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Abstract 
 

19F NMR properties such as absolute shielding and spin-rotation constants within a series of 

molecules have been investigated via quantum mechanical calculations. The use of coupled-

cluster methods up to CCSDTQP and large basis sets up to aug-cc-pCV7Z has allowed the 

accurate determination and benchmarking of 19F NMR properties. These have been calculated 

at geometries optimised with the CCSD(T)/aug-cc-pCVQZ level of theory to provide 

equilibrium absolute shieldings and spin-rotation constants. In an attempt to benchmark these 

NMR properties with experiment, important effects on the absolute shielding were calculated, 

such as vibrational averaging and temperature effects at the CCSD(T)/aug-cc-pCVXZ level of 

theory and relativistic effects at the PBE0/dyall-aug-cvqz level of theory have been further 

calculated. The calculation of absolute shielding and spin-rotation constants was first 

conducted and investigated for the 1H nucleus in H2, HF, and H2O then implemented for 19F 

within HF, F2, FCl, HOF, F2O, CH3F, and FCN. Comparison between theory and experiment 

has been carried out using currently available chemical shifts and spin-rotation data, which 

agree well with the NMR properties calculated within this investigation. Experimental spin-

rotation data along with calculated diamagnetic shieldings are used to develop a series of semi-

experimental shielding constants that are further compared to experiment and theory. A revised 

absolute 19F shielding in HF is also proposed based on the present calculated results and recent 

experiments, which will serve to anchor the relative 19F shielding scale. Investigation into the 

usefulness of DFT GGA functionals KT1, KT2, KT3, as well as the meta-GGA functional 

RevTPSS was then performed on a large series of 15N containing molecules to obtain a wide 

range of absolute shieldings. These shieldings are compared with available experimental data 

resulting in the determination of average and maximum deviations from experiment. These 

statistics as well as the individual calculated shieldings are compared between functionals and 

the usefulness of the compared series is discussed. 
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Chapter 1: 
Introduction 

 

1.1 NMR Absolute Shielding, Chemical Shifts and Spin-Rotation 

Constants 

Nuclear Magnetic Resonance (NMR) is one of the most useful tools for the determination of 

molecular structure, interaction, and reactivity. Some of the most important quantities derived 

from the interaction of molecules and magnetic fields include chemical shifts and spin-spin 

coupling constants, while related spin-rotation constants and electric-field gradients are closely 

related. Chemical shifts (δ) are one of the most common and important properties produced by 

NMR experiments, which provide an understanding of the electronic environment in which a 

nucleus resides. Nuclei produce consistent chemical shifts between experiments, and hence 

NMR is capable of precise reproduction of results. Chemical shifts represent the degree of 

shielding of a nucleus from an external magnetic field due to the presence of electrons.  

The magnetic shielding tensor, 𝜎, is the fundamental property that underpins the chemical shift. 

Magnetic shielding is a second-order property (second-rank tensor), which is represented as a 

3 x 3 matrix. The isotropic average (average of the diagonal 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 components) of the 

shielding tensor is the shielding constant, 𝜎୧ୱ୭, which represents the shielding or deshielding 

with respect to the bare nucleus. In this thesis, only the isotropic shielding constant is 

considered.  

The magnetic shielding constant cannot be measured directly in an experiment; however, the 

difference in shielding constants between two nuclei can be determined, which is defined as 

the chemical shift (𝛿). Chemical shifts from NMR experiments are measured relative to some 

reference compound (that includes the same nucleus) which yields a relative scale for each 

nuclei. Therefore, is interest in determining non-relative shielding constants of nuclei, known 

as the absolute magnetic shielding (𝜎), to complement the chemical shifts routinely used in 

NMR studies. The relationship between the absolute magnetic shielding constant and chemical 

shift of a nucleus is given by:1 

𝛿௡ =  𝜎୰ୣ୤ −  𝜎௡ (1.1) 
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where 𝛿௡ and 𝜎௡ are the chemical shift and absolute magnetic shielding constant of nucleus 𝑛, 

respectively, and 𝜎୰ୣ୤ is the absolute magnetic shielding constant of the reference compound. 

Examples of reference compounds include tetramethylsilane (TMS) for 1H and 13C nuclei, 

CH3NO2 for 15N, and CFCl3 for 19F nuclei. Evidently, if the absolute shielding constant of a 

reference compound is accurately known, then the absolute shielding of other nuclei can be 

deduced from reported experimental chemical shifts via eq. 1.1. Unfortunately, there is a lack 

of accurate absolute magnetic shielding values due to the difficulty in their experimental 

determination. As such, there is a need to obtain highly accurate magnetic shielding constants 

for possible NMR reference compounds via computational methods.2  

The magnetic shielding tensor is a second-order property, which may be defined as an energy 

derivative,1 

𝜎௡ =
𝜕ଶ𝐸

𝜕𝝁𝜕𝐁
(1.2) 

where 𝐸 is the total energy of the system, 𝐁 is the external magnetic field, and 𝝁 is the nuclear 

magnetic moment. Due to the dependence on the nuclear magnetic moment, only “NMR 

active” nuclei can be investigated. That is, a nucleus must have a non-zero nuclear spin (𝑰௡) 

such as 1H, 13C, 15N, 17O, 19F, 33S, and 119Sn. 

Nuclear spin-rotation constants are a related magnetic property, which describes the interaction 

between nuclear magnetic moments and the magnetic field generated via the rotational motion 

of a molecule.3,4 The nuclear spin-rotation constant, 𝑪, is used in microwave and molecular 

beam spectroscopy. Similar to the absolute shielding, the spin-rotation constant is a second-

order property and is the isotropic average of a 3 x 3 tensor (𝑪୧ୱ୭). The nuclear spin-rotation 

constant of nucleus n is dependent on the nuclear spin (𝑰௡) and the rotational angular 

momentum (𝑱):3,5 

𝑪௡ =
𝜕ଶ𝐸

𝜕𝑰௡𝜕𝑱
 (1.3) 

The spin-rotation tensor and the subsequent spin-rotation constant is comprised of electronic 

(𝑪ୣ୪) and nuclear (𝑪୬୳ୡ) parts, which are tensors themselves:6  

𝑪௡ = 𝑪ୣ୪ + 𝑪୬୳ୡ (1.4) 

There is an important relationship between spin-rotation constants and shielding constants, 

which is detailed below, from which absolute magnetic shielding constants may be derived in 
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a semi-experimental manner from experimental spin-rotation constants. As such, there is 

significant interest in the calculation of nuclear magnetic shielding constants (and chemical 

shifts) and nuclear spin-rotation constants, which has the potential of providing quantitative 

values. 

The importance of theoretical absolute shieldings, chemical shifts, and spin-rotation constants 

establishes a need to benchmark theoretical methods. The level of theory required to calculate 

shielding constants and spin-rotation constants with sufficient accuracy, as well as which 

experimental factors will make a significant impact on results, must be considered in order to 

advance investigations of both nuclear shielding and spin-rotation constants. In this thesis, the 

theoretical methods and approach to calculating shielding constants and spin-rotation constants 

has been explored in detail for several nuclei. The results will allow theoreticians to extend 

nuclear shielding scales for these nuclei and provide a better understanding of the 

computational requirements to reach a high level of accuracy.  

The present investigation is focused on gas-phase NMR properties unless otherwise specified. 

Chemical shifts from gas-phase and liquid-phase NMR experiments will inherently be slightly 

different due to the presence of intermolecular interactions in the liquid-phase. In gas-phase 

experiments, there are minimal intermolecular interactions, which is more consistent with the 

single-molecule computational results. 

 

1.2 Experimental Derivation of 19F Absolute Shielding Constants 

The experimental determination of absolute nuclear shielding constants may be achieved by 

combining gas-phase chemical shifts extrapolated to the zero-density limit together with 

previously determined absolute nuclear shielding constants of reference compounds using eq. 

1.1. For example, Makulski has extrapolated a zero-density gas-phase chemical shift of 

170.170 ppm for SiF4 relative to CFCl3. Combining the chemical shift with an absolute 19F 

nuclear shielding in CFCl3 of 192.07 ppm leads to an experimental absolute 19F shielding in 

SiF4 of 362.87 ppm (170.170 ppm + 192.70 ppm).7 In this procedure, 𝜎୰ୣ୤ contains the greatest 

uncertainty as its accuracy is often difficult to determine and verify. As such, most 

experimentally determined absolute magnetic shielding constants are derived using the 

Ramsey-Flygare method.  
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Ramsey has shown that the absolute shielding can be separated into paramagnetic (𝜎୮) and 

diamagnetic (𝜎ୢ) components.8 

𝜎௡ = 𝜎௡
୮

+ 𝜎௡
ୢ (1.5) 

Additionally, Flygare showed that the paramagnetic contribution to the absolute shielding 

tensor is related to the nuclear spin-rotation constant (𝑪) by the equation:9,10 

𝜎௡
୮

=
𝑚୮

2𝑚ୣ𝑔௡
ቆ

1

3
෍

𝑪௚௚
ୣ୪

𝐵௚௚
ቇ (1.6) 

where 𝑚୮ and 𝑚ୣ are the mass of a proton and an electron, respectively, 𝑔௡ is the nuclear g-

factor of nucleus 𝑛, and 𝑪௚௚
ୣ୪  and 𝐵௚௚ are the electronic contribution to the spin-rotation tensor 

in kHz, and the molecular rotational constant in GHz of the matching axis (𝑔), respectively. 

Here 𝑔𝑔 refers to the three principal molecular axes, which could be 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 (Cartesian 

coordinates), or 11, 22, and 33 in the more general case. It is noted that in attempting to use eq. 

1.6 in the current project, an error was found in the representation of this expression published 

by Gauss where the multiplication of 
ଵ

ଶ
 is not applied.11 

Unlike the paramagnetic shielding constant contribution that is related to the experimental spin-

rotation constant, the diamagnetic nuclear shielding contribution has no direct experimental 

measurement. However, a semi-experimental nuclear shielding constant may be derived by 

combining an experimental paramagnetic shielding constant (potentially derived from an 

experimental spin-rotation constant through the use of eq. 1.6), along with a theoretically 

calculated diamagnetic shielding via eq. 1.5.11-15 The calculation of the diamagnetic 

contribution is not significantly affected by computational method or basis set (it is a nuclear 

contribution rather than an electronic contribution), and thus diamagnetic contribution 

calculations tend to be highly accurate.1,9,16  

It has been shown by Malkin et al. that Flygare’s relationship (eq. 1.6) is valid only within the 

non-relativistic limit.16 This is largely because the effect of relativity on the spin-rotation 

constant is much smaller than the relativistic effect on the magnetic shielding constant.17 It was 

originally suggested that the shielding constant scales of heavy nuclei such as 119Sn would be 

highly impacted by the difference in relativistic effects, and while that is true, it has since been 

found that relativistic effects on lighter nuclei such as 33S and 17O are non-negligible.13  

The process of determining semi-experimental absolute nuclear shielding constants is 

illustrated in Figure 1.1, whereby experimental spin-rotation and calculated shielding constants 
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Remove (ro)vibrational 
and relativistic effects 

Convert to paramagnetic 
shielding 𝜎୮ via eq. 1.6 

Add calculated 
diamagnetic shielding 

𝜎ୢ via eq. 1.5 

are combined using eq. 1.5 and 1.6. Starting from the experimental spin-rotation constant, one 

must first remove the calculated effects of relativity and (ro)vibrational averaging to the 

experimental spin-rotation constant. This produces a non-relativistic equilibrium spin-rotation 

constant (𝑪௘
୬୭୬୰ୣ୪), which is converted to a paramagnetic nuclear shielding constant (௘

୮) using 

eq. 1.6. The addition of a theoretically calculated diamagnetic shielding constant (௘
ୢ) with eq. 

1.5, yields a semi-experimental non-relativistic equilibrium magnetic shielding constant 

(௘
୬୭୬୰ୣ୪). Finally, calculated (ro)vibrational averaging and relativistic effects to the nuclear 

magnetic shielding constant may then be added to obtain a relativistic vibrationally-averaged 

absolute shielding constant (଴
୰ୣ୪).11,12,14,16 Absolute nuclear shielding constants of different 

molecules can then be combined to obtain chemical shifts, which can be compared with directly 

measured experimental chemical shifts. Agreement of the semi-experimental chemical shifts 

with the directly measured values provides support for the absolute nuclear shielding constants.  

 

𝑪଴
୰ୣ୪ 

 

𝑪௘
୬୭୬୰ୣ୪  

 

௘
୮ 

 

௘
୬୭୬୰ୣ୪ 

 

 

 

Figure 1.1: Procedure for deriving semi-experimental relativistic absolute shielding constants 

from experimental spin-rotation constants. 

 

Apply (ro)vibrational 
and relativistic effects 

଴
୰ୣ୪ 

Experimental spin-
rotation constant  

Paramagnetic 
nuclear shielding 

Absolute magnetic 
shielding 
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1.3 Calculation of Nuclear Shielding and Spin-Rotation Constants 

An alternative and efficient approach for obtaining absolute nuclear shielding tensors is to 

calculate both the paramagnetic and diamagnetic contributions using quantum chemistry 

methods to provide a fully theoretical value.  

Today, NMR parameters can be calculated with the hierarchy of computational chemistry 

methods. It has become routine to calculate NMR chemical shifts using density-functional 

theory (DFT) to aid the interpretation of experimental spectra. The highest accuracy is obtained 

with extensive coupled-cluster calculations; however, the significant computational demands 

ensure that these high-level methods can only be employed for smaller molecules. In this thesis, 

both approaches have been investigated, with high-level coupled-cluster calculations of 

fluorine-containing molecules with the aim to provide benchmark (quantitative) quality results, 

and a separate investigation of the performance of DFT in the calculation of nitrogen chemical 

shifts. In both cases, the accuracy of the computational methods and basis sets was investigated 

through a critical comparison of calculated and experimental values for an appropriate test set 

of molecules.  

A purely computational approach was used less often in the past due to the difficulty in 

assessing the accuracy of the derived results that did not have an experimental foundation. 

However, in the last decade, it has been shown that theoretical nuclear shielding constants can 

be very close to experiment if proper treatment of method and basis set, vibrational effects, and 

relativity is employed.12,18 Moreover, this approach is necessary in the case where experimental 

spin-rotation constants or absolute nuclear shielding constants are not available. In cases where 

experimental spin-rotation data is available, calculating the spin-rotation constants may be used 

to access the validity of such reported data. Additionally, the discrepancy between semi-

experimental and calculated magnetic shielding constants arise from differences between 

experimental and theoretical spin-rotation constants. Therefore, experimental spin-rotation 

constants may also be verified by close agreement between semi-experimental and fully 

calculated absolute shielding constants. 

There are a number of challenges and requirements for the accurate calculation of magnetic 

properties, including shielding constants and spin-rotation constants. Teale et al. have 

demonstrated that coupled-cluster methods such as coupled-cluster singles doubles with 

perturbative triple excitations (CCSD(T)) are required to produce accurate shielding constant 
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results.18 The requirement of large coupled-cluster methods presents an issue to theoretical size, 

and therefore, only small molecules can be studied accurately. 

One important factor in the calculation of nuclear shielding constants is that they are dependent 

on the applied magnetic field 𝐁 via eq. 1.2, as the origin of the magnetic field vector (or gauge-

origin) is not fixed. Therefore, calculated shielding constants will change with translation of 

the Cartesian coordinates of the molecule (and be dependent on the origin of the Cartesian 

coordinates of the molecular system). One elegant solution to this problem is to employ the 

gauge-including-atomic-orbitals (GIAOs) approach.19 GIAOs define the gauge origin for each 

atomic orbital (at the nucleus of the atomic-orbital), generating reproducible results regardless 

of translation of said molecule’s coordinates.20 GIAO methods are now available for various 

methods, including Hartree-Fock, density functional theory, and coupled-cluster theory.21 The 

GIAO approach has the additional benefit of improving the rate of basis set convergence.  

The dependence of the absolute magnetic shielding constant on the nuclear magnetic moment 

𝝁 means both the valence and core electrons in the molecular system must be explicitly 

considered. Therefore, calculations must disable the often used frozen-core approximation, 

where core electrons are not explicitly treated in the electron-correlation component of the 

calculation. Rather, additional tight core basis functions must be included in the basis set.22 

The combination of all-electron and specific core basis functions reduces the size of molecules 

that can be studied, as replacing light atoms for heavier ones increases the number of electrons 

in a molecule, and as such, rapidly increases computational cost. 

Relativity can be expected to affect nuclear shielding constants to a greater extent than valence-

only properties, as the inner core electrons may travel at a much greater speed (closer to the 

speed of light) than the outer valence electrons. This is especially true for heavier nuclei, which 

requires that relativistic effects be considered in any accurate theoretical treatment of nuclear 

shielding constants.  

Absolute shielding tensors that are derived completely from theory are typically calculated with 

an equilibrium geometry at 0 K. Therefore, it is important to apply calculated vibrational 

averaging, temperature, and relativistic effects to obtain a vibrationally averaged relativistic 

absolute shielding (଴
୰ୣ୪) that can then be accurately compared with experimental data that is 

measured at a finite temperature at a thermal equilibrium. 

An important consideration when comparing experimental and theoretical for NMR parameters 

is the geometry and conformational flexibility of the molecule. Calculations are typically 
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carried out at a single static structure (an optimised geometry). For experiments carried out at 

ambient temperatures and likely also in solution, the effects of thermal motion (averaging of 

position/conformation) and solvation can be significant. Such effects can be incorporated into 

a calculation, for example, with molecular dynamics simulations and averaging of calculated 

NMR parameters over many distinct geometries. In the work presented in this thesis, sets of 

molecules were used that are both symmetry unique and not subject to conformational 

flexibility that avoids any need for conformational averaging. For example, the set of molecules 

included in the 15N chemical shift study are fused rings without single-bond rotors, while for 
19F, only small molecules without rotational isomers were considered.  

 

1.4 Fluorine (19F) NMR 

1.4.1 Experimental 19F NMR 

Fluorine magnetic shielding is an invaluable tool in synthetic chemistry, in large part due to 

the exquisite sensitivity to the electronic environment. Fluorine magnetic shielding is often a 

part of absolute nuclear shielding investigations; however, it is difficult to calculate accurately. 

The difficulty in obtaining accurate 19F shielding constants arises from the large 

electronegativity and number of lone pairs that the fluorine atom possesses, which causes 

fluorine to be highly sensitive to its electronic environment.23 The sensitivity to the electronic 

environment is reflected in the large 19F chemical shift range (-500 to 500 ppm relative to 

CFCl3). The high sensitivity to electronic structure makes the calculation of fluorine nuclear 

shielding constants an extreme test of computational chemistry methods. 

Rosenau et al. have shown that there is difficulty in reproducing fluorine NMR chemical shift 

results, partly due to the lack of up-to-date information on the currently used reference 

compound CFCl3.24 The team concluded that an updated neat CFCl3 reference could mitigate 

fluorine NMR errors from ±1 ppm to ±0.03 ppm. However, CFCl3 is a banned 

chlorofluorocarbon (CFC) under the Montreal Protocol, which prevents new experimental 

work. Therefore, an accurate absolute nuclear shielding scale for 19F would greatly benefit the 

accuracy of fluorine NMR experiments. 
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1.4.2 Absolute Shielding Constants for 19F Nuclei 

The 19F shielding constant in HF has regularly been investigated due to HF previously being a 

reference compound for 19F chemical shifts, which allows other absolute shielding constants to 

be determined via relative chemical shifts. Sundholm et al. reported a semi-experimental 

absolute 19F shielding constant in HF of 409.6 ± 1.0 ppm.12 This shielding value was derived 

by combining an experimental spin-rotation constant and a calculated diamagnetic nuclear 

shielding. The derived shielding constant agreed well with a previously determined semi-

experimental value of 410 ± 6 ppm,14 as well as a fully calculated value of 409.2 ppm at the 

CCSD(T) level of theory.12  

CFCl3 is currently the most widely used reference compound for 19F chemical shifts. An often-

referenced 19F nuclear shielding constant in CFCl3 is 188.7 ppm.14 However, this was derived 

from a liquid-phase chemical shift rather than a gas-phase chemical shift. A gas-phase absolute 

nuclear shielding constant of CFCl3 has been reported as 195.6 ppm.14 These absolute shielding 

constants were derived using the experimental chemical shift relative to HF in combination 

with the older 410 ± 6 ppm 19F shielding constant in HF. Our group has recently updated the 

absolute shielding of CFCl3 to a completely calculated value of 197.07 ppm, which included 

high-level coupled-cluster calculations of the equilibrium value together with vibrational 

corrections and account of relativity.25 The 197.07 ppm value is considered to be the most 

accurate value to date for the 19F nuclear magnetic shielding in CFCl3. The 19F absolute 

shielding in other molecules can be calculated from the 19F absolute shielding in CFCl3 of 

197.07 ppm together with their respective chemical shifts via eq. 1.1. There remains interest in 

reinvestigating the absolute 19F nuclear shielding in HF and establishing a fluorine magnetic 

shielding scale from such a value. 

It is possible to calculate NMR shielding constants and spin-rotation constants by 

systematically increasing the accuracy of wavefunction methods used in calculations. This 

allows one to obtain highly accurate theoretical contributions to the total 19F absolute shielding 

constant and spin-rotation constant. The 19F absolute shielding in HF of 409.6 ppm reported by 

Sundholm et al.12 (together with associated spin-rotation constants) serves as an appropriate 

benchmark for electronic structure calculations.  

In this project, the computational requirements of accurate nuclear shielding and spin-rotation 

constant calculations have been explored, with a particular focus on 19F nuclei. The calculation 

of nuclear shielding in small fluorine-containing molecules enables the importance of basis set 



 

 10

convergence and expansion of the coupled-cluster wavefunction beyond CCSD(T) to be 

established. Additionally, the level of consideration of vibrational, temperature, and relativistic 

effects required for accurate 19F shielding constants and spin-rotation constants has been 

investigated. The calculation of benchmark quality constants enables an analysis of the 

accuracy and validity of currently available experimental shielding and spin-rotation values. 

For all molecules considered in this project, spin-rotation constants have also been calculated 

for comparison with the derived semi-experimental shielding constants as outlined in Section 

1.2.  

 

1.5 DFT Calculation of 15N NMR Chemical Shifts 

At the other end of the spectrum, density functional theory (DFT) is useful for calculating the 

magnetic properties of medium to large molecules. Due to DFT being more useful for larger 

molecules than coupled-cluster methods, there is a general need to benchmark which 

functionals provide the most reliable shielding results. This is because, unlike coupled-cluster 

methods which systematically improve the wavefunction, different DFT functionals provide a 

different estimate of the electronic energy. This means that different DFT functionals will 

produce molecular property values unrelated to each other. The majority of published studies 

that address this issue have focussed on 1H and 13C nuclei.  

The reliability of absolute nuclear shielding constants, chemical shifts, and spin-rotation 

constants from DFT calculations also need to be determined in different conditions. If a 

particular functional is reliable for obtaining gas-phase absolute shielding constants, there may 

be an alternative functional which provides more reliable results for liquid-phase nuclear 

shielding constants where solvent effects are important. This concept can be extended to which 

functionals are better suited for components of the calculated properties; a particular DFT 

functional may produce accurate vibrational and relativistic effects to shielding constants; 

however, the same functional may produce unreliable equilibrium shielding constants. This 

uncertainty leads to a need for benchmarking and evaluating DFT functionals for specific 

conditions so that the reliability of future studies in absolute shielding constants in lager 

systems can be validated. 

There remains no consensus on the best functional for the calculation of NMR parameters, 

although there have been a significant number of studies that have investigated the accuracy of 

density functionals. Teale et al. have investigated absolute shielding and spin-rotation constant 
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results from a series of DFT functionals and compared them with CCSD and CCSD(T) results 

as well as reported experimental data.18 They were able to report that the DFT functional KT2 

performed much better than the other selected functionals in terms of mean absolute error and 

maximum absolute error. This study focused solely on gas-phase results, although their list of 

28 molecules did consider multiple nuclei.  

In the work presented in this thesis, the performance of DFT in the calculation of 15N chemical 

shifts has been investigated by a critical comparison with experimentally reported chemical 

shifts. Krivdin has reviewed the current literature of 15N magnetic shielding constants and made 

recommendations on how to best account for different effects and conditions, including solvent 

effects, vibrational corrections and relativistic effects.26 Krividin carried out a benchmark study 

of 23 heterocyclic nitrogen-containing molecules, from which he recommended using the KT2 

or KT3 functionals together with Jensen’s pcS-2 and pcS-3 basis sets, with the KT3/pcS-3 level 

of theory yielding a mean absolute error of only 5 ppm from the experimental chemical shifts 

for the selected set of molecules.27 Krividin’s recommendation is similar to the conclusions of 

Teale et al., even though the studies consisted of contrasting approaches, one with a broad 

benchmark overview and the other with focused analysis on the effects of shielding. 

While both studies considered a range of DFT functionals and basis sets in the calculation of 

NMR chemical shifts, there remains a number of factors that warrant further exploration. The 

set of molecules and set of functionals was limited. As such, there is a need to assess the 

performance of newer functionals and a broader collection of basis sets across a wider set of 

molecules. This would serve to assess the wider applicability of DFT methods in the calculation 

of 15N chemical shifts, while progressing the search for the most reliable and accurate DFT 

functionals. Most benchmark studies overlook several important effects, including DFT 

integration grid, solvation (including solvent model), vibrational averaging, and relativistic 

effects. The omission of these factors is computationally appealing; however, any resultant 

comparison of experiment and theory is less rigorous and can lead to incorrect conclusions as 

to the best functionals (ranked by mean deviation from experimental data).  

 

1.6 Summary 

NMR properties are extremely important in all areas of chemistry. The chemical shift is widely 

used in synthetic and structural chemistry; however, they are reported as relative shifts rather 

than absolute shieldings. There is a clear interest in being able to determine absolute nuclear 
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magnetic shielding constants. A small number of absolute shielding constants have been 

reported from experiment; however, a drawback is a lack of reliability in the results due to the 

difficulties associated with determining absolute shielding constants.  

Theoretical calculations provide an alternative and potentially more effective means to 

determine absolute shielding constants. Theoretical calculations of NMR chemical shifts are 

calculated in terms of non-relative absolute nuclear shielding constants. Calculated shielding 

constants will vary with the level of theory used but will also be affected by experimentally 

relevant factors such as vibrational and relativistic effects. As it is near impossible to use full 

configuration-interaction (FCI) wavefunction methods along with an infinitely large complete 

basis set, approximations must be employed. However, the use of ab initio methods such as 

coupled-cluster theory enables a systematic improvement of results towards the exact value.  

Quantum chemistry investigations of nuclear chemical shifts and shielding constants are 

assisted greatly by experimentally reported spin-rotation constants due to Flygare’s 

relationship (eq. 1.6), which enables semi-experimental shielding constants to be determined 

at a greater accuracy which can be measured directly. Spin-rotation constants can also be 

calculated using quantum chemistry methods, allowing for another series of data points to 

benchmark the reliability of calculated results.  

Absolute shielding constants of 19F nuclei are difficult to determine accurately due to their high 

electronegativity. Due to advancements in quantum chemistry and understanding of absolute 

shielding constants, re-investigation into the 19F shielding scale is warranted through the use 

of high accuracy coupled-cluster methods.  

Coupled-cluster methods are only viable for small molecules in the gas-phase, whereas DFT is 

the standard workhorse for larger molecules. As such, there is a general need to benchmark the 

calculation of chemical shifts from various DFT functionals to determine the most reliable 

strategy for calculating chemical shifts.  
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Chapter 2: 
Computational Methods 

 

2.1 Introduction 

In this chapter, the methods used throughout the computational study of nuclear magnetic 

shielding, chemical shifts, and spin-rotation constants are outlined. A key aim of computational 

chemistry is to provide understanding and predict the interactions of real chemical systems. As 

the modern computer increases in power, so too does the capability of computational chemistry. 

The computational chemistry approach employed in this thesis is built upon electronic structure 

theory, which is underpinned by quantum chemistry and the Schrödinger equation. 

 

2.2 The Schrödinger Equation 

In order to predict the physical properties of a molecule from a theoretical basis, the electronic 

structure of the molecule in question must be understood. Computational chemistry achieves 

this within the non-relativistic framework using the time-independent Schrödinger equation: 

𝑯𝜓 = 𝐸𝜓 (2.1) 

where H is the Hamiltonian operator, E is the energy of the system, and 𝜓 represents the wave 

function. The Hamiltonian is used to describe the energy as a function of the kinetic and 

potential energy of the system by, 

𝑯 =  𝑇௡ + 𝑇௘ + 𝑉௡௡ + 𝑉௡௘ + 𝑉௘௘ (2.2) 

where 𝑇௡ and 𝑇௘ represent the kinetic energy of the nuclei and electrons, respectively, 𝑉௡௡ and 

𝑉௘௘ are the nuclear-nuclear and electron-electron repulsive potential energies, respectively, and 

𝑉௡௘ is the attractive potential energy between the nuclei and electrons. Due to the size of the 

nuclei compared to the electrons, it is possible to assume the nuclei are non-dynamic entities 

and approximate the Hamiltonian via the Born-Oppenheimer approximation, which enables the 

separation of nuclear and electronic motion and in the electronic Schrödinger equation sets the 

kinetic energy of the nuclei to zero. This gives an equation that describes the electronic 

structure of the molecule in the form of, 

𝑯௘ =  𝑇௘ + 𝑉௡௡ + 𝑉௡௘ + 𝑉௘௘ (2.3) 
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2.3 Molecular Orbital and Hartree-Fock Theory 

Due to the complexity of the wave function, the Schrödinger equation can only be solved 

exactly for one-electron systems. Therefore, approximations are made in order to treat many-

electron systems or molecules. The simplest approach is Hartree-Fock theory, which is the 

fundamental basis of molecular orbital (MO) theory. Throughout this thesis, Hartree-Fock is 

referred to as HF-SCF (self-consistent field) to avoid confusion with the HF molecule. 

Hartree-Fock theory simplifies the wave function for many-electron systems through a product 

of one-electron wave functions (orbitals) known as a Slater determinant. 

𝜓(𝑒ଵ, 𝑒ଶ, … , 𝑒௡) = 𝜓(𝑒ଵ)𝜓(𝑒ଶ) … 𝜓(𝑒௡) (2.4)  

The description of the system as a single electronic configuration is a significant assumption. 

One consequence of the single configuration in HF-SCF theory is that electrons only 

experience the effect of an implicit “electron cloud” (field) rather than their motion being 

correlated. Specifically, the motion of opposite spin electrons is not correlated (Coulombic 

correlation is omitted).  The limitations of HF-SCF theory do not enable the calculation of 

accurate results for magnetic properties.18  

 

2.4 Electron-Correlation Methods 

The assumptions and approximations made by HF-SCF theory cause over-estimates of the total 

energy (due to the variational principle) and limit the accuracy of calculated molecular 

properties. An exact wave function generally requires multiple determinants rather than a single 

determinant. Electron-correlation methods such as coupled-cluster (CC) theories seek to 

account for electron correlation by including additional determinants, while methods such as 

Møller-Plesset (MP) provide correlated energies by perturbing the HF-SCF wave function 

(without including additional determinants). The correlation energy can be defined as the 

difference between the exact energy and the HF-SCF energy. Electron-correlation methods aim 

to recover the total energy of an electron correlated system. Coupled-cluster methods generate 

a many-bodied wave function by augmenting a reference state Ф (HF-SCF wavefunction) by 

the exponential correlation operator 𝑇: 

𝜓 = 𝑒்Ф଴ (2.5) 

where 𝑇 can be expressed as: 



 

 15

𝑇 = 𝑇ଵ + 𝑇ଶ + 𝑇ଷ + ⋯ + 𝑇௡ (2.6) 

for an 𝑛 electron problem, where 𝑇ଵ represents the operator for single excitations, 𝑇ଶ is the 

operator for double excitations and so forth. The total exponential correlation operator 𝑇 can 

be truncated to a given order to reduce computational effort at the cost of accuracy. Successive 

truncation of 𝑇 results in the series of coupled-cluster methods and allows for a systematic 

improvement of the wavefunction and calculated properties. Truncating 𝑇 to 𝑇ଵ + 𝑇ଶ yields the 

coupled-cluster singles and doubles (CCSD) method, the addition of triple excitations 

(𝑇 =  𝑇ଵ + 𝑇ଶ + 𝑇ଷ) will produce the coupled-cluster singles, doubles, and tripes (CCSDT) 

method and so on. No truncation of the coupled-cluster wavefunction is equivalent to a full 

configuration interaction (FCI) calculation, which provides an exact wavefunction within the 

given basis set. Truncation of 𝑇 provides a substantial decrease in computational cost as each 

successive coupled-cluster method scales largely with the size of the system, with CCSD 

scaling at 𝑂(𝑁଺), where N is a measure of the system size, CCSDT scaling at 𝑂(𝑁଼), and so 

on. It is therefore useful to account for additional excitations via perturbation theory. A method 

such as CCSD(T) has a full account for single and double excitations (i.e. 𝑇 = 𝑇ଵ + 𝑇ଶ) and 

perturbative treatment of triple excitations (𝑇ଷ) and has a scaling cost of 𝑂(𝑁଻), whereas 

CCSDT(Q) correlates single, double, and triple excitations (𝑇 = 𝑇ଵ + 𝑇ଶ + 𝑇ଷ) and treats 

quadruple excitations (𝑇ସ) via perturbation theory. The CCSD(T) approach has become 

recognised as the gold-standard in computational chemistry. In the case of magnetic shielding 

and spin-rotation calculations, it is important to explore coupled-cluster wavefunction 

expansions beyond single and double excitations.18 

 

2.5 Density Functional Theory Methods 

Instead of basing a system’s electronic energy on wavefunctions, density functional theory 

(DFT) calculates the electronic energy from the electron density. This arises from the 

Hohenberg-Kohn Theorem, which states that the ground-state energy is directly proportional 

to the electron density. This reduces the calculation of the electronic system from a 3N-

dimensional problem, where N is the number of electrons (arising from the (x, y, z) coordinates 

of each electron), to a 3-dimensional problem (the Cartesian coordinates of electron density). 

This large decrease in problem size is advantageous for computational cost, making DFT 

calculations much more efficient than electron correlation calculations. However, unlike 

wavefunction methods, it is difficult to systematically improve DFT approaches.  



 

 16

The closest description to successive improvement between DFT functionals is represented by 

“Jacob’s ladder”. Jacob’s ladder describes the theoretical improvement between series of DFT 

functionals from no exchange-correlation energy (“Hartree world”) towards the “heaven of 

chemical accuracy”.28 The simplest approximation for DFT exchange-correlation is the local 

spin-density approximation (LSDA), which assumes the electron density (𝜌) is uniform across 

the molecule. This approximation is exact for an infinite uniform electron gas; however, it is 

typically quite inaccurate for molecular properties due to the naturally inhomogeneous electron 

density distributions of molecular systems.29 Overcoming the errors in LSDA that arise from 

inhomogeneous density distributions prompted the creation of the generalised gradient 

approximation (GGA) functionals. GGA functionals use the gradient of the density (∇𝜌) in 

addition to the density itself to account for inhomogeneity within the electron density. Further 

improvement on GGAs can be achieved with the inclusion of the Laplacian of the density (∇ଶ𝜌, 

second derivative) or the kinetic energy density to provide second derivative information. As 

these two terms are related, only one needs to be considered and are the basis of meta-GGAs. 

Usage of the kinetic energy density is more popular in meta-GGA functionals than ∇ଶ𝜌 as it 

allows more flexibility within the generated DFT functional.  

The previously mentioned families of DFT functionals are often referred to as pure functionals 

and are unfortunately often not self-interaction error-free due to the exchange-correlation being 

an empirical function. Therefore, it is possible for pure functionals to incorrectly return a non-

zero electron correlation energy for the hydrogen atom, which in turn produces inaccuracies 

within molecular property calculations. This is not the case within Hartree-Fock theory and is 

the basis of theory behind the family of hybrid functionals. By replacing part of the local 

exchange functional with the exact exchange functional from Hartree-Fock theory, whilst still 

treating correlation energy from pure functionals, a new hybrid functional can be produced. 

Hybrid functionals have been demonstrated to increase accuracy in bond distances, ionisation 

energies, and vibrational frequencies.30 A further improvement upon hybrid functionals is to 

combine the correlation energy from pure functionals with PT2 method such as MP2. This 

allows for an exact exchange and exact correlation functional and is the basis for the double-

hybrid functionals.  
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2.6 Basis Sets 

Basis functions are used to describe atomic orbitals (AOs) in mathematical terms. At the heart 

of HF-SCF theory is the generation of a molecular orbital (MO) as a linear combination of 

AOs, or more specifically atomic basis functions. As such, the accuracy of the calculated 

energy is dependent on the size of the basis set used.  

The first form of basis sets were the Slater-type orbital functions (STOs), which have the form: 

R(r) = 𝑁𝑌௟
௠(𝜃, 𝜙)𝑟௡ିଵ𝑒ି஖௥ (2.7) 

where 𝑁 is a normalisation constant, 𝑌௟
௠ is the spherical harmonic function, 𝑛, 𝑚, and 𝑙 are the 

principal, magnetic, and angular momentum quantum numbers, respectively, 𝑟 is the distance 

from the nucleus, and ζ is the exponent. Although the behaviour of STOs is theoretically 

correct, they are only applicable for hydrogen-like atoms due to their lack of radical nodes. 

Additionally, evaluating integrals with STOs is difficult, and as such Gaussian-type orbitals 

(GTOs) were created with the form: 

R(r) = 𝑁𝑌௟
௠(𝜃, 𝜙)𝑟ଶ௡ିଶି௟𝑒ି஖௥మ

(2.8) 

The main difference between an STO and a GTO is the exponential dependence on 𝑟 and 𝑟ଶ, 

respectively. This makes GTOs easier to integrate at the cost of accuracy. However, a series of 

GTOs can be combined to approximate an STO.  

A minimal basis set is the smallest set of required basis functions to describe an AO. This is 

achieved by using only a single GTO basis function for each AO. The accuracy of the basis set 

can be expanded by increasing the number of GTOs used per AO. Basis sets with two functions 

per AO are labelled double-zeta (DZ); those with three functions are known as triple-zeta (TZ) 

and so on. 

Split-valence basis sets are those which treat core electrons with single-zeta basis sets while 

expanding the basis set used for valence electrons. This saves computational cost by using 

larger expanded basis functions for the valence electrons while only using a minimal set of 

basis functions for the core electrons. This is a reasonable assumption as valence electrons 

contribute more to most physical and chemical properties of molecules than core electrons. 

However, core electrons are important for magnetic properties such as nuclear magnetic 

shielding and spin-rotation constants, and so core basis functions are required for accurate 

calculations of magnetic properties. In such cases, using split-valance basis sets with only a 

minimal core is not ideal for accurate results. 
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Basis sets can also be extended with the inclusion of polarisation and diffuse functions. 

Polarisation functions are AO functions of higher angular momentum that allow for greater 

flexibility in the shape of the AOs and MOs. Diffuse functions are basis functions with a greater 

radial extent (smaller ζ exponent) and are essential when considering anions or very 

electronegative atoms such as fluorine. 

Several notable families of basis sets have been developed, with the aim of improving the 

accuracy of results, computational cost, and smooth convergence to an exact result. The Pople 

family of basis sets have been widely used in computational chemistry. A double-zeta Pople 

basis set is denoted by X-YZG, where X represents the number of GTOs used for inner shells, 

and Y and Z are the number of functions for the valance shell.31 Triple-zeta basis sets can be 

defined by using a third value after the hyphen, such as 6-311G. Inclusion of d-type polarisation 

functions for heavy (non-hydrogen) atoms and p-type polarisation functions for hydrogen 

atoms is denoted using parentheses, such as (d,p). The addition of diffuse functions is 

represented by “+” for non-hydrogen atoms only and “++” for all atoms. An example of a Pople 

basis set is 6-311++G(d,p), which is a triple-zeta basis set that uses 6-primitives for the inner 

shell, includes diffuse functions for all atoms, as well as d- and p-type polarisation functions. 

Dunning’s correlation consistent basis sets are designed to systematically recover the electron-

correlation energy and converge smoothly to a value that would be calculated from an infinitely 

large basis set known as the complete basis set (CBS) limit. These basis sets have been 

optimised for the use of wave-function methods such as coupled-cluster to obtain accurate 

results from a small number of primitive basis functions. Correlation consistent basis sets are 

represented by the notation cc-pVXZ, which indicates a “correlation consistent polarised split-

valence X zeta basis set”, where X is the zeta magnitude. The basis set can be modified with 

diffuse functions or addition of core functions by using aug-cc-pVXZ and cc-pCVXZ, 

respectively. The notation for correlation consistent basis sets can be abbreviated to ACVXZ, 

which would represent a correlation consistent basis set with diffuse and core functions with a 

zeta magnitude of X. ACVXZ basis sets are ideal for the accurate calculation of magnetic 

properties due to their inclusion of extra core basis functions. The correlation consistent basis 

sets also include further sets for third period elements with tighter d polarisation in the form 

cc-pV(X+d)Z. 

Jensen produced a set of polarisation consistent basis sets in the form pc-N (N = 0-4), where N 

denotes the number of polarisation functions, as a way to converge the HF and DFT energies 

quicker than the correlation consistent basis sets.32 Diffuse functions can be added using the 
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form aug-pc-N. Jensen subsequently developed polarisation consistent basis sets of  the form 

pcSseg-N (here S indicates inclusion of additional core basis functions), which have been 

optimised for DFT calculations of shielding and spin-spin coupling properties that require 

greater flexibility in the basis set description of core electrons.32 The pcSseg-N basis sets can 

also be augmented with diffuse functions in the form aug-pcSeg-N. 

Ahlrichs’ series of “def2” basis sets are a modification of the “def” basis sets. The “def2” prefix 

is followed by a description of the valence zeta magnitude and level of polarisation basis 

functions such as def2-SVP or def2-TZVP.33 Unlike the Dunning’s correlation consistent or 

Jensen’s polarisation consistent, Ahlrichs’ basis sets are not designed to systematically 

converge to the CBS limit.  

Whilst the above families of basis sets utilise GTOs, there are also available STO basis sets. 

The tz2p basis set is a triple-zeta basis set with two polarisation functions, along with a minimal 

number of core basis functions. 

 

2.7 Combination of Method and Basis Set 

The accuracy of a calculated result increases with the use of more extensive methods and larger 

basis sets, so ideally, it is best to utilise the most extensive methods in combination with the 

largest basis sets, as shown in Figure 2.1. However, increasing either method, basis set, or 

system size will rapidly increase the computational cost, and this is often not possible.  

 

 

Figure 2.1: Expansion of method and basis set to approach the theoretically exact result. 
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It is possible to estimate HF-SCF and coupled-cluster basis set-limits from results with smaller 

correlation consistent basis sets. Due to the known convergence rate of the correlation 

consistent basis sets, calculated results can be used to extrapolate to the CBS limit for a given 

method. Feller has proposed an extrapolation of a property calculated with HF-SCF theory 

via:35 

𝑃ஶ
ୌ୊ = 𝑃௑ − 𝐴𝑒ି஻௑ (2.9) 

where X is the zeta value (cardinal number) of the correlation consistent basis set, 𝑃௑ is the 

value calculated with that basis set, and 𝑃ஶ
ୌ୊ is the CBS value of the property. Using three 

consecutive basis set property values 𝑃௑, 𝑃௑ାଵ, and 𝑃௑ାଶ, yields the 3-point extrapolation 

property value: 

𝑃ஶ
ୌ୊ =

𝑃௑ାଶ𝑃௑ − 𝑃௑ାଵ
ଶ

𝑃௑ − 2𝑃௑ାଵ + 𝑃௑ାଶ
(2.10) 

The contribution to a property associated with electron-correlation requires a different 

extrapolation equation due to the rate of convergence being different. Note that this is only the 

electron correlation contribution that is considered. That is, the single-double (SD) excitation 

contribution from CCSD is actually CCSD – HF-SCF, (T) is CCSD(T) – CCSD, T is CCSDT 

– CCSD(T) and so on. This can be extended to a FCI calculation, as seen in Figure 2.1. 

Extrapolation is performed by the equation:36 

𝑃ஶ
ୡ୭୰୰ = 𝑃௑

ୡ୭୰୰ − 𝐴ୡ୭୰୰𝑋ିଷ (2.11) 

Combining two consecutive values provides the 2-point correlation extrapolation formula of: 

𝑃ஶ
ୡ୭୰୰ =

𝑃௑ାଵ
ୡ୭୰୰(𝑋 + 1)ଷ − 𝑃௑

ୡ୭୰୰𝑋ଷ

(𝑋 + 1)ଷ − 𝑋ଷ
(2.12) 

For example, if basis sets aug-cc-pCVTZ (zeta = 3) and aug-cc-pCVQZ (zeta = 4) were used 

to extrapolate values calculated at the CCSD method, the extrapolation formula would become: 

𝑃ஶ
ୡ୭୰୰ =

𝑃ொ
ୡ୭୰୰4ଷ − 𝑃்

ୡ୭୰୰3ଷ

4ଷ − 3ଷ
(2.13) 

where 𝑃்
ୡ୭୰୰and 𝑃ொ

ୡ୭୰୰ are the SD contributions to the calculated property from using the aug-

cc-pCVTZ and aug-cc-pCVQZ basis sets, respectively, which can be represented as aug-cc-

pCV[T,Q]Z. An assumption of this approach is that each component is independent and 

additive, which has been routinely used.25 
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2.8 Relativity 

The effect of relativity is considered to be negligible for lighter elements, while it increases in 

significance with heavier elements. However, properties that depend on core electrons, such as 

magnetic properties, will be significantly impacted by relativistic effects. Therefore, it is 

important to consider the effect of relativity on nuclear shielding constants. Most quantum 

chemistry calculations tend to use the one-component non-relativistic Hamiltonian to solve the 

electronic Schrödinger equation. In order to expand results to a fully relativistic framework, 

the four-component Dirac-Coulomb Hamiltonian may be used instead of the non-relativistic 

Hamiltonian, although this tends to increase computational cost. To date, there are no available 

coupled-cluster implementations of four-component magnetic shielding or spin-rotation 

constant calculations, which requires the use of HF-SCF and DFT methods for the calculation 

of relativistic effects within a four-component approach.  

 

2.9 Calculation Types 

2.9.1 Geometry Optimisation and Vibrational Frequencies 

Calculated properties of molecular systems are dependent on the geometry of the system. As 

such, it is important to perform geometry optimisation calculations beforehand to obtain an 

equilibrium geometry. Geometry optimisations perform searches on the potential energy 

surface (PES), which relates the energy of a molecule to the location of the nuclei. Stationary 

points on the PES represent equilibrium geometries (minima) and transition states (saddle 

points), with the global minimum of the PES corresponding to the equilibrium geometry, where 

the overall molecular energy is at its lowest. The search for the global minimum is achieved by 

calculating the gradient at an initial geometry, followed by a geometry change and recalculating 

the gradient. This procedure continues until a stationary point is found, at which point a 

vibrational frequency calculation is performed to determine if the given stationary point 

corresponds to a minimum instead of a saddle point. The distinction between a transition state 

and an equilibrium geometry has to do with the number of imaginary frequencies, for which 

there should be none for any minima. Vibrational frequency calculations are also used for 

thermochemical calculations such as zero-point energies as well as vibrational, rotational, and 

translational contributions to thermochemical effects which directly relate to property value 

differences between 0 K and 300 K. 
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2.9.2 Absolute Shielding and Spin Rotation Calculations 

Absolute shielding and spin-rotation tensors have been calculated using gauge-including-

atomic-orbitals (GIAOs) due to the dependence on the external magnetic field 𝐁. Additionally, 

all electron-correlation calculations have been performed to correlate all electrons (without 

using the frozen-core approximation) unless otherwise specified. Coupled-cluster absolute 

shieldings have been calculated in CFOUR,37 which additionally calculates the spin-rotation 

tensor via eq. 1.6 after calculating the nuclear contribution to the spin-rotation tensor. Absolute 

shieldings calculated via DFT have been carried out using DALTON.38 

 

2.9.3 Vibrationally Averaged Properties 

Vibrational effects have been calculated using second-order perturbation theory, which is one 

of the most common ways to account for vibrational contributions to absolute shielding and 

spin rotation properties. Second-order perturbation theory expands the potential energy and 

property surfaces in terms of normal coordinates. Vibrational corrections have been accounted 

for using both CFOUR and DALTON programs for coupled-cluster and DFT calculations, 

respectively. The primary difference between how these separate programs calculate 

vibrational effects is the reference geometry employed for the surface expansion. In CFOUR, 

an equilibrium geometry is employed, whereas in DALTON, an effective geometry is used, 

which is first found by calculating gradients along the normal coordinates. The difference 

between these two approaches is expected to be small due to similar expansion techniques. 

Throughout this work, the default step size of both programs was used when calculating 

vibrational corrections to absolute shielding and spin-rotation tensors.  

 

2.9.4 Relativistic Property Calculations 

Relativistic corrections to shielding and spin-rotation tensors have been carried out with 

ReSpect 5.1.0.39 For consistency, the relativistic and non-relativistic calculation were both 

carried out within the four-component relativistic framework, with the non-relativistic result 

achieved by increasing the speed of light which leads to the non-relativistic limit (within the 

four-component Hamiltonian). The difference of the two calculations then represents the 

overall effect of relativity (relativistic correction) on the molecular property. The four-

component Dirac-Kohn-Sham Hamiltonian was selected for all four-component calculations.  
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Chapter 3: 
NMR Shielding of H2, HF, F2, and FCl 

 

3.1 Introduction 

The calculation of the isotropic nuclear magnetic shielding in the H2, HF, F2, and FCl diatomics 

was first investigated as the smaller size of these molecules allows extensive calculations to be 

performed. While the main focus of this chapter is the calculation of 19F nuclear shielding 

constants, an initial investigation of the 1H shielding in H2 allows for a benchmark study to 

investigate the accuracy of NMR shielding calculations. With only two electrons, a coupled-

cluster single and double excitations (CCSD) calculation represents an FCI (exact) calculation.  

 

3.2 Absolute 1H Shielding in H2  

Calculation of the absolute 1H shielding constant in H2 with the FCI approach (CCSD) together 

with large basis sets, with a subsequent comparison against the recent experimentally 

determined gas-phase nuclear magnetic shielding of 26.293(5) ppm,40 enables the methodology 

of calculating shielding constants used in this investigation to be validated. The experimental 

gas-phase shielding constant was determined at 300 K.  

Calculation of the equilibrium shielding for H2 has been performed at the CCSD/AVQZ 

optimised geometry (Re = 0.74199 Å). The experimental geometry is 0.74151 Å.12 In this work, 

an optimised geometry was employed to ensure a purely theoretical investigation, as well as 

benchmark the potential use of optimised geometries for the application of magnetic shielding 

since in practical theoretical investigations, an accurate experimental geometry is not always 

available. The nuclear shielding was calculated with AVXZ (X = D, T, Q, 5, 6, 7) basis sets at 

both the HF-SCF and CCSD levels of theory. Results from basis sets AVTZ to AV7Z are 

presented in Table 3.1. Since H2 has no core electrons, the omission of core-functions in the 

AVXZ series of basis sets is appropriate for shielding calculations. The difference between the 

HF-SCF and the CCSD calculated shielding is the contribution from correlating single and 

double excitations (SD). Note that the CCSD shielding value is simply the sum of the separate 

HF-SCF and SD contributions for a particular basis set. The two contributions (HF-SCF and 

SD) were separately extrapolated to the CBS limit using eq. 2.10 and 2.12, respectively, with 

extrapolation from the largest basis set results (AV5Z to AV7Z for HF-SCF and AV6Z to 
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AV7Z for SD). The extrapolated contributions are summed to obtain an overall equilibrium 

shielding (Table 3.1).  

 

Table 3.1: Equilibrium 1H shielding in H2 (ppm). 

Contribution AVTZ AVQZ AV5Z AV6Z AV7Z CBS 

HF-SCF 26.5032 26.5011 26.4806 26.4727 26.4702 26.4690 

SD  0.1794 0.1778 0.1803 0.1811 0.1813 0.1818 

Equilibrium Shielding        26.6507 

 

Both the HF-SCF and SD results converge very smoothly with increasing the size of the basis 

set. It is unsurprising that the extrapolated CBS limit for both contributions is very similar to 

the AV7Z calculated values, as the 7Z basis set is already close to saturation. Note that the 

AV7Z basis set for hydrogen has up to i basis functions (16s7p6d5f4g3h2i primitives). 

Sundholm and Gauss have previously reported a CCSD/8s4p3d2f (uncontracted) shielding of 

26.6668 ppm (Re = 0.74150 Å).41 While the small difference in geometry would explain some 

of the deviation to the result presented in Table 3.1, the difference can largely be ascribed to 

basis set effects. The CCSD/ACV[6,7]Z result employs much larger basis sets than those used 

by Sundholm and Gauss, which is similar in magnitude to the AV5Z basis set (CCSD/AV5Z 

yields 26.6609 ppm). Analysis of basis set convergence highlights the basis set effect and 

provides support for the conclusion that the current CCSD/CBS (summation of HF-

SCF/ACV[5,6,7]Z and CCSD/ACV[6,7]Z) value is more accurate. From results in Table 3.1, it is 

noted that the HF-SCF contribution converges from above (to a smaller value) while the SD 

contribution converges towards a larger value. However, the SD contribution is smaller in 

magnitude, and so the net CCSD values converge from above towards an asymptotic limit of a 

smaller value, which indicates that the CCSD/AV5Z or CCSD/8s4p3d2f result (with a finite 

basis set) will be larger in magnitude than the true equilibrium value. The analysis is consistent 

with the CCSD/CBS value of 26.6507 ppm being smaller than the CCSD/AV5Z or 

CCSD/8s4p3d2f results. The CCSD/CBS results for the magnetic shielding in H2 are 

considered to the most accurate to date.  

The calculated equilibrium value represents a non-relativistic, 0 K stationary molecule system 

that does not accurately represent an experimental value determined at a finite (non-zero) 

temperature. To account for this, vibrational and temperature effects were calculated. These 

were calculated with the CCSD method, at geometries optimised at the same CCSD/AVXZ 
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level of theory, where X is the zeta magnitude used for the corresponding anharmonic 

vibrational calculation. Results are presented in Table 3.2. Temperature effects correspond to 

the effect on the geometry and molecular properties between 0 K and a finite temperature. In 

the work presented here, a finite temperature of 300 K was employed, which is consistent with 

conditions in many experimental studies. 

 

Table 3.2: CCSD Vibrational averaging and temperature effects on the 1H shielding in H2 

(ppm). 

Contribution AVQZ AV5Z AV6Z AV7Z CBS 

Vibrational averaging -0.3335 -0.3326 -0.3324 -0.3322 -0.3319 

Temperature (300 K) -0.0393 -0.0392 -0.0391 -0.0390 -0.0387 

 

Once again, the basis set convergence throughout these results is very smooth. Although the 

difference between each basis set is constant (2 x 10-4 ppm and 1 x 10-4 ppm for vibrational 

averaging and temperature effects, respectively), due to the small size of the variance between 

results, this is not a concern. In other words, these contributions have almost completely 

converged to the asymptotic limit. This is supported by the CBS extrapolated values being very 

close to the calculated results.  

It is worth noting that the temperature effect on the absolute nuclear shielding (i.e. the change 

in nuclear shielding between a 0 K and a 300 K calculation) is very small and almost an order 

of magnitude less than that of the vibrational averaging effects. The combined effect is -0.3706 

ppm. Sundholm and Gauss have carried out a detailed study of rovibrational effects of shielding 

constants in H2, reporting a value of -0.3686 ppm (296 K),41 which may be corrected to -0.3691 

ppm at 300 K.12 Sundholm and Gauss’ rigours approach is expected to be more accurate than 

the method used here due to the calculation of rovibrational averaging as opposed to the 

vibrational averaging results in Table 3.2. Despite this, the deviation between the the CFOUR 

calculated vibrational effect and Sundholm and Gauss’ reported rovibrational effect on 

shielding is only 0.0015 ppm.  

Finally, relativistic effects have been calculated using the PBE0 density functional with both 

dyall-aug-vtz and dyall-aug-vqz basis sets (Table 3.3). The effect that relativity has on the 

absolute shielding has been calculated by taking the difference of a fully relativistic four-

component absolute shielding and a non-relativistic absolute shielding calculated at the same 

level of theory (rel-nrel).  
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Table 3.3: PBE0 Relativistic effects on the 1H shielding in H2 (ppm). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-vtz 26.7345 26.7323 0.0022 

dyall-aug-vqz 26.6830 26.6808 0.0022 

 

It is unsurprising that the relativistic effects for the 1H nuclei are very small, as the smaller the 

nuclear charge, the less the nuclear shielding is affected by relativity. However, consideration 

of relativity is of importance, being half of the experimental error bar alone in this instance. 

There is a basis set dependence in the calculated relativistic (rel) and non-relativistic (nrel) 

shielding constants; however, the difference between the two (rel-nrel) appears to be 

independent of the basis set. This could be considered a fortuitous cancellation of errors. 

Alternatively, it may be possible that the relativistic effects on the absolute shielding have a 

sizeable dependence on the basis set used; however, as the relativistic effects on the 1H 

shielding are small, the level of basis set dependence is negligible. Therefore, dependence on 

the basis set used will also be investigated further for 19F shielding constants. 

After obtaining the equilibrium shielding, vibrational averaging, temperature, and relativistic 

effects, these values are added together to provide a relativistic, vibrationally averaged, 

absolute nuclear shielding constant that can be compared with experiment (Table 3.4). 

 

Table 3.4: Calculated 1H absolute shielding in H2 (ppm). 

Contribution AV5Z AV6Z AV7Z CBS/Best Value 

HF-SCF 26.4806 26.4727 26.4702 26.4690 

SD  0.1803 0.1811 0.1813 0.1818 

Vibrational Effects CCSD/AV[6+7]Z -0.3319 

Temperature Effects (300 K) CCSD/AV[6+7]Z -0.0387 

Relativistic Effects PBE0/dyall-aug-vqz 0.0022 

Total Absolute Shielding        26.2824 

Experimental Shielding    26.293(5)40 

 

Summation of all contributions leads to an absolute shielding of 26.2824 ppm the proton in H2, 

with an uncertainty of ±0.0002 ppm as a result from the convergence of the equilibrium, 

vibrational and relativistic effects. This is in close agreement with the experimental value of 

26.293(5) ppm.40 Sundholm and Gauss determined a non-relativistic CCSD/8s4p3d2f result of 

26.2983 ppm (296 K),41 which may be corrected to 26.2977 ppm at 300 K.12 That result is 
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within the error bars of the experimental value. However, the addition of relativistic effects 

(0.0022 ppm) leads to a value of 26.2999 ppm that is outside the upper range of the 

experimental uncertainty. As discussed above, the equilibrium CCSD/8s4p3d2f value is too 

large (compared to the basis set limit), and hence the excellent agreement of the 

CCSD/8s4p3d2f value with the experimental value arises from some fortuitous cancellation of 

errors. 

The rovibrational averaging treatment from Sundholm and Gauss may be considered more 

rigorous than the vibrational averaging approach employed in the current work. If their 

rovibrational averaging (-0.3691 ppm) is used in place of the CFOUR calculated contribution 

(-0.3706 ppm), then an overall nuclear magnetic shielding value of 26.2839 ppm is obtained, 

which is marginally closer to the experimental value.  

The fully calculated CCSD/CBS value determined in the current work differs by 0.011 ppm 

from the experimental value of 26.293(5) ppm,40 and lies only 0.006 ppm outside the lower 

limit of the experimental uncertainty. The deviation of only 0.04% to the current experimental 

shielding is considered excellent, especially considering that an optimised geometry rather than 

experimental geometry has been employed. Therefore, the methodology employed in the 

computational approach in completely deriving an absolute shielding constant for a nucleus 

may be considered valid. While the majority of calculated components that make up the total 

magnetic shielding are of a large enough magnitude to be considered important, the relativistic 

effects in the case of H2 shielding is less than the deviation between theory and experiment. As 

discussed above, this may be due to the overall relativistic effects of H2 being small. Therefore, 

the importance of relativistic effects will be further investigated in additional molecules to 

understand the true importance of considering relativity. 

  

3.3 Absolute 1H Shielding in HF  

The approach employed for calculating isotropic nuclear magnetic shielding constants of H2 

was then extended to the HF molecule. For fluorine, specific core basis functions were included 

in all calculations, while methods could be extended beyond CCSD as a result of the greater 

electron count in HF compared to H2. Geometries were optimised at the all-electron 

CCSD(T)/ACVQZ level of theory (Re = 0.91724 Å). The experimental bond distance is 0.9150 

Å. Consideration of electron-correlation method contribution was used again, investigating the 
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contribution of higher excitations to the equilibrium shielding constants with coupled-cluster 

calculations up to CCSDTQP being carried out. Results are collated in Table 3.5 

 

Table 3.5: Equilibrium 1H shielding in HF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z ACV7Z  CBS 

HF-SCF 29.291 28.362 28.204 28.112 28.084 28.073 28.067 

SD  0.806 0.773 0.646 0.616 0.602 0.598 0.591 

(T)  0.073 0.069 0.070 0.070 0.070  0.070 

T  0.005 0.007 0.007    0.008 

Q  0.011 0.011     0.012 

P        0.001(a) 

Equilibrium Shielding      28.749 
(a) tz2p basis set result. 

 

Once again, smooth and rapid convergence has been obtained for all equilibrium excitation 

contributions. This is seen especially in the larger methods of CCSD(T) to CCSDTQ, where 

contributions are barely changing upon increasing the size of the basis set (i.e. the contribution 

is already converged). 

A clear trend can also be noted, where each successive increase in the coupled-cluster 

expansion (method) generally yields a decreased contribution to the absolute shielding by 

approximately an order of magnitude. Although this seems to not be the case due to the triple 

excitation contribution being less than the quadruple excitation contribution, this is purely due 

to the perturbative triples already accounting for a large portion of the triple excitation 

contribution. The trend is evident if the combined (T) and T contributions are considered. 

Therefore, although pentuple (P) excitations are calculated with a smaller tz2p basis set, the 

level of contribution can be considered to be valid since high precision is not critical due to the 

small magnitude of the contribution. It can be expected that contributions from higher 

excitations will be negligible, leading to an uncertainty in the equilibrium shielding of much 

less than ±1 ppm. It can be concluded that for larger and more complex molecules, full 

treatment of extensive methods such as full triples or quadruples, although beneficial in terms 

of convergence and precision, may not be critical. 

Sundholm et al. have reported CCSD(T)/8s4p3d2f results, with an equilibrium value of 29.01 

ppm12 which is larger than the CCSD(T)/ACV5Z value in Table 3.5 (28.749 ppm). The 

CCSD(T)/CBS value is 28.728 ppm (summing the HF-SCF, SD, and (T) contributions from 
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Table 3.5), which indicates that the Sundholm value is not converged within 0.25 ppm of the 

basis set limit.  

Similar to that of H2, vibrational and temperature effects were calculated at individually 

optimised geometries. However, unlike H2, these contributions were calculated with the more 

extensive CCSD(T) method to give greater accuracy to the calculated effects (Table 3.6). 

 

Table 3.6: CCSD(T) Vibrational averaging and temperature effects on the 1H shielding in HF 

(ppm). 

Contribution ACVTZ ACVQZ ACV5Z ACV6Z CBS 

Vibrational averaging -0.313 -0.322 -0.321 -0.322 -0.324 

Temperature (300 K) -0.038 -0.037 -0.037 -0.037 -0.037 

 

Unlike the results for H2, the calculated vibrational averaging effects do not converge smoothly. 

A possible cause of this is the number of separate steps that go into calculating the vibrational 

corrections; geometry optimisation, then the anharmonic frequency calculation, followed by 

the final property calculation. These contributions could exhibit different rates of convergence. 

Therefore, it is not unreasonable to suspect that small variations in these calculations can lead 

to a lack of smooth convergence. In this case, the variation between the calculated results is 

very small (1 x 10-3 ppm), so this issue does not have a major effect on the extrapolated CBS 

limit result. Similar to the 1H shielding in H2, temperature effects on the absolute nuclear 

shielding are an order of magnitude smaller than the vibrational averaging effects. Sundholm 

et al. reported rovibrational and temperature (300 K) corrections of -0.323 and -0.035 ppm,12 

respectively, which are in very close agreement with the CCSD(T)/ACV[5,6]Z values reported 

in Table 3.6.  

Although relativistic effects were shown to be very small for the 1H nucleus in H2, it is possible 

the magnitude of effect will increase when the H atom is a part of a larger molecule. The same 

procedure was conducted as with H2, where the difference between a relativistic nuclear 

shielding and a non-relativistic nuclear shielding, calculated at the same level of theory, was 

used to determine the relativistic effect. These calculations have been performed with core 

basis functions added to the fluorine basis sets due to the presence of fluorine; however, this 

does not affect the results of 1H (Table 3.7). 
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Table 3.7: PBE0 Relativistic effects on the 1H shielding in HF (ppm). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-cvtz 29.772 29.627 0.145 

dyall-aug-cvqz 29.443 29.296 0.147 

 

Here the values for relativistic effects are much greater than in H2. This is most likely due to 

the presence of a much heavier nucleus (19F) not only being a part of the molecule but within 

close proximity to the 1H nucleus. Where relativistic effects in H2 were near negligible, they 

now make up 0.5% of the total shielding, which must be considered when high levels of 

precision are desired. There is a very small dependence on basis set. Unlike the relativistic 

effects calculated for the 1H shielding in H2, the relativistic effects on the 1H shielding in HF 

are large enough that a dependence on basis set can be observed. However, the dependence on 

basis set is two orders of magnitude less than that of the total relativistic effects on shielding 

and thus may be considered negligible.  

Nakatsuji et al. and Malkin et al. have previously investigated relativistic spin-orbit effects on 

the hydrogen shielding of HF, which yielded values of 0.18 ppm42 and 0.16 ppm,43,44 

respectively, which are consistent with the PBE0 results calculated here. Sundholm et al. 

questioned the magnitude of the relativistic effect based on the close agreement (within 0.05 

ppm) of their non-relativistic CCSD(T) results and the experimental value.12 However, as 

discussed above, their CCSD(T) calculated value deviates by 0.26 ppm from the CBS value 

(28.749 ppm) given in Table 3.5. That serves to refute their suggestion that the calculated 

relativistic effect is too large but rather indicates that the discrepancy is due to their 

unconverged equilibrium shielding.  

An absolute 1H nuclear shielding in HF can be obtained by combining the extrapolated CBS 

equilibrium values for each coupled-cluster expansion, vibrational averaging, temperature, and 

relativistic effects. Results are presented in Table 3.8. 
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Table 3.8: Calculated 1H absolute shielding in HF (ppm).  

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[5,6,7]Z 28.067 

SD  ACV[6,7]Z 0.591 

(T)  ACV[5,6]Z 0.070 

T  ACV[T,Q]Z  0.008 

Q  ACV[D,T]Z 0.012 

P  tz2p 0.001 

Vibrational Effects CCSD(T)/ACV[5,6]Z -0.324 

Temperature Effects (300 K) CCSD(T)/ACV[5,6]Z -0.037 

Relativistic Effects PBE0/dyall-aug-cvqz 0.147 

Total Absolute Shielding   28.535 

Experimental Shielding  28.53(20) 

 

The fully calculated value of 28.535 ppm, with an expected uncertainty of ±0.005 ppm, is in 

excellent agreement with the experimentally derived value of 28.53 ± 0.2 ppm ((HF) = 2.10 

ppm,45 (CH4) = 30.633 ppm40), with a deviation from experiment of only 0.01 ppm. As 

discussed above, the vibrational averaging effect exhibits a non-monotonic convergence that 

suggests that the vibrational averaging contribution may lead to increased uncertainty in the 

calculated value. However, if in place of the CBS value (-0.324 ppm) the AV6Z (-0.322 ppm) 

or AV5Z (-0.321 ppm) values were employed, then the absolute nuclear shielding is 28.537 or 

28.539 ppm, respectively, which remain well within the experimental uncertainty. It is 

suggested that a value of 28.53 ± 0.2 ppm represents the true value of the nuclear magnetic 

shielding of 1H in HF. 

Sundholm et al. reported a CCSD(T) value inclusive of rovibrational effects of 28.842 ppm,12 

although they neglected relativistic effects. Addition of relativistic effects (28.989 ppm) 

worsens agreement with experiment. Again, this is due to their unconverged equilibrium value.  

The 1H nuclear shielding results for H2 and HF demonstrate that the additive procedure for 

contributions to the absolute nuclear shielding yields precise 1H nuclear shielding constants 

when each component is treated with large basis sets and extensive methods. The same 

approach was subsequently used to obtain 19F nuclear shielding constants. 
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3.4 Absolute 19F Shielding in HF  

All calculations that were carried out for the 1H shielding in HF were also carried out for 19F 

nuclear shielding. Therefore, the equilibrium nuclear shielding was investigated with extensive 

coupled-cluster methods and large basis sets (Table 3.9).  

 

Table 3.9: Equilibrium 19F shielding in HF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z ACV7Z  CBS 

HF-SCF 419.136 414.615 414.237 413.989 413.915 413.897 413.891 

SD  5.007 4.719 5.028 5.140 5.200 5.214 5.238 

(T)  0.131 0.474 0.483 0.474 0.480   0.488 

T  -0.048 -0.150 -0.172    -0.188 

Q  -0.024 -0.036     -0.041 

P        -0.003(a) 

Equilibrium Shielding           419.384 
(a) tz2p basis set result. 

 

It is unsurprising that the overall equilibrium 19F shielding is much larger in magnitude than 

the 1H shielding. The increased number of electrons and electronegativity provides a much 

higher level of magnetic protection (shielding). Basis set convergence is very smooth for most 

of the coupled-cluster contributions. Additionally, the trend of decreasing contribution to the 

absolute shielding upon increasing excitation level is very prominent here. Once again, the P 

contributions to the equilibrium shielding constants are of almost negligible size. This allows 

the assumption that hextuple (H) and higher excitations are negligible, which is favourable due 

to the exceptionally large computational resources required to perform such calculations. 

Sundholm et al. have reported a CCSD(T) calculated value of 419.075 ppm with basis sets of 

8s4p3d2f (H) and 15s11p3d2f (F),12 which can be compared to the CCSD(T)/CBS value of 

419.617 ppm (Table 3.9). In the discussion of H2 results above, it was indicated that the 

8s4p3d2f basis set for H is similar to the AV5Z basis set. Here the CCSD(T)/ACV5Z value is 

419.603 ppm, which still deviates significantly from the CCSD(T) result of Sundholm et al. It 

is concluded that the remaining deviation is a geometry effect, whereby Sundholm et al. used 

an experimental geometry while the present results used an all-electron CCSD(T)/ACVQZ 

calculated geometry. 
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Vibrational averaging and temperature effects on the 19F magnetic shielding in HF were 

obtained alongside the investigation of 1H magnetic shielding using the same geometries, 

methods, and basis sets (Table 3.10). 

 

Table 3.10: CCSD(T) Vibrational averaging and temperature effects on the 19F shielding in HF 

(ppm). 

Contribution ACVTZ ACVQZ ACV5Z ACV6Z CBS 

Vibrational averaging -9.233 -9.255 -9.268 -9.283 -9.304 

Temperature (300 K) -0.375 -0.373 -0.373 -0.373 -0.373 

 

For CCSD(T) vibrational corrections, the largest basis set used was ACV6Z, which yielded an 

overall vibrational correction to the absolute shielding of -9.283 ppm. The vibrational 

correction contribution to the 19F shielding is much larger than that for the 1H shielding in HF, 

which was -0.324 ppm. This would be heavily influenced by the high sensitivity of 19F 

shielding to environmental changes. That is, a slight bond stretch will cause a much greater 

change to the 19F shielding than it would for 1H shielding. The convergence of the vibrational 

corrections on the absolute 19F shielding is once again not ideal. The lack of convergence 

appears to propagate between the ACV5Z and ACV6Z results for both the 19F shielding and 

the 1H shielding. As both shielding constants have errors originating from the same results, the 

hypothesis of errors within earlier calculations creating large deviations in final vibrational 

corrections is sound and has led to a possible overestimation within the extrapolated CBS value.  

Sundholm et al. calculated a rovibrational contribution of -10.00 ppm with a temperature effect 

(to 300 K) of -0.42 ppm.12 The combined contribution of -10.42 ppm is larger in magnitude 

than -9.74 ppm calculated in the present work (Table 3.10). Relativistic effects were calculated 

using the dyall-aug-cvqz basis set with the PBE0 functional (Table 3.11). Here, the addition of 

core basis functions to the basis set is necessary due to fluorine possessing core electrons. 

 

Table 3.11: PBE0 Relativistic effects on the 19F shielding in HF (ppm). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-cvtz 417.330 412.764 4.567 

dyall-aug-cvqz 417.344 412.741 4.602 
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The effect of relativity on the 19F magnetic shielding in HF is much greater than that for 1H 

magnetic shielding in both H2 and HF. This is due to the increased atomic number (and mass) 

of the fluorine atom, which directly influences relativistic effects. The relativistic (rel), non-

relativistic (nrel), and the total relativistic effects (rel-nrel), have minimal dependence on the 

basis set. It is important to note that total relativistic effects are as much as 1% of the 

equilibrium shielding and are much larger than the temperature effects for the same nucleus. 

Therefore, it is not possible to neglect the effect of relativity on 19F magnetic shielding if 

accurate nuclear magnetic shielding constants are to be obtained. 

The calculated contributions and effects to the 19F shielding are summed to obtain a fully 

calculated absolute 19F magnetic shielding in HF (Table 3.12). 

 

Table 3.12: Calculated 19F absolute shielding in HF (ppm).  

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[5,6,7]Z 413.891 

SD  ACV[6,7]Z 5.283 

(T)  ACV[5,6]Z 0.488 

T  ACV[T,Q]Z -0.188 

Q  ACV[D,T]Z -0.041 

P  tz2p -0.003 

Vibrational Effects CCSD(T)/ACV[5,6]Z -9.304 

Temperature Effects (300K) CCSD(T)/ACV[5,6]Z -0.373 

Relativistic Effects PBE0/dyall-aug-cvqz 4.602 

Total Absolute Shielding   414.310 

Experimental Shielding  409.6(10)12 

 

Combining all the components of the absolute shielding results in a total absolute shielding of 

414.310 ppm. Sundholm et al. have reported a semi-experimentally derived 19F magnetic 

shielding in HF of 409.6 ± 1.0 ppm.12 Our calculated value of 414.310 ppm deviates from this 

semi-experimental shielding by 4.7 ppm. The deviation is greater both in magnitude and 

relative percentage compared to the case of the 1H magnetic shielding constant in HF. The 

difference could possibly be due to some uncertainty in the relativistic effects, propagating 

from their dependence on the chosen DFT functional, as well as incomplete methods and basis 

sets. However, the shielding reported by Sundholm et al. is a non-relativistic shielding, stating 

that relativistic effects to the diamagnetic shielding would be approximately 1 ppm, while the 

effect towards the paramagnetic shielding was more difficult to predict. Addition of the 
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relativistic effects calculated here to the Sundholm et al. semi-experimental shielding yields a 

value of 414.20 ± 1.0 ppm. The fully calculated shielding in Table 3.12 deviates from the 

experimental value by only 0.11 ppm, which is well within experimental error.  

An alternative experimental 19F magnetic shielding of HF may be derived from recently 

reported chemical shifts. Makulski has reported an updated SiF4 chemical shift relative to 

CFCl3 of 170.170(2) ppm extrapolated to the zero-density limit.7 Combining this updated SiF4 

chemical shift along with the chemical shift of HF relative to SiF4 of -46.85(35) ppm by 

Hindermann and Cornwell14 yields an experimental HF chemical shift relative to CFCl3 of -

217.02(35) ppm. Combining the chemical shift relative to CFCl3 with the absolute 19F shielding 

in CFCl3 of 197.07 ppm25 with eq. 1.1 leads to an absolute 19F shielding of 414.09(35) ppm in 

HF. The updated nuclear shielding constant is in excellent agreement with the fully calculated 
19F in HF reported here, with a deviation of only 0.22 ppm that is within the experimental 

uncertainty. The self-consistency of these two experimental values, derived from spin-rotation 

constants (414.20(10) ppm) and chemical shifts (414.09(35) ppm), provides confidence in the 

revised experimental value.  

The high precision of the calculations used along with the large agreement with previously 

reported experimental chemical shifts and semi-experimental non-relativistic shielding 

constants enables the conclusion that the 19F absolute shielding constant for HF reported here 

is the most accurate to date, with a conservative estimate of the uncertainty of ±0.5 ppm. 

 

3.5 Absolute 19F Shielding in F2 

The F2 molecule represents a challenging case for computational methods due to the increased 

number of electronegative F atoms. The increase in mass and electron count from HF means 

that higher coupled-cluster excitation contributions cannot be calculated with such large basis 

sets. However, as shown with HF, these contributions are relatively small in magnitude. 

Calculations for F2 have been carried out similar to that of HF calculations, utilising a 

CCSD(T)/ACVQZ optimised geometry (Re = 1.41173 Å), with all shielding constants 

calculated with ACVXZ basis sets. Results are presented in Table 3.13. 
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Table 3.13: Equilibrium 19F shielding in F2 (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z ACV7Z CBS 

HF-SCF -148.618 -158.185 -165.679 -168.700 -169.615 -169.800 -169.847 

SD  15.454 -1.539 -3.303 -3.650 -3.781  -3.960 

(T)  -12.148 -14.476 -15.145 -15.387 -15.469  -15.582 

T  -2.896 -3.831 -3.948    -4.033 

Q  -1.547      -1.547 

Equilibrium Shielding      -194.969 

 

The resulting total equilibrium shielding is -194.969 ppm. As this shielding constant is negative 

in sign, it means that the presence of electrons enhances the effect that the magnetic field has 

on the nucleus. An exception to the decreasing method contribution is shown between the SD 

and (T) contributions. A reason behind this change of trend is not entirely known; however, it 

is likely due to the increased electron density within the molecule. Both T and Q contributions 

here are sizeable; however, due to the increased electron count and vast computational cost, P 

excitations were not able to be obtained. The magnitude of the Q contribution could be a result 

of the inaccuracy from the small DZ basis set used. As such, the uncertainty in the equilibrium 

shielding is conservatively estimated to be 2-3 ppm. Sundholm et al. reported a CCSD(T) value 

of -188.03 ppm12 that is within 1.4 ppm of the CBS limit (CCSD(T)/CBS value is -189.389 

ppm). However, it is the neglect of higher-level excitations that is more problematic, with T 

and Q contributions amounting to -5.580 ppm (Table 3.13).  

Vibrational averaging and temperature effects on the nuclear shielding are expected to be large 

in F2 due to the vibrational stretching frequency being larger than that in HF, which causes 

larger bond changes that cause greater shielding effects. Results are presented in Table 3.14. 

 

Table 3.14: CCSD(T) Vibrational averaging and temperature effects on the 19F shielding in F2 

(ppm). 

Contribution ACVTZ ACVQZ ACV5Z ACV6Z CBS 

Vibrational averaging -28.786 -28.246 -27.996 -27.952 -27.891 

Temperature (300 K) -4.126 -4.069 -3.996 -3.977 -3.950 

 

The calculated CCSD(T)/ACV[5,6]Z  vibrational corrections and temperature effects within 

Table 3.14 are sizable, at -27.891 ppm and -3.950 ppm, respectively. The vibrational 

corrections are actually larger in magnitude than that of the perturbative triple, (T), excitation 
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contribution to the equilibrium shielding, while temperature effects alone are of similar 

magnitude to the contribution of full triples, T. The importance of these contributions is clear 

and indicates the necessity to include these effects when trying to obtain accurate absolute 

isotropic shielding constants. Unlike the vibrational corrections within HF, the calculated 

vibrational corrections towards the 19F nucleus in F2 converge very well.  

Sundholm et al. reported calculated rovibrational corrections at -30.87 ppm and temperature 

effects (at 300 K) to be -4.69 ppm for an overall effect of -35.56 ppm to the absolute shielding.12 

This deviates from the calculated effects here by 3.72 ppm. The deviation may be attributed to 

Sundholm et al. calculating rovibrational corrections as opposed to the purely vibrational 

corrects reported here. This deviation is somewhat accounted for by the consideration of higher 

excitations within the equilibrium shielding as discussed above.  

The effect of relativity on 19F shielding in F2 is expected to increase compared to those in HF, 

just as the effects on the 1H shielding in HF were larger than those in H2. Results are presented 

in Table 3.15. Once again, the PBE0 functional has been used with dyall-aug-cvtz and dyall-

aug-cvqz basis sets. 

 

Table 3.15: PBE0 Relativistic effects on the 19F shielding in F2 (ppm). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-cvtz -236.745 -242.512 5.768 

dyall-aug-cvqz -237.124 -242.865 5.740 

 

The relativistic effects on the 19F absolute shielding constants are slightly larger than the effects 

on 19F shielding constants in HF. This trend does not follow what was seen in the 1H shielding 

within H2 and HF, which increased magnitudes in size upon fluorination. This is likely due to 

the relativistic effects to the 19F shielding within HF already being substantial. Nonetheless, 

the presence of an additional fluorine atom seems to slightly increase the effect that relativity 

has on the absolute shielding. The basis set dependence of the calculated relativistic effects is 

of the same magnitude as that seen for the 19F nucleus in HF. 

As with the other studied nuclei, all these effects may be combined to obtain a total absolute 

shielding constant of F2 at the CCSD(T)/ACVQZ optimised geometry (Table 3.16).  
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Table 3.16: Calculated 19F absolute shielding in F2 (ppm).  

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[5,6,7]Z -169.847 

SD  ACV[5,6]Z -3.960 

(T)  ACV[5,6]Z -15.582 

T  ACV[T,Q]Z -4.033 

Q  ACVDZ -1.547 

Vibrational Effects CCSD(T)/ACV[5,6]Z -27.891 

Temperature Effects (300 K) CCSD(T)/ACV[5,6]Z -3.950 

Relativistic Effects PBE0/dyall-aug-cvqz 5.740 

Total Absolute Shielding   -221.070 

Experimental Shielding   -221.93 ± 146 

 

The final fully calculated absolute shielding in F2 is -221.070 ppm. This is in excellent 

agreement with the derived experimental value of -221.93 ± 1 ppm ((F2) = -419 ± 1 ppm,46 

(CFCl3) = 197.07 ppm25) and within the 1 ppm experimental uncertainty. The good agreement 

can be attributed to consideration of higher excitations as well as the utilisation of large basis 

sets for smaller excitation contributions such as CCSD(T)/ACV6Z. Additionally, the 

consideration of all effects to the absolute shielding along with smooth convergence for all 

applicable contributions has led to the close agreement between theory and experiment. The 

level of uncertainty in the final absolute shielding is estimated to be ±2.0 ppm as a result of the 

unconverged and large Q contributions in the equilibrium shielding.  

Jameson et al.15 have reported an alternative 19F chemical shift in F2 of -595.96 ± 0.03 ppm 

relative to SiF4, which results in an absolute magnetic shielding of -228.72 ± 0.032 ppm 

((SiF4) = 170.170(2) + 197.07 = 362.870(2) ppm).7,25 This nuclear shielding deviates by 7.65 

ppm from the fully calculated shielding in Table 3.16. The deviation between the Jameson et 

al. and the fully calculated shielding constants likely arises due to the impact of higher 

excitations on the equilibrium shielding. Sundholm et al. have reported a non-relativistic 

CCSD(T) calculated value of -234.7 ppm.12 Augmenting the Sundom et al. shielding with the 

relativistic corrections presented in Table 3.15 yields a shielding of -229.0 ppm, which is much 

closer to the shielding derived by experimental data from Jameson et al. It is suggested that the 

differences in theoretical shielding constants here and from Sundholm et al. are a result of 

geometry, where Sundholm et al. used an experimental geometry. Harding et al.23 has 

investigated the relationship between the level of theory used in geometry optimisation and 

calculated shielding, with the difference in shielding between a CCSD(T)/VTZ and a 



 

 39

CCSD(T)/VQZ optimised geometry being almost 7 ppm. The shielding gradient in F2 is 

approximately 3000 ppm/Å. That is, a deviation in the F–F bond distance of 0.001 Å will 

change the shielding constant by 3 ppm. Therefore, deviation in shielding constants between 

the use of an experimental and optimised geometry is unsurprising and a cause of great 

difficulty in the determination of accurate F2 absolute shielding. 

 

3.6 Absolute 19F Shielding in FCl 

The series of successive fluorination of diatomics was extended to include FCl. FCl has a much 

greater electron count than any molecule discussed thus far and, therefore, will be more 

challenging to calculate accurately. The FCl molecule was optimised at the CCSD(T)/ACVQZ 

level of theory (Re = 1.62912 Å) for use in the equilibrium and relativistic calculations. Results 

are presented in Table 3.17. 

 

Table 3.17: Calculated 19F absolute shielding in FCl (ppm).  

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[Q,5,6]Z 691.646 

SD  ACV[5,6]Z -41.252 

(T)  ACV[Q,5]Z -0.088 

T  ACV[D,T]Z -0.299 

Vibrational Effects CCSD(T)/ACV[Q,5]Z -6.952 

Temperature Effects (300 K) CCSD(T)/ACV[Q,5]Z -1.126 

Relativistic Effects PBE0/dyall-aug-cvqz -1.003 

Total Absolute Shielding   640.926 

Experimental Shielding  640.97(10) 

 

Calculation of Q contributions was not possible due to the large electron count of the FCl 

molecule and the corresponding requirement for very extensive computing resources; however, 

the small magnitude of the (T) and T excitation contributions shows that contributions of higher 

excitations to the overall shielding would be small (10-2 ppm), with a conservative estimate of 

a maximum of 0.05 ppm. Large ACV6Z basis set calculations were performed for the HF-SCF 

and SD contribution calculations and make up most of the overall shielding at 691.649 ppm 

and -41.252 ppm, respectively. The vibrational and temperature effects to the shielding are -

6.952 ppm and -1.126 ppm, respectively, being much smaller than in F2 and of similar 

magnitude to the 19F shielding constant in HF. The relativistic correction of -1.003 ppm is much 
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smaller than for the 19F shielding constants in HF and F2. Interestingly, the relativistic effects 

here are of negative sign, whereas these effects are of positive sign in HF and F2. This may be 

caused by the presence of the much heavier chlorine atom, whereas in HF and F2, the 19F atom 

was the heaviest atom in the molecule. A total calculated absolute 19F shielding in FCl of 

640.926 ppm was obtained with an expected uncertainty of ±0.2 ppm. The experimental value 

of 640.97 ± 0.1 ppm ((FCl) = -443.90 ppm ± 0.1,7,47 (CFCl3) = 197.07 ppm25) once again 

agrees exceptionally well with the shielding calculated here with less than 0.05 ppm deviation 

and well within experimental error. This demonstrates that the methodology used throughout 

this chapter is effective even for heavier molecules where higher coupled-cluster excitations 

and large basis sets cannot readily be used. 

 

3.7 Summary 

The 1H and 19F absolute shielding constants have been evaluated in the H2, HF, F2, and FCl 

diatomic series. Most of the deviations between theory and experiment are extremely small, 

with theory being less than 1 ppm from experimental chemical shifts even in the case of the 
19F shielding in the heavier FCl diatomic. The only outlier is the 19F absolute shielding in HF, 

which deviates from non-relativistic semi-experimental shielding constants by less than 5 ppm; 

however, is corrected to within experimental error when calculated relativistic effects are 

applied to the semi-experimental shielding.  

The results reported throughout this chapter show that the technique of obtaining CBS values 

for separate contributions to the equilibrium shielding, then applying vibrational averaging, 

temperature, and relativistic effects is not only sound but also necessary to obtain 

experimentally accurate results. This methodology will be applied to larger fluorine-containing 

molecules in the following chapter.  
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Chapter 4: 
Extending the 19F Absolute Shielding Scale 

 

4.1  Introduction 

After analysis of the 19F shielding constants for diatomic molecules, a set of larger molecules 

was chosen to be investigated. The molecules selected were the series H2O, HOF, and F2O, as 

well as CH3F and FCN. These particular molecules were selected due to their lack of 

conformational flexibility, which decreases the complexity of calculations. Despite this, they 

are larger and more complex than the previously calculated diatomic molecules. Calculation 

run times for these molecules are presented in Table 4.1, which illustrates the effect that 

increased molecular complexity has on computational cost. 

 

Table 4.1: Duration of calculation run time between molecules and methods (hours).  

Molecule CCSD(a) CCSD(T)(a) CCSDT(b) 

HF 1.1 1.1 1.6 

F2 3.0 4.4 14.7 

FCl 7.2 12.7 131.5 

H2O 3.6 4.4 5.2 

HOF 104.2 205.4 171.8 

F2O 46.0 >167.0 >167.0 

CH3F 127.2 147.0 >261.7 

FCN 23.7 99.9 251.0 
(a) Calculated with an ACV5Z basis set. 
(b) Calculated with an ACVTZ basis set. 

 

Calculation run times for H2O are similar to F2 due to the balance of symmetry and number of 

electrons; however, the addition of fluorine in HOF (which has fewer electrons than F2) and 

F2O causes calculation run times to increase rapidly. Therefore, the extensive calculations 

performed for diatomics in Chapter 3 will not be as feasible for these additional molecules. As 

shown in Chapter 3, contributions from higher excitations tend to be small, so the 

inaccessibility of more extensive methods for this additional series should not be critical. 

Calculations of the equilibrium nuclear magnetic shielding and the relativistic effects on the 

shielding were carried out at CCSD(T)/ACVQZ optimised geometries, which will be reported 

in the appropriate sections. Relativistic effects were calculated with the PBE0 functional using 
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the dyall-aug-cvqz basis set. As demonstrated in Chapter 3, the use of extensive basis sets for 

relativistic calculations is not critical; however, for consistency, the QZ basis set will continue 

to be used. Vibrational averaging and temperature effects on the absolute shielding are 

calculated with geometries optimised at the same level of theory. All experimental 19F shielding 

constants used for comparison have been derived from referenced chemical shifts relative to 

CFCl3 (either direct or indirect) and converting to a shielding via (CFCl3) = 197.07 ppm.25 

 

4.2 Absolute 1H Shielding in H2O and HOF 

The all-electron CCSD(T)/ACVQZ calculated geometries of H2O (r(OH) = 0.95810 Å, 

∠(HOH) = 104.481°) and HOF (r(OH) = 0.96684 Å, r(OF) = 1.43382 Å, ∠(HOF) = 97.952°) 

were used for the calculation of 1H absolute shielding constants. Equilibrium shielding 

calculations and CBS extrapolated values are presented in Tables 4.2 and 4.3 for H2O and HOF, 

respectively, with the final calculated shielding constants with all contributions reported in 

Table 4.4. 

 

Table 4.2: Equilibrium 1H shielding in H2O (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z ACV7Z CBS 

HF-SCF 31.161 30.715 30.530 30.471 30.445 30.437 30.433 

SD  0.319 0.258 0.159 0.134 0.125  0.112 

(T)  0.029 0.016 0.014 0.013 0.013  0.013 

T  0.003 0.005 0.006    0.006 

Q  0.001      0.001 

Equilibrium Shielding      30.565 

 

Table 4.3: Equilibrium 1H shielding in HOF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 19.512 19.301 19.132 19.075 19.047 19.016 

SD  1.206 0.954 0.809 0.771 0.758 0.739 

(T)  -0.140 -0.184 -0.189 -0.190  -0.191 

T  -0.040 -0.039    -0.039 

Equilibrium Shielding     19.525 
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Table 4.4: Calculated CBS 1H absolute shielding in H2O and HOF (ppm). 

Contribution H2O HOF 

HF-SCF 30.433 19.016 

SD  0.112 0.739 

(T)  0.013 -0.191 

T  0.006 -0.039 

Q  0.001  

Vibrational Effects  -0.509(a) -0.688(a) 

Temperature Effects (300 K) -0.025(a) -0.063(a) 

Relativistic Effects 0.061(b) 0.013(b) 

Total Absolute Shielding  30.092 18.787 

Experimental Shielding 30.102(8)40 18.540,48 

(a) Calculated with CCSD(T)/ACV[T,Q]Z. 
(b) Calculated with PBE0/dyall-aug-cvqz. 

 

The calculated 1H isotropic shielding constants of 30.092 ppm in H2O and 18.787 ppm in HOF 

agree very well with the experimental values of 30.102(8) ppm40 and 18.5 ppm ((HOF) = 12.1 

ppm,48 (CH4) = 30.633(6) ppm40), respectively. Due to the increased electron count and 

reduced symmetry, HOF is much more challenging to calculate than H2O. As such, the 

quadruple excitation (Q) contributions to the 1H shielding constant in HOF could not be 

determined. However, the size of T contributions towards the 1H shielding constant in both 

H2O and HOF are of similar magnitude, and thus it is reasonable to assume the Q contributions 

to the 1H shielding constant in HOF are similarly negligible. Additionally, 7Z basis set values 

could not be obtained for HOF; however, the excitation contributions to the 1H absolute 

shielding constant are converged without the need for 7Z basis sets, and thus it can be 

concluded that the equilibrium shielding constant is accurate. 

Vibrational averaging and temperature effects on the 1H absolute shielding constant in these 

molecules are significantly larger than that for the 1H shielding constants in the diatomics 

considered in Chapter 3. This is likely due to the additional degrees of freedom within the 

larger molecules. It is worth noting that the 1H absolute shielding constant within HOF is much 

smaller than in H2O. This is likely due to extra deshielding that occurs due to the presence of 

the highly electronegative fluorine atom. The relativistic effects on the 1H absolute shielding 

constant in H2O and HOF are an order of magnitude greater than that in H2 and an order of 

magnitude less than in HF. It is clear that relativistic effects can vary significantly depending 

on the environment of the individual nuclei. Consideration of the convergence of the 
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equilibrium, vibrational, and relativistic effects on shielding leads to an estimated uncertainty 

of ±0.01 ppm in H2O and ±0.1 ppm in HOF. 

 

4.3 Absolute 19F Shielding in HOF and F2O 

The 19F absolute shielding constant was also calculated in HOF (identical geometry as in 

Section 4.2) and F2O (r(OF) = 1.40400 Å, ∠(FOF) = 103.032°). The equilibrium 19F shielding 

constants are presented in Tables 4.5 and 4.6, then combined with vibrational averaging, 

temperature, and relativistic effects in Table 4.7. 

 

Table 4.5: Equilibrium 19F shielding in HOF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 298.975 291.144 288.398 287.364 287.074 286.961 

SD  -78.859 -83.723 -83.267 -83.241 -83.165 -83.060 

(T)  -8.403 -11.297 -11.926 -12.168  -12.423 

T  -0.392 -0.561    -0.633 

Equilibrium Shielding     190.846 

 

Table 4.6: Equilibrium 19F shielding in F2O (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 39.067 31.826 26.486 24.335 23.694 23.422 

SD  -16.633 -29.431 -29.815 -29.867 -29.863 -29.858 

(T)  -12.421 -13.739 -14.244   -14.613 

T  -0.840     -0.840 

Equilibrium Shielding         -21.889 
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Table 4.7: Calculated CBS 19F absolute shielding in HOF and F2O (ppm). 

Contribution HOF F2O 

HF-SCF 286.961 23.422 

SD  -83.060 -29.858 

(T)  -12.423 -14.613 

T  -0.633 -0.840 

Vibrational Effects -19.318(a) -22.886(b) 

Temperature Effects (300 K) -2.108(a) -2.851(b) 

Relativistic Effects 5.879(c) 5.867(c) 

Total Absolute Shielding  175.299 -41.759 

Experimental Shielding 180.048  
(a) Calculated with CCSD(T)/ACV[T,Q]Z.  
(b) Calculated with CCSD(T)/ACV[D,T]Z. 
(c) Calculated with PBE0/dyall-aug-cvqz. 

 

Tables 4.5 and 4.6 show that the 19F nucleus in HOF is much more shielded than the 19F nuclei 

in F2O. The trend is similar to that observed between HF and F2. The 19F nuclei in F2O 

experience an increased effect of the magnetic field due to the presence of additional electrons, 

which is caused by interactions with the other fluorine atom within the molecule, much like the 

case with F2. Quadruple excitation contributions with CCSDTQ could not be calculated for 

either molecule; however, given that the magnitude of T contributions is less than 1 ppm, Q 

contributions can be expected to be less than 0.1 ppm. 

Table 4.7 reports the calculated 19F absolute shielding in HOF and F2O. The 19F shielding 

obtained for HOF is in good agreement with the experimental 19F absolute shielding of 180 

ppm,48 with a deviation of only 4.7 ppm. It is noted that the experimental chemical shift is 

reported as a liquid sample at 193 K. Nebgen et al. have shown that gas-liquid phase changes 

can cause chemical shifts to change from 1-4 ppm in fluorinated compounds.46 Additionally, 

temperature effects in HOF contribute to over 2 ppm of the total absolute shielding (Table 4.7). 

Therefore, a deviation of 4.7 ppm when compared with a cooled liquid phase chemical shift is 

not unexpected. The HOF chemical shift is reported relative to F2, which has multiple chemical 

shifts reported, as discussed in Section 3.5. It is possible to derive an updated experimental 

shielding for HOF of 173.24 ppm from the chemical shift of F2 reported by Jameson et al. of -

595.96(03) ppm.15 This alternative absolute shielding deviates from the fully calculated 

shielding in Table 4.7 by only 2.06 ppm. Despite this, consideration of gas-liquid phase shifts 

and temperature effects is required to obtain a true experimental shielding for HOF.  
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In F2O, there is a larger deviation between the experimental 19F absolute shielding of -51 ppm46 

and the value of -41.759 ppm calculated here. The convergence of coupled-cluster excitation 

contributions in Table 4.6 is generally smooth, and T contributions are small, indicating the 

equilibrium shielding should be converged and accurate. However, the coupled-cluster 

contributions to the 19F nuclear shielding in F2O do not follow the trend of decreasing 

contribution with an increase in excitation consideration, with SD contributions being of larger 

size than HF-SCF contributions. It is feasible that Q excitations need to be considered for F2O 

due to the large number of electrons within the molecule. Geometry effects may also contribute, 

as Harding et al. demonstrated the effect of geometry within F2O, which was over 5 ppm 

between CCSD(T)/VTZ and CCSD(T)/VQZ optimised geometries.23 However, the current 

CCSD(T)/ACVQZ geometries are expected to be converged to within 0.005 Å.  

Harding et al. also reported non-relativistic shielding constants of 19F in HOF and F2O of 168.9 

ppm and -46.3 ppm, respectively, using CCSD(T) with 13s9p4d3f basis sets.23 Non-relativistic 

shielding constants calculated here are 169.420 ppm and -47.626 ppm for HOF and F2O, 

respectively (Table 4.7 CBS results, omitting relativistic contributions). These deviate from 

experiment less than those reported by Harding et al., which may be attributed to the larger 

basis sets used, as well as consideration of higher excitations. Interestingly, the deviation 

between experiment and theory decreases with the addition of relativistic effects in the case of 

HOF, whilst in the case of F2O, consideration of relativistic effects increases the deviation from 

experiment. The consistent deviation between theory and experiment for the 19F shielding in 

F2O indicates a re-investigation into the experimental chemical shift is warranted. 

Vibrational and temperature effects on the 19F shielding in these molecules are sizeable, being 

larger than the total equilibrium shielding in F2O. This is attributed to the very flexible and 

anharmonic O–F bonds that cause large geometry changes, and as such, have a significant 

effect on the overall 19F absolute shielding, much like that of F2. Relativistic effects on the 19F 

absolute shielding constants are yet again quite large and are very similar between HOF and 

F2O. The relativistic contribution is also close to the relativistic effect calculated for F2 and of 

similar magnitude to the effect calculated for 19F in HF. It can be concluded that the values 

calculated for the relativistic effects are reliable. Convergence of the vibrational effects within 

F2O via DZ and TZ basis sets cause the final CBS to become less reliable than previous 

extrapolated effects. Therefore, an uncertainty in the calculated shielding of F2O of ±3 ppm is 

estimated after consideration of convergence in the equilibrium shielding and vibrational 
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effects. An uncertainty of ±1 ppm for HOF is estimated due to smoother convergence within 

the calculated components.  

 

4.4 Absolute 19F Shielding in CH3F and FCN 

The optimised geometries of CH3F (r(CF) = 1.38312 Å, r(CH) = 1.08752 Å, ∠(FCH) = 

108.767°) and FCN (r(CF) = 1.26511 Å, r(CN) = 1.15726 Å) were used in all equilibrium 

shielding and relativistic calculations during the investigation into their respective 19F absolute 

shielding constants. The contributions to the 19F equilibrium shielding constants for CH3F and 

FCN are presented in Tables 4.8 and 4.9, respectively. These equilibrium 19F absolute shielding 

constants are combined with vibrational averaging, temperature, and relativistic effects in 

Table 4.10. 

 

Table 4.8: Equilibrium 19F shielding in CH3F (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

HF-SCF 483.054 485.791 485.605 485.598 485.598 

SD  -1.216 -3.628 -3.260 -3.188 -3.112 

(T)  -0.885 -1.034 -1.034 -1.040 -1.045 

T  -0.252    -0.252 

Equilibrium Shielding       481.189 

 

 

Table 4.9: Equilibrium 19F shielding in FCN (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

HF-SCF 384.353 380.429 379.378 378.857 378.345 

SD  5.302 0.200 0.387 0.555 0.731 

(T)  -3.787 -3.787 -3.911 -3.949 -3.989 

T  -0.294 -0.488   -0.569 

Equilibrium Shielding       374.518 
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Table 4.10: Calculated CBS 19F absolute shielding in CH3F and FCN (ppm). 

Contribution CH3F FCN 

HF-SCF 485.598 378.345 

SD  -3.112 0.731 

(T)  -1.045 -3.989 

T  -0.252 -0.569 

Vibrational Effects -9.550(a) -6.478(a) 

Temperature Effects (300 K) -0.309(a) -0.387(a) 

Relativistic Effects 4.392(b) 3.830(b) 

Total Absolute Shielding  475.721 371.483 

Experimental Shielding 474.95(5)15 353.12 
(a) Calculated with CCSD(T)/ACV[D,T]Z. 
(b) Calculated with PBE0/dyall-aug-cvqz. 

 

Basis set convergence is very smooth for the equilibrium 19F shielding of CH3F and FCN. 

Interestingly, the general trend of decreasing contribution to shielding with higher coupled-

cluster excitation does not occur to its full extent within FCN. Nevertheless, full triple 

excitations are again small for both these molecules, and as such, it is not overly problematic 

that Q contributions could not be calculated as they may be expected to be less than 0.1 ppm. 

As such, it is believed that the equilibrium nuclear shielding constants are accurate. 

The calculated 19F shielding in CH3F is in excellent agreement with the experimental value of 

474.95 ± 0.05 ppm,15 yielding a deviation of only 0.77 ppm. The excellent agreement may 

seem fortuitous considering the deviations in HOF and F2O and smaller basis sets being used 

for CH3F. However, Harding et al.23 have reported an equilibrium 19F shielding for CH3F of 

482.0 ppm from CCSD(T) calculations that agrees very well with the equilibrium shielding 

derived in Table 4.8. Additionally, the vibrational corrections in the present work agree well 

with MP2 calculations by Harding et al. Addition of relativistic effects to the Harding et al. 

calculated shielding would yield a total shielding of 477.3 ppm, which deviates further from 

experiment. The use of CCSD(T) rather than MP2 calculated vibrational averaging and 

temperature corrections, as well as the consideration of higher T excitations and closer 

agreement with experiment, enables the conclusion that the CH3F 19F nuclear shielding in Table 

4.10 is the most accurate to date. Smooth convergence within the equilibrium shielding and 

considered effects results in an estimated uncertainty of ±0.1 ppm. 

In contrast, the calculated 19F shielding in FCN is quite far from the experimental value of 353 

ppm,49 with a difference between theory and experiment of 18 ppm. One possibility is that the 
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difference arises from a lack of extensive coupled-cluster excitations such as Q excitations, 

although it is difficult to be certain as the magnitude of such contributions is unknown. 

However, it is logical to assume such contributions would be relatively small in FCN, given 

that they have been small in all other molecules studied. As such, the deviation remains 

unresolved, and the cause for the significant discrepancy between experiment and theory 

remains unclear. Teale et al.18 reported the equilibrium 19F shielding in FCN at the CCSD(T)/ 

ACV[T,Q]Z  level of theory as 374.10 ppm. This is within 0.42 ppm of the equilibrium shielding 

reported in Table 4.9. The deviation between the equilibrium shielding reported here and by 

Teale et al. is approximately the consideration of T excitations which contribute 0.57 ppm to 

the overall shielding. Additionally, Teale et al. utilised CCSD(T)/VTZ in the geometry 

optimisation of FCN, whereas CCSD(T)/ACVQZ has been used here. Consideration of higher 

T excitations along with a larger basis set used for geometry optimisations concludes that the 
19F absolute shielding of 353.12 ppm in Table 4.10 is the most accurate to date with an 

estimated uncertainty of ±1 ppm. 

Vibrational averaging and temperature effects on the 19F absolute shielding constants in CH3F 

and FCN appear to be much smaller than that in HOF and F2O but of similar magnitude to that 

of the diatomics in Chapter 3. This is believed to be caused by the fluorine atom in question 

not being within close proximity to other electronegative atoms such as oxygen or nitrogen. 

Relativistic effects on the 19F shielding constants in CH3F and FCN are also consistent with 

similar molecules considered above. These consistent results validate the total 19F absolute 

shielding in FCN and thus warrants investigation into the experimental chemical shift. 

 

4.5 Calculated 19F Absolute Shielding Scale 

For most of the investigated molecules, agreement with experimental 19F absolute shielding is 

very good. All diatomic 19F shielding constants in Chapter 3 are within 1 ppm of experimental 

shielding constants, or in the case of HF, agree with updated shieldings using updated chemical 

shift data. Throughout Chapters 3 and 4, the 19F absolute shielding in CFCl3 of 197.07 ppm25 

has been used to convert experimental chemical shifts to shielding constants. However, as it is 

possible to use any absolute shielding constant as the reference value, it is worth investigating 

the consistency between the calculated shielding constants thus far whilst using the calculated 
19F shielding within HF of 414.310 ppm (Table 3.12). This particular shielding constant has 

been selected over the other calculated shielding constants due to the excellent agreement with 
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previous experimental shielding constants, as well as the large calculations performed (up to 

CCSDTQP). Table 4.11 collects calculated nuclear shielding constants in comparison to 

experimental 19F shielding constants derived from (HF) = 414.310 ppm together with a 

chemical shift of -217.02 ppm for HF relative to CFCl3.7,14 

 

Table 4.11: Comparison of calculated and corrected experimental absolute 19F shielding 

constants (ppm). 

Molecule Calculated Experimental(a) Calc. – Expt. Ref. Ref. Notes 

HF 414.310 414.31 0.00 This Work Gas 300 K 

F2 -221.070 -221.71 0.64 46 Gas 300 K 

FCl 640.926 641.19 0.26 7, 47 Gas 300 K 

HOF 175.299 180.29 4.99 48 Liquid 77 K 

F2O -41.759 -50.71 8.95 46 Gas 300 K 

CH3F 475.721 475.17 0.55 15 Gas 300 K 

FCN 371.483 353.34 18.14 49 Liquid 
(a) Chemical shifts converted to shielding constants using σ(19F) in HF of 414.310 ppm 

 

The corrected experimental 19F shielding constants are in closer agreement with those 

calculated within this thesis, with most calculated shielding constants having a deviation of less 

than 1 ppm from the new experimental values. In all cases except FCl and HOF, correcting the 

experimental nuclear magnetic shielding with the calculated 19F shielding in HF results in a 

decrease in deviation between the calculated and experimental values. The change in deviation 

is typically 0.22 ppm compared to previously discussed deviations, which is directly related to 

the deviation within the HF shielding constant discussed in Section 3.4.  

The 19F shielding constants in HOF, F2O, and FCN are the only molecules with a deviation of 

greater than 1 ppm after correcting the experimental shielding constants. It is difficult to 

compare accurately with experiment for HOF and FCN due to the lack of experimental data 

for these molecules in the gas-phase at 300 K. As previously discussed, the reported HOF 

chemical shift is a liquid-phase value at 77 K.48 Solvation is known to affect chemical shifts by 

approximately 1-4 ppm.46 Additionally, the FCN experimental chemical shift is reported in the 

liquid-phase relative to CF3COOH,49 which unfortunately is too large a molecule to investigate 

via the high-level computational methods employed in this thesis. The absolute calculated 19F 

shielding constant in F2O deviates from experiment by approximately 9 ppm after correction. 
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While a direct cause of the deviation remains unknown, the results reported here are consistent 

with those in the literature, as discussed in Section 4.3. 

The often-referenced semi-experimental 19F absolute shielding in HF of 409.6 ppm from 

Sundholm et al.12 deviates substantially from the corrected experimental values as well as the 

calculated 19F shielding constant for HF. The deviation arises from an incorrect treatment of 

relativistic effects in the semi-experimental procedure. Sundholm et al. used relativistic 

experimental spin-rotation constant to determine a paramagnetic contribution to the absolute 

shielding, which, as discussed in Chapter 1, has since been found to not be valid.11,12,16,17 

Additionally, the 19F shielding of HF here agrees well with Sundholm et al. 409.6 ppm12 when 

relativistic effects are removed (see Section 3.4). As such, we believe the true 19F absolute 

shielding of HF is closer to the calculated shielding constant presented in Chapter 3. Further 

support of this conclusion is provided by the strong agreement between our 19F shielding 

constants in HF using the previously calculated shielding in CFCl3
 of 197.07 ppm25 and the 

updated chemical shift of SiF4 from Makulski.7 Furthermore, deviations in shielding constants 

between theory and experiment decrease when the absolute shielding in HF of 414.310 ppm is 

used to convert experimental chemical shifts to absolute shieldings rather than the absolute 

shielding within CFCl3 of 197.07 ppm.  

 

4.6 Summary 

The series of fluorine-containing molecules investigated for the accurate calculation of absolute 

shielding constants has been expanded with the addition of the H2O, HOF, and F2O series, as 

well as CH3F and FCN. Absolute shielding constants have been calculated as accurately as 

possible using the same procedure that was employed for the diatomics series in Chapter 3. 

The calculated absolute shielding constants for both 1H and 19F nuclei agree very well with 

experimentally reported values with the exception of the 19F shielding constants in F2O and 

FCN, which have been discussed in detail. The combination of these calculated values with 

those reported in Chapter 3 produces a sizeable 19F absolute shielding constant scale, with 

calculated shielding constants mostly within ±1 ppm of corrected experimental results. 
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Chapter 5: 
Calculation of Spin-Rotation Constants 

 

5.1  Introduction 

Spin-rotation constants are valuable for the purpose of deriving accurate nuclear shielding 

constants; however, they are also of interest in their own right. The calculation of spin-rotation 

constants was carried out alongside the absolute shielding constant calculations. The 

determination of theoretical spin-rotation constants utilised the same computational 

methodology employed throughout Chapters 3 and 4. That is, coupled-cluster calculations of 

the spin-rotation constant were used to determine contributions from each term of the coupled-

cluster expansion, extrapolated to the CBS limit. Summation of these contributions provided 

an equilibrium spin-rotation constant, which was further augmented with vibrational, 

temperature, and relativistic corrections before comparison with experiment. The conversion 

of experimental spin-rotation constants into semi-experimental absolute shielding constants via 

eq. 1.6 is explored in this chapter, including a direct comparison with those reported in Chapters 

3 and 4. 

 

5.2  H2, HF, F2, and FCl Spin-Rotation Constants 

The calculation of spin-rotation constants for diatomic molecules was initially benchmarked 

for the case of H2 due to the capacity to perform FCI calculations with the CCSD method. 

Additionally, the small size of the H2 molecule permits the straightforward use of large basis 

sets up to AV7Z. All calculations were carried out at the CCSD/AVQZ optimised geometry 

(Re = 0.74199 Å) that was also used for nuclear magnetic shielding calculations in Chapter 3. 

The experimental geometry is 0. 74151 Å.12 An optimised geometry was employed to ensure 

a purely theoretical benchmark study since, in practical theoretical investigations, an accurate 

experimental geometry is not always available. The equilibrium spin-rotation constant was 

determined by calculating the contribution of HF-SCF and SD excitation levels. It is noted that 

the full CCSD spin-rotation constant is the summation of the HF-SCF and SD contributions. 

The separate contributions were then extrapolated to the CBS using eq. 2.10 and 2.12 and 

combined into an FCI/CBS equilibrium spin-rotation constant as presented in Table 5.1.  
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Table 5.1: Equilibrium 1H spin-rotation constant in H2 (kHz). 

Contribution AVTZ AVQZ AV5Z AV6Z AV7Z CBS 

HF-SCF 115.9737 115.5491 115.1187 114.9771 114.9755 114.9755 

SD  0.5203 0.3360 0.3020 0.2903 0.2810 0.2653 

Equilibrium Spin-Rotation        115.2407 

 

The equilibrium spin-rotation constant is calculated to be 115.2407 kHz. The smooth 

convergence of both the HF-SCF and SD contributions provides confidence in the accuracy of 

the CBS value. The HF-SCF contribution is clearly converged with respect to the basis set 

limit, with the AV6Z and AV7Z basis set values differing by only 0.002 kHz, which results in 

the extrapolated CBS result being equal to the AV7Z spin-rotation constant to four decimal 

places. Additionally, the SD contribution is also converged, with the AV6Z and AV7Z basis 

set values differing by less than 0.01 kHz, which leads to a predicted CBS contribution within 

0.016 kHz of the AV7Z calculated result.  

Sundholm and Gauss have previously reported a corrected equilibrium spin-rotation constant 

of 115.468(30) kHz.41 This value was derived by taking the experimental spin-rotation constant 

of 113.904(30) kHz from Harrick et al.50 and removing calculated rovibrational effects and 

Thomas precession to convert the experimental constant into an equilibrium constant. The 

value reported by Sundholm et al. deviates by 0.227 kHz from the purely calculated 

equilibrium spin-rotation constant reported here. The small deviation may be attributed to a 

difference in geometry, for which Sundholm et al. used an experimental geometry as opposed 

to an all-electron CCSD(T)/AVQZ optimised geometry used here. Additionally, the differing 

computational methodologies of purely calculating a spin-rotation constant performed here as 

opposed to augmenting an experimental constant may cause differences in the compared 

values.  

The fully calculated equilibrium spin-rotation constant presented in Table 5.1 is self-consistent 

with the Sundholm and Gauss41 value that was obtained by removing vibrational and relativistic 

contributions from the experimental spin-rotation constant. Therefore, it is of interest to 

calculate vibrational, temperature, and relativistic effects to obtain a spin-rotation constant that 

can be directly compared with the experimental data. Vibrational and temperature effects were 

calculated with the CCSD method at geometries optimised at the same CCSD/AVXZ level of 

theory, where X is the zeta magnitude used for the corresponding anharmonic vibrational 
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calculation (Table 5.2). Relativistic corrections were calculated with PBE0 with the same 

CCSD/AVQZ geometry used to calculate the equilibrium spin-rotation constant (Table 5.3).  

 

Table 5.2: CCSD Vibrational averaging and temperature effects on the 1H spin-rotation 

constant in H2 (kHz). 

Contribution AVQZ AV5Z AV6Z AV7Z CBS 

Vibrational averaging -0.6668 -0.6636 -0.6612 -0.6744 -0.6968 

Temperature (300 K) -1.1508 -1.1475 -1.1462 -1.1416 -1.1340 

 

Table 5.3: PBE0 Relativistic effects on the 1H spin-rotation constant in H2 (kHz). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-vtz 115.5222 115.5240 -0.0018 

dyall-aug-vqz 115.8681 115.8701 -0.0020 

  

For the spin-rotation constant, the temperature effect is larger than the vibrational averaging 

effect, which is in contrast to the trend noted for shielding constants. There is evidence of non-

monotonic convergence for the vibrational averaging and temperature effects in Table 5.2 that 

arises from the AV7Z results. Extrapolating to the CBS limit from the AV5Z and AV6Z results 

in place of the AV7Z results yields contributions of -0.6580 kHz and -1.1440 kHz for 

vibrational averaging and temperature effects, respectively. The sum of these vibrational and 

temperature effects deviate from those provided in Table 5.2 by 0.029 kHz; however, for the 

purpose of consistency with other molecular systems, the CBS results in Table 5.2 will continue 

to be used and discussed.  

Relativistic effects are small at only -0.002 kHz. Although these are calculated using the DFT 

functional PBE0, they are considered to be accurate due to a cancellation of error within the 

overall relativistic effect on the spin-rotation constant. That is, although the individual 

relativistic and non-relativistic spin-rotation constants are prone to errors through the use of 

DFT, only the difference of the two values is considered as the effect of relativity which is 

expected to be minimally affected by choice of method. This is further demonstrated in the lack 

of basis set dependence on the effect of relativity. While the individual fully relativistic and 

non-relativistic 4-component values vary by 0.3 kHz between TZ and QZ basis sets, the 

difference (rel-nrel) is not affected by choice of basis set with a change of only 2 x 10-4 kHz. 
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The minimal dependence on basis set could simply result from relativistic effects being small 

in H2 and so will be further explored for heavier molecules. 

All contributions and the total spin-rotation constant are presented in Table 5.4. The combined 

effect on the spin-rotation constant from vibrational, temperature, and relativistic corrections 

is calculated to be -1.8329 kHz. Sundholm and Gauss reported corrections to the experimental 

spin-rotation tensor to be -1.564 kHz.41 The difference of 0.27 kHz in part arises from the 

consideration of rotational states in Sundholm and Gauss’ rovibrational and temperature 

corrections, that is expected to be more accurate than the vibrational and temperature 

corrections presented here. The vibrational and temperature corrections calculated here are also 

impacted by a lack of smooth basis set convergence. Despite this, it is considered that the error 

within the CBS results is within 0.05 kHz and much smaller than the 0.27 kHz deviation 

between effects calculated here and by Sundholm and Gauss.  

 

Table 5.4: Calculated 1H spin-rotation constant of H2 (kHz). 

Contribution AV5Z AV6Z AV7Z CBS/Best Value 

HF-SCF 115.1187 114.9771 114.9755 114.9755 

SD  0.3020 0.2903 0.2810 0.2653 

Vibrational Effects CCSD/ACV[6,7]Z -0.6968 

Temperature Effects (300 K) CCSD/ACV[6,7]Z -1.1340 

Relativistic Effects PBE0/dyall-aug-vqz -0.0020 

Total Spin-Rotation Constant       113.4079 

Experimental Spin-Rotation   113.904(30)50 

 

Combining the calculated equilibrium contribution with vibrational, temperature and 

relativistic effects provides a total spin-rotation constant of 113.4079 kHz with an uncertainty 

of ±0.03 kHz as a result of the rate of convergence in the SD and vibrational contributions. The 

reported experimental spin-rotation constant is 113.904(30) kHz,50 which differs from the 

present calculated value by only 0.496 kHz. Employing the Sundholm and Gauss50 

rovibrational corrections in place of the vibrational and temperature corrections from Table 5.2 

results in a spin-rotation constant of 113.9137 kHz, which is within the experimental 

uncertainty. It is concluded that the vibrational corrections calculated for the H2 molecule are 

not as accurate as the rovibrational corrections previously reported by Sundholm and Gauss. 

Calculation of the 19F spin-rotation constant in HF was carried out using the same 

computational strategy as employed for H2. All calculations employed the ACVXZ basis sets 
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that are augmented with core basis functions. Additionally, coupled-cluster methods beyond 

CCSD were utilised as the increased electron count of HF results in consideration of higher 

electron excitations being required. Once again, the extrapolation of contributions of each 

additional coupled-cluster expansion was utilised to determine a combined equilibrium spin-

rotation constant. Results are collected in Table 5.5.  

 

Table 5.5: Equilibrium 19F spin-rotation constant in HF (kHz). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF -283.0948 -308.8521 -311.3177 -312.7905 -313.2015 -313.3607 

SD  30.4819 25.6437 26.7220 27.1036 27.3364 27.6562 

(T)  0.9062 2.8443 2.8959 2.8495 2.8814 2.9252 

T  -0.2645 -0.8142 -0.9348   -1.0227 

Q -0.0842 -0.1756    -0.2141 

P      -0.0153(a) 

Equilibrium Spin-Rotation Constant    -284.0314 

Experimental Equilibrium Spin-Rotation   -280.49(4)51 
(a) tz2p basis set result 

 

Combining the CBS contributions yields an equilibrium spin-rotation constant of -284.031 

kHz. Throughout Table 5.5, the trend of decrease in contribution with an increase in excitation 

level is evident and is of similar structure to the trend discussed for shielding constants in 

Chapter 3. That is, each successive term of the coupled-cluster expansion decreases the 

magnitude of contribution towards the overall spin-rotation constant. It is therefore concluded 

that hextuple and higher excitation levels would contribute approximately 0.001 kHz and are 

thus deemed negligible. An experimental equilibrium spin-rotation constant of -280.49(4) kHz 

has been reported by Bass et al.51 by determining the v=0 and v=1 vibrational state spin-rotation 

constants and extrapolating towards an equilibrium spin-rotation constant. Gauss et al.52 

calculated a HF-SCF equilibrium spin-rotation constant of -313.53 kHz using a 15s11p4d3f 

basis set, which is 0.17 kHz from the extrapolated HF-SCF spin-rotation constant calculated 

here. Teale et al.18 calculated a CCSD(T)/ACVQZ spin-rotation constant of -280.08 kHz, for 

which the CCSD(T)/ACVQZ calculation in the present investigation yielded a spin-rotation 

constant of -281.70 kHz. The deviation between these results can be attributed to a change in 

geometry. Teale et al. utilised an all-electron CCSD(T)/VTZ optimised geometry, while an all-

electron CCSD(T)/ACVQZ optimised geometry was utilised here. The deviation between the 
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overall equilibrium spin-rotation constant in Table 5.5 and the value reported by Teale et al. 

can also be attributed to the consideration of higher-level excitations in the present work, due 

to the good agreement in the HF-SCF to CCSD(T) methods with previous reports by Gauss et 

al. and Teale et al. The higher excitation contributions are considered to be accurate, due to the 

smooth convergence throughout each successive excitation. The only excitation level that does 

not follow exact monotonic convergence is the (T) contribution from the ACVQZ to ACV6Z 

basis sets. Nevertheless, the uncertainty in the equilibrium spin-rotation constant is expected 

to be at most ±0.5 kHz from that in Table 5.5 due to the large basis sets and methods utilised 

along with the good agreement with previous theoretical spin-rotation constants.  

The contribution from vibrational and temperature effects is presented in Table 5.6, with 

relativistic effects presented in Table 5.7. All components are combined in Table 5.8 to provide 

a total spin-rotation constant for comparison with experiment.   

 

Table 5.6: CCSD(T) Vibrational averaging and temperature effects on the 19F spin-rotation 

constant in HF (kHz). 

Contribution ACVQZ ACV5Z ACV6Z CBS 

Vibrational averaging -23.9768 -24.7178 -24.7721 -24.8466 

Temperature (300 K) -1.3973 -1.4383 -1.4388 -1.4396 
 

Table 5.7: PBE0 Relativistic effects on the 19F spin-rotation constant in HF (kHz). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-cvtz -321.6279 -321.8482 0.2203 

dyall-aug-cvqz -320.9310 -321.1203 0.1893 
 

Table 5.8: Calculated 19F spin-rotation constant in HF (kHz). 

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[Q,5,6]Z -313.3607 
SD  ACV[5,6]Z 27.6562 
(T)  ACV[5,6]Z 2.9252 
T  ACV[T,Q]Z -1.0227 
Q  ACV[D,T]Z -0.2141 
P  tz2p -0.0153 
Vibrational Effects CCSD(T)/ACV[5,6]Z -24.8466 
Temperature Effects (300K) CCSD(T)/ACV[5,6]Z -1.4396 
Relativistic Effects PBE0/dyall-aug-cvqz 0.1893 
Total Spin Rotation Constant  -310.1282 

Experimental Spin-Rotation  -307.65(2)51 



 

 58

Combining all contributions yields a spin-rotation constant of -310.128 kHz, which deviates 

by 2.48 kHz from the experimental spin-rotation constant of -307.65(2) reported by Bass et 

al.51 The agreement may be considered very good, given that the deviation in the equilibrium 

spin-rotation constant of HF presented in Table 5.5 is 3.54 kHz. Additionally, convergence 

within the vibrational and temperature contributions is smooth between ACVQZ and ACV6Z 

basis sets. Unlike the case of H2, a decrease in magnitude for the temperature effects relative 

to the vibrational averaging corrections is evident, as was often the case when considering 

absolute shielding constants. Teale et al.14 have calculated rovibrational and temperature 

corrections to be -28.26 kHz using B3LYP/ACVTZ, which deviates from the values presented 

in Table 5.6 by 1.97 kHz. However, if their rovibrational and temperature effects of -28.26 kHz 

are used in place of the -26.2862 kHz from Table 5.8, the total calculated spin-rotation constant 

deviates even further from the experimental constant from Bass et al. as the calculated spin-

rotation constant overestimates the experimental constant. Consideration of the difference 

between the v=1 and v=0 experimental constants reported by Bass et al. results in a vibrational 

correction of -27.16 kHz, which differs by only 0.87 kHz from the combined vibrational and 

temperature corrections calculated here, which is considered good agreement.  

Interestingly, relativistic effects change by 0.031 kHz between the dyall-cc-cvtz and dyall-cc-

cvqz basis sets, which is of similar magnitude to the basis set differences in Table 3.15 

(relativistic corrections to the 19F absolute nuclear magnetic shielding). However, as the 

magnitude of the numerical relativistic contribution is much smaller for the spin-rotation 

constant, the difference between basis set results has a greater proportional impact on the final 

relativistic contribution for spin-rotation constants. Since the DFT functional PBE0 is used for 

relativistic effects together with Dyall’s four-component relativistic basis sets, extrapolation 

formulae cannot be employed as readily as with the pairing of coupled-cluster methods and 

correlation-consistent basis sets. However, a two-point extrapolation yields a CBS relativistic 

contribution of 0.1667 kHz, which would alter the overall spin-rotation constant to -310.151 

kHz. For consistency with other systems, the largest basis set result of 0.1893 kHz has been 

used in the determination of relativistic effects, although the lack of basis set convergence 

suggests a conservative estimate of the uncertainty of ±1.0 kHz. 

The equilibrium 19F spin-rotation constant of F2 was calculated following the same strategy as 

for HF. Coupled-cluster methods up to CCSDTQ were used to calculate contributions from the 

coupled-cluster expansion by considering higher excitations. Due to the increased electron 

count of F2 compared to HF, the same level of theory could not be used for each excitation 
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state. A CCSD(T)/ACVQZ optimised geometry was utilised throughout the equilibrium spin-

rotation calculations. Results are presented in Table 5.9.  

 

Table 5.9: Equilibrium 19F spin-rotation constant in F2 (kHz). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF -141.7368 -143.9965 -145.7355 -146.4344 -146.6446 -146.7351 

SD  3.6140 -0.4067 -0.8307 -0.9178 -0.9508 -0.9962 

(T)  -2.7849 -3.3192 -3.4728 -3.5284 -3.5473 -3.5732 

T  -0.6645 -0.8789 -0.9059   -0.9256 

Q -0.3550     -0.3550 

Equilibrium Spin-Rotation Constant    -152.5851 

 

The equilibrium spin-rotation constant is determined to be -152.585 kHz. The basis set 

convergence with each excitation is smooth, with an increase in basis set resulting in a larger 

magnitude contribution. Interestingly, the contribution of the SD excitation level is of similar 

size to that of the T excitation contribution. This is different from what is regularly the case of 

decreasing contributions with each successive term of the coupled-cluster expansion. Gauss 

and Sundholm53 have previously estimated the CCSD(T)/CBS equilibrium spin-rotation 

constant to be -151.27 kHz. While this deviates slightly from the fully calculated equilibrium 

spin-rotation including Q excitations, it is very close to the CCSD(T)/CBS value of -151.3045 

kHz calculated here (sum of HF-SCF, SD and (T) contributions). Additionally, Hindermann 

and Williams54 have reported an experimental equilibrium F2 spin-rotation constant of -152.7 

kHz after removing vibrational corrections. The calculated equilibrium value (Table 5.9) agrees 

very well with the vibrationally corrected experimental constant. Addition of vibrational and 

temperature effects from Table 5.10 as well as relativistic effects from Table 5.11 allows for 

comparison with the experimental spin-rotation constant (Table 5.12). 

 

Table 5.10: CCSD(T) Vibrational averaging and temperature effects to the 19F spin-rotation 

constant in F2 (kHz). 

Contribution ACVQZ ACV5Z ACV6Z CBS 

Vibrational averaging -3.7068 -3.6830 -3.6813 -3.6789 

Temperature (300 K) -0.6037 -0.5948 -0.5927 -0.5899 
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Table 5.11: PBE0 Relativistic effects on 19F spin-rotation constant in F2 (kHz). 

Basis Set Relativistic (rel) Non-relativistic (nrel) rel-nrel 

dyall-aug-cvtz -163.3232 -163.5226 0.1994 

dyall-aug-cvqz -163.3325 -163.5142 0.1817 

 

Table 5.12: Calculated 19F spin-rotation constant in F2 (kHz). 

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[Q,5,6]Z -146.7351 

SD  ACV[5,6]Z -0.9962 

(T)  ACV[5,6]Z -3.5732 

T  ACV[T,Q]Z -0.9256 

Q  ACVDZ -0.3550 

Vibrational Effects CCSD(T)/ACV[5,6]Z -3.6789 

Temperature Effects (300K) CCSD(T)/ACV[5,6]Z -0.5899 

Relativistic Effects PBE0/dyall-aug-cvqz 0.1817 

Total Spin-Rotation Constant  -156.672 

Experimental Spin-Rotation  -156.85(10)55 

 

Vibrational and temperature corrections combine to a total of -4.27 kHz, which is in close 

agreement with the corrections of -4.7 kHz reported by Hindermann and Williams54 and -4.09 

kHz calculated by Sundholm et al.12 Basis set convergence of the vibrational and temperature 

effects is smooth, with the ACV5Z and ACV6Z basis set results being identical to the second 

decimal place. It is therefore concluded that the corrections are converged. Relativistic effects 

are of similar magnitude to those in the HF molecule. There is a small deviation between the 

two relativistic basis set results (0.018 kHz), although it is not as large in the case of HF, which 

suggests better basis set convergence with F2. A two-point extrapolation yields a CBS 

relativistic contribution of 0.1667 kHz, which differs by only 0.0129 kHz from the dyall-aug-

cvqz basis set result and is an estimate of the uncertainty due to lack of basis set convergence.   

Combining all contributions yields a final calculated spin-rotation constant of -156.67 kHz that 

is in very close agreement with the experimental value of -156.85(10) kHz reported by Ozier 

and Ramsey.55 Consideration of the smooth convergence of all considered components leads 

to a level of uncertainty of ±0.3 kHz 

Extending spin-rotation constant calculations to FCl significantly increases the computational 

cost due to the larger number of electrons within the molecule. Due to the equilibrium spin-

rotation calculations requiring consideration of core electron correlation (and unable to utilise 
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the frozen-core approximation), an increase in electron count cause very significant increases 

in computational effort. Nevertheless, coupled-cluster excitation contributions towards the 

equilibrium 19F spin-rotation constant were carried out at the CCSD(T)/ACVQZ optimised 

geometry. Similarly, vibrational and temperature corrections, as well as relativistic effects to 

the spin-rotation constant were calculated with the CCSD(T) and PBE0 methods, respectively, 

to obtain an accurate spin-rotation constant for comparison with experiment. Results are 

presented in Table 5.13. 

 

Table 5.13: Calculated 19F spin-rotation constant in FCl (kHz).  

Contribution Method/Basis CBS/Best Value 

HF-SCF ACV[Q,5,6]Z 29.314 

SD  ACV[5,6]Z -5.495 

(T)  ACV[Q,5]Z -0.002 

T  ACVDZ -0.051 

Vibrational Effects CCSD(T)/ACV[Q,5]Z -0.825 

Temperature Effects (300 K) CCSD(T)/ACV[Q,5]Z -0.180 

Relativistic Effects PBE0/dyall-aug-cvqz -0.712 

Total Spin-Rotation Constant  22.049 

Experimental Spin-Rotation  22.4156 

 

A fully calculated spin-rotation tensor is reported as 22.41 kHz. Consideration of the rate of 

convergence within the calculated components leads to an estimation of the uncertainty of 

±0.04 kHz. CCSDT was the highest level of theory that was able to be run for FCl with the 

available resources. Therefore, an investigation into the contribution of Q excitations was not 

possible. While Q excitations make up between 0.2 kHz in HF and 0.4 kHz F2, it is difficult to 

assume they would be of such magnitude in the case of FCl. The T excitation contributions for 

FCl are calculated to be a magnitude smaller than those calculated for HF and F2 with similar 

basis sets. While the trends in HF and F2 molecules is to increase the size of the contribution 

upon successive basis sets, it is not enough to justify the suggestion that T contributions, and 

thus Q contributions, would be of similar size to those of HF and F2. The decrease in magnitude 

is likely due to the decrease in overall 19F spin-rotation constant magnitude, with the spin-

rotation constant in FCl being marginally smaller than the previous diatomics. Similar to that 

of the absolute shielding in Section 3.6, the relativistic effects to the 19F spin-rotation constant 

are negative in sign, which contrasts those seen in the other diatomics discussed above. The 
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experimental spin-rotation constant is 22.41 kHz as reported by Fabricant and Muenter56 and 

agrees well with the fully calculated spin-rotation constant of 22.049 kHz. 

5.3  H2, HF, F2, and FCl Semi-Experimental Shielding Constants 

Spin-rotation constants are often used in the calculation of the paramagnetic component of 

absolute nuclear magnetic shielding via eq. 1.6 in order to derive semi-experimental shielding 

constants. However, this approach can only be accurately achieved with an equilibrium spin-

rotation constant, as the use of a vibrationally corrected spin-rotation constant would require 

calculating a vibrationally corrected diamagnetic absolute shielding. Additionally, Malkin et 

al.16 has demonstrated that eq. 1.6 is not valid within the relativistic limit, and only non-

relativistic spin-rotation constants may be converted to paramagnetic absolute shielding 

constants, as discussed in Section 1.2. As such, the vibrational, temperature, and relativistic 

effects calculated in Section 5.2 have been used to convert experimental spin-rotation constants 

into semi-experimental equilibrium nuclear magnetic shielding constants. Furthermore, it is 

worth noting that the equilibrium spin-rotation constants reported in Section 5.2 were not used 

to derive absolute shielding constants due to the inherent self-consistency between these 

calculated spin-rotation constants and the shielding constants reported in Chapter 3.  

Deriving the semi-experimental 1H and 19F shielding constants in H2, HF, F2, and FCl requires 

the calculation of the diamagnetic contribution to the absolute shielding. In the case of H2, an 

FCI investigation is performed through the use of the CCSD method, whereas for the larger 

diatomics, CCSD(T) and higher excitation levels were used to explore the effect of higher 

excitations within diamagnetic shielding. Extrapolation of each excitation level towards a CBS 

limit was performed, allowing each contribution to be combined to obtain an equilibrium 

diamagnetic shielding. Results for diatomic molecules are presented in Tables 5.14 to 5.17. 

The equilibrium value was then combined with a paramagnetic shielding constant contribution, 

which is derived by removing vibrational, temperature, and relativistic effects calculated in 

Section 5.2 from experimental spin-rotation constants and applying eq. 1.6 with the corrected 

experimental equilibrium spin-rotation constant. It is noted that for linear molecules, the value 

from applying eq. 1.6 must be multiplied by 
ଶ

ଷ
 to provide a useable equilibrium paramagnetic 

absolute shielding. The paramagnetic and diamagnetic contributions are then combined with 

corrections reported in Chapter 3 to obtain a final semi-experimental shielding that can be 

compared with experiment. The contributions of the combined value are collected in Table 

5.18. 
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Table 5.14: Diamagnetic 1H shielding in H2 (ppm). 

Contribution AVTZ AVQZ AV5Z AV6Z AV7Z CBS 

HF-SCF 32.1865 32.2099 32.2152 32.2159 32.2160 32.2161 

SD  0.1481 0.1576 0.1621 0.1636 0.1643 0.1655 

Diamagnetic Shielding          32.3816 

 

Table 5.15: Diamagnetic 19F shielding contribution in HF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 481.882 482.138 482.218 482.242 482.245 482.245 

SD  -0.647 -0.037 0.072 0.113 0.130 0.154 

(T)  -0.037 -0.054 -0.054 -0.054 -0.055 -0.055 

T  0.001 0.001 0.001   0.002 

Q -0.008 -0.004    -0.002 

P      0.000(a) 

Diamagnetic Shielding          482.344 
(a) tz2p basis set result. 

 

Table 5.16: Diamagnetic 19F shielding contribution in F2 (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z ACV7Z   CBS 

HF-SCF 529.346 529.633 529.723 529.749 529.751 529.752 529.752 

SD  -0.306 0.234 0.319 0.352 0.366 0.371 0.381 

(T)  -0.004 -0.002 -0.001 0.000 0.000  0.000 

T  0.002 0.002 0.002    0.003 

Q  0.002      0.002 

Diamagnetic Shielding           530.138 

 

Table 5.17: Diamagnetic 19F shielding contribution in FCl (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 568.651 568.944 569.031 569.057 569.059 569.060 

SD  -0.612 -0.044 0.039 0.072 0.085 0.103 

(T)  -0.046 -0.070 -0.074 -0.075  -0.076 

T  0.006     0.006 

Diamagnetic Shielding         569.093 
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Table 5.18: Determination of semi-experimental 1H and 19F absolute shielding constants in 

H2,(a) HF,(b) F2,(c) and FCl.(d) 

Constants  H2
 (1H) HF (19F) F2 (19F) FCl (19F) 

𝑪଴
୰ୣ୪ (kHz) 113.904(30)50 -307.65(2)51 -156.85(10)55 22.41(1)56 

𝑪௘
୬୭୬୰ୣ୪ (kHz) 115.737(30) -281.55(2) -152.76(10) 24.13(1) 

𝜎௘
୮ (ppm) -5.715(2) -62.415(4) -726.148(436) 83.24(11) 

𝜎௘
ୢ (ppm) 32.382(1) 482.344(15) 530.138(8) 569.093(15) 

𝜎௘
୬୭୬୰ୣ୪ (ppm) 26.667(3) 419.929(19) -196.011(444) 652.33(13) 

𝜎଴
୰ୣ୪ (ppm) 26.298(3) 414.854(19) -222.111(444) 643.25(13) 

(a) Re = 0.74150 Å for use of eq. 1.6 
(b) Re = 0.91680 Å for use of eq. 1.6 
(c) Re = 1.41184 Å for use of eq. 1.6 
(d) Re = 1.62800 Å for use of eq. 1.6 

 

Tables 5.14 through 5.17 illustrate the determination of the equilibrium diamagnetic shielding 

in H2, HF, F2, and FCl. Basis set convergence is smooth throughout the extrapolation of each 

excitation contribution. Interestingly, the basis set convergence of each contribution occurs 

more rapidly within diamagnetic shielding constants than absolute shielding constants. Within 

HF, F2, and FCl, contributions above SD converge as early as the ACVTZ basis set, whilst HF-

SCF and SD excitation contributions appear to converge at the ACV5Z basis set. This is not 

the case for absolute shielding constants where basis set convergence was slower and required 

calculations with extensive basis sets. It is also evident that the decrease in the magnitude of 

each successive excitation exists even in the diamagnetic component of absolute shielding. 

Additionally, the amounts in which higher excitations contribute to the diamagnetic shielding 

is vastly smaller than in absolute shielding constants. Within HF, T excitations contribute 

approximately 0.2 ppm to the overall shielding (Table 3.9) while they contribute two orders of 

magnitude less towards diamagnetic shielding constants. These trends are due to method and 

basis set having an overall decreased effect on the diamagnetic contribution compared to the 

paramagnetic and absolute shielding. This is likely due to the diamagnetic shielding being more 

related to the nuclear contributions to shielding rather than electronic effects.1,9,16 

Sundholm et al.12 calculated diamagnetic shielding constants within H2, HF, and F2 for the 

purposes of semi-experimental shielding constants using CCSD(T) along with 8s5p3d2f and 

15s11p3d2f basis sets for hydrogen and fluorine, respectively. Sundholm et al. produced 

diamagnetic shielding constants of 32.3885 ppm, 482.34 ppm, and 530.078 ppm for H2, HF, 

and F2, respectively. These agree with the diamagnetic shielding constants presented in Tables 

5.14 to 5.16 extremely well, with the 1H shielding in H2 and 19F shielding in HF deviating by 
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less than 0.01 ppm, and the 19F shielding in F2 deviating by 0.06 ppm. Any variation between 

numbers can be attributed to differences within the applied geometry, where Sundholm et al. 

utilised experimental geometries as opposed to the CCSD(T) optimised ones considered in this 

work. The consideration of higher coupled-cluster excitations is less likely to cause the 

deviation due to previously discussed minor impact these have on diamagnetic shielding 

constants.  

Table 5.18 demonstrates the conversion of reported experimental spin-rotation constants into 

paramagnetic shielding constants for the purposes of creating semi-experimental absolute 

shielding constants yields shielding constants very similar to those presented in Chapter 3. F2 

is the only case of the molecules considered thus far where conversion of spin-rotation results 

in a larger paramagnetic shielding. This is due to the smaller rotational constant 𝐵, which is a 

magnitude less than that of HF. The reported uncertainties reported in Table 5.18 arise from 

the difference in the paramagnetic shielding that occurs if the spin-rotation constant was shifted 

to the error bar limit as well as the uncertainty estimated the diamagnetic shielding as a result 

of the rates of convergence. It is important to note that any difference between the semi-

experimental shielding constants in Table 5.18 and those discussed in Chapter 3 arises purely 

from the paramagnetic contribution to the absolute shielding as the addition of vibrational 

corrections and relativistic effects occur in the same manner as in the investigation to absolute 

shielding constants.  

The resulting shielding in H2 is 26.298(3) ppm falls within experimental error compared to the 

experimental shielding of 26.293(5) ppm40 and deviates from the fully calculated shielding by 

0.016 ppm. It is believed that the semi-experimental value is therefore more accurate. It is also 

worth noting that if the largest basis set results for the vibrational corrections towards the H2 

spin-rotation constant are used to circumvent the non-monotonic convergence seen in Table 

5.2, the overall semi-experimental shielding moves closer towards the measured shielding.  

The semi-experimental 19F shielding in HF comes to a total of 414.854(19) ppm. This is within 

close agreement with the fully calculated shielding of 414.310 ppm. Unlike the case of H2, this 

semi-experimental shielding deviates from the corrected experimental shielding of 414.09 

ppm.7,14,25 Sundholm et al.12 reported a semi-experimental shielding of 409.6 ± 1 ppm without 

the addition of relativistic corrections. The agreement between the updated semi-experimental 

shielding proposed here and the fully calculated shielding discussed in Section 3.4 further 

emphasises that the true absolute 19F shielding in HF is closer to the fully calculated 414.310 

ppm than the previously reported shielding by Sundholm et al. The fully calculated shielding 
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is believed to be more accurate in this case, due to the decreased deviation to both the corrected 

experimental shieling as well as the agreement with the semi-experimental shielding of 409.6 

ppm from Sundholm et al.12 when removing relativistic effects. Bass et al.51 reported an 

experimental vibrationally corrected spin-rotation constant of -280.49 kHz. Using this spin-

rotation constant in the generation of the paramagnetic shielding yields an absolute shielding 

of 415.051 ppm, which deviates further from the fully calculated shielding of 414.310 ppm 

than the shielding constant derived in Table 5.18. 

Determination of the semi-experimental 19F absolute shielding constant in F2 results in a 

shielding constant of -222.111(444) ppm. Sundholm et al.12 reported a semi-experimental 19F 

shielding of -231.62 ppm. The deviation between these two results occurs mostly within 

calculated vibrational and temperature effects to the absolute shielding. This is evident as the 

equilibrium shielding of Sundholm et al. and that in Table 5.18 differs by less than 0.1 ppm as 

discussed previously. Therefore, any difference must occur outside the equilibrium shielding, 

for which differences have been discussed in detail within Chapter 3. Agreement between the 

semi-experimental shielding and fully calculated shielding presented in Table 3.16 is within 

1.05 ppm. While this agreement is good, it is outside the error bars provided by the 

experimental spin-rotation data. This is attributed to the basis-set convergence within the fully 

calculated shielding not being as rapid as the diamagnetic shielding. Additionally, Q excitation 

contributions within the fully calculated shielding amount to greater than -1 ppm. Shielding 

contributions from higher (P and beyond) excitations could be sizeable and cause the overall 

shielding to be more negative, as is the case with Q excitations, causing the calculated shielding 

to shift closer to the semi-experimental shielding proposed here. There is a very close 

agreement with the experimental absolute shielding -221.93 ppm25,46 as well as the corrected 

experimental shielding within Table 4.11, both of which occur within the experimental error 

from the spin-rotation constant. This agreement with experimental shielding constants, along 

with an accurate diamagnetic shielding, allows for the conclusion that the semi-experimental 

shielding is more precise than the fully calculated shielding presented in Chapter 3. 

Use of experimental 19F spin-rotation data for FCl provides a semi-experimental shielding of 

643.25(13) ppm. This deviates from the experimental shielding of 640.94 ppm7,25,47 by 2.3 

ppm. The deviation occurs within the paramagnetic shielding component, as the fully 

calculated shielding in Table 3.17 appears very close to the experimental value. A possible 

cause of this error may be within the vibrational, temperature and relativistic effects to the spin-

rotation constant. In the case of FCl, a change of 0.1 kHz to the spin-rotation constant results 
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in a shift in over 1 ppm to the paramagnetic shielding. As such, minor errors propagate rapidly 

in this conversion process.  

 

5.4  H2O, HOF, F2O Spin-Rotation Constants 

Extending calculations of spin-rotation constants to non-linear molecules requires extra 

consideration. Spin-rotation is a 3 x 3 tensor; for linear molecules, the spin-rotation constant is 

represented by a single unique value (𝑥𝑥 and 𝑦𝑦 are degenerate components and 𝑧𝑧 component 

is 0). However, for non-linear molecules, the 𝑥𝑥 and 𝑦𝑦 components are not equivalent, and as 

such, the spin-rotation constant is referenced by separate 𝑪௫௫, 𝑪௬௬, and 𝑪௭௭ components. 

Additionally, eq. 1.6 utilises the individual components, so separation of the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 

components is important for the determination of semi-experimental shielding constants. For 

non-linear molecules H2O, HOF, and F2O, components of the spin-rotation tensor are reported.  
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Table 5.19: Calculated 1H spin-rotation tensor elements in H2O (kHz). Vibrational and 

Temperature effects calculated using CCSD(T). Relativistic effects calculated using 

PBE0/dyall-aug-cvqz. 

𝑪௚௚ Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

𝑪௫௫  HF-SCF 35.601 34.030 33.503 33.335 33.268 33.223 

 SD  1.146 0.853 0.578 0.504 0.476 0.439 

 (T)  0.148 0.140 0.136 0.135 0.135 0.134 

 T  -1.295 -0.992 0.006   0.734 

 Q  1.310     1.310 

 Vibrational Effects -1.667 -1.559 -1.547   -1.538 

 Temperature (300K) -0.128 -0.130 -0.127   -0.124 

 Relativistic Effects      0.147 

 Total      34.325 
𝑪௬௬  HF-SCF 36.796 35.054 34.453 34.282 34.207 34.150 

 SD  1.550 1.324 1.022 0.941 0.912 0.873 

 (T)  0.239 0.240 0.243 0.244 0.244 0.244 

 T  -1.789 -1.565 -0.001   1.141 

 Q  1.809     1.809 

 Vibrational Effects -1.305 -1.184 -1.180   -1.177 

 Temperature (300K) -0.117 -0.120 -0.116   -0.113 

 Relativistic Effects      0.274 

 Total      37.201 

𝑪௭௭  HF-SCF 33.724 32.069 31.485 31.309 31.236 31.184 

 SD  0.979 0.726 0.466 0.393 0.369 0.335 

 (T)  0.101 0.088 0.083 0.081 0.081 0.080 

 T  -1.080 -0.813 0.006     0.603 

 Q  1.089         1.089 

 Vibrational Effects -0.778 -0.620 -0.625     -0.628 

 Temperature (300K) -0.110 -0.113 -0.109     -0.106 

 Relativistic Effects       0.208 

 Total       32.765 

 

Assessment of the 1H spin-rotation constant in H2O within Table 5.19 shows that a decrease in 

coupled-cluster excitation contribution is not prevalent for components of the spin-rotation 

tensor. In the case of H2O, the contribution to the spin-rotation tensor component increases 

with higher excitation states from SD to Q excitations, if considering complete T contributions 

as a combination of (T) and T. However, the majority of the spin-rotation tensor element comes 

from the HF-SCF calculation as seen with all other properties thus far. It may be contended 

that the use of the ACVDZ basis set yields inaccurate results for the Q contributions; however, 
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it is difficult to conclude if an extrapolated CBS value would result in a larger or smaller 

contribution without further investigation into the effect of higher excitations on spin-rotation 

tensors. Vibrational averaging and temperature effects follow previously discussed trends, with 

vibrational corrections affecting the spin-rotation tensor elements by a magnitude more than 

temperature effects. These effects contribute approximately 1 kHz towards the tensor elements, 

which given the relatively small size of the components, is continued to be considered 

important.  

Final calculated spin-rotation tensor elements of 𝑪௫௫, 𝑪௬௬, and 𝑪௭௭ amount to 34.325 kHz, 

37.201 kHz, and 32.765 kHz, respectively. The uncertainties for each of the tensor elements is 

estimated to be ±1 kHz due to the unconverted (T) contributions to the equilibrium spin-

rotation tensors. The reported tensor elements agree very well with experimental results of 

32.91 kHz, 34.45 kHz, and 31.03 kHz from Puzzarini et al.11 The largest deviation occurs 

within the 𝑪௬௬ component of 2.75 kHz. Due to the impact Q contributions have on the tensor 

elements, it may be expected that higher excitation contributions have a greater impact on spin-

rotation tensors, and further excitations must be considered. Puzzarini et al. also reported 

CCSD(T)/ACV6Z equilibrium spin-rotation tensor elements augmented with vibrational 

corrects at the CCSD(T)/ACV5Z level of theory as 32.54 kHz, 34.27 kHz, and 31.16 kHz. 

These agree very well with the CCSD(T)/CBS equilibrium spin-rotation tensor elements 

augmented with vibrational, temperature and relativistic effects from Table 5.19 to within 0.3 

kHz for each component. Therefore, it is believed an investigation into higher excitation 

contribution is required to understand the impact on spin-rotation tensor elements. Teale et al.18 

reported the 1H equilibrium spin-rotation tensor elements of H2O as 34.59 kHz, 35.91 kHz, and 

32.35 kHz from extrapolating CCSD(T)/ACVTZ and CCSD(T)/ACVQZ results. These agree 

well with similar results presented here; however, the 𝑪௫௫ tensor component differs by over 2 

kHz. This likely arises due to geometry differences, for which Teale et al. utilised a 

CCSD(T)/VTZ optimised geometry as opposed to the CCSD(T)/ACVQZ optimised geometry 

used here.  
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Table 5.20. Calculated 19F spin-rotation tensor elements in HOF (kHz). Vibrational and 

Temperature effects calculated using CCSD(T). Relativistic effects calculated using 

PBE0/dyall-aug-cvqz. 

𝑪௚௚ Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

𝑪௫௫  HF-SCF -7.303 -9.271 -9.077 -8.981 -9.013 -9.005 

 SD  -0.854 -1.270 -1.453 -1.487 -1.479 -1.467 

 (T)  -0.015 -0.247 -0.339 -0.372  -0.407 

 T  -0.199 -0.274    -0.306 

 Vibrational Effects -6.769 -6.557    -6.469 

 Temperature (300K) -0.005 0.009    0.015 

 Relativistic Effects      1.198 

 Total      -16.440 
𝑪௬௬ HF-SCF -21.288 -23.303 -23.782 -23.966 -24.008 -24.021 

 SD  -21.985 -22.561 -22.448 -22.456 -22.448 -22.437 

 (T)  -1.927 -2.594 -2.730 -2.782  -2.837 

 T  -0.011 -0.035    -0.045 

 Vibrational Effects -0.131 -0.023    0.023 

 Temperature (300K) -0.304 -0.263    -0.245 

 Relativistic Effects      0.339 

 Total      -49.223 

𝑪௭௭ HF-SCF -53.481 -54.973 -55.743 -56.028 -56.112 -56.147 

 SD  -12.655 -14.429 -14.374 -14.370 -14.352 -14.327 

 (T)  -1.770 -2.366 -2.502 -2.556   -2.612 

 T  -0.152 -0.200       -0.220 

 Vibrational Effects -3.300 -3.048       -2.941 

 Temperature (300K) -0.463 -0.397       -0.368 

 Relativistic Effects       0.150 

 Total       -76.465 

 

Table 5.20 demonstrates the 19F spin-rotation tensor elements in HOF. Unlike the case of the 
1H spin-rotation tensor element in H2O, Table 5.20 demonstrates the trend of decreasing 

contribution with consideration of additional excitation states. However, Q contributions to the 

equilibrium spin-rotation constant could not be determined, and as such, it is difficult to 

determine if the trend similar to H2O would appear for HOF as well. The calculated components 

of the HOF 19F spin-rotation tensor converge smoothly and rapidly, with the T contribution of 

the 𝑪௫௫ tensor element being the least converged amongst the equilibrium calculations. 

However, this is likely due to extrapolating from a DZ basis set. Regardless, the smooth and 

rapid convergence leads to estimated uncertainties of ±0.15 kHz within the final reported spin-

rotation tensor elements. Interestingly, for the 𝑪௬௬ component, SD excitation contributions 
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make up almost the same amount as the HF-SCF calculations. SD contributions are of similar 

size within the 𝑪௭௭ component, however, are much smaller than the HF-SCF contribution, 

unlike what is seen for the 𝑪௬௬ component. (T) excitations contribute for more than 2 kHz for 

the 𝑪௬௬ and 𝑪௭௭ components and thus cannot be ignored when quantitative accuracy is desired. 

Interestingly, relativistic effects are of a similar magnitude within the HOF 19F spin-rotation 

tensor as they are within the H2O 1H spin-rotation tensor. This contrasts trends within absolute 

shielding where relativistic effects were much larger in 19F than that of 1H. Teale et al.18 

calculated the 19F equilibrium spin-rotation tensor within HOF as -17.48 kHz, -50.14 kHz, and 

-74.7 kHz from equilibrium CCSD(T) calculations. Whilst the 𝑪௬௬ and 𝑪௭௭ components are 

within very close agreement to the equilibrium spin-rotation tensor here, the 𝑪௫௫ component 

deviates by over 6 kHz. A possible cause of this deviation is a difference in the geometry, as 

discussed in the deviation within H2O. However, an alternative possibility is a slight isotropic 

effect. Teale et al. reported the 19F spin-rotation tensor along with the 16O isotope, whereas the 

results presented here arise from the 17O isotope. Sundholm and Gauss41 have previously shown 

that the 1H spin-rotation constant within H2 can change by almost 30 kHz compared to HD. 

Whilst this effect is expected to be greater in H2 due to the larger relative mass increase 

compared to that of the difference between 16O and 17O, the influence of isotope effects on the 

spin-rotation tensor cannot be underestimated and requires further investigation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 72

Table 5.21. Calculated 19F spin-rotation tensor elements in F2O (kHz). Vibrational and 

Temperature effects calculated using CCSD(T). Relativistic effects calculated using 

PBE0/dyall-aug-cvqz. 

𝑪௚௚ Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

𝑪௫௫  HF-SCF -47.127 -47.775 -48.334 -48.561 -48.630 -48.660 

 SD  1.949 0.522 0.456 0.451  0.446 

 (T)  -0.864 -0.891 -0.926   -0.952 

 T  -0.005     -0.005 

 Vibrational Effects -1.515 -1.443    -1.413 

 Temperature (300K) -0.210 -0.179    -0.166 

 Relativistic Effects      0.611 

 Total      -50.139 
𝑪௬௬ HF-SCF -34.426 -36.331 -36.946 -37.177 -37.235 -37.255 

 SD  -12.144 -13.163 -13.113 -13.116  -13.121 

 (T)  -2.232 -2.707 -2.806   -2.878 

 T  -0.463     -0.463 

 Vibrational Effects -2.021 -1.897    -1.845 

 Temperature (300K) -0.108 -0.089    -0.081 

 Relativistic Effects      0.058 

 Total      -55.584 

𝑪௭௭ HF-SCF -18.453 -18.733 -18.972 -19.067 -19.095 -19.106 

 SD  -3.019 -3.638 -3.659 -3.669   -3.679 

 (T)  -0.878 -1.002 -1.036     -1.061 

 T  -0.064         -0.064 

 Vibrational Effects -0.733 -0.682       -0.660 

 Temperature (300K) -0.144 -0.120       -0.110 

 Relativistic Effects       0.028 

 Total       -24.652 

 

Trends within the F2O 19F spin-rotation tensor are not consistent between components. Whilst 

the 𝑪௬௬ and 𝑪௭௭ components follow the general trend of decreasing contributions from higher 

excitations, the 𝑪௫௫ tensor element follows a similar trend to that seen within H2O, where the 

combination of (T) and T excitations is larger than the SD contribution. Additionally, the SD 

contribution accounts for a large amount of the 𝑪௬௬ and 𝑪௭௭ tensor components. Vibrational 

and temperature effects follow expected trends, with vibrational corrections contributing a 

magnitude more than the temperature effects to the final spin-rotation tensor. Relativistic 

effects are surprisingly small within F2O, with the 𝑪௬௬ and 𝑪௭௭
 relativistic effects being smaller 

than all relativistic effects within the 1H spin-rotation tensor of H2O. This is unexpected given 

the relativistic effects within HOF were of a similar size to those within H2O, as well as all 19F 
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shielding relativistic effects being much greater than relativistic effects to 1H shielding 

constants. Once again, the convergence of the calculated components of the 19F spin-rotation 

tensor elements is smooth and an uncertainty of ±1.0 kHz is estimated for each reported final 

spin-rotation element. 

The equilibrium spin-rotation tensor was reported by Teale et al.18 as 51.09 kHz, 52.81 kHz, 

and 24.07 kHz after extrapolating CCSD(T)/ACVTZ and CCSD(T)/ACVQZ results. These 

agree quite well with the equilibrium results presented in Table 5.21, with the largest deviation 

occurring within the 𝑪௫௫ component at 1.9 kHz. Consideration of vibrational effects from Teale 

et al. of 1.41 kHz, 1.48 kHz, and 0.54 kHz decreases the deviation between results here and 

those of Teale et al. Flygare56 preformed microwave spectrometry to determine the spin-

rotation tensor elements of F2O of 49 kHz, 42 kHz, and 22 kHz. Whilst these are of similar size 

to the tensor elements reported here and by Teale et al., there remains a large deviation of over 

12 kHz within the 𝑪௬௬ tensor component from both calculated sources. This is most likely due 

to the process in which the experimental spin-rotation tensor was developed. Flygare converted 

a paramagnetic contribution to the F2O absolute shielding and performed a least-squares fit 

against microwave spectrometry results to determine the most likely spin-rotation tensor 

elements given available data. However, a chemical shift of 205.2 for F2O relative to F2 was 

used in the calculation of the paramagnetic shielding, whereas the F2O and F2 chemical shifts 

have since been updated, resulting in a change to the chemical shift of approximately 35 ppm. 

Therefore, it is concluded that the calculated F2O spin-rotation tensor elements reported here 

are the most accurate to date. 

 

5.5  H2O, HOF, F2O Semi-Experimental Shielding Constants 

The semi-experimental absolute shielding constants of the H2O, HOF, and F2O series have 

been determined via the process outlined in Section 1.2 and demonstrated in Section 5.3. First, 

diamagnetic shielding constants were determined by extrapolating the contributions of the 

coupled-cluster wave function expansion. Once an equilibrium diamagnetic shielding has been 

calculated, it can be combined with a paramagnetic shielding constant. The paramagnetic 

shielding was calculated through the use of eq. 1.6, utilising experimental spin-rotation tensors 

with calculated vibrational, temperature, and relativistic effects removed. It is noted that the 

result of using eq. 1.6 will not be multiplied by 
ଶ

ଷ
 as the following molecules are not linear. The 

equilibrium non-relativistic paramagnetic and diamagnetic shielding constants will then be 
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combined along with vibrational, temperature, and relativistic corrections reported in Chapter 

4 to generate a final semi-experimental absolute shielding constant.  

 

Table 5.22: Diamagnetic 1H shielding contribution in H2O (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 102.233 102.415 102.445 102.452 102.453 102.453 

SD  -0.128 -0.086 -0.080 -0.075 -0.074 -0.073 

(T)  -0.028 -0.038 -0.039 -0.039 -0.039 -0.039 

T  0.001 0.003 0.004   0.004 

Q -0.002     -0.002 

Diamagnetic Shielding          102.343 

 

Table 5.23: Diamagnetic 19F shielding contribution in HOF (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 528.372 528.663 528.746 528.770 528.772 528.773 

SD  -0.682 -0.117 -0.019 0.018 0.033 0.054 

(T)  -0.024 -0.036 -0.037 -0.038  -0.038 

T  0.007 0.007    0.007 

Diamagnetic Shielding         528.796 

 

Table 5.24: Diamagnetic 19F shielding contribution in F2O (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z ACV6Z CBS 

HF-SCF 561.901 562.201 562.288 562.313 562.315 562.316 

SD  -0.446 0.095 0.184 0.219 0.232 0.251 

(T)  -0.013 -0.017 -0.017   -0.018 

T  0.010     0.010 

Diamagnetic Shielding          562.559 
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Table: 5.25: Determination of semi-experimental 1H and 19F absolute shielding constants in 

H2O,(a) HOF,(b) F2O.(c) 

Constants  H2O (1H) HOF (19F) F2O (19F) 

𝑪଴
୰ୣ୪  

 
  

 𝑪௫௫ (kHz) 32.91(10)11  -49(2)56 

 𝑪௬௬ (kHz) 34.45(19)11  -42(2)56 

 𝑪௭௭ (kHz) 31.03(19)11  -22(2)56 

𝑪௘
୬୭୬୰ୣ୪     

 𝑪௫௫ (kHz) 34.43(10) -11.185(150)(d) -48(2) 
 𝑪௬௬ (kHz) 35.47(19) -49.339(150)(d) -40(2) 
 𝑪௭௭ (kHz) 31.56(19) -73.306(150)(d) -21(2) 
𝜎௘

୮ (ppm) -71.73(6) -340.325(702) -550(25) 

𝜎௘
ୢ (ppm) 102.343(0) 528.796(15) 562.559(15) 

𝜎௘
୬୭୬୰ୣ୪ (ppm) 30.62(6) 188.471(717) 13(25) 

𝜎଴
୰ୣ୪ (ppm) 30.14(6) 172.924(717) -7(25) 

(a) r(OH) = 0.9757 Å and ∠(HOH) = 104.51° for use of eq. 1.6 
(b) r(OH) = 0.9600 Å, r(OF) = 1.4420 Å, and ∠(HOF) = 97.20° for use of eq. 1.6 
(c) r(OF) = 1.4050 Å and ∠(FOF) = 103.10° for use of eq. 1.6 
(d) Calculated spin-rotation tensor element 

 

Basis set convergence is smooth for the determination of the diamagnetic shielding for H2O, 

HOF, and F2O. The largest difference between two extrapolated basis sets is 0.015 ppm within 

the SD contribution to the HOF diamagnetic shielding, which may be considered very good. 

Convergence towards a CBS value occurs much more rapidly than in the case of absolute 

shielding constants as shown in the estimated CBS contributions to the 1H diamagnetic 

shielding in H2O. The estimated CBS contributions to the diamagnetic shielding equal those 

calculated with the ACV6Z basis set outside of the SD contribution which differs by only 0.001 

kHz. Additionally, consideration of higher excitations contributes much less to the diamagnetic 

shielding than seen for absolute shielding constants. Table 4.7 shows SD excitations contribute 

over 10 ppm to the overall shielding, whereas they make up less than 0.5 ppm within the 

diamagnetic shielding. These trends mirror those seen within the diatomics of Sections 5.3. 

Evidence of decreasing shielding contribution with an increase of excitation level is once again 

prevalent. Within all three molecules, deviation from fully calculated diamagnetic shielding 

constants and HF-SCF/ACVQZ calculated diamagnetic shielding constants is less than 1 ppm. 

Because of this, large molecules have the potential for high accuracy absolute shielding studies 

given accurate experimental spin-rotation data is available.  
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Table 5.25 shows the semi-experimental shielding constants for H2O and F2O based on 

experimental spin-rotation data along with fully calculated diamagnetic shielding constants. 

Error bars reported result from augmenting experimental spin-rotation tensor elements with 

provided error bars during the conversion to paramagnetic shielding constants. Calculation of 

the semi-experimental 1H shielding within H2O yields a final shielding constant that is within 

0.04 ppm from the experimentally reported 30.102 ppm from Garbacz et al.40 and is within 

0.03 ppm of the fully calculated absolute shielding constant reported in Chapter 4. Both the 

experimental and fully calculated absolute shielding constants lie within the uncertainty of the 

semi-experimental shielding, which suggests that these values are reliable.  

Due to experimental spin-rotation data not being available for the HOF molecule, the fully 

calculated equilibrium spin-rotation tensor is used instead. Use of an optimised geometry 

during application of eq. 1.6 results in an absolute shielding that deviates from the fully 

calculated shielding reported in Chapter 4 by less than 0.001 ppm. Therefore, Conversion of 

the spin-rotation tensor will use an experimental geometry so that the effects of the rotational 

constants and nuclear component of the spin-rotation tensor elements can be further 

understood. The 19F absolute shielding via this method is 172.924(717) ppm, which deviates by 

2.4 ppm to the fully calculated shielding of 175.299 ppm. It is thus concluded that the geometry 

effects have a large effect during the conversion process of eq. 1.6. A likely cause of this is the 

use of an experimental geometry along with calculated equilibrium spin-rotation constants 

when using eq. 1.6 as opposed to an equilibrium geometry. The absolute shielding derived via 

eq. 1.6 with use of experimental geometry deviates further from the experimental 180.07 ppm48 

than the fully calculated absolute shielding. This is likely due to the cross-use of a calculated 

spin-rotation tensor with an experimental geometry for constant conversion. While geometry 

effects on the conversion seem prevalent, they may be cancelled from experimental spin-

rotation data. As such, further investigation into the effects of geometry is required.  

The semi-experimental 19F shielding within F2O is calculated to be -7(25) ppm. This deviates 

from the experimental shielding by over 40 ppm46 and the fully calculated shielding reported 

in Chapter 4 by almost 35 ppm. This is caused by the inaccuracies of the spin-rotation tensor, 

as discussed in Section 5.4. Large deviations within the paramagnetic shielding are not 

surprising due to the spin-rotation tensor elements being determined from outdated chemical 

shift data. The hypothesis that the error within the semi-experimental shielding arises from the 

provided spin-rotation can be examined using calculated spin-rotation tensor elements as 

opposed to the reported experimental constants. Exchanging the experimental spin-rotation 
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tensor elements with calculated equilibrium spin-rotation data presented here and by Teale et 

al.18 results in shielding constants of -42.65 ppm and -56.56 ppm, respectively. Similarities 

between the fully calculated shielding in Chapter 4 and substituting fully calculated spin-

rotation data from Table 5.24 results is unsurprising due to the relationship between the 

shielding constant and spin-rotation tensor elements, with the slight deviation arising due to 

the use of experimental geometry for the use of the rotational constants 𝐵௚௚ and the nuclear 

spin-rotation tensor elements. Deviations between the fully calculated shielding, the semi-

experimental shielding, as well as the shielding constant using spin-rotation constants from 

Teale et al. demonstrate the effect of slight changes in the applied spin-rotation tensor elements 

as well as geometry as a whole on the overall absolute shielding constant.  

 

5.6  CH3F and FCN Spin-Rotation Constants 

Spin-rotation tensors for 19F nuclei have been further calculated for the CH3F and FCN 

molecules. As FCN is a linear molecule, the spin-rotation constant will instead be reported, as 

was the case with the diatomics within Section 5.2. Due to the symmetry of CH3F being C3v, 

the 𝑪௬௬ and 𝑪௭௭ spin-rotation tensor elements are equal and will thus be reported together. The 

methodology of spin-rotation calculation is identical to that of the previous molecules, with 

equilibrium spin-rotation tensors and constants being derived via applying additional excitation 

levels of the coupled-cluster expansion. These are augmented with calculated vibrational, 

temperature, and relativistic effects to obtain spin-rotation tensor components that can be 

directly compared to experiment. 
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Table 5.26: Calculated 19F spin-rotation tensor elements in CH3F (kHz). Vibrational and 

Temperature effects calculated using CCSD(T). Relativistic effects calculated using 

PBE0/dyall-aug-cvqz. 

𝑪௚௚ Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

𝑪௫௫  HF-SCF -39.900 -43.241 -44.333 -44.480 -44.503 
 SD  -4.258 -3.009 -2.593 -2.496 -2.395 
 (T)  -1.125 -1.551 -1.569 -1.600 -1.632 
 T  -0.174    -0.174 
 Vibrational Effects -2.339 -2.952   -3.211 
 Temperature (300K) -0.007 0.120   0.174 
 Relativistic Effects     -0.165 
 Total     -51.906 
𝑪௬௬ = 𝑪௭௭ HF-SCF 6.525 6.521 6.552 6.557 6.558 
 SD  -0.576 -0.526 -0.503 -0.504 -0.505 
 (T)  -0.091 -0.086 -0.084 -0.083 -0.081 
 T  -0.042    -0.042 
 Vibrational Effects -1.477 -1.424   -1.403 
 Temperature (300K) 0.009 -0.082   -0.120 
 Relativistic Effects     -0.001 
 Total     4.407 

 

 

Table 5.27: Calculated 19F spin-rotation constant in FCN (kHz). Vibrational and Temperature 

effects calculated using CCSD(T). Relativistic effects calculated using PBE0/dyall-aug-cvqz. 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

HF-SCF -7.702 -8.081 -8.184 -8.234 -8.279 

SD  0.520 0.005 0.014 0.026 0.038 

(T)  -0.340 -0.339 -0.351   -0.359 

T  -0.027 -0.043   -0.050 

Vibrational Effects -0.335 -0.305   -0.292 

Temperature (300K) -0.027 -0.018   -0.014 

Relativistic Effects     -0.712 

Total      -9.669 

 
 

Calculation of the CH3F 19F spin-rotation tensor yields components 𝑪௫௫ = -51.906 kHz and 

𝑪௬௬ = 𝑪௭௭ = 4.407 kHz. The calculated equilibrium spin-rotation tensor elements are expected 
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to be accurate, as each extrapolated contribution to the 𝑪௬௬ and 𝑪௭௭ components converge to 

within 0.005 kHz while the contributions to the 𝑪௫௫ component converge within 0.1 kHz. These 

are considered very good, and therefore the calculated equilibrium spin-rotation tensor is 

accurate, with estimated uncertainties of ±0.3 kHz and ±0.05 kHz for the 𝑪௫௫and 𝑪௬௬ = 𝑪௭௭ 

components respectively. The spin-rotation tensor elements reported by Teale et al.18 using 

CCSD(T) of -50.43 kHz and 6.54 kHz for the 𝑪௫௫ and 𝑪௬௬ = 𝑪௭௭ components, respectively. 

The equilibrium spin-rotation 𝑪௫௫ component calculated here is -48.703 kHz and deviates by 

over 1.7 kHz to Teale et al. results. Experimental spin-rotation tensor components of 𝑪௫௫ = -

51.1(13) kHz and 𝑪௬௬ = 𝑪௭௭ = 4.0(19) kHz have been reported by Wofsy et al.57 and are within 

1.0 kHz and 0.4 kHz of the 𝑪௫௫ and the 𝑪௬௬ = 𝑪௭௭ tensor components calculated here, 

respectively. Comparatively, exchanging the equilibrium spin-rotation tensor elements with 

those by Teale et al. increases the deviation from experiment by almost 0.6 kHz for each 

component. Therefore, it is concluded that the calculated tensor in Table 5.26 is very accurate. 

The 19F spin-rotation constant of FCN is calculated to be -9.669 kHz, with the equilibrium spin-

rotation constant of -8.65 kHz. The convergence throughout the equilibrium spin-rotation 

constant calculation is very smooth, with an estimated error of approximately 0.05 kHz. This 

agrees well with the equilibrium spin-rotation constant calculated by Teale et al.18 of -8.66 

kHz. Whilst there is no experimental data for the 19F spin-rotation constant, the strong 

agreement between the calculated spin-rotation constant here and from Teale et al. 

demonstrates the accuracy of the calculated spin-rotation constant. 

 

5.7  CH3F and FCN Semi-Experimental Shielding Constants 

Calculation of the semi-experimental 19F shielding of CH3F and FCN requires the calculation 

of the diamagnetic shielding following a similar procedure as the molecules investigated thus 

far. Combining an equilibrium diamagnetic shielding along with an equilibrium paramagnetic 

shielding as derived from eq. 1.6 produces an equilibrium semi-experimental shielding, which 

is further augmented with vibrational, temperature, and relativistic corrections. As CH3F is a 

non-linear molecule, all components of the spin-rotation tensor will be used within the 

application of eq. 1.6, whereas the linear FCN will only apply the spin-rotation constant. 

Additionally, the result of applying eq. 1.6 for FCN will be multiplied by 
ଶ

ଷ
 as was performed 

in Section 5.3. 
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Table 5.28: Diamagnetic 19F shielding contribution in CH3F (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

HF-SCF 526.716 527.008 527.085 527.108 527.118 

SD  -0.738 -0.140 -0.030 0.011 0.053 

(T)  -0.058 -0.074 -0.075 -0.075 -0.075 

T  0.003    0.003 

Diamagnetic Shielding       527.100 

 

Table 5.29: Diamagnetic 19F shielding contribution in FCN (ppm). 

Contribution ACVDZ ACVTZ ACVQZ ACV5Z CBS 

HF-SCF 540.845 541.095 541.177 541.200 541.210 

SD  -0.424 0.141 0.237 0.274 0.312 

(T)  -0.044 -0.051 -0.050 -0.049 -0.049 

T  0.005 0.003   0.003 

Diamagnetic Shielding       541.476 

 

Table: 5.30: Determination of semi-experimental 19F absolute shielding constants in CH3F(a) 

and FCN.(b) 

Constants  CH3F(a) (19F) FCN(b) (19F) 

𝑪଴
୰ୣ୪    

 𝑪௫௫ (kHz) -51.1(13)57  

 𝑪௬௬ (kHz) 4.0(19)57  

 𝑪௭௭ (kHz) 4.0(19)57  

𝑪௘
୬୭୬୰ୣ୪   -8.650(50)(c) 

 𝑪௫௫ (kHz) -48.1(13)  

 𝑪௬௬ (kHz) 5.5(19)  

 𝑪௭௭ (kHz) 5.5(19)  

𝜎௘
୮ (ppm) -47.6(91) -166.925(550) 

𝜎௘
ୢ (ppm) 527.100(20) 541.476(35) 

𝜎௘
୬୭୬୰ୣ୪ (ppm) 479.5(91) 374.551(585) 

𝜎଴
୰ୣ୪ (ppm) 474.0(91) 371.516(585) 

(a) r(CF) = 1.3830 Å, r(CH) = 1.0870 Å, and ∠(FCH) = 108.73° for use of eq. 1.6 
(b) r(FC) = 1.2620 Å and r(CN) = 1.1590 Å for use of eq. 1.6 
(c) Calculated spin-rotation constant 
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As with all diamagnetic shielding constants calculated thus far, basis set convergence is rapid 

throughout each excitation contribution, even in the case of the larger CH3F molecule. It is 

noted that the difference between the HF-SCF/ACVTZ diamagnetic shielding and the fully 

calculated diamagnetic shielding of CH3F differs by less than 0.1 ppm, which is an acceptable 

deviation within larger difficult to calculate molecules. The least converged contribution within 

Tables 5.28 and 5.29 is the SD contribution to the CH3F diamagnetic shielding with a difference 

of 0.041 ppm between the ACVQZ and ACV5Z basis set results. However, this is deemed 

insignificant given the magnitude of the diamagnetic shielding of over 540 ppm, as well as the 

good estimate for the CBS result. The contribution of (T) excitations is minimal in both CH3F 

and FCN, with the T excitation being of near negligible size.  

The semi-experimental shielding of CH3F is determined to be 474.0(91) ppm, which agrees 

well with the experimentally determined 474.95 ppm from chemical shift data reported by 

Jameson et al.,15 as well as the fully calculated shielding of 475.721 ppm in Table 4.10. The 

experimental error of ±9.1 ppm is determined via inputting the extremes of the reported 

experimental error to the spin-rotation tensor elements. It should be noted, however, that while 

error bars of ±1.3 kHz and ±1.9 kHz were reported for the 𝑪௫௫ and 𝑪௬௬ = 𝑪௭௭ tensor elements, 

respectively, the fully calculated spin-rotation tensor elements are within 0.6 kHz of 

experimental data, so the expected error of the paramagnetic shielding component is much less 

than 9.1 ppm. Using the calculated equilibrium spin-rotation tensor reported by Teale et al.18 

results in a much larger deviation to experiment of 2.89 ppm. Therefore, it is concluded that 

the accuracy of the spin-rotation tensor within Table 5.26 is the most accurate to date.  

Due to the lack of experimental data, a true semi-experimental 19F shielding of FCN could not 

be determined. However, much like the case of HOF, the use of calculated spin-rotation tensors 

along with experimental geometries allows the investigation into the effect of geometry on the 

paramagnetic shielding. Here, an absolute shielding of 371.516(585) ppm is derived, which 

agrees very well with the fully calculated shielding of 371.483 ppm within Table 4.10. This 

agreement contrasts the case of HOF, which had a larger deviation of 2.4 ppm between the 

calculated shielding derived from eq. 1.6 and the fully calculated shielding. This is likely 

caused by differences within the rotational constants 𝐵௚௚ between experimental geometries and 

CCSD(T)/ACVQZ optimised geometries. In the case of HOF, the rotational constants change 

by approximately 5500 MHz, 260 MHz, and 230 MHz for the 𝐵௫௫, 𝐵௬௬, and 𝐵௭௭ rotational 

constants, respectively, whereas the rotational constant of FCN only differs by approximately 

15 MHz. As the HOF rotational constants change dramatically with a variation of geometry as 
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opposed to FCN, it is unsurprising why the effect geometry has on the paramagnetic shielding 

is much larger within HOF. 

5.8  Summary 

Throughout this Chapter, the spin-rotational constants and tensors of 1H and 19F containing 

molecules have been calculated. These have been thoroughly compared to experimentally 

reported spin-rotation constants as well has previously calculated spin-rotation constants from 

Teale et al.18 The spin-rotation constants have been shown to be considerably accurate when 

compared to experimental data, and in the cases where larger deviations propagate, failures 

within the calculation or experimental data were discussed in detail. Diamagnetic shielding 

constants were calculated for the use of developing semi-experimental absolute shielding 

constants. In all cases, the diamagnetic shielding was shown to be extremely accurate due to 

fast convergence and minimal dependence on higher coupled-cluster excitations. It has been 

shown that accurate diamagnetic shielding constants can be produced from HF-SCF 

calculations alone, and the use of CCSD(T) provides extreme accuracy, with higher excitations 

being of negligible size. Experimental spin-rotation data was augmented with calculated 

vibrational, temperature and relativistic effects and applied to eq. 1.6 to produce equilibrium 

non-relativistic paramagnetic shielding constants. These were combined with the accurate 

diamagnetic shielding constants to produce semi-experimental shielding constants that were 

compared to experimental chemical shift data, as well as the fully calculated absolute shielding 

constants reported throughout Chapters 3 and 4. In the cases where accurate spin-rotation data 

was available, semi-experimental shielding constants agreed well with experimental and 

calculated absolute shielding constants. Therefore, it is concluded that as diamagnetic shielding 

constants can be calculated with high accuracy with small methods and basis sets, high 

accuracy semi-experimental shielding constants can be developed given spin-rotation data 

availability.  
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Chapter 6: 
DFT Calculations of 15N Chemical Shifts 

 

6.1  Introduction 

Although the use of coupled-cluster methods such as CCSD(T) are ideal when calculating 

nuclear shielding constants and chemical shifts, the routine application of such methods is not 

feasible for medium and large-sized molecules. Therefore, it is important to investigate popular 

and new DFT functionals and assess their accuracy and usefulness in calculating shielding 

constants. A focused study on the chemical shifts of 15N containing molecules has been 

performed in collaboration with Dr Marcello de Oliveira of the São Carlos Institute of 

Chemistry. While the focus of the thesis thus far has had a large emphasis on 19F shieldings, 

the work lead by Dr. de Oliveira has instead focused on 15N. A series of 32 nitrogen-containing 

compounds has been considered in an investigation of the performance of DFT methods in the 

calculation of 15N chemical shifts. The set of molecules were selected due to their lack of 

conformational flexibility, as any flexibility (bond rotation) would require consideration of 

conformational averaging effects that would occur naturally in an experiment but would cause 

difficulties in a computational study. Equilibrium gas-phase 15N chemical shifts have been 

calculated, along with vibrational corrections and relativistic effects, to get an insight into the 

effect these have over DFT calculated magnetic shieldings. 

 

 

Figure 6.1: Series of 32 nitrogen-containing compounds considered throughout Chapter 6. 
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6.2 Gas-Phase Equilibrium Chemical Shifts 

Throughout this thesis, only gas-phase nuclear shieldings have been calculated. This is due to 

considerations of solvation effects and intermolecular forces causing a shift in the absolute 

shielding compared to that of the single-molecule representation of most quantum chemistry 

calculations. Whilst it is possible to consider the effects of solvation on the shielding and 

chemical shift, here, only gas-phase shifts and shieldings will be explored. Gas-phase 

equilibrium chemical shifts have been calculated with the KTX (where X = 1, 2, or 3) GGA 

functionals in the DALTON program, whereas Dr. de Oliveira has kindly provided gas-phase 

chemical shifts calculated with the meta-GGA functional RevTPSS. The KTX functional were 

chosen as previous works have shown these to perform very well in regards to magnetic 

property calculations.27 The decision to compare the KTX functionals with the RevTPSS meta-

GGA provides insight to the relative accuracy of the GGA functionals. While Dr. de Oliverira 

utilised a number of meta-GGA functionals, the RevTPSS results were some of the most 

accurate amongst them and as such has been selected as the comparison functional of choice. 

M062X/6-311+G(2d,p) optimised geometries have been employed for all molecules. Jensen’s 

pcSseg-2 basis set is used for all calculations to ensure the only deviation between calculated 

results is the functional in question. The DFT calculated shielding constants have been 

converted to chemical shifts using 𝜎(CH3NO2) = -135.8 ppm,58 with the resulting chemical 

shifts reported in Table 6.1.  
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Table 6.1: 15N chemical shifts from experiment and calculated DFT results (ppm).(a) 

Molecule Nuclei Experimental RevTPSS(b) KT1 KT2 KT3 
CH3CN N -134.5 -117.0 -124.3 -122.0 -123.7 
NH2CN N-1 -183.5 -168.5 -176.9 -174.1 -175.1 
NO2N(CH3)2 N-1 -217.5 -227.0 -220.7 -214.1 -213.3 
 N-2 -25.0 -37.8 -39.6 -34.1 -38.3 
NON(CH3)2 N-2 -149.2 -161.7 -164.1 -158.5 -157.7 
(CH3)2NCON(CH3)2 N -316.1 -312.6 -313.3 -310.0 -308.8 
pyrrole N -234.7 -233.6 -234.8 -232.9 -234.3 
1,3-diazole N-1 -220.5 -217.8 -219.4 -216.9 -217.8 
 N-3 -122.5 -106.8 -113.5 -109.9 -111.2 
1,2-diazole N-1 -179.4 -175.0 -177.7 -174.8 -176.6 
 N-2 -73.7 -67.5 -72.4 -67.9 -69.9 
1,2,3-triazole N-2 -15.3 -11.5 -18.7 -12.9 -14.6 
 N-3 -30.4 -23.9 -34.5 -28.7 -29.6 
1,2,4-triazole N-1 -173.6 -170.3 -173.2 -170.0 -171.2 
 N-2 -83.6 -78.4 -83.8 -79.0 -80.3 
 N-4 -129.8 -117.3 -124.1 -120.2 -121.1 
isoxazole N 2.5 6.7 -0.5 5.5 3.3 
oxazole N -125.0 -114.5 -122.8 -118.5 -119.1 
thiadiazole N -7.6 7.8 -2.5 2.7 1.3 
isothiazole N -85.3 -72.2 -83.0 -77.9 -79.1 
thiazole N -60.5 -47.9 -57.5 -53.4 -54.9 
oxadiazole N -73.4 -57.2 -66.7 -61.6 -62.3 
furazan N 38.1 35.5 24.9 32.3 30.8 
1,2,4-thiadiazole N-4 -71.3 -94.7 -70.1 -65.4 -66.3 
tetrazole N-1 -154.6 -156.0 -160.5 -156.5 -157.2 
 N-2 -9.9 -13.3 -22.4 -15.8 -16.3 
 N-3 14.6 24.1 13.2 19.8 18.9 
 N-4 -49.7 -41.1 -50.7 -45.1 -45.8 
nitrobenzene N -10.0 -20.6 -30.3 -24.6 -27.5 
pyridine N -68.7 -52.6 -60.3 -57.4 -58.9 
pyroxide N -86.8 -69.6 -73.9 -71.0 -74.2 
pyridazine N 19.0 49.2 37.8 41.1 40.0 
pyrimidine N -86.2 -76.9 -82.8 -79.8 -81.1 
pyrazine N -47.8 -39.9 -48.7 -45.4 -46.6 
1,3,5-triazine N -98.1 -90.1 -95.6 -92.8 -94.4 
1,3,4-triazine N-4 -80.2 -83.0 -90.9 -87.0 -88.1 
tetrazine N 12.7 23.8 11.1 15.2 14.9 
indolizine N -190.0 -180.5 -181.7 -179.7 -181.9 
imidpyr N-1 -179.6 -170.2 -172.4 -169.8 -171.7 
 N-2a -143.9 -124.0 -131.8 -128.5 -129.4 
imidpyr N-1 -186.4 -178.1 -179.6 -177.2 -179.1 
 N-5a -112.2 -93.4 -102.2 -98.7 -100.1 
pyrazolopyr N-1 -144.5 -137.4 -139.9 -137.0 -139.5 

 N-5a -97.4 -87.2 -93.6 -89.2 -90.5 
Mean Absolute Deviation (MAD) 10.2 6.1 7.6 6.8 
Maximum Absolute Deviation (MAX) 30.2 20.3 22.1 21.0 
(a) DFT shieldings converted to chemical shifts via 𝜎(CH3NO2) = -135.8 ppm.58   
(b) Results provided by Dr. Marcelo de Oliveira. 
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Table 6.1 illustrates the chemical shifts calculated using the range of KTX and RevTPSS DFT 

functionals. The mean absolute deviation (MAD) of the KTX functionals range from 6 to 8 

ppm, while the RevTPSS functional exhibits a MAD of 10.2 ppm. The results are consistent 

with those of Krivdin26 and Teale et al.,18 who concluded that KTX functionals, in particular 

KT2 and KT3, are the ideal DFT methods for chemical shift and nuclear shielding calculations. 

Despite this, and given that these investigations employ a finite set of molecules, it is always 

plausible that MAD results could change with a growing series of molecules. Krivdin 

performed calculations on 23 15N containing heterocycles for which KT3/pcS-3 yielded a MAD 

of 5 ppm. This is very close to the MAD determined in Table 6.1 of 6.8 ppm for KT3, although 

the use of a smaller pcSseg-2 basis set may be the cause of the small deviation. Teale et al. 

determined the MAD of KT2/ACVQZ to be 5.7 ppm for a series of 26 molecules. The series 

of molecules within the study from Teale et al. was not solely focused on 15N; however, the 

agreement between the results presented here and by Krivdin show that the conclusions made 

by Teale et al. are still valid.  

The calculated pyridazine chemical shift is responsible for the maximum absolute deviation 

(MAX) in all cases except KT1, where the MAX arises from the nitrobenzene. If pyridazine is 

omitted, the MAD for RevTPSS decreases to 9.7 ppm with a MAX of 23.4 ppm. Whilst the 

decrease in MAD is not surprising, the large difference between the MAX and the second-

largest absolute error is almost 7 ppm, which is considered to be substantial. Comparison of 

MADs and MAXs within Table 6.1 shows KT1 to be the most accurate of the four functionals 

compared; however, with such a small deviation between the MADs and MAXs of the KTX 

functionals, the conclusion is difficult to support without extra investigation. Nonetheless, the 

GGA KTX functionals appear to be more accurate than the meta-GGA RevTPSS for the 

calculation of equilibrium chemical shifts. It is additionally noted that DFT is more inaccurate 

than coupled-cluster in the context of absolute shieldings and chemical shifts. Whilst the 

average MAD from experiment across the KTX functionals is approximately 6-7 ppm, this is 

much greater than the deviations from experiment for the absolute shieldings calculated 

throughout Chapters 3-4. This supports the current belief that coupled-cluster is required for 

quantitative absolute shieldings, whilst DFT is useful for molecules too large for coupled-

cluster calculations. 
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6.3 Vibrational corrections calculated via DFT 

Section 6.2 demonstrated the ability to calculate equilibrium chemical shifts via DFT. As seen 

in Chapters 3 and 4, it is important to consider vibrational corrections for calculated shieldings. 

Therefore, the requirement of vibrational corrections calculated via DFT will be investigated. 

Vibrational corrections to the nuclear shielding and chemical shift have been calculated via 

DFT functionals B3LYP and KT2, along with Jensen’s pcS-2 basis set. Starting geometries 

provided by Dr Oliveira have been optimised using both functionals to obtain acceptable 

minimum energy optimised geometries for the given method and basis set combination. 

Vibrational effects are then calculated within DALTON via calculating an effective geometry 

for which the effects to the shielding are further calculated from. Comparison between the 

chosen functionals is performed by augmenting the KT2 results presented in Table 6.1 and 

further comparing with experiment.   
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Table 6.2: Vibrationally corrected DFT functional chemical shifts (ppm). 

Molecule Nuclei Experimental Equilibrium(a) Vibrationally Corrected 
KT2 B3LYP 

CH3CN N -134.5 -122.0 -115.9 -115.1 
NH2CN N-1 -183.5 -174.1 -166.5 -165.0 
NO2N(CH3)2 N-1 -217.5 -214.1 -201.0 -170.3 
 N-2 -25.0 -34.1 -26.4 5.2 
NON(CH3)2 N-2 -149.2 -158.5 -155.8 -153.9 
(CH3)2NCON(CH3)2 N -316.1 -310.0 -303.3 -287.6 
pyrrole N -234.7 -232.9 -224.9 -224.3 
1,3-diazole N-1 -220.5 -216.9 -210.8 -205.1 
 N-3 -122.5 -109.9 -99.8 -91.6 
1,2-diazole N-1 -179.4 -174.8  -160.0 
 N-2 -73.7 -67.9  -48.1 
1,2,3-triazole N-2 -15.3 -12.9 -2.0 24.0 
 N-3 -30.4 -28.7 -19.5 -17.8 
1,2,4-triazole N-1 -173.6 -170.0 -163.4 -156.0 
 N-2 -83.6 -79.0 -67.4 -59.4 
 N-4 -129.8 -120.2 -110.7 -102.0 
isoxazole N 2.5 5.5 17.5 21.3 
oxazole N -125.0 -118.5 -110.0 -107.8 
thiadiazole N -7.6 2.7 10.8 15.0 
isothiazole N -85.3 -77.9 -67.8 -69.1 
thiazole N -60.5 -53.4 -45.6 -43.3 
oxadiazole N -73.4 -61.6 -52.8 -48.3 
furazan N 38.1 32.3 42.5 43.9 
1,2,4-thiadiazole N-4 -71.3 -65.4 -57.1 -53.8 
tetrazole N-1 -154.6 -156.5 -153.2 -168.0 
 N-2 -9.9 -15.8 -8.0 11.7 
 N-3 14.6 19.8 23.1 65.3 
 N-4 -49.7 -45.1 -36.0 -37.6 
nitrobenzene N -10.0 -24.6 -11.5 8.8 
pyridine N -68.7 -57.4 -49.4 -46.2 
pyroxide N -86.8 -71.0 -65.1 -61.1 
pyridazine N 19.0 41.1 47.6 49.7 
pyrimidine N -86.2 -79.8 -74.9 -74.5 
pyrazine N -47.8 -45.4 -38.3 -37.6 
1,3,5-triazine N -98.1 -92.8 -85.6 -84.8 
1,3,4-triazine N-4 -80.2 -87.0 -80.5 -80.9 
tetrazine N 12.7 15.2 15.5 23.8 
indolizine N -190.0 -179.7 -177.1 -173.9 
imidpyr N-1 -179.6 -169.8 -163.4 -153.9 
 N-2a -143.9 -128.5 -119.8 -118.3 
imidpyr N-1 -186.4 -177.2 -170.4 -161.4 
 N-5a -112.2 -98.7 -90.0 -101.3 
pyrazolopyr N-1 -144.5 -137.0 -130.8 -130.1 

 N-5a -97.4 -89.2 -78.0 -72.2 
Mean Absolute Deviation (MAD) 7.6 13.4 20.4 
Maximum Absolute Deviation (MAX) 22.1 28.6 50.7 
(a) KT2 equilibrium chemical shifts from Table 6.1. 
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Inclusion of KT2 vibrational corrections increases the MAD of calculated chemical shifts by 

5.8 ppm, whilst vibrational corrections calculated via B3LYP increase the MAD by 12.8 ppm. 

Additionally, the MAX increases with the inclusion of vibrational effects. Table 6.2 

demonstrates B3LYP to be less accurate than KT2 in terms of vibrational corrections; however, 

as the calculated vibrational corrections have been applied to equilibrium KT2 shieldings, it is 

possible the trend of B3LYP inaccuracy compared to that of KT2 is a result of the accuracy of 

the functional on calculated equilibrium chemical shifts. It is to be noted that if the RevTPSS 

results within Table 6.1 are used as the equilibrium chemical shifts, then the trends seen in 

Table 6.2 are still prominent, with KT2 producing smaller MAD and MAX values. 

Consideration of vibrational effects causing an increase in deviation from experiment 

contradicts discussions held throughout earlier Chapters of this thesis. This is likely due to the 

use of DFT functionals as opposed to the coupled-cluster methods that have been used for the 

majority of the work discussed prior to this Chapter. The parameterisation of DFT functionals 

with respect to experimentally reported data is likely a cause for this effect. Vibrational 

corrections are implicitly accounted for within experimental chemical shifts. As such, DFT 

functionals are optimised towards vibrationally corrected chemical shifts. Calculating and 

applying vibrational corrections to calculated chemical shifts therefore overcorrects the true 

theoretical chemical shift. Teale et al.14 calculated vibrational corrections using B3LYP/aug-

cc-pCVTZ, which was removed from experimental chemical shifts to determine empirical 

(equilibrium) experimental shifts. Fundamentally, comparison with these empirical 

experimental shifts is equivalent to vibrationally corrected chemical shifts compared with 

experimental data. Teale et al. showed that coupled-cluster calculated chemical shifts deviate 

less when vibrational effects calculated with DFT are considered; however, when equilibrium 

chemical shifts are calculated with DFT functionals, comparison with direct experimental data 

resulted in lower MADs and MAXs compared to those resulting from consideration of 

vibrational effects. The Teale et al. results agree with the conclusions developed here, where 

vibrational effects increase the deviation from experiment when applied to equilibrium 

chemical shifts calculated via DFT.  
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6.4 Relativistic corrections applied to DFT calculated chemical shifts 

Relativistic effects towards the 15N chemical shifts within the series of 32 molecules have been 

calculated to assess the requirement of considering relativity for the purposes of DFT calculated 

chemical shifts. Relativistic effects were shown to be important for the purposes of accurate 

absolute shieldings and spin-rotation constants calculated with coupled-cluster methods 

throughout Chapters 3 to 5. However, it is unknown if a trend similar to those seen in Section 

6.3 for vibrational corrections may also be seen for relativistic effects. Geometries optimised 

by Dr Oliveira have been utilised in four-component relativistic calculations using the KT2 

functional along with the upcJ-2 basis set within ReSpect. Identical calculations were run with 

an increased speed of light to approach the non-relativistic limits. The differences of these 

calculations have been determined as the effect of considering relativity towards the 15N 

chemical shift. Application of relativistic effects to the KT2 equilibrium chemical shifts within 

Table 6.1 has been compiled and compared with experimental chemical shifts in Table 6.3. 
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Table 6.3: Relativistically corrected DFT functional chemical shifts (ppm). 

Molecule Nuclei Experimental Equilibrium(a) Relativistic  
CH3CN N -134.5 -122.0 -123.7 
NH2CN N-1 -183.5 -174.1 -175.9 
NO2N(CH3)2 N-1 -217.5 -214.1 -215.7 
 N-2 -25.0 -34.1 -37.6 
NON(CH3)2 N-2 -149.2 -158.5 -159.5 
(CH3)2NCON(CH3)2 N -316.1 -310.0 -311.8 
pyrrole N -234.7 -232.9 -234.6 
1,3-diazole N-1 -220.5 -216.9 -218.4 
 N-3 -122.5 -109.9 -111.7 
1,2-diazole N-1 -179.4 -174.8 -176.6 
 N-2 -73.7 -67.9 -69.5 
1,2,3-triazole N-2 -15.3 -12.9 -14.6 
 N-3 -30.4 -28.7 -30.4 
1,2,4-triazole N-1 -173.6 -170.0 -171.6 
 N-2 -83.6 -79.0 -80.6 
 N-4 -129.8 -120.2 -121.9 
isoxazole N 2.5 5.5 3.6 
oxazole N -125.0 -118.5 -120.3 
thiadiazole N -7.6 2.7 0.8 
isothiazole N -85.3 -77.9 -80.7 
thiazole N -60.5 -53.4 -55.3 
oxadiazole N -73.4 -61.6 -63.4 
furazan N 38.1 32.3 30.3 
1,2,4-thiadiazole N-4 -71.3 -65.4 -67.2 
tetrazole N-1 -154.6 -156.5 -157.8 
 N-2 -9.9 -15.8 -17.4 
 N-3 14.6 19.8 18.0 
 N-4 -49.7 -45.1 -46.8 
nitrobenzene N -10.0 -24.6 -27.8 
pyridine N -68.7 -57.4 -59.0 
pyroxide N -86.8 -71.0 -73.7 
pyridazine N 19.0 41.1 39.3 
pyrimidine N -86.2 -79.8 -81.4 
pyrazine N -47.8 -45.4 -47.0 
1,3,5-triazine N -98.1 -92.8 -94.4 
1,3,4-triazine N-4 -80.2 -87.0 -88.5 
tetrazine N 12.7 15.2 13.6 
indolizine N -190.0 -179.7 -181.3 
imidpyr N-1 -179.6 -169.8 -171.3 
 N-2a -143.9 -128.5 -130.3 
imidpyr N-1 -186.4 -177.2 -178.7 
 N-5a -112.2 -98.7 -100.5 
pyrazolopyr N-1 -144.5 -137.0 -138.6 
 N-5a -97.4 -89.2 -90.8 
Mean Absolute Error (MAD) 7.6 6.5 
Maximum Absolute Deviation (MAX) 22.1 20.3 
(a) KT2 equilibrium chemical shifts from Table 6.1. 
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Table 6.3 compares experimental 15N chemical shifts with KT2 calculated equilibrium 

chemical shifts as well as equilibrium chemical shifts augmented with relativistic corrections. 

Relativistic effects make up between 1.5 and 2.0 ppm in almost 80% of the 15N chemical shifts 

investigated here, and in all cases, the relativistically corrected chemical shift is more negative 

than the equilibrium chemical shift. As such, calculated equilibrium 15N shifts that 

overestimated the chemical shift are more accurate after applying relativistic corrections. This 

occurs in almost 85% of the selected series of 15N chemical shifts. As the consistent 1.5 to 2.0 

ppm relativistic correction often causes a decrease in deviation from experiment, the decrease 

in the MAD and MAX between the KT2 equilibrium chemical shifts and chemical shifts with 

relativistic corrections of 1.1 and 1.8 ppm, respectively, is not surprising. This trend contrasts 

those discussed with respect to vibrational corrections, where consideration of relativistic 

corrections is important even when the equilibrium chemical shift is calculated via a DFT 

functional. The consistent magnitude of the relativistic corrections of 1.5 to 2.0 ppm is believed 

to be accurate, as equivalent effects calculated for 19F were found to be approximately 4 to 5 

ppm. The decrease in relativistic effect between 15N and 19F arises from the 19F atoms increased 

mass and sensitivity with regards to NMR chemical shifts. These results mirror those reported 

previously by Samultsev et al.,58 who showed relativistic effects in a series of gas-phase 

halogenated azines to be about 1 to 2 ppm when fluorine, chorine, or bromide is the bound 

halogen and decreased the MAD from experimentally reported chemical shifts. Samultsev et 

al. used KT3/pcS-3 for both the one-component and four-component calculations, which 

differs slightly from the method and basis set chosen here. Nonetheless, the agreement between 

the relativistic contributions of 1.5 to 2 ppm within Table 6.3 and the results reported by 

Samultsev et al. demonstrate that relativistic corrections should be considered for the purposes 

of DFT chemical shift investigations.  

 

6.5 Summary 

DFT functionals have been utilised for the purposes of calculating gas-phase 15N chemical 

shifts for a series of 32 molecules in collaboration with Dr. de Oliveira. It has been shown that 

the KTX series of DFT functionals are accurate for the calculation of 15N chemical shifts. 

Additionally, vibrational and relativistic corrections were further calculated with the KT2 

functional and found that consideration of vibrational corrections decreases agreement with 

experimentally reported chemical shifts, whereas application of relativistic effects increases 

the agreement with experiment.  
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Chapter 7: 
Conclusions and Further Work 

 

The 19F absolute shielding within a series of small molecules has been investigated via high-

level quantum mechanical calculations. Results showed that coupled-cluster higher excitation 

contributions, although valuable, are not critical due to the decrease in the magnitude of the 

contribution to the shielding. It was concluded that at least triple excitations (CCSD(T) or 

CCSDT) are needed for accurate results. This allowed shielding constants of slightly larger 

molecules such as CH3F and F2O to be calculated with reasonable precision. Important effects 

on the absolute shielding tensor such as vibrational averaging, temperature, and relativistic 

effects have been calculated and were shown to be required for accurate absolute shielding 

constants. Vibrational averaging effects were found to be much larger when the fluorine atom 

interacted with other electronegative atoms, such as in the case of F2 and F2O. This trend 

extended to the temperature effects; however, the effect on the absolute shielding arising from 

temperature changes was an order of magnitude smaller than the effects from vibrational 

averaging. Relativistic effects on the 19F shielding were shown to be sizeable, often much larger 

than the temperature effects. 

All contributions to the absolute 19F shielding were combined to obtain a fully theoretical 

shielding for each molecule. Calculated 19F absolute shielding constants were compared with 

experimental shielding constants, which when updated with recent chemical shift and absolute 

shielding constants, are very close to the calculated values reported here. The excellent 

agreement between the calculated 19F absolute shielding constants and corrected experimental 

shielding constants allows the conclusion that the shielding constants reported here are 

accurate. Additionally, consideration of spin-rotation tensors and development of semi-

experimental shielding constants that agree with fully calculated shielding constants further 

increase the validity of our reported absolute shielding constants and the improvements made 

to the 19F shielding scale. 

An investigation into the absolute 19F shielding of SiF4 would benefit the work presented here 

by confirming that the experimental chemical shift produced by Makulski is accurate. 

Additionally, expanding the current equilibrium shielding calculations to more extensive 

methods and basis sets for the larger molecules will decrease the uncertainty in their respective 
19F shielding constants. Extrapolation via ACV[D,T]Z is not ideal and as such it is believed the 
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results for FCl, HOF, and FCN can be improved if larger basis sets were employed. 

Additionally, whilst the use of CCSDT as the largest method for multiple molecules is 

impressive, further results from CCSDTQ would confirm calculated absolute shieldings are 

approaching the theoretically exact value. 

Further work may also be conducted in bridging the gap between the two projects within this 

thesis. Performing DFT absolute shielding calculations on the series of 19F containing 

molecules, as well as benchmark coupled-cluster calculations on a small series of 15N 

containing molecules would provide further insight to the difference between DFT and 

coupled-cluster benchmark calculations. Investigation into the effect of geometry on absolute 

shielding is also warranted. While CCSD(T)/ACVQZ geometries were used where possible for 

the coupled-cluster benchmark chapters of this thesis, there is reason to believe geometries 

optimised with larger methods or basis sets can provide more accurate absolute shieldings. The 

effects of using these higher optimised geometries should be compared with using experimental 

geometries as well as the results reported here to determine the level of importance with regard 

to the implicit computational cost associated with optimising geometries with larger levels of 

theory. 
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