1	Human endometrial exosomes contain hormone-specific cargo modulating trophoblast
2	adhesive capacity: insights into endometrial-embryo interactions
3	
4	David W. Greening ^{1,+,*} Hong PT. Nguyen ^{2,+,*} , Kirstin Elgass ³ , Richard J. Simpson ¹ , Lois A.
5	Salamonsen ²
6	
7	¹ Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La
8	Trobe University, Melbourne, Victoria 3086, Australia
9	² Hudson Institute of Medical Research (previously Prince Henry's Institute), Clayton,
10	Victoria 3168, Australia
11	³ Monash Micro Imaging, Monash University, Hudson Institute of Medical Research
12	(previously Prince Henry's Institute), Clayton, Victoria 3168, Australia
13	
14	⁺ authors contributed equally to this work
15	
16	* Corresponding authors
17	Dr David W. Greening
18	La Trobe Institute for Molecular Science
19	La Trobe University, Bundoora, Victoria 3086, Australia
20	Tel: 61 3 9479 5031
21	Email: <u>d.greening@latrobe.edu.au</u>
22	
23	Dr Hong PT. Nguyen
24	Hudson Institute of Medical Research 27-31 Wright St, Clayton, Victoria 3168, Australia
25	Tel: 61 3 9594 4319

26 Email: <u>hong.nguyen@hudson.org.au</u>

27

28 **Running title:** Exosomal implantation regulation

29 Summary sentence: Unique insight into the developmental biology of embryo implantation,

30 demonstrating for the first time a contribution of endometrial-derived exosomes to

- 31 endometrial-embryo crosstalk.
- 32 Keywords: embryo implantation, exosomes, pregnancy, endometrium, trophoblast,
- 33 proteomics, microenvironment, estrogen, progesterone
- 34 **Grant support:** This work was supported by NHMRC project grant #1057741 (LAS, RJS)
- 35 and the Victorian Governments Operational Infrastructure funding. LAS supported by
- 36 NHMRC Fellowship #1002028.

37 ABSTRACT

Embryo implantation into receptive endometrium requires synergistic endometrial-blastocyst 38 39 interactions within the uterine cavity and is essential for establishing pregnancy. We 40 demonstrate that exosomes (40-150 nm nanovesicles) released from endometrial epithelial 41 cells are an important component of these interactions. We defined the proteome of purified 42 endometrial epithelial-derived exosomes (Exos) influenced by menstrual cycle hormones; 43 estrogen (E; proliferative-phase) and estrogen+progesterone (EP; receptive-phase) and 44 examined their potential to modify trophoblast function. E-/EP-Exos were uniquely enriched 45 with 254 and 126 proteins, respectively, with 35% newly identified proteins not previously 46 reported in exosome databases. Importantly, EP-Exos protein cargo was related to 47 fundamental changes in implantation: adhesion, migration, invasion, and extracellular matrix 48 remodeling. These findings from hormonally-treated ECC1 endometrial cancer cells were 49 validated in human primary uterine epithelial cell-derived exosomes. Functionally, exosomes 50 were internalized by human trophoblast cells and enhanced their adhesive capacity; a 51 response mediated partially through active focal adhesion kinase (FAK) signaling. Thus, 52 exosomes contribute to the endometrial-embryo interactions within the human uterine microenvironment essential for successful implantation. 53

55 INTRODUCTION

56 Initiation of human pregnancy requires synergistic interaction between the endometrium and 57 the blastocyst, both immediately prior to and during implantation [1,2]. The endometrium is a 58 complex dynamic tissue that undergoes cyclical remodeling and differentiation throughout a 59 women's reproductive life. Each menstrual cycle consists of proliferative (non-receptive) and 60 secretory (receptive) phases, regulated by the steroid hormones, estrogen and progesterone, 61 respectively. The development of the endometrium that is receptive to embryo implantation 62 occurs during the mid-secretory phase of the menstrual cycle and depends upon adequate 63 secretory transformation of the estrogen-primed endometrium in response to progesterone [3-64 5]. This transformation facilitates cellular and molecular regulation of cell-cell communication, cytoskeletal/extracellular matrix (ECM) remodeling, adhesion responses, 65 66 and expression of many growth factors, cytokines and their mediators [1,6,7]. Implantation 67 takes place within the microenvironment of the uterine cavity. The embryo enters this cavity as an unhatched blastocyst where it undergoes hatching and final preparation for 68 69 implantation. This involves a series of steps: apposition, adhesion and invasion (Fig. 1). In 70 particular, the trophectoderm (destined to form the maternal component of the placenta), is 71 modulated to enable endometrial attachment. Cell-cell communication between trophectoderm and the endometrial epithelium are thus essential for embryo implantation and 72 73 establishment of pregnancy.

74

Proteomic profiling of the endometrium has revealed many proteins important during various stages of the menstrual cycle [8-18]. Importantly, in terms of the peri-implantation microenvironment, secreted proteins of endometrial epithelial origin have been identified in uterine fluid or lavage samples during receptive and non-receptive phases of the cycle [11,12], and importantly have defined functions in embryo-maternal interaction [19]. 80

81 Exosomes, small extracellular vesicles (40-150 nm) of endosomal origin, are released by 82 many cell types including endometrial epithelial cells, trophoblast cells and cancer cells [20-83 24]. Exosomes are known to play essential roles in cell-cell communication [25], cell 84 transformation [26], immune regulation [27] and tumorigenesis [28]. Exosomal content has 85 been shown to be diverse, comprising proteins [21,29], different nucleic acids and transcripts 86 [30,31], DNA [32], lipids [33], and metabolites [34]. More recently, exosomes have been 87 identified in the follicular fluid of ovarian follicles, where they have been shown to contain 88 diverse cell-derived miRNAs, and exosome- and cell-type-specific proteins, therefore 89 suggesting a role in mediating cell communication within mammalian ovarian follicles and 90 regulation of follicular maturation [35-37]. Trophoblast cells secrete exosomes to recruit and 91 educate monocytes to initiate the pro-inflammatory microenvironment associated with early 92 pregnancy [38]. Importantly, exosomes have been identified in the uterine microenvironment 93 within human uterine fluid and shown to contain select miRNAs [24].

94

95 Given their potential in modulating intercellular communication in a local microenvironment, 96 this study investigated the contribution of exosomes during peri-implantation to regulating 97 endometrial-embryo interactions throughout the uterine microenvironment. In particular, it 98 focuses on the characterization of protein cargo of human endometrial epithelial-derived 99 exosomes in response to pregnancy hormones and its potential functions in embryo-maternal 100 interactions. The data suggests that during pre-implantation, when the endometrium becomes 101 receptive, specific exosomal cargo is packaged by the endometrial epithelium and delivered 102 to trophoblast cells, enabling changes in their adhesive capacity to initiate successful 103 implantation and hence establish a pregnancy.

106 EXPERIMENTAL PROCEDURES

107 Endometrial and primary cell isolation and culture

ECC1, a human endometrial adenocarcinoma epithelial cell line [39] were cultured and maintained in Dulbecco's Modified Eagle's Medium Nutrient Mixture F-12 (DMEM/F-12) (Invitrogen-GIBCO, Carlsbad, USA) supplemented with 10% fetal calf serum (FCS, Invitrogen-GIBCO), 1% (v/v) Penicillin Streptomycin (Pen/Strep) (Invitrogen-GIBCO), and incubated at 37°C with 5 % CO₂ [21]. These ECC1 cells were validated by Karyotype analysis as in [39,40] according to the ATCC guidelines [41], with allele match in STR profile 100%.

115

116 Ethical approval was obtained for all human sample collections from Human Ethics 117 Committees at Southern Health (#03066B) and Monash Surgical Private Hospital (#04056) 118 and written informed consent was obtained from all women. Primary endometrial epithelial 119 cells (pEECs) were prepared from endometrial curettage as previously described [42]. 120 Briefly, endometrial tissue was finely minced and digested in phosphate buffered saline 121 (PBS, Invitrogen) solution containing DNAse (25 µg/mL, Roche, Basel, Switzerland) and collagenase type III (150 µg/mL, Sigma Aldrich, USA) in a shaking water bath (130 rpm, 37 122 123 °C) for 20 minutes. Tissue digestion was stopped by adding DMEM/F12 (Invitrogen) and the 124 tissue digest was vacuum-filtered through 45 µm and 11 µm filters. pEECs were retrieved 125 from the filters, centrifuged at 300g for 5 minutes, resuspended in culture media 126 (DMEM/F12) supplemented with 10% charcoal-stripped FCS and 1% Pen/Strep (Invitrogen-127 GIBCO) and plated into 24-well plates for 2 days prior to hormonal treatment.

128

129 Hormonal treatment of endometrial epithelial cells (ECC1 and pEECs)

7

130 ECC1 cells, which most accurately resemble endometrial luminal epithelium [39,43]), were grown under hormonal regimes that mimic the proliferative and secretory phases of the 131 132 menstrual cycle. Limited numbers of pEEC cells were treated similarly. ECC1 cells (1×10^6) per 150 mm³ culture dish, total of 120 dishes/replicate) (Fig. 2) and/or pEECs (n = 3, 80%133 confluence, grown in triplicate in 24-well plate) were washed three times with PBS and 134 135 cultured for 24 hours in serum-free DMEM/F12 supplemented with 0.5% insulin-transferrinselenium (ITS) solution (Invitrogen-GIBCO), and 1% (v/v) Pen/Strep (Fig. 2A). After 24 136 137 hours, media were removed, replenished with serum-free media, and primed with estrogen (10⁻⁸ M. Sigma-Aldrich) for 24 hours. Cells were divided into two groups and treated with 138 (E) estrogen (10^{-8} M) or (EP) estrogen (10^{-8} M) and progesterone (medroxyprogesterone-17-139 acetate, 10⁻⁷ M, Sigma-Aldrich) (Fig. 2A). Conditioned culture media (CM) were collected at 140 141 24 and 48 hours after hormonal treatments, and used for isolating and purifying exosomes (Fig. 2B). The serum-free ECC1 culture conditions were initially optimized with assessment 142 143 for cell morphology, proliferation and viability.

144

145 Cell morphology, proliferation and viability assays of ECC1 cells

To ensure ECC1 cells retain the same morphology upon hormonal treatments, ECC1 cells (1×10^6) were grown in DMEM/F12 supplemented with 0.5% ITS in the presence of steroid hormones E or EP (as described) and imaged on an inverted Nikon Eclipse TE300 microscope equipped with a 10x objective (Nikon Plan Fluor) in phase-contrast mode using an attached 12.6mp digital camera (Nikon DXM1200C) (Nikon Corporation, Tokyo, Japan). Images of ECC1 cells (10 independent fields of view, 3 biological replicates) were captured and processed with Nikon Elements Imaging Software (v3.0, Nikon, Japan).

154 Cell viability of ECC1 cells was measured using the Trypan blue assay following 24 hour culture in DMEM/F12 containing growth conditions as specified above. Viability was 155 expressed as percentage of viable cells from total cells and presented as mean \pm SEM. Cell 156 157 proliferation MTT assay (Madison, WI, USA) was used to determine ECC1 metabolic activity in different cell culture conditions. Briefly, ECC1 cells were subjected to different 158 159 culture media with basal DMEM/F12 media and 1% Pen/Strep with the following conditions: 160 i) 10% FCS, ii) 1% ITS, iii) 1% ITS and 1% bovine serum albumin (BSA), iv) 0.5% ITS, v) 161 0.5 % ITS/BSA with either no steroid hormones or with E or EP for 24 hours. For MTT 162 assays, measurements were performed in triplicate and expressed as relative absorbance (570 163 nm) for each condition.

164

165 Isolation of crude endometrial exosomes

166 Conditioned medium (CM) of E- and EP treated ECC1 cells was collected and centrifuged at 167 500*g* for 5 minutes, 2000*g* for 10 minutes to remove floating cells and cell debris 168 respectively. Large shed microvesicles (sMVs) was subsequently removed by centrifugation 169 at 10,000*g* for 30 minutes, followed by ultracentrifugation at 100,000*g* for 1 hour to isolate 170 crude exosomes [44,45] (**Fig 2B**). These exosomes will be referred to as E-Exos and EP-Exos 171 respectively.

172

173 Purification of exosomes from ECC1 cells using OptiPrep density gradient

Briefly, a discontinuous iodixanol gradient was prepared by diluting a stock solution of OptiPrep (60% (w/v) aqueous iodixanol solution with 0.25 M sucrose/10 mM Tris, pH 7.5 to generate 40% (w/v), 20% (w/v), 10% (w/v) and 5% (w/v) iodixanol solutions, which were then layered sequentially by adding 3 mL each of 40%, 20%, 10%, and 2.5 mL of 5% iodixanol solution to a 14×89 mm polyallomer tube (Beckman Coulter). Crude exosomes 179 (100,000g pellet) were resuspended in 500 µL of 0.25 M sucrose/10 mM Tris-HCl, pH 7.5, 180 loaded on the top of the gradient and centrifuged at 100,000g for 18 hour at 4°C. Twelve 181 individual 1 mL fractions were collected (starting from top of the gradient with increasing 182 density) and each fraction was diluted with 2 mL PBS. After centrifugation at 100,000g for 1 hour at 4 °C, the supernatants were discarded and pellets washed with 1 mL PBS 183 184 (100,000g for 1 hour at 4 °C) and resuspended in 50 µL of PBS. The density of each fraction 185 was determined using a control OptiPrep gradient loaded with 500 µl of 0.25 M sucrose/10 186 mM Tris, pH 7.5 run in parallel. Fractions were collected as described, serially diluted 187 1:10,000 with dH₂O, and iodixanol concentrations were estimated by absorbance at 244 nm using a molar extinction coefficient of 320 L g⁻¹cm⁻¹ [46]. Purified exosomes were derived 188 189 from two biological replicates for proteomic profiling and from two biological replicates for 190 Western immunoblotting validation. Exosomes derived from primary EEC cells were not 191 purified using density-based fractionation due to insufficient primary material.

192

193 Exosomal protein quantification and validation

194 Exosome pellets isolated from ECC1 and primary EEC cells were quantified using 1D-SDS-PAGE / SYPRO Ruby protein staining densitometry, as previously described [21,45]. This 195 196 method is sensitive, reproducible, has a linear quantitation range over three orders of 197 magnitude [47], and is compatible with GeLC-MS/MS [48]. Densitometry quantitation was 198 performed using ImageQuant software (Molecular Dynamics) to determine protein 199 concentration relative to a BenchMark Protein Ladder standard of known protein 200 concentration (1.7 μ g/ μ L) (Life Technologies). In addition, Western blot analysis was used 201 initially to determine exosome-containing fractions from the density gradient and 202 subsequently to validate proteins identified by proteomic analysis in exosomes from both 203 ECC1 and pEECs. Briefly, membranes (10 µg protein) were probed with primary antibodies

204 [mouse anti-TSG101 (BD Transduction Laboratories; 1:500), mouse anti-Alix (Cell 205 Signaling Technology; 1:1000), rabbit anti-GAPDH (Cell Signaling Technology; 1:1000), 206 goat anti-Collagen Type XV (Santa Cruz Biotechnology; 1:200), rabbit anti-Laminin α5 (H-207 160) (Santa Cruz Biotechnology; 1:200), mouse anti-FAK (BD Biosciences) (1:4000), mouse anti-FAK Tyr³⁹⁷ (BD Biosciences) (1:4000), rabbit anti-EpCAM (Abcam) (1:3000), rabbit 208 209 anti-Fibronectin (Abcam)] for 3 hours at room temperature (RT) in 50 mM Tris, 150 mM NaCl, 0.05% (v/v) Tween 20 (TTBS) followed by incubation with either IRDye 800 goat 210 211 anti-mouse or goat IgG or IRDye 700 goat anti-rabbit IgG (1:15000, LI-COR Biosciences) 212 for 1 hour at RT in TTBS. Immunoblots were visualized using the Odyssey Infrared Imaging 213 System, (v3.0, LI-COR Biosciences, Nebraska USA).

214

215 Cryo-transmission electron microscopy (cryo-EM)

216 Cryo-EM imaging of exosome preparations was performed as previously described [44,45], 217 with minor modifications. Briefly, exosomes (~2 µg protein, non-frozen samples prepared 218 within 2 days of analysis) were transferred to glow-discharged C-flat holey carbon grids 219 (ProSciTech Pty Ltd, Kirwan, Qld, Australia). Excess liquid was removed by blotting and 220 grids were plunge-frozen in liquid ethane. Grids were mounted in a Gatan cryoholder (Gatan, 221 Inc., Warrendale, PA, USA) in liquid nitrogen. Images were acquired at 300 kV using a 222 Tecnai G2 F30 (FEI, Eidhoven, NL) in low dose mode. Size distribution of vesicles (range 223 40-150 nm) was calculated for 15 fields of view/sample (n=2 biological replicates).

224

225 Proteomic analysis

Exosome pellets (10 µg protein) for individual biological replicates of both E-Exos and EP-Exos were lysed in SDS sample buffer, electrophoresed by 4-12% Bis-Tris SDS-PAGE (approximately 20 mm into the gel) and visualized by Imperial Protein Stain (Thermo Fisher 229 Scientific). Individual samples were excised and destained (50 mM ammonium 230 bicarbonate/acetonitrile), reduced (10 mM DTT (Calbiochem) for 30 minutes), alkylated (50 231 mM iodoacetic acid (Fluka) for 30 minutes) and trypsinized (0.6 µg trypsin (Promega 232 Sequencing Grade) for 16 hours at 37°C) as described [49]. For all samples, peptides were desalted using reverse-phase C18 StageTips [50], and eluted in 85% (v/v) acetonitrile (ACN) 233 in 0.5% (v/v) formic acid (FA). Peptides were lyophilized in a SpeedVac and acidified with 234 235 buffer containing 0.1% FA, 2% ACN. A nanoflow UPLC instrument (Ultimate 3000 RSLCnano, Thermo Fisher Scientific) was coupled on-line to an Orbitrap Elite mass 236 237 spectrometer (Thermo Fisher Scientific) with a nano-electrospray ion source (Thermo Fisher Scientific). Peptides (~2 µg) were loaded (Acclaim PepMap100 C18 5µm 100Å, Thermo 238 239 Fisher Scientific) and separated (Vydac MS C18-RP column, 25 cm, 75 µm inner diameter, 3 240 μ m 300Å, Grace, Hesperia, CA) with a 120- minute linear gradient from 0-100% (v/v) phase B (0.1% (v/v) FA in 80% (v/v) ACN) at a flow rate of 250 nL/minute. 241

242

The mass spectrometer was operated in data-dependent mode where the top 20 most 243 abundant precursor ions in the survey scan (300-2500 Th) were selected for MS/MS 244 fragmentation. Survey scans were acquired at a resolution of 120,000 at m/z 400. 245 246 Unassigned precursor ion charge states and singly charged species were rejected and peptide 247 match disabled. The isolation window was set to 3 Th and fragmented by CID with 248 normalized collision energies of 25. Maximum ion injection times for the survey scan and MS/MS scans were 20 ms and 60 ms, respectively, and ion target values were set to 3E6 and 249 250 1E6, respectively. Selected sequenced ions were dynamically excluded for 30 s. For each 251 biological replicate of E- and EP-Exos technical replicates were performed and data acquired using Xcalibur software v2.1 (Thermo Fisher Scientific). Raw mass spectrometry 252

253 data is deposited in the PeptideAtlas and can be accessed at 254 http://www.peptideatlas.org/PASS/PASS00713 [51-53].

255

256 Database searching and protein identification

Raw data were processed using Proteome Discoverer (v1.4.0.288, Thermo Fisher Scientific). 257 258 MS2 spectra were searched with Mascot (Matrix Science, London, UK; v 1.4.0.288), Sequest (Thermo Fisher Scientific, San Jose, CA, v 1.4.0.288), and X! Tandem (v 2010.12.01.1) 259 260 against a database of 178,618 ORFs (UniProt Human+Bovine, 2015_06). Peptide lists were 261 generated from a tryptic digestion with up to two missed cleavages, carbamidomethylation of cysteine as fixed modifications, and oxidation of methionine and protein N-terminal 262 263 acetylation as variable modifications. Precursor mass tolerance was 10 ppm, product ions 264 were searched at 0.6 Da tolerances, minimum peptide length defined at 6, maximum peptide 265 length 144, and max delta CN 0.05. Peptide spectral matches (PSM) were validated using Percolator based on q-values at a 1% false discovery rate (FDR) [54,55]. With Proteome 266 267 Discoverer, peptide identifications were grouped into proteins according to the law of parsimony and filtered to 1% FDR [56]. Scaffold (Proteome Software Inc., Portland, OR, v 268 269 4.3.4) was employed to validate MS/MS-based peptide and protein identifications from 270 database searching. Initial peptide identifications were accepted if they could be established 271 at greater than 95% probability (PEP 5%) as specified by the Peptide Prophet algorithm [57]. 272 Protein probabilities were assigned by the Protein Prophet algorithm [56]. Protein 273 identifications were accepted, if they reached greater than 99% probability and contained at 274 least 2 identified unique peptides. These identification criteria typically established <1% false 275 discovery rate based on a decoy database search strategy at the protein level. Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone, 276 277 were grouped to satisfy the principles of parsimony. Contaminants, bovine identifications,

278 and reverse identification were excluded from further data analysis. UniProt was used for 279 protein (molecular function. enzyme KEGG annotation category), and 280 (http://www.genome.jp/kegg/pathway.html) and DAVID (http://david.abcc.ncifcrf.gov/) for 281 pathway enrichment analyses. Comparisons with exosome database ExoCarta [58] were performed. This database contains curated exosomal protein information from diverse cell 282 283 types and body fluids (June-2015, 146 studies).

284

285 Semi-quantitative label-free spectral counting

286 Significant spectral count normalized (Nsc) and fold change ratios (Rsc) were determined as 287 previously described [21,29,44,45]. The relative abundance of a protein within a sample was 288 estimated using Nsc, where for each individual protein, significant peptide MS/MS spectra 289 (i.e., ion score greater than identity score) were summated, and normalized by the total 290 number of significant MS/MS spectra identified in the sample. To compare relative protein 291 abundance between samples the ratio of normalized spectral counts (Rsc, fold change) was 292 estimated. Total number of spectra was only counted for significant peptides identified (Ion 293 score \geq Homology score). When Rsc is less than 1, the negative inverse value was used. The 294 number of significant assigned spectra for each protein was used to determine protein expression differences. For each protein the Fisher's exact test was applied to significant 295 296 assigned spectra. The resulting p-values were corrected for multiple testing using the 297 Benjamini-Hochberg procedure [59] and statistics performed as previously described [44].

298

299 Exosome labelling and live cell uptake

300 E-Exos and EP-Exos purified from ECC1 cells (500 μ g/mL) were labelled with 1 μ M 301 Vybrant DiI, or DiD lipophilic dye (Invitrogen-GIBCO) and incubated at 37 °C for 10 302 minutes. Excess dye was removed by washing with PBS and ultracentrifugation at 100,000*g* for 70 minutes at 4 °C. DiI- or DiD-labelled exosomes were resuspended in 0.2 mL PBS and overlaid on a 4 mL 30% sucrose cushion (300 g/L sucrose, 24 g/L Tris base, pH 7.4) and ultracentrifuged at 100,000g, for 70 minutes at 4 °C. Labelled exosomes were harvested at the PBS-sucrose interface and pelleted and stored at -80°C (maximum of 4 weeks) for downstream experiments including uptake assays.

308

309 First trimester human HTR8 trophoblast cells [60] (2×10^5) were plated in 8-well Ibidi 310 chamber slides (Ibidi, Martinsried, Germany) and cultured for 24 hours prior to live cell imaging using a DeltaVision Widefield microscope (GE Life Sciences, Uppsala, Sweden) 311 312 with a 60x 1.42 NA objective, using Optical Axis Integration (OAI) scans over a z-range of 313 10 µm. A single plane brightfield image was recorded as the reference point. DiI-labelled 314 exosomes (10 µg) were added immediately prior to image acquisition for 4 hours with 315 individual images obtained every 10 minutes. Three different positions were recorded per 316 well with three sample repeats for each biological condition. Image processing and analysis 317 were performed using Imaris (Bitplane AG). For DiI-labelled exosome uptake quantification, 318 mean DiI fluorescence intensity was determined per time point and field-of-view and 319 normalized to the respective mean auto-fluorescence intensity in the green channel to 320 compensate for cells moving in and out of the field of view during the time-course. 321 Normalized fluorescence intensities are presented as mean ± SEM. To obtain 3D images of exosome accumulation within HTR8 cells, DiD-labelled exosomes were added to HTR8 cells 322 323 and incubated at 37 °C for 4 hours, followed by addition of wheat germ agglutinin (WGA) 324 Alexa594 as a red fluorescent membrane marker (2.5 µg/mL, Life Technologies, USA) and incubated at 37 °C for 6 minutes. Cells were replenished with new media and z-stack images 325 326 were immediately recorded using a z-step size of 0.5 µm. For image visualization, 3D data sets were de-convolved using SoftWoRx (Applied Precision, GE Healthcare, UK) and 327

displayed as maximum intensity projections in xy/xz/yz planes. For z-stack image
presentation and visualization, WGA is displayed in green and DiD in red.

330

331 Exosome functional real-time adhesion assay

Adhesion assays were performed using the xCELLigence system (ACEA Biosciences, San 332 333 Diego, CA, USA). This system enables real-time measurement of cell adhesion based on cell 334 interaction with microplate electrodes, resulting in electrical impedance, expressed as Cell 335 Index (CI). Adhesion of cells was monitored every 15 seconds for 4 hours via the 336 incorporated sensor electrodes, which measure the change in impedance caused by cell 337 attachment and spreading. To initiate the experiment, a background reading of the microplate was taken as threshold CI. HTR8 cells (2×10^4) were added to each well of an E-Plate 96 338 339 microplate (ACEA Biosciences) in the presence or absence of E-Exos or EP-Exos exosomes 340 (50 µg/mL, each in triplicate) and cell adhesion measured. Data were evaluated using RTCA-341 integrated software, normalizing each data point on the CI obtained at the last time point of 342 adhesion to background CI prior to adding HTR8 cells and exosomes. Data are presented as 343 relative cell index over a 4 hour recording as mean \pm SEM (n=3 biological analyses).

344

345 Exosome co-culture and cell lysate preparation

To define the effect of ECC1-derived exosomes in response to hormonal treatment on human HTR8 trophoblasts cells (2×10^5 , 6 well plate) were cultured either without exosomes (control) or with E-Exos or EP-Exos (50 µg/mL, each in triplicate) for 24 hours. Following incubation, cells were washed with ice-cold PBS and lysed on ice with SDS sample buffer (4% (w/v) SDS, 20% (v/v) glycerol, 0.01% (v/v) bromophenol blue, 0.125 M Tris-HCl, pH 6.8). Lysates were subjected to ultracentrifugation for 30 minutes (386,000*g*, TLA-100 rotor, Beckman Coulter), and supernatants aspirated for quantitation. Cellular lysates (15 µg) were separated by SDS-PAGE, transferred onto NC membranes and monitored by Western blotting. Densitometric analysis was carried out using Image Studio (v5, LI-COR) and normalized by loading control (GAPDH). Independent exosome co-culture experiments were performed in biological triplicate, each with technical triplicate, and results expressed as mean \pm SEM for individual experiments.

358

359 Statistical analysis

Statistical analyses were performed to assess differences in adhesion response of HTR8 cells treated with exosomes (E-Exos or EP-Exos) or without exosomes over 4 hours. Analysis of variance (ANOVA) and Tukeys post-hoc testing was applied to all experimental conditions between treatment groups and mock control. Student's t-test was used when two groups were compared. All analyses were calculated using GraphPad Prism (v6.05) software. Unless otherwise stated, data are presented as mean \pm SEM (n = 3 biological replicates, 3 technical replicates), with **p*<0.05 and ***p*<0.01 considered statistically significant.

367 **RESULTS**

Exosomal research has grown exponentially in recent years, and although endometrial 368 369 exosomes have been identified in the uterine cavity of women [24], it is unknown whether 370 they are hormonally regulated to influence the developing blastocyst and initiate 371 implantation. The human ECC1 cell line, which most accurately represents luminal epithelial 372 cells, were treated with estrogen (E) or estrogen and progesterone (EP), and the conditioned 373 media used to isolate and purify exosomes (E-Exos and EP-Exos) and to characterize their 374 protein cargo (Fig. 2 A&B). To attest for the ECC1 cell line culture conditions prior to 375 exosome isolation; cell morphology, viability and proliferation were examined in the presence of menstrual cycle hormones (E, 10⁻⁸ M, and P, 10⁻⁷ M). Crude exosomes of E-Exos 376 yielded 64 μ g/10⁶ cells and EP-Exos yielded 58 μ g/10⁶ cells (representative one of three 377 378 similar biological replicates) suggesting that exosomes were released in numbers independent 379 of hormonal regulation. ECC1 cells exhibited and retained their epithelial-like morphology, 380 despite hormonal treatment (Fig. S1). Additionally, cell viability and proliferation (Fig. 381 S2&3) and protein yield (Fig. S4) were not affected by either E or EP treatments. Consequently, culture medium supplemented with 0.5% ITS was used to culture ECC1 cells 382 383 in the presence of hormonal treatments, for subsequent exosome isolation (Fig. 2A).

384

385 Validation of exosomes isolated from ECC1 and primary EEC cells

An OptiPrep density gradient was used to further purify E-Exos and EP-Exos. This purification showed that exosomes were enriched within fraction 7/8 (buoyant density 1.09-1.11 g/mL) and were positive for exosomal markers Alix and TSG101 (**Fig. 2C**). To ensure exosomes were within the expected extracellular vesicle size range, cryo-electron microscopy (cryo-EM) was used to analyze purified E-Exos and EP-Exos. Cryo-EM revealed that both E-Exos and EP-Exos contained a relatively homogenous population of round membranous vesicles 40-150 nm in size (representative of 15 fields of view from two biological
replicates), which in accordance with the typical size reported for exosomes (Fig. 2D)
[44,45,61]. Importantly, almost all the vesicles in both E and EP samples are less than 150
nm.

396

397 Hormonal treatment reprograms endometrial-derived exosome cargo

398 Proteomic profiling was performed to characterize the protein cargo of hormonally-regulated 399 endometrial-derived purified exosomes (Fig. 3A). A total of 1073 protein cargos were 400 identified, comprising 917 and 786 in E-Exos and EP-Exos respectively (Fig. 3B and Table 401 **S1**). From this analysis, 254 protein cargos were uniquely packaged within E-Exos while 126 402 were within EP-Exos. Of the 663 proteins common to both E-Exos and EP-Exos, many are 403 involved in exosome biogenesis (including proteins involved in the endosomal sorting 404 complex required for transport (ESCRT) machinery such as the vacuolar protein sorting 405 associated protein family and tetraspanin (Table 1). Protein cargos required for exosome 406 sorting, trafficking, release, recognition and uptake were found in both E-Exos and EP-Exos 407 (Table 1), a feature common to all exosomes in other tissues and biofluids [62]. Based on 408 normalized spectral count ratios (Rsc), our dataset showed a range of relative differential 409 protein expression levels that were up- and down- regulated in response to EP (Fig. 3C).

410

Further analysis and comparison of this dataset with that of publicly available exosomal database, ExoCarta [58], 71 % (473/663 proteins) of the cargo was found in common with previously reported exosome-associated proteins. Importantly, 189 of the 663 proteins from this study are unique to endometrial epithelial exosomes and have not been identified in any published exosome proteomic databases (**Table S2**). We also identified several important enzyme proteins within exosomes, including various ligases, oxidoreductases, transferases, 417 lyases, isomerases, phosphatases, kinases, metalloproteinases, and hydrolases (**Table S3**), 418 representing an extensive identification of various differentially expressed enzymes (fold 419 change \pm 1.5) important for embryonic development and implantation.

420

421 Regulation of proteins associated with cytoskeletal reorganization and signaling in 422 exosomes in response to estrogen

423 Estrogen is known to play a key role in endometrial restoration following menstruation. We 424 examined exosome protein cargo in response to E, and noted key differences attributed to 425 cytoskeletal reorganization, microtubule/actin networks, and various signaling cascades 426 involved in regulating cytoskeletal rearrangements, cell migration, cell adhesion and cell 427 spreading (Table S1). Cytoskeletal elements [63] including microtubule network (TUBA1C, 428 TUBA4A, PAFAH1B1, DCTN1), actin network (ARPC2, CALD1), actin-myosin binding 429 (CDM), and actin cytoskeleton reorganization (CDK5, CDK2, RAP2A) were uniquely enriched in E-Exos. Of particular interest, were proteins involved in cytoskeletal 430 431 reorganization, adhesion, and cell signaling, including Abl interactor 1 (ABI1), Ras-related 432 protein Rap-2a (RAP2A), and MAP kinase 1 (MAPK1).

433

Regulation of proteins associated with organization of ECM architecture in exosomes in response to estrogen plus progesterone

Proteins identified in exosomes in response to EP treatment have significantly enriched functions attributed to cell adhesion, attachment, migration and organization of ECM architecture, in accord with physiological changes in both the endometrium and the blastocyst during the secretory phase of the cycle (**Table 2**). These include the basement membrane molecules, member of the laminin family (Rsc range from 6.1 to 20.7), the collagen family (Rsc range 3.6 to 8.0) and cell adhesion and migration components (**Table 2**). 442 Given that members of the laminin and collagen family were prominently displayed as 443 protein cargo, LAMA5 and COL15A1 were selected for validation. Representative immunoblotting of E-Exos and EP-Exos showed expression of both LAMA5 and COL15A1 444 445 as protein cargo (Fig. 4A). The intensity of the bands for laminin and collagen was stronger 446 in EP-Exos compared to E-Exos samples, in accordance with spectral counts from proteomic 447 profiling (Table 2) and reflected in densitometric analysis of the Western blots (Fig. 4A). To 448 ensure the finding were true and consistent, LAMA5 and COL15A1 were also validated 449 using exosomes derived from primary human endometrial epithelial cell (pEECs) treated with 450 E and EP (Fig. 4B). Both exosomal proteins were elevated when the cells of origin had been 451 exposed to EP. As expected, pEECs exosomes also package both LAMA5 and COL15A1, 452 more prominently in EP-pEECs, validating the findings from the cell line used. Densitometric 453 analysis of the bands also indicated higher level of LAMA5 in EP-Exos derived from ECC1 454 cells compared to pEECs.

455

456 Exosomes enriched for molecules involved in embryo implantation

457 In a comparative analysis of our current dataset to that of published studies on proteins 458 essential for embryo implantation [5,10,13,24,43,64,65], we found at least 14 proteins of interest (Table 3). These are unique and selective for exosomal vesicles and are packaged 459 460 predominantly in EP-Exos samples representing in vivo progesterone regulation during 461 endometrial receptive phase (Table 3). Of interest to the developmental progress of pregnancy is that we identified complement decay-accelerating factor (CD55, Rsc 7.1), 462 perlecan (HSPG2, Rsc 5.9) and EGFR (Rsc 5.1) as exosomal protein cargo. These molecules 463 464 are highly regulated at the time of blastocyst apposition and attachment [66-73].

465

466 Insights into embryo development, view from cancer-associated proteins in exosomes

Embryo implantation and placental development use similar cellular mechanisms to that of cancer cells to migrate and invade [74]. We therefore compared our dataset with those proteins derived from quite different cancer exosomes and identified 23 common proteins (**Table S4**). These proteins included members of the Wnt pathway, cell surface receptors EGFR, extracellular matrix proteins, tenascin and matrix metalloproteinases.

472

473 Endometrial exosomes are internalized by HTR8 trophoblast cells in vitro and enhance 474 their adhesive capacity

475 The functional activity of endometrial-derived exosomes was investigated using fluorescently 476 labeled E-Exos and EP-Exos, added to HTR8 trophoblast cells and monitored using live cell 477 imaging. Real-time recording showed accumulation of exosomes occurred over a 4 hour 478 period with significant increase in fluorescence intensity seen in HTR8 trophoblast cells 479 exposed to EP-Exos and E-Exos compared to mock control from 2.5 hr to 4 hr (Fig. 5A). 480 Microscopy images confirmed cellular uptake and accumulation of E-Exos and EP-Exos 481 exosomes in trophoblast cells (Fig. 5B), however there was no difference in the level of 482 fluorescence intensity. 3D microscopy and visualization highlighted the co-localization of 483 exosomes inside HTR8 cells with E-Exos (Fig. 5C) and EP-Exos (Fig. 5D).

484

To investigate whether exosomes transport functionally active cargo, the adhesive capacity of HTR8 cells was examined in the absence or presence of E-Exos and EP-Exos. Adhesion was monitored by the xCELLigence system and showed that EP-Exos induced a very rapid increase (by 1 hour) in the adhesive capacity of HTR8 cells reaching a maximum at 1.5 hours and then being maintained until 4 hours (experimental endpoint). This increased adhesion was significantly greater following uptake of EP-Exos (p<0.001), compared to E-Exos. However, both exosome preparations significantly stimulated adhesion (p<0.001) compared with cells not exposed to exosomes (Fig. 5E). The EP-Exos are representative of the
physiological condition at the time of implantation and this stimulation of HTR8 adhesion is
in accord with the proteomic data on their adhesion molecule content (Table 2).

To determine a possible pathway leading to adhesion response in HTR8 cells following coculture with exosomes, selected adhesion markers including focal adhesion kinase (FAK), phosphorylated FAK (Tyr³⁹⁷), fibronectin, and EpCAM were analyzed (**Fig. 5F&G, Fig. S5**). A significant increase in levels of FAK (E-Exos: 3.2-fold, EP-Exos: 4.2-fold), FAK-Tyr³⁹⁷ (E-Exos: 1.6-fold, EP-Exos: 2-fold), and fibronectin (E-Exos: 1.2-fold, EP-Exos: 1.4-fold) (**Fig. 5G**) was clearly demonstrated. Further, EP-Exos induced a significantly greater increase in expression of FAK and FAK-Tyr³⁹⁷ in comparison to E-Exos (p<0.01).

504 **DISCUSSION**

505 This study demonstrated that the cargo contained within human endometrial epithelial 506 exosomes is hormonally regulated in accord with the phases of the menstrual cycle and that 507 these exosomes can be taken up and release this cargo to functionally enhance trophoblast 508 adhesive capacity during implantation. The findings provide key insights into endometrial-509 embryos communication during pre-implantation events, offering new understanding to these 510 processes.

511

512 This study has utilized a comprehensive exosome isolation, purification, and characterization 513 strategy to address the issue of vesicle heterogeneity. Vesicle annotation is an ongoing 514 problem that has plagued the field over the past decade with varying categories and names 515 describing the different EV subtypes - this polemic has led to international efforts to 516 standardize nomenclature and the quest for specific protein markers to distinguish one EV 517 subtype from the (Journal Extracellular other [75] of Vesicles. 518 www.journalofextracellularvesicles.net). For a position paper on standardization procedures 519 for EV purification see Witwer et al. [76]. As such, we have characterized exosomes in this 520 study based on their specific buoyant density, marker proteins Alix and TSG101, vesicle 521 diameter using cryo-transmission electron microscopy, in addition to their protein cargo using 522 proteomic profiling.

523

524 Our proteomic profiling of E-Exos and EP-Exos has identified and confirmed that exosomes 525 contain basic machinery important to their biogenesis, trafficking and release, supporting our 526 previous reports [21,29]. Of interest, this study presents a new set of protein cargo that is 527 unique to human endometrial epithelial exosomes, which has not previously been reported in 528 any studies. Enrichment of exosomes cargo was validated in both ECC1 cells and primary

24

529 endometrial epithelial cells, supporting the experimental design and appropriate selection of 530 cell models. ECC1-derived and primary cell-derived exosome cargo are similarly regulated 531 by estrogen and progesterone, with significant enrichment of components associated with 532 cell-matrix and adhesion during the hormonal equivalent of the receptive-phase for 533 implantation. It should also be noted that select protein vesicular cargo could be released by 534 both luminal and glandular epithelial cells obtained from primary tissue. Thus further 535 characterization of such cargo is warranted to confirm protein validity between cell line-536 derived and primary-derived material. However, given that endometrial exosomal research is 537 still in its infancy, this report represents the only definitive exosome protein cargo resource to 538 date, in the context of receptivity and embryonic implantation.

539

540 The cargo identified in this present study highlights some key proteins found higher in EP-541 Exos compared to E-Exos and may have specific role in embryo implantation. These are 542 fibulin1 (FBLN1, Rsc 8.9), cysteine-rich 61 (CYR61, Rsc 7.0), complement decay-543 accelerating factor (CD55, 7.0), heparan sulphate proteoglycan 2 (HSPG2, Rsc 5.9). Fibulin-544 1 (FBLN1), a secreted glycoprotein associated with ECM remodeling, cell adhesion and 545 migration, and basement membrane interaction [77], is 8.9 fold higher in EP-Exos compared to E-Exos. Since fibulin-1 has been shown highly regulated during the differentiation stage of 546 547 the menstrual cycle, implantation and pregnancy [78], this finding further validates our data 548 and suggests that fibulin-1 could be a key molecule involved in embryo implantation. HSPG2 549 and CD55 are both essential for embryo implantation. Previous studies [79,80] demonstrated 550 that the presence of HSPG2 in uterine epithelium facilitate trophoblast attachment and 551 adhesion. CD55 has been shown with high gene and protein level during the window of 552 implantation [81,82], and our data indicates that CD55 is being packaged in endometrial 553 exosomes: this indicates its specificity and is worthy of further investigation.

554

555 The presence of cysteine-rich 61 (CYR61 Rsc 7.1) maximally in EP-Exos, suggests its 556 importance. CYR61 is known in trophoblasts during placental development where it appears 557 to promote uterine vessel growth toward the embryo [83]. Further, a global differential gene 558 expression analysis of luminal epithelium at mouse implantation sites revealed that the 559 CYR61 gene is upregulated at the early-phase implantation site, specifically during embryo 560 attachment but not in inter-implantation sites and or under delayed implantation, suggesting a 561 direct role in mediating embryonic-uterine signaling [84]. Collectively, these data suggest 562 that CYR61 is present in luminal epithelium both at the gene and protein level and released into the implantation microenvironment in exosomes, suggesting possible involvement in 563 564 endometrial-embryo crosstalk by this route.

565

566 On further analysis of our dataset, we observed an increase in exosomal protein components 567 in response to EP that are important in cell-adhesion and cell-cell signaling activity. These 568 include the receptor proteins CELSR2 (Rsc 5.1), adhesion receptor CD47 (Rsc 4.1), CLDN3 (Rsc 4.1) and PARVA (Rsc 1.7), all of which are implicated in cell polarity. Additionally, 569 570 ADAMTS15 (Rsc 6.1), ADAM10 (Rsc 1.4) have proteolytic activity and may regulate the 571 adhesion response [85]. Further, we report enriched expression of ANPEP (Rsc 1.4), and 572 DPP3 (Rsc 1.4) in EP-Exos. ANPEP is associated with proteolytic cleavage during 573 angiogenesis, and suggested to modify the endometrial microenvironment [86].

574

575 Members of the integrin family are essential for endometrium-embryo communication and 576 implantation [87-89]. Endometrial exosomes contain a number of integrins with differential 577 sorting in response to both estrogen and progesterone. These integrins include ITGA6 (Rsc 578 1.5), ITGB1 (Rsc 1.4), ITGB4 (Rsc 1.3), ITGB3 (Rsc -3.4), ITGA2 (Rsc -2.8). This is line 579 with previous studies suggesting that integrin expression is hormone-dependent [88]. The 580 present study provides new knowledge that several members of the integrin family are 581 selectively packaged within endometrial exosomes. They may be important for exosome 582 docking to recipient cells, about which very little is known, or they may be released intracellularly to relocate to the cell surface and mediate trophoblast adhesion by interacting 583 584 with ligands including fibronectin and laminins [90,91]. Certainly, microvesicles, of which 585 exosomes are the smallest, are known to contain functional membrane proteins associated 586 with membrane lipid rafts (such as tissue factor and chemokines receptor CCR5) which are 587 subsequently incorporated into membranes of other cells [92,93].

588

589 The common protein cargos identified between E-Exos and EP-Exos are mostly involved in 590 vesicle trafficking, sorting, release and extracellular matrix reorganization. These are IST1, 591 SNX6, and CDK1, where IST1 acts a key modulator of cargo protein sorting [94,95]. Sorting 592 nexin-6 (SNX6) is involved in intracellular vesicle trafficking and plays a key transport link 593 between cytoplasmic transport vesicles and dynactin. Cyclin-dependent kinase 1 (CDK1), is a 594 key mitotic kinase importance for cell cycling and regeneration of proliferative phase 595 endometrium and for embryonic survival at the pre-implantation stage [96]. ABI1 is another 596 protein cargo involved in cytoskeletal reorganization and interacts with EGFR signaling 597 pathway to regulate cell motility and proliferation [97,98]. Endosomal-derived RAP2A 598 GTPase is part of several signaling cascades thought to regulate cytoskeletal rearrangements, 599 cell migration, adhesion and invasion by up-regulating p-Akt [99,100]. MAPK1 is a 600 serine/threonine kinase that mediates cell adhesion, proliferation, cell cycle progression, cell 601 survival and transcription [101]. The identification of these molecules in our exosomes 602 highlight the dynamic signaling pathways within the uterine microenvironment in preparation 603 for embryo implantation and development.

604

In contrast, a number of factors with adhesion-related properties including galectins (Gal-1, 605 606 Rsc -2.8) and Gal-3, Rsc -3.4) were identified at reduced concentrations in exosomes in 607 response to EP. Galectins bind galactosides and have differing roles, including cell-adhesion 608 and invasion of trophoblast and regulation of endometrial receptivity [102,103]. Recently 609 Gal-1 has been shown to influence trophoblast immune evasion, regulating human leukocyte 610 antigen G on expression on trophoblast cells [102]. Both Gal-1 and Gal-3 contribute to the 611 organization of ECM and the regulation of cell motility in first trimester placental tissue, and 612 in cell cultures derived from placental and decidual tissue [104].

613

614 Changes in adhesion of trophoblast have previously been functionally identified but without 615 consideration of their control mechanisms [105,106]. It is known that exosomes may 616 selectively transfer certain proteins and other cargo to recipient cells resulting in selective 617 downstream functional effects [107-109]. The present study demonstrated that exosomes 618 derived from receptive phase endometrium in the context of peri-implantation, can alter 619 trophoblast behaviour to favor the functional adhesive response needed for implantation. In 620 addition, we demonstrated that this is mediated at least in part via the FAK pathway, as 621 evident by an increase of FAK protein expression and phosphorylation of FAK (pTyr³⁹⁷) 622 [110] in trophoblast cells after 4 hr co-culture with endometrial exosomes (Fig. 5). FAK is 623 activated and localized at focal adhesions upon cell adhesion to the ECM through integrin binding, triggering phosphorylation of FAK-Tyr³⁹⁷ [111], thus implicating that integrin 624 binding is among the actions of exosomal cargo on adhesion. However, given that these 625 626 exosomes also contain specific miRNAs [24] and probably RNAs and lipids, further 627 investigations are required to define precisely which components of the exosomal cargo are

628 most important and how the fate of trophectodermal cells may be dictated by these cell-629 specific exosomes and their cargo.

630

631 At this time, although the biological effects of exosomal transfer can be profound, the mechanisms of exosome uptake by cells and how their protein cargo is utilized by cells, are 632 633 not known [112]. In addition, direct evidence for a causal relationship between specific 634 exosomal molecular cargo and function is rare. Some studies have shown that cancer-derived 635 exosomes have TGF- β 1 at their surface and are tethered by its receptor betaglycan. However, 636 their delivery requires an intact heparan sulphate side chain: this highlights a different form 637 of vesicular transport to that of soluble forms [113]. TGFβ1 is also responsible for controlling 638 immune responses in cells to which it is delivered from vesicles [114,115]. Exosomes also 639 deliver mRNA that is subsequently translated to protein in recipient cells [31,116] and their 640 miRNA cargo can regulate the recipient cell's transcriptome [117-119]. It is clear that the concept of 'pre-metastatic niche' formation, whereby secreted signals and extracellular 641 642 vesicles from both tumour and host cells can promote cancerous growth and metastasis [120], 643 can be applied to preparation of the blastocyst for its 'landing' on and subsequent invasion of 644 the endometrium to establish pregnancy. Similarly, exosomes from one endometrial epithelial cell could act to prepare other endometrial cells in the vicinity for implantation, strongly 645 646 highlighting the critical role of exosomes in cell-cell communications within uterine 647 microenvironment prior to embryo implantation and placentation.

648

This study has therefore provided a new insight into the regulation of human embryo implantation, demonstrating a contribution of endometrial-derived exosomes to endometrialembryo crosstalk. The protein cargo of endometrial exosomes is substantially regulated by estrogen and progesterone, as physiologically relevant to the proliferative and secretory 653 phases of the menstrual cycle respectively. Importantly, endometrial exosomes contain a number of unique proteins not previously identified in exosomes from any other tissue, 654 biofluid, or indeed cell model. Significantly, our study shows that endometrial exosomes 655 656 within the extracellular microenvironment during the peri-implantation period are capable of regulating trophectodermal cell adhesiveness partially through active focal adhesion kinase 657 (FAK) signaling. Endometrial exosomes may provide a means for improving pre-658 implantation embryo developmental potential, and thus become targets for improving 659 receptivity, implantation success, fertility, and pregnancy outcomes, hence reducing the 660 661 considerable personal and financial cost of infertility.

663 **COMPETING INTERESTS**

664 The authors declare no competing or financial interests.

665

666 ACKNOWLEDGEMENTS

We particularly thank the patients who provided consent for use of their endometrial tissue and Sister Judi Hocking for its collection. 3D imaging was performed at Monash Micro Imaging Facility, Hudson Institute of Medical Research. We acknowledge the La Trobe University-Comprehensive Proteomics Platform for providing infrastructure and expertise for Capability A: Protein Identification & Quantitation. Electron microscopy was performed at the Advanced Microscopy Facility at the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne.

674

676 **REFERENCES**

- 1. Salamonsen LA, Nie G, Hannan NJ, Dimitriadis E. Preparing fertile soil: the
- 678 importance of endometrial receptivity. Reprod Fertil Dev 2009 21:923-934
- 679 2. Thouas GA, Dominguez F, Green MP, Vilella F, Simon C, Gardner DK. Soluble
- 680 ligands and their receptors in human embryo development and implantation. Endocr
- 681 Rev 2015 36:92-130
- 682 3. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss
 683 of pregnancy. N Engl J Med 1999 340:1796-1799
- 4. Fazleabas AT, Kim JJ. What Makes an Embryo Stick? Science 2003 299:355-356
- 6855.Young SL. Oestrogen and progesterone action on endometrium: a translational
- approach to understanding endometrial receptivity. Reprod Biomed Online 2013
- 687 27:497-505
- 688 6. Thie M ,Denker HW. In vitro studies on endometrial adhesiveness for trophoblast:
- cellular dynamics in uterine epithelial cells. Cells Tissues Organs 2002 172:237-252
- 690 7. Murphy CR. Uterine receptivity and the plasma membrane transformation. Cell Res691 2004 14:259-267
- Byrjalsen I, Larsen PM, Fey SJ, Christiansen C. Human endometrial proteins with
 cyclic changes in the expression during the normal menstrual cycle: characterization
- by protein sequence analysis. Hum Reprod 1995 10:2760-2766
- 695 9. Byrjalsen I, Larsen PM, Fey SJ, Thormann L, Pedersen BJ, Christiansen C. Two-
- dimensional gel analysis of human endometrial proteins: cyclic changes in the
- 697 expression of specific proteins during the normal menstrual cycle. Hum Reprod 1995698 10:13-18
- 699 10. Dominguez F, Garrido-Gomez T, Lopez JA, Camafeita E, Quinonero A, Pellicer A,
- 700 Simon C. Proteomic analysis of the human receptive versus non-receptive

701		endometrium using differential in-gel electrophoresis and MALDI-MS unveils
702		stathmin 1 and annexin A2 as differentially regulated. Hum Reprod 2009 24:2607-
703		2617
704	11.	Hannan NJ, Stephens AN, Rainczuk A, Hincks C, Rombauts LJF, Salamonsen LA.
705		2D-DiGE Analysis of the Human Endometrial Secretome Reveals Differences
706		between Receptive and Nonreceptive States in Fertile and Infertile Women. J Prot Res
707		2010 9:6256-6264
708	12.	Scotchie JG, Fritz MA, Mocanu M, Lessey BA, Young SL. Proteomic analysis of the
709		luteal endometrial secretome. Reprod Sci 2009 16:883-893
710	13.	Brosens JJ, Hodgetts A, Feroze-Zaidi F, Sherwin JR, Fusi L, Salker MS, Higham J,
711		Rose GL, Kajihara T, Young SL, Lessey BA, Henriet P et al. Proteomic analysis of
712		endometrium from fertile and infertile patients suggests a role for apolipoprotein A-I
713		in embryo implantation failure and endometriosis. Mol Hum Reprod 2010 16:273-
714		285
715	14.	Ye T-M, Pang RTK, Leung CON, Chiu J-F, Yeung WSB. Two-dimensional liquid
716		chromatography with tandem mass spectrometry-based proteomic characterization of
717		endometrial luminal epithelial surface proteins responsible for embryo implantation.
718		Fertil Steril 2015 103:853-861
719	15.	Schifferli JA. Microvesicles are messengers. Semin Immunopathol 2011 33:393-394
720	16.	Salamonsen LA, Edgell T, Rombauts LJF, Stephens AN, Robertson DM, Rainczuk A,
721		Nie G, Hannan NJ. Proteomics of the human endometrium and uterine fluid: a
722		pathway to biomarker discovery. Fertil Steril 2013 99:1086-1092
723	17.	DeSouza L, Diehl G, Yang ECC, Guo J, Rodrigues MJ, Romaschin AD, Colgan TJ,
724		Siu KWM. Proteomic analysis of the proliferative and secretory phases of the human

725		endometrium: Protein identification and differential protein expression. Proteomics
726		2005 5:270-281
727	18.	Hood BL, Liu B, Alkhas A, Shoji Y, Challa R, Wang G, Ferguson S, Oliver J,
728		Mitchell D, Bateman NW, Zahn CM, Hamilton CA et al. Proteomics of the Human
729		Endometrial Glandular Epithelium and Stroma from the Proliferative and Secretory
730		Phases of the Menstrual Cycle. Biol Reprod 2015 92:(In Press)
731	19.	Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK, Salamonsen LA.
732		Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF
733		as a key regulator of embryo implantation. Endocrinology 2011 152:4948-4956
734	20.	Burns G, Brooks K, Wildung M, Navakanitworakul R, Christenson LK, Spencer TE.
735		Extracellular vesicles in luminal fluid of the ovine uterus. PLoS One 2014 9:e90913
736	21.	Ji H, Greening DW, Barnes TW, Lim JW, Tauro BJ, Rai A, Xu R, Adda C,
737		Mathivanan S, Zhao W, Xue Y, Xu T et al. Proteome profiling of exosomes derived
738		from human primary and metastatic colorectal cancer cells reveal differential
739		expression of key metastatic factors and signal transduction components. Proteomics
740		2013 13:1672-1686
741	22.	Racicot K, Schmitt A, Ott T. The myxovirus-resistance protein, MX1, is a component
742		of exosomes secreted by uterine epithelial cells. Am J Reprod Immunol 2012 67:498-
743		505
744	23.	Donker RB, Mouillet JF, Chu T, Hubel CA, Stolz DB, Morelli AE, Sadovsky Y. The
745		expression profile of C19MC microRNAs in primary human trophoblast cells and
746		exosomes. Mol Hum Reprod 2012 18:417-424
747	24.	Ng YH, Rome S, Jalabert A, Forterre A, Singh H, Hincks CL, Salamonsen LA.
748		Endometrial exosomes/microvesicles in the uterine microenvironment: a new
749		paradigm for embryo-endometrial cross talk at implantation. PloS one 2013 8:e58502

- 75025.Simons M ,Raposo G. Exosomes--vesicular carriers for intercellular communication.
- 751 Curr Opin Cell Biol 2009 21:575-581
- 752 26. Greening DW, Gopal SK, Mathias RA, Liu L, Sheng J, Zhu HJ, Simpson RJ.
- 753
 Emerging roles of exosomes during epithelial-mesenchymal transition and cancer
- 754 progression. Semin Cell Dev Biol 2015 40:60-71
- Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in
 immune regulation and cancer. Semin Cell Dev Biol 2015 40:72-81
- Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and
 therapeutic roles of exosomes in cancer. Front Oncol 2014 4:127
- 759 29. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S, Scott AM, Simpson RJ.
- 760 Comparison of ultracentrifugation, density gradient separation, and immunoaffinity
- capture methods for isolating human colon cancer cell line LIM1863-derived
- 762 exosomes. Methods 2012 56:293-304
- 763 30. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer
- 764 MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C et al. Atheroprotective
- communication between endothelial cells and smooth muscle cells through miRNAs.
- 766 Nat Cell Biol 2012 14:249-256
- Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated
 transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange
 between cells. Nat Cell Biol 2007 9:654-659
- 769between cells. Nat Cell Biol 2007 9:654-659
- 770 32. Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, Zhang J, Weitz J, Chin
- 771 L, Futreal A, Kalluri R. Identification of double-stranded genomic DNA spanning all
- chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients
- with pancreatic cancer. J Biol Chem 2014 289:3869-3875

774	33.	Llorente A, Skotland T, Sylvanne T, Kauhanen D, Rog T, Orlowski A, Vattulainen I,
775		Ekroos K, Sandvig K. Molecular lipidomics of exosomes released by PC-3 prostate
776		cancer cells. Biochim Biophys Acta 2013 1831:1302-1309
777	34.	Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from
778		human bone marrow mesenchymal stem cells promote angiogenesis in a rat
779		myocardial infarction model. J Mol Med (Berl) 2014 92:387-397
780	35.	Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings
781		F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D. Exosomal and Non-Exosomal
782		Transport of Extra-Cellular microRNAs in Follicular Fluid: Implications for Bovine
783		Oocyte Developmental Competence. PLoS One 2013 8:e78505
784	36.	Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M,
785		Barbagallo D, Borzi P, Rizzari S, Maugeri M, Scollo P, Tatone C et al. Molecular
786		characterization of exosomes and their microRNA cargo in human follicular fluid:
787		bioinformatic analysis reveals that exosomal microRNAs control pathways involved
788		in follicular maturation. Fertil Steril 2014 102:1751-1761 e1751
789	37.	da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-
790		secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a
791		possible new form of cell communication within the ovarian follicle. Biol Reprod
792		2012 86:71
793	38.	Atay S, Gercel-Taylor C, Suttles J, Mor G, Taylor DD. Trophoblast-derived exosomes
794		mediate monocyte recruitment and differentiation. Am J Reprod Immunol 2011
795		65:65-77
796	39.	Mo B, Vendrov AE, Palomino WA, DuPont BR, Apparao KB, Lessey BA. ECC-1
797		cells: a well-differentiated steroid-responsive endometrial cell line with characteristics
798		of luminal epithelium. Biol Reprod 2006 75:387-394

799	40.	Korch C, Spillman MA, Jackson TA, Jacobsen BM, Murphy SK, Lessey BA, Jordan
800		VC, Bradford AP. DNA profiling analysis of endometrial and ovarian cell lines
801		reveals misidentification, redundancy and contamination. Gynecol Oncol 2012
802		127:241-248
803	41.	SDO A ,Manassas V. Standardization of STR Profiling - ATCC SDO document
804		ASN-0002. ATCC Standards Development Organization 2011
805	42.	Evans J ,Salamonsen LA. Too much of a good thing? Experimental evidence suggests
806		prolonged exposure to hCG is detrimental to endometrial receptivity. Hum Reprod
807		2013 28:1610-1619
808	43.	Hannan NJ, Paiva P, Dimitriadis E, Salamonsen LA. Models for study of human
809		embryo implantation: choice of cell lines? Biol Reprod 2010 82:235-245
810	44.	Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H, Kapp EA, Coleman BM, Hill
811		AF, Kusebauch U, Hallows JL, Shteynberg D, Moritz RL et al. Oncogenic H-ras
812		reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins
813		following epithelial-mesenchymal transition. Mol Cell Proteomics 2013 12:2148-
814		2159
815	45.	Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation
816		and characterization: evaluation of ultracentrifugation, density-gradient separation,
817		and immunoaffinity capture methods. Methods Mol Biol 2015 1295:179-209
818	46.	Schroder M, Schafer R, Friedl P. Spectrophotometric determination of iodixanol in
819		subcellular fractions of mammalian cells. Analytical biochemistry 1997 244:174-176
820	47.	Steinberg TH, Lauber WM, Berggren K, Kemper C, Yue S, Patton WF. Fluorescence
821		detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using
822		environmentally benign, nonfixative, saline solution. Electrophoresis 2000 21:497-
823		508

824	48.	White IR, Pickford R, Wood J, Skehel JM, Gangadharan B, Cutler P. A statistical
825		comparison of silver and SYPRO Ruby staining for proteomic analysis.
826		Electrophoresis 2004 25:3048-3054
827	49.	Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass
828		spectrometric characterization of proteins and proteomes. Nat Protoc 2006 1:2856-
829		2860
830	50.	Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-
831		fractionation and storage of peptides for proteomics using StageTips. Nat Protoc
832		2007 2:1896-1906
833	51.	Deutsch EW, Lam H, Aebersold R. PeptideAtlas: a resource for target selection for
834		emerging targeted proteomics workflows. EMBO Rep 2008 9:429-434
835	52.	Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J,
836		Loevenich SN, Aebersold R. The PeptideAtlas project. Nucleic Acids Res 2006
837		34:D655-658
838	53.	Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, Aderem A,
839		Boyle R, Brunner E, Donohoe S, Fausto N, Hafen E et al. Integration with the human
840		genome of peptide sequences obtained by high-throughput mass spectrometry.
841		Genome Biol 2005 6:R9
842	54.	Greening DW, Kapp EA, Ji H, Speed TP, Simpson RJ. Colon tumour
843		secretopeptidome: insights into endogenous proteolytic cleavage events in the colon
844		tumour microenvironment. Biochim Biophys Acta 2013 1834:2396-2407
845	55.	Brosch M, Yu L, Hubbard T, Choudhary J. Accurate and sensitive peptide
846		identification with Mascot Percolator. J Proteome Res 2009 8:3176-3181
847	56.	Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data: the protein

848 inference problem. Mol Cell Proteomics 2005 4:1419-1440

estimate the accuracy of peptide identifications made by MS/MS and database search.

Anal Chem 2002 74:5383-5392

- 852 58. Mathivanan S ,Simpson RJ. ExoCarta: A compendium of exosomal proteins and
 853 RNA. Proteomics 2009 9:4997-5000
- 854 59. Benjamini Y ,Hochberg Y. Controlling the false discovery rate: a practical and
- powerful approach to multiple testing. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1995
 57:289-300
- 60. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, Lala PK.
- 858 Establishment and characterization of first trimester human trophoblast cells with
- extended lifespan. Exp Cell Res 1993 206:204-211
- 860 61. Xu R, Greening D, Rai A, Ji H, Simpson R. Comparative analysis of shed
- 861 microvesicles and exosomes isolated by sequential centrifugal ultrafiltration. Methods
 862 2015 (In Press)
- 863 62. Simpson RJ, Jensen SS, Lim JW. Proteomic profiling of exosomes: current
- 864 perspectives. Proteomics 2008 8:4083-4099
- 865 63. Mostowy S ,Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev
 866 Mol Cell Biol 2012 13:183-194
- Achache H ,Revel A. Endometrial receptivity markers, the journey to successful
 embryo implantation. Hum Reprod Update 2006 12:731-746
- 869 65. Buck VU, Windoffer R, Leube RE, Classen-Linke I. Redistribution of adhering
- 870 junctions in human endometrial epithelial cells during the implantation window of the
- 871 menstrual cycle. Histochem Cell Biol 2012 137:777-790

872	66.	Rohde LH, Julian J, Babaknia A, Carson DD. Cell Surface Expression of HIP, a
873		Novel Heparin/Heparan Sulfate-binding Protein, of Human Uterine Epithelial Cells
874		and Cell Lines. J Biol Chem 1996 271:11824-11830
875	67.	Raab G, Kover K, Paria BC, Dey SK, Ezzell RM, Klagsbrun M. Mouse
876		preimplantation blastocysts adhere to cells expressing the transmembrane form of
877		heparin-binding EGF-like growth factor. Development 1996 122:637-645
878	68.	Carson DD, Tang J-P, Julian J. Heparan Sulfate Proteoglycan (Perlecan) Expression
879		by Mouse Embryos during Acquisition of Attachment Competence. Dev Biol 1993
880		155:97-106
881	69.	Kane M, Morgan P, Coonan C. Peptide growth factors and preimplantation
882		development. Hum Reprod Update 1997 3:137-157
883	70.	Young SL, Lessey BA, Fritz MA, Meyer WR, Murray MJ, Speckman PL, Nowicki
884		BJ. In Vivo and in Vitro Evidence Suggest That HB-EGF Regulates Endometrial
885		Expression of Human Decay-Accelerating Factor. J Clin Endocrinol Metab 2002
886		87:1368-1375
887	71.	Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, Bocca S, Oehninger
888		S. In search of candidate genes critically expressed in the human endometrium during
889		the window of implantation. Hum Reprod 2005 20:2104-2117
890	72.	Jensen TS, BjØRge L, Wollen A-L, Ulstein M. Identification of the Complement
891		Regulatory Proteins CD46, CD55, and CD59 in Human Fallopian Tube,
892		Endometrium, and Cervical Mucosa and Secretion. Am J Reprod Immunol 1995
893		34:1-9
894	73.	Francis J, Rai R, Sebire NJ, El-Gaddal S, Fernandes MS, Jindal P, Lokugamage A,
895		Regan L, Brosens JJ. Impaired expression of endometrial differentiation markers and

896		complement regulatory proteins in patients with recurrent pregnancy loss associated
897		with antiphospholipid syndrome. Mol Hum Reprod 2006 12:435-442
898	74.	Murray MJ ,Lessey BA. Embryo implantation and tumor metastasis: common
899		pathways of invasion and angiogenesis. Semin Reprod Endocrinol 1999 17:275-290
900	75.	Gould SJ ,Raposo G. As we wait: coping with an imperfect nomenclature for
901		extracellular vesicles. J Extracell Vesicles 2013 2:eCollection 2013
902	76.	Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, Nolte-'t Hoen EN,
903		Piper MG, Sivaraman S, Skog J, Thery C, Wauben MH et al. Standardization of
904		sample collection, isolation and analysis methods in extracellular vesicle research. J
905		Extracell Vesicles 2013 2:eCollection 2013
906	77.	Timpl R, Sasaki T, Kostka G, Chu ML. Fibulins: a versatile family of extracellular
907		matrix proteins. Nat Rev Mol Cell Biol 2003 4:479-489
908	78.	Okada H, Tsuzuki T, Shindoh H, Nishigaki A, Yasuda K, Kanzaki H. Regulation of
909		decidualization and angiogenesis in the human endometrium: mini review. J Obstet
910		Gynaecol Res 2014 40:1180-1187
911	79.	Carson DD, Tang J-P, Julian J. Heparan Sulfate Proteoglycan (Perlecan) Expression
912		by Mouse Embryos during Acquisition of Attachment Competence. Developmental
913		Biology 1993 155:97-106
914	80.	Slater M ,Murphy CR. Chondroitin sulphate and heparan sulfate proteoglycan are
915		sequentially expressed in the uterine extracellular matrix during early pregnancy in
916		the rat. Matrix Biol 1999 18:125-131
917	81.	Aghajanova L, Hamilton AE, Giudice LC. Uterine Receptivity to Human Embryonic
918		Implantation: Histology, Biomarkers, and Transcriptomics. Seminars in cell &
919		developmental biology 2008 19:204-211

920	82.	Palomino WA, Argandoña F, Azúa R, Kohen P, Devoto L. Complement C3 and
921		Decay-Accelerating Factor Expression Levels Are Modulated by Human Chorionic
922		Gonadotropin in Endometrial Compartments During the Implantation Window.
923		Reproductive Sciences 2013 20:1103-1110
924	83.	Chen Y ,Du XY. Functional properties and intracellular signaling of CCN1/Cyr61. J
925		Cell Biochem 2007 100:1337-1345
926	84.	Chen Y, Ni H, Ma XH, Hu SJ, Luan LM, Ren G, Zhao YC, Li SJ, Diao HL, Xu X,
927		Zhao ZA, Yang ZM. Global analysis of differential luminal epithelial gene expression
928		at mouse implantation sites. J Mol Endocrinol 2006 37:147-161
929	85.	Kim J, Kang SG, Kim JI, Park JH, Kim SK, Cho DJ, Kim H. Implication of ADAM-
930		8, -9, -10, -12, -15, -17, and ADAMTS-1 in implantational remodeling of a mouse
931		uterus. Yonsei Med J 2006 47:558-567
932	86.	Forde N, Spencer TE, Bazer FW, Song G, Roche JF, Lonergan P. Effect of pregnancy
933		and progesterone concentration on expression of genes encoding for transporters or
934		secreted proteins in the bovine endometrium. Physiol Genomics 2010 41:53-62
935	87.	Fazleabas AT, Bell SC, Fleming S, Sun J, Lessey BA. Distribution of integrins and
936		the extracellular matrix proteins in the baboon endometrium during the menstrual
937		cycle and early pregnancy. Biol Reprod 1997 56:348-356
938	88.	Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA.
939		Integrin adhesion molecules in the human endometrium. Correlation with the normal
940		and abnormal menstrual cycle. J Clin Invest 1992 90:188-195
941	89.	Lessey BA ,Castelbaum AJ. Integrins and implantation in the human. Rev Endocr
942		Metab Disord 2002 3:107-117

943 90. Wang J ,Armant DR. Integrin-mediated adhesion and signaling during blastocyst
944 implantation. Cells Tissues Organs 2002 172:190-201

945	91.	Wang J, Mayernik L, Armant DR. Integrin signaling regulates blastocyst adhesion to
946		fibronectin at implantation: intracellular calcium transients and vesicle trafficking in
947		primary trophoblast cells. Dev Biol 2002 245:270-279
948	92.	Del Conde I, Shrimpton CN, Thiagarajan P, Lopez JA. Tissue-factor-bearing
949		microvesicles arise from lipid rafts and fuse with activated platelets to initiate
950		coagulation. Blood 2005 106:1604-1611
951	93.	Mack M, Kleinschmidt A, Bruhl H, Klier C, Nelson PJ, Cihak J, Plachy J,
952		Stangassinger M, Erfle V, Schlondorff D. Transfer of the chemokine receptor CCR5
953		between cells by membrane-derived microparticles: a mechanism for cellular human
954		immunodeficiency virus 1 infection. Nat Med 2000 6:769-775
955	94.	Dimaano C, Jones CB, Hanono A, Curtiss M, Babst M. Ist1 regulates Vps4
956		localization and assembly. Mol Biol Cell 2008 19:465-474
957	95.	Rue SM, Mattei S, Saksena S, Emr SD. Novel Ist1-Did2 complex functions at a late
958		step in multivesicular body sorting. Mol Biol Cell 2008 19:475-484
959	96.	Tominaga Y, Li C, Wang RH, Deng CX. Murine Wee1 plays a critical role in cell
960		cycle regulation and pre-implantation stages of embryonic development. Int J Biol Sci
961		2006 2:161-170
962	97.	Wang C, Navab R, Iakovlev V, Leng Y, Zhang J, Tsao MS, Siminovitch K,
963		McCready DR, Done SJ. Abelson interactor protein-1 positively regulates breast
964		cancer cell proliferation, migration, and invasion. Mol Cancer Res 2007 5:1031-1039
965	98.	Li Y, Clough N, Sun X, Yu W, Abbott BL, Hogan CJ, Dai Z. Bcr-Abl induces
966		abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell
967		adhesion to fibronectin through the Abl interactor 1 pathway. J Cell Sci 2007
968		120:1436-1446

969	99.	Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N, Uezato H,
970		Nonaka S, Kariya K. The Traf2- and Nck-interacting kinase as a putative effector of
971		Rap2 to regulate actin cytoskeleton. J Biol Chem 2004 279:49488-49496
972	100.	Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and
973		regulates cancer cell migration and invasion. Cell Signal 2015 27:1198-1207
974	101.	Roskoski R, Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol
975		Res 2012 66:105-143
976	102.	Tirado-Gonzalez I, Freitag N, Barrientos G, Shaikly V, Nagaeva O, Strand M,
977		Kjellberg L, Klapp BF, Mincheva-Nilsson L, Cohen M ,Blois SM. Galectin-1
978		influences trophoblast immune evasion and emerges as a predictive factor for the
979		outcome of pregnancy. Mol Hum Reprod 2013 19:43-53
980	103.	Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F. Embryonic implantation in
981		galectin 1/galectin 3 double mutant mice. Dev Dyn 1998 211:306-313
982	104.	Vicovac L, Jankovic M, Cuperlovic M. Galectin-1 and -3 in cells of the first trimester
983		placental bed. Hum Reprod 1998 13:730-735
984	105.	Aplin JD. Adhesion molecules in implantation. Rev Reprod 1997 2:84-93
985	106.	Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ,
986		Kiessling LL, Rosen SD, Fisher SJ. Trophoblast L-selectin-mediated adhesion at the
987		maternal-fetal interface. Science 2003 299:405-408
988	107.	Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo
989		F, González M, Bernad A, Sánchez-Madrid F. Unidirectional transfer of microRNA-
990		loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011 2:282
991	108.	Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM,
992		Campigotto F, Weller E, Anderson KC, Scadden DT et al. BM mesenchymal stromal

993		cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013
994		123:1542-1555
995	109.	Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S, Zandueta C,
996		Ormazábal C, Struman I, Tabruyn S, Rebmann V, De Las Rivas J, Guruceaga E et al.
997		miRNA cargo within exosome-like vesicle transfer influences metastatic bone
998		colonization. Molecular Oncology 2014 8:689–703
999	110.	Hanks SK ,Polte TR. Signaling through focal adhesion kinase. Bioessays 1997
1000		19:137-145
1001	111.	Hanks SK, Ryzhova L, Shin NY, Brabek J. Focal adhesion kinase signaling activities
1002		and their implications in the control of cell survival and motility. Front Biosci 2003
1003		8:d982-996
1004	112.	Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle
1005		uptake. J Extracell Vesicles 2014 3:
1006	113.	Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer
1007		microenvironment. Semin Cell Dev Biol 2015 40:27-34
1008	114.	Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL. Tumor-
1009		derived microvesicles induce, expand and up-regulate biological activities of human
1010		regulatory T cells (Treg). PLoS One 2010 5:e11469
1011	115.	Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, Wei Y, Cao X, Wang J, Cai Z.
1012		Exosomes with membrane-associated TGF-beta1 from gene-modified dendritic cells
1013		inhibit murine EAE independently of MHC restriction. Eur J Immunol 2013 43:2461-
1014		2472
1015	116.	Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT,

1016 Jr., Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles

- 1017 transport RNA and proteins that promote tumour growth and provide diagnostic
- 1018 biomarkers. Nat Cell Biol 2008 10:1470-1476
- 1019 117. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin
- 1020 E, Perelman LT, Melo CA, Lucci A, Ivan C et al. Cancer exosomes perform cell-
- 1021 independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014
- 1022 26:707-721
- 1023 118. Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida
- 1024 M, Tsuda H, Tamura K, Ochiya T. Exosomes from bone marrow mesenchymal stem
- 1025 cells contain a microRNA that promotes dormancy in metastatic breast cancer cells.

1026 Sci Signal 2014 7:ra63

- 1027 119. Umezu T, Ohyashiki K, Kuroda M, Ohyashiki JH. Leukemia cell to endothelial cell
 1028 communication via exosomal miRNAs. Oncogene 2013 32:2747-2755
- 1029 120. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-
- 1030 metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 2011
- 1031 21:139-146
- 1032

1033 FIGURE LEGENDS

1034

1035 Figure 1. Endometrial-derived exosome remodeling during embryo implantation. The 1036 embryo enters the human uterus approximately 4 days after fertilization, generally as an 1037 unhatched blastocyst, where it further develops until it attaches to and invades the 1038 endometrial epithelium several days later. Soluble-secreted factors and exosomes (SS/Exos) 1039 are released by the endometrium into the uterine microenvironment and influence the 1040 blastocyst/trophectoderm enabling the blastocyst to undergo apposition, attachment and 1041 invasion through the endometrial epithelium. GE (glandular epithelium) and LE (luminal 1042 epithelium).

1043

Figure 2. Exosome isolation and purification from hormonally-treated ECC1 cells. (A) Experimental workflow for hormonal treatments of ECC1 cells and culture medium collection. (B) Differential ultracentrifugation of culture medium for exosome isolation and purification. (C) Western blotting of E-Exos and EP-Exos probed with exosome markers Alix and TSG101. (D) Cryo-electron microscopy of purified exosomes revealing textured round vesicles (40-150 nm). Scale bar, 100nm. CM: conditioned medium, ITS: insulin-transferrinsodium selenium.

1051

Figure 3. Proteomic profiling of hormonally-treated ECC1 cell-derived exosomes. (A) Biological replicates of E- and EP-treated ECC1 purified exosomes separated by 1D-SDS-PAGE (10 μ g). Individual gel slices were excised, subjected further processing an analysis as shown. (B) Two-way Venn diagram of E- and EP-treated exosomes (C) Normalized differential protein expression (Rsc, ratio of spectral counts) ranked as maximal difference between EP and E exosomes (fold-change >2, p-value <0.05). 1058

Figure 4. Validation of ECC1 cell- and primary endometrial epithelial cell-derived exosomes. Representative Western blots of exosomal markers Alix, TSG101 and cytoskeletal components LAMA5 and COL15A1 for (A) ECC1 cell-derived exosomes (n = 2, E-Exos and EP-Exos, 10 μ g) and (B) Primary human endometrial epithelial cell-derived exosomes (n=3, E-Exos and EP-Exos). Densitometric analysis was performed using ImageJ v1.44, showing mean ± SEM with ***p*<0.01 considered statistically significant.

1065

1066 Figure 5. In vitro uptake and functional effects of ECC1-derived exosomes on 1067 trophoblast cells. (A) Accumulation of fluorescence intensity of DiI-labelled E-Exos and 1068 EP-Exos in human HTR8 trophoblast recipient cells over 4 hours of live recording (B) 1069 Microscopic images of HTR8 in the absence (top panel) and presence of exosomes (middle 1070 and bottom panel). Arrow heads: DiI-labelled exosomes within HTR8 cells. Scale bar, 20 1071 μ m. (C, D) Representative 3D images (xy/yz/xz) show co-localization of exosomes (red) 1072 within HTR8 cells (green) in the presence of E-Exos (C) and EP-Exos (D). Scale bar, 5 µm. 1073 (E) Representative real-time measurements of HTR8 cell adhesion over 4 hours in absence 1074 (black) and presence of E-Exos (dark grey) and EP-Exos (grey) using xCELLigence RTCA 1075 instrument. Representative data is presented as mean \pm SEM, n = 3, showing normalized fluorescence intensity (Fig. 5A) or relative cell index (Fig. 5E). *p<0.005, **p<0.001, *** p 1076 1077 < 0.0001 are considered statistically significant. (F) Western blots of downstream target 1078 proteins (FAK, phosphorylated FAK, fibronectin and EpCAM) in HTR8 cells after 4 hours 1079 cultured with (50 µg/mL) or without E-Exos or EP-Exos. (G) Densitometric analyses of 1080 normalized Western blots in (F). Data is presented as relative intensity (mean \pm SEM, n = 3 1081 biological replicate) for each time point and target protein; *p<0.05, **p<0.01 are considered 1082 significant.

1084 Table 1. Relative quantification of selected exosome proteins involved in biogenesis,

- 1085 sorting/trafficking/release, and recognition/uptake by label-free spectral counting
- 1086

	Uniprot Acc ^a	Gene Nameª	Protein Description ^a	E-Exos ^b	EP-Exos ^c	ExoCarta ^d
Exosome Biogenesis						
	Q96QK1	VPS35	Vacuolar protein sorting-associated protein 35	27	9	Y
	075436	VPS26A	Vacuolar protein sorting-associated protein 26A	11	4	Y
	Q99816	TSG101	Tumor susceptibility gene 101 protein	11	6	Y
	A0A024RB16	FAM62A	Family with sequence similarity 62	6	4	Ν
	Q9NP79	VTA1	Vacuolar protein sorting-associated protein VTA1 homolog	6	4	Y
ESCRT-associated	Q9NUQ9	FAM49B	Protein FAM49B (L1)	5	4	Y
	Q8WUM4	PDCD6IP	Programmed cell death 6-interacting protein	74	69	Y
	Q96TA1	FAM129B	Niban-like protein 1	29	28	Y
	P53990	IST1	IST1 homolog (hIST1)	5	4	Ν
	O75351	VPS4B	Vacuolar protein sorting-associated protein 4B	8	8	Y
	Q9UK41	VPS28	Vacuolar protein sorting-associated protein 28	3	4	Y
	H7BXY6	TSPAN14	Tetraspanin 14	8	8	Y
Tetraspanin	A6NNI4	CD9	Tetraspanin	12	12	Y
	Q9HCN3	TMEM8A	Transmembrane protein 8A	3	4	Ν
Sorting/Trafficking & Release]					
	P61026	RAB10	Ras-related protein Rab-10	32	32	Y
	P51153	RAB13	Ras-related protein Rab-13	23	16	Y
	P61106	RAB14	Ras-related protein Rab-14	28	20	Y
	Q9NP72	RAB18	Ras-related protein Rab-18	2	8	Y
	P62820	RAB1A	Ras-related protein Rab-1A	31	31	Y
	Q6FIG4	RAB1B	RAB1B protein	29	33	Y
	Q9UL25	RAB21	Ras-related protein Rab-21	16	7	Y
	Q9UL26	RAB22A	Ras-related protein Rab-22A	4	3	Y
CTD	P61019	RAB2A	Ras-related protein Rab-2A	15	12	Y
GIPase	Q8WUD1	RAB2B	Ras-related protein Rab-2B	14	10	N
	A8MYQ9	RAB34	Ras-related protein Rab-34	12	11	Y
	Q15286	RAB35	Ras-related protein Rab-35	25	23	Y
	Q6FI54	RAB5B	RAB5B protein	10	17	Y
	P51148	RAB5C	Ras-related protein Rab-5C	16	23	Y
	A0A024R5H8	RAB6A	RAB6A, member RAS oncogene family	18	18	Y
	P51149	RAB7A	Ras-related protein Rab-7a	22	20	Y
	P61006	RAB8A	Ras-related protein Rab-8A	28	29	Y
	O92930	RAB8B	Ras-related protein Rab-8B	20	26	Y
	P50995	ANXA11	Annexin A11	32	34	Y
	P04083	ANXA1	Annexin A1	61	54	Y
	P20073	ANXA7	Annexin A7	14	12	Y
Annexins	P09525	ANXA4	Annexin A4	17	14	Y
	P12429	ANXA3	Annexin A3	32	26	Y
	P08133	ANXA6	Annexin A6	30	24	Ŷ
	P08758	ANXA5	Annexin A5	54	43	Ŷ
	075955	FLOT1	Flotillin-1	11	4	Ŷ
	P53621	СОРА	Coatomer subunit alpha	18	9	Ŷ
	Q00610	CLTC	Clathrin heavy chain 1	68	43	v
Sorting	Q9Y678	COPG1	Coatomer subunit gamma-1	11	7	N
	P62330	ARF6	ADP-ribosylation factor 6	13	10	Y
	B2RAU5	0	Sorting nexin	5	4	N
	P84077	ARF1	ADP-ribosylation factor 1	14	12	v

	P28838	LAP3	Cytosol aminopeptidase	9	8	Y
	A4D2P0	RAC1	Ras-related C3 botulinum toxin substrate 1	17	18	Y
	P53618	COPB1	Coatomer subunit beta	5	6	Y
	J3KNQ4	PARVA	Alpha-parvin	4	6	Ν
Trafficking	Q14204	DYNC1H1	Cytoplasmic dynein 1 heavy chain 1	37	19	Y
	Q02241	KIF23	Kinesin-like protein KIF23	49	49	Ν
	A4D2P0	RAC1	Ras-related C3 botulinum toxin substrate 1	17	18	Y
	Q15058	KIF14	Kinesin-like protein KIF14	10	11	Ν
	P46459	NSF	Vesicle-fusing ATPase	4	2	Y
	O00161	SNAP23	Synaptosomal-associated protein 23	14	9	Y
	O00186	STXBP3	Syntaxin-binding protein 3	15	10	Y
	Q99536	VAT1	Synaptic vesicle membrane protein VAT-1	16	14	Y
Release	Q15833	STXBP2	Syntaxin-binding protein 2	9	8	Y
	O95716	RAB3D	Ras-related protein Rab-3D	12	12	Y
	Q59GL1	0	Synaptotagmin binding, cytoplasmic RNA interacting protein	12	12	Ν
	P50570	DNM2	Dynamin-2	14	16	Y
	Q12846	STX4	Syntaxin-4	3	4	Y
	Q15836	VAMP3	Vesicle-associated membrane protein 3	2	3	Y
Recognition/Uptake	P16070	CD44	CD44 antigen	7	8	Y
	Q9P2B2	PTGFRN	Prostaglandin F2 receptor negative regulator	38	45	Y
	Q13740	ALCAM	CD166 antigen	2	2	Y
	Q08431	MFGE8	Lactadherin	115	83	Y

1087

a Accession number, protein description, gene name annotated from UniProt (http://www.uniprot.org/)

b SpC (spectral counts) values for combined E-treated exosomes

c SpC (spectral counts) values for combined EP-treated exosomes

d Comparison with exosomal database ExoCarta [58]

1088

1090 **Table 2.** Protein cargo identified in E-Exos and EP-exos

	Uniprot Acc ^a	Gene Nameª	Protein Description ^a	E-Exos (Combined) ^b	EP-Exos (Combined) ^c	Fold change - Rsc (EP- Exos/E- Exos) ^d	ExoCarta ^e		
	P11047	LAMC1	Laminin subunit gamma-1	0	20	20.5*	Y		
	O15230	LAMA5	Laminin subunit alpha-5	2	50	19.1*	Y		
	P35052	GPC1	Glypican-1	0	16	16.7*	Y		
D	P55268	LAMB2	Laminin subunit beta-2	0	11	11.8*	Y		
Basement	Q14112	NID2	Nidogen-2	0	8	8.9	N		
memorane	O75487	GPC4	Glypican-4	0	7	8.0	Y		
	G3XAI2	LAMB1	Laminin subunit beta-1	0	5	6.0	Y		
	A0A024RAB6	HSPG2	Heparan sulfate proteoglycan 2 (Perlecan)	32	159	5.9*	Y		
	O00468	AGRN	Agrin	5	22	4.5*	Y		
	Q9HCB6	SPON1	Spondin-1	0	9	9.9*	Ν		
	O00622	CYR61	Protein CYR61	0	6	7.0	N		
	P78310	CXADR	Coxsackievirus and adenovirus receptor	0	3	4.1	Y		
	Q08722	CD47	Leukocyte surface antigen CD47	0	3	4.1	Y		
Cell adhesion	Q08380	LGALS3BP	Galectin-3-binding protein	2	0	-2.2	Y		
	P17301	ITGA2	Integrin alpha-2	13	3	-2.8	Y		
	P05362	ICAM1	Intercellular adhesion molecule 1	3	0	-2.8	Y		
	P09382	LGALS1	Galectin-1	3	0	-2.8	Y		
	P05106	ITGB3	Integrin beta-3	4	0	-3.5	Y		
	P10586	PTPRF	Receptor-type tyrosine-protein phosphatase F	6	0	-4.8	Y		
	B1AHL2	FBLN1	Fibulin-1	0	8	8.9*	Y		
	P12109	COL6A1	Collagen alpha-1(VI) chain	0	7	8.0	Y		
	O14936	CASK	Peripheral plasma membrane protein CASK	0	6	7.0	Ν		
	Q96JB6	LOXL4	Lysyl oxidase homolog 4	2	14	5.7*	Y		
	P39059	COL15A1	Collagen alpha-1(XV) chain	4	22	5.3*	Y		
Extracellular	Q9HCU4	CELSR2	Cadherin EGF LAG seven-pass G-type receptor 2	0	4	5.1	Ν		
matrix/	P00533	EGFR	Epidermal growth factor receptor	0	4	5.1	Y		
cytoskeleton	Q14512	FGFBP1	Fibroblast growth factor-binding protein 1	0	3	4.1	Ν		
	P46939	UTRN	Utrophin	0	3	4.1	Y		
	015551	CLDN3	Claudin-3	0	3	4.1	Y		
	P39060	COL18A1	Collagen alpha-1(XVIII) chain	5	17	3.5*	Y		
	J3KNQ4	PARVA	Alpha-parvin	4	6	1.7	Ν		
	P27797	CALR	Calreticulin	3	0	-2.8	Y		
	Q8TE58	ADAMTS15	A disintegrin and metalloproteinase with thrombospondin motifs 15	0	5	6.0	N		
Protease/	P15144	ANPEP	Aminopeptidase N	11	13	1.4	Y		
peptidases	09NY33	DPP3	Dipentidyl pentidase 3	5	6	14	v		

1091

O14672

е

ADAM10

a Accession number, protein description, gene name annotated from UniProt (http://www.uniprot.org/)

b SpC (spectral counts) values for combined E-treated exosomes

c SpC (spectral counts) values for combined EP-treated exosomes

d Normalized Rsc (ratio of spectral counts)(normalized between samples by total SpC) averaged between replicates of E and EP

13

15

1.4

Y

Comparison with exosomal database ExoCarta [58]

* Differential expression with p-values <0.05 as reported in Supplemental Table S1

Disintegrin and metalloproteinase domaincontaining protein 10

Uniprot Acc ^a	Gene Name ^a	Protein Description ^a	E-Exos (Combined) ^b	EP-Exos (Combined) ^c	Fold change - Rsc (EP- Exos/E- Exos) ^d	ExoCarta
A0A024RAB6	HSPG2	Heparan sulfate proteoglycan 2	32	159	5.9*	Y
O00622	CYR61	Protein CYR61	0	6	7.0	Ν
B1AP13	CD55	Complement decay-accelerating factor	0	6	7.0	Y
Q8TE58	ADAMTS15	A disintegrin and metalloproteinase with thrombospondin motifs 15	0	5	6.0	N
Q9HCU4	CELSR2	Cadherin EGF LAG seven-pass G-type receptor 2	0	4	5.1	Ν
P00533	EGFR	Epidermal growth factor receptor	0	4	5.1	Y
O15551	CLDN3	Claudin-3	0	3	4.1	Y
Q08722	CD47	Leukocyte surface antigen CD47	0	3	4.1	Y
J3KNQ4	PARVA	Alpha-parvin	4	6	1.7	Ν
P15144	ANPEP	Aminopeptidase N	11	13	1.4	Y
Q9NY33	DPP3	Dipeptidyl peptidase 3	5	6	1.4	Y
O14672	ADAM10	Disintegrin and metalloproteinase domain-containing protein 10	13	15	1.4	Y
P09382	LGALS1	Galectin-1	3	0	-2.8	Y
P17931	LGALS3	Galectin-3	4	0	-3.5	Y

1093 **Table 3.** Exosomes enriched for molecules known to be involved in embryo implantation

1094

a Accession number, protein description, gene name annotated from UniProt (http://www.uniprot.org/)

b SpC (spectral counts) values for combined E-treated exosomes

c SpC (spectral counts) values for combined EP-treated exosomes

d Normalized Rsc (ratio of spectral counts)(normalized between samples by total SpC) averaged between replicates of E and EP

e Comparison with exosomal database ExoCarta [58]

* Differential expression with p-values <0.05 as reported in Supplemental Table S1