403270 0.976 TBC1D22A M c.1063C > T

PP 6 38027010 rs43702337 0 6.4e−115 rs43702337 1 ABCG2 M c.1742A > C

PP 14 1763380 rs135017891 0 5.9e−718 rs135258919 0.999 HSF1 M c.1031 T > C

PP 14 1802265 rs109234250 1 1.2e−61 rs109234250 1 DGAT1 M c.694G > A

PP 14 1802265 rs109234250 1 1.2e−61 rs134364612 0.999 SLC52A2 M c.724A > G

PP 15 53940444 rs382926661 1 2.9e−20 rs380220394 0.992 DNAJB13 L c.69-4 T > C

PP 19 43035006 rs209494359 0 1.6e−40 rs207799702 0.944 KAT2A L c.700-7C > G

PP 19 43035006 rs209494359 0 1.6e−40 rs209410283 0.945 KCNH4 M c.408C > G

PP 19 43035006 rs209494359 0 1.6e−40 rs377779402 0.945 KCNH4 H c.2663 + 2 T > C
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contraction, or 33-bp expansion of exon 5 (splicing at 
chr11:104242578 and chr11:1042425462 respectively, 
Fig. 4), which suggests that the ABO protein in animals 
homozygous for the mutation is non-functional.

Identification of co‑localized eQTL
Comparisons of association statistics from trait QTL to 
those representing mammary eQTL variants in the same 
interval identified co-localized eQTL for 38 wavenum-
ber QTL (see details in Table 3). For 19 of these identi-
fied from the base GWAS (Iteration = 0), Manhattan 
plots are provided for 1-Mbp regions centred on the trait 
QTL tag variant (see Additional file 3: Figure S9). Effect 
sizes and MAF details for all 38 loci with a co-localized 
trait QTL and eQTL pair are in Table S10 (see Additional 
file 4: Table S10). For each of these 38 loci, the propor-
tions of phenotypic and genetic variance explained across 
FT-MIR wavenumber and predicted composition traits 
are in Table S11 (see Additional file 4: Table S11). For the 
19 trait QTL identified in subsequent GWAS iterations 
after the base GWAS, p-values at previous iterations for 
the phenotype, and p-values for the corresponding top 
chromosomal SNP in that iteration are in Table S12 (see 
Additional file 4: Table S12).

Co-localized eQTL were identified for 25 predicted-
trait QTL. Details of these trait QTL and eQTL pairs are 
in Table  4, with effect sizes and MAF details provided 
in Table  S13 (see Additional file  4: Table  S13). Further 
details of the 12 QTL identified in iterations subsequent 
to the base GWAS are in Table S14 (see Additional file 4: 
Table S14).

Investigation of patterns of FT‑MIR wavenumber 
associations for genes of interest
In total, 70 genes were implicated whereby the tag locus 
of the wavenumber QTL was in high LD with a PIV 
(Table  1), or in high LD with the top variant of a co-
localized eQTL (Table 3). In cases where multiple candi-
date genes were implicated for a QTL, the gene with the 
PIV in highest LD with the QTL tag variant was used to 
represent the locus. This resulted in tag loci represent-
ing 59 genes, for which scaled significance profiles were 
generated to represent their association patterns across 
the mid-infrared region. Clustering analysis based on 
the largest pairwise dissimilarity between correspond-
ing points on profiles for pairs of genes resulted in > 20 
clusters (Fig. 5). Significance profiles for all 59 genes are 
provided in Figure S15 (see Additional file 5: Figure S15).

Significance profiles for a subset of gene clusters 
from Fig.  5 are presented in Fig.  6. For each cluster, 
the significance profile for the gene with the largest 

QTL is shown in dark grey with the profiles for other 
genes within the cluster (according to highlighted clus-
ters in Fig.  5) shown in light grey. Significance pro-
files varied widely between clusters, but were highly 
consistent within clusters. The first cluster (Fig.  6a) 
includes genes with significant associations for the LP 
(ABCG2, SH3BP5, KCNJ2, PICALM) and PP pheno-
types (ABCG2). For this cluster of genes, prominent 
peaks were observed in bands of the mid-infrared 
spectrum from ~ 1020 to 1180  cm−1, from ~ 1200 to 
1470  cm−1, from ~ 2610 to 2840  cm−1 and from ~ 2870 
to 2980  cm−1. The second cluster (Fig.  6b) includes 
genes with significant associations for the FP (USP3, 
ELAPOR1, TBC1D22A) and PP (USP3, LMAN1, FA2H, 
TBC1D22A, STAT5A) phenotypes, with multiple peaks 
observed across the mid-infrared spectrum, with the 
most prominent of these being in the ranges from ~ 910 
to 1010 cm−1, from ~ 1070 to 1560 cm−1, from ~ 1700 to 
2450  cm−1, from ~ 2630 to 2980  cm−1 and from ~ 3620 
to 3680  cm−1. The third cluster (Fig.  6c) includes a 
number of genes with significant associations for the 
FP (DGAT1, ABO, TGDS, GPAT4, MGST1, MROH1) 
and PP (DGAT1, MGST1) phenotypes. For this clus-
ter of genes, peaks were observed in many bands of 
the mid-infrared spectrum in common with peaks for 
ABCG2 and USP3 (Fig.  6a, b), including from ~ 910 to 
1010  cm−1, from ~ 1130 to 1260  cm−1, from ~ 1450 to 
1500  cm−1, from ~ 1700 to 2450  cm−1, and from 3620 
to 3680  cm−1. Other notable peaks observed for this 
cluster were from ~ 1570 to 1700  cm−1, from ~ 2820 to 
3150 cm−1, and from ~ 3460 to 3530 cm−1.

Significance profiles for gene clusters represented by 
CSN3, PAEP and ANKH are shown in Fig.  7. The pat-
tern of significance in the profiles represented by CSN3 
and PAEP (Fig.  7a and b) were similar, in that a large 
proportion of the signal was captured within a small 
part of the mid-infrared range; namely from ~ 1220 to 
1780  cm−1 for the gene cluster represented by CSN3, 
and from ~ 1350 to ~ 1650  cm−1 for the gene clus-
ter represented by PAEP. Although ANKH appeared 
to be an outlier in the clustering analysis (Fig.  5), a 
similar pattern was observed with most of the signal 
captured within three prominent peaks in the range 
from ~ 1260 to 1620 cm−1. Two of these peaks, centred 
at ~ 1391  cm−1 and 1582  cm−1 were in common with 
peaks observed for the PAEP profile. From the first 
cluster (Fig. 7a), CSN3 was the only gene with a signifi-
cant association for a predicted milk composition trait, 
namely PP. From the second cluster of genes (Fig. 7b), 
the PAEP and CCDC57 genes had significant associa-
tions with the FP phenotype, whilst ANKH had a sig-
nificant association with the LP phenotype (Fig. 7c).
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Discussion
GWAS for FT‑MIR wavenumbers
While there have been many GWAS for FT-MIR pre-
dicted milk composition traits, there are relatively few 
studies reporting GWAS results for individual FT-MIR 
wavenumber phenotypes. This is not withstanding the 
fact that individual wavenumbers exhibit additional 
genetic signal, compared to that observed in FT-MIR 
predictions of major milk composition traits [41, 42], 
and that direct analysis of the individual wavenumbers 
could provide additional granularity to establish causal 
links between the genome and underlying milk compo-
sition. Here, we present the results of GWAS that were 
conducted across individual FT-MIR wavenumber phe-
notypes, and the use of an iterative approach to help 

differentiate multiple, overlapping QTL. In total, wave-
number QTL were observed across 450 1-Mbp genomic 
regions, whereas predicted-trait QTL were observed 
across only 246 1-Mbp genomic regions. Notably, many 
of the observed wavenumber QTL were for wavenum-
bers within mid-infrared regions that were character-
ised by low signal-to-noise ratios. Typically, spectral data 
in these low signal-to-noise regions are discarded from 
analyses; however, these results indicate that wavenum-
bers in these regions are potentially informative. The sig-
nals that we observed in these noise regions were within 
several genes, with the highest frequency and strongest 
signals for variants in the DGAT1 gene. This corroborates 
findings from previous studies which also observed sig-
nificant associations between the DGAT1 K232A poly-
morphism and wavenumbers in the regions from 1619 to 
1674 cm−1 and from 3073 to 3667 cm−1 [32, 41].

Multiple FT‑MIR wavenumber QTL observed
In total, 31 wavenumber QTL were identified that we 
deemed to be ‘highly significant’ (see Methods for defini-
tion). Highly significant QTL were also observed for 12 
of these same loci in at least one FT-MIR predicted milk 
composition trait, whereby the locus was in high LD ( R2 
> 0.9) with the same PIV. The loci for the three largest of 
these effects were in perfect LD with missense mutations 
in the ABCG2, PAEP and DGAT1 genes, respectively, 
that have been proposed to have major impacts on milk 
composition [56, 59, 60]. Notably, the missense variant in 
the ABCG2 gene identified here (rs43702337) is the same 
Y581S variant that was previously reported to be associ-
ated with milk yield and composition in Holstein cattle 
[59]. The role of the ABCG2 mutation in milk composi-
tion regulation can be assumed to derive from osmotic 
impacts due to its function as an efflux transporter [36], 
although the gene has recently also been implicated in 
the modulation of mammary epithelial cell prolifera-
tion [61]. The PAEP gene encodes the major whey pro-
tein β-lactoglobulin. The variant rs109625649 reported 
here (V134A) is one of the variants that distinguishes the 
‘A’ and ‘B’ haplotypes of β-lactoglobulin [62]. The PAEP 
gene also exhibited an eQTL that was significantly cor-
related with wavenumber 2548  cm−1, which is concord-
ant with previous reports of PAEP promotor variants 
associated with milk composition [63]. The gene DGAT1 
encodes diacylglycerol O-acyltransferase 1, which cataly-
ses the final step in triglyceride production and which, 
given the substantial quantities of fat secreted during 
milk production, makes DGAT1 a well-demonstrated and 
straightforward candidate gene for this effect. The vari-
ant rs109234250 (K232A) reported here has been widely 
ascribed to the effects of the DGAT1 gene on milk pro-
duction, with a recent study showing that these effects 

Fig. 4  Mammary RNA-seq alignments representing ABO 
intron/exon 5 splicing structures of the chr11:104242578GG 
and chr11:104242578CC genotypes. The site of the proposed 
chr11:104242578C > G essential splice donor SNP is indicated, with 
individual reads and coverage data showing alternate splice forms in 
the animal carrying the mutation. This coverage track also represents 
the cryptic, ‘ + 33 bp long splice’ transcript as the minority splice form 
relative to the ‘− 8 bp short splice’ transcript, the former representing 
an in-frame variant, with the latter causing a predicted frameshifted 
protein isoform
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Table 3  Peak variants for FT-MIR wavenumbers with co-localized eQTL

Chr Position Tag variant 
ID

Iter Top wvn 
(cm−1)

N of 
hits

P-value Gene Top eQTL 
variant ID

Top eQTL 
variant p-value

LD Pearson Pearson 
window (Mb)

1 5120248 rs42317521 2 2794 55 4.0e−18 CLDN8 rs42317521 4.3e−17 1 0.764 0.5

1 144377960 rs208161466 0 2592 22 2.3e−85 SLC37A1 rs208161466 4.1e−15 1 0.710 1.0

1 146481250 rs383691757 1 1071 1 4.7e−15 CSTB rs210595016 1.4e−52 0.992 0.938 0.5

1 154125158 rs207836083 0 1130 142 3.6e−68 SH3BP5 rs207836083 2.6e−32 1 0.816 0.5

3 15411459 rs134900385 1 1022 6 4.3e−19 KRTCAP2 rs133285846 9.7e−09 0.996 0.938 1.0

3 15550598 rs380597285 0 1462 325 1.3e−54 SLC50A1 rs380597285 8.7e−16 1 0.854 0.5

3 34387618 rs109030498 1 1466 157 3.5e−25 ELAPOR1 rs109030498 3.2e−30 1 0.817 0.5

3 53755929 rs209271975 1 1089 15 8.6e−22 LRRC8C rs466686834 3.5e−39 0.99 0.927 0.5

5 75729880 rs384734208 1 1466 44 5.0e−47 CSF2RB rs210641868 9.2e−27 0.926 0.752 1.0

5 75732526 rs210305241 1 1458 5 4.4e−42 NCF4 rs209273109 9.3e−16 0.91 0.813 1.0

5 93945738 rs211210569 0 1171 544 1.8e−131 MGST1 rs209372883 3.2e−43 0.919 0.925 1.0

6 46568418 rs210515595 3 1772 5 7.7e−22 SLC34A2 rs110805476 2.5e−07 0.979 0.805 0.5

6 87388064 rs379473589 1 1436 17 1.1e−97 CSN3 rs208009847 9.9e−33 0.963 0.878 0.5

9 21637056 rs209222932 0 1003 33 9.4e−20 YRMY5A rs209222932 2.8e−36 1 0.634 0.5

9 26534109 rs208123385 0 1462 36 1.9e−24 RNF217 rs208173647 1.3e−16 0.986 0.856 0.5

9 87585031 rs110986237 1 1470 6 7.4e−15 TAB2 rs110986237 9.5e−12 1 0.851 0.5

9 102874726 rs137238900 0 1768 1 1.0e−14 MPC1 rs134094426 6.9e−15 0.969 0.849 0.5

10 46581015 rs109326466 0 1246 15 2.0e−46 USP3 rs109326466 2.0e−31 1 0.961 0.5

11 14180010 rs110527112 1 2760 23 3.6e−29 XDH rs207554031 8.8e−26 0.978 0.709 0.5

11 78868975 1 1112 10 1.2e−19 LAPTM4A rs110552157 1.3e−40 0.998 0.920 0.5

11 103292402 rs383398415 0 2548 1 3.5e−56 PAEP rs109333988 1.2e−29 0.933 0.956 0.5

11 104229609 rs110534892 0 3648 10 1.2e−21 ABO rs109750996 3.9e−28 0.944 0.803 0.5

14 1754287 rs135443540 0 1085 3 1.6e−39 DGAT1 rs137202508 8.9e−42 0.905 0.944 0.5

15 57266467 rs136337092 0 3935 1 2.7e−13 CAPN5 rs136208815 9.3e−46 0.997 0.940 0.5

16 66314547 rs42579412 2 1425 1 1.0e−15 RGL1 rs42579412 6.3e−14 1 0.727 0.5

16 67730371 rs380453838 1 1757 125 3.8e−21 IVNS1ABP rs380453838 4.5e−27 1 0.876 0.5

18 2203322 rs132899112 1 1466 7 1.4e−15 FA2H rs137235970 1.9e−27 0.998 0.875 0.5

19 33517487 rs434248431 0 1100 23 2.9e−46 PMP22 rs434248431 8.6e−38 1 0.832 0.5

19 43036265 rs210324533 1 1029 11 5.3e−43 GHDC rs381442991 1.8e−22 0.945 0.975 0.5

19 57079881 rs381175117 2 1220 9 2.0e−23 HID1 rs109407913 1.2e−32 0.936 0.803 0.5

19 61134515 rs41923843 0 1130 45 3.2e−46 KCNJ2 rs41923843 1.7e−26 1 0.882 0.5

20 58454531 rs135636613 0 1391 23 4.3e−441 ANKH rs135636613 2.4e−16 1 0.860 0.5

22 53519865 rs109233889 0 1235 7 5.3e−15 LTF rs109233889 1.3e−32 1 0.813 0.5

24 58817202 rs208779762 0 1220 23 6.8e−34 LMAN1 rs207893260 1.3e−27 0.958 0.713 1.0

27 36211708 rs209855549 0 1731 157 6.2e−188 GPAT4 rs209855549 3.7e−21 1 0.848 0.5

27 41267242 rs109068627 1 2977 23 3.5e−26 THRB rs109068627 1.7e−22 1 0.704 0.5

29 9546217 rs380868305 0 1130 8 4.6e−186 PICALM rs380868305 2.4e−54 1 0.831 0.5

29 44579245 rs439384463 2 1548 3 4.3e−16 MUS81 3.0e−21 0.924 0.913 0.5

Peak variants for FT-MIR wavenumbers with a co-localized eQTL. Co-localized eQTL are defined such that: the Pearson correlation between the –log10(p-values) of the trait QTL 
and the –log10(p-values) of the eQTL is higher than 0.7; and the LD between the tag variant for the trait QTL and the top eQTL variant is higher than 0.9. The Pearson correlation 
shown is the highest from two different size windows (0.5 Mbp and 1 Mbp), centred on the top tag variant. Iterations are defined relative to the base GWAS, with the base 
GWAS represented as iteration 0. N of hits: number of wavenumbers for which the variant was selected as the representative (most significant) tag variant for a peak
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may be due in part to an expression-based mechanism 
[64].

For the effects observed in the ABCG2, PAEP and 
DGAT1 genes, the p-values for the most significant FT-
MIR wavenumber were always more significant than the 
comparable values for any of the milk composition traits. 
For example, the p-value for the most significant wave-
number at the chr6:38027010 locus, the missense muta-
tion in ABCG2 highlighted above (Y581S, rs43702337) 
[59], was 7.3e-948, whereas the p-values for the same var-
iant for LP and PP were 9.0e-717 and 6.4e-115, respec-
tively. Similarly, the p-value for the most significant 
wavenumber at the chr11:103304757 locus, the V134A 
PAEP mutation (rs109625649) was 1.2e-134, whereas 
the p-value for the same variant for FP was 4.3e-46; and 
the p-value for the most significant wavenumber at the 
chr14:1802265 locus, represented by the K232A DGAT1 
mutation (rs109234250) [56] was 1.5e-2607, whereas the 
p-value for the same locus for PP was 1.2e-61.

Multiple protein-coding mutations could be attributed 
to loci with QTL in both wavenumber and milk compo-
sition traits, highlighting genes that appear to be novel 
to the present study (TGDS and DNAJB13), and genes 
previously reported in other studies of milk composi-
tion traits: GBA [37, 65], MTX1 [66], SLC50A1 [36, 67], 
CSF2RB [66, 68, 69], NCF4 [66, 69], TBC1D22A [70], 
MROH1 [71] and MTARC1 [36]. A number of other QTL 
that were in strong LD with a PIV were observed in FT-
MIR wavenumbers, but not in the FT-MIR predicted 
milk composition traits. This included QTL highlighting 
genes that have been previously reported in other studies 
of bovine milk composition: FCGR2B [72], SCAMP3 [66], 
THBS3 [66], CSN1S1, CSN2 and CSN3 [65, 71], ABO [73, 
74], CPSF1 [75, 76], SPAG1 [67], RNF214 [36], KAT2A 
[36], STAT5A [77–79] and CCDC57 [40, 80]; and QTL 
highlighting genes that appear novel: FCRLA, WDR97, 
KRT9, KRT16, KRT17, HID1, KCNK1 and NXF1.

Table 4  Peak variants for composite milk production traits with co-localized eQTL

Peak variants for composite milk production traits with a co-localized eQTL. Co-localized eQTL are defined such that: the Pearson correlation between the –log10(p-
values) of the trait QTL and the –log10(p-values) of the eQTL is higher than 0.7; and the LD between the tag variant for the trait QTL and the top eQTL variant is higher 
than 0.9. The Pearson correlation shown is the highest from two different size windows (0.5 Mbp and 1 Mbp), centred on the top tag variant. Iterations are defined 
relative to the base GWAS, with the base GWAS represented as iteration 0. FP Fat %, LP  Lactose %, PP Protein %

Trait Chr Position Tag variant ID Iteration P-value Gene Top eQTL variant ID Top eQTL 
variant 
p-value

LD Pearson Pearson 
window 
(Mbp)

FP 3 34387618 rs109030498 2 6.0e−13 ELAPOR1 rs109030498 3.2e−30 1 0.832 0.5

FP 5 75698283 rs385866519 1 4.0e−19 CSF2RB rs210641868 9.2e−27 0.910 0.701 1

FP 5 93945738 rs211210569 0 6.7e−106 MGST1 rs209372883 3.2e−43 0.919 0.928 1

FP 10 46483019 rs133089336 0 4.5e−13 USP3 rs208181306 2.0e−31 0.909 0.905 0.5

FP 11 104229609 rs110534892 1 2.6e−14 ABO rs109750996 3.9e−28 0.944 0.727 1

FP 16 67730371 rs380453838 1 2.6e−19 IVNS1ABP rs380453838 4.5e−27 1 0.886 0.5

FP 27 36211708 rs209855549 0 9.7e−132 GPAT4 rs209855549 3.7e−21 1 0.819 0.5

LP 1 154122887 rs42167460 0 1.2e−50 SH3BP5 rs380642859 2.6e−32 0.999 0.859 0.5

LP 3 15433518 rs109749506 1 1.3e−20 KRTCAP2 rs133285846 9.7e−09 0.995 0.940 1

LP 3 15545091 rs379353107 0 2.2e−42 SLC50A1 rs379353107 8.7e−16 1 0.806 0.5

LP 3 53994057 rs211488591 2 6.7e−18 LRRC8C rs466686834 3.5e−39 0.986 0.753 1

LP 19 43036265 rs210324533 3 9.4e−40 GHDC rs381442991 1.8e−22 0.945 0.963 0.5

LP 19 61134515 rs41923843 1 1.1e−46 KCNJ2 rs41923843 1.7e−26 1 0.857 0.5

LP 20 58448763 rs134813825 0 3.2e−18 ANKH rs134813825 2.4e−16 1 0.809 0.5

LP 27 36204066 rs208306200 0 1.9e−21 GPAT4 rs208306200 3.7e−21 1 0.767 0.5

LP 29 9577372 rs380473328 0 2.1e−140 PICALM rs384691767 2.4e−54 0.996 0.845 0.5

PP 3 15520971 rs109098377 2 7.5e−16 KRTCAP2 rs133285846 9.7e−09 0.989 0.928 0.5

PP 3 15550598 rs380597285 0 1.7e−37 SLC50A1 rs380597285 8.7e−16 1 0.832 0.5

PP 5 75680825 rs208925020 4 8.5e−23 CSF2RB rs210641868 9.2e−27 0.947 0.871 1

PP 5 93945738 rs211210569 1 3.7e−42 MGST1 rs209372883 3.2e−43 0.919 0.817 0.5

PP 6 87387870 rs382652853 2 2.9e−45 CSN3 rs208009847 9.9e−33 0.963 0.891 0.5

PP 10 46581015 rs109326466 0 4.0e−38 USP3 rs109326466 2.0e−31 1 0.961 0.5

PP 18 2203,325 rs135350753 0 2.1e−13 FA2H rs137235970 1.9e−27 0.997 0.831 0.5

PP 19 43035006 rs209494359 0 1.6e−40 GHDC rs381442991 1.8e−22 0.945 0.976 0.5

PP 24 58817202 rs208779762 0 5.7e−26 LMAN1 rs207893260 1.3e−27 0.958 0.737 0.5
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Although many regions highlighted single mutations 
that could be considered excellent candidate mutations 
for a given QTL, other loci presented more complex 
regions with multiple competing candidates. In some 
cases, candidate genes at these loci have previously been 
proposed; however, it is possible that one or more novel 
genes may explain minor QTL that map to the same 
positions. For example, the chr3:15.4–15.6 Mbp region 
which includes the genes FAM189B, GBA, HCN3, MTX1, 
SCAMP3, THBS3 and SLC50A1; the chr14:1.7–1.8 Mbp 
region, which includes the genes WDR97, MROH1, 
CPSF1, SLC52A2 and the DGAT1 K232A amino acid 
substitution; the chr19:42.4–42.5 Mbp region which 
includes the genes KRT9, KRT42, KRT16 and KRT17; 
and the chr19:43.0–43.1 Mbp region which includes the 
genes KAT2A, KCNH4 and STAT5A. These regions might 
represent multiple, linked QTL, or instances of single 
QTL where the LD structure and our relatively simple 
approach for identifying candidate genes was ineffective 
at differentiating them. Another possibility is that wave-
numbers in these regions detect the presence of multiple 
chemically-similar compounds, with milk concentrations 
being influenced by different proteins, such as enzymes 
or transporters that are encoded by different genes.

Co‑localized eQTL suggest widespread regulatory impacts 
on FT‑MIR wavenumbers
Of the 38 significant FT-MIR wavenumber QTL with 
co-localized eQTL, 18 also had co-localized eQTL that 
were observed for an FT-MIR predicted milk composi-
tion trait. In many cases, the tag variant for the wave-
number QTL was also the top variant for the co-localized 
eQTL. Genes corresponding to these effects have pre-
viously been published in other studies of bovine milk 
composition: SH3BP5 [36], SLC50A1 [36, 67], USP3 [81, 
82], IVNS1ABP [36], KCJN2 [36], ANKH [36, 71], GPAT4 
[83, 84] and PICALM [36, 71]. Other cases for which the 
wavenumber QTL was in high LD ( R2 > 0.9) with the top 
eQTL variant, highlighted genes previously published 
in other studies of bovine milk composition: LRRC8C 
[36], CSF2RB [66, 68, 69], MGST1 [35, 70], CSN3 [65, 
71], ABO [73, 74], GHDC [36, 66] and LMAN1 [70, 85]; 
and genes that appear to be novel to the present study: 
KRTCAP2 and FA2H. Pearson correlations between 
log-scaled p-values for the trait and expression QTL for 
the latter two effects were 0.94 and 0.88, respectively, 
with both displaying very strong LD between the trait 
QTL and the most highly significant eQTL variant ( R2 > 
0.995).

Many wavenumber QTL with a co-localized eQTL also 
had a co-localized eQTL identified for a predicted milk 
composition trait. In these cases, a common pattern 

Fig. 5  Gene clusters for significance profiles of tag variants representing candidate genes. Gene clusters based on the Euclidean distance between 
pairs of log-scaled p-value profiles across the mid-infrared spectrum for tag variants. Significance profiles for the highlighted gene clusters are 
presented in Figs. 6 and 7
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Fig. 6  Significance profiles across the mid-infrared spectrum for tag variants of candidate genes within gene clusters. Y-axis values represent the 
strength of association signals as the −log10(p-value) of the effect, scaled to sum to unity across the mid-infrared spectral range. The significance 
profile for the most highly associated tag variant is shown in dark grey with the profiles for the other genes within the cluster shown in light 
grey: a ABCG2 (Chr6:38027010; dark grey), SH3BP5 (Chr1:154125158), RGL1 (Chr16:66314547), PMP22 (Chr19:33517487), KCNJ2 (Chr19:61134515), 
PICALM (Chr29:9546217); b USP3 (Chr10:46581015; dark grey), ELAPOR1 (Chr3:34387618), TBC1D22A (Chr5:118246868), FA2H (Chr18:2203322), 
STAT5A (Chr19:43053995), LTF (Chr22:53519865), LMAN1 (Chr24:58817202); and c DGAT1 (Chr14:1802265; dark grey), FCRLA (Chr3:7908611), FCGR2B 
(Chr3:7931694), MGST1 (Chr5:93945738), ABO (Chr11:104242578), TGDS (Chr12:69612955), MROH1 (Chr14:1732043), CPSF1 (Chr14:1755742), GPAT4 
(Chr27:36211708)
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was observed whereby the wavenumber QTL had more 
highly significant p-values, compared to the p-values 
for the predicted trait. This was the case for MGST1, 

ANKH, GPAT4 and PICALM. Notably, significant wave-
number QTL were detected for several additional milk 
proteins, with either highly-significant coding variants 

Fig. 7  Significance profiles across the mid-infrared spectrum for tag variants of candidate genes within gene clusters. Y-axis values represent the 
strength of association signals as the −log10(p-value) of the effect, scaled to sum to unity across the mid-infrared spectral range. The significance 
profile for the most highly associated tag variant is shown in dark grey with the profiles for other genes within the cluster shown in light grey: a 
CSN3 (Chr6:87390576; dark grey), CSN1S1 (Chr6:87274397), TAB2 (Chr9:87585031); b PAEP (Chr11:103304757; dark grey), MPC1 (Chr9:102874726), 
WDR97 (Chr14:1726650), CCDC57 (Chr19:51303887); and c ANKH (Chr20:58454531)
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(CSN1S1, CSN2, CSN3) or a co-localized eQTL (LTF). 
To our surprise, only the CSN3 eQTL was identified by 
analysis of the milk composition traits, with a p-value of 
2.9e-45 for the PP phenotype, which was less significant 
than the p-value for the most significant wavenumber 
(p-value = 1.1e−97).

Other wavenumber QTL where a co-localized eQTL 
was identified within FT-MIR wavenumbers, but not 
the predicted milk composition traits, included effects 
that highlighted a number of genes that appear novel 
to the present study: CLDN8, CSTB, TAB2, LAPTM4A, 
CAPN5, PMP22, HID1 and THRB; and a number of genes 
previously reported as having an effect on bovine milk 
composition: SLC37A1 [66, 86], NCF4 [66, 69], SLC34A2 
[87], TENT5A [40], RNF217 [67], MPC1 [85], XDH [88, 
89], PAEP [60], DGAT1 [56], RGL1 [90], LTF [91, 92] and 
MUS81 [93]. These results underscore the gain in power 
that is available when using individual FT-MIR wave-
number phenotypes, compared to using predicted milk 
composition phenotypes which are linear functions of 
FT-MIR absorbance values.

Candidate causative variants of note
Although we identified a large number of candidate 
causative variants for FT-MIR wavenumbers and pre-
dicted milk composition phenotypes, variants in perfect 
LD with a tag locus ( R2 = 1) warrant further discus-
sion. These associations presented missense variants 
for genes mentioned previously (ABCG2, PAEP and 
DGAT1), in addition to other genes that have previously 
been linked to bovine milk composition phenotypes 
(CSN2, CSN3, ABO, SPAG1 and STAT5A). Of these, 
the ABO exon 5 splice donor mutation (rs207688357; 
chr11:104242578C > G) is a particularly interesting and 
seemingly novel candidate causative variant identified 
through our GWAS of FT-MIR wavenumbers.

The rs207688357 variant was selected as the repre-
sentative peak tag variant for 11 wavenumbers, with the 
most significant peak association observed for wavenum-
ber 1462  cm−1. Visualisation of RNA-seq alignments 
confirmed that this variant disrupts splicing in carrier 
and homozygous animals (Fig.  4), where the mutation 
appears to activate two cryptic splice sites. The first and 
comparatively higher expressed form of these alternative 
transcripts is a − 8-bp frameshifted isoform predicted to 
lead to premature termination, while the lowly expressed 
in-frame form is predicted to introduce 11 new amino 
acids following the 78th residue (due to a + 33  bp exon 
5 extension). In humans, ABO has a widely recognised 
role as encoding the glycosyltransferases that catalyse 
the synthesis of the oligosaccharide ABO blood group 
antigens [94, 95]. Since both the alternatively spliced 
forms of bovine ABO generated by rs207688357 could be 

assumed to be non-functional (or at least dysfunctional 
for the minority in-frame isoform), this mutation would 
be akin to the human O blood group in homozygotes, 
where analogous human null alleles generate a non-
functional enzyme [96]. These antigens are best known 
due to their expression on the surface of red blood cells, 
although they are also expressed on epithelial cells, as 
well as appearing as free oligosaccharides in milk [97]. 
This finding suggests a mechanism by which non- or par-
tially functional bovine ABO alleles change carbohydrate 
structures in milk, therefore presenting differing FT-MIR 
signals detected by GWAS.

It should also be noted that although we are una-
ware of other studies proposing the rs207688357 
(chr11:104242578) mutation as underlying such effects, 
other studies have reported genetic associations for 
bovine milk oligosaccharides for the broader ABO 
locus [73, 74]. One of these studies proposed an ABO 
p.Arg206Gln (R206Q; chr11:104232763; rs110960674) 
amino acid substitution present on the Illumina 
BovineHD chip as a potential causative mutation for this 
effect [74]. The other study reported associations with 
non-coding variants downstream of the ABO coding 
sequence (lead variant chr11:104229609; rs110534892), 
in this case using imputed sequence-based genotypes 
[72]. Both the p.Arg206Gln variant and the non-coding 
rs110534892 variant are also significant in our popu-
lation, alongside the rs207688357 splice donor muta-
tion, with peak association observed for the 1462  cm−1 
wavenumber phenotype. These alternative candidates 
are less strongly associated than the rs207688357 splice 
donor mutation (p-value = 1.1e-23 and 1.8e-28, for the 
p.Arg206Gln and rs110534892 variants, respectively, 
compared to 5.5e-33). While these findings might suggest 
that these variants are simply linked to the functionally 
more compelling rs207688357 splice donor mutation, 
LD between the variants and the splice donor mutation 
is moderate to low ( R2 = 0.486 and R2 = 0.296 for the 
p.Arg206Gln and rs110534892 variants, respectively). 
Furthermore, when fitting the rs207688357 splice donor 
mutation as a covariate in the iterative association anal-
ysis of wavenumber 1462  cm−1, both variants retain 
residual signal (p-values of 4.2e-04 and 1.4e-07 for the 
p.Arg206Gln and rs110534892 variants, respectively), 
which suggests that all three variants might contribute 
to the oligosaccharide content of milk. In support of this 
concept, we also note that the non-coding rs110534892 
variant proposed by Liu et  al. [73] is in strong LD with 
the lead variant representing a strong ABO eQTL high-
lighted in our study ( R2 = 0.944; Table 3). By contrast, the 
splice donor mutation is comparatively modestly associ-
ated with ABO expression at the whole transcript level 
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(p-value = 9.1e−11 versus 5.9e−27), which suggests that 
multiple molecular mechanisms (missense, non-sense, 
and cis-regulatory effects) might contribute to oligosac-
charide modulation at this locus.

FT‑MIR wavenumber association patterns for genes 
of interest
Although FT-MIR spectroscopy is a valuable tool for 
predicting a range of milk composition traits, there are 
limitations to the approach, i.e. it is often unable to detect 
molecules that are present in small quantities, and does 
not discriminate well between compounds that are chem-
ically similar. Nevertheless, we have demonstrated that 
individual FT-MIR wavenumber phenotypes can provide 
valuable insights for establishing causal links between the 
genome and milk composition. Having observed patterns 
of association across multiple FT-MIR wavenumbers for 
individual loci (i.e. genome positions that appeared to 
highlight specific subsets of wavenumbers), our aim was 
to formally detect these patterns of association through 
cluster analysis. We hypothesised that the identified clus-
ters could be rationalised based on shared biology or the 
physico-chemical properties of the encoded molecules—
given that these signatures would presumably reflect 
common functions and structures in milk.

The cluster with the largest number of individual 
attributed loci included genes with prominent roles in 
the regulation of fat synthesis such as DGAT1, GPAT4, 
and MGST1 (Fig.  5). These three loci have been impli-
cated in previous studies of milk fat percentage and fatty 
acid synthesis [35, 56, 57, 70, 83, 84]. DGAT1 and GPAT4 
encode acyltransferase enzymes that are responsible for 
mammary triglyceride synthesis, so it seems likely that 
the highlighted cluster reflects wavenumbers that are 
sensitive to changes in milk fat content. Notably, the 
pattern of the effects observed for DGAT1 (Fig. 6a) was 
very similar to those reported previously [32, 43]. Highly 
significant effects were observed for the DGAT1 K232A 
polymorphism in bands of the spectrum that could be 
attributed to a number of different chemical bond inter-
actions including: phosphorus compounds (from ~ 910 
to 1010  cm−1) [98], triglyceride ester C–O stretching 
(from ~ 1,130 to 1260  cm−1) [99, 100], C–H bending 
vibrations of –CH2 and –CH3 (from ~ 1450 to 1500 cm−1) 
[45, 98], C=O stretching in polypeptides within the 
amide I band of protein (from ~ 1600 to 1700 cm−1) [99], 
carboxylic acid and C = O rotation and stretching of ester 
groups of fat (from ~ 1700 to 1800 cm−1) [101], and acyl 
chain C–H stretching (from ~ 2820 to 3150 cm−1) [100].

The cluster that included the ABCG2 Y581S polymor-
phism (Fig.  5) had highly significant association effects 
across numerous FT-MIR wavenumbers, with the larg-
est effects concentrated within the regions from ~ 1020 

to 1470  cm−1 and from ~ 2610 to 2980  cm−1 (Fig.  6b). 
Bands of the mid-infrared spectrum related to the largest 
effects for the ABCG2 Y581S polymorphism were attrib-
utable to hydroxyl groups related to lactose (from ~ 1020 
to 1180  cm−1) [98, 102], amide III and phosphate bands 
(from ~ 1200 to 1390  cm−1) [99, 103], C–H bending 
vibrations for CH2 and –CH3 (from ~ 1410 to 1470 cm−1) 
[98], overtones and bands of lactose (~ 2600 upwards) 
[104], and C–H stretching vibrations of CH2 and –CH3 
(from ~ 2700 to 2980  cm−1) [98]. Many of the mid-
infrared bands with significant effects were ascribed to 
chemical bond interactions related to lactose, which is 
unsurprising, given that ABCG2 and many of the other 
genes classified in the same cluster (SH3BP5, PMP22, 
KCNJ2, and PICALM) have been previously associated 
with lactose phenotypes [36, 71]. Notably, the strongest 
association effects for the ABCG2 Y581S polymorphism 
were in different bands of the mid-infrared spectrum to 
the DGAT1 K232A polymorphism, assumedly reflecting 
the different roles that these two genes play in altering 
milk composition.

Three other notable gene clusters were those repre-
sented by the CSN3, PAEP and ANKH genes (Fig.  7), 
which had a large proportion of significant signal cap-
tured within a small part of the mid-infrared range: 
CSN3 (from ~ 1220 to 1780  cm−1), PAEP (from ~ 1350 
to 1650  cm−1) and ANKH (from ~ 1260 to 1620  cm−1). 
The CSN3 gene encodes κ casein, one of the most abun-
dantly expressed proteins in milk. Bound at the aque-
ous-hydrophobic interface of casein micelles, κ casein 
content influences the size of these structures, thereby 
affecting various coagulation and cheese-making prop-
erties [105, 106]. The missense mutation reported here 
at chr6:87390576 (rs43703015) has been associated 
with milk composition traits and differential expres-
sion in mammary tissue [107]. The largest effects for the 
CSN3 locus were in spectral regions related to amide III 
and phosphate bands (from ~ 1220 to 1320  cm−1), C–H 
stretching vibrations of CH2 and –CH3 (from ~ 1370 to 
1480 cm−1), and N–H bending and C–N stretching in the 
amide II band (from ~ 1490 to 1590  cm−1) [108]. Previ-
ous studies have reported association effects for CSN3 in 
similar bands of the mid-infrared spectrum, with specific 
wavenumbers coinciding with highly significant asso-
ciation effects observed in our study [32, 42, 43]. The 
ANKH gene encodes a transmembrane protein involved 
in pyrophosphate transport regulation, and is associated 
with lactose concentrations in milk [36, 71]. Interestingly, 
ANKH and PAEP shared a prominent peak for adjacent 
wavenumbers, 1391  cm−1 and 1395  cm−1, respectively. 
These wavenumbers were in a region related to carboxylic 
acid C = O bond stretching [98]. Another peak in com-
mon between these genes was centred on the 1582 cm−1 
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wavenumber, also in a region related to carboxylic acid 
C=O bond stretching [98]. Association effects in similar 
bands of the mid-infrared spectrum for PAEP have been 
reported in previous studies [32, 42, 43]. Although ANKH 
and PAEP shared peaks in their significance profiles, it is 
notable that they also had exclusive peaks. For ANKH, a 
distinct peak was observed in a region related to amide 
III and phosphate bands (from ~ 1270 to 1290  cm−1) 
[99, 103], and for PAEP a distinct peak was observed 
in a region related to C–NH peptide bonds and N–H 
stretching and bending vibrations of NH2 (from ~ 1600 
to 1640 cm−1) [98, 109], which shows that although com-
monalities exist, there are also differences in the roles 
that these genes play in altering milk composition.

Limitations of the present study and future perspectives
In this study, we demonstrated that GWAS conducted 
on individual FT-MIR wavenumbers can improve 
power for identifying QTL and candidate causal vari-
ants, compared to GWAS conducted on FT-MIR pre-
dicted milk composition traits. Although many QTL 
were successfully identified, several refinements to our 
approach could be expected to enable the identifica-
tion of additional QTL. The first of these relates to the 
approach used in adjusting phenotypes prior to con-
ducting the GWAS. The repeated measures model that 
we used for adjusting phenotypes included a random 
effect to capture individual animal variation, but did 
not use pedigree information to account for covariance 
between individuals. This means that genetic trend may 
have been captured in herd by test day effects. A more 
optimal, but computationally more expensive approach, 
would have been to fit a repeatability model including 
the additive relationship matrix, thereby ensuring more 
accurate partitioning of fixed and random effects. To 
assess the potential impact of this on the final GWAS 
results in our study, we generated adjusted phenotypes 
for FP, LP and PP using a full animal model with an 
additive relationship matrix, and compared these to 
the adjusted phenotypes evaluated from the simplified 
repeated measures model we report. The correlations 
between the adjusted phenotypes from the two mod-
els were all high: 0.983, 0.994 and 0.987 for FP, LP and 
PP respectively. This implies that although the model 
that we used may be considered suboptimal, it is likely 
that the use of this model would have only a very minor 
impact on the final GWAS results.

Other potential refinements to our approach specifi-
cally relate to genomic information and our strategy for 
identifying QTL. First, our study relied on datasets that 
were mapped to the UMD3.1 genome, whereas a newer 
reference genome (ARS-UCD1.2) that has improved 
sequence continuity and per-base accuracy [110] is now 

available. Future use of that reference genome might 
yield additional QTL, as well as reveal additional candi-
date mutations given the improvements in accompanying 
transcript annotations. Second, our approach could be 
extended to account for non-additive QTL. Recently, we 
conducted non-additive association mapping of growth 
and development traits in cattle, which highlighted a 
number of major-effect mutations that had not been 
identified through application of standard additive mod-
els [93]. Although the low MAF variants identified in that 
study would require larger samples than those explored 
here, future analyses based on larger populations might 
be expected to identify similar non-additive effects for 
FT-MIR wavenumber and predicted milk composition 
traits. Third, a more sophisticated methodology could be 
used for the selection of representative variants in each 
QTL peak. In our approach, we have iteratively taken the 
top variant from each peak based on the p-value of the 
association effect, and fitted this as a covariate in sub-
sequent rounds of GWAS. This approach does not take 
nonlinear interactions between variants into account, and 
can lead to the selection of multiple variants in high LD 
with a single QTL, if that QTL is not itself represented by 
a single biallelic variant. Alternatively, multiple QTL at a 
single locus might be best tagged by a single, non-causal 
variant that captures multiple signals. In both these 
instances, factors such as imputation or genotyping error 
may also further compound these issues. To address this, 
a modified approach could be adopted, whereby gene 
annotation information and other genomic and molecu-
lar data sources are used to assist with variant selection. 
Finally, although we tried to identify causal variants rep-
resenting a variety of molecular mechanisms including 
coding variants (missense and nonsense) and regulatory 
effects (through integration of mammary eQTL data), 
these approaches are far from comprehensive, and will 
still miss many candidates. Improved variant prediction 
methods, and generation of other functional datasets 
(e.g. ChIP-seq) could be used to map additional molecu-
lar QTL, where integration of those data would enhance 
fine mapping and identification of candidate variants 
[19].

Conclusions
We conducted a sequence-based GWAS on individual 
FT-MIR wavenumber phenotypes, and employed gene 
annotation and mammary tissue gene expression datasets 
to identify candidate causative genes and variants. Com-
pared to GWAS on predicted milk composition traits, 
GWAS on individual FT-MIR wavenumbers resulted 
in stronger association effects, and improved power for 
identifying candidate causal variants. Although many of 
the genomic regions with significant associations that 
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we identified in this work have previously been linked 
to milk composition traits, we report the discovery of 
several loci that have never previously been linked to 
milk phenotypes. Examining patterns of significance 
across wavenumbers in the mid-infrared range for loci 
of interest provided further insights into the relation-
ships between specific genes and the underlying chemi-
cal structure of milk. Leveraging this information and 
incorporating the candidate causative mutations that we 
have identified into genomic prediction could result in 
improved selection of dairy cattle for the ever-growing 
range of traits of interest to the industry.
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Additional file 1: Figure S1. Sequence resolution effects for highly signifi-
cant wavenumber QTL. Effects shown for 14 base GWAS wavenumber QTL 
in high LD (R2 > 0.9) with a putative impact variant. Putative impact vari-
ants are defined as a splice region variant, or a moderate or high impact 
variant according to the SnpEff classification. 1-Mbp regions centred on 
the wavenumber QTL are shown. The x-axis represents positions on the 
UMD 3.1 Bos taurus reference genome; the y-axis shows the strength of 
association signal, represented as the −log10(p-value) of the effect for 
each variant. Effects are coloured based on the predicted effect of the 
variant on genes, according to the SnpEff classification. The horizontal red 
line shows the Bonferroni significance threshold of −log10(6.2e-13).

Additional file 2: Table S2. Peak variants of 27 protein-sequence associa-
tion effects classified as moderately significant for FT-MIR wavenumber 
phenotypes. Moderately significant effects are those for which the −
log10(p-value) of the effect was greater than 1x the Bonferroni threshold 
of −log10(6.2e-13) and the correlation between the tag variant and the 
protein-sequence variant was higher than 0.9, but the effect did not meet 
the criteria of a highly significant effect (see Table 1). Effects where the 
locus has been identified as highly significant based on the LD with one 
or more other genes (and is also present in Table 1) are shaded yellow. No. 
of hits is the number of wavenumbers for which the variant was selected 
as the representative (most significant) tag variant for a peak. Iterations 
are defined relative to the base GWAS, with the base GWAS represented 
as iteration 0. L = Low impact splice region variant; M = Moderate impact 
missense variant; H = High impact splice donor. Table S3. Minor allele 
frequencies and allele effects for WGS tag variants with a highly significant 
protein-sequence association effect in at least one FT-MIR wavenumber. 
Table S4. Association statistic profiles for 31 highly significant protein-
sequence effects identified in FT-MIR wavenumber phenotypes. For 
each protein-sequence mutation, the proportion of phenotypic and 
genetic variance that it accounts for is shown for each of the 895 FT-MIR 
wavenumbers and three FT-MIR predicted milk composition phenotypes. 
The genetic variance for each phenotype is the SNP-based estimate evalu-
ated by the Bolt-LMM software. Table S5. Chronological profiles across 
iterations for 17 highly significant protein-sequence association effects 
observed in FT-MIR wavenumbers, where the association is observed after 
fitting the top chromosomal variant(s) in previous GWAS iterations and/
or the base GWAS as covariates. Iterations are defined relative to the base 
GWAS, with the base GWAS represented as iteration 0. P-values at previous 
iterations for the phenotype, and p-values for the corresponding top chro-
mosomal SNP in that iteration are provided. Table S6. Peak variants of 14 
protein-sequence association effects classified as moderately significant 
for FT-MIR predicted milk composition traits. Moderately significant effects 
are those where the −log10(p-value) of the effect was greater than 1x the 
Bonferroni threshold of −log10(6.2e-13) and the correlation between the 
tag variant and the protein-sequence variant was higher than 0.9, but the 

effect did not meet the criteria of a highly significant effect (see Table 2). 
Effects where the locus has been identified as highly significant based 
on the LD with one or more other genes (and is also present in Table 2) 
are shaded yellow. Iterations are defined relative to the base GWAS, with 
the base GWAS represented as iteration 0. FP = Fat %; LP = Lactose %; 
PP = Protein %; L = Low impact splice region variant; M = Moderate 
impact missense variant; H = High impact splice donor. Table S7. Minor 
allele frequencies and allele effects for WGS tag variants with a highly 
significant protein-sequence association effect in at least one FT-MIR 
predicted milk composition trait. FP = Fat %; LP = Lactose %; PP = Protein 
%. Table S8. Chronological profiles across iterations for highly significant 
protein-sequence association effects observed in FT-MIR predicted milk 
composition traits, where the association is observed after fitting the 
top chromosomal variant(s) in previous GWAS iterations and/or the base 
GWAS as covariates. Iterations are defined relative to the base GWAS, with 
the base GWAS represented as iteration 0. P-values at previous iterations 
for the phenotype, and p-values for the corresponding top chromosomal 
SNP in that iteration have been provided. FP = Fat %; LP = Lactose %; PP 
= Protein %.

Additional file 3: Figure S9. Sequence resolution effects for 19 base 
GWAS wavenumber QTL with a co-localized expression QTL. 1-Mbp 
regions centred on the wavenumber QTL are shown. The x-axis represents 
positions on the UMD 3.1 Bos taurus reference genome; the y-axis shows 
the strength of association signal, represented as the −log10(p-value) of 
the effect for each variant. Effects are coloured based on the predicted 
effect of the variant on genes, according to the SnpEff classification. 
The horizontal red line shows the Bonferroni significance threshold of 
−log10(6.2e-13).

Additional file 4: Table S10. Minor allele frequencies and allele effects for 
WGS tag variants with a significant association effect in FT-MIR wavenum-
bers and a co-localized eQTL. Table S11. Association statistic profiles for 
38 loci with a co-localized eQTL for at least one FT-MIR wavenumber phe-
notype. The proportion of phenotypic and genetic variance accounted 
for by each locus is shown for each of the 895 FT-MIR wavenumber 
and three FT-MIR predicted milk composition phenotypes. The genetic 
variance for each phenotype is the SNP-based estimate evaluated by the 
Bolt-LMM software. Table S12. Chronological profiles across iterations 
for 19 significant association effects with a co-localized eQTL observed in 
FT-MIR wavenumbers, where the association is observed after fitting the 
top chromosomal variant(s) in previous GWAS iterations and/or the base 
GWAS as covariates. Iterations are defined relative to the base GWAS, with 
the base GWAS represented as iteration 0. P-values at previous iterations 
for the phenotype, and p-values for the corresponding top chromosomal 
SNP in that iteration are provided. Table S13. Minor allele frequencies and 
allele effects for WGS tag variants with a significant association effect in 
at least one FT-MIR predicted milk composition trait and a co-localized 
eQTL. FP = Fat %; LP = Lactose %; PP = Protein %. Table S14. Chronologi-
cal profiles across iterations for 12 significant association effects with a 
co-localized eQTL observed in FT-MIR predicted milk composition traits, 
where the association is observed after fitting the top chromosomal 
variant(s) in previous GWAS iterations and/or the base GWAS as covariates. 
Iterations are defined relative to the base GWAS, with the base GWAS rep-
resented as iteration 0. P-values at previous iterations for the phenotype, 
and p-values for the corresponding top chromosomal SNP in that iteration 
have been provided. FP = Fat %; LP = Lactose %; PP = Protein %.

Additional file 5: Figure S15. Significance profiles of associations 
between FT-MIR wavenumbers and loci/genes in high LD with a putative 
impact variant (PIV), or in high LD with the top variant of a co-localized 
eQTL. A PIV is defined as a splice region variant, or moderate or high 
impact variant, according to the SnpEff classification. Significance is 
expressed as the –log10(p-value) between each FT-MIR wavenumber and 
locus/gene of interest.
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