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Abstract 

The lack of objective, timely, and accurate diagnostic criteria or biomarkers for Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) can leave patients for long 

periods without a clear diagnosis. Treatment is often based on individual trial and error due 

to the lack of mechanistic understanding of the disease. It is therefore paramount that 

fundamental molecular explanations for the underlying pathophysiology of ME/CFS are 

pursued, as these could contribute towards the development of reliable, faster diagnostics 

and rational, effective treatments. To address these issues, this PhD project has focused on 

using stably proliferative and metabolically active cell lines (lymphoblasts) created from 

ME/CFS patient blood (for the first time) to investigate mitochondrial function, related 

metabolic or signalling pathways, and potential diagnostic biomarkers. The results show 

that in ME/CFS lymphoblasts, there is an isolated Complex V inefficiency in ATP synthesis 

at the final step in mitochondrial oxidative phosphorylation. This is accompanied by 

multiple homeostatic compensations including increased respiratory capacity, elevated 

expression of a diverse array of mitochondrial proteins, elevated Target of Rapamycin 

Complex I (TORC1) activity, and evidence suggesting dysregulated substrate provision 

towards the TCA cycle and oxidative phosphorylation. Whole-cell proteomics and 

transcriptomics suggested that in ME/CFS lymphoblasts there is an increased use of 

alternatives to glycolysis in provisioning the mitochondria with oxidisable substrate. This 

may represent a homeostatic compensation for the respiratory inefficiency by Complex V. 

Together, these compensatory changes appear to be sufficient to meet the normal needs of 

active metabolism despite the inefficiency of ATP synthesis by Complex V. However, this 

may leave the cells less able to respond to further acute increases in ATP demand despite 

the elevated respiratory capacity, since the signalling and metabolic pathways involved are 

already chronically upregulated. If this “cellular chronic fatigue” is present in other cell 

types, it may contribute to the unexplained fatigue experienced by ME/CFS patients. This 

is suggested by the fact that all of the mitochondrial abnormalities observed were correlated 

with the severity of patient symptoms. It was also found that multiple observed 

abnormalities constituted promising biomarkers, each of them able to distinguish ME/CFS 

patient and control samples with high reliability, while 100% discriminatory accuracy 

became possible when using the best combinations of variables available. This project has 

therefore made significant strides in the mechanistic understanding of ME/CFS and has 

highlighted promising candidate diagnostic biomarkers.  
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1.0 An Overview of Prior Evidence for the Molecular 

Basis of ME/CFS 

1.1 Introduction 

1.1.1 ME/CFS Background and Diagnosis 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic, debilitating 

disease considered amongst the disorders which most adversely affect quality of life (Falk 

Hvidberg, Brinth et al. 2015). In the EQ-5D-3L (a generic quality of life assessment), scores 

range from -0.624 to 1.000, with lower values reflecting a more impaired quality of life 

(Whitehead and Ali 2010). 112 Danish ME/CFS patients had a mean score of 0.47, worse 

than the lowest score of 0.62 that was obtained from all other conditions assessed in 23,392 

individuals, which included schizophrenia, renal failure, multiple sclerosis, lung cancer and 

stroke (Falk Hvidberg, Brinth et al. 2015).  

The characteristic symptoms of ME/CFS are unexplained fatigue lasting more than 6 

months, and in the more recent case definitions, post-exertional malaise (PEM) – a delayed, 

disabling and exacerbated disease state following physical or mental exertion that exceeds 

a patient-specific threshold (severely affected patients are bed-bound). ME/CFS patients 

may also exhibit (with varied presentation and severity) many other symptoms, commonly 

including unrefreshing sleep, fever, muscle weakness, migraine, other flu-like symptoms, 

cognitive impairment (“brain fog”) and sensitivities to a variety of external stimuli that may 

include light, sound or specific odors and chemicals. These symptoms are often 

accompanied by comorbidities such as fibromyalgia, bowel disorders, post-orthostatic 

tachycardia (POTS), and connective tissue disorders. It is estimated that 191,544 (0.76%) 

people live with ME/CFS in Australia with an annual total cost of $14,499 billion 

(Johnston, Brenu et al. 2013; Close, Marshall-Gradisnik et al. 2020). Another Australian 

study found that 78.61% of cases in 535 locally-diagnosed patients were female (Johnston, 

Staines et al. 2016). 

The lack of a clear underlying molecular mechanism or biomarker for ME/CFS has led to 

the adoption of diagnostic case criteria which are symptom-based and rely on lengthy 

processes of exclusion of diseases with overlapping symptoms. Case definitions such as the 

commonly termed Oxford (Sharpe, Archard et al. 1991) or Fukuda (Fukuda, Straus et al. 
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1994) criteria are most often utilised in the UK and USA respectively, yet may fail to 

discriminate between generalised chronic fatigue and ME/CFS which specifically also 

involves PEM. This is important since the inclusion of PEM aids in characterising this 

disease as a discrete clinical entity. Also in usage are the Canadian Consensus Criteria 

(Carruthers, Jain et al. 2003) and the International Consensus Criteria (Carruthers, van de 

Sande et al. 2011) which require PEM for a diagnosis of ME/CFS and therefore may be 

considered more specific, preferable definitions. While the presence of PEM is an optional 

component of the Fukuda criteria, PEM is, unfortunately, not required for research 

participation by all studies using this or other less strict definitions. This is troublesome, 

since the varied usage of multiple diagnostic case criteria may render comparison between 

studies difficult depending on how participants were selected. These are factors which may 

have contributed to inconsistency in much of the ME/CFS literature in the last few decades. 

The slow diagnostic process is also exacerbated as a problem by the scarcity of expertise 

regarding ME/CFS clinical practice, which can lead to patients being subjected to unhelpful 

or longer than necessary diagnostic gauntlets by puzzled clinicians. This in turn delays 

treatment and may further complicate access to stringently selected populations for 

research. 

 

With these challenges in mind, the identification of underlying pathological mechanisms 

and reliable, practicable molecular biomarkers is of paramount importance. Accordingly, 

the pursuit of a biomarker is perhaps the most commonly recurring theme in modern 

ME/CFS research. Despite numerous studies reporting results that could constitute 

potential biomarkers (Myhill, Booth et al. 2009; Booth, Myhill et al. 2012; Myhill, Booth 

et al. 2013; Armstrong, McGregor et al. 2015; Giloteaux, Goodrich et al. 2016; Naviaux, 

Naviaux et al. 2016; Yamano, Sugimoto et al. 2016; Germain, Ruppert et al. 2017; Lidbury, 

Kita et al. 2017; Nacul, Mudie et al. 2018; Esfandyarpour, Kashi et al. 2019; Nacul, de 

Barros et al. 2019; Almenar-Perez, Sarria et al. 2020), none of these outcomes have yet 

been validated or implemented as a diagnostic test for ME/CFS. Consequently, this critical 

need for a robust biomarker remains yet unfulfilled. The elucidation of underlying 

cytopathological mechanisms is therefore crucial not just to inform the development of 

rational treatments, but also because molecular abnormalities unique to ME/CFS could 

constitute biomarkers specific to the disease. 
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1.1.2 The Diversity of ME/CFS Symptom and Onset Patterns 

Not only does ME/CFS affect multiple body systems and organs, but it does so with 

different and time-varying levels of severity and different patterns of comorbidities in 

different individuals, thereby producing a highly heterogeneous patient population 

(Komaroff and Buchwald 1991; Afari and Buchwald 2003; Jason, Corradi et al. 2005; 

Maclachlan, Watson et al. 2017). This complexity has represented a major challenge to the 

identification of a sole underlying pathological mechanism. ME/CFS subtype classification 

to manage this heterogeneity has been previously discussed in the field (Jason, Corradi et 

al. 2005; Maclachlan, Watson et al. 2017) and attempted by various means. Such proposed 

methods include: stratification by cytokine co-expression patterns (Russell, Broderick et al. 

2016), orthostatic intolerance (Richardson, Lewis et al. 2018) patterns of differential 

disease-associated gene expression (Kerr, Burke et al. 2008; Kerr, Petty et al. 2008; Zhang, 

Gough et al. 2010), gene expression profiles concurrent with comorbid POTS (Light, 

Agarwal et al. 2013), DNA methylation profiles associated with quality of life scores and 

PEM (de Vega, Erdman et al. 2018), severity and frequency of physical or mental fatigue 

(Jason, Boulton et al. 2010), irritable bowel syndrome (IBS) comorbidity (Maes, Leunis et 

al. 2014) and concurrent changes in patient metabolism (Nagy-Szakal, Barupal et al. 2018). 

Despite this volume of work, none of these methods are widely validated or used, and 

effective patient classification methods continue to be sought. This issue could be solved 

by the discovery of robust molecular biomarkers.  

Disease onset is generally sudden and often follows an acute “viral-like” illness, yet gradual 

onset without a history of acute infection has also been observed, albeit less commonly 

(Komaroff and Buchwald 1991; Buchwald, Ashley et al. 1996). Despite the prevalence of 

this “post-infectious” mode of onset, it is unlikely that there is a single causative pathogen 

given the diversity of viral and non-viral pathogens to which different cohorts of ME/CFS 

patients have been reportedly exposed (Straus, Tosato et al. 1985; Holmes, Kaplan et al. 

1988; Buchwald, Ashley et al. 1996; Vernon, Whistler et al. 2006; Zhang, Gough et al. 

2010; Halpin, Williams et al. 2017; Proal and Marshall 2018; Shikova, Reshkova et al. 

2020). Given the clinical heterogeneity of the patient population, this is unsurprising. It is 

also likely, given that not all patients experience such an illness prior to disease onset, that 

the initial pathological insult is not necessarily pathogen-mediated and can otherwise be 

instigated by any bodily insult of sufficient magnitude.  
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Damaging bodily insults could elicit a homeostatic response such as the highly conserved 

cell danger response, which entails a purinergic signalling cascade that is initiated by the 

damaging release of reactive oxygen species and metabolic intermediates, followed by 

activation of anti-inflammatory and regenerative pathways (Naviaux 2014). While this and 

similar proposals suggest an initial, damaging insult which leaves individuals trapped 

within dysfunctional, alternative homeostatic feedback loops (Craddock, Fritsch et al. 

2014; Kashi, Davis et al. 2019), an alternative explanation could involve chronic, ongoing 

exposure of cells to an antagonist agent. However, chronic pathogen exposure in ME/CFS 

seems unlikely to be present in the majority of cases, since theories of viral persistence have 

been investigated over many years and the evidence for chronic viral infection in ME/CFS 

is collectively inconclusive (Rasa, Nora-Krukle et al. 2018). In any case, variation in the 

mode of triggering bodily insult, whether acute or ongoing, could contribute to the 

heterogeneity of ME/CFS symptoms and further emphasizes the importance of identifying 

causative pathological mechanisms.  

Attempts have been made to identify commonality in underlying pathological mechanism 

despite the diversity of disease onset and presentation of peripheral symptoms. Naturally, 

this has included the exploration of genetics. However, no substantial evidence for a genetic 

basis of the disease has yet been confirmed, with only two single nucleotide polymorphisms 

(SNP) resulting in missense mutations in incompletely characterised genes reported in a 

genome-wide association study (Schlauch, Khaiboullina et al. 2016). Others have theorised 

that due to the tendency of ME/CFS to “run in the family”, its absence at birth, and historical 

reports of clustered ME/CFS “outbreaks”, there exists an unidentified heritable genetic 

susceptibility to specific, intersecting trigger circumstances which initiate the onset of 

disease (Kashi, Davis et al. 2019). It is noteworthy that such an enhanced susceptibility 

attributed to genetic variation has been reported in similar conditions – such as variation in 

immune response genes in individuals suffering from chronic Q fever – a distinct chronic 

illness following Coxiella burnetii infection which involves persistent fatigue (Helbig, 

Heatley et al. 2003; Helbig, Harris et al. 2005). However, since many ME/CFS cases are 

not associated with any family history or with clustered outbreaks, it is most likely that 

such theoretical, heritable genetic elements where present would constitute increased risk 

factors rather than being the underlying mechanism of disease. It is therefore currently 

unclear whether a specific underlying susceptibility factor is at work in ME/CFS. 
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The following sections will provide a general overview of relevant evidence for the 

molecular basis of ME/CFS that has been reported across multiple body systems. More 

detailed discussion of specific findings is included in subsequent chapters where related to 

the results therein. In view of the aims and focus of this thesis, this introductory chapter 

will emphasize mitochondrial dysfunction, metabolic pathways and the little-researched 

energy stress signalling pathways in ME/CFS. These and subsequent examples pertaining 

to research of the immune system and gut will also act to draw attention to the prevalence 

of inconclusive or inconsistent clinical associations in ME/CFS research and the need for 

new research that tests iterative mechanistic hypotheses in experimental models.  

 

1.2 Energy Metabolism and Mitochondrial Function 

1.2.1 Background 

The nature of the persistent fatigue and PEM experienced by patients has prompted the 

investigation of mitochondria and broader cellular metabolism, since defects in either could 

cause these two key symptoms. In the intervening years since early studies (Behan, More 

et al. 1991; Barnes, Taylor et al. 1993; McCully, Natelson et al. 1996), mitochondria had 

been largely neglected in the field until their first re-emergence as an area of interest during 

the last decade (Myhill, Booth et al. 2009). The research in this area has since generated a 

basis to support some manner of both mitochondrial and broader metabolic dysfunction in 

ME/CFS, albeit with many inconsistencies or issues which highlight the importance of re-

examining these processes. Owing to the complexity of the many interconnected pathways 

involved, this section provides an initial, broader introduction to the relevant pathways and 

ME/CFS literature while subsequent chapters provide additional detail where it is more 

closely related to the interpretation of specific results.  

1.2.2 Snapshot Studies Assessing Energy Metabolism 

Evidence supporting dysregulated energy metabolism or mitochondrial function in 

ME/CFS has been sought across multiple experimental areas. There have been recent 

studies utilising the metabolomics approach, which captures a quantitative snapshot of 

steady-state metabolite levels in a sample to infer alterations in the related biochemical 

pathways. This is typically achieved by either mass spectrometry (MS) or nuclear magnetic 

resonance (NMR) spectroscopy. Early studies used NMR to measure metabolites within 
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ME/CFS blood samples and reported decreases in glutamine and ornithine concentrations, 

suggesting abnormal amino acid metabolism and urea cycle dysregulation (Armstrong, 

McGregor et al. 2012). A subsequent study utilising MS conversely reported an elevation 

in ornithine concentration with a decrease in citrulline, but this was also interpreted to 

involve urea cycle dysregulation (Yamano, Sugimoto et al. 2016). Subsequent work 

undertaken by the same authors of the early NMR study proposed that impaired glycolytic 

formation of pyruvate could be providing less downstream, oxidised pyruvate derivatives 

to be used as substrate for the tricarboxylic acid (TCA) cycle (Armstrong, McGregor et al. 

2015). A simplified diagram depicting the most relevant relationships between the various 

energy stress signalling and metabolic pathways, oxidative phosphorylation 

(OXPHOS)/electron transport and the TCA cycle is included for the reader’s reference for 

the introductory purposes of Sections 1.2.2-1.2.5 (Figure 1.1).  

Figure 1.1: Depiction of the relationships between the most relevant signalling, metabolic and 

mitochondrial pathways involved in cellular energy supply and its study in ME/CFS. ATP is 

generated by the electron transport chain. ATP synthesis shortfall leads to the activation of the 

energy-sensing kinase AMPK which stimulates mitochondrial respiratory activity and catabolic 

pathways in order to return ATP output to adequacy. The various catabolic pathways that provide 

substrate to the TCA cycle do so from a diverse array of sources such as sugars (glycolysis and the 

pentose phosphate pathway), amino acids and fatty acids. In turn, the TCA cycle utilises the 

resulting metabolic intermediates to provide electron donors (reducing equivalents) to the electron 

transport chain in order to generate the proton-motive force which drives respiratory ATP synthesis. 

TORC1 is activated by amino acids, reductive stress and processes such as glutamine degradation. 

It also acts to upregulate cellular energy supply by stimulating mitochondrial biogenesis as part of 

promoting cell growth. 
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Work by others suggested that instead of a reduction in glycolytic pyruvate supply, a 

deficiency in pyruvate dehydrogenase (PDH) function may instead form a bottleneck for 

the provision of TCA cycle substrate downstream of glycolysis itself, PDH being the 

enzyme that converts pyruvate into the TCA cycle intermediate acetyl-CoA (Fluge, Mella 

et al. 2016). These and the previously described differences could be due to differences in 

techniques (NMR vs MS) and thus the range of detectable molecules. What could be taken 

from both lines of approach - supported by data from other similar studies (Yamano, 

Sugimoto et al. 2016; Germain, Ruppert et al. 2017; Nagy-Szakal, Barupal et al. 2018) - is 

that there may be some manner of TCA cycle disturbance in ME/CFS, perhaps driven by 

reduced supply of glucose-derived substrate. If the TCA cycle output of oxidative 

phosphorylation OXPHOS substrate was indeed reduced by a defect in glycolysis 

(Armstrong, McGregor et al. 2015) or PDH (Fluge, Mella et al. 2016), one might expect 

disturbances in cellular energy production in ME/CFS cells. There have been several 

studies which report a reduction of steady-state adenosine triphosphate (ATP) levels 

(Myhill, Booth et al. 2009; Castro-Marrero, Cordero et al. 2013; Brown, Dibnah et al. 

2018), yet other work has instead reported an elevation (Lawson, Hsieh et al. 2016). These 

reports regarding ATP levels are therefore contradictory. These particular observations 

were also made using steady-state measurements which do not provide direct information 

as to the rate of ATP synthesis.  

1.2.3 Rate-Based Measurements of Mitochondrial Function and 

Glycolysis in Cultured Cells 

Real-time parameters of aerobic respiration and glycolysis can instead be measured in live 

cells by extracellular flux assays, which measure oxygen consumption rates (OCR) and 

extracellular acidification rates (ECAR) using intact cells (to examine respiration and 

glycolysis, respectively). However, common methods employed by others in the field who 

have used these techniques bear significant limitations as outlined below.  

As noted earlier, glycolytic catabolism of glucose is a major supplier of acetyl-CoA to the 

TCA cycle, and this can be assayed in intact cells by measuring the rate of acidification of 

the medium by cells provided with glucose as a substrate. One recent study using natural 

killer (NK) cells from a small sample of six patients and six healthy controls reported a 

reduced glycolytic reserve in the ME/CFS cells (Nguyen, Staines et al. 2018). The 
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glycolytic reserve is a measure of the excess capacity of glycolysis to meet cellular ATP 

demands when mitochondrial ATP synthesis by oxidative phosphorylation is inhibited. 

However, this study is clearly limited by sample size. Others reported a reduction in the 

rate of glycolysis in stimulated and unstimulated T cells (Mandarano, Maya et al. 2019). 

On the contrary, no evidence of a glycolytic defect was observed by others using 

heterogenous peripheral blood mononuclear cells (PBMCs) (Tomas, Brown et al. 2017). 

Reports regarding the rate of aerobic respiration are similarly inconsistent in direction, with 

reduced (Tomas, Brown et al. 2017) or unchanged rates of respiration (Nguyen, Staines et 

al. 2018; Mandarano, Maya et al. 2019) being reported. Previous literature regarding 

respirometry in the ME/CFS field is therefore inconclusive.  

Another limitation is that these studies often report individual O2 consumption and 

extracellular acidification rates that are either negative or very small positive values, below 

or only slightly above the background signal, placing them at the threshold of reliable 

detection. This difficulty arises because ex vivo peripheral blood lymphocytes are dying 

and metabolically inactive (Gardiner and Finlay 2017) and this not only makes metabolic 

rate assays technically difficult, but it may obscure differences in metabolism that would 

be apparent in actively metabolising cells. This emphasises the importance of new research 

examining mitochondrial energy generation and supporting pathways such as glycolysis in 

metabolically active cells from ME/CFS patients. 

 

1.2.4 Energy Stress Signalling 

The homeostatic regulation of cellular energy metabolism is centered on two stress-sensing 

protein kinases, AMP-activated protein kinase (AMPK) (Hardie and Carling 1997) and 

target of rapamycin (TOR or, in mammalian cells, mTOR) (Ma and Blenis 2009) which 

play key, often mutually inhibitory roles. If their activities are chronically dysregulated by 

metabolic abnormalities or an energy insufficiency in ME/CFS cells, they may be unable 

to respond to additional energy demand which could contribute to the PEM suffered by 

patients who undergo exertion. This idea is consistent with reports of AMPK in muscle 

cells from people with ME/CFS being unresponsive to contraction-induced activation, 

anticipated to result from ATP depletion (Brown, Jones et al. 2015). Such a theoretical 

insensitivity could result from AMPK already being in an activated state in these cells, or 

from AMPK inhibition by chronically hyperactivated TOR complex 1 (TORC1). The latter 
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is plausible given that both the Complex I inhibitor metformin and the AMPK activator 

compound 991 elicited activation of AMPK in ME/CFS muscle cells in a subsequent study 

(Brown, Dibnah et al. 2018). Perhaps the activation signal from the pharmacological agents 

was sufficiently large as to allow additional activation despite the foregoing constraints. 

Not only do these possibilities highlight that the role of AMPK in ME/CFS is still 

incompletely understood, but also that TORC1 activity could be elevated in ME/CFS. 

Elevated TORC1 activity in ME/CFS cells may be anticipated, since inhibitory 

phosphorylation of its substrate eukaryotic translation initiation factor 4E-binding protein 

1 (4E-BP1) is well understood to selectively activate translation of mitochondrial proteins 

(Morita, Gravel et al. 2015). This could explain the elevated expression of mitochondrial 

proteins that was found in studies of patient saliva, PBMCs and platelets (Kaushik, Fear et 

al. 2005; Vernon, Whistler et al. 2006; Ciregia, Kollipara et al. 2016). Despite these 

possibilities, TORC1 signalling has not been directly investigated in ME/CFS research until 

the work undertaken in this thesis. 

1.2.5 Fatty Acid and Amino Acid Utilisation 

The TCA cycle is provisioned with acetyl-CoA derived from oxidation of 

glucose/carbohydrate and from fatty acid or amino acid catabolism. While oxidation of 

carbohydrates may be the default mechanism, the previously mentioned metabolomic 

studies have proposed that carbohydrate oxidation for energy is reduced in ME/CFS 

(Armstrong, McGregor et al. 2015; Fluge, Mella et al. 2016; Nagy-Szakal, Barupal et al. 

2018). As such, a compensatory elevation of fatty acid β-oxidation or amino acid 

catabolism could be present in cells from ME/CFS patients.  

Fatty acid synthesis and β-oxidation are regulated by both AMPK (Hardie and Pan 2002) 

and TORC1 (Laplante and Sabatini 2009). AMPK promotes fatty acid β-oxidation when 

activated by elevated ATP demand while its inactivity favours fatty acid biosynthesis, 

whereas TORC1 exerts the opposite effects (Hardie and Pan 2002; Laplante and Sabatini 

2009). Therefore, one would expect activation of AMPK and TORC1 to mutually inhibit 

one another, both directly and indirectly, so that in most circumstances, changes in their 

activity will be in opposite directions. However, both kinases are also regulated by other 

signals and participate in a complex, reciprocal feedback network (Hindupur, Gonzalez et 

al. 2015), so that scenarios exist where both are simultaneously activated (Dalle Pezze, Ruf 

et al. 2016).  
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Because of the specific mechanisms of regulatory action of these pathways in lipid 

homeostasis, both AMPK and TORC1 activities could be concurrently elevated in ME/CFS 

cells and still be accompanied by an increased rate of fatty acid catabolism. This is because 

activation of TORC1 promotes fatty acid biosynthesis by elevating the expression of gene 

products including acetyl-CoA carboxylase (ACC) through the upregulation of 

transcription factors SREBP-1 and SREBP-2 (Horton, Shah et al. 2003). In turn, ACC’s 

promotion of fatty acid biosynthesis results in an accumulation of malonyl CoA which is a 

potent inhibitor of mitochondrial import of fatty acids for β-oxidation. Upregulated 

expression of ACC by TORC1 therefore serves a dual purpose in upregulating fatty acid 

biosynthesis and downregulating β-oxidation. ACC, however, is also a primary regulatory 

target of AMPK and is inactivated by phosphorylation when AMPK is activated (Winder 

and Hardie 1996). AMPK and TORC1 therefore exert opposing effects on fatty acid 

metabolism, AMPK post-translationally and TORC1 transcriptionally (Figure 1.2). Since 

AMPK inactivates ACC post-translationally, the concurrent activation of AMPK and 

TORC1, if it did occur in ME/CFS cells, may allow AMPK to constrain the effects of 

TORC1’s upregulation of lipid-biosynthesis and downregulation of β-oxidation. 

Figure 1.2: ACC controls the balance between fatty acid β-oxidation and biosynthesis and is 

regulated by both AMPK and TORC1. Through this particular mechanism, AMPK activity 

stimulates fatty acid β-oxidation and TORC1 stimulates fatty acid biosynthesis. 
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At the same time, both AMPK and TORC1 directly or indirectly induce the expression of 

diverse mitochondrial proteins, including those involved in fatty acid β-oxidation. The 

combined effects could be a steady state in which the cells have increased their use of β-

oxidation relative to glycolysis as a supplier of acetyl-CoA to the TCA cycle. If so, this 

could potentially account for the aforementioned inconsistencies in reports of a glycolytic 

impairment. Fatty acid oxidation is normally upregulated as a supplementary energy 

pathway during fasting or exercise as a response to reduced blood glucose concentration 

(Bartlett and Eaton 2004). An increased reliance on fatty acid oxidation just at rest could 

therefore also contribute to the inability of people with ME/CFS to meet the elevated energy 

demands imposed by exertion. However, while prior studies cover some of these aspects 

individually, these metabolic and signalling pathways and their interconnected 

relationships have never all been investigated in combination in previous ME/CFS studies. 

Amino acid catabolism may also be used as a metabolic alternative to fuel the TCA cycle 

as a response to insufficient energy generation. Different ME/CFS studies have proposed 

impaired provision of TCA cycle intermediates accompanied by dysregulation of amino 

acid metabolism. Two important studies suggest elevated utilisation of glutamate inferred 

from changes in the levels both of glutamate itself and related metabolites (Armstrong, 

McGregor et al. 2015; Fluge, Mella et al. 2016). This is important for energy metabolism 

since glutamate is a source of TCA cycle substrate via its conversion to α-ketoglutarate (α-

KG) by multiple enzymes. However, others have reported unchanged glutamate levels and 

instead propose reduced amino acid catabolism due to reduced levels of flavin adenine 

dinucleotide, an important cofactor for branched-chain amino acid catabolism which is 

another source of TCA cycle substrate (Naviaux, Naviaux et al. 2016). The catabolic 

utilisation of amino acids to assist with generating cellular energy in ME/CFS patients 

therefore warrants additional investigation.  

 

1.3 Immunity and Inflammation 

1.3.1 NK Cell Function 

The function of the immune system has been a major focus of much ME/CFS research for 

many years and thus is important to summarise. Evidence for immune dysfunction in 

ME/CFS has commonly been sought through studying the functional characteristics of NK 
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cells, which are cytotoxic immune cells with roles in both the innate and adaptive immune 

responses. Multiple groups have reported reduced NK cell cytotoxicity or numbers in 

ME/CFS (Barker, Fujimura et al. 1994; Maher, Klimas et al. 2005; Lorusso, Mikhaylova 

et al. 2009; Fletcher, Zeng et al. 2010; Marshall-Gradisnik, Huth et al. 2016) or impairing 

alterations to functional surface markers (Klimas, Salvato et al. 1990; Tirelli, Marotta et al. 

1994; Brenu, van Driel et al. 2011). Conversely, other groups have reported increased 

cytotoxicity. For example, perforin, a glycoprotein used as a functional indicator of NK cell 

cytotoxicity due to its roles in NK cell mediated lysis (Kawasaki, Shinkai et al. 1990; 

Osinska, Popko et al. 2014), has been reported as upregulated (Brenu, van Driel et al. 2011), 

downregulated (Maher, Klimas et al. 2005), or, along with every other assessed parameter 

of cytotoxicity, unaltered in people with ME/CFS (Theorell, Blomkvist et al. 1999). A 

recent, comprehensive, large-scale biobank study also found no significant differences in 

NK cell numbers, subtype composition, or assessed functional parameters (Cliff, King et 

al. 2019). In summation, NK cells have a long history in the field and continue to remain 

be studied, but in light of conflicting or inconclusive findings it is still unclear whether 

specific alterations to NK cells play a role in ME/CFS.    

Transient receptor potential melastatin 3 (TRPM3) calcium ion channels have an important 

role in calcium homeostasis (Grimm, Kraft et al. 2003), and their reduced expression has 

been reported in a subpopulation of ME/CFS NK cells (Nguyen, Johnston et al. 2017; 

Cabanas, Muraki et al. 2018; Cabanas, Muraki et al. 2019). The reason for the reduced 

expression of TRPM3 in these cells is unknown but in other cell types, expression of 

TRPM3 is repressed by the activity of microRNA-204 (miR-204), encoded by intron 6 of 

the TRPM3 gene (Cost and Czyzyk-Krzeska 2015). However, miR-204 is not amongst the 

microRNAs whose expression is reportedly altered in ME/CFS patients (Almenar-Perez, 

Sanchez-Fito et al. 2019).  

Reduced expression of TRPM3 receptors would be expected to cause a reduction in Ca2+ 

responses to pregnenolone sulphate (PregS), a specific activating ligand for TRPM3 

channels. However, the opposite was observed when Ca2+ levels were assayed by flow 

cytometry using Indo1, a Ca2+-sensitive fluorescent dye in the TRPM3-depleted NK cells 

(Nguyen, Johnston et al. 2017). Subsequent studies using whole cell patch clamping, 

however, have reported loss of PregS-stimulated Ca2+ responses (Cabanas, Muraki et al. 

2018, Cabanas, Muraki et al. 2019).   
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1.3.2 Cytokines and Inflammation 

System-wide inflammation is theorised to be important in the ME/CFS clinical setting as it 

has been associated with symptom severity (Komaroff 2017), but the evidence 

demonstrating a role for abnormalities in proinflammatory cytokines is  inconsistent. While 

there are indeed reports of the elevation of various proinflammatory cytokines in ME/CFS 

(Brenu, van Driel et al. 2011; Maes, Twisk et al. 2012; Hornig, Montoya et al. 2015; 

Peterson, Brenu et al. 2015; Russell, Broderick et al. 2016; Milrad, Hall et al. 2017; 

Montoya, Holmes et al. 2017) these findings contrast with reports of reduced expression of 

proinflammatory agents such as interleukin-8 or transforming growth factor beta 1 

(Tomoda, Joudoi et al. 2005; Fletcher, Zeng et al. 2009). Others have also reviewed 

evidence for the specific directional shift of individual cytokines as being inconsistent 

(Mensah, Bansal et al. 2017). One group has reported that a cohort of ME/CFS patients 

with leaky gut syndrome as a comorbidity may undergo symptom remission when the IgM 

and IgA immune responses are attenuated by treatment with anti-inflammatory and 

antioxidant medications (Maes, Coucke et al. 2007; Maes and Leunis 2008). These findings 

are yet to be validated. 

1.3.3 Autoimmunity  

Autoimmunity has more recently become an area of interest, albeit with a small number of 

research-based publications. Autoimmune theories for ME/CFS have been proposed based 

on early studies using rituximab, a drug used to deplete B cell populations (Fluge and Mella 

2009; Fluge, Risa et al. 2015). This was supported by other reports of elevated naïve and 

transitional B cells in patients (Bradley, Ford et al. 2013). However, a role for such B cell-

mediated autoimmunity in the disorder is now challenged by the negative outcome of the 

more recent rituximab phase III clinical trial (Fluge, Rekeland et al. 2019) which refutes 

the previous rituximab work. This may also indicate that  autoimmunity only presents in a 

small subset of patients who respond positively to rituximab treatment (Rekeland, Fluge et 

al. 2018). Other direct lines of evidence for autoimmune behavior in the disorder come 

from elevated antibodies directed against β adrenergic and muscarinic cholinergic receptors 

in sera (Loebel, Grabowski et al. 2016), supported by the improvement of symptoms 

following immunoadsorption removal treatment (Scheibenbogen, Loebel et al. 2018). 

Others have reported abnormal IgM immune recognition of both microbial and human heat 
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shock protein 60 in a subset of patients (Elfaitouri, Herrmann et al. 2013) or against 

phosphatidylinositol (Maes, Mihaylova et al. 2007). There was no evidence of infective 

pathogen persistence in either study. In view of this body of research, an autoimmune basis 

for the condition remains possible but currently unidentified. 

1.4 Gut Abnormalities 

1.4.1 The Gut Microbiota 

It is well understood that many ME/CFS patients present with co-occurring gastrointestinal 

issues. Consequently, a disturbed gut microbiota has been proposed to play a role in 

ME/CFS (Butt, Dunstan et al. 2001; Sheedy, Wettenhall et al. 2009; Fremont, Coomans et 

al. 2013; Jackson, Butt et al. 2015; Shukla, Cook et al. 2015; Giloteaux, Goodrich et al. 

2016; Armstrong, McGregor et al. 2017). While such reports are numerous, they have been 

reviewed as collectively inconclusive with contradictory directional changes in specific 

organisms (Du Preez, Corbitt et al. 2018). While the role of the gut microbiota remains 

unclear, there are also reports of physiological gut abnormalities such as impaired intestinal 

motility (Burnet and Chatterton 2004) and elevated intestinal wall permeability (often 

termed “leaky gut”) (Maes, Coucke et al. 2007; Maes and Leunis 2008; Maes, Leunis et al. 

2014). Studies have shown that IBS can co-occur with specific other symptoms or 

abnormalities in different body systems (Aaron, Burke et al. 2000; Nagy-Szakal, Barupal 

et al. 2018; Tsai, Chen et al. 2019), which has resulted in proposals that ME/CFS patients 

with IBS might comprise a distinct subtype (Maes, Leunis et al. 2014).  

The intestinal microbiota has been proposed to influence (Brown and Clarke 2017; 

Grainger, Daw et al. 2018) and be influenced by (Nakajima, Vogelzang et al. 2018; 

Neumann, Blume et al. 2019) the function of the immune system. Associations have also 

been reported between the gut microbiota and host mitochondrial function and metabolism 

(Janssen and Kersten 2015; Kaliannan, Wang et al. 2015; Saint-Georges-Chaumet and 

Edeas 2016; Clark and Mach 2017; Bretin, Gewirtz et al. 2018; Chambers, Preston et al. 

2018). It should be noted that this field of study is relatively new, and the relationships 

drawn between the gut microbiota and other systems are mostly associative or theoretical 

rather than directly demonstrated.  

1.4.2 Intestinal Wall Hyperpermeability in ME/CFS 



31 

 

People with ME/CFS have been reported to present with gut microbiota disturbances 

concurrent with differences in blood metabolite levels, which has prompted the drawing of 

associations between the two observations (Sheedy, Wettenhall et al. 2009; Armstrong, 

McGregor et al. 2017; Nagy-Szakal, Barupal et al. 2018). Sheedy et al., observed increased 

numbers of Gram-positive intestinal bacteria which produce lactic acid that may lower the 

gut pH and lead to elevated gut permeability (Henriksson, Tagesson et al. 1988). The 

translocation of these enteric lactic acid products into the bloodstream could be related to 

elevated lactate reported in the blood (Rutherford, Manning et al. 2016) and cerebrospinal 

fluid of ME/CFS patients (Mathew, Mao et al. 2009; Murrough, Mao et al. 2010; Shungu, 

Weiduschat et al. 2012). However, this contrasts with reports of reduced blood lactate later 

measured by H-NMR metabolomics in a local Australian cohort more closely resembling 

the Sheedy et al. 2009 cohort (Armstrong, McGregor et al. 2015).  

Others have suggested that the immune system and mitochondrial function could be 

affected by increased translocation of immunogenic bacterial secretions from the gut into 

the bloodstream, which in ME/CFS could be mediated by intestinal wall hyperpermeability 

in patients affected with IBS (Maes and Leunis 2008; Maes, Twisk et al. 2012). For 

example, the generation of excess free radicals which can occur in the mitochondria 

(Cadenas and Davies 2000), has been proposed to form part of a microbial defense 

mechanism (Ghosh, Dai et al. 2011; Naviaux 2012; Abuaita, Schultz et al. 2018), with 

enteric species such as Escherichia coli being susceptible to the bactericidal properties of 

free radical derived reactive nitrogen species (Hurst and Lymar 1997). However, these 

theories have not been examined experimentally. Theoretical interactions with 

mitochondrial function in ME/CFS are also challenged by studies reporting mitochondrial 

abnormalities not selecting cohorts for IBS or leaky gut comorbidity. Since not all ME/CFS 

patients also experience comorbid IBS, members of these cohorts are likely to have 

exhibited mitochondrial dysfunction in the absence of these digestive tract problems. Many 

of these mitochondrial studies also examined ex vivo cells in culture medium or isolated 

mitochondria (Myhill, Booth et al. 2009; Fluge, Mella et al. 2016; Lawson, Hsieh et al. 

2016; Tomas, Brown et al. 2017; Mandarano, Maya et al. 2019), which would have 

separated these samples from the theorised presence of immunogenic bacterial secretions 

in the blood of patients with comorbid leaky gut syndrome. This body of work therefore 

comprises yet another inconclusive area of ME/CFS research that relies heavily on 

speculative clinical associations. 
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1.5 Summary and Aims 

1.5.1 Addressing the Broad Inconclusiveness of Current Literature and 

the Need for Mechanistic Insight 

The earlier sections of this introduction have discussed the prior evidence for molecular 

abnormalities in ME/CFS patients. Much of the key evidence is summarised in Table 1.1, 

which while often pointing towards disturbances in the same systems is often inconsistent 

in the specific abnormalities observed. 

Area of study Brief summary of key reports in ME/CFS 

Metabolomics • Multiple reports of disturbed amino acid metabolism, 

specific metabolite alterations not always consistent 

(Armstrong, McGregor et al. 2012; Armstrong, 

McGregor et al. 2014; Armstrong, McGregor et al. 

2015; Fluge, Mella et al. 2016; Yamano, Sugimoto et 

al. 2016).  

• Dysregulated lipid metabolism but inconsistent in 

proposed direction (Armstrong, McGregor et al. 

2015; Naviaux, Naviaux et al. 2016; Germain, 

Ruppert et al. 2017; Nagy-Szakal, Barupal et al. 

2018), possible glycolysis impairment (Armstrong, 

McGregor et al. 2015), possible PDH impairment 

(Fluge, Mella et al. 2016), urea cycle dysregulation 

(Armstrong, McGregor et al. 2012; Yamano, 

Sugimoto et al. 2016).  

Mitochondrial function • Inconsistent: reduced (Myhill, Booth et al. 2009) vs 

elevated steady-state ATP levels (Castro-Marrero, 

Cordero et al. 2013; Brown, Jones et al. 2015; 

Lawson, Hsieh et al. 2016) but resting ATP synthesis 

rates are normal (Tomas, Brown et al. 2017; Nguyen, 

Staines et al. 2018).  
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• Elevated mitochondrial enzyme expression (Kaushik, 

Fear et al. 2005; Ciregia, Kollipara et al. 2016). 

Muscle energy supply and 

signalling 

• Inconsistent AMPK activity state: Elevated AMPK vs 

unaltered baseline AMPK activity (Brown, Jones et 

al. 2015; Rutherford, Manning et al. 2016; Brown, 

Dibnah et al. 2018).  

• Reduced glucose or oxygen uptake or mitochondrial 

biogenesis (Vermeulen and Vermeulen van Eck 2014; 

Brown, Jones et al. 2015). 

• Muscle observations are likely confounded by the 

reduced exercise undertaken by ME/CFS patients 

since exercise upregulates mitochondrial biogenesis 

(O'Neill, Maarbjerg et al. 2011). 

Natural Killer Cells • Overall inconsistent evidence – role largely uncertain 

(Klimas, Salvato et al. 1990; Barker, Fujimura et al. 

1994; Tirelli, Marotta et al. 1994; Maher, Klimas et 

al. 2005; Lorusso, Mikhaylova et al. 2009; Fletcher, 

Zeng et al. 2010; Brenu, van Driel et al. 2011; 

Marshall-Gradisnik, Huth et al. 2016). 

Calcium signalling • Evidence for impaired TRPM3 function (Cabanas, 

Muraki et al. 2018; Cabanas, Muraki et al. 2019).  

Inflammation and cytokines • Highly sought but inconsistent molecular evidence 

(Blundell, Ray et al. 2015; Mensah, Bansal et al. 

2017), yet is likely to play some role based on clinical 

inflammation and the many reported disturbances in 

related systems. 

Autoimmunity • Relatively little researched. 
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• Role for B cell-mediated autoimmunity challenged by 

negative outcome of rituximab trial (Fluge, Risa et al. 

2015; Rekeland, Fluge et al. 2018; Fluge, Rekeland et 

al. 2019). 

Gut microbiota and 

physiology 

• Largely inconsistent literature (Du Preez, Corbitt et al. 

2018). 

• Effects on other body systems are unproven 

theoretical associations. 

Table 1.1: Brief summary of prior molecular abnormalities reported in ME/CFS. 

While so many links between these multiple affected systems have also been proposed by 

others, each of these phenomena are correlated only in that they have been reported 

clinically in people with the disorder, often across cohorts diagnosed under different criteria 

in different countries. The causal relationships between these differences are unknown and 

cannot be discerned purely on the basis of clinical association. There are many scenarios 

where more than one of the affected systems may exert pathological effects on another and 

vice versa. This complex and often reciprocal regulatory cross-talk between biological 

systems makes it difficult to distinguish cause from effect, so there is great need for 

potential causal relationships underlying the disease to be addressed directly using 

appropriate experimental models.  

1.5.2 Project Aims 

As the organelles responsible for most of the cell’s energy supply, the mitochondria seem 

likely to be important in ME/CFS given the hallmark symptoms of PEM and persistent 

fatigue. Given the critical need for the identification of underlying pathological 

mechanisms, and the inconsistencies and drawbacks of studies of mitochondrial function 

and related pathways outlined in Section 1.2, this PhD project was undertaken with the 

primary aim of assessing mitochondrial function and energy stress signalling in 

immortalised lymphocytes (termed lymphoblasts) isolated from participant blood.  

To assess the potential importance of these key elements of cellular metabolism, it is 

important to work with metabolically active cells. Just as differences in running speed and 
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gait cannot be readily compared between sleeping individuals, any differences between 

patients and healthy controls in mitochondrial function and metabolism are likely to be 

obscured in quiescent cells. For this and other reasons, I chose in this thesis to work with 

lymphoblasts isolated from patient PBMCs. These are metabolically active cells which are 

proliferative and phenotypically stable over many doublings (Sie, Loong et al. 2009; 

Hernando, Shannon-Lowe et al. 2013). These properties allow not only the assessment of 

mitochondrial and metabolic functions in a more metabolically active context, but also 

allow the same samples to be revisited to test additional hypotheses as they arise. This 

provides the opportunity to continually build a mechanistic model from these very same 

samples. The same properties cannot be attributed to the cell types employed in any 

previous ME/CFS research and are necessary to address the current confusion and lack of 

understanding of ME/CFS disease mechanisms. Lymphoblasts have been used to study 

mitochondrial function and metabolism in many neurological disorders such as 

Huntington’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis and can 

reveal differences in metabolism that are not observable in less metabolically active cells 

such as PBMCs (Sie, Loong et al. 2009; Annesley, Lay et al. 2016; Mejia, Chau et al. 2016; 

Pansarasa, Bordoni et al. 2018).  

The second major aim of this project was to address perhaps the most urgent issue both in 

the field and facing the patient community, which is the lack of a diagnostic biomarker. 

Since lymphoblasts and the PBMCs from which they are derived are blood-accessible, any 

clear, observable changes in these cells between ME/CFS patients and healthy controls 

have the potential to be investigated as candidate diagnostic blood tests.  
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2.0 Materials and Methods 

2.1 General Procedures 

2.1.1 Sterilisation 

All glassware, media and tips were sterilised by autoclaving at 100 kPa and 121 C for 30 

min. Unless otherwise stated, sterile distilled water was used as the solvent for all buffers 

and solutions. 

2.1.2 Chemicals 

The chemicals used and their suppliers are listed in Appendix 1. 

2.1.3 Media and Buffers 

The names and composition of media and buffers are listed in Appendix 2. 

2.1.4 Commercially Available Assays 

Commercially available assay kits are listed with their suppliers in Appendix 3. 

2.1.5 Human Lymphocytes and Lymphoblasts 

From each human sample, the deidentified participant ID, clinical group, age and gender 

are listed in Appendix 4. 

2.1.6 Growth of Lymphoblast Cell Lines 

Lymphoblasts were seeded at concentrations of no less than 2 × 105 cells/mL in T25 flasks 

in growth medium (Appendix 2), where they were cultured within a humidified 5% CO2 

incubator at 37 °C. The cultures were fed at intervals not exceeding three days by replacing 

1/3 of medium with new medium, or split in a 1:3 ratio of cell culture to fresh medium as 

required. Prior to commencing experiments, lymphoblast cell lines were cultured over as 

short a time and as few passages as possible. Immortalised lymphoblast cell lines created 

from healthy donor blood were utilised as internal controls to normalise for variation 

between experiments where appropriate. 

2.1.7 Storage of PBMCs and Lymphoblasts 

Confluent cultures were transferred to tubes, harvested by centrifugation, resuspended in 

storage medium and stored in 250 µL aliquots at −80 °C. PBMCs specifically were stored 
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in aliquots containing 5 × 106 cells. For the lymphoblasts, dozens of aliquots per individual 

were stored when the cell lines were initially obtained to allow for ongoing access to 

proliferative cultures with low passage numbers. Lymphoblasts were removed from storage 

by thawing in a 37 °C water bath, harvested by centrifugation, resuspended in growth 

medium, and transferred to a fresh T25 flask. 

2.1.8 Viable Cell Counts 

Lymphoblast or lymphocyte (PBMC) viable counts for all applications were determined by 

staining with Trypan Blue prior to hemocytometer cell counting. Trypan Blue-stained cells 

were counted as dead and unstained intact cells as viable. 

For the unimmortalised lymphocyte viability measurements over time, frozen aliquots were 

thawed in a 37 °C water bath, pelleted at 1000 ×g for 2 min and resuspended in 1 mL 

complete medium (Appendix 2). The cells were then washed at 1000 ×g for 2 min and 

resuspended in fresh medium of the same formulation. They were then seeded in a 96-well 

U-bottom plate at a density of 1 × 106 cells/mL and kept in a humidified 5% CO2 incubator 

at 37 °C over the course of the experiment. Each well was mixed gently by pipette before 

sampling to ensure counting of a homogeneous cell suspension. 

2.1.9 Preparation of Epstein-Barr virus (EBV) supernatant stocks 

The EBV-producing marmoset B cell line B95.8 (Sigma-Aldrich, St. Louis, MO, USA) 

was seeded in 10 mL complete medium in a T25 flask (5 × 106 cells) and incubated at 37 

ºC with 5% CO2. After one week, the old medium was removed and replaced with 10 mL 

fresh growth medium. This process was repeated multiple times until the cell culture had 

progressed to confluency, at which point flasks were removed from the incubator and 

incubated at room temperature (RT) overnight with the lids tightly sealed. The next 

morning, the cell suspension was transferred into a fresh tube, centrifuged at 550 ×g for 10 

min, the supernatant (containing EBV) decanted into a new tube to be retained, the cells 

resuspended in 1 mL medium and transferred to a fresh tube. Following this, the cells were 

then frozen in liquid nitrogen, rapidly thawed in a 37 ºC water bath, and this freeze-thaw 

cycle repeated three times. The cells were then centrifuged at 500 ×g for 10 min and the 

supernatant (containing EBV) retained and pooled with the previously collected 

supernatant. This larger volume of supernatant was separated into 1 mL aliquots and stored 

at -80ºC for later use in transfections. 
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2.2 Participant Cohorts and Creation of Lymphoblast Cell Lines 

from Isolated PBMCs 

2.2.1 Participant Cohort Recruitment, Composition and Subsets 

All participants were of European descent and belonged to two groups: ME/CFS patients 

conforming to the Canadian Consensus Criteria (CCC) (Carruthers, Jain et al. 2003) and 

healthy controls without any family history of ME/CFS or similar myalgias, with no other 

known reasons for fatigue, no musculoskeletal disorders, no pregnancy nor cohabiting with 

ME/CFS patients. ME/CFS severity assessments were conducted using Richardson and 

Lidbury’s Weighted Standing Time (Richardson, Lewis et al. 2018). 15 mL of blood was 

taken per participant in heparin-treated vacutainer tubes.  

Participants were recruited in two stages as part of larger project timelines. The first cohort 

was recruited between 2016-2017 at CFS Discovery Clinic, Melbourne, Australia, who 

have a long running specialisation and interest in ME/CFS and almost all of the data 

reported herein was obtained using only this cohort unless stated otherwise: ME/CFS 

patients (n = 51, 86% female, median age 50, age range 26–70) and healthy controls (n = 

22, 68% female, median age 41, age range 21–58). There was no significant difference 

between the patient and control groups in either the gender proportions (Fisher’s exact test, 

p = 0.21) or age distribution (Fisher’s exact test, participants grouped by ages in 5 year 

increments, p = 0.19). Neither gender (ANOVA) nor age (multiple regression) had an effect 

on any of the parameters of mitochondrial function and Target of Rapamycin Complex 1 

(TORC1) signalling reported in later sections (p > 0.05).   

A randomly selected subset of this cohort was used to determine if the copy numbers of the 

EBV genome were different in patient and control groups and if they had any effect on the 

mitochondrial and cell signalling abnormalities that were observed. This subset included 

13 ME/CFS patients (85% female, median age 43, age range 26–62) and 15 controls (53% 

female, median age 41, age range 21–58). Neither the difference in gender proportions 

(Fisher’s exact test p = 0.11) nor the distribution of ages (Fisher’s exact test, p = 0.8 using 

15 year bins) was statistically significant. Neither age (multiple regression) nor gender 

(ANOVA) had any influence on the EBV genome copy number in either patients or controls 

(p > 0.05). 
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Due to the closure of the CFS Discovery clinic, recruitment of a second group of 

participants commenced in October 2019, undertaken by trained staff at La Trobe 

University. Recruitment is ongoing and is part of a larger project initiated late during this 

PhD project. This second cohort was only utilised and pooled with data from the initial 

main cohort for a small number of specific experiments (transcriptomics, proteomics, and 

to assess the effect of freezing time on lymphocyte death rates in Chapter 3). This new, 

second cohort currently contains 13 new ME/CFS participants (85% female, median age 

38, age range 22–70) and 19 new control individuals (42% female, median age 29, age 

range 19–55). While the age distribution in the new cohort is not significantly different 

between the patient and control groups (Fisher exact test, p > 0.1), the gender proportions 

are significantly different (p = 0.02), yet as demonstrated below this did not affect the 

results. Details of the combined cohort lymphoblast subsets for proteomics and 

transcriptomics experiments follow: 

1. A randomly selected subset of cell lines from both cohorts was employed for whole-

cell proteomics. This subset included 34 ME/CFS patients (88% female, median 

age 52.5, age range 26–71) and 31 controls (45% female, median age 30, age range 

19–58). The difference in gender proportions (Fisher’s exact test p = 0.0004) and 

the distribution of ages (Fisher’s exact test, p = 0.000183 using 15 year bins) were 

statistically significant. However, there was no significant effect of either age 

(multiple regression) or gender (ANOVA) on analysed experimental outcomes in 

either patients or controls (p > 0.05). 

2. A randomly selected subset of cell lines from both cohorts was employed for whole-

cell transcriptomics. This subset included 23 ME/CFS patients (82% female, 

median age 52, age range 27–71) and 17 controls (59% female, median age 41, age 

range 21–58). The difference in gender proportions (Fisher’s exact test p = 0.153) 

and the distribution of ages (Fisher’s exact test, p = 0.102336 using 15 year bins) 

were not statistically significant. There was also no effect of either age (multiple 

regression) or gender (ANOVA) on analysed experimental outcomes in either 

patients or controls (p > 0.05). 

Lymphoblastoid cell lines (lymphoblasts) were generated from the blood of all participants. 

Multiple assays were conducted on both lymphoblasts and the PBMCs from which they 

were derived. However, because of limited PBMC supply, subsets were used for the tests 

using PBMCs: 
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1. PBMC respirometry assays. The sample selection was determined by the 

availability of sufficient PBMCs for the experiments. This subcohort included 14 

ME/CFS patients (71% female, median age 59, age range 38–71) and nine healthy 

controls (67% female, median age 41, age range 21–52). The gender proportions 

were not different (Fisher’s exact test p = 1.0), but the age distributions were (four 

control but no ME/CFS individuals under 30; seven ME/CFS individuals over 60; 

Fisher’s exact test p = 0.013 using 15-year bins). Neither age (multiple regression) 

nor gender (ANOVA) had any relationship with the PBMC O2 consumption rates 

in either patients or controls (p > 0.05). 

2. PBMC cell death assays used samples from both cohorts. 35 ME/CFS individuals 

(89% female, median age 52, age range 26–71) and 14 control individuals (71% 

female, median age 42, age range 21–58) were used from the first cohort and are 

included in data presented in Chapter 3 by themselves, since only these individuals 

had undergone the full set of mitochondrial tests examined therein. Neither the 

gender proportions (Fisher’s exact test p = 0.15) nor the age distributions were 

significantly different (Fisher’s exact test p = 0.13 using 15-year bins). The second 

cohort was utilised in its entirety and is included in Chapter 4 alongside data from 

the first cohort to examine the effect of frozen storage time on cell viability. Neither 

age (multiple regression) nor gender (ANOVA) had any relationship with the 

PBMC death rate in either patients or controls in samples from both cohorts (p > 

0.05). 

2.2.2 PBMC Isolation from Whole Blood 

Blood samples were diluted 1:1 with RT wash medium (Appendix 2) and 20 mL of this 

diluted blood was then gently layered onto RT 10 mL Ficoll-Paque. This step was repeated 

with a second 50 mL tube. The layers were separated by centrifugation at 700 ×g for 40 

min and PBMCs present in the resultant buffy coat layer were harvested by pipetting. The 

cells were pooled into a fresh tube already containing 10 mL wash medium, then topped up 

to a total volume of 40 ml with wash medium. The PBMCs were then pelleted by 

centrifugation at 500 ×g for 15 min. The pellet was washed once in 25 ml wash medium, 

with a final centrifugation at 300 ×g for 10 min to collect the cells. The supernatant was 

discarded, and the cells resuspended in 5 mL complete medium. The cell density of the 

suspension was determined by haemocytometer counting with trypan blue staining, and 5 
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× 106 cells were set aside for immortalisation. The excess cells were stored as described in 

Section 2.1.7. 

 

2.2.3 Immortalisation of PBMCs 

For immortalisation, 1 mL culture supernatant from B95.8 cells (Sigma-Aldrich, St. Louis, 

MO, USA) expressing EBV was added, and 150 µL of the mix was seeded per well in a 

96-well U-bottom plate, then incubated for 1 h within a humidified 5% CO2 incubator at 

37 °C. A final concentration of 500 ng/mL Cyclosporin A was then added to each well. 

Cultures were fed weekly by replacing half of the medium with the same formulation, 

without disturbing the cells. This process was repeated over a period of approximately three 

weeks until the cells were confluent and growing rapidly, after which the lymphoblast 

cultures were processed as described in Section 2.1.6. 

2.3 Respirometry and PBMC Rate of Death 

2.3.1 Using Seahorse Respirometry to Assess Mitochondrial Function in 

PBMCs and Lymphoblasts 

Oxygen consumption rates (OCR) of 8 × 105 viable PBMCs or lymphoblasts per well were 

measured using the Seahorse XFe24 Extracellular Flux Analyzer (Agilent, Santa Clara, 

CA, USA) with Seahorse XFe24 FluxPaks. Immortalised lymphoblasts were cultured in 3 

mL growth medium per well in 6-well Costar plates prior to Seahorse experiments while 

PBMCs were recovered from storage and inoculated immediately. 

In order to measure the oxygen consumption rates (OCR in pmol/min) of cells via this 

method, they must be firmly adhered to and evenly spread across the bottom of the assay 

wells. The Cell Culture Microplate was therefore prepared to facilitate cell adherence by 

pipetting a 4.5 µL of a 3:1 mixture of XF Base Medium: Matrigel Matrix into each well 

and spreading it evenly across the surface under refrigerated conditions. The plate was then 

left to dry at RT under laminar flow, and 8 × 105 cells/well were later seeded in 525 µL XF 

base medium containing:  2.5 mM glucose, 1 mM pyruvate, 200 mM L-glutamine and 

adjusted to pH 7.4. The cells were incubated with these conditions for 1 h at 37 °C prior to 

the assay. 

 

In order to act as a vehicle for inhibitory compound injection and to facilitate OCR 

measurements, the sensor cartridge apparatus was rehydrated one day in advance by adding 
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1 mL XF Calibrant to each well and incubating at 37 ºC until needed. 5 mM drug stocks 

were prepared beforehand in DMSO and diluted in the same supplemented XF medium that 

was used to seed the cells prior to injection. Injection port concentrations were 16 µM 

oligomycin (ATP synthase inhibitor), 9 µM carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP), an uncoupling protonophore, 50 µM rotenone (Complex I inhibitor) and 11 µM 

antimycin A (Complex III inhibitor). OCRs were measured prior to (basal OCR) and after 

successive 75µL injections to final concentrations of 2 µM oligomycin 1 µM CCCP 5 µM 

rotenone and 1 µM antimycin A. 

 

From the resulting data the OCR associated with respiratory ATP synthesis was determined 

(oligomycin-sensitive component), the maximum OCR in CCCP-uncoupled mitochondria 

and the rotenone-sensitive OCR attributable to uncoupled Complex I activity, the 

antimycin-sensitive Complex II/III activity, the OCR by mitochondrial functions (e.g., 

protein import) other than ATP synthesis that are mitochondrial membrane potential 

(Δψm)-driven (so-called ‘proton leak’), non-respiratory oxygen consumption (e.g., by 

cellular and mitochondrial oxygenases and oxidases), and the respiratory ‘spare-capacity’ 

(excess capacity of the respiratory electron transport chain that is not being used in basal 

respiration). A visual depiction of these components is included in Figure 2.1. 
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Figure 2.1: Example of Seahorse respirometry. Lymphoblasts (8 × 105 viable cells) were seeded 

into each of 4 wells in the 24 well plate as described. Four wells without cells were used to measure 

the background signal which was subtracted from the average signal from the 4 test wells. At each 

assay time point the medium and drug additions were mixed (3 min), cells rested (2 min) and O2 

consumption rates measured (3 min). The 4 sequential drug additions occurred at the indicated times 

– oligomycin, CCCP, rotenone and antimycin A. The various respiratory parameters shown were 

calculated as illustrated from the measured OCRs and the changes in the OCR after each drug 

addition. 

 

2.3.2 Measuring the Rate of Death of ex vivo PBMCs 

Frozen PBMC aliquots were thawed in a 37 °C water bath, pelleted at 1000 ×g for 2 min 

and resuspended in 1 mL complete medium. The cells were then washed at 1000 ×g for 2 

min and resuspended again in complete medium. They were then seeded in a 96-well U-

bottom plate at a density of 1 × 106 cells/mL and kept in a humidified 5% CO2 incubator at 

37 °C over the course of the experiment. Viable cell counts were carried out every 24 h as 

described in Section 2.1.8. 
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2.4 Assessing Other Parameters of Mitochondrial Function, 

Glycolysis and TORC1 Activity in ME/CFS Lymphoblasts 

2.4.1 Steady-State ATP Analysis 

Steady-state intracellular ATP concentration was determined by firefly luciferin 

bioluminescence using the ATP Determination Kit (Invitrogen, Carlsbad, CA, USA). ATP 

was extracted from lymphoblasts by harvesting 5 × 105 cells at 500 ×g for 5 min, lysing the 

pellet in 100 µL 1% trichloroacetic acid and incubating for 10 min at RT. 900 µL 20 mM 

Tricine was then added, the mix centrifuged at 12,000 ×g for 2 min and the supernatant 

transferred to a fresh microcentrifuge tube. Serial dilutions of the 5 mM ATP stock included 

in the kit were made up with dH2O according to the following dilution scheme in order to 

construct a standard curve: 100 µM, 10 µM, 1 µM, 100 nM, 10 nM and 1 nM. The samples, 

ATP standards, and dH2O blanks were set up in duplicate tubes, combined with the kit 

reaction mixture which was set up according to the manufacturer’s instructions, and 

immediately measured in the fluorometer (Modulus, Turner Biosystems, Sunnyvale, CA, 

USA) using the  luminescence module. The luminescence is proportional to the amount of 

ATP present. 

 

2.4.2 Semi-Quantitative Western Blotting of Oxidative Phosphorylation 

(OXPHOS) Complex Subunits and Confirmatory Western Blotting for 

Proteomics  
 

Initial OXPHOS western blotting: 

Cells were lysed in loading buffer with a protease inhibitor cocktail (Roche, Penzberg, 

Germany). A small aliquot of each sample was briefly sonicated and analysed for total 

protein concentration using a Qubit Protein Assay Kit and Qubit 2.0 Fluorometer (Thermo 

Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. 

The samples were then heated to 90 °C for 10 min and 30 µg of total protein was loaded 

into each well in 12% sodium dodecyl sulphate (SDS) polyacrylamide gels. After 

electrophoresis, proteins were transferred onto polyvinylidene difluoride (PVDF) 

membranes using a Trans Blot Turbo Blotting apparatus (Bio-Rad Laboratories Inc., 

Hercules, CA, USA) for 30 min at 180 V, 1.0 A, blocked for 1 h with blocking buffer (5% 

skim milk, TBS buffer) and incubated overnight with primary antibodies (Total OXPHOS 

human WB antibody cocktail, Abcam, Cambridge, UK) diluted 1:1000 in blocking buffer. 
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This cocktail is directed against five OXPHOS proteins. Stain-free gel scans were utilised 

as the internal loading control in combination with an Alexa Fluor 800-labelled secondary 

antibody for detection (Alexa Fluor 800 goat anti-mouse IgG diluted 1:1000 in TBS). 

Following incubation with antibodies, the membranes were washed three times with TBS 

buffer containing 0.5% Tween 20, scanned with a ChemiDoc (Bio-Rad Laboratories Inc., 

Hercules, CA, USA) and analysed using the Image Lab software (Bio-Rad Laboratories 

Inc., Hercules, CA, USA). Two arbitrarily selected control cell lines (C105 and C0002) 

were included in every blot as internal normalisation controls for between-experiment 

variation. The intensity of individual bands was first normalised to the signal in the 

corresponding stain free gel track then subsequently normalised to the controls. 

Confirmatory western blotting for proteomics: 

Samples were lysed, homogenised, quantitated, denatured and loaded as in the previous 

method. Differences in the apparatus and antibodies used are described as follows. After 

electrophoresis, proteins were transferred onto PVDF membranes using a Mini gel tank 

with the Mini Blot module (Thermo Fisher Scientific, Waltham, MA, USA) 60 min at 10 

V, 300A, at 4°C and then blocked for 1h with blocking buffer (1% casein, TBST buffer) 

and incubated overnight with primary antibodies diluted 1:1000 in blocking buffer. The 

antibodies used were ACO2 (D6D9, Cell Signalling Technology, cat #6571), SdhA 

(D6J9M, Cell Signalling Technology, cat #11998) and CPTC-MDH1-1. CPTC-MDH1-1 

was developed by Clinical Proteomics Technologies for Cancer and obtained from the 

Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and 

maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242. Stain-

free gel scans were utilised as the internal loading control in combination with an HRP-

conjugated secondary antibody for detection (donkey anti-rabbit IgG, cat # A16023, and 

Goat anti-mouse IgG, cat #31430, Thermo Fisher Scientific, Waltham, MA, USA). 

Following incubation with antibodies, the membranes were washed three times with TBS 

buffer containing 0.5% Tween 20, and visualised using a chemiluminescent substrate 

(Clarity Western ELC substrate, Bio-Rad Laboratories Inc., Hercules, CA, USA) and the 

Amersham Imager 600 (GE Healthcare Life Sciences, Chicago, IL, USA) and analysed 

using the Image Lab software (Bio-Rad Laboratories Inc., Hercules, CA, USA). One 

arbitrarily selected control cell line was included in every blot as internal normalisation 

control for between-experiment variation. The intensity of individual bands was first 

normalised to the signal in the corresponding stain free gel track then subsequently 
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normalised to the controls. Oana Sanislav kindly performed these confirmatory blots due 

to pandemic-incurred laboratory restrictions. 

2.4.3 Assessing Intracellular Reactive Oxygen Species (ROS) Levels 

Intracellular ROS levels were determined using the Fluorometric Intracellular ROS Kit 

(Sigma-Aldrich, St. Louis, MO, USA). An aliquot of 5 × 105 cells was harvested per cell 

line at 500 ×g for 5 min, resuspended in 360 µL phosphate buffered saline (PBS), and 90 

µL loaded into triplicate wells on a 96 well black, clear, flat bottom plate. One hundred 

microliters of reaction mix prepared according to manufacturer’s instructions was added to 

each well, the plate protected from light and incubated for 1 h at 37 °C with 5% CO2. The 

fluorescence was then read at excitation 520 nm emission 605 nm in the Clariostar 

microplate reader (BMG Labtech, Offenburg, Germany) as a measure of intracellular ROS. 

C105 was arbitrarily included as an internal normalisation control for between-experiment 

variation. The fluorescence is proportional to the amount of ROS present. 

2.4.4 Whole-Cell Proteome Analysis 

Samples of 3 × 106 lymphoblasts in 100 µL PBS were submitted to the La Trobe University 

Comprehensive Proteomics Platform for whole-cell proteome analysis. The samples were 

processed as follows: 

Each sample was dried using a SpeedVac Concentrator and Savant Refrigerated Vapor trap 

(Thermo Fisher Scientific, Waltham, MA, USA). Samples were resuspended in 8 M Urea, 

100 mM Tris pH = 8.3. 1 µL of tris [2-carboxyethyl] phosphine hydrochloride (TCEP, 200 

mM solution in water) and incubated overnight at 21 °C in a ThermoMixer (Eppendorf AG, 

Hamburg, Germany). Four microliters of 1 M iodoacetamide (IAA in water) was added the 

following day and incubated in the dark at 21 °C. Next, 500 µL of 50 mM Tris (pH 8.3) 

and 1 μg trypsin was added to samples and left for 6 h at 37 °C in an incubator. Another 1 

μg trypsin was added for double digestion and incubated overnight at 37 °C. The digested 

samples were purified for mass spectrometry analysis prior to peptide reconstitution and 

separation using Sep-Pak light C18 cartridges (Waters, Milford, MA, USA) according to 

manufacturer standard procedures. Data were collected on a Q Exactive HF (Thermo Fisher 

Scientific, Waltham, MA, USA) in Data Dependent Acquisition mode using m/z 350–1500 

as mass spectrometry (MS) scan range at 60,000 resolution, HCD MS/MS spectra were 

collected for the 15 most intense ions per MS scan at 15,000 resolution with a normalised 

collision energy of 28% and an isolation window of 1.4 m/z. Dynamic exclusion parameters 
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were set as follows: exclude isotope on, duration 30 s and peptide match preferred. Other 

instrument parameters for the Orbitrap were MS maximum injection time 30 ms with AGC 

target 3 × 106, for a maximum injection time of 25 ms with AGT target of 1 × 105. Raw 

files consisting of high-resolution MS/MS spectra were processed with MaxQuant version 

1.6.1.0 to detect features and identify proteins using the search engine Andromeda. 

UniProtKB/Swiss-Prot Homo sapiens sequence data was used as the database for the search 

engine. To assess the false discovery rate (FDR) a decoy data set was generated by 

MaxQuant after reversing the sequence database. Theoretical spectra were generated using 

the enzyme setting as trypsin and allowing two missed cleavages. The minimum required 

peptide length used was seven amino acids. Carbamidomethylation of Cys was set as a 

fixed modification, while N-acetylation of proteins and oxidation of Met were set as 

variable modifications. Precursor mass tolerance was set to 5 ppm and MS/MS tolerance to 

0.05 Da. The “match between runs” option was enabled in MaxQuant to transfer 

identifications made between runs on the basis of matching precursors with high mass 

accuracy. PSM and protein identifications were filtered using a target-decoy approach at a 

false discovery rate (FDR) of 1%. 

2.4.5 Assessing Mitochondrial Mass and Membrane Potential 

Mitochondrial mass and MMP were assayed using the mitochondrial dyes MitoTracker® 

Green FM and MitoTracker® Red CMXRos. Both dyes bind specifically to mitochondrial 

membranes, MitoTracker® Red binding being membrane potential (Δψm)-dependent, 

while MitoTracker® Green binding was not. Mitotracker Green fluorescence thus measures 

mitochondrial membrane “mass” and Mitotracker Red fluorescence provides a 

measurement of Δψm when normalised to the Mitotracker Green signal (Pendergrass, Wolf 

et al. 2004). 

Cells (7 × 105) were harvested at 500 ×g for 5 min, and 1 × 105 cells were plated per well 

into six wells of a 96 well black, clear flat bottom plate. The plate was incubated for 1 h at 

37 °C with 5% CO2. To duplicate wells for each dye treatment, MitoTracker® Green and 

Red were added to final concentrations of 200 nM, PBS added to background wells and 

Hoechst 33342 Nuclear Stain was included in every well at a final dilution of 1/2000, for 

normalising under each treatment condition (excitation 355 nm, emission 455 nm). The 

plate was then incubated for 1 h at 37 °C and 5% CO2, the supernatant removed via 

aspiration and replaced with PBS. Fluorescences were read using the Clariostar microplate 

reader. Relative mitochondrial mass was determined by background-subtracted 
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MitoTracker® Green FM fluorescence at excitation 470 nm and emission 515 nm, 

normalised to the background subtracted signal from the same number of cells of the 

internal control cell line. The MMP was determined from the background-subtracted 

MitoTracker® Red CMXRos fluorescence (excitation 570 nm, emission 620 nm) divided 

by the background-subtracted fluorescence of MitoTracker® Green FM. 

2.4.6 DNA Extraction from Lymphoblasts 

At least 1 × 106 lymphoblasts were harvested by centrifugation at 500 ×g for 5 min and the 

pellet lysed in 1 mL DNAzol. This lysate was centrifuged at 10,000 ×g for 10 min to remove 

debris and the supernatant transferred to a new microcentrifuge tube. 500 µL of 100% 

ethanol was added to each tube and mixed immediately by inversion. After allowing the 

DNA to precipitate for 5 min, the DNA was sedimented by centrifugation at maximum 

speed for 10 min. The supernatant was then carefully removed and replaced with 1 mL 75% 

ethanol, and washed at top speed for 5 min. The ethanol was again removed carefully and 

the pellets briefly air-dried. The DNA was then thoroughly resuspended in 50 µL 8 mM 

NaOH stored at -80 °C until needed and diluted 1/10 prior to use in a qPCR assay. 

2.4.7 Assessing Mitochondrial and EBV Genome Copy Number 

SYBR green fluorescence was used in qPCR to investigate amplification of fragments of 

the mitochondrial ND1 and ND4 genes using the primers ND1F 

(5’cacccaagaacagggtttgt3’), ND1R (5’tggccatgggattgttgttaa3’), MTND4F 

(5’caaccttttcctccgacccc3’) and MTND4R (5’ctggataagtggcgttggct3’). 

 

To investigate the EBV genome copy number, the following primers were employed to 

investigate the indicative amplicon BamHI fragment H rightward open reading frame 

(BHRF-1): BHRF1-F (5’ ggagatactgttagccctg3’) and BHRF1-R (5’ 

gtgtgttataaatctgttccaag3’). 

 

A fragment of the nuclear-encoded mitochondrial gene β2 microglobulin was amplified 

alongside the investigated genes as an internal control, using the primers B2-MGF 

(5’cactaggaccttctctgagc3’) and B2-MGR (5’ctacagcttgggaattcctgc3’). The reaction mixture 

(per investigated gene fragment) included 1× SYBR reagent mix for amplicon detection, 

primers at a concentration of 500 nM, and template DNA constituting 1/10 of the reaction 

mixture. Negative control wells with no template DNA were included to confirm that no 
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contamination was present. The Bio-Rad CFX96 qPCR System was used to amplify and 

detect the fragments of interest using the following thermal cycling scheme: 

 

Cycle     Repeats    Step    Wait      Set temp. (ºC) 

1               1           1         3:00           95 

2             35           1         0:30           95 

                              2         0:30           55 

                              3         0:30           72 

3               1           1         3:00           72 

 

The cycle threshold obtained for the target amplicons of interest were subtracted from that 

of β2-microglobulin to provide normalised measures for the relative genome copy number. 

Data was collected during step 3 of cycle 2. 

 

2.4.8 Using Respirometry to Investigate Glycolysis 

The extracellular acidification rate (ECAR) of live, intact lymphoblasts was measured using 

a modified glycolytic stress test in the Seahorse XFe24 Extracellular Flux Analyzer with 

Seahorse XFe24 FluxPaks. Immortalised lymphoblasts were cultured in growth medium in 

6-well plates prior to Seahorse experiments. 

In order to measure the ECAR of cells using this method, they must be firmly adhered to 

and evenly spread across the bottom of the assay plate wells. To achieve this, the Cell 

Culture Microplate was prepared as previously described with a Matrigel coating in the 

bottom of each well. The plate was then left to dry at RT under laminar flow. Added to 

each well was 8 × 105 cells in XF base medium containing 200 mM L-glutamine and 5 mM 

4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES). 

The sensor cartridge apparatus was rehydrated one day in advance by adding 1 mL XF 

Calibrant to each well and incubating at 37 °C until needed. The injection ports of the sensor 

cartridge apparatus were loaded with the following drugs, in chronological order of four 

injections to give the indicated final concentrations in the wells: Glucose-10 mM, 

Oligomycin-2 µM, Rotenone-1 µM and Antimycin A-5 µM (combined injection), 2-

Deoxyglucose-50 mM. The treatment with the rotenone/antimycin combination prevented 
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flow of electrons through the electron transport chain and allowed assessment of its impact 

on ECAR. 

Before and after each successive drug addition, the ECAR was measured over three time 

points, consisting of a 3 min mix, 2 min wait, and 3 min measurement time. These 

measurements were subsequently analysed to determine the magnitudes of various 

parameters of glycolysis based on the targets of each successive drug injection. The 

difference between the post-glucose ECAR and the post-2-Deoxyglucose ECAR was 

reflective of glycolytic rate. The difference between the post-oligomycin and post-glucose 

ECAR indicated the glycolytic reserve. Glycolytic capacity was indicated by the difference 

between the post-2-Deoxyglucose ECAR and the post-oligomycin ECAR.  

2.4.9 Investigating TORC1 Activity by 4E-BP1 Phosphorylation State 

and TORIN2 Sensitivity 

TORC1 activity in ME/CFS lymphoblast lysates was measured using a Time-resolved 

Förster resonance energy transfer (FRET)-based multiwell plate assay of the 

phosphorylation state of 4E-BP1, a major TORC-1 substrate (Cisbio Bioassays, Codolet, 

France). Cells were harvested, resuspended in growth medium at 2 × 106 cells/ml and plated 

in four replicates at 5 × 104 cells/well in a 96-well plate. Cells were incubated at 5% CO2/37 

°C for 2 h, with two of the replicates subjected to TOR inhibition by 0.5 µM TORIN2. 

Lysis buffer was added to each well as per manufacturer instructions and the plate mixed 

on an orbital shaker for 40 min before plating each sample into a 384 well white plate —

incorporating various controls and antibody mix (anti-4E-BP1 antibody labelled with d2 

acceptor, and anti-phospho-4E-BP1 antibody labelled with Eu3+-cryptate donor) according 

to manufacturer instructions. After a 2 h incubation at RT the plate was scanned by the 

Clariostar plate reader and the ratio of the FRET signal from anti-phospho-4-EBP-1 

antibody to the donor fluorescence signal from anti-4-EBP-1 antibody was measured 

according to instructions. C105 cells were included as an internal normalisation control for 

between-experiment variation. 

2.4.10 RNA Extraction from Lymphoblasts 

At least 1 × 106 lymphoblasts were harvested by centrifugation at 500 ×g for 5 min and 

lysed promptly with 1 mL Purezol RNA Isolation Reagent in a microcentrifuge tube. 200 

µL chloroform was added to each tube, mixed well and incubated at RT for 15 min. This 

mixture was centrifuged at 12,000 ×g for 15 min at 4 °C and the colourless, top-layer 
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aqueous phase transferred to a fresh tube. 500 µL isopropanol was added to each tube and 

vortexed for 5 seconds, then incubated at RT for 10 min. The supernatant was then carefully 

discarded following a 12,000 ×g centrifugation for 8 min at 4 °C. The RNA was then 

washed with 1 mL 75% ethanol at 7500 ×g for 5 min at 4 °C, the supernatant removed and 

the tube briefly air-dried. The sedimented RNA was then dissolved in 50 µL RNAse-free 

water. This was then treated with the RQ1 DNAse protocol at working concentrations as 

specified by the manufacturer, for 60 min at 37 °C before the reaction was terminated by 

addition of the “stop” solution. RNA was then used for required assays on the same day or 

stored at -80 °C until used. 

2.4.11 Transcriptomics 

RNA samples were prepared according to the foregoing protocol and sent to Australian 

Genome Research Facility (AGRF), Melbourne on dry ice for mRNA sequencing and 

quantification. This was achieved using the Illumina TruSeq stranded mRNA protocol as 

per manufacturer instructions (Illumina, Inc. San Diego, California, USA).  

2.4.12 Confirmatory qRT-PCR for transcriptomic data 

SYBR green fluorescence was used to quantify fragments of transcripts of interest, using 

the following primers: GLS-Forward (5’ GGAAGCCTGCAAAGTAAACCC 3’), GLS-

Reverse (5’ CCAAAGTGCAGTGCTTCATCC 3’) or SdhB-Forward (5’ 

ACTCTAGCTTGCACCCGAAG 3’) and SdhB-Reverse (5’ 

GCTGCTTGCCTTCCTGAGAT 3’). A fragment of the transcript encoding histone gene 

HIST1H1C was amplified alongside the investigated genes as an internal loading control 

(so-called “housekeeping” gene), using the following primers: Forward (5' 

GCGGCGCAACTCCGAAGAAG 3') and Reverse (5' AGCGGCCTTGGGCTTCACAG 

3').  

 

The reaction mixture was prepared according to manufacturer instructions (iTaq Universal 

One-Step Kit, Bio-Rad Laboratories Inc., Hercules, CA, USA), using primers at a 

concentration of 500 nM, and sample RNA constituting 1/10 of the reaction mixture. 

Negative control wells with no sample were included to confirm that no contamination was 

present. The CFX Connect Real-Time PCR Detection System (Bio-Rad Laboratories Inc., 

Hercules, CA, USA) was used to amplify and detect the transcript fragments of interest. 
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The cycle threshold obtained for the target transcript fragments of interest was subtracted 

from that of HIST1H1C to assess relative quantification.  

 

2.4.13 AMPK Activity assay (ACC1/2 phosphorylation state)  

AMPK activity in ME/CFS lymphoblast lysates was measured using a time-resolved 

FRET-based multiwell plate assay of the phosphorylation state of ACC1/2 (Cisbio 

Bioassays, Codolet, France). Cells were harvested, resuspended in growth medium at 1.2 × 

106 cells/mL and plated in six replicates at 3 × 104 cells/well in a 384-well plate. Cells were 

incubated at 5% CO2/37 °C for 4 h, with two of the replicates subjected to AMPK inhibition 

by 30 µM SBI-0206965 (S7885 Selleckchem, Houston, TX, USA) and two of the replicates 

subjected to AMPK activation by 30 µM A-769662 (A11071, AdooQ Bioscience, Irvine, 

CA, USA), the remaining two replicates were treated with an equivalent concentration of 

DMSO as a control. Lysis buffer was added to each well as per manufacturer instructions 

and the plate mixed on an orbital shaker for 40 min before plating each sample into a 384 

well white plate —incorporating various controls and antibody mix (anti-ACC (Ser79) 

antibody labelled with d2 acceptor, and anti-Phospho-ACC (Ser79) antibody labelled with 

Eu3+-cryptate donor) according to manufacturer instructions. After a 24 h incubation at RT 

the plate was scanned by the Clariostar plate reader and the ratio of the FRET signal from 

anti-phospho-ACC (Ser79) antibody to the donor fluorescence signal from anti-ACC 

(Ser79) antibody was measured according to instructions. C105 cells were included as an 

internal normalisation control for between-experiment variation. Claire Allan kindly 

performed this assay due to pandemic-incurred laboratory restrictions. 

2.4.14 Statistical Analysis  

Data was analysed using Microsoft Excel with the Winstat add-in 

(http://www.winstat.com) or R using the packages R Commander (Fox 2005), REzy 

(Kanda 2013), Rattle (Williams 2011), pROC (Robin, Turck et al. 2011), edgeR (Robinson, 

McCarthy et al. 2010; McCarthy, Chen et al. 2012) and stats. Unless otherwise specified, 

two-sample tests used the Welch t-test. ANOVA and Fisher’s exact tests were used as 

specified and appropriate. The significance of individual coefficients in multiple regression 

analysis was tested using t-tests.  

Proteomics data was analysed employing the software Scaffold (Proteome Software) prior 

to exporting to Excel for additional analysis. Proteins detected in fewer than 5 samples were 
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excluded from the analysis. Intensity-based absolute quantitation (iBAQ) abundance values 

were exported to excel and subsequently normalised to the mean total from 5 healthy 

controls which were arbitrarily selected for inclusion in each proteomics experiment to 

control for any inter-experimental variation, with similar outcomes seen from these control 

cell lines in both experiments. 

Transcriptomics data was initially collated by AGRF using the edgeR package for R. For 

individual transcripts, read counts were normalised to counts per million mapped reads 

within each respective sample. Data was exported to Excel for subsequent analysis. 

PANTHER over-representation tests (Thomas, Campbell et al. 2003; Thomas, Kejariwal et 

al. 2006; Mi, Dong et al. 2010) were carried out in the early stages of analysis in order to 

obtain an objective, broad perspective of the data to inform unbiased subsequent analysis 

of individual, differentially regulated pathways. To facilitate this, genes/proteins were 

assigned a Q value to correct for multiple comparisons according to the Benjamini–

Hochberg method (Benjamini 1995), and separated into two lists: those significantly up- or 

down-regulated. The up- and down-regulated lists were separately entered into the 

PANTHER over-representation tool, with binomial tests selected as the statistical test. The 

list of transcripts or proteins detected in the entire respective experiment was uploaded as 

the reference list used by PANTHER to determine the number of “expected” pathway hits. 

From this, PANTHER generated new lists of gene products that were statistically over-

represented within the differentially expressed subsets of each experiment. These over-

represented gene products were exported to Excel for further assessment, guiding 

subsequent analysis.  

In closer subsequent analysis of individual pathways, detected proteins or transcripts were 

identified as belonging to a single functional group (e.g., TCA cycle) or respiratory 

complex using the NCBI gene ontology (GO) annotation database (Harris, Clark et al. 

2004) and manually curated for relevance to the group of interest (occasional erroneous 

inclusions were removed). Using R, the binomial test of proportions was employed to 

assess whether all detected proteins or transcripts in a single functional group or respiratory 

complex were together altered in their frequency of up- or down-regulation in the ME/CFS 

group compared to controls. This test compared two proportions: the number of gene 

products upregulated and the number downregulated in ME/CFS lymphoblasts. It was 

expected that the levels of each protein or transcript had an equal probability of being above 



54 

 

or below the control average, so the hypothesised probability was set to 0.5 (equal 

proportions expected by chance). Two-sided tests were employed for pathways were there 

was no prior evidence suggesting altered expression in ME/CFS lymphoblasts. For 

functional groups of proteins where there was prior evidence of upregulation, the 

alternative hypothesis was applied that the number of upregulated gene products was 

“greater” than the number downregulated. Single sample t tests were also used to assess 

whether the average fold change in the levels of all detected proteins or transcripts in a 

single functional group or enzyme complex in the ME/CFS cohort was significantly 

different from the normalised healthy control mean (in two-sided tests), or significantly 

greater than the control mean (in one-sided tests) for those functional groups of gene 

products where there was prior evidence of upregulation. 

For the analysis of candidate biomarkers, propensity scores were calculated using logistic 

regression models in Rattle (Williams 2011). The tested models used data partitioned 

randomly into a 70% training subset and a 30% test subset. The propensity score represents 

a probability that the sample in question is from an ME/CFS patient. This score was 

generated from either single independent variable or multiple variables representing a set 

of key parameters that were significantly altered in ME/CFS lymphoblasts, the combination 

varying depending on the biomarker configuration that was modelled and evaluated. The 

individual variables are summarised as follows:  

1. for lymphocyte death rate it was the percentage of dead lymphocytes after 48 h in 

culture medium.  

2. for lymphoblast TORC1 activity, the independent variable was the normalised 

phosphorylation level of 4E-BP1, a specific cellular substrate of TORC1.  

3. for respirometry, the five key parameters used were  

a. the fraction of the basal O2 consumption rate (OCR) attributable to  

i. ATP synthesis by Complex V and  

ii. the use of the proton gradient in other mitochondrial membrane 

transport processes (the proton leak), 

b. maximum CCCP-uncoupled OCR,  



55 

 

c. the maximum uncoupled Complex I activity and  

d. the nonmitochondrial OCR.  

4. The levels of significantly altered gene transcripts present at high levels in the 

transcriptomic dataset (specific transcripts detailed in Chapter 5 results). 

5. The levels of significantly altered proteins present at high levels in the proteomic 

dataset (Specific proteins detailed in Chapter 5 results). 

The measures of respiratory function were also tested in combination with mitochondrial 

membrane potential measures, as determined by MitoTracker Red and MitoTracker Green 

fluorescence.  

For whole-cell lymphoblast proteomics and transcriptomics, the independent variables 

differed depending on the specific combination of individual gene products being applied 

(Refer to Chapter 5 results and discussion). The outcomes of the logistic regression were at 

first expressed as an error matrix, showing a cross tabulation of the actual source of the 

sample (ME/CFS or control) and the classification produced by the model. From this, error 

rates (false positives and false negatives) were calculated.  

During the exploration of biomarkers, Receiver Operating Characteristic (ROC) analysis 

was performed on the propensity scores from the logistic regression models of candidate 

predictor variables from various assays. In ROC analysis, samples are counted in 

descending rank order according to the variable being assessed – in this case the propensity 

scores from the logistic regression. At each possible threshold in the score, samples are 

classified as “positive” if above threshold and “negative” if below threshold. Thus, a 

threshold above the highest sample score would result in all samples being classed as 

“negative” – sensitivity would be zero since no true positives would be detected. However, 

all true negatives would also be counted (correctly) as “negative” ie. there would be no 

false positives so the specificity would be 1 (100%). Conversely, at the lowest possible 

threshold for the propensity score, all samples would be classed as “positive”, including 

(erroneously) all true negatives. In this case sensitivity would be 1 (all true positives 

detected) and specificity would be 0 (no true negatives correctly identified as “negative”). 
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In the ROC curves presented in this thesis, as per convention, the sensitivity (fraction of 

positives that are correct) is plotted on the Y axis against specificity (fraction of negatives 

that are correct) on the X axis (with specificity decreasing from left to right). The “best” 

threshold value for the biomarker in question was defined in the ROC analysis as the point 

on the ROC curve which maximised the sum of the sensitivity and specificity (i.e., 

minimised the sum of the errors). The AUC (area under the ROC curve) with 95% 

confidence limits was calculated as an indicator of the usefulness of the biomarker in 

question in distinguishing ME/CFS from control samples. An AUC of 1.0 would mean that 

at the “best” threshold value, both sensitivity and specificity are 100%. Confidence limits 

for the sensitivities (on the vertical axis of ROC curves) were used to plot 95% confidence 

limits for the ROC curve itself. ROC curve comparisons by the bootstrapping method were 

performed as described by Robin et al. (2011) using 2000 replicates. 

Since ROC analysis depends only on the rank order of observations in the dataset, when 

there is only a single independent measure being tested, it produces identical results for the 

raw and for rescaled or transformed data from the corresponding logistic regression 

analysis. Only the scale changes on which the threshold value itself is measured. 
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3.0 Dysregulated Mitochondrial Respiratory Function and 

Signalling in Immortalised ME/CFS Lymphoblasts 

3.1 Introduction 

3.1.1 Investigating the Mitochondria  

A deficiency in the mitochondrial supply of cellular energy could be an explanation for the 

persistent fatigue, PEM, and other relevant symptoms experienced by ME/CFS patients. 

Evidence for mitochondrial dysfunction in ME/CFS has been sought in the last decade, but 

the data have been varied and inconsistent. Reduced mitochondrial biogenesis but not 

normalised respiratory chain enzyme activities have been reported in the muscle of 

ME/CFS individuals (Smits, van den Heuvel et al. 2011). Muscle mitochondrial biogenesis 

is upregulated by exercise (O'Neill, Maarbjerg et al. 2011), so this reduction is likely to be 

caused by the necessarily reduced exercise that ME/CFS patients can undertake. 

Mitochondrial respiratory function in ME/CFS neutrophils (Myhill, Booth et al. 2009; 

Booth, Myhill et al. 2012) and peripheral blood mononuclear cells (PBMCs) is reportedly 

reduced (Tomas, Brown et al. 2017) or unchanged (Tomas, Lodge et al. 2019), yet the 

oxidative phosphorylation (OXPHOS) complexes appear normal (Vermeulen, Kurk et al. 

2010; Lawson, Hsieh et al. 2016), while the expression of genes encoding mitochondrial 

proteins in patient saliva, platelets, and lymphocytes is elevated (Kaushik, Fear et al. 2005; 

Nelson, Ambros et al. 2014; Ciregia, Kollipara et al. 2016). More recently, mitochondrial 

respiration was found to be unchanged in resting and stimulated CD4+ and CD8+ T cells, 

with the sole exceptions of a small reduction in the proton leak in resting and ATP synthesis 

in stimulated CD8+ cells (Mandarano, Maya et al. 2019). These latter results could be a 

legacy of multiple comparisons being made in very small samples. 

Differences between patient and control serum and urine metabolomes have been attributed 

to reduced provision of acetyl-CoA to the TCA cycle caused by a defect in glycolysis 

(Armstrong, McGregor et al. 2015) or by a defect in pyruvate dehydrogenase (PDH) (Fluge, 

Mella et al. 2016). While inconsistent, both proposals draw attention to a potential role in 

ME/CFS for impaired provision of reducing equivalents to mitochondrial OXPHOS by the 

TCA cycle. Despite their shared conviction that ME/CFS cells have fundamental problems 

in energy metabolism, the conflicting reports on the nature of these problems highlighted 
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the need to reexamine the issue of mitochondrial function and its regulation in ME/CFS 

cells. 

A key regulator of mitochondrial function is TORC1 which regulates cell growth and 

energetics in a variety of cellular stress-sensing pathways (Loewith and Hall 2011). This 

pathway upregulates the expression of nuclear-encoded mitochondrial proteins 

(Cunningham, Rodgers et al. 2007), among which are subunits of the OXPHOS complexes 

(Morita, Gravel et al. 2015). Despite this connection, and the important roles of TORC1 

within a complex regulatory network which responds to intracellular stressors including 

energy supply, dysregulation of this signalling pathway has not yet been investigated in 

ME/CFS cells. 

3.1.2 Project Strategy and Overview of Findings  

To clarify the roles of aberrant mitochondrial function and TORC1 signalling in ME/CFS, 

parameters of mitochondrial function in immortalised lymphocytes (termed lymphoblasts) 

from patient blood were compared with those from healthy age- and gender-matched 

controls. Mitochondrial function in ME/CFS lymphoblasts was indeed abnormal, with an 

isolated Complex V inefficiency accompanied by elevated capacity of Complexes I to IV, 

decreased membrane potential, upregulation of TORC1 activity and elevated expression of 

diverse mitochondrial proteins including OXPHOS complexes, TCA cycle enzymes, and 

mitochondrial small molecule import machinery. Despite these abnormalities, the rates of 

glycolysis and steady state ATP levels in the ME/CFS cells were normal. This pattern of 

changes in mitochondrial function in ME/CFS lymphoblasts was distinct from what our 

laboratory previously observed using the same approach to other neurological conditions. 

An example is the mitochondrial hyperactivity, normal membrane potential and elevated 

steady state ATP levels our group reported previously in lymphoblasts from patients with 

Parkinson’s disease (Annesley, Lay et al. 2016) or fragile X-associated tremor/ataxia 

syndrome (Loesch, Annesley et al. 2017). The observations presented in this chapter 

suggest a model of mitochondrial dysfunction in ME/CFS lymphoblasts involving a 

primary deficiency in Complex V function, combined with homeostatic, compensatory 

upregulation of TORC1 activity and mitochondrial protein expression. Subsets of the 

information contained within this chapter have been published in research articles 

(Missailidis, Annesley et al. 2020; Missailidis, Sanislav et al. 2021). 
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3.2 Results 

3.2.1 Ex Vivo Lymphocytes Are Metabolically Quiescent and Those from 

ME/CFS Patients Die More Rapidly than Controls 

Whereas mitochondrial protein expression is elevated in ME/CFS saliva, lymphocytes and 

platelets (Kaushik, Fear et al. 2005; Vernon, Whistler et al. 2006; Ciregia, Kollipara et al. 

2016), physiological measures of respiratory function and capacity in ME/CFS lymphocyte 

mitochondria are reportedly reduced (Myhill, Booth et al. 2009; Tomas, Brown et al. 2017). 

A possible explanation is that the ex vivo ME/CFS lymphocytes are more deeply quiescent 

(metabolism more suppressed) than control cells. This was investigated by comparing 

respiration rates in immortalised lymphocytes (lymphoblasts) from ME/CFS patients and 

controls with those of lymphocytes from a random subset (determined by limited 

lymphocyte supply) of the same participant cohort. Although the ME/CFS lymphocytes 

appeared to have slightly smaller respiration rates than controls, the difference was not 

significant. However, the basal respiration rates in both patient and control lymphocytes 

were two orders of magnitude lower than in the immortalised cells, approaching the lower 

limits of detectability in the instrument (Figure 3.1A), as in previously reported experiments 

with this cell type (Tomas, Brown et al. 2017). This confirmed that ex vivo lymphocytes 

from both patients and controls are in a deep state of physiological quiescence and so 

perhaps not representative of metabolically active cells in vivo. 

Another potential contributor to the reported reduction in mitochondrial activity in ME/CFS 

lymphocytes compared to controls, is an increased death rate in ME/CFS lymphocytes 

compared to controls. The viability over time of ME/CFS lymphocytes versus healthy 

controls was therefore assessed (Figure 3.1B). In multiple log-linear regression analysis, 

the intercepts (which in the log-linear regression corresponds to an incubation time of 1 h) 

and the difference between them were not statistically significant. Although an 

extrapolation, this suggests that in both ME/CFS and control samples the fraction of dead 

cells at the start of the incubation was small and was similar in the two groups. However, 

the death rate over time was significant in both ME/CFS and control samples and was 

dramatically higher in the ME/CFS lymphocytes than in the controls.  
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Importantly, these ex vivo lymphocytes are already dying before measurements of basal 

OCR have begun. Most protocols for Seahorse respirometry involve incubating the cells in 

situ in the assay plates overnight prior to assay. During this time many cells will have died, 

more of them in ME/CFS samples than in controls. This suggests that previously reported 

reductions in ME/CFS lymphocyte mitochondrial function might have resulted from a 

higher fraction of dying (ie: metabolically suppressed) or dead cells in the assayed 

population. If it reflects the in vivo life span of unactivated lymphocytes, this result would 

also suggest that the turnover of unactivated lymphocytes in ME/CFS patients may be 

elevated. 

Figure 3.1: Ex vivo lymphocytes are metabolically quiescent and Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) lymphocytes die more rapidly. 

Error bars are standard errors of the mean. (A) Basal oxygen consumption rates (OCR) were 

measured in lymphoblasts and lymphocytes from ME/CFS and control individuals. Lymphoblasts: 

each ME/CFS (n = 50) and control (n = 22) cell line was assayed over four replicates in at least 

three independent experiments. Lymphocytes: each ME/CFS (n = 14) and control (n = 9) cell line 

was assayed over four replicates once due to limited supply. The red arrows point to the same data 

magnified with a smaller Y axis scale. The low basal OCRs for lymphocytes match those previously 

reported (Tomas, Brown et al. 2017). (B) ME/CFS lymphocytes die more rapidly than healthy 

controls. Lymphocytes stored for the same duration as the respirometry tests from both ME/CFS 

patients (n = 35) and healthy controls (n = 14) were seeded at a density of 1 × 106 viable cells/mL 

in RPMI 1640 with 10% serum, and kept in a humidified 5% CO2 incubator at 37 oC during the 

experiment. Each point represents the mean percentage of dead cells at the corresponding time point 

for ex vivo lymphocytes from ME/CFS patients and healthy controls. Stepwise multiple regression 

analysis was performed with dummy variables allowing both slopes and intercepts to differ between 

groups, with removal of least significant regression variables until only significant coefficients 
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remained. The difference in the slopes (death rates) of the log-linear regressions between the 

ME/CFS and control group was statistically significant (t test). 

3.2.2 Using Lymphoblasts to Investigate Mitochondrial Function in 

ME/CFS 

The foregoing results suggest that lymphoblastoid cell lines (lymphoblasts) may better 

reflect the function of actively metabolising cells, including activated leukocytes such as 

may be involved in inflammatory processes in ME/CFS patients. Lymphoblasts were 

therefore used in the remainder of this study to investigate mitochondrial function in 

ME/CFS cells. Creation of the lymphoblasts involves immortalisation by EBV infection 

and integration of the EBV genome into the lymphocyte genome. To check for possible 

effects of EBV on the mitochondrial and cellular stress signalling parameters which were 

measured, EBV genome copy numbers were assayed (by qPCR) and no significant 

difference between ME/CFS and control lymphoblasts was found (Figure 3.2). 

Furthermore, there was no relationship between the EBV genome copy number and the 

mitochondrial and cell stress-signalling parameters that were measured in either the patient 

or the control group (Pearson, Spearman rank, and Kendall’s tau correlation coefficients, p 

> 0.05 in all cases). 

Figure 3.2: The genome copy number of the indicative EBV gene BHRF-1 is unchanged 

between ME/CFS and control lymphoblasts. Genome copy numbers (qPCR for the EBV gene 

BHRF-1 relative to nuclear β-microglobulin gene) are unchanged in ME/CFS lymphoblasts 

(independent t-test, p > 0.05). Each ME/CFS (n = 13) and control cell line (n = 15) was assayed by 

qPCR in multiple independent experiments. Error bars represent 95% confidence intervals.  
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3.2.3 ATP Synthesis by Complex V Is Inefficient in ME/CFS 

Lymphoblasts 

In ME/CFS lymphoblasts, basal respiration was slightly elevated and the rate of O2 

consumption by ATP synthesis (oligomycin-sensitive component of basal respiration) 

slightly depressed, but neither change was statistically significant. However, as a proportion 

of the basal OCR, the rate of ATP synthesis by Complex V was significantly reduced (by 

about 15% relative to controls) in ME/CFS lymphoblasts, indicating an inefficiency in 

respiratory ATP synthesis (Figure 3.3A).  

Since the absolute rate of ATP synthesis was not significantly altered, despite its 

inefficiency, it was anticipated that resting ME/CFS cells homeostatically maintain normal 

ATP levels. To verify this, whole cell ATP levels were assayed and no difference was 

observed between ME/CFS and control lymphoblasts (Figure 3.3B). 

Figure 3.3: ATP synthesis by Complex V is inefficient in ME/CFS lymphoblasts. Error bars 

are standard errors of the mean. (A) Basal OCR and OCR by ATP synthesis were unchanged 

while OCR by ATP synthesis as a % of basal OCR was reduced in ME/CFS lymphoblasts 

(independent t-test). Each ME/CFS (n = 50) and control (n = 22) cell line was assayed over four 

replicates in at least three independent experiments. (B) Intracellular ATP concentration (relative 

background-subtracted luciferase luminescence) is unchanged in ME/CFS lymphoblasts 

(independent t-test). Each ME/CFS (n = 49) and control (n = 22) cell line was assayed in duplicate 

within each of at least three independent experiments. Data is normalised to an internal control cell 

line (C101). 
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3.2.4 ME/CFS Lymphoblasts Exhibit Elevated Respiratory Capacity, 

Activity and Expression of OXPHOS Complexes that, Except for 

Complex V, Are Functionally Normal 

To achieve normal ATP synthesis rates and steady state levels, ME/CFS lymphoblasts may 

compensate for the reduced efficiency of respiratory ATP synthesis by upregulating their 

capacity for respiratory electron transport. This was likely to be the case given the increased 

maximum OCR of the CCCP-uncoupled mitochondria and the main contributor to this, 

uncoupled O2 consumption by Complex I (rotenone-sensitive) as well as the spare 

respiratory capacity not utilised by basal respiration (Figure 3.4A). This elevated 

respiratory capacity in ME/CFS mitochondria implies an increase in the expression, import 

or activity of the proteins in these complexes and in the supporting pathways. To determine 

if this was the case, semiquantitative Western blotting was undertaken using crude lysates 

from ME/CFS and control lymphoblasts to assay the relative expression levels of indicative 

subunits of each of the five mitochondrial respiratory complexes. Significant increases in 

the levels of Complex I, II, and IV subunits were found by this semiquantitative Western 

blotting (Figure 3.4B). Smaller increases in the levels of subunits in the other complexes 

(III, V) were not statistically significant (Figure 3.4C). 

Figure 3.4: ME/CFS lymphoblasts exhibit elevated respiratory capacity and expression of 

oxidative phosphorylation (OXPHOS) complexes as assessed by respirometry and western 

blotting. Error bars are standard errors of the mean. (A) Complex I OCR, maximum OCR and spare 

respiratory capacity are elevated in ME/CFS lymphoblasts (independent t-test). The OCR was 
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measured in lymphoblasts from ME/CFS and control individuals by the Seahorse XFe24 

Extracellular Flux Analyzer. Each ME/CFS (n = 50) and control (n = 22) cell line was assayed over 

four replicates in each of at least three independent experiments. (B) Relative expression levels of 

Complex I subunit NDUFB8, Complex II subunit SdhB and Complex IV subunit COXII were 

elevated in semiquantitative Western blots (independent t-test). Each ME/CFS (n = 48) and control 

(n = 17) cell line was assayed in at least three independent experiments. (C)  Complex III subunit 

UQCRC2 and Complex V subunit ATP5A expression was elevated but not significantly in 

semiquantitative western blots (independent t-test). Each ME/CFS (n = 48) and control (n = 17) cell 

line was assayed in at least three independent experiments and means ±SEM were calculated (bar 

graphs). Western blot data is expressed in relative terms as each experiment was normalised to 

internal loading controls. Western blots were carried out by Oana Sanislav. 

These results as a whole suggest that in ME/CFS cells the expression of the respiratory 

complexes is homeostatically increased to compensate for inefficient ATP synthesis. To 

test this hypothesis further, whole-cell proteomics analysis of 31 control and 34 patient 

lymphoblast cell lines was conducted. The expression of subunits of each of the 5 

respiratory complexes was elevated in ME/CFS lymphoblasts in the proteomics analysis 

(Table 3.1).  

Table 3.1: Expression of OXPHOS complex subunits is elevated in whole cell proteomes from 

ME/CFS patients (n = 34) compared to healthy controls (n = 31). Each cell line was sampled 

once, or twice for a subset of healthy controls arbitrarily selected to act as an internal control 

between experiments in the proteomics work.  Fold-change refers to the mean abundance of a given 

protein in the ME/CFS group divided by the mean abundance in the control group. Binomial tests 

were employed to assess fraction upregulated with Ho set to 0.5. Single sample t tests were 

employed to assess magnitude of upregulation with Ho as mean fold change <1 and H1 as mean fold 

change >1 (Western blot and respirometry results led to the a priori hypothesis that upregulation 

would be observed). 

 Number 

of 

subunits 

Number 

of 

subunits 

detected* 

Fraction 

fold 

change >1 

in ME/CFS 

proteomes 

Binomial 

test p 

Mean 

fold 

change (± 

standard 

error) 

Single 

sample t 

test p 

Complex I 44 23 17/23 0.01734 1.20±0.05 3.44×10-4 

Complex II 4 2 2/2 NA 1.08±0.03 NA 

Complex III 10 6 6/6 0.1563 1.22±0.03 7.69×10-4 

Complex IV 19 10 7/10 0.1719 1.07±0.04 0.07 

Complex V 22 22 18/22 2.17×10-3 1.11±0.02 1.18×10-4 

All 

Complexes 

99 63 50/63 1.51×10-6 1.14±0.02 1.21×10-8 
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In subsets where the total number of detected proteins is small, the power of the binomial 

test to detect departures from expected proportions is limited. Single sample t-tests were 

also employed, instead to assess the magnitude of difference in the mean fold change from 

the normalised healthy control average. Although the small number of Complex II subunits 

did not allow for sufficient statistical power in either kind of test, the trend for Complex II 

is consistent with the significant increase detected by Western blotting (including the 

specific subunit assessed there, succinate dehydrogenase subunit B (SdhB). Together, these 

results show that the levels of the key mitochondrial OXPHOS proteins are elevated in 

ME/CFS cells, thereby confirming elevated complex expression as an explanation for the 

increased maximum OCR in Seahorse respirometry assays.  

This data is also in agreement with Complex-specific parameters in the respirometry assays. 

In keeping with the elevated oxygen consumption by Complex I, 23 of the 44 Complex I 

subunits were detected and most exhibited increases in their levels in ME/CFS cells 

compared to the controls (Table 3.1), significantly more than would be expected by chance. 

The average expression of these Complex I subunits in ME/CFS cells was significantly 

higher than in the controls (1.19 fold, p = 3.4 x 10−4). Elevated expression of Complex V, 

specifically, could also be expected in an “attempt” by the cell to offset the inefficiency in 

respiratory ATP synthesis. Indeed, 18 of the detected Complex V subunits were 

upregulated, also a significantly higher fraction than would be expected by chance (Table 

3.1). Average expression levels were also significantly elevated for the subunits of 

Complex V (1.1 fold, p = 3.0 × 10−3). Taking into account this ~10% higher expression of 

Complex V subunits, the relative efficiency of Complex V in the ME/CFS cells is even 

lower than measured directly by respirometry — almost 25% lower than the controls.  

While this elevation in protein-level expression was confirmed in both the whole-cell 

proteomes and Western blots, investigation of OXPHOS complex subunit expression via 

whole cell transcriptomics1 revealed largely reduced expression at the RNA level in the 

ME/CFS lymphoblasts (Table 3.2). Thus, significant downregulation of Complexes I, III, 

IV, and V was detected while Complex II subunit transcripts were elevated in their 

magnitude of expression (p = 0.019, t test). This suggested that the upregulation of 

 

 
1 The broader conclusions of this experiment (pertaining to other pathways) are detailed in 

Chapter 4. 
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OXPHOS complexes in ME/CFS lymphoblasts is being stimulated specifically at the 

translational level. The sole exception is Complex II which functions as a key rate-limiting 

enzyme in the TCA cycle and makes only a relatively small contribution to oxygen 

consumption (approx. 5% of the maximum OCR in lymphoblasts) as part of OXPHOS. The 

departure of its transcriptional regulation pattern from that of the other complexes suggests 

that regulation of Complex II expression is more tightly coupled to that of other TCA cycle 

enzymes (which were later found to trend upwards at the transcriptional level and are also 

upregulated at the translational level in Section 3.2.7). This is not unexpected given that 

regulation of Complex II expression has been long understood as being separate from the 

closely-coordinated expression and assembly of the other four OXPHOS complexes 

(Rutter, Winge et al. 2010). 

Table 3.2: Expression of transcripts encoding subunits of OXPHOS complexes I, III, IV, V is 

reduced while that of Complex II transcripts is elevated in whole cell transcriptomes from 

ME/CFS patients (n = 23) compared to healthy controls (n = 17). Each cell line was sampled 

once in an RNA sequencing transcriptomics experiment. Mean fold change in the ME/CFS group 

was calculated versus the control group average. Binomial tests were employed to assess fraction 

differentially regulated with Ho set to 0.5. Single sample t tests were employed to assess magnitude 

of differential expression with Ho being fold change = 1.  

 

Electron flow from Complex I through Complexes III and IV is the major contributor to 

respiratory electron transport, the contribution from Complex II in these cells being very 

small (Annesley, Lay et al. 2016). Having observed that Complex V was functioning 

 Number 

of 

subunits 

Number 

of 

subunits 

detected 

Fraction 

fold 

change < 

1 in 

ME/CFS 

Fraction 

fold 

change > 

1 in 

ME/CFS 

Binomial 

test p 

Mean 

fold 

change 

(± 

SEM) 

Single 

sample t 

test p 

Complex I 44 39 37 2 2.84×10-9 0.811±

0.03 2.63×10-8 

Complex II 4 4 0 4 0.125 1.116±

0.03 0.0243 

Complex 

III 

10 9 8 1 0.039 0.820±

0.03 6.31×10-4 

Complex 

IV 

19 19 16 3 0.0044 0.833±

0.03 8.41×10-6 

Complex V 22 18 17 1 0.00015 0.797±

0.04 2.25×10-5 

All 

Complexes 

99 89 78 11 1.37×10-13 

 

0.828±

0.02 
<2.2×10-

16 
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inefficiently, contributing a smaller fraction to the basal respiration rate in ME/CFS 

lymphoblasts than in control cells, it was determined whether the flow of electrons from 

Complexes I through Complexes III, and IV was functionally normal. 

In contrast with the reduced fractional contribution of Complex V to basal respiration, it 

was found that the fractional O2 consumption by uncoupled electron flow from Complex I 

through Complexes III and IV to molecular oxygen was unchanged in the ME/CFS cells 

(Figure 3.5). Thus, electron transport is functionally normal in ME/CFS lymphoblasts and 

the defect in oxidative phosphorylation is isolated to ATP synthesis by Complex V. This 

can be concluded since a defective Complex I, III, or IV would result in the electron flow 

through these complexes contributing proportionately less to total OCR, even if 

compensatory upregulation of expression were to bring respiration rates back to normal or 

even higher than normal absolute levels. Electron transport in the ME/CFS lymphoblasts is 

thus functionally normal, but elevated in capacity because of elevated levels of expression 

of the respiratory complex proteins involved. 

Figure 3.5: Complex I OCR as a percentage of the uncoupled maximum OCR was unchanged 

in ME/CFS lymphoblasts (independent t-test). The OCR was measured in lymphoblasts from 

ME/CFS and control individuals by the Seahorse XFe24 Extracellular Flux Analyzer. Each 

ME/CFS (n = 50) and control (n = 22) cell line was assayed over four replicates in at least three 

independent experiments and means were calculated. Error bars are standard errors of the mean. 

Another indicator of abnormalities in electron transport is the level of reactive oxygen 

species (ROS). ROS are produced by electron “leakage” to molecular oxygen at the point 
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where electrons are normally passed to Complex III from either Complex I or II. ROS 

production can be increased either by an increased flux of electrons through the electron 

transport chain or by a “downstream” blockage that diverts the electron flow. The levels of 

intracellular ROS were therefore measured in patient and control lymphoblasts with no 

difference observed in the ME/CFS cells when compared with controls (Figure 3.6A). This 

is consistent with the insignificant changes in basal respiration rate and also suggests that 

the electron transport chain (ETC) is functionally normal. 

A compensatory elevation of respiratory enzyme levels and uncoupled activity of 

mitochondrial respiratory complexes suggests that ME/CFS mitochondria should exhibit 

increased capacity for proton motive force (PMF)-driven transport processes in the 

mitochondrial membrane that support and maintain mitochondrial biogenesis or function. 

Most mitochondrial membrane transporters in the inner mitochondrial membrane belong to 

the Solute Carrier family 25 (SLC25) family. Expression levels of the majority of them 

were significantly upregulated in the whole cell proteomes of ME/CFS lymphoblasts, while 

remaining unchanged at the transcriptional level (Table 3.3). Like the OXPHOS complexes, 

the SLC25 transporters are thus upregulated translationally in ME/CFS cells. Since many 

SLC25-mediated transport processes are driven by the PMF (Ruprecht and Kunji 2020), 

their elevated activity should result in an increased “proton leak” (depletion of the PMF by 

mitochondrial transport processes other than ATP synthesis by Complex V) in ME/CFS 

mitochondria. As predicted, the proton leak was significantly elevated as a proportion of 

the basal metabolic rate (Figure 3.6B) in ME/CFS lymphoblasts when compared with 

controls. These results also suggest that pathways providing the mitochondria with 

alternative oxidisable substrates are upregulated in ME/CFS cells, consistent with the 

dysregulation of catabolism inferred from metabolomic studies (Armstrong, McGregor et 

al. 2015; Fluge, Mella et al. 2016).  

Unlike the SLC25 transporters, expression levels of the TIMM, TOMM and SAMM 

mitochondrial protein import complexes were unchanged at the protein level, while in the 

whole cell transcriptomes their levels were reduced. This suggests two things - firstly that 

the reduced transcript levels for TIMM, TOMM and SAMM subunits must be offset by 

higher translation rates, in order to maintain unchanged levels of the proteins in the 

proteome and secondly that the mitochondrial protein import machinery is not rate-limiting 

for mitochondrial activity in lymphoblasts. 
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Table 3.3: Expression of mitochondrial transporters was investigated in the whole cell 

proteomes and transcriptomes of ME/CFS lymphoblasts compared to healthy controls. RNA 

sequencing transcriptomics experiment: ME/CFS n = 23, control n = 17. Mass spectrometry 

proteomics experiment: ME/CFS n = 34, control n = 31. Each cell line was sampled once, or twice 

for a subset of healthy controls arbitrarily selected to act as an internal control between experiments 

in the proteomics work. The levels of the SLC25 family of transporters were elevated in the 

proteomes but not in the transcriptomes. The levels of mitochondrial protein transporter complexes 

(TIMM, TOMM and SAMM) were significantly reduced in the transcriptomes but not in the 

proteomes.  Fold-change refers to the mean abundance of a given gene product in the CFS group 

compared with the mean abundance in the control group. Binomial test of fraction differentially 

regulated with Ho set to 0.5. Single sample t test of magnitude of upregulation with Ho as mean fold 

change <1 and H1 as mean fold change >1 in proteomics (upregulation expected a priori by elevated 

mitochondrial protein expression and elevated proton leak). Single sample t tests were employed to 

assess magnitude of differential expression in the transcriptomics with Ho being fold change = 1. 

 

The foregoing data shows that mitochondrial respiratory capacity in ME/CFS lymphoblasts 

is upregulated, perhaps in response to inefficient ATP synthesis by Complex V. This is 

coupled with increased depletion of energy by transport processes which were hypothesised 

to include those that provide alternative sources of oxidisable substrate to the mitochondria. 

It was therefore expected that the rates of nonmitochondrial catabolic processes that provide 

Group Number 

detected 

Number 

reduced 

fold 

change 

Number 

elevated 

fold 

change 

Binomial 

test p 

Mean 

fold 

change 

(± 

standard 

error) 

Single 

sample t 

test p 

Proteomes 

(CFS n = 34, 

Control n = 31) 

      

SLC25 family 11 2/11 9/11 0.033 1.33±0.14 0.016 

Protein import 

complex subunits 

11 7/11 4/11 0.8867 1.00±0.04 0.805 

       

Transcriptomes 

(CFS n = 23, 

Control n = 17) 

      

SLC25 family 40 21/40 19/40 0.875 1.011 0.628 

Protein import 

complex subunits 

25 20/25 5/25 0.004 0.884 3.29×10-5 
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these substrates would also be increased. The respirometry data supports such a possible 

shift in metabolism as the “nonmitochondrial” OCR, an indicator of nonmitochondrial 

catabolic rate, was significantly elevated in ME/CFS lymphoblasts (Figure 3.6B). 

Figure 3.6: (A) Intracellular ROS levels (relative background-subtracted Deep Red fluorescence) 

are unchanged in ME/CFS lymphoblasts (independent t-test). Each ME/CFS (n = 49) and control 

(n = 22) cell line was assayed in duplicate within each of at least three independent experiments. 

(B) Proton leak as % of basal OCR and the (C) nonmitochondrial OCR are elevated in ME/CFS 

lymphoblasts (independent t-test). Each ME/CFS (n = 50) and control (n = 22) cell line was assayed 

over four replicates per experiment in at least three independent experiments.  

3.2.5 Respiratory Abnormalities in ME/CFS Lymphoblasts Are 

Correlated with Disease Severity 

In view of the foregoing functional abnormalities in ME/CFS mitochondria, the key 

elevated respiratory parameters were tested for correlation with disease severity (Figure 

3.7) as assessed by the Richardson and Lidbury Weighted Standing Test (Richardson, 

Lewis et al. 2018). It was found that all were correlated with the clinical outcomes. This 

strengthens the proposal that the mitochondrial abnormalities observed here are clinically 

relevant, and also the likelihood that these observations could be fruitfully investigated as 

biomarkers of disease. 
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Figure 3.7: The respiratory shift in ME/CFS lymphoblasts is correlated with disease severity. 

(A) ATP synthesis as a percentage of basal respiration and (B) the elevated proton leak, (C) 

maximum OCR, (D) nonmitochondrial OCR and (E) Complex I OCRs correlate with Weighted 

Standing Test score, a measure of disease severity in which lower values indicate more severe 

clinical presentation (Pearson correlation with indicated significance) (ME/CFS n = 45, control n = 

17). Patients whose illness was so severe as to preclude them taking the test were not included. 

Lines fitted by linear least squares. Outliers falling outside 95% confidence limits were excluded. 
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3.2.6 Mitochondrial Genome Copy Number and Mass per Cell Are 

Unchanged in ME/CFS Lymphoblasts, but Mitochondrial Membrane 

Potential Is Lowered 

Mitochondrial mass as a measure refers to total inner mitochondrial membrane within the 

cell’s dynamic network of mitochondria (Bereiter-Hahn and Voth 1994), whilst membrane 

potential is the charge gradient across the inner mitochondrial membrane—which 

constitutes part of the total PMF, driving ATP synthesis by Complex V (ATP synthase). 

Since the expression of mitochondrial proteins is upregulated in ME/CFS lymphoblasts, it 

was possible that this would be reflected in an increase in the total cellular mitochondrial 

content. To assess this, both the mitochondrial genome content relative to the nuclear 

genome, as well as the mitochondrial membrane “mass” per cell were assayed and no 

differences were observed between ME/CFS and control lymphoblasts (Figure 3.8A). Thus, 

the higher levels of OXPHOS complexes in ME/CFS cells are expressed from unchanged 

numbers of copies of the mitochondrial genome and accommodated in the same total 

amount of mitochondrial membrane per cell. This suggests that the ME/CFS mitochondria 

contain a higher concentration of mitochondrial respiratory proteins than the control 

mitochondria. 

The inefficiency of ATP synthesis by Complex V means that basal respiration rates by 

ME/CFS lymphoblast mitochondria would also be reduced, were it not for the 

compensatory upregulation of their respiratory complex levels. This allows them to 

maintain normal ATP synthesis rates and, as observed, is accompanied by increased 

respiratory capacity of the electron transport chain (mostly Complex I activity), supported 

by an increased use of the proton gradient to drive mitochondrial membrane transport 

processes (the aforementioned “proton leak”). These changes could result in a reduction of 

the steady state mitochondrial membrane potential, because of elevated “consumption” by 

the “proton leak”. To test the hypothesis that the Δψm was reduced in ME/CFS 

lymphoblasts, Mitotracker Red fluorescence was measured, whose binding to the 

mitochondrial membrane is Δψm-dependent. This was normalised to the mitochondrial 

membrane “mass” (measured by MitoTracker® Green fluorescence) and an internal control 

cell line to determine the relative Δψm. It was found that the Mitotracker Red fluorescence 
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and the mitochondrial membrane potential (Δψm) were reduced (p = 0.02) in ME/CFS 

lymphoblasts (Figure 3.8B). Similar findings were recently reported from CD4+ and CD8+ 

T-cells taken from ME/CFS patients (Mandarano, Maya et al. 2019). 

 

Figure 3.8: Mitochondrial genome copy number and mass per cell are unchanged in ME/CFS 

lymphoblasts, but mitochondrial membrane potential is lowered. Error bars represent standard 

errors of the mean. (A) Mitochondrial mass (background-subtracted MitoTracker® Green 

fluorescence normalised to internal control cell line C105) and genome copy number (qPCR of two 

mitochondrial genes, mtND1 and mtND4, relative to nuclear β-microglobulin gene) are unchanged 

in ME/CFS lymphoblasts (independent t-test). Each ME/CFS (n = 50) and control cell line (n = 22) 

was assayed in duplicate within each of at least three independent experiments. (B) Mitochondrial 

membrane potential is significantly reduced in ME/CFS lymphoblasts (independent t-test). The 

relative mitochondrial membrane potential (Δψm) was measured in lymphoblasts from ME/CFS and 

control individuals (ratio of MitoTracker® Red CMXRos (Δψm-dependent) to MitoTracker® Green 

(mitochondrial mass-dependent) fluorescence, normalised to internal control cell line C105). Each 

ME/CFS (n = 50) and control (n = 22) cell line was assayed in duplicate within each of at least three 

independent experiments. 

3.2.7 Levels of Enzymes Involved in the TCA Cycle Are Elevated in 

ME/CFS Lymphoblasts 

The elevated respiratory capacity and expression of nutrient transporters indicates that 

mitochondrial pathways providing OXPHOS with oxidisable substrates may be similarly 

dysregulated. As previously mentioned, metabolomic studies by others together suggest 
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dysregulated provision of pyruvate-derived acetyl-CoA to the TCA cycle itself (Armstrong, 

McGregor et al. 2015; Fluge, Mella et al. 2016; Yamano, Sugimoto et al. 2016).  As a major 

provider of OXPHOS substrates and as a mitochondrial convergence point for many related 

metabolic pathways, the TCA cycle was therefore an important candidate to examine. 

Expression of TCA cycle enzymes was examined in both the whole-cell proteomes and 

transcriptomes. 

The results showed that the expression of TCA cycle enzymes was elevated in the 

proteomes of ME/CFS lymphoblasts while unchanged in the transcriptomes (Table 3.4). 18 

of 19 detected proteins involved in the TCA cycle were more abundant in the ME/CFS 

proteomes (binomial test, p = 3.8 × 10−5). The mean expression level of TCA cycle proteins 

in ME/CFS lymphoblasts was 17 + 4% higher than in the control cells (t test, p = 1.0 × 

10−4).   

Table 3.4: The expression level of TCA cycle enzymes is elevated in ME/CFS lymphoblasts 

proteomes but unchanged in the transcriptomes. RNA sequencing transcriptomics experiment: 

ME/CFS n = 23, control n = 17. Mass spectrometry proteomics experiment: ME/CFS n = 34, control 

n = 31. Each cell line was sampled once, or twice for a subset of healthy controls arbitrarily selected 

to act as an internal control between experiments in the proteomics work. Error bars represent 

standard error of the mean. ME/CFS n = 34, control n = 31. Each cell line was sampled once, or 

twice for a subset of healthy controls arbitrarily selected to act as an internal control between 

experiments in the mass spectrometry proteomics work. 19 TCA cycle enzymes were detected 

within the whole cell proteomes of ME/CFS and control lymphoblasts. Fold-change refers to the 

mean abundance of a given protein in the ME/CFS group divided by the mean abundance in the 

control group. The fraction of detected enzymes that were upregulated (binomial test with Ho set to 

0.5) and the average extent of the upregulation (single sample t test with Ho m<1 and H1 m>1) were 

statistically significant.  

 

Dataset Number 

detected 

Number 

with 

reduced 

levels 

Number 

with 

elevated 

levels 

Binomial 

test p 

value 

Mean 

fold 

change 

(± Std. 

error) 

Single 

sample t 

test p 

value 

TCA Cycle 

enzymes 

(proteomes) 

19 1 18 3.82×10-5 1.17±0.04 1.03×10-4 

TCA Cycle 

transcripts 

21 7 14 0.189 1.03±0.02 0.171 
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Elevated TCA cycle enzyme expression taken together with the elevated respiratory 

capacity suggests that ME/CFS lymphoblasts have an increased ability to utilise TCA cycle 

outputs to drive oxidative phosphorylation at rates faster than would otherwise have been 

the case. This could reflect part of the compensatory mechanism working to offset the 

respiratory ATP synthesis inefficiency in ME/CFS lymphoblasts. It may also suggest 

upregulation of metabolic pathways providing substrate to the TCA cycle (and thereby to 

OXPHOS), a proposal strengthened by the elevated nonmitochondrial OCR, elevated 

proton leak and elevated expression of SLC25 family transporters. This would imply a 

broad shift in the cell’s metabolism, which is likely to be driven by dysregulation of the 

signalling pathways which sense and regulate cellular energy supply.  

3.2.8 TORC1 Is Chronically Hyperactivated in ME/CFS Lymphoblasts 

Any compensatory action to bring ATP levels back to normal in ME/CFS lymphoblasts 

despite Complex V’s inefficiency is likely to be driven by the signalling networks that sense 

and homeostatically respond to diverse cellular stresses (Zong, Ren et al. 2002; Reznick 

and Shulman 2006; Carling, Mayer et al. 2011; Hardie 2011; Hindupur, Gonzalez et al. 

2015; Dalle Pezze, Ruf et al. 2016). A central element in these pathways, interconnected 

with the others, is the protein kinase, TORC1 (Target of Rapamycin Complex I), which 

coordinates the translational upregulation of major functional groups of proteins, including 

nuclear-encoded mitochondrial proteins. I therefore measured TORC1 activity in ME/CFS 

and control lymphoblasts by assaying the phosphorylation state of one of its key substrates, 

4E-BP1 (eukaryotic translation initiation factor 4E-Binding Protein 1) (Ma and Blenis 

2009). 4E-BPs are phosphorylated by TORC1, whose catalytic subunit is mTOR 

(mechanistic Target of Rapamycin). Together with S6 kinase (S6K), 4E-BP1 mediates the 

roles of TORC1 in regulating translation in the cytosol of mRNAs encoding major 

functional groups of proteins (Dowling, Topisirovic et al. 2010; Hsieh, Costa et al. 2010; 

She, Halilovic et al. 2010). As one of the key substrates of TORC1 involved in regulating 

protein synthesis, 4E-BP1 phosphorylation is often used as a marker of TORC1 activity 

(Qin, Jiang et al. 2016).  

The results showed that 4E-BP1 phosphorylation levels were significantly elevated in 

ME/CFS lymphoblasts and were accompanied by a correspondingly increased response to 

the mTOR inhibitor, Torin2 (Figure 3.9A). Using subsequently obtained proteomics data, 

the expression of proteins selected using the Gene Ontology (GO) term TORC1 signal 
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transduction was significantly upregulated in magnitude (t test) (Figure 3.9B). Of the 4 

proteins involved, all 4 were upregulated. With such a small sample, the binomial test has 

insufficient power to reach significance at 0.05 – even this most extreme of all possible 

results has a probability of occurrence of 0.065 (Figure 3.9B). Given its role in translational 

upregulation of nuclear-encoded mitochondrial proteins, the steady-state elevation of 

TORC1 activity and signalling pathway expression provides a particularly likely 

explanation of the upregulated translation of OXPHOS complexes (Tables 3.1 and 3.2) and 

other mitochondrial proteins.  

Figure 3.9: TORC1 (Target of Rapamycin Complex I) is chronically hyperactivated in 

ME/CFS lymphoblasts. Error bars represent standard errors of the mean. (A) TORC1 activity and 

response to Torin2 inhibition is elevated in ME/CFS lymphoblasts (independent t-test). Each 

ME/CFS (n = 45) and control (n = 22) cell line was assayed over at least three independent 

experiments. Data is expressed in relative terms as each experiment is normalised to an internal 

control cell line (C105). (B) Four proteins involved in TORC1 signal transduction were detected 

within the whole cell proteomes of ME/CFS (n = 34) and control (n = 31) lymphoblasts. Each cell 

line was sampled once, or twice for a subset of healthy controls arbitrarily selected to act as an 

internal control between experiments in the mass spectrometry proteomics work.  Fold-change 

refers to the mean abundance of a given protein in the CFS group divided by the mean abundance 

in the control group. The frequency of proteins that were upregulated (4/4) was not significant due 

to the small number of detected proteins (binomial test with Ho set to 0.5) but the average magnitude 

of the upregulation (single sample t test with Ho m<1 and H1 m>1) was statistically significant.  
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3.3 Discussion 

3.3.1 Previous Studies of Mitochondrial Respiratory Function in ME/CFS 

Previous steady state measurements and metabolic flux measurements of mitochondrial 

respiratory function in ME/CFS lymphocytes have suggested that in ME/CFS cells there is 

either a generalised reduction (Myhill, Booth et al. 2009; Booth, Myhill et al. 2012; Tomas, 

Brown et al. 2017) or little change (Mandarano, Maya et al. 2019; Tomas, Lodge et al. 

2019) in mitochondrial activity and respiratory capacity. However, functionally normal 

OXPHOS Complex I to IV activity has also been reported in ME/CFS lymphocytes 

(Lawson, Hsieh et al. 2016; Tomas, Brown et al. 2019), while the expression of 

mitochondrial proteins is upregulated in patient saliva, platelets and lymphocytes (Kaushik, 

Fear et al. 2005; Vernon, Whistler et al. 2006; Ciregia, Kollipara et al. 2016). Elevated 

nonmitochondrial ATP production has also been reported in ME/CFS lymphocytes 

(Lawson, Hsieh et al. 2016). 

In the work presented in this chapter, these inconsistencies have been resolved by revisiting 

the issue of mitochondrial function and capacity in immortalised lymphocytes 

(lymphoblastoid cell lines or lymphoblasts). Although ex vivo lymphocyte populations are 

well suited for rapid characterisation of relatively stable molecular features, such as the 

patterns of cell surface antigens they express, they may be less well suited to studying 

rapidly labile processes such as metabolism, mitochondrial function or intracellular 

signalling activities. As was shown here, unactivated, ex vivo lymphocytes are 

metabolically quiescent and dying (Section 3.2.1). A difference between patient and control 

groups in the depth of this quiescence and/or the extent of cell death may thus explain the 

previously reported reduction in mitochondrial activities in ME/CFS lymphocytes.  

3.3.2 Elevated PBMC Death and the Utility of Lymphoblasts 

The results in Section 3.2.1 showed that not only were PBMCs quiescent, but the fraction 

of dead cells after 1–3 days incubation in culture medium was dramatically greater for 

ME/CFS lymphocytes than for control lymphocytes. It is likely that in some previous 

studies, the ME/CFS lymphocytes assayed for mitochondrial activity included a higher 

proportion of dead cells than did the controls. Tomas et al. (2017) found no significant 

difference in the viability of fresh and frozen PBMCs and no difference between ME/CFS 
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and control samples (Tomas, Brown et al. 2017), a result that accords with the regression 

analysis of the death rates of PBMCs in culture (Figure 3.1). However, these authors 

followed the common procedure in their Seahorse assays of incubating the cells overnight 

in situ in the assay plates before the respirometry measurements were done. Although they 

did not detect significant differences between frozen and fresh PBMCs in the Trypan Blue 

staining before overnight incubation and assay, they did observe consistently significant 

reductions in respiration of frozen compared to fresh cells, again after overnight incubation 

in assay medium. The results shown in Figure 3.1 suggest that by this time there may have 

been a significant fraction of dead cells both in their control and ME/CFS samples and that 

this fraction may have been higher in the ME/CFS samples. The greater mortality rates for 

ME/CFS lymphocytes are not surprising given that pharmacological inhibition of 

mitochondrial respiration, including Complex V impairment, has long been known to result 

in apoptotic cell death in ex vivo lymphoid cells (Wolvetang, Johnson et al. 1994). 

Another recent study examined mitochondrial respiratory function in resting and stimulated 

CD4+ and CD8+ T-cells from ME/CFS subjects and controls (Mandarano, Maya et al. 

2019). The only significant differences found were small reductions in the ME/CFS CD8+ 

lymphocytes in the proton leak in resting and ATP synthesis in stimulated cells. 

Surprisingly however, the overnight stimulation (with anti-CD3/anti-CD28 beads plus IL2) 

made almost no difference to mitochondrial respiratory function in these cells. This 

suggests that under the conditions used, the mitochondria in these cells were still quiescent 

after the overnight activation stimulus. 

By contrast, the lymphoblastoid cell lines (LCLs or lymphoblasts) used in this work are 

metabolically active lymphoid cells that may better represent activated lymphocytes, which 

drive inflammation in vivo (Ransohoff, Schafer et al. 2015). The use of cultured 

lymphoblasts in this way as models not only of metabolically active lymphoid but other 

cell types, both in health and disease, has been reviewed in detail previously (Sie, Loong et 

al. 2009; Hussain and Mulherkar 2012). Because the viral genome exists in multiple copies 

as a circular episome in the latent state in infected cells, it does not disrupt the genome, but 

affects gene expression patterns in favour of proliferation, as does B cell activation by other 

means. Lymphoblasts have thus been used both in genetic and genomic studies, including 

the well-known 1000 Genomes Project (Genomes Project, Auton et al. 2015). They have 

also been used, as here, in functional studies of diverse, complex diseases, including autism, 
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schizophrenia, Alzheimer’s, and Parkinson’s disease (Sie, Loong et al. 2009; Annesley, 

Lay et al. 2016). Whereas PBMCs, used ex vivo in some other ME/CFS studies, are a 

complex mixture of cell types, EBV-mediated immortalisation and culture selects B cells 

from this population, because the EBV receptors are expressed in B cells. It has been 

reported previously that the cell type composition of PBMCs from ME/CFS patients is 

different from healthy controls (Cortes Rivera, Mastronardi et al. 2019) and such 

differences could also contribute to observed functional differences in the mixed 

populations in ex vivo PBMCs. The lymphoblast cell lines used here were not clonal, but 

as a result of the selective nature of EBV infection, they can be expected to be more 

homogeneous in cell type than the PBMCs from which they were selected. 

As EBV-infected B cells begin to proliferate, around 250 genes become hypomethylated 

(Hernando, Shannon-Lowe et al. 2013). Many of these genes already exhibit low levels of 

methylation and high levels of expression in resting B cells, while many others exhibit 

hypomethylation and overexpression during B cell proliferation. They fall into 6 major GO 

categories—immune response, homophilic cell adhesion, humoral immune response, B cell 

receptor signalling pathway, inflammatory response and chemotaxis genes. In the whole 

cell proteomes of lymphoblasts from both healthy and ME/CFS individuals, it was observed 

that the expression of many B-cell specific proteins was not significantly different in 

ME/CFS and control cell lines. The overall pattern of expression is consistent with 

lymphoblasts having had their normal B cell transcription and proliferation program 

activated by the virus (Hernando, Shannon-Lowe et al. 2013). Importantly, this phenotype 

is stable through up to 180 cell doublings, unlike other in vitro methods of B cell activation 

(such as antigen stimulation) which induce similar changes in gene expression that increase 

and decline over only a few days and culminate in cell death. 

Like primary cell cultures of other cell types such as myoblasts (which die after a few 

doublings) or fibroblasts (which progressively enter senescence between ca 30-60 

doublings), lymphoblasts eventually die off after approximately 160–180 doublings (Sie, 

Loong et al. 2009). Thereafter, the original lymphoblast population may be replaced by 

cells bearing mutational changes in the genome that support ongoing proliferation. At this 

point, the cells may no longer be representative of activated forms of the B lymphocytes 

from which they were derived. In the work described here, none of the lymphoblast cultures 
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were allowed to proceed through more than a handful of cell doublings before storage or 

use in experiments. 

During their more limited life spans, primary cell lines like myoblasts and fibroblasts 

undergo a progressive process called replicative senescence as part of which their relevant 

phenotypic and molecular features may change (Bigot, Jacquemin et al. 2008). Fibroblast 

and myoblast gene expression programs are also tightly regulated by contact inhibition so 

that their phenotypes can be dramatically affected by their density in culture (Huttenlocher, 

Lakonishok et al. 1998). Furthermore, their life span and phenotypes may be affected by 

the age of the donor from whose tissues they were derived. These various sources of 

phenotypic differences can be disentangled but this requires care, appropriate controls and 

may need larger samples or more experiments to account for the additional variables. 

Provided long periods of culture approaching their replicative life span limits are avoided, 

lymphoblasts do not present these problems. They are not contact-inhibited and their 

metabolic phenotypes are stable in culture and storage, depending only, as was shown here 

for ME/CFS and previously for Parkinson’s disease (Annesley, Lay et al. 2016), on the 

disease state, not the gender or age of the person from whom they were isolated. Despite 

these advantages, it will be important in future work to determine whether the 

mitochondrial and cell signalling anomalies in ME/CFS lymphoblasts are also observed in 

other cell types. 

3.3.3 A Complex V Inefficiency 

The results of this work show that ME/CFS lymphoblasts exhibit an isolated Complex V 

inefficiency that is accompanied by upregulation of mitochondrial protein expression, 

including mitochondrial respiratory complexes and enzymes involved in the TCA cycle. 

These findings confirm that these ME/CFS cells do indeed exhibit a mitochondrial 

deficiency in ATP generation, but reveal that, in lymphoblasts at least, this specifically 

involves Complex V rather than a generalised reduction in all mitochondrial functions. This 

profile of mitochondrial dysfunction in intact ME/CFS lymphoblasts is distinct from the 

mitochondrial hyperactivity which other members of our group previously found in 

Parkinson’s disease lymphoblasts (Annesley, Lay et al. 2016), so cannot be a simple 

reflection of neuroinflammatory processes believed to occur in both diseases.  
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What might cause such a mitochondrial Complex V inefficiency? Three possibilities are: a 

mutation affecting one of the Complex V subunits or assembly proteins, an elevation of the 

relative use of the PMF for other purposes (“proton leak”) making less available for ATP 

synthesis, or a dysregulation of Complex V itself. A mutational defect in Complex V seems 

unlikely in view of the failure of previous investigations to uncover any single nucleotide 

polymorphisms in Complex V genes that associate with the disease state (Billing-Ross, 

Germain et al. 2016; Schlauch, Khaiboullina et al. 2016). The second possibility, that 

Complex V is inefficient in these ME/CFS cells because of the elevated use of the PMF by 

other processes, is suggested by the elevated proton leak observed in ME/CFS lymphoblasts 

(Figure 3.6B). However, the ME/CFS mitochondria have excess unused respiratory 

capacity and respiratory complex levels (Section 3.2.4). These would indicate that the 

electron transport capacity in ME/CFS lymphoblasts is more than sufficient to allow 

Complex V to operate at normal efficiency. Dysregulatory inhibition of Complex V is the 

third possibility. It is known that mitochondrial ATP synthase activity can be regulated by 

a variety of proteins, small molecules and signalling pathways, some of them by acting 

through Complex V’s own inhibitory subunit AIF1 (Campanella, Seraphim et al. 2009; 

Garcia-Bermudez and Cuezva 2016). These possible causes for Complex V inefficiency in 

ME/CFS lymphoblast mitochondria should be investigated in future work. 

3.3.4 EBV-Mediated Immortalisation 

It was possible that the dysregulation of Complex V and mitochondrial function in ME/CFS 

lymphoblasts arises because they respond differently to EBV infection than do control 

lymphoblasts. However the result in Section 3.2.2 showed that the EBV genome copy 

number did not differ between the participant groups and, in any case, had no effect on any 

of my assays. Furthermore, the elevated expression of OXPHOS complex subunits (also 

prominently Complexes 1 and 5) and proteins in substrate-providing pathways (such as the 

TCA cycle) was later replicated in unimmortalised lymphocyte proteomes, by Sweetman 

et al. (Sweetman, Kleffmann et al. 2020). This confirms that elevated respiratory capacity 

and upregulation of substrate-providing mitochondrial pathways exhibited by ME/CFS 

lymphoblasts occurs independently of immortalisation. Nevertheless, it is possible that in 

ME/CFS lymphoblasts, EBV reactivates more readily to enter the lytic cycle and this in 

turn affects aspects of mitochondrial function. This idea, if true, would raise the possibility 

that EBV may also reactivate more readily in infected ME/CFS B-cells in vivo. Despite the 
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appeal of this hypothesis, the profile of mitochondrial changes observed here is not 

consistent with the reported effects of EBV on mitochondria in the lytic cycle. These 

include decreases in ROS production, mitochondrial membrane potential, expression of 

mitochondrial proteins, and mitochondrial biogenesis (Anand and Tikoo 2013; Gilardini 

Montani, Santarelli et al. 2019). Although decreased mitochondrial membrane potential 

was observed in ME/CFS lymphoblasts (Figure 3.8B), there was no change in ROS levels, 

no change in mitochondrial mass or genome copy number and an elevation, not a reduction, 

in expression of mitochondrial proteins. There does not appear to be any evidence that EBV 

causes an isolated inefficiency in Complex V coupled with an elevated proton leak and an 

increase in maximum OCR and Complex I activity. Instead of EBV reactivation causing 

mitochondrial dysfunction in ME/CFS lymphoblasts, it is also possible that the reverse 

occurs—namely that mitochondrial dysfunction causes the virus to be more readily 

reactivated. This possibility is suggested by the fact that EBV is reactivated by cellular 

stress and could potentially contribute to the post-exertional malaise that characterises 

ME/CFS. The interactions between EBV and mitochondrial function in B-cells and 

lymphoblasts from ME/CFS patients are clearly worth pursuing in future work. 

3.3.5 Elevated Respiratory Capacity in ME/CFS Lymphoblasts 

The elevated maximum respiratory capacity, mitochondrial Complex I activity, and proton 

leak seen in ME/CFS lymphoblasts are consistent with the higher mitochondrial protein 

expression also observed in these cells, as assayed using both semiquantitative Western 

blots and whole cell proteomics. Consistent with this, it was reported previously that the 

expression of genes encoding mitochondrial proteins is upregulated in ME/CFS saliva, 

lymphocytes, and platelets (Kaushik, Fear et al. 2005; Vernon, Whistler et al. 2006; Ciregia, 

Kollipara et al. 2016). Together the results shown here suggest a model in which the 

Complex V defect is likely a proximal activator of compensatory upregulation of 

expression of mitochondrial proteins. 

The increased expression of diverse mitochondrial proteins in ME/CFS observed both here 

and others (Kaushik, Fear et al. 2005; Ciregia, Kollipara et al. 2016; Lawson, Hsieh et al. 

2016; Sweetman, Kleffmann et al. 2020) suggests the possibility that mitochondrial 

biogenesis more broadly is activated in these cells. However, it was found that the 

mitochondrial membrane “mass” per cell (Mitotracker Green fluorescence) and the copy 

number of the mitochondrial genome relative to the nuclear genome were unchanged in the 
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ME/CFS lymphoblasts (Figure 3.8A). Accordingly, the mitochondria in these cells appear 

to have higher concentrations of mitochondrial respiratory proteins and catabolic enzymes. 

3.3.6 TORC1 Hyperactivity and Regulation of Mitochondrial Protein 

Expression 

One of the key upstream regulators of mitochondrial protein expression is TOR Complex I 

(TORC1 whose catalytic subunit is mTOR, the mechanistic Target of Rapamycin). It was 

found that TORC1 activity is elevated in ME/CFS lymphoblasts (Figure 3.9A). The 

expression of mitochondrial enzymes involved in electron transport is known to be 

upregulated by TORC1 via selective activation of translation via inhibitory 

phosphorylation of the TORC1 target 4E-BP1 (Morita, Gravel et al. 2015). In addition to 

its actions on the translation of nuclear-encoded mitochondrial proteins, TORC1 

upregulates the expression of transcription factors PGC-1α (transcriptionally via Yin Yang 

1) and TFAM (translationally), which respectively induce the transcription of nuclear and 

mitochondrial genes encoding mitochondrial proteins (Cunningham, Rodgers et al. 2007). 

Most notable amongst the mitochondrial proteins whose translation is upregulated by 

TORC1 are nuclear-encoded subunits of Complexes I and V (Morita, Gravel et al. 2015), 

the two respiratory complexes whose expression were found to be the most evidently 

elevated in the whole cell proteomes of ME/CFS lymphoblasts.  

While TORC1 activity was elevated, it is not the only cellular stress sensing protein that 

regulates expression of proteins involved in cellular metabolism and mitochondrial 

function. It acts in concert with AMPK as part of a complex stress-sensing network (Zong, 

Ren et al. 2002; Dalle Pezze, Ruf et al. 2016). AMPK is activated by a variety of cellular 

stressors including ATP insufficiency, elevated cytosolic Ca2+ concentrations and oxidative 

stress (Hawley, Pan et al. 2005; Woods, Dickerson et al. 2005). As the primary ATP sensor 

(Hardie and Carling 1997), AMPK is implicated in mitochondrial disease (Bokko, 

Francione et al. 2007), and activates a variety of catabolic pathways that provide alternative 

oxidisable substrates to the mitochondria—including amino acids or fatty acids (Hardie and 

Pan 2002). In ME/CFS lymphoblasts, with their chronically inefficient ATP synthesis and 

elevated nonmitochondrial OCR, it is therefore possible that AMPK could be chronically 

activated and participate in the upregulation of mitochondrial respiratory capacity that was 

observed.  
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AMPK activity in muscle cells cultured from CFS patients (Fukuda criteria) is reportedly 

unresponsive to electrical pulse-induced contraction in vitro, but not because AMPK itself 

is unresponsive to activation by either a mitochondrial Complex I inhibitor (metformin) or 

a direct AMPK activator (compound 991) (Brown, Jones et al. 2015; Brown, Dibnah et al. 

2018). The authors suggested that the unresponsiveness of CFS cells to additional energy 

demands thus seems to lie elsewhere. One possibility is the chronically elevated TORC1 

activity, since TORC1 is an inhibitor of upstream pathways that activate AMPK. In any 

case, this highlights the value of measuring the activities of AMPK and TORC1 in parallel 

in ME/CFS cells, which has not yet been undertaken by others. 

3.4 Conclusions 

3.4.1 A Metabolic Switch 

ME/CFS lymphoblasts exhibit inefficient ATP synthesis by Complex V that, among other 

abnormalities, is accompanied by upregulated respiratory capacity, TCA cycle enzyme and 

mitochondrial nutrient transporter expression, as well as elevated nonmitochondrial 

catabolic rate. This suggests that ME/CFS lymphoblasts abnormally utilise catabolic 

pathways that provide oxidisable substrates to the mitochondria to assist with satisfying 

resting energy demands moreso than lymphoblasts from healthy controls. These 

observations are in agreeance with the previous metabolomic studies suggesting a similar 

switch in metabolism (Armstrong, McGregor et al. 2015; Fluge, Mella et al. 2016). This 

prompted me to explore further in the next chapter how ME/CFS lymphoblasts may shift 

their metabolism to meet their energy demands in spite of an inefficient Complex V. 

Alongside my investigation of this metabolic shift, I also investigated the activity of AMPK 

in ME/CFS lymphoblasts in the following chapter given its potential involvement.  

3.4.2 A “Cellular Chronic Fatigue” 

A compensatory elevation of respiratory capacity and expected shift in metabolism would 

appear to be sufficient to meet the energy needs of ME/CFS lymphoblasts, given that steady 

state ATP levels and absolute ATP synthesis rates were both close to normal in these cells. 

However, these changes may leave the cells less able to respond to further acute increases 

in ATP demand despite the elevated respiratory capacity, since the signalling and metabolic 

pathways involved are already chronically upregulated. If this “cellular chronic fatigue” is 
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present in other cell types, it may contribute to the unexplained fatigue experienced by 

ME/CFS patients, as suggested by the fact that all of the respiratory abnormalities observed 

were correlated with the severity of patient symptoms measured by the Weighted Standing 

Time. These correlations also suggest that the mitochondrial abnormalities found are of 

clinical relevance to the underlying cytopathological mechanisms and have the potential to 

be investigated as biomarkers of disease. Accordingly, the value of these abnormalities as 

biomarkers is revisited in-depth in Chapter 5. 
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4.0 Dysregulation of Pathways Providing Oxidisable 

Substrate to the Mitochondria 

4.1 Introduction 

4.1.1 Supply of Oxidisable Substrate to the Mitochondria in ME/CFS 

In the previous chapter, inefficient ATP synthesis by Complex V in ME/CFS lymphoblasts 

was observed. OXPHOS is the primary source of cellular ATP and is driven by the flow of 

electrons through Complexes I-IV, which mediates the pumping of protons out into the 

mitochondrial intermembrane space. This generates the electrochemical gradient utilised 

by Complex V to phosphorylate ADP to ATP. The electrons necessary for this process are 

deposited into the electron transport chain by the reduced intermediates, NADH and 

FADH2. The provision of these electron donors to the OXPHOS complexes is therefore 

critical for ATP synthesis by aerobic respiration. The principal mitochondrial source of 

reduced NADH and FADH2 is the TCA cycle, which is supplied with metabolic 

intermediates at multiple entry points by a variety of nutrient metabolism pathways. The 

TCA cycle is thus a mitochondrial junction point for the participation of diverse fuel 

sources in respiration, including carbohydrates, fatty acids and amino acids (Figure 4.1). 

In accordance with suspicions of insufficient cellular energy supply, the study of 

metabolism and pathways supplying the mitochondria with substrate in ME/CFS has 

increased in the last decade. Through the use of techniques such as nuclear magnetic 

resonance (NMR) or mass spectroscopy, quantitative snapshots of the metabolites present 

within a sample (commonly blood or urine) can be obtained. The relative levels of 

metabolites in patients versus controls can be subsequently used to infer which metabolic 

pathways may be upregulated, downregulated or bypassed. Metabolomic studies have been 

adopted by an increasing number of research groups in the ME/CFS field. Much of this 

work has discussed potential dysregulation of glycolysis in ME/CFS. Glycolysis mediates 

the multi-step conversion of glucose to pyruvate, which can be converted by pyruvate 

dehydrogenase (PDH) to acetyl-CoA, a major TCA cycle substrate. 
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Figure 4.1: Simplified depiction of oxidisable substrate provision and usage by the 

mitochondria. The generalised “flow” of substrate molecules derived from glucose, fatty acids or 

amino acids is represented by arrows colour-coded green, blue and red, respectively. Reducing 

equivalents are denoted by purple outlines. Processes are italicised. Glucose may be catabolised by 

glycolysis in order to provision the mitochondria with pyruvate, converted by pyruvate 

dehydrogenase (PDH) to acetyl-CoA for entry into the TCA cycle. Fatty acid β-oxidation also 

provides acetyl-CoA for the TCA cycle, instead by the catabolism of lipids rather than 

carbohydrates. The means by which amino acids may be similarly utilised are diverse and are 

described as appropriate throughout the text, however highlighted glutamine usage has been 

highlighted in this figure due to its importance. Glutamine may be converted to glutamate by 

glutaminase. Glutamate may be converted to α-KG by glutamate dehydrogenase (GLUD1) for entry 

into the TCA cycle, or to aspartate by mitochondrial aspartate aminotransferase (GOT2) which is 

utilised in cellular redox balancing and TCA cycle anaplerosis, thereby providing both reducing 

equivalents for OXPHOS and intermediates for the TCA cycle. Reducing equivalents resultant from 

these various processes can deposit electrons into the electron transport chain to facilitate generation 

of the proton-motive force which drives ATP synthesis. 

 

Armstrong et al. utilised 1H-NMR to assess the levels of metabolites in the serum and urine 

of ME/CFS patients compared to healthy controls (Armstrong, McGregor et al. 2012; 

Armstrong, McGregor et al. 2015). Their results suggested an inhibition of glycolysis, 

which is consistent with a report by others using ME/CFS plasma, indicating that utilisation 
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of glycolytic pyruvate by the TCA cycle is reduced (Yamano, Sugimoto et al. 2016). 

However, others using serum have proposed that impaired provision of glucose-derived 

acetyl-CoA towards the TCA cycle is instead caused by an impairment of PDH function 

downstream of glycolysis, rather than an impairment of glycolysis itself (Fluge, Mella et 

al. 2016). Other studies have instead employed Seahorse respirometry to investigate real-

time parameters of respiration and glycolysis in live cells from ME/CFS patients compared 

with healthy controls. While the rate of glycolysis was found to be reduced in ME/CFS 

CD4+ and CD8+ T-cells (Mandarano, Maya et al. 2019), no change was observed in 

ME/CFS PBMCs or skeletal muscle cells (Tomas, Brown et al. 2017; Tomas, Elson et al. 

2020). Overall, the role of glycolysis in ME/CFS is unclear and would benefit from 

continued investigation. 

In view of the inconsistent evidence for a specific glycolytic defect, the consideration of 

other processes involved in carbohydrate utilisation is also warranted. Others have reported 

reductions in the levels of 5/7 subgroups of metabolites involved in carbohydrate 

metabolism (including the disaccharide sucrose) in ME/CFS plasma samples versus those 

of healthy controls (Germain, Barupal et al. 2020). A reduction in the plasma levels of 

disaccharides in the energy-deficient context of ME/CFS could reflect broadly increased 

carbohydrate catabolism to satisfy elevated cellular glucose usage. If the rate of glycolysis 

itself was unaffected or impaired, glucose could instead be depleted by increased usage of 

the pentose phosphate pathway (PPP). The PPP branches from glycolysis by the irreversible 

dehydrogenation of glucose-6-phosphate and involves the ATP-neutral synthesis of 

products crucial in cellular redox balancing and biosynthetic pathways (Horecker 2002). 

Importantly, PPP products such as pyruvate can also be utilised to generate ATP, providing 

oxidisable substrates to the mitochondria. Indeed, the same authors who observed reduced 

plasma disaccharides in ME/CFS have previously suggested that the PPP may be 

dysregulated in ME/CFS (Germain, Ruppert et al. 2017). This pathway should therefore 

also be examined more closely.  

4.1.2 Alternative Sources of Oxidisable Substrate than Carbohydrates 

Amino acids may be metabolised to feed into the TCA cycle as sources of oxidisable 

substrate for respiration, or to participate in the replenishment of other metabolic 

intermediates. Glutamate is the metabolic product of multiple amino acids, prominent 

among which is glutamine (Krebs 1935; Tapiero, Mathe et al. 2002). The conversion of 
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glutamine to glutamate by glutaminase (GLS) (Krebs 1935) and  subsequent conversion to 

the TCA cycle intermediate α-ketoglutarate (α-KG) by glutamate dehydrogenase (GLUD1) 

is an important mechanism through which the TCA cycle can utilise amino acids to assist 

with driving mitochondrial energy production (Owen, Kalhan et al. 2002). This reaction 

simultaneously reduces NAD+ to NADH, and so doubles as another direct means of 

replenishing reducing equivalents for OXPHOS. The functions of GLS and GLUD1 in 

tandem are therefore important for both direct mitochondrial NADH replenishment and as 

a major route of amino acid entry into the TCA cycle. This mechanism is regulated 

according to cellular energy demand, with GLUD1 activity mainly controlled allosterically 

- negatively by GTP and positively by ADP (Mastorodemos, Zaganas et al. 2005).  

Cells may also utilise glutamate to both replenish reducing equivalents inside the 

mitochondria and assist in TCA cycle intermediate replenishment through participation in 

the malate-aspartate shuttle (MAS) (Owen, Kalhan et al. 2002; Abrego, Gunda et al. 2017). 

Here, glutamate and oxaloacetate are converted to aspartate and α-KG by mitochondrial 

aspartate aminotransferase (GOT2) (Figure 4.1). Aspartate is then transported out of the 

mitochondria and participates in the remainder of the cycle, which regenerates a) cytosolic 

NAD+ from NADH, to be again reduced in catabolic nonmitochondrial processes such as 

glycolysis or peroxisomal β-oxidation and b) mitochondrial NADH for OXPHOS through 

malate dehydrogenase in the TCA cycle. Glutamate therefore acts not only as a direct 

source of amino acid-derived NADH and TCA cycle substrate through the earlier described 

GLUD1 route, but also does so by provisioning the GOT/MAS route.  

The aforementioned studies using serum by Fluge et al. and Armstrong et al. also suggested 

that catabolism of amino acids to feed the TCA cycle is more heavily utilised in ME/CFS 

patients, albeit by different means (Armstrong, McGregor et al. 2015; Fluge, Mella et al. 

2016). Armstrong et al. propose elevated glutamate usage by the mitochondria, specifically 

via the deamination of glutamate to aspartate as indicated by reduced glutamate and 

elevated aspartate levels (GOT2 route). By contrast, Fluge et al. observed reductions in the 

levels of both glutamine and glutamate but also in the levels of aspartate, which may instead 

suggest increased glutamate degradation through the GLUD1 route, rather than through 

GOT2 as suggested by Armstrong et al. However, perhaps in contradiction to this, Fluge et 

al. also reported elevated Sirtuin 4 (SIRT4) mRNA expression in ME/CFS PBMCs and 

SIRT4 is known to suppress GLUD1 activity (Haigis, Mostoslavsky et al. 2006). In spite 
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of some inconsistent details, these studies highlight dysregulated amino acid metabolism 

as an important area of exploration which should be pursued further in ME/CFS, especially 

in a metabolically active cellular context. 

The potential for abnormal utilisation of alternative sources of oxidisable substrate has 

arisen clearly in the work presented in this thesis, having demonstrated inefficient ATP 

synthesis by Complex V accompanied by a compensatory elevation of respiratory capacity 

and elevated expression of mitochondrial transporters and TCA cycle enzymes in ME/CFS 

lymphoblasts (Chapter 3). Fatty acid β-oxidation is the breakdown of fatty acids to acetyl-

CoA for the TCA cycle while also replenishing reducing equivalents and could be one such 

dysregulated process in ME/CFS lymphoblasts. While discussed in multiple metabolomic 

studies, lipid metabolism in general in ME/CFS research is also a point of uncertainty which 

requires reexamination. Naviaux et al. first reported that ceramide levels were decreased in 

ME/CFS patients, while Nagy-Szakal et al. subsequently did not observe a consistent 

decrease, and most recently Germain et al. reported an increase in ceramide levels 

(Naviaux, Naviaux et al. 2016; Nagy-Szakal, Barupal et al. 2018; Germain, Barupal et al. 

2020). Another discrepancy is that the reduced FAD levels reported by Naviaux et al. and 

reduced carnitines reported by Nagy-Szakal et al. are interpreted as likely to hinder fatty 

acid β-oxidation, while increased levels of the compound hexanoylglutamine reported by 

Germain et al. are suggested to instead indicate an upregulation of fatty acid β-oxidation in 

ME/CFS patients (Naviaux, Naviaux et al. 2016; Nagy-Szakal, Barupal et al. 2018; 

Germain, Barupal et al. 2020). Germain et al. reported differences between two of their 

own studies, attributing these to differences in sample collection and handling (Germain, 

Ruppert et al. 2018; Germain, Barupal et al. 2020). This highlights the value of building 

and revisiting disease models in stably proliferative cell culture systems which are less 

affected by these sample collection issues and more readily reproducible.  

Fatty acid β-oxidation is stimulated by AMP-activated protein kinase (AMPK) activity, one 

of the master regulators of energy metabolism in the cell (Hardie and Pan 2002). Abnormal 

elevation of AMPK activity could explain the reported elevation of short-chain fatty acid 

levels in ME/CFS patients (Armstrong, McGregor et al. 2017). Elevated levels of 

phosphorylated (activated) AMPK were observed by Mensah et al. in particular 

subpopulations of B cells whose frequency in the B cell population was elevated in 

ME/CFS samples (Mensah, Armstrong et al. 2018). However, others have reported that the 
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AMPK activation state was not significantly different between cultured muscle cells from 

ME/CFS patients (Fukuda criteria) and healthy controls (Brown, Jones et al. 2015). 

Additional study is therefore warranted to clarify the role of AMPK in ME/CFS. 

4.1.3 Investigating Fuel Source Preference in ME/CFS Lymphoblasts 

Amidst the findings presented in Chapter 3 (inefficient ATP synthesis, elevated respiratory 

capacity, nonmitochondrial catabolism, and increased expression of mitochondrial solute 

carriers and TCA cycle enzymes in ME/CFS lymphoblasts), it became clear that the 

utilisation of other pathways providing substrates to the mitochondria was also likely to be 

dysregulated in these cells. Combined transcriptomics and proteomics were subsequently 

embarked upon with the aims of identifying pathways which are dysregulated in ME/CFS 

lymphoblasts with greater clarity across both levels of regulation. Customised Seahorse 

experiments designed to measure real-time rates of glycolysis were also undertaken using 

lymphoblasts. AMPK activity in ME/CFS lymphoblasts was also measured. The resulting 

observations suggest that while glycolysis is unchanged, there is an elevated usage by 

ME/CFS cells of the PPP, fatty acid β-oxidation, and of the degradative mitochondrial 

pathways for specific amino acids. Together these results seem to reflect a shift towards 

fatty acid and amino acid catabolism as preferred sources of oxidisable substrate for the 

mitochondria in ME/CFS lymphoblasts. Subsets of the information contained within this 

chapter have been published in research articles (Missailidis, Annesley et al. 2020; 

Missailidis, Sanislav et al. 2021). 

 

4.2 Results 

4.2.1 Global Changes in ME/CFS Lymphoblast Transcriptomes and 

Proteomes  

Up- and down-regulated lists of genes and proteins from both the proteomics and 

transcriptomics experiments were determined by applying the Benjamini-Hochberg step-

up correction for multiple comparisons (with Q < 0.05) to the significance probabilities 

from t tests in the proteomics or F tests in the transcriptomics (Benjamini 1995). The 

numbers of differentially expressed vs unchanged gene products detected in ME/CFS 

lymphoblasts across both types of experiment are shown in Figure 4.2. Comparing the 
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whole cell proteomes of ME/CFS and healthy control lymphoblasts revealed 218 

upregulated, 41 downregulated, and 2861 proteins whose levels were unchanged. The 

expression of significantly more proteins was upregulated than downregulated (binomial 

test). Conversely, the transcriptomics revealed 843 transcripts upregulated, 1409 

downregulated, and 11,128 unchanged – significantly more downregulated than 

upregulated (binomial test, null hypothesis – equal up- and down-regulated proportions).  

Figure 4.2: Venn diagrams depicting the numbers of differentially expressed gene products 

in ME/CFS lymphoblasts within the whole-cell proteomics and transcriptomics experiments. 

Two-sided binomial tests were undertaken with Ho set to p = 0.5 to assess whether the differentially 

expressed fractions significantly departed from proportions expected by chance. Resulting 

significance probabilities (p) are indicated. 

To obtain a broad perspective of pathway-level changes to guide subsequent analysis, the 

PANTHER over-representation tool (Thomas, Campbell et al. 2003; Thomas, Kejariwal et 

al. 2006; Mi, Dong et al. 2010) was employed to analyse outcomes from both the whole-

cell transcriptomics and proteomics experiments. The entire list of detected genes or 

proteins from the respective experiment type was used as the “reference” list for 

comparison by PANTHER against the “input” lists of differentially expressed genes and 

proteins (Q < 0.05). This produced a readout of pathways which are over-represented in the 

differentially-expressed fractions of both datasets. The over-representation analysis applied 

a binomial test of the hypothesis that more genes or proteins in a given pathway are present 

in the respective “input” list than would be expected by chance, using their occurrence in 

the “reference” list as the expected proportion eg. if genes or proteins in a particular 

pathway represent 10% of all that were detected in the experiment, they are expected to 

also make up 10% of the significantly dysregulated genes/proteins. Finding them in a 
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significantly elevated fraction of the dysregulated lists would indicate that the pathway is 

dysregulated.  

The resulting global pathway-level analysis has been included in Appendix Tables A5.1-

A6.2 and is summarised briefly throughout this Section. Since the focus of this analysis 

was to investigate the metabolic provision of oxidisable substrates to the mitochondria, 

Table 4.1 highlights the PANTHER analysis of these particular metabolic and 

mitochondrial pathways of interest - carbohydrate metabolism, TCA cycle and respiration, 

other mitochondrial pathways, lipid metabolism, β-oxidation, amino acid metabolism, 

protein degradation, substrate transport and metabolism more broadly. The relevant 

pathways were subsequently revisited in-depth (see later). 

4.2.1.1 Transcriptomes 

With additional correction for multiple comparisons (number of pathways) by a false 

discovery rate (FDR) cutoff of 0.05, 123 pathways were still statistically over-represented 

in the genes downregulated in ME/CFS lymphoblast transcriptomes (Appendix Table 

A5.1), while no pathways were over-represented in the upregulated genes. Table 4.1 shows 

pathways of particular interest that were dysregulated in the proteomics and/or 

transcriptomics, while Appendix Table A5.1 shows the full list of pathways significantly 

downregulated at the transcript level. The results show that pathway expression at the 

transcript-level, including those involved in mitochondrial respiration is broadly reduced 

in ME/CFS lymphoblasts. This contrasts starkly with the elevated protein expression and 

function data both for the mitochondrial functions investigated in Chapter 3 and the broader 

metabolic functions investigated in this chapter.  

Nevertheless, 834 individual transcripts were significantly upregulated (Q < 0.05). The 

possibility was considered that FDR correction of the PANTHER pathway analysis of the 

up-regulated transcript list was overly conservative. To identify which pathways might 

indeed show evidence of upregulation, the analysis was repeated with FDR correction 

excluded in the PANTHER analysis to identify candidate pathways. Of the resultant 51 

pathways over-represented in this upregulated fraction (binomial test, P value < 0.05), most 

pertain to innate immune system activation or the import and intracellular transport of small 

molecules (Appendix Table A5.2). The latter could indicate homeostatic upregulation of 
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the uptake of vitamins, sugars, amino acids or other small molecules important for 

sustaining cellular metabolism from the surrounding medium.  
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Reactome 

pathway 
Category Dataset 

Altered 

fraction 

Fold -

enriched 

Binomial 

test P-value 

Gluconeogenesis 

(R-HSA-70263) 

Carbohydrate 

metabolism 
Proteomics Upregulated 3.81 0.022 

Pentose phosphate 

pathway (R-HSA-

71336) 

Carbohydrate 

metabolism 
Proteomics Upregulated 4.52 0.03 

The citric acid 

(TCA) cycle and 

respiratory 

electron transport 

(R-HSA-1428517) 

TCA cycle 

and 

respiration 

Proteomics Upregulated 1.89 0.027 

Formation of ATP 

by chemiosmotic 

coupling (R-HSA-

163210) 

TCA cycle 

and 

respiration 

Proteomics Upregulated 4.52 0.03 

Respiratory 

electron transport, 

ATP synthesis by 

chemiosmotic 

coupling, and heat 

production by 

uncoupling 

proteins. (R-HSA-

163200) 

TCA cycle 

and 

respiration 

Transcriptomics Downregulated 3.59 1.33 × 10-11 

Respiratory 

electron transport 

(R-HSA-611105) 

TCA cycle 

and 

respiration 

Transcriptomics Downregulated 3.69 2.14 × 10-10 

The citric acid 

(TCA) cycle and 

respiratory 

electron transport 

(R-HSA-1428517) 

TCA cycle 

and 

respiration 

Transcriptomics Downregulated 2.83 1.95 × 10-9 
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Complex I 

biogenesis (R-

HSA-6799198) 

TCA cycle 

and 

respiration 

Transcriptomics Downregulated 4.19 7.59 × 10-8 

Beta oxidation of 

lauroyl-CoA to 

decanoyl-CoA-

CoA (R-HSA-

77310) 

Lipid 

metabolism 
Proteomics Upregulated 13.57 0.0015 

Beta oxidation of 

hexanoyl-CoA to 

butanoyl-CoA (R-

HSA-77350) 

Lipid 

metabolism 
Proteomics Upregulated 10.85 0.0028 

Beta oxidation of 

octanoyl-CoA to 

hexanoyl-CoA (R-

HSA-77348) 

Lipid 

metabolism 
Proteomics Upregulated 10.85 0.0028 

Beta oxidation of 

decanoyl-CoA to 

octanoyl-CoA-

CoA (R-HSA-

77346) 

Lipid 

metabolism 
Proteomics Upregulated 10.85 0.0028 

Mitochondrial 

fatty acid beta-

oxidation of 

unsaturated fatty 

acids (R-HSA-

77288) 

Lipid 

metabolism 
Proteomics Upregulated 10.85 0.0028 

Fatty acid 

metabolism (R-

HSA-8978868) 

Lipid 

metabolism 
Proteomics Upregulated 2.87 0.0029 

Acyl chain 

remodeling of CL 

(R-HSA-1482798) 

Lipid 

metabolism 
Proteomics Upregulated 18.09 0.0057 
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Beta oxidation of 

myristoyl-CoA to 

lauroyl-CoA (R-

HSA-77285) 

Lipid 

metabolism 
Proteomics Upregulated 18.09 0.0057 

Mitochondrial 

Fatty Acid Beta-

Oxidation (R-

HSA-77289) 

Lipid 

metabolism 
Proteomics Upregulated 5.51 3.32 × 10-4 

Beta oxidation of 

palmitoyl-CoA to 

myristoyl-CoA (R-

HSA-77305) 

Lipid 

metabolism 
Proteomics Upregulated 18.09 6.64 × 10-4 

mitochondrial 

fatty acid beta-

oxidation of 

saturated fatty 

acids (R-HSA-

77286) 

Lipid 

metabolism 
Proteomics Upregulated 10.34 6.72 × 10-4 

NR1H2 & NR1H3 

regulate gene 

expression linked 

to triglyceride 

lipolysis in 

adipose (R-HSA-

9031528) 

Lipid 

metabolism 
Transcriptomics Upregulated 7.47 0.03 

Regulation of 

cholesterol 

biosynthesis by 

SREBP (SREBF) 

(R-HSA-1655829) 

Lipid 

metabolism 
Transcriptomics Upregulated 2.3 0.026 
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Regulation of lipid 

metabolism by 

PPARalpha (R-

HSA-400206) 

Lipid 

metabolism 
Transcriptomics Upregulated 1.87 0.031 

Phenylalanine and 

tyrosine 

metabolism (R-

HSA-8963691) 

Amino acid 

metabolism 
Proteomics Upregulated 7.24 0.032 

Glutamate 

Neurotransmitter 

Release Cycle (R-

HSA-210500) 

Amino acid 

metabolism 
Proteomics Upregulated 13.57 0.0015 

Neurotransmitter 

release cycle (R-

HSA-112310) 

Amino acid 

metabolism 
Proteomics Upregulated 6.03 0.014 

Metabolism of 

amino acids and 

derivatives (R-

HSA-71291) 

Amino acid 

metabolism 
Proteomics Upregulated 1.64 0.021 

Aspartate and 

asparagine 

metabolism (R-

HSA-8963693) 

Amino acid 

metabolism 
Proteomics Upregulated 7.24 0.032 

Lysine catabolism 

(R-HSA-71064) 

Amino acid 

metabolism 
Proteomics Upregulated 6.03 0.044 

Metabolism of 

amino acids and 

derivatives (R-

HSA-71291) 

Amino acid 

metabolism 
Transcriptomics Downregulated 3.13 2.06 × 10-20 
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Response of 

EIF2AK4 (GCN2) 

to amino acid 

deficiency (R-

HSA-9633012) 

Amino acid 

metabolism 
Transcriptomics Downregulated 5.85 6.10 × 10-26 

Ubiquitin-

dependent 

degradation of 

Cyclin D (R-HSA-

75815) 

Protein 

degradation 
Transcriptomics Downregulated 2.93 2.75 × 10-4 

Autodegradation 

of the E3 ubiquitin 

ligase COP1 (R-

HSA-349425) 

Protein 

degradation 
Transcriptomics Downregulated 2.93 2.75 × 10-4 

Vpu mediated 

degradation of 

CD4 (R-HSA-

180534) 

Protein 

degradation 
Transcriptomics Downregulated 2.93 2.75 × 10-4 

Ubiquitin 

Mediated 

Degradation of 

Phosphorylated 

Cdc25A (R-HSA-

69601) 

Protein 

degradation 
Transcriptomics Downregulated 2.93 2.75 × 10-4 

Degradation of 

GLI2 by the 

proteasome (R-

HSA-5610783) 

Protein 

degradation 
Transcriptomics Downregulated 2.79 2.98× 10-4 

GLI3 is processed 

to GLI3R by the 

proteasome (R-

HSA-5610785) 

Protein 

degradation 
Transcriptomics Downregulated 2.79 2.98 × 10-4 
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Degradation of 

GLI1 by the 

proteasome (R-

HSA-5610780) 

Protein 

degradation 
Transcriptomics Downregulated 2.75 3.60 × 10-4 

Processing of 

SMDT1 (R-HSA-

8949664) 

Other 

mitochondrial 
Proteomics Upregulated 6.78 0.01 

Release of 

apoptotic factors 

from the 

mitochondria (R-

HSA-111457) 

Other 

mitochondrial 
Proteomics Upregulated 12.06 0.012 

Mitochondrial 

biogenesis (R-

HSA-1592230) 

Other 

mitochondrial 
Proteomics Upregulated 2.81 0.013 

Transcriptional 

activation of 

mitochondrial 

biogenesis (R-

HSA-2151201) 

Other 

mitochondrial 
Proteomics Upregulated 3.45 0.03 

Mitochondrial 

translation 

initiation (R-HSA-

5368286) 

Other 

mitochondrial 
Transcriptomics Downregulated 3.37 1.80 × 10-8 

Mitochondrial 

translation 

termination (R-

HSA-5419276) 

Other 

mitochondrial 
Transcriptomics Downregulated 3.37 1.80 × 10-8 

Mitochondrial 

translation (R-

HSA-5368287) 

Other 

mitochondrial 
Transcriptomics Downregulated 3.26 2.23× 10-8 
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Mitochondrial 

protein import (R-

HSA-1268020) 

Other 

mitochondrial 
Transcriptomics Downregulated 2.64 3.73× 10-4 

Mitochondrial 

translation 

elongation (R-

HSA-5389840) 

Other 

mitochondrial 
Transcriptomics Downregulated 3.48 5.03× 10-9 

Mitochondrial 

calcium ion 

transport (R-HSA-

8949215) 

Other 

mitochondrial 
Proteomics Upregulated 6.96 8.53 × 10-4 

Transport of 

nucleotide sugars 

(R-HSA-727802) 

Transport of 

substrate 

molecules 

Transcriptomics Upregulated 4.98 0.023 

SLC transporter 

disorders (R-HSA-

5619102) 

Transport of 

substrate 

molecules 

Transcriptomics Upregulated 2.03 0.048 

Transport of small 

molecules (R-

HSA-382551) 

Transport of 

substrate 

molecules 

Transcriptomics Upregulated 1.35 0.037 

Signalling by 

Leptin (R-HSA-

2586552) 

Metabolism Proteomics Upregulated 9.05 0.021 

Diseases of 

metabolism (R-

HSA-5668914) 

Metabolism Proteomics Upregulated 3.02 0.045 

Metabolism (R-

HSA-1430728) 
Metabolism Proteomics Upregulated 1.51 2.12 × 10-4 

Activation of gene 

expression by 

SREBF (SREBP) 

(R-HSA-2426168) 

Metabolism Transcriptomics Upregulated 2.3 0.049 
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Metabolism (R-

HSA-1430728) 
Metabolism Transcriptomics Downregulated 1.43 3.80× 10-8 

Table 4.1: Significantly altered mitochondrial, substrate-providing and related metabolic 

pathways of interest as indicated by PANTHER gene expression analysis of both the 

proteomic and transcriptomic datasets. “Reactome Pathway” was set as the level of biological 

granularity. Pathways were categorised and colour-coded by areas of most interest to this 

investigation as follows: green for carbohydrate metabolism, purple for the TCA cycle and 

respiration, blue for lipid metabolism, red for amino acid metabolism, yellow for protein 

degradation, cyan for other mitochondrial, and grey for transport of substrate molecules. Unshaded 

entries correspond to pathways too broad  in scope to categorise into narrow functional roles 

pertaining to specific processes. 

 

In view of a prior report of elevated SIRT4 mRNA expression in ME/CFS PBMCs (Fluge, 

Mella et al. 2016), I also examined whether expression of any of the sirtuins was altered. 

In ME/CFS lymphoblasts the expression levels of SIRT4 as well as SIRT1, SIRT5 and 

SIRT7 were not significantly changed, while SIRT2 was significantly upregulated and 

SIRT3 and SIRT6 were downregulated (Appendix Table A6.1). The sirtuins were not 

detected in the proteomics analysis, so it is unclear whether the levels of any sirtuin proteins 

are altered in ME/CFS lymphoblasts.  

It has also been reported that compared to controls, ME/CFS PBMCs exhibit different 

proportions of immune cell subtypes as detected by flow cytometry of CD cell surface 

markers (Curriu, Carrillo et al. 2013; Hardcastle, Brenu et al. 2015). The data was therefore 

also examined for differential expression of CD cell-surface markers and it was found that 

CD19, CD47, CD52 and CD79A were significantly downregulated while only CD164 was 

significantly upregulated in ME/CFS lymphoblasts (Appendix Table A6.1). Although all 

of these are expressed in activated B cells, none are markers for specific subsets of B cells 

(Allman and Pillai 2008), the immune cell type that is specifically infected by EBV during 

immortalisation. None of them were differentially expressed in the whole cell proteomes 

(see below). 
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4.2.1.2 Proteomes 

Similar analysis of differential pathway expression in the whole-cell proteomes showed 

results that were highly distinct from the transcriptomes. While the lists of up- and down-

regulated proteins were also conservatively selected using the Q < 0.05 method, additional 

FDR correction of the pathway over-representation tests was excluded in the proteomic 

pathway analysis. This was done as the additional FDR correction at the pathway level was 

found to be overly conservative and obscured true positives which were separately 

confirmed by closer analysis of individual pathways, and in the case of OXPHOS proteins 

also by prior multi-pronged tests of activity and expression. These true-positive pathways 

satisfied a p < 0.05 threshold for the binomial test of over-representation when the pathway 

FDR was not used. This analysis identified 77 pathways over-represented in the 

significantly upregulated fraction of proteins (Appendix Table A5.3), while 13 pathways 

were over-represented in the downregulated fraction (Appendix Table A5.4).  

Of the downregulated fraction, most of the 13 pathways were represented by very few 

detected proteins or proteins that were significantly downregulated or were pathway hits 

irrelevant in the context of lymphoid cells (such as meiosis). The most significantly affected 

pathway with both tissue-specific relevance and a greater number of downregulated 

proteins was the activation of protein kinase Ns (PKNs) by RHO GTPases (Reactome 

pathway R-HSA-5625740). This could suggest reduced activation of PKNs in ME/CFS 

lymphoblasts. The various PKNs, while involved in signal transduction related to many 

processes such as cell migration and cytoskeleton assembly, also play roles in 

transcriptional activation which have been most clearly observed in cardiac tissue 

(Morissette, Sah et al. 2000). If fulfilling similar roles in lymphoid cells, reduced PKN 

activities could be a contributor to the largely reduced transcript-level expression apparent 

in ME/CFS lymphoblasts.  

By contrast, the 77 pathways over-represented in the upregulated protein fraction included 

functional categories which were altered significantly in much higher numbers than 

pathways in the downregulated fraction and were more informative in their biological 

context (Appendix Table A5.3). Most strikingly, 9/20 of the most significantly upregulated 

pathways pertained directly to fatty acid β-oxidation (Table 4.1, Appendix Table A5.3). 

This strongly suggests an upregulation of fatty acid β-oxidation in ME/CFS lymphoblasts.  
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Another seven out of twenty of the most significantly upregulated pathways pertained to 

activation of both the innate and adaptive immune responses (Appendix Table A5.3) as was 

also evident in the transcriptomes, together suggesting elevated immune activation in 

ME/CFS lymphoblasts. Of several CD antigens detected in the proteomics, most trended 

upwards, although only the expression of CD226, CD48 and CD70 were individually 

altered significantly (upregulated) in ME/CFS lymphoblasts (Appendix Table A6.2). None 

of these were differentially expressed in transcriptomes of  ME/CFS lymphoblasts, none 

are markers of specific B cell subsets (Allman and Pillai 2008) but all are expressed on 

proliferating, activated B cells. CD70 expression is a marker of highly activated 

lymphocytes (Israel, Gulley et al. 2005), and its higher expression in ME/CFS lymphoblasts 

is thus in keeping with the (presumably compensatory) general hyperactivation of 

metabolism in these cells. 

Also prominent among the list of significantly upregulated pathways were mitochondrial 

biogenesis (R-HSA-1592230), the TCA cycle and respiratory electron transport (R-HSA-

1428517) and other mitochondrial proteins (Table 4.1, Appendix Table A5.3). This was as 

expected, given the elevated respiratory capacity (elevated expression of OXPHOS 

complex subunits) and TCA cycle enzyme expression. The PPP was also found to be over-

represented in this analysis (Table 4.1, Appendix Table A5.3), in line with a metabolic shift 

suggested by the foregoing results (Chapter 3) and by others (Germain, Ruppert et al. 2017). 

At least 5 of the over-represented pathways were reflective of abnormal amino acid 

metabolism or degradation (Table 4.1, Appendix Table A5.3), which implied dysregulated 

amino acid usage by ME/CFS lymphoblasts, also in agreement with the previous results 

(Chapter 3) and those reported by others (Armstrong, McGregor et al. 2015; Fluge, Mella 

et al. 2016). 

Upregulation of OXPHOS subunits at the protein level was previously verified by Western 

blotting in Chapter 3. Additional Western blots and qRT-PCR experiments were also 

undertaken to further verify the outcomes of the proteomic and transcriptomic experiments. 

Using Western blotting, both ACO2 and SDHA showed the same absence of altered 

expression as is present in the proteomics dataset, while elevated levels of MDH1 in the 

proteomes were also confirmed (Appendix Figures A7.1A and A7.2). At the transcript 

level, the directional trends of SDHB, GLS, NDUFB1 and NDUFB10 normalised to the 
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histone gene HIST1H1C were confirmed in all four cases between qRT-PCR experiments 

and the transcriptomic dataset (Appendix Figure A7.1B). 

Based on the results presented in Chapter 3, it was proposed that ATP synthesis by Complex 

V was inefficient in ME/CFS lymphoblasts, and that this is accompanied by compensatory 

upregulation of mitochondrial protein expression and likely by the dysregulation of 

substrate-providing pathways. Elevated usage of such pathways would act to supply the 

upregulated TCA cycle and respiratory electron transport complexes with substrate at faster 

rates. The analysis at the global proteome level presented here is consistent with these 

conclusions and strongly suggests the upregulation of alternatives such as fatty acid β-

oxidation, the PPP and amino acid catabolism in order to provide ME/CFS lymphoblast 

mitochondria with oxidisable substrate. The broad trends apparent in whole-cell 

transcriptomics also indicate that elevated levels of the proteins in such pathways could 

occur as a result of upregulation specifically at the translational level. These observations 

were used as a basis to guide the subsequent, closer analysis of specific pathways of interest 

to understand how provision of mitochondrial substrates could be dysregulated in ME/CFS 

lymphoblasts in more detail.  

 

4.2.2 Glycolytic Rate and Gene Expression are Unchanged in ME/CFS 

Lymphoblasts and PPP Enzyme Expression is Elevated 

The elevated non-mitochondrial catabolic rate in ME/CFS lymphoblasts and the ability of 

activated lymphoid cells to switch between preferential utilisation of either glucose or fatty 

acids together first prompted the examination of glycolysis in detail, being one of the 

potentially dysregulated substrate-providing pathways. To examine glycolytic function in 

intact ME/CFS lymphoblasts, a customised Seahorse assay was implemented to assess real-

time glycolytic production of lactate by live cells by measuring the extracellular 

acidification rate (ECAR) of the medium. The results revealed no difference between 

ME/CFS and control cells in glycolytic rate, reserve or capacity (Figure 4.3A). In keeping 

with the unchanged rate of glycolysis, expression of the two key rate-controlling enzymes 

of glycolysis – phosphofructokinase and hexokinase - was unchanged from that of controls 

(Figure 4.3A). Indeed, the levels of all detected glycolytic enzymes (including subunits and 

isoenzymes: 16 proteins) were also found to be unchanged as a whole in the ME/CFS 

lymphoblast proteomes (p > 0.05, t test and binomial test) (Figure 4.3B). This contrasts 
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with slightly elevated levels of mRNAs encoding these enzymes which were observed in 

the whole-cell transcriptomes (Figure 4.3C). Here, 14/21 detected transcripts favoured 

upregulation with mean levels 10 ± 4% higher than controls (t test, p = 0.0247), 6 of which 

encoded isoenzymes or subunits of phosphofructokinase and hexokinase. It has been shown 

by others that the accumulation of untranslated mRNAs encoding glycolytic enzymes can 

occur when lymphoid cells are in a metabolic state favouring fatty acid β-oxidation rather 

than glycolysis (Ricciardi, Manfrini et al. 2018). If ME/CFS lymphoblasts do indeed favour 

fatty acid β-oxidation instead of glycolysis, this would be consistent with the pattern of 

expression observed here. 

Figure 4.3: The rate of glycolysis is unaffected in ME/CFS lymphoblasts. Error bars represent 

standard error of the mean. (A) Glycolytic rate, capacity and reserve are unchanged in ME/CFS 

lymphoblasts (independent t-test). The ECAR was measured in lymphoblasts from ME/CFS and 

control individuals by the Seahorse XFe24 Extracellular Flux Analyzer. Each ME/CFS (n = 23) and 

control (n = 16) cell line was assayed over four replicates in at least three independent experiments. 

(B) The expression level of hexokinase and phosphofructokinase is unchanged in whole cell mass 

spectrometry proteomics experiments (independent t-test). Mean fold changes were calculated 

using the iBAQ fold-change per individual sample for each isoenzyme (none of which were 

statistically significant on their own, threshold p < 0.05). Each cell line was sampled once, or twice 

for a subset of healthy controls arbitrarily selected to act as an internal control between experiments 

in the proteomics work. Mass spectrometry proteomics experiment: ME/CFS n = 34, control n = 

31. (C) 16 glycolytic enzymes were detected within the whole-cell proteomes of lymphoblasts from 
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ME/CFS and control lymphoblasts. Fold-change refers to the mean abundance of a given protein in 

the CFS group divided by the mean abundance in the control group. There was no significant 

difference in the differentially expressed proportions of detected glycolytic enzymes (binomial test 

with Ho set to 0.5) or the magnitude of expression (single sample t test with Ho m = 1) between 

ME/CFS and controls. (D) 21 RNA transcripts encoding glycolytic enzymes were detected by RNA 

sequencing within the whole-cell transcriptomes of ME/CFS and control lymphoblasts. Mean fold-

change was calculated for the ME/CFS group versus the control average for each transcript. The 

proportion of detected transcripts that were upregulated (binomial test with Ho set to 0.5) was not 

significant while the average extent of the upregulation (single sample t test with Ho m = 1) was 

statistically significant. Each cell line was sampled once. mRNA transcript abundance refers to the 

read count. RNA sequencing transcriptomics experiment: ME/CFS n = 23, control n = 17. 

 

Glucose tracer experiments by others have shown that when B cells switch their metabolism 

in favour of fatty acid β-oxidation instead of towards glycolysis, glucose is utilised at the 

same overall rates, but instead by the PPP (Waters, Ahsan et al. 2018; Weisel, Mullett et 

al. 2020). In ME/CFS research, reports of reduced glucose (Armstrong, McGregor et al. 

2015) and disaccharides (Germain, Barupal et al. 2020) in patient blood could reflect 

elevated utilisation of the PPP if the rate of glycolysis is indeed unchanged in patient cells 

as has been observed here in the lymphoblasts. In any case, compensatory provision of 

additional pyruvate is one means by which the PPP may be utilised to support respiration 

as a source of oxidisable substrate in ME/CFS lymphoblast mitochondria whose 

mitochondrial ATP synthesis is inefficient. PPP enzymes were also significantly over-

represented among the upregulated fraction of proteins across the entire proteomics 

experiment (Appendix Table A5.3). This was confirmed by selecting all PPP enzymes that 

were detected in the proteome and examining their expression levels in the lymphoblast 

proteomes and transcriptomes. With mean levels 20 ± 9% higher than controls (t test, p = 

0.034) (Figure 4.4A), PPP enzymes were significantly upregulated in the proteomes of 

ME/CFS lymphoblasts, while their expression was not significantly altered at the 

transcriptional level (Figure 4.4B). Importantly, Glucose-6-phosphate 1-dehydrogenase 

(G6PD), the enzyme catalysing the first and rate-limiting step of the oxidative arm of the 

PPP (Benatti, Morelli et al. 1978), was significantly elevated on its own by 43 ± 10% in the 

proteomes of ME/CFS lymphoblasts versus healthy controls (p = 5.5 × 10-4)   (Figure 4.4C). 

This suggests that the PPP is indeed upregulated as an alternative means of glucose 

utilisation to glycolysis in ME/CFS lymphoblasts.  
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Figure 4.4: Expression of the pentose phosphate pathway (PPP) is upregulated at the protein 

level in ME/CFS lymphoblasts. Error bars represent standard error of the mean. (A) 7 PPP 

enzymes were detected within the whole-cell proteomes of lymphoblasts from ME/CFS and control 

lymphoblasts. Fold-change refers to the mean abundance of a given protein in the CFS group 

divided by the mean abundance in the control group. There was no significant difference in the 

proportion of upregulated PPP enzymes (binomial test with Ho set to 0.5), but the magnitude of 

upregulation was significantly elevated in ME/CFS lymphoblasts (single sample t test with Ho m<1 

and H1 m>1, p = 0.034). (B) 7 RNA transcripts encoding PPP enzymes were detected by RNA 

sequencing within the whole-cell transcriptomes of ME/CFS and control lymphoblasts. Mean fold 

change was calculated for the ME/CFS group versus the control average for each transcript. The 

proportions of reduced or elevated transcripts were not significantly different (binomial test with 

Ho set to 0.5) nor was the average magnitude of expression (single sample t test with Ho m = 1). 

RNA sequencing transcriptomics experiment: ME/CFS n = 23, control n = 17.  (C) The expression 

level of G6PD is significantly elevated (t test, p = 5.5 × 10-4) in whole cell mass spectrometry 

proteomics experiments (independent t-test).. Each cell line was sampled once, or twice for a subset 

of healthy controls arbitrarily selected to act as an internal control between experiments. Relative 

abundance was obtained from iBAQ values normalised to the control average within the respective 

individual experiments. Mass spectrometry proteomics experiment: ME/CFS n = 34, control n = 

31. 
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4.2.3 Enzymes Involved in Mitochondrial and Peroxisomal β-oxidation 

are Elevated in their Expression 

The results in Chapter 3 showed that the rate of glycolysis is unchanged in ME/CFS 

lymphoblasts, while the proton leak and nonmitochondrial OCR as well as the expression 

of mitochondrial small molecule transporters are elevated. Since these findings were 

consistent with an increase in mitochondrial uptake and catabolism of oxidisable substrates, 

it was likely that alternative substrate-providing pathways (other than glycolysis) would be 

utilised at higher levels in ME/CFS lymphoblasts. It was previously reported that one of 

these  pathways, the PPP is upregulated in B cells (Waters, Ahsan et al. 2018; Weisel, 

Mullett et al. 2020) from which lymphoblasts are derived. The canonical preferred 

alternative to glycolysis is fatty acid β-oxidation and since it featured prominently in the 

exploratory pathway over-representation analysis described earlier, it was examined in 

more detail. The results showed that expression of these proteins was indeed elevated 

significantly in the ME/CFS group (Figure 4.5A). Sixteen of the 21 detected proteins 

involved in β-oxidation and transport were upregulated (binomial test, p = 0.0133), with 

mean levels 35 ± 14% higher than controls (t test, p = 9.19 × 10−3). In contrast with the 

elevated protein expression and in keeping with the broader transcriptional trends, the 

levels of mRNA transcripts encoding these enzymes were found to be slightly reduced 

(Figure 4.5B). 18 of the detected 25 transcripts were downregulated (binomial test, p = 

0.043) with mean levels 9 ± 3% lower than controls (t test, p = 0.014). This suggests 

upregulation specifically at the translational level as was apparent with other groups of 

proteins such as OXPHOS Complexes I, III, IV and V (Chapter 3). 

To better understand the potential functional implications of these differences in 

mitochondrial β-oxidation enzyme expression, the expression of these proteins was more 

closely examined on an individual basis. Among the detected mitochondrial β-oxidation 

proteins, it was found that the expression of 5 specific enzymes was significantly altered at 

the protein level individually, and that each of these was upregulated in the ME/CFS 

lymphoblasts (Figure 4.5C). Both subunits of the mitochondrial trifunctional enzyme 

(HADHA and HADHB) were among these 5 significantly upregulated proteins. 

Hydroxyacyl-CoA dehydrogenase/3-keotacyl-CoA thiolase (HADH) is an enzyme 

complex which catalyses multiple reactions in mitochondrial β-oxidation, exhibits 

specificity for long-chain fatty acids and is involved in cardiolipin synthesis – cardiolipin 
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being an important component of the inner mitochondrial membrane (Taylor, Mejia et al. 

2012; Xia, Fu et al. 2019). Short-chain enoyl-CoA hydratase (ECHS1) was also 

significantly upregulated, as well as the very long-chain specific acyl-CoA dehydrogenase 

(ACADVL). These, together with upregulated HADH expression demonstrate the 

upregulation of enzymes involved in catabolising fatty acids of diverse chain-lengths, 

implying their complete oxidation within the mitochondria and thus their ultimate 

contribution towards the electron transport chain. This conclusion is reinforced by the 

remaining member of the 5 significantly upregulated proteins being the alpha subunit of 

the electron transfer flavoprotein (ETFA), which accepts electrons from the mitochondrial 

dehydrogenases involved in β-oxidation and passes them via Electron transfer flavoprotein-

ubiquinone oxidoreductase (ETF-QO) and ubiquinone to Complex III in the electron 

transport chain (Salazar, Zhang et al. 1997).  

Mitochondrial β-oxidation itself does not readily act upon very long-chain fatty acids 

(VLCFA), which are first chain-shortened by peroxisomal β-oxidation to then be utilised 

in either mitochondrial β-oxidation or directly in the TCA cycle as acetyl-CoA (Wanders, 

Waterham et al. 2015). Both mitochondrial and peroxisomal fatty acid β-oxidation, 

pathways which operate in tandem, are together upregulated by AMPK activity and the 

nuclear transcription factor peroxisome proliferator-activated receptor-α (PPAR-α) 

(Everett, Galli et al. 2000; Vega, Huss et al. 2000; Hardie and Pan 2002; Jager, Handschin 

et al. 2007). If ME/CFS lymphoblasts do switch their oxidisable substrate preference in 

favour of mitochondrial fatty acid β-oxidation, one would therefore also expect 

peroxisomal β-oxidation to be upregulated alongside it due to their shared regulatory 

mechanisms and entwined function. To investigate this, the expression of individual 

enzymes involved in peroxisomal β-oxidation was more closely investigated.  

Acyl-CoA Oxidase 1 (ACOX1) is the enzyme which first initiates VLCFA β-oxidation 

inside the peroxisome and is the rate-controlling enzyme of this process (Zeng, Deng et al. 

2017). It was found that the expression of ACOX1 was significantly upregulated in the 

proteomes by 91 ± 26% and unchanged in the transcriptomes of ME/CFS lymphoblasts 

(Figure 4.5D). Of the other enzymes involved in peroxisomal β-oxidation, most were not 

detected in either experiment, or were detected at low levels in only a few samples. As a 

result of their relatively poor detection, differences between ME/CFS and controls could 

not be found for these enzymes. Nonetheless, the significant upregulation of the pathway-

https://en.wikipedia.org/w/index.php?title=ETF-QO&action=edit&redlink=1
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initiating and rate-controlling enzyme ACOX1 in addition to the functional and regulatory 

coupling of these pathways described earlier, suggests that peroxisomal β-oxidation is 

likely to be upregulated in tandem with mitochondrial β-oxidation in ME/CFS 

lymphoblasts.  

If the rates of fatty acid β-oxidation are elevated in ME/CFS lymphoblasts in accordance 

with the expression of these mitochondrial and peroxisomal enzymes, this would also be 

consistent with the elevated steady state levels of untranslated glycolytic mRNA transcripts 

which I earlier observed and discussed (Ricciardi, Manfrini et al. 2018). More importantly, 

upregulated fatty acid β-oxidation would provide acetyl-CoA to the TCA cycle more 

rapidly, in turn provisioning the upregulated respiratory complexes with reducing 

equivalents to drive respiration – potentially offsetting the inefficiency of ATP synthesis 

by Complex V which was previously demonstrated in Chapter 3. 

Figure 4.5: Expression of proteins involved in mitochondrial and peroxisomal fatty acid β-

oxidation was elevated in ME/CFS lymphoblasts. Error bars represent standard error of the mean. 

(A) 21 proteins involved in mitochondrial fatty acid β-oxidation and transport were detected within 

the whole-cell proteomes of ME/CFS and control lymphoblasts. Fold-change refers to the mean 

abundance of a given protein in the ME/CFS group divided by the mean abundance in the control 

group. The proportion of detected proteins that were upregulated (binomial test with Ho set to 0.5 

and H1 being that the upregulated proportion was greater) and the average extent of the upregulation 

(single sample t test with Ho m<1 and H1 m>1) were statistically significant. Each cell line was 

sampled once, or twice for a subset of healthy controls arbitrarily selected to act as an internal 
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control between experiments in the proteomics work. Mass spectrometry proteomics experiment: 

ME/CFS n = 34, control n = 31. (B) 25 RNA transcripts encoding proteins involved in mitochondrial 

fatty acid β-oxidation and transport were detected by RNA sequencing within the whole-cell 

transcriptomes of ME/CFS and control lymphoblasts. Fold-change refers to the mean abundance of 

a given transcript in the CFS group divided by the mean abundance in the control group. The 

proportions of reduced or elevated transcripts were not significantly different (binomial test with 

Ho p = 0.5) nor was the average magnitude of expression (single sample t test with Ho m = 1). Each 

cell line was sampled once. RNA sequencing transcriptomics experiment: ME/CFS n = 23, control 

n = 17. (C) The expression levels of HADHA, HADHB, ACADVL, ECHS1 and ETFA are 

significantly elevated in whole cell mass spectrometry proteomics experiments (independent t-test). 

Relative abundance was obtained from iBAQ values normalised to the control average within the 

respective individual experiments. (D) The expression of ACOX1 was significantly elevated in 

whole cell mass spectrometry proteomics experiments (independent t-test). Relative abundance was 

obtained from iBAQ values normalised to the control average within the respective individual 

experiments. ACOX1 expression was not altered at the transcriptional level as measured by whole-

cell RNA sequencing transcriptomics. Counts per million mapped reads were calculated for each 

gene transcript. 

Since fatty acid metabolism hinges on the controlled balance between biosynthesis and β-

oxidation (Hardie and Pan 2002), it is also important to consider the pathways involved in 

fatty acid biosynthesis when drawing conclusions as to the favoured direction of fatty acid 

metabolism. Contrasting with the upregulation of β-oxidation enzymes, no significant 

differences were detected at either the protein level (Figure 4.6A) or the transcriptional 

level (Figure 4.6B) in the expression of enzymes involved in fatty acid biosynthesis as a 

whole.  

Particularly important among the involved enzymes are acetyl-CoA carboxylase 1 (ACC1) 

which catalyses the synthesis of malonyl-CoA - a key, rate-limiting substrate for fatty acid 

synthesis, and fatty acid synthase (FASN) which in turn catalyses the conversion of 

malonyl-CoA to palmitate (Jayakumar, Tai et al. 1995; Kim, Moon et al. 2010). Thus, these 

reactions control the rate of de novo fatty acid biosynthesis by the cell and understanding 

their expression levels is important to assist with inferring functional consequences. The 

expression of ACC1 (ACACA) was unchanged in ME/CFS lymphoblasts compared to 

controls (albeit detected at low levels) in both the whole cell proteomes and transcriptomes 

(Figure 4.6C). This was later confirmed in a plate-based fluorescence assay (Figure 4.6D). 

The expression of FASN was also not significantly different at either the protein or 
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transcript level (Figure 4.6C). It is not surprising that the expression of these key 

biosynthetic enzymes in ME/CFS lymphoblasts was not changed, since fatty acid 

biosynthesis competes with fatty acid β-oxidation (Hardie and Pan 2002; Hue and 

Taegtmeyer 2009), the enzymes for which are upregulated. These observations together 

suggest that in ME/CFS lymphoblasts compared to controls, fatty acid metabolism is indeed 

operating in favour of β-oxidation rather than biosynthesis.  

While mitochondrial enzymes, including those involved in fatty acid β-oxidation, are 

amongst those whose expression is upregulated by TORC1 activity (Cunningham, Rodgers 

et al. 2007; Morita, Gravel et al. 2015), their expression levels are not the only arbiters of 

the rates at which these pathways operate. The activity of AMPK is also important since it 

inactivates ACC by phosphorylation to inhibit fatty acid synthesis and promote fatty acid 

β-oxidation by preventing ACC from inhibiting fatty acid import into the mitochondria 

(Hardie and Pan 2002). To investigate this, AMPK activity was measured in ME/CFS and 

control lymphoblasts by assaying the phosphorylation state of ACC. The mean ACC 

phosphorylation state was elevated by ~17% in ME/CFS lymphoblasts, but this elevation 

did not reach statistical significance (Figure 4.6D). In isolation, this result could suggest 

that the balance between fatty acid biosynthesis and β-oxidation is not significantly altered 

in ME/CFS cells. However, it remains possible that the elevation of ACC inactivation is 

real and sufficient to contribute to tipping the balance of fatty acid metabolism in favour of 

β-oxidation. This merits future investigation as it would be consistent with the elevated 

capacity of ME/CFS mitochondria for β-oxidation as shown by the elevated levels of the 

enzymes involved. 
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Figure 4.6: Expression of enzymes involved in mitochondrial fatty acid biosynthesis was 

unchanged in the whole-cell proteomes and transcriptomes of ME/CFS lymphoblasts. AMPK 

activity is not significantly elevated in ME/CFS lymphoblasts. Error bars represent standard error 

of the mean. (A) 15 proteins involved in fatty acid biosynthesis were detected within the whole-cell 

proteomes of ME/CFS and control lymphoblasts. Fold-change refers to the mean abundance of a 

given protein in the CFS group divided by the mean abundance in the control group. The proportion 

of detected proteins that were differentially expressed (binomial test with Ho set to 0.5) and the 

average extent of any differences (single sample t test with Ho m = 1) were not statistically 

significant. Each cell line was sampled once, or twice for a subset of healthy controls arbitrarily 

selected to act as an internal control between experiments in the proteomics work. Mass 

spectrometry proteomics experiment: ME/CFS n = 34, control n = 31. (B) 51 RNA transcripts 

encoding proteins involved in fatty acid biosynthesis were detected by RNA sequencing within the 

whole-cell transcriptomes of ME/CFS and control lymphoblasts. Mean fold change was calculated 

for the ME/CFS group versus the control average for each transcript. The proportions of reduced or 

elevated transcripts were not significantly different (binomial test with Ho set to 0.5) nor was the 

average magnitude of expression (single sample t test with Ho m = 1). Each cell line was sampled 

once. RNA sequencing transcriptomics experiment: ME/CFS n = 23, control n = 17. (C) The 

expression of ACACA and FASN, two key enzymes involved in fatty acid biosynthesis, was not 

significantly altered in whole cell proteomics or transcriptomics experiments (independent t-test). 

Relative abundance was obtained from iBAQ values normalised to the control average within the 

respective individual experiments. per million mapped reads were calculated for each gene 

transcript (D) AMPK activity is not significantly elevated in ME/CFS lymphoblasts. Total ACC 
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levels were unaltered. AMPK activity was determined by measuring the ACC phosphorylation state 

normalised to total ACC levels in ME/CFS lymphoblasts (n = 28) and healthy controls (n = 24). 

Each cell line was measured in at least three independent experiments. Fluorescence is expressed 

in relative terms as each experiment is normalised to an internal control cell line. AMPK activity 

assays were assisted with by Claire Allan. 

4.2.4 Expression of Enzymes Involved in the Mitochondrial Utilisation of 

Glutamine, BCAAs and Essential Amino Acids is Elevated in ME/CFS 

Lymphoblasts 

In ME/CFS, the increased utilisation of glutamine/glutamate through both the GLUD1 and 

GOT2 routes has been suggested by the outcomes of metabolomic studies  (Armstrong, 

McGregor et al. 2012; Armstrong, McGregor et al. 2015; Fluge, Mella et al. 2016). If these 

processes are upregulated in ME/CFS, mitochondrial amino acid catabolism could be 

another means by which ME/CFS lymphoblasts compensate for their inefficiency in ATP 

synthesis. Indeed, the Electron Transfer Flavoprotein (ETF), whose expression is elevated 

in ME/CFS lymphoblasts (Figure 4.5C), also accepts electrons derived from the oxidation 

of amino acids such as lysine and tryptophan to be donated to the electron transport chain 

through enzymes such as glutaryl-CoA dehydrogenase (GCDH) (Besrat, Polan et al. 1969; 

Zhang, Frerman et al. 2006). Furthermore, TORC1, whose activity is elevated in ME/CFS 

lymphoblasts, is activated by glutamine catabolism (Duran and Hall 2012; Duran, Oppliger 

et al. 2012) and has been shown to be essential for branched-chain amino acid (BCAA) 

catabolism in mice (Zhen, Kitaura et al. 2016). These factors together with the observed 

respiratory abnormalities and elevated TCA cycle enzyme expression strongly indicate the 

potential importance of energy-yielding amino acid catabolism in ME/CFS lymphoblasts. 

Since the PANTHER analysis of upregulated proteins in ME/CFS cells revealed a 

significant overrepresentation of pathways involved in amino acid metabolism (Appendix 

Table A5.3), the expression of individual pathways and enzymes involved in these 

processes was more closely assessed in the whole-cell proteomes and transcriptomes. 

As detailed earlier, the key enzymes involved in glutamine/glutamate degradation are 1) 

GLS, responsible for metabolising glutamine to glutamate, 2) GLUD1, which converts 

glutamate to the TCA cycle substrate α-KG and replenishes NADH, and 3) GOT2, the 

mitochondrial enzyme simultaneously catalysing the conversion of glutamate to aspartate 

and oxaloacetate to α-KG (Figure 4.1). In ME/CFS lymphoblasts, the levels of each of these 



116 

 

three enzymes were significantly elevated in the proteomes (p < 0.05 in all cases, fold 

increases ranging 20-27%), while the levels of the transcripts encoding them also trended 

upwards but did not reach statistical significance in all three cases (Figure 4.7A). Together 

with the absence of changes in glycolysis, this observation may confirm previous proposals 

that in ME/CFS, relative to glycolysis, specific amino acids and their derivatives are more 

heavily utilised as a mitochondrial fuel source (Armstrong, McGregor et al. 2015). 

Glutamate can also be reversibly depleted or produced by the transamination activity of the 

branched-chain amino acid (BCAA) aminotransferases (BCATs). Like glutamate, BCAAs 

themselves may also be catabolised to provide the TCA cycle with substrate, the 

degradation of BCAAs being initiated by BCAT (Adeva-Andany, Lopez-Maside et al. 

2017). BCAT catalyses the reversible conversion (by transamination) of BCAAs to their 

respective branched-chain ketoacids, which are precursors of TCA cycle intermediates in 

BCAA degradation. When the BCAT-catalysed reaction runs in the direction favouring 

BCAA degradation, the amino group of BCAAs is received by α-KG to generate glutamate. 

Since this transamination is thermodynamically reversible, BCAT-mediated synthesis of 

BCAAs accompanies the deamination of glutamate. This is important in metabolic 

regulation, since BCAAs act as signalling molecules which promote TORC1 activity when 

their concentrations are elevated (Neishabouri, Hutson et al. 2015; Zhenyukh, Civantos et 

al. 2017). Taken together with the observations of both elevated TCA cycle enzyme 

expression and TORC1 activity in ME/CFS lymphoblasts, these considerations highlight 

the importance of determining whether ME/CFS cells exhibit altered expression of 

enzymes involved in BCAA metabolism.  

Since BCAT-catalysed transamination is reversible, changes in BCAT expression alone 

would not indicate the favoured steady-state direction of BCAA metabolism. However, the 

conversion of BCAAs to branched-chain ketoacids by BCAT is followed by the irreversible 

production of branched-chain Acyl-CoA derivative esters (precursors of TCA cycle 

intermediates) by the branched-chain ketoacid dehydrogenase (BCKDH) complex in the 

mitochondria (Hutson, Sweatt et al. 2005). Since this reaction is irreversible, this represents 

the first committed and rate-controlling step in the mitochondrial degradation of BCAAs. 

The expression of BCKDH complex subunits is therefore useful for inferring the favoured 

steady-state direction of BCAA metabolism.  
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To summarise: BCAT catalyses the reversible conversion (by transamination) of BCAAs 

to precursors of TCA cycle intermediates, also simultaneously generating glutamate. These 

precursors are further committed towards the TCA cycle by irreversible reactions catalysed 

by BCKDH.  

In both the whole-cell proteomes and transcriptomes, mean expression levels of the 

cytosolic isoform BCAT1 were not significantly altered in ME/CFS lymphoblasts (Figure 

4.7B). The transcript level of the mitochondrial isoform, BCAT2, was also unaltered 

(Figure 4.7B) while the protein was poorly detected in the proteomes. Thus no evidence for 

changes in the levels of BCAT was found in ME/CFS lymphoblasts. However, in the 

proteomes of ME/CFS lymphoblasts, expression levels of both BCKDH subunits were 

significantly elevated (BCKDHA levels by 86 ± 27%, p = 0.028 and BCKDHB levels by 

57 ± 23%, p = 0.031) (Figure 4.7B). At the transcriptional level, BCKDHA showed a slight, 

non-significant elevation of 13 ± 6% while BCKDHB levels were significantly elevated by 

30 ± 6% (p = 0.007) (Figure 4.7B). This upregulation of both BCKDH complex subunits 

strongly indicates that BCAAs are also being more heavily utilised to provide the TCA 

cycle with substrate. In turn this implies elevated degradation of BCAAs by mitochondrial 

BCAT, necessarily accompanied by increased replenishment of glutamate for utilisation by 

the GLUD1 or GOT2 routes, both of which are upregulated (Figure 4.7A).  

Within the various pathways through which other amino acids may similarly be utilised, 

most of the enzymes involved were not detected, or detected at low levels in few samples. 

The few that were detected were present at relatively low levels compared with those 

present in other amino acid degradative processes such as glutaminolysis. This may be 

related to the reduced accessibility of these alternatives in culture medium and their less 

preferential metabolic utilisation compared with glutamine (Yoo, Yu et al. 2020). Of those 

that were detected, the expression of two was significantly altered in ME/CFS lymphoblast 

proteomes. While their expression was not significantly different from controls at the 

transcriptional level, the expression levels of GCDH and fumarylacetoacetase (FAH) were 

significantly elevated in ME/CFS lymphoblast proteomes, with mean levels 74 ± 21% and 

61 ± 25%  higher than controls, respectively (Figure 4.7C). As previously noted, GCDH 

catalyses the reduction of ETF as part of lysine and tryptophan degradation, thereby 

providing electrons towards OXPHOS (Besrat, Polan et al. 1969). On the other hand, FAH 

catalyses the final step of phenylalanine degradation, resulting in provision of the TCA 
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cycle intermediate fumarate. Together, both of these enzymes are therefore important for 

mediating the mitochondrial utilisation of lysine, tryptophan, and phenylalanine as 

alternative sources of oxidisable substrate. Thus, their elevated expression could reflect 

increased degradation of these amino acids to assist with driving respiration. In particular, 

decreased phenylalanine levels were previously reported in ME/CFS patient sera and 

plasma (Armstrong, McGregor et al. 2015; Germain, Barupal et al. 2020), which would be 

consistent with its increased degradation.  

Figure 4.7: Expression of proteins involved in mitochondrial glutamine, BCAA, lysine, 

tryptophan and phenylalanine utilisation is elevated in ME/CFS lymphoblasts. Error bars 

represent standard error of the mean. RNA sequencing transcriptomics experiment: ME/CFS n = 

23, control n = 17. Mass spectrometry proteomics experiment: ME/CFS n = 34, control n = 31. 

Each cell line was sampled once, or twice for a subset of healthy controls arbitrarily selected to act 

as an internal control between experiments in the mass spectrometry proteomics work. (A) 

Expression of the three enzymes mediating mitochondrial utilisation of glutamate (GLS, GLUD1 

and GOT2) were elevated in the whole-cell proteomes and proteomes of ME/CFS lymphoblasts and 

control lymphoblasts (t test, p < 0.05 in all three cases), while each trended upwards but were not 

significantly elevated at the transcript level. Relative protein abundance was obtained from iBAQ 

values normalised to the control average within the respective individual experiments. Counts per 

million mapped reads were calculated for each gene transcript. (B) In ME/CFS lymphoblasts, the 

expression of BCAT1 is unchanged at the protein and transcript levels, while BCAT2 was 

unchanged transcriptionally and not detected at the protein level. The levels of BCKDH subunits 

BCKDHA and BCKDHB are both significantly elevated at the transcriptional and protein levels (t 
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test, p < 0.05), with the exception of BCKDHA transcripts. Relative protein abundance was 

obtained from iBAQ values normalised to the control average within the respective individual 

experiments. Counts per million mapped reads were calculated for each gene transcript (C) The 

expression levels of GCDH and FAH were unchanged at the transcriptional level but elevated at 

the protein level (t test, p < 0.05) in ME/CFS lymphoblasts. Relative protein abundance was 

obtained from iBAQ values normalised to the control average within the respective individual 

proteomics experiments. Counts per million mapped reads were calculated for each gene transcript.  

4.2.5 Expression of Proteasome Subunits is Elevated in ME/CFS 

Lymphoblasts 

If ME/CFS lymphoblasts do catabolise such a broad array of amino acids for energy at 

faster rates in accordance with the elevated expression of these various enzymes, the 

degradation of cellular proteins could also be affected, since it could constitute an 

accessible source of free amino acids. This is particularly likely given that lysine, 

tryptophan, and phenylalanine are all essential amino acids and cannot synthesised de novo 

in human cells. While following the trend of downregulation of many pathways at the 

transcriptional level, expression of the proteasome complex subunits was significantly 

elevated in the proteomes of ME/CFS lymphoblasts compared with controls (Figures 4.8A 

and 4.8B), implying the upregulation of targeted protein degradation. This was not revealed 

in the global PANTHER pathway analysis because proteasomal protein degradation does 

not feature in the reactome pathways in PANTHER, but is instead treated as a subcellular 

location. In any case, the upregulated expression of proteasome subunits that was observed 

here suggests elevated intracellular protein turnover in ME/CFS lymphoblasts. As a source 

of free amino acids this could act to provide the inefficient mitochondria with additional 

oxidisable substrate. It could also reflect elevated degradation of misfolded proteins 

naturally accompanying the translational upregulation of many proteins in ME/CFS 

lymphoblasts.  
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Figure 4.8: Expression of proteasome complexes in ME/CFS lymphoblasts is upregulated at 

the protein level but downregulated at the transcript level. Error bars represent standard error 

of the mean. Each cell line was sampled once, or twice for a subset of healthy controls arbitrarily 

selected to act as an internal control between experiments in the mass spectrometry proteomics 

work. (A) 46 proteasome complex subunits were detected within the whole-cell proteomes of 

ME/CFS and control lymphoblasts. Fold-change refers to the mean abundance of a given protein in 

the CFS group divided by the mean abundance in the control group. The fraction of detected 

proteins that were upregulated (binomial test with Ho set to 0.5) and the average extent of the 

upregulation (single sample t test with Ho m = 1) were statistically significant. Mass spectrometry 

proteomics experiment: ME/CFS n = 34, control n = 31. (B) 48 RNA transcripts encoding 

proteasome complex subunits were detected within the whole-cell transcriptomes of ME/CFS and 

control lymphoblasts. Fold-change refers to the mean abundance of a given transcript in the CFS 

group divided by the mean abundance in the control group. The fraction of detected transcripts that 

were downregulated (binomial test with Ho set to 0.5) and the average extent of the downregulation 

(single sample t test with Ho m = 1) were statistically significant. RNA sequencing transcriptomics 

experiment: ME/CFS n = 23, control n = 17. 

4.3 Discussion 

The results presented in this chapter demonstrate that ME/CFS cells express unchanged 

levels of glycolytic enzymes but elevated levels of enzymes involved in the pentose 

phosphate pathway, as well as protein, amino acid and fatty acid degradation. This striking 

pattern of dysregulated expression of catabolic enzymes provides strong support for 

previous metabolomics (Armstrong, McGregor et al. 2015; Fluge, Mella et al. 2016; 

Germain, Barupal et al. 2020), glycolytic flux (Tomas, Brown et al. 2017) and my own 

mitochondrial function measurements, suggesting a metabolic shift towards alternatives to 
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glycolytic provision of oxidisable substrates to the mitochondria. Rather than being 

mediated by a reduction in glycolytic function, the results presented here support that this 

shift is caused by an elevation of alternative catabolic pathways. The observation of an 

inefficiency in respiratory ATP synthesis by mitochondrial Complex V in ME/CFS cells 

suggests that this metabolic shift might be compensatory, while the elevated activity of 

TORC1 (and possibly AMPK) suggest that it is mediated by cellular stress signalling 

pathways. 

A feature of these results is the striking difference in the pattern of expression changes at 

the RNA and protein levels. The proteomics revealed a broad pattern of elevated expression 

of proteins involved in alternatives to glycolytic provision and catabolism of oxidisable 

substrates for mitochondrial respiration. By contrast, the levels of transcripts encoding 

these proteins were, in many cases, either unchanged or decreased. This is an unexpected 

but important insight into the underlying cytopathological mechanisms of ME/CFS. It 

suggests that the overall pattern of dysregulation in ME/CFS cells is a result of a network 

of normally homeostatic pathways, including competing antagonistic elements like 

elevated TORC1 and AMPK activities, that regulate gene expression and metabolism at the 

transcriptional, translational and posttranslational levels (Hindupur, Gonzalez et al. 2015). 

The major pathways that were found to be dysregulated in this way are β-oxidation of fatty 

acids, glutamine metabolism, branched-chain amino acid catabolism and proteasomal 

protein degradation.  

4.3.1 Preferential Fatty Acid β-oxidation and Dysregulated Intracellular 

Energy-Stress Signalling  

Mitochondrial enzymes involved in the β-oxidation of fatty acids are amongst the many 

proteins whose expression is upregulated by PGC1α and thus indirectly by TORC1. Fatty 

acid β-oxidation provides acetyl-CoA to the TCA cycle, as does glycolysis, but it yields 

more ATP per oxidised carbon than does glycolysis. This also makes thermodynamic sense, 

given the more highly reduced state of the carbons in fatty acid chains compared to those 

in sugar molecules. It has been proposed by others that ME/CFS cells could shift their 

metabolism in favour of fatty acid β-oxidation because of a deficiency in glycolysis 

(Armstrong, McGregor et al. 2015; Mandarano, Maya et al. 2019) or PDH which partially 

oxidises pyruvate and supplies acetyl-CoA to the TCA cycle (Fluge, Mella et al. 2016). The 
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PPP is another potential alternative, which can oxidise sugars in the cytosol to generate 

reducing power that can be transported into the mitochondria to drive electron transport. 

My results support the existence of a metabolic shift, but no deficiencies in glycolysis rates, 

glycolytic reserve or glycolytic capacity were observed. Although there have been reports 

of reduced glycolytic reserve in a small sample of quiescent ME/CFS NK cells (Nguyen, 

Staines et al. 2018), this contrasts with reports by others (Tomas, Brown et al. 2017) and 

my own observations here, both of which are consistent in this regard and used larger 

sample sizes. Instead of impaired glycolytic capacity driving the shift in metabolism, my 

results suggest that the change may be driven by dysregulated energy-stress signalling and 

elevated usage of alternatives such as the β-oxidation of fatty acids and the PPP.  

In addition to the other β-oxidation enzymes which were found to be upregulated, more 

highly expressed enzymes such as very long-chain specific acyl-CoA dehydrogenase 

(ACADVL) and acyl-CoA Oxidase 1 (ACOX1) suggest elevated VLCFA utilisation. This 

is consistent with the decreased sphingolipids in ME/CFS patient plasma reported by 

Naviaux et al. (Naviaux, Naviaux et al. 2016), since VLCFA are derived from these. 

Similarly, elevated fatty acid β-oxidation briefly suggested in metabolomics work by others 

(Germain, Barupal et al. 2020) is also consistent with my cellular observations here, if the 

rates of fatty acid β-oxidation are indeed upregulated in accordance with expression of the 

enzymes involved. Sweetman et al. observed elevated levels of enzymes involved in ketone 

body metabolism in the proteomes of ME/CFS PBMCs, which could indicate increased 

oxidation of fatty acids and their derivatives through the TCA cycle (Sweetman, Kleffmann 

et al. 2020). More strikingly within this same study, acyl-CoA dehydrogenases  and the 

beta subunit of mitochondrial trifunctional enzyme (HADHB), specifically, were elevated 

in their expression in PBMCs (Sweetman, Kleffmann et al. 2020) – an observation shared 

in my own work here with lymphoblasts. This is in addition to shared observations of 

elevated expression of OXPHOS complex subunits - prominently Complexes I and V - and 

proteins in substrate-providing pathways such as the TCA cycle (Sweetman, Kleffmann et 

al. 2020). Since the Sweetman study examined nonimmortalised PBMCs (from which 

lymphoblasts are derived), this confirms that the upregulated respiratory capacity and 

upregulation of substrate-providing mitochondrial pathways exhibited by ME/CFS 

lymphoblasts is present independent of immortalisation. 
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Despite this broad agreement, there remain some discrepancies in the literature regarding 

fatty acid β-oxidation. The reduced FAD levels reported by Naviaux et al. and reduced 

carnitines reported by Nagy-Szakal et al. are interpreted as hindering fatty acid β-oxidation 

(Naviaux, Naviaux et al. 2016; Nagy-Szakal, Barupal et al. 2018). Since these and other 

previously mentioned studies draw inferences as to cellular function from the levels of 

blood metabolites, and my work here only investigated expression levels, more direct 

measures of fatty acid β-oxidation rates in a cellular context should continue to be pursued 

in the future. One previous study along these lines used Seahorse respirometry and reported 

unchanged fatty acid utilisation rates in permeabilised PBMCs from ME/CFS patients 

(Tomas, Brown et al. 2019). However, the metabolic quiescence and greater death rates of 

ME/CFS lymphocytes which was demonstrated in Chapter 3 may have obscured 

differences in this study, as may have the loss of cytoplasmic context due to 

permeabilisation. Respiration rates provisioned by fatty acid utilisation were also found to 

be unchanged in skeletal muscle cells from ME/CFS patients, contrary to the authors’ 

expectations of elevated, compensatory β-oxidation as part of a shift away from glucose 

metabolism (Tomas, Elson et al. 2020). The expected increase may have been absent due 

the reduced exercise that ME/CFS patients can undertake, since exercise upregulates 

mitochondrial biogenesis and function in muscle (O'Neill, Maarbjerg et al. 2011). Another 

possibility is that metabolism by proliferative cells (exemplified by lymphoblasts) and non-

proliferative cells (exemplified by muscle cells) in ME/CFS differ in their patterns of 

substrate utilisation or in their capacity to be metabolically adaptive. Direct assays of fatty 

acid utilisation rates in lymphoblasts and of protein expression in muscle cells are therefore 

needed in future studies to confirm whether the rates of fatty acid β-oxidation and 

expression of the involved enzymes are altered in concert with one another in both ME/CFS 

lymphoblasts and muscle cells.  

Accompanying the upregulation of β-oxidation enzymes, a statistically non-significant 

~17% increase in the level of phosphorylation of acetyl-CoA carboxylase (ACC) was 

observed in ME/CFS lymphoblasts. If confirmed in future work, this possible increase in 

AMP-activated protein kinase (AMPK) inhibition of ACC would suggest a shift towards 

catabolism rather than biosynthesis of fatty acids. On the other hand, mammalian target of 

rapamycin complex 1 (TORC1) is known to activate the transcription factor sterol 

regulatory element-binding protein-1 (SREBP-1) as part of the Akt signalling pathway and 

to thereby upregulate expression of ACC and fatty acid synthase (FASN) and fatty acid 
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biosynthesis (Peng, Golub et al. 2002; Brown, Stefanovic-Racic et al. 2007; Porstmann, 

Santos et al. 2008). Since TORC1 is chronically hyperactive in ME/CFS lymphoblasts 

(Missailidis, Annesley et al. 2020), elevated levels of the ACC1 and FASN transcripts were 

expected. It was found that both trended upwards in ME/CFS lymphoblasts but did not 

reach statistical significance. Nonetheless the results are consistent with the elevation of 

TORC1 activity and downstream activation of SREBP-1. SREBP-regulated transcription 

was amongst the pathways found to be upregulated in the PANTHER analysis of the 

transcriptomics data (Table 4.1). Despite this possible upregulation of ACC and FASN 

transcription, no evidence was found of elevated levels of either protein (proteomics and 

plate reader assays). If anything, these trended downwards (Figure 4.6) and, if confirmed 

in future work, this would also suggest a metabolic shift in favour of fatty acid catabolism.  

4.3.2 Dysregulation of Glutamine Metabolism 

The elevated expression of enzymes involved in mitochondrial glutamine degradation 

which I have observed here is consistent with the reductions in blood glutamine levels 

previously reported in ME/CFS patients (Armstrong, McGregor et al. 2012; Armstrong, 

McGregor et al. 2015; Fluge, Mella et al. 2016). This strongly suggests elevated usage of 

glutamine as a mitochondrial substrate by ME/CFS cells. Such dysregulation of glutamine 

metabolism would have far-reaching consequences given its importance in many cellular 

processes.  

While also serving to replenish metabolic intermediates and reducing equivalents to aid 

with driving respiration, mitochondrial glutamine degradation itself activates TORC1 

signalling (Duran and Hall 2012; Duran, Oppliger et al. 2012). This is thought to occur 

following glutamate deamination to α-KG by glutamate dehydrogenase (GLUD1) (Duran 

and Hall 2012), one of the enzymes whose expression was found is elevated. The α-KG is 

shuttled into the cytosol by the mitochondrial transporter protein SLC25A11 (Stine and 

Dang 2020) where it activates TORC1 via the activation of prolyl hydroxylases (Duran, 

MacKenzie et al. 2013). While no members of the prolyl hydroxylase family were detected 

in the whole-cell proteomics experiments, SLC25A11 was well detected and significantly 

elevated in its expression (Appendix Figure A8.1). SLC25A11 was also found to be 

upregulated in ME/CFS PBMCs by Sweetman et al. (Sweetman, Kleffmann et al. 2020).  
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If mitochondrial glutamine utilisation is indeed increased as suggested by the elevated 

expression of the enzymes involved, it could contribute to the chronic hyperactivation of 

TORC1 in ME/CFS lymphoblasts. This is particularly likely given the most potent amino 

acid activator of TORC1 (leucine) (Hara, Yonezawa et al. 1998) has been proposed to do 

so specifically by allosteric activation of GLUD1 and upregulation of mitochondrial 

glutamine catabolism (Duran, Oppliger et al. 2012). Further work should be undertaken to 

clarify the cause-effect relationships involved in TORC1 activation in ME/CFS 

lymphoblasts. 

Increased glutamate flux to aspartate catalysed by GOT2 is suggested in my results by the 

elevation of mitochondrial aspartate aminotransferase (GOT2) expression and has been 

proposed in metabolomic studies by others (Armstrong, McGregor et al. 2015). As earlier 

described, this mechanism is an important component of the malate-aspartate shuttle 

(MAS) which balances cytosolic and mitochondrial redox status. In ME/CFS lymphoblasts, 

the cytoplasmic enzyme malate dehydrogenase (MDH1) which is critical in the MAS was 

also elevated in its expression (Appendix Figures A7.1A and A8.1). While the MAS is 

important for providing reducing equivalents for OXPHOS, its functions are also necessary 

to facilitate other dysregulated processes which provide ME/CFS mitochondria with 

oxidisable substrate, such as peroxisomal fatty acid β-oxidation. Peroxisomal  β-oxidation 

generates NADH and is sustainable when mitochondrial shuttling mechanisms are 

available to oxidise NADH back to NAD+ (Wanders, Waterham et al. 2015). Increased 

MAS activity in ME/CFS lymphoblasts would therefore act not only to support respiration 

directly by the replenishment of mitochondrial reducing equivalents, but would also 

indirectly assist with providing the TCA cycle with acetyl-CoA derived from alternative 

sources such as VLCFA.  

The elevated expression of these enzymes which was observed in ME/CFS lymphoblasts 

adds to the accumulating body of evidence from proteomics and metabolomics supporting 

hypercatabolism of glutamine in ME/CFS cells, so direct assays of glutamine utilisation 

rates in ME/CFS lymphoblasts or other metabolically active cell types are warranted in 

future work to confirm this. It will be important to assess this in actively metabolising, 

proliferative cells given that prior work by others found no difference in glutamine-assisted 

respiration in metabolically quiescent, permeabilised PBMCs and a small sample of 

permeabilised myotubes (Tomas, Brown et al. 2019). Since conventional mammalian cell 
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culture medium is supplemented with glutamine in physiological abundance to satisfy 

proliferative cell metabolism programmes (Wise, DeBerardinis et al. 2008), it would also 

be useful to test the effects of varying glutamine availability in culture on ME/CFS and 

control lymphoblasts.  

Glutamine-derived α-KG is critical for the induction of epigenetic modifications by DNA 

and histone demethylases (Schvartzman, Thompson et al. 2018). Because of this, increased 

usage of glutamine and TCA cycle intermediates to drive mitochondrial respiration could 

be associated with changes in the levels of DNA and histone methylation. This could be 

important given the large number of upregulated and even larger number of downregulated 

transcripts in the ME/CFS lymphoblast transcriptomes. Multiple studies examining DNA 

methylation in ME/CFS patients have taken place in recent years (Brenu 2014; de Vega, 

Vernon et al. 2014; de Vega, Herrera et al. 2017; de Vega, Erdman et al. 2018; Trivedi, 

Oltra et al. 2018). These studies examining differential methylation status have been 

recently reviewed, with the proportions of differentially hypo- or hyper-methylated sites in 

ME/CFS being inconsistent across studies (Almenar-Perez, Ovejero et al. 2019). More 

recently, Helliwell et al conducted the first epigenetic study to employ reduced 

representation bisulphite sequencing, which is capable of greater CpG site coverage than 

previous array based methods (Helliwell, Sweetman et al. 2020). This study found 

significant differences in similar numbers of both hypo- and hyper-methylated sites in the 

genomes of PBMCs from ME/CFS patients, suggesting that significant epigenetic 

dysregulation is present but does not specifically favour hypo- or hyper-methylation. This 

contrasts with my observation of significantly more downregulated than upregulated 

transcripts in ME/CFS lymphoblasts. 

Within the regulatory regions of protein-coding genes investigated in the Helliwell study, 

it is worthwhile noting that the gene encoding the Complex 1 subunit NDUFA11 was 

hypomethylated (Helliwell, Sweetman et al. 2020). This is consistent with the elevated 

Complex 1 expression evident in my study of lymphoblasts as well as the same authors’ 

study of PBMCs (Sweetman, Kleffmann et al. 2020). Continued epigenetic studies utilising 

different cell types would be valuable, since it may be possible that in proliferative cell 

types such as lymphoblasts, factors such as altered gene expression programmes or 

glutamine depletion are accentuated and thus may impact DNA methylation status to a 

greater degree than in PBMCs. Of course, the reverse may also be the case given that EBV 
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immortalisation overwrites many epigenetic alterations while others are preserved (Ghosh 

Roy, Robertson et al. 2016). 

4.3.3 Dysregulated Branched-Chain Amino Acid and Protein Degradative 

Pathways 

Upregulation of the branched-chain ketoacid dehydrogenase (BCKDH) complex in 

ME/CFS lymphoblasts strongly indicates elevated mitochondrial catabolism of branched-

chain amino acids (BCAAs) as a source of oxidisable substrate and TCA cycle 

intermediates. It has been shown in mice that TORC1 function is essential for stimulating 

BCKDH degradation of BCAAs, since treatment with the TORC1 inhibitor rapamycin 

suppressed activation of the BCKDH complex (Zhen, Kitaura et al. 2016). Since TORC1 

is hyperactive in ME/CFS lymphoblasts, it was expected and indeed observed that 

expression of BCKDH was elevated in the ME/CFS proteomes. However, the increased 

degradation and depletion of BCAA that this would produce would not contribute to 

activation of TORC1, since elevated cellular BCAA concentrations activate TORC1 

(Neishabouri, Hutson et al. 2015). It seems likely that TORC1 activity upregulates BCAA 

degradation while TORC1 itself is activated by other phenomena in ME/CFS lymphoblasts, 

such as the increased mitochondrial degradation of glutamine.  

BCKDH activity is also regulated by inhibitory phosphorylation by its kinase BCKDK 

(Harris, Hawes et al. 1997), but the levels of BCKDK in ME/CFS lymphoblasts were not 

significantly different from those of healthy controls (Appendix Figure A8.1). It would be 

valuable to directly measure the rates of BCAA utilisation in ME/CFS lymphoblasts to 

confirm the directional shift in mitochondrial BCAA metabolism that is indicated by 

elevated BCKDH expression. 

A source of BCAAs and other amino acids, both as oxidisable substrates for the 

mitochondria and as activators of TORC1 is proteolysis. Proteolysis mediated by the 

ubiquitin-proteasome system results in the targeted degradation of intracellular proteins and 

the release of free amino acids. It is a normal response to insufficient caloric intake and is 

dysregulated in many diseases (Lecker, Goldberg et al. 2006). The elevated expression of 

proteasome subunits and assembly factors in ME/CFS lymphoblasts suggests that targeted 

protein degradation is upregulated. The recent proteomic study by Sweetman et al. 

(Sweetman, Kleffmann et al. 2020) also reported elevated expression of proteasome 
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subunits and assembly factors in ME/CFS PBMCs. Together with my results this provides 

compelling evidence that the ubiquitin-proteasome system is upregulated in lymphoid cells 

from ME/CFS patients. This would not only act to provide free amino acids, but may also 

be necessary to degrade the higher number of misfolded proteins which would naturally 

accompany the translational upregulation of many proteins in ME/CFS lymphoblasts. Since 

enzymes involved in the autophagic degradation of proteins were poorly detected in the 

whole-cell proteomes, it is uncertain whether the degradation of intracellular proteins by 

autophagy is also upregulated.  

Autophagy is stimulated by activation of the serine/threonine-protein kinase Ulk1 by 

AMPK, and inhibited by TORC1, while TORC1 itself is inhibited by AMPK activity (Kim, 

Kundu et al. 2011). However, concurrent activation of AMPK and TORC1 can still occur 

and result in sustained autophagy (Narita, Young et al. 2011; Dalle Pezze, Ruf et al. 2016). 

This could meet the need to degrade the increased number of misfolded proteins which 

naturally accompany the upregulated translation of proteins that is stimulated by TORC1 

(Conn and Qian 2011; Ciechanover and Kwon 2015), or to catabolically replenish 

metabolic intermediates used to support proliferative cell metabolism (Kaur and Debnath 

2015), such as those utilised in the TCA cycle. Given that the elevation of mean AMPK 

activity levels did not reach statistical significance, and that this occurred alongside 

elevated TORC1 activity in ME/CFS lymphoblasts, it is unclear whether to expect 

autophagy to be increased or decreased in these cells. Autophagy in ME/CFS would 

therefore benefit from future study. 

4.4 Conclusions 

This chapter aimed to examine in detail the pathways which provide oxidisable substrate 

to the mitochondria in ME/CFS lymphoblasts. Unchanged levels of glycolytic enzymes are 

consistent with unchanged rates of glycolysis also observed in these cells. My observations 

also demonstrate upregulated expression of enzymes involved in the PPP and mitochondrial 

degradation of amino acids for energy. Together these findings strengthen the proposal that 

ME/CFS lymphoblasts utilise specific mitochondrial substrate-providing pathways more 

highly in an “attempt” to compensate for their respiratory inefficiency by Complex V. 

Many of the pathways or proteins upregulated in my proteomic dataset overlap with recent 

work by others using nonimmortalised PBMCs (Sweetman, Kleffmann et al. 2020), 
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strongly indicating that these changes are inherent to lymphoid cells from ME/CFS patients. 

Combined analysis with my transcriptomic dataset indicates the upregulated expression of 

many mitochondrial proteins occurs at the translational level, likely stimulated by TORC1 

signalling. My early exploratory analysis of both datasets also indicated the broad 

activation of immunological pathways in ME/CFS lymphoblasts, which provides a basis 

for future hypotheses and examination. In addition, the 259 proteins and 2243 transcripts 

which were found to be significantly altered in expression, even after correction for 

multiple comparisons, highlight the possibility that diagnostic panels of differentially 

expressed genes may be successfully used in blood biomarker discovery work. The next 

chapter will focus on testing the power of these and the other key abnormalities to 

discriminate between ME/CFS and control PBMCs and lymphoblasts. The aim is to 

identify reliable cell-based blood biomarkers of disease which are informed by these new 

insights into the underlying cytopathology.  
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5.0 Identifying Cell-Based Blood Biomarkers for ME/CFS  

5.1 Introduction 

ME/CFS is amongst the chronic diseases which most adversely affect quality of life (Falk 

Hvidberg, Brinth et al. 2015). Despite this, diagnosis is often a slow process and, in the 

absence of a gold standard diagnostic biomarker, relies on internationally varying case 

criteria. The most commonly used definitions require the presence of post-exertional 

malaise for diagnosis, accompanied by combinations of other, variably presenting 

symptoms (Fukuda, Straus et al. 1994; Carruthers, Jain et al. 2003; Carruthers, van de 

Sande et al. 2011). Dependence on these cumbersome and varying definitions, which likely 

capture heterogenous patient populations, has presented a longstanding challenge for 

patients, clinical practice and the substantial body of ME/CFS research. The identification 

of robust biomarkers has consequently been one of the most recurring pursuits in the field, 

since it would allow for more rapid, specific and sensitive diagnoses of patients. While past 

and ongoing attempts at identifying such a diagnostic solution are numerous, none have yet 

resulted in a clinically proven biomarker of ME/CFS. It is therefore imperative that new 

diagnostic tools continue to be sought. 

To combat the subjectivity introduced by self-reported symptom scales, more objective 

clinical measures have been explored previously, such as hand grip strength (Nacul, Mudie 

et al. 2018) or orthostatic intolerance (Richardson, Lewis et al. 2018). These physical 

measures have been demonstrated to have value in stratifying ME/CFS patients by disease 

state/severity and in aiding the separation of patients from healthy subjects. Measures of 

physical ability may, however, be confounded by other conditions. Such tools are therefore 

very useful for the clinical characterisation of patients but are not proven specific to this 

disease. This highlights the unmet need for specific, molecular biomarkers of ME/CFS. 

Accordingly, molecular biomarkers have been pursued across multiple areas of research. 

For example, the role of the immune system in ME/CFS has been studied for decades, 

raising cytokines as potential biomarkers of disease whose clinical utility would be aided 

by their accessibility in blood (Brenu, van Driel et al. 2011; Hornig, Montoya et al. 2015; 

Landi, Broadhurst et al. 2016; Lidbury, Kita et al. 2017; Montoya, Holmes et al. 2017; 

Moneghetti, Skhiri et al. 2018; Lidbury, Kita et al. 2019). Other cytokine studies have 

utilised cerebrospinal fluid (Peterson, Brenu et al. 2015; Hornig, Gottschalk et al. 2016), 

the acquisition of which is more invasive than drawing blood, and so could be less amenable 
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to a routine diagnostic test. Despite the number of studies, these reports as a whole are 

largely inconsistent for individual cytokines (Mensah, Bansal et al. 2017; Yang, Yang et 

al. 2019), with initially promising candidates such as transforming growth factor beta 1 

being subsequently refuted (Roerink, van der Schaaf et al. 2018). Therefore, the utility of 

cytokine measurements as such an ME/CFS diagnostic tool remains uncertain. 

By contrast, studies reporting altered levels of metabolites in the blood of ME/CFS patients 

(Armstrong, McGregor et al. 2012; Armstrong, McGregor et al. 2014; Armstrong, 

McGregor et al. 2015; Fluge, Mella et al. 2016; Naviaux, Naviaux et al. 2016; Yamano, 

Sugimoto et al. 2016; Germain, Ruppert et al. 2017; Germain, Ruppert et al. 2018) are 

thought to reflect broader pathway alterations that are largely consistent, albeit with 

discrepancies in the specifics between studies (Germain, Ruppert et al. 2018). Such 

metabolite differences have been proposed as potential candidates for diagnostic blood tests 

(Armstrong, McGregor et al. 2012; Naviaux, Naviaux et al. 2016; Yamano, Sugimoto et al. 

2016; Germain, Ruppert et al. 2017; Germain, Ruppert et al. 2018). One strength of a 

diagnostic test which measures multiple molecular parameters is that the likelihood of other 

diseases displaying the same biochemical pattern is low. However, the techniques utilised 

in these studies (mass spectrometry or nuclear magnetic resonance spectroscopy) may be 

subject to rapid fluctuations with patient diet and activity, as well as requiring strict sample 

acquisition and handling conditions (Ghini, Quaglio et al. 2019; Santos Ferreira, Maple et 

al. 2019) and expensive, specialised equipment. These requirements could introduce 

challenges in a broad clinical setting. Further investigation is therefore warranted, both to 

address the clinical suitability of blood-based metabolite measurements for diagnosing 

ME/CFS, and to better understand the remaining inconsistencies.  

The ideal molecular biomarkers would be straightforward to sample and assess, and exhibit 

high sensitivity and specificity. For these reasons, the search for biomarkers has extended 

to investigating the utility of routine blood pathology tests, but the results are either 

inconsistent (Lidbury, Kita et al. 2017; Lidbury, Kita et al. 2019) or require further study 

(Nacul, de Barros et al. 2019). The recent development of a nanoneedle bioarray to measure 

the electrical impedance of ME/CFS PBMCs in plasma is highly promising, but requires 

identification of the underlying mechanism and proven specificity for ME/CFS 

(Esfandyarpour, Kashi et al. 2019). Therefore, the need for a simple blood-based biomarker 

remains currently unfulfilled. 
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It has long been suspected that mitochondrial dysfunction might play a role in the 

cytopathology, but the small number of direct investigations of this had produced 

confusing, contradictory results. In previous chapters, both specific mitochondrial 

dysfunction and cellular signalling dysregulation were demonstrated in ME/CFS patient 

blood-derived lymphoblasts, as well as an associated reduction in the viability in culture of 

ex vivo, stored lymphocytes from patients versus healthy controls. The discriminatory 

utility of these differences and others present in my whole-cell proteomic and 

transcriptomic datasets is now examined as the foundation of a potential blood-based 

diagnostic test. Subsets of the information contained within this chapter have been 

published in a research article (Missailidis, Sanislav et al. 2020). 

 

5.2 Results 

5.2.1 ME/CFS and Control Blood Samples Can be Distinguished by the 

Viability in Culture of Frozen Peripheral Blood Lymphocytes 

It was shown in Chapter 3 that after recovery from frozen storage, lymphocytes from 

ME/CFS patients die markedly faster in culture than those from healthy controls. A time 

course revealed that the percentage of dead cells, and the difference between patients and 

controls, increased dramatically from 24 to 72 h of culture. To determine the utility of this 

difference in viability for distinguishing patient and control lymphocytes, logistic 

regression modelling and analysis was used (Table 5.1). To assess whether candidate 

biomarkers (such as the lymphocyte death rate) would be effective in correctly diagnosing 

ME/CFS in newly obtained samples, in this and all subsequent analysis 70% of the sample 

was randomly assigned for use as a training set, while the remaining 30% was used as a 

test data set. The results shown throughout reflect the outcomes when the resulting model 

was applied to the respective overall dataset.  

The results of this analysis showed an overall error rate close to 20% (Table 5.1). However, 

the relative frequencies of false positives and false negatives were skewed in favour of a 

low fraction (<10%) of ME/CFS patients being incorrectly classed as “controls”, while 

about 40% of the controls were incorrectly classed as ME/CFS. 
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Clinical Group Actual Count 
Test Class % 

Error ME/CFS Control 

ME/CFS 57 52 5 8.8 

Control 33 13 20 39.4 

TOTAL 90 65 25 20.0 

Table 5.1: Error matrix analysis of lymphocyte death rate after 48 h in culture medium. 

 

The percentage of dead lymphocytes in culture at all three time points (24, 48 and 72 h) 

was also used in multiple logistic regression to determine if that approach would produce 

better discrimination between patients and controls (Table 5.2). The overall error rate was 

again close to 20%, although the frequency of false negatives was slightly higher and the 

frequency of false positives was slightly lower than when using the 48 h death rate alone. 

The results from this logistic regression analysis showed that the percentage of dead 

lymphocytes after 48 h culture performed just as well as regressing the viability against 

incubation time. The single time point assay would be simpler and cheaper to use for 

clinical purposes. These results suggest that lymphocyte isolation, frozen storage and 

subsequent testing for viability after 48 h in culture provides a reliable biomarker for 

distinguishing ME/CFS and healthy control blood samples. 

 

Clinical Group Actual Count 
Test Class % 

Error ME/CFS Control 

ME/CFS 57 47 10 17.5 

Control 33 8 25 24.2 

TOTAL 90 65 25 20.0 

Table 5.2: Error matrix for logistic regression analysis of lymphocyte death rate after 24, 48 

and 72 h in culture medium. 

 

During the course of the project, before being used for lymphoblast isolation or biochemical 

studies, lymphocytes were kept frozen at −80 °C for differing lengths of time ranging from 

a few days to almost 3.5 years. It has been previously reported that lymphocytes remain 

viable for long periods in frozen storage under similar conditions (Valeri and Pivacek 

1996). Because biomarker stability is important in the face of varying circumstances, such 

as the time of frozen storage of the sample, it was verified that the death rate of lymphocytes 
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recovered from frozen storage and kept in culture for 48 h was not significantly altered by 

the time spent in storage (Figure 5.1). 

 

Figure 5.1: Time in frozen storage has no effect on the viability of lymphocytes after recovery 

and incubation in culture medium for 48 h. Some individuals were sampled on more than one 

occasion and some samples were tested at more than one storage time point using separately frozen 

aliquots. The sample sizes indicated (n) are the number of individuals shown. Since the storage time 

had no effect in either ME/CFS patient or control samples, multiple samples tested from the same 

individual were averaged for subsequent analysis. The fraction of dead cells was greater in ME/CFS 

lymphocytes. Significance probabilities shown are from pairwise t tests of the difference in means. 

Subsets of the lymphocyte viability counts were conducted by Oana Sanislav and Dr Sarah 

Annesley. 

To further assess the biomarker potential of measuring the death rate of frozen lymphocytes 

after recovery and culture for 48 h, ROC analysis of the propensity score from the logistic 

regression was conducted (Figure 5.2). The results showed that using the “best” threshold 

(maximising the sum of the sensitivity and specificity) of 0.57 for the propensity score is 

effective, and this corresponded to a threshold of 16% in the 48 h lymphocyte death rate. 

The specificity at this threshold was 74% (26% false positives) and the sensitivity was 85% 

(15% false negatives). As anticipated, this ROC analysis represents a similar overall 

performance, but a smaller difference between sensitivity and specificity, compared to the 

threshold of 0.5 for the propensity score in the logistic regression analysis in Table 5.1. The 

area under the ROC curve (AUC), a measure of reliability, indicated that the 48 h 
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lymphocyte death rate could be a useful clinical test, bearing in mind that the result can be 

obtained from a small blood sample within a few days. For comparison with another 

chronic disease, clinical diagnosis of idiopathic Parkinson’s disease (PD) by a neurologist 

is able to achieve a reliability of about 70% with high sensitivity (ca. 90%), but low 

specificity (ca. 60%) (relative to postmortem neuropathological diagnosis), the low 

specificity being partly due to confusion with similar diseases (Hughes, Daniel et al. 2002; 

Joutsa, Gardberg et al. 2014). More reliable diagnosis of PD can be achieved by movement 

disorder specialists. 

Figure 5.2: Logistic regression and ROC analysis of the percentage of dead lymphocytes after 

48 h post-storage culture. (A) Box plot showing the distribution of the propensity score in logistic 

regression of the sample type against the fraction of dead lymphocytes observed after recovery from 

frozen storage and 48 h culture. The resulting regression coefficients are as indicated. The boxes 

show the median and the 25th and 75th percentiles, so that the height of the box is the interquartile 

range (IQR). The whiskers extend to the most extreme observations (largest and smallest) falling 

within ±1.5 × IQR of the box. The ME/CFS and control sample sizes were 57 and 33 individuals, 

respectively. Scores greater than 0.5 lead to classification of a sample as ME/CFS in the error 

matrix. (B) ROC analysis of the propensity score, plotting sensitivity (proportion of true positives) 

against specificity (proportion of true negatives) with 95% confidence limits (blue shading). The 

fractional area under the curve (AUC) is shown with 95% confidence limits. The “best” threshold 

for the propensity score (0.57) is shown, together with the specificity (0.74) and sensitivity (0.85) 

at that threshold. 
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5.2.2 Immortalised Lymphocytes from ME/CFS and Control Blood 

Samples Can be Distinguished by Mitochondrial and Cellular 

Respiratory Dysfunction  

Although the lymphocyte death rate in culture provides a simple and potentially useful test, 

the diagnosis of ME/CFS would benefit from even higher sensitivity and specificity than 

this assay was able to provide. It was earlier shown that immortalised lymphocytes 

(lymphoblasts) from ME/CFS patients exhibit significant abnormalities in mitochondrial 

and cellular respiratory function. The key measures of mitochondrial and cellular 

respiratory function that were changed in patients, compared to controls, were the 

mitochondrial membrane potential (ΔΨm), the rate of O2 consumption (OCR) by ATP 

synthesis and the proton leak (as fractions of the basal respiration rate), the maximum OCR 

by uncoupled mitochondria, the uncoupled activity of Complex I and the non-mitochondrial 

OCR (a surrogate measure of overall metabolic rate). These parameters were used in 

multiple logistic regression to determine their efficacy in distinguishing ME/CFS and 

control patients. Of these measures, all but ΔΨm are obtained from the same respirometry 

experiments. For this reason, it was worthwhile to determine if ΔΨm improved the 

discriminatory performance of the model. The results using the five respiration measures 

with and without ΔΨm were therefore compared. The outcome (Table 5.3) showed there 

was a small benefit in using the assay of ΔΨm in addition to the respirometry—the error 

matrices revealed slightly higher test specificity and sensitivity and there was an overall 

error rate reduction of approximately 5%. 

 

Variables Clinical 

Group 

Actual 

Count 

Test Class % 

Error ME/CFS Control 

 

Respiratory function and 

ΔΨm 

ME/CFS 44 42 2 4.5 

Control 19 6 13 31.6 

TOTAL 63 48 15 12.7 

 

Respiratory function only ME/CFS 44 41 3 6.8 

Control 19 8 11 42.1 

TOTAL 63 49 14 17.4 

Table 5.3. Error matrix analysis of lymphoblast respiratory function and mitochondrial 

membrane potential (ΔΨm). 
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Figure 5.3 shows the results of ROC analysis and a box plot of the propensity scores from 

logistic regression of the five key respiratory parameters both with and without ΔΨm. At 

the “best” threshold of the regression propensity score without ΔΨm, the false positive error 

rate was 32% and the false negative error rate was 7%, with an AUC of 0.81. At the “best” 

threshold of the regression propensity score with ΔΨm included in the logistic regression 

model, the false positive error rate was 21% and the false negative error rate was 5%, with 

an AUC of 0.90. However, this improvement was not statistically significant in a paired 

ROC comparison test (p = 0.0685). The ROC curve (for the ability of the lymphoblast 

respirometry measures to discriminate between ME/CFS patients and controls) both with 

and without ΔΨm was not significantly different from that obtained using the 48 h 

lymphocyte death rate (p = 0.563 with ΔΨm, p = 0.0963 without ΔΨm). It is concluded that 

for diagnostic purposes, the performance of the two tests (48 h lymphocyte death rate and 

lymphoblast respirometry) is statistically similar and either could be used as a biomarker 

for ME/CFS.  
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Figure 5.3: Logistic regression and ROC analysis of lymphoblast respiration as an ME/CFS 

biomarker. (A) Box plot showing the distribution of the propensity score from logistic regression 

of participant type against 5 key respiratory parameters. The resulting regression coefficients are as 

indicated. The boxes show the median and the 25th and 75th percentiles, so that the height of the box 

is the interquartile range (IQR). The whiskers extend to the most extreme observations (largest and 

smallest) falling within ±1.5 × IQR of the box. The ME/CFS and control sample sizes were 44 and 

19 individuals, respectively. Each point represents a single individual. Scores greater than 0.5 lead 

to classification of a sample as ME/CFS in the error matrix. (B) ROC analysis of the propensity 

score, plotting sensitivity (proportion of true positives) against specificity (proportion of true 

negatives) with 95% confidence limits (blue shading). The fractional area under the curve (AUC) 
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is shown with 95% confidence limits. The “best” threshold for the propensity score (0.52) is shown, 

together with the specificity (0.68) and sensitivity (0.93) at that threshold. (C) Box plot showing 

the distribution of the propensity score from logistic regression of participant type against 5 key 

respiratory parameters. The resulting regression coefficients are as indicated. The boxes show the 

median and the 25th and 75th percentiles, so that the height of the box is the interquartile range (IQR). 

The whiskers extend to the most extreme observations (largest and smallest) falling within ±1.5 × 

IQR of the box. The ME/CFS and control sample sizes were 44 and 19 individuals, respectively. 

Each point represents a single individual. Scores greater than 0.5 lead to classification of a sample 

as ME/CFS in the error matrix. (D) ROC analysis of the propensity score, plotting sensitivity 

(proportion of true positives) against specificity (proportion of true negatives) with 95% confidence 

limits (blue shading). The fractional area under the curve (AUC) is shown with 95% confidence 

limits. The “best” threshold for the propensity score (0.51) is shown, together with the specificity 

(0.79) and sensitivity (0.95) at that threshold. 

5.2.3 Immortalised Lymphocytes from ME/CFS and Control Blood 

Samples Can be Distinguished by the Phosphorylation State of 4E-BP1, a 

TORC1 Kinase Substrate 

The foregoing results showed that good biomarkers for ME/CFS are provided by both the 

death rates of stored lymphocytes after 48 h in culture medium and the respiratory function 

of cultured lymphoblasts derived from them. In both cases, the optimal thresholds were 

found to discriminate ME/CFS from control cells with a reliability better than 85% (AUC), 

with an overall error rate of less than 20%. However, in both cases, the errors at these 

“optimal” thresholds were not proportionately distributed between the patients and 

controls. Thus, although most (~80+%) of the patient samples were correctly identified as 

such (high sensitivity), the specificity was relatively low in that ~30-40% of the control 

samples were also classed incorrectly as being ME/CFS. Using ROC analysis to find the 

best threshold to minimise the error rates resulted in some improvement, but specificity was 

still lacking (0.79 using the best model). Similar analysis was therefore conducted to 

determine whether the elevated TORC1 activity in lymphoblasts might perform better as a 

biomarker of ME/CFS than the lymphocyte death rates or the lymphoblast respiratory 

dysfunction.  
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The results (Table 5.4) showed that the lymphoblast TORC1 activity assay also produced 

an overall error rate of about 20%. In ROC analysis (Figure 5.4) the AUC was 0.88 and at 

the “best” threshold of 0.43 the specificity was 0.81 and sensitivity was 0.90. This suggests 

that the TORC1 activity assay was no better a discriminator than the 48 h lymphocyte death 

rate or the lymphoblast respiratory dysfunction, which was confirmed by paired ROC curve 

comparisons (p = 0.673 compared with the death rate model and p = 0.837 compared with 

the respiratory model). 

Clinical Group Actual Count 
Test Class % 

Error ME/CFS Control 

ME/CFS 41 32 9 22 

Control 21 4 17 19 

TOTAL 62 36 26 21 
 

Table 5.4. Error matrix analysis of lymphoblast TORC1 activity. 

Figure 5.4: Logistic regression and ROC analysis of lymphoblast TORC1 activity. (A) Box 

plot showing the distribution of the propensity score from logistic regression of participant type 

against the logarithm of the relative TORC1 activity, measured as phosphorylation state of 4E-BP1 

(a specific cellular target of TORC1). The resulting regression coefficients are as indicated. The 

boxes show the median and the 25th and 75th percentiles, so that the height of the box is the 

interquartile range (IQR). The whiskers extend to the most extreme observations (largest and 

smallest) falling within ±1.5 × IQR of the box. The ME/CFS and control sample sizes were 41 and 

21 individuals, respectively. Each point represents a single individual. Scores greater than 0.5 lead 

to classification of a sample as ME/CFS in the error matrix. (B) ROC analysis of the propensity 

score, plotting sensitivity (proportion of true positives) against specificity (proportion of true 

negatives) with 95% confidence limits (blue shading). The fractional area under the curve (AUC) 
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is shown with 95% confidence limits. The “best” threshold for the propensity score (0.43) is shown, 

together with the specificity (0.81) and sensitivity (0.90) at that threshold. 

5.2.4 Whole-Cell Proteomics and Transcriptomics of ME/CFS 

Lymphoblasts Discriminates From Controls with High Accuracy 

In Chapter 4 an in-depth analysis of whole-cell proteomics and transcriptomics 

experiments using ME/CFS lymphoblasts was undertaken. Given that 259 proteins and 

2243 transcripts were significantly altered in ME/CFS lymphoblasts even after 

correcting for multiple comparisons, it was likely that combinations of the most 

differentially-expressed gene products would have value as biomarkers. 

In order to investigate this, each of the two datasets was sorted by most significantly 

altered (smallest Q values), and filtered by having at least a 20% mean fold change in 

the ME/CFS group in either direction from the healthy control mean. This produced a 

preliminary list of gene products from each experiment. These lists were then checked 

for the effects of gender and for maximum sample size coverage – no gene products in 

this analysis had a significant relationship with gender by ANOVA (p > 0.05) and all 

included gene products were detected in nearly every sample in the respective 

experiments. This process produced a working shortlist of candidate biomarkers from 

both the proteomics and the transcriptomics. Of the dozens of resultant gene products, 

discriminatory performance was relatively poor for single gene products compared 

with the previously analysed functional assays, often with error percentages in excess 

of 40%. The analysis was therefore focused on determining which combinations of 

multiple gene products yielded the best discriminatory performance.  

In the proteomics, the optimal model was produced by the logistic regression model 

produced using the levels of the following proteins: HADHA, FARSB, G6PD, SARS, 

RHOG, SPTBN1, HADHB, PCMT1, RRBP1. In the error matrix this produced an 

overall error of 1.8% (Table 5.5). In ROC analysis of the logistic regression model, the 

AUC was 0.98, with the best threshold at 0.72 yielding a specificity of 0.97 and a 

sensitivity of 1.00 (Figure 5.5), the best performing model identified thus far. 

In the transcriptomics, the optimal model was produced by logistic regression using 

the levels of the following transcripts: UQCC3, MGMT, SLC29A1, RMI2, ANKLE1 
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and PLEKHJ. In the error matrix this produced an overall error of 5% (Table 5.5). In 

ROC analysis of the logistic regression model, the AUC was 0.97, with the best 

threshold at 1.00 yielding a specificity of 1.00 and a sensitivity of 0.91 (Figure 5.5). 

While both tests are capable of extremely high accuracy across all parameters, this 

suggests that the proteomics is slightly more sensitive while the transcriptomics is 

slightly more specific, but neither model was significantly better than the other in 

paired ROC comparisons.  

Variables Clinical Group Actual Count Test Class % 

Error ME/CFS Control 

 

Protein levels ME/CFS 25 25 0 0 

Control 31 1 30 3.2 

TOTAL 56 26 30 1.8 

 

 

Transcript levels ME/CFS 23 22 1 4.3 

Control 17 1 16 5.9 

TOTAL 40 23 17 5 

      

Table 5.5. Error matrix analysis of candidate biomarkers from the whole-cell proteomics 

and transcriptomics datasets. 
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Figure 5.5: Logistic regression and ROC analysis of proteomic and transcriptomic 

measurements as ME/CFS biomarkers. (A) Box plot showing the distribution of the 

propensity score from logistic regression of participant type against the optimal combination 

of differentially-expressed proteins. The resulting regression coefficients are as indicated. The 

boxes show the median and the 25th and 75th percentiles, so that the height of the box is the 

interquartile range (IQR). The whiskers extend to the most extreme observations (largest and 

smallest) falling within ±1.5 × IQR of the box. The ME/CFS and control sample sizes were 25 

and 31 individuals, respectively. Each point represents a single individual. Scores greater than 

0.5 lead to classification of a sample as ME/CFS in the error matrix. (B) ROC analysis of the 

propensity score, plotting sensitivity (proportion of true positives) against specificity 

(proportion of true negatives) with 95% confidence limits (blue shading). The fractional area 
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under the curve (AUC) is shown with 95% confidence limits. The “best” threshold for the 

propensity score (0.72) is shown, together with the specificity (0.97) and sensitivity (1.00) at 

that threshold. (C) Box plot showing the distribution of the propensity score from logistic 

regression of participant type against the optimal combination of differentially-expressed 

transcripts. The resulting regression coefficients are as indicated. The boxes show the median 

and the 25th and 75th percentiles, so that the height of the box is the interquartile range (IQR). 

The whiskers extend to the most extreme observations (largest and smallest) falling within 

±1.5 × IQR of the box. The ME/CFS and control sample sizes were 23 and 17 individuals, 

respectively. Each point represents a single individual. Scores greater than 0.5 lead to 

classification of a sample as ME/CFS in the error matrix. (D) ROC analysis of the propensity 

score, plotting sensitivity (proportion of true positives) against specificity (proportion of true 

negatives) with 95% confidence limits (blue shading). The fractional area under the curve 

(AUC) is shown with 95% confidence limits. The “best” threshold for the propensity score 

(1.00) is shown, together with the specificity (1.00) and sensitivity (0.91) at that threshold. 

Using a combination of both datasets produced the optimal model when using the 

combination of HADHA, G6PD and RRBP1 protein expression and UQCC3 transcript 

expression. This resulted in a model producing an AUC of 0.99, with a best threshold of 

0.97 yielding a specificity of 0.94 and a sensitivity of 1.00 (Figure 5.6). This was not 

significantly better than either experiment performed on its own. Combining protein and 

RNA measurements could lead to a more complex sample preparation workflow if 

implemented as a specific diagnostic test for ME/CFS, and so given the lack of 

improvement achieved by this configuration it was concluded that combined protein and 

RNA measurements do not constitute a preferable alternative to measurements of either 

only proteins or only RNA transcripts.  
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Figure 5.6: Logistic regression and ROC analysis of combined protein and transcript level 

measurements as an ME/CFS biomarker. (A) Box plot showing the distribution of the propensity 

score from logistic regression of participant type against the optimal combination of differentially-

expressed proteins and transcripts. The resulting regression coefficients are as indicated. The boxes 

show the median and the 25th and 75th percentiles, so that the height of the box is the interquartile 

range (IQR). The whiskers extend to the most extreme observations (largest and smallest) falling 

within ±1.5 × IQR of the box. The ME/CFS and control sample sizes were 9 and 16 individuals, 

respectively. Each point represents a single individual. Scores greater than 0.5 lead to classification 

of a sample as ME/CFS in the error matrix. (B) ROC analysis of the propensity score, plotting 

sensitivity (proportion of true positives) against specificity (proportion of true negatives) with 95% 

confidence limits (blue shading). The fractional area under the curve (AUC) is shown with 95% 

confidence limits. The “best” threshold for the propensity score (0.97) is shown, together with the 

specificity (0.94) and sensitivity (1.00) at that threshold.  

5.2.5 Combining Variables from All Measurements to Discriminate 

ME/CFS and Control Blood Samples with the Highest Possible Accuracy 

The assays tested in the preceding sections provided good biomarkers for ME/CFS, but 

none were perfect discriminators between patients and controls. In pursuit of an even better 

discriminator, variables from all of these assays were tested in combination to identify the 

optimal logistic regression model (best performance with fewest assays required). This 

would be of extra benefit since it would involve numerous different biochemical and 

cellular parameters depending on the selected assay combination, likely providing greater 
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specificity for ME/CFS versus other conditions which may have overlapping symptoms. 

However, that remains to be tested in future work. 

The results of this analysis (Table 5.6, Figure 5.7) showed that the best combination of 

variables was able to discriminate between ME/CFS patients and healthy controls with 

100% accuracy in my full dataset. This accuracy was attainable with the logistic regression 

of as little as two measurements: the 48 h death rate of lymphocytes and the transcript levels 

of UQCC3 in lymphoblasts. At the “best” threshold of 0.50 in the ROC analysis, the 

specificity was 100% and the sensitivity was 100%. The complete absence of any 

detrimental overlap between the patient and control group is visible in Figure 5.7A. Various 

other configurations of additional transcripts performed to the same degree of “perfect” 

accuracy without impairing the performance of the model, suggesting that if clinically and 

economically practicable a simultaneous assay of multiple transcripts may be more robust 

than UQCC3 alone when challenged with a greater sample size and real-world variation. 

The combination of lymphocyte 48 h death rate and lymphoblast transcript levels may thus 

provide a reliable discriminator between ME/CFS and control samples. This performance 

exceeds that of all other known ME/CFS biomarker pursuits with the exception of the 

nanoneedle impedance measurement (Esfandyarpour, Kashi et al. 2019). 100% accuracy in 

ROC analysis was also attainable by logistic regression of a handful of protein levels 

(HADHA, G6PD, PCMT1, RRBP1) with the lymphocyte death rate, or by logistic 

regression of the respiratory abnormalities and TORC1 activity also in combination with 

the lymphocyte death rate (Appendix Figure A9.1). The lymphocyte death rate and 

lymphoblast UQCC3 transcript levels are highlighted here due to this being the simplest 

combination of variables and assays to achieve 100% accuracy, and therefore is the most 

likely combination to be clinically applicable at this stage of the analysis.  

Clinical 

Group 

Actual 

Count 

Test Class % 

Error ME/CFS Control 

ME/CFS 16 16 0 0 

Control 13 0 13 0 

TOTAL 29 16 13 0 

 

Table 5.6. Error matrix analysis of combined lymphocyte 48 h death rate and 

lymphoblast UQCC3 transcript levels. 
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Figure 5.7: Logistic regression and ROC analysis of combined tests for lymphocyte death in 

culture and lymphoblast transcript levels. (A) Box plot showing the distribution of the propensity 

score from logistic regression of the percentage of dead lymphocytes after 48 h in culture and 

lymphoblast UQCC3 transcript levels. The resulting regression coefficients were as indicated. The 

boxes show the median and the 25th and 75th percentiles, so that the height of the box is the 

interquartile range (IQR). The whiskers extend to the most extreme observations (largest and 

smallest) falling within ±1.5 × IQR of the box. Each point represents a single individual. Scores 

greater than 0.5 lead to classification of a sample as ME/CFS in the error matrix. (B) ROC analysis 

of the propensity score, plotting sensitivity (proportion of true positives) against specificity 

(proportion of true negatives). The fractional area under the curve (AUC) is shown. Confidence 

limit calculations failed due to the complete separation between the ME/CFS and control groups 

(zero error to estimate). The “best” threshold for the propensity score (0.5) is shown, together with 

the specificity (1.0) and sensitivity (1.0) at that threshold. 

5.2.6 A Protocol that Combines a Screening Test Using Lymphocyte 

Death Rates and the Most Effective Confirmatory Tests of Lymphoblasts 

The results in the preceding sections showed that 5 different cell-based blood tests 

(lymphocyte death rate, lymphoblast respiratory function, lymphoblast TORC1 activity, 

selected protein levels and selected transcript levels) can individually provide biomarkers 

of ME/CFS compared to healthy controls. Of these, the lymphocyte death rate in culture 

could potentially provide a relatively quick test in the clinical setting, since it requires only 

separation and storage of the lymphocytes from a blood sample followed by incubation in 
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culture medium for two days. It exhibited high sensitivity but low specificity for ME/CFS 

and thus, would be well suited for screening purposes. These outcomes suggest a testing 

protocol inwhich an initial assay of lymphocyte death rate would be followed, in the case 

of positive results, by lymphoblast isolation and subsequent tests. In a real world setting 

such a staged protocol could reduce the overall time and cost of returning negative results, 

but has the potential downside that these could include a small percentage of true-positive 

ME/CFS patients. However, when combined with transcript or protein levels the 48 h death 

rate achieved an accuracy of 100%, a feat not achieved by any of the assays alone. 

In any case, to determine the potential efficacy of such a staged protocol, I simulated it by 

subdividing my samples into subgroups, based on whether ME/CFS would be suspected or 

not from the lymphocyte death rates, using the “best” threshold from the ROC analysis of 

the 48 h death rate model as the cutoff criterion. Table 5.7 shows the results for these 

individual subgroups using the candidate confirmatory assays which earlier yielded 100% 

accuracy in multivariate logistic regression models alongside the 48 h death rate. The entire 

“suspected” or “not suspected” subsets cannot be tested in each configuration, as the 

analysis is only applicable to individuals for whom I have overlapping data for each tested 

assay (within each respective configuration).  

The first configuration that was tested used UQCC3 transcript levels as the sole 

confirmatory test, since if successful in this application, it would be the simplest diagnostic 

protocol to undertake while still being 100% accurate. While each overlapping individual 

within the “ME/CFS suspected” subset was correctly classified by subsequent UQCC3 

transcript level testing (including 2 controls which would have been misclassified by 48 h 

death rate alone), both ME/CFS patients incorrectly assigned to the “ME/CFS not 

suspected” group by the 48 h death rate assay alone were also not identified by UQCC3 

transcript levels, as the sole confirmatory test. While this lead to only 2/29 individuals being 

misclassified (93% accuracy), improvement may be possible at a minimal practical cost to 

the overall protocol by the incorporation of additional transcript measurements. This test 

was therefore repeated with the multivariate logistic regression model of MGMT, UQCC3, 

SLC29A1, RMI2, ANKLE1, PLEKHJ1 as the confirmatory test. In this case, each 

overlapping individual in both the “ME/CFS suspected” and “ME/CFS not suspected” was 

correctly classified. 
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This staged protocol was also tested using the combination of proteins found to yield 100% 

accuracy when combined with 48 h death rate in multivariate logistic regression (HADHA, 

G6PD, PCMT1, RRBP1). These protein levels as a confirmatory test performed similarly 

well to the combined transcript levels with 0% error across all categories, however could 

not be used to follow-up false-negative ME/CFS patients from the 48 h death rate, as there 

was no overlap between the two assays within this subset of samples.   

The results from this analysis indicate the likely success of a staged protocol as a cost- and 

time-saving measure, however with the downside of a 15% false negative rate from the 

death assay (Figure 5.2B) which in the current dataset is entirely avoidable when always 

followed up by confirmatory testing (Tables 5.6 & 5.7, Figure 5.7B). However, this false 

negative rate is likely to be minimised in clinical scenarios involving ME/CFS symptom 

presentation, since doctor and patient may together elect to pursue the second round of 

confirmatory tests in the event of a negative result. 

Method Clinical 

Group 

Actual 

Count 

Test Class % 

Error ME/CFS Control 

“ME/CFS suspected” 

UQCC3 transcript 

levels 

ME/CFS 14 14 0 0 

Control 2 0 2 0 

TOTAL 16 14 2 0 

“ME/CFS not suspected” 

UQCC3 transcript 

levels 

ME/CFS 2 0 2 100 

Control 11 0 11 0 

TOTAL 13 0 13 15.4 

“ME/CFS suspected” 

MGMT, UQCC3, 

SLC29A1, RMI2, 

ANKLE1, 

PLEKHJ1 

transcript levels 

ME/CFS 14 14 0 0 

Control 2 0 2 0 

TOTAL 16 14 2 0 

“ME/CFS not suspected” 

MGMT, UQCC3, 

SLC29A1, RMI2, 

ANKLE1, 

PLEKHJ1 

transcript levels 

ME/CFS 2 2 0 0 

Control 11 0 11 0 

TOTAL 13 2 11 0 

“ME/CFS suspected” 

HADHA, G6PD, 

PCMT1, RRBP1 

levels 

ME/CFS 13 13 0 0 

Control 6 0 6 0 

TOTAL 19 13 6 0 

“ME/CFS not suspected” 

ME/CFS 0 0 0 N/A* 

Control 15 0 15 0 
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HADHA, G6PD, 

PCMT1, RRBP1 

levels 

TOTAL 15 0 15 0 

*Indicates that there was no overlap in ME/CFS patients between the “ME/CFS not suspected” 

subset and the proteomics samples; thus no patients were assessed in this particular 

comparison. 

Table 5.7. Error matrix analysis of confirmatory tests for participants whose lymphocytes 

had been tested for the rate of cell death in culture. On the basis of the lymphocyte death rate 

test, samples were classed as “ME/CFS suspected” or “ME/CFS not suspected”. They were then 

classified on the basis of UQCC3 transcript levels (top panel), a combination by logistic regression 

of transcript levels for 6 different genes (middle panel) or a combination of 4 different protein levels. 

Note that lymphocyte death rates, transcriptomics data and proteomics data was not available for 

every sample, so that the sample subset sizes are different for the different combinations of 

experiments. 

 

5.3. Discussion 

The diagnosis of ME/CFS currently requires patients to exhibit, for at least six months, the 

hallmark symptoms of chronic fatigue and post-exertional malaise that cannot be explained 

by other conditions. For patients, physicians and the health care system, this diagnosis - 

that depends on exclusion of other illnesses - is a long, frustrating and potentially expensive 

process. Suitable diagnostic biomarkers have not yet been identified, although a recent 

report of an altered electrical impedance response to salt stress in patient lymphocytes looks 

highly promising, although requiring further validation (Esfandyarpour, Kashi et al. 2019). 

In previous chapters it was demonstrated that ex vivo lymphocytes from ME/CFS patients 

exhibit an elevated death rate in culture after recovery from frozen storage and that 

lymphoblastoid cell lines (lymphoblasts) isolated from them exhibit multiple mitochondrial 

and cellular stress signalling abnormalities. These abnormalities were chiefly observed in 

the following laboratory tests: lymphocyte death rates (viable cell staining and counting), 

lymphoblast mitochondrial membrane potential, lymphoblast mitochondrial respiratory 

function, lymphoblast TORC1 signalling activity, whole-cell proteomics and whole-cell 

transcriptomics. The mitochondrial respiratory dysfunction included changes in several key 

measures of mitochondrial activity which were applied in combination—lower efficiency 

of ATP synthesis, and increased “proton leak” relative to basal metabolic rate, elevated 

maximum rates of respiration and Complex I activity. The purpose here was to determine 
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if these key abnormalities in cells derived from ME/CFS patient blood samples could be 

used as biomarkers of disease. 

5.3.1 Logistic Regression Modelling 

Logistic regression modelling was used in this investigation since it is a method considered 

to be robust against departures of the input data from normality, equality of variances and 

the presence of outliers (Antonogeorgos, Panagiotakos et al. 2009). Support vector machine 

and neural network models were trialed and found to produce similar outcomes for all of 

the biomarkers tested here. To confirm that the proposed biomarkers would be effective in 

correctly diagnosing ME/CFS in newly obtained samples that would not be part of the 

original model, 70% of the sample was randomly assigned for use as a training set, while 

the remaining 30% was used as a test data set. Despite the fact that training the models 

using only 70% of the dataset inevitably makes the parameter estimates and threshold 

determination less powerful, the most accurate models tested with this methodology were 

still 100% accurate in both the training and test subsets. These results give confidence that 

the proposed biomarkers could be usefully deployed for diagnostic purposes. 

5.3.2 Highly Accurate Biomarker Combinations 

Of the biomarker tests examined here, the lymphocyte death rates are the simplest and 

cheapest, and would provide the quickest result in a clinical setting. It was found that the 

fraction of dead lymphocytes after frozen storage and culture for 48 h could distinguish 

between ME/CFS and control samples with a high sensitivity (85%) but with lesser 

specificity (74%). Although ex vivo lymphocyte death rates were elevated compared to 

controls on all three days of culture after recovery from frozen storage, assessing the 

proportion of dead cells in the culture at more than one time point did not improve the 

discriminatory value of the test.  

Both the respiratory function assay and the TORC1 activity assay produced similar results 

to the lymphocyte death assay—high sensitivity combined with lower specificity. 

Additionally, the whole-cell proteomics and trancriptomics perform exceptionally well as 

standalone tests with respective AUC of 0.98 and 0.97, with the proteomics achieving 100% 

sensitivity and the transcriptomics achieving 100% specificity. Given that the frozen 

lymphocyte death rate has higher sensitivity than specificity, it may be more useful to 
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couple it with subsequent measurements of transcript rather than protein levels in a staged 

protocol might be more complementary than protein levels.  

The best combination of the two ‘omics datasets was also capable of accurately 

discriminating ME/CFS patients from controls (AUC 0.99), matching the 100% sensitivity 

of the proteomics experiment, however with less specificity than the transcriptomics alone 

(94% vs 100%). Given that combining the two datasets resulted in a fewer number of 

samples used to construct the logistic regression model (which may have less 

discriminatory power when testing new samples) and in little if any improvement in overall 

performance, this combined ‘omics approach seems less suited for clinical implementation 

than either protein or transcript levels alone. This is also likely given that relying upon both 

protein and RNA samples in tandem may be less practicable (multiple types of sample 

handling, preparation and assay required).  

In an attempt to find the best-performing model with the data on hand, all combinations of 

all 5 experiment types were tested (by logistic regression and ROC analysis), with a view 

to maximizing the discriminatory performance while minimizing the number of different 

measurements/assays required. It was found that the best-performing and simplest logistic 

regression model was obtained by combining the 48 h death rate with UQCC3 transcript 

expression. This model resulted in 100% discriminatory accuracy in the full dataset. Given 

this and also the relative simplicity of measuring only lymphocyte death rates and 

lymphoblast mRNA levels, this combination is a promising candidate for clinical 

application. A noteworthy alternative also achieving 100% accuracy but that is more 

expensive, time-consuming and expertise-requiring is the logistic regression of the 

respiratory abnormalities, TORC1 activity and 48 h death rate (Appendix Figure A9.1). 

The best biomarker combinations identified herein achieve better accuracy and reliability 

(sensitivity, specificity and AUC) for discriminating ME/CFS than has been previously 

reported using other blood-based molecular tests (Naviaux, Naviaux et al. 2016; Yamano, 

Sugimoto et al. 2016; Germain, Ruppert et al. 2018) except for the recently reported 

lymphocyte impedance response to salt stress (Esfandyarpour, Kashi et al. 2019), the 

performance of which the best combinations of 48 h death rate and 

proteomics/transcriptomics results were able to match.  

5.3.3 Practical Advantages and Considerations 
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Because of the time, expertise and expense associated with lymphoblast isolation and 

testing, it was explored whether a two-stage test would be suitable. The results suggest a 

test protocol which can discriminate between ME/CFS patients and healthy individuals 

with near-perfect accuracy. In this protocol, the frozen lymphocyte viability after 48 h in 

culture would be used as an initial screening test. With its high sensitivity, low cost and 

speed, it requires only a small blood volume allowing most of the sample to be utilised for 

subsequent confirmatory tests. It was also demonstrated that the test result is stable over 

long periods of frozen storage. These practical advantages lend great value to the protocol 

in a broader clinical context and set it apart from methods which would proceed directly to 

highly specialised testing. This in combination with subsequent lymphoblast mRNA 

transcript level measurements (which achieved 100% specificity on their own) could allow 

for the most cost-effective protocol – initial triaging based on ME/CFS lymphocyte death 

rate results and then confirmation by subsequent lymphoblast transcript assays. It is 

therefore proposed that a staged protocol combining the clinical suitability of the 

lymphocyte screening step and the discriminatory power of additional lymphoblast 

measurements provides a promising diagnostic biomarker for ME/CFS. The patient and 

their clinician could choose on the basis of the results from the lymphocyte death rate test, 

whether or not to proceed with the slower and more expensive confirmatory tests. 

Ultimately, the success of such a staged protocol will depend upon the real-world sensitivity 

of lymphocyte death rate measures or any other assay that is used as a screening step, which 

remains to be seen with the additional study of larger cohorts and higher throughput 

techniques. 

It would be valuable to determine if measurements such as transcript or protein levels in 

ME/CFS lymphocytes are also useful for discriminatory applications as is the case with 

lymphoblasts. If specific transcript levels proved to be useful discriminators in 

lymphocytes, as they are in lymphoblasts, this would circumvent the additional cost and 

delay associated with immortalisation. If lymphocyte transcript or protein levels were 

indeed similarly useful as with the lymphoblasts, then this protocol could be further refined 

into an efficient single-stage test of lymphocytes only. This could form the basis of a 

reliable diagnostic test based solely on lymphocytes, one likely to be rapid given: a) the 

rapidity with which large-scale qRT-PCR testing has been successfully undertaken in 

Australia during the COVID-19 pandemic and b) that enzyme level measurements are 
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already commonplace in routine pathology work. Future work should attempt to test these 

possibilities and assess whether they can be successfully exploited.  

One limitation of the viability assay used in this work, Trypan Blue staining, is that although 

it is very fast and simple in principle, it requires microscopy and cell counting by a person 

skilled in the art. It would be valuable in future work to determine if some of the many 

other cell viability assays that are commercially available might lend themselves more 

readily to use in a reproducible way by less skilled personnel. This would facilitate higher 

throughput and greater accuracy in the results in a clinical setting. 

Another limitation of the tests suggested here is that it has so far been fully tested on a 

relatively small sample of up to 44 patients and 19 controls, which varies depending on the 

combination of variables applied (samples with missing variables are excluded from the 

multivariate logistic regression models). Because of limitations on the supply of 

lymphocytes and the cost of carrying out whole-cell transcriptomics and proteomics, 

sample sizes are reduced in assay cross-comparisons. The candidate tests identified here 

will need to be refined using much larger samples in order to both validate them and to 

refine their performance by adjusting the input and weighting variables of the logistic 

regression models. At this stage, it can nonetheless be concluded that the cell-based blood 

biomarkers used here are amongst the most promising candidates so far identified for 

potential use in diagnosing ME/CFS. Given that the diagnostic models proposed herein still 

perform so accurately despite the modest sample sizes, future work validating and refining 

these models appears to be promising.  

A limitation of all biomarkers so far proposed for ME/CFS is that it is not yet known how 

specific they are versus other illnesses which cause chronic fatigue and/or post exertional 

malaise and with which ME/CFS may potentially be confused. It would be useful to 

examine the viability levels of frozen lymphocytes in similar diseases to assess how specific 

the elevated death rate of frozen lymphocytes is to ME/CFS patients. It has been 

documented previously, that frozen lymphocyte viability is also reduced in paediatric 

Dengue fever (Perdomo-Celis, Salgado et al. 2016). However, the strength of the frozen 

lymphocyte viability test is its high sensitivity as a screening step to successfully detect 

ME/CFS individuals and correctly triage true-positive ME/CFS samples towards 

subsequent confirmatory tests. It seems possible that the number and specific biological 

nature of these subsequent measurements means that the resulting molecular read-out is 
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likely to be unique to ME/CFS, particularly in combination with the patient’s clinical 

history. To be confused with ME/CFS in subsequent confirmatory tests, other illnesses 

would not only need to cause reduced viability of frozen lymphocytes, they would also 

need to confer the same pattern of molecular abnormalities upon the derived lymphoblasts 

(as described in Chapters 3 & 4). It is worth noting that lymphoblasts from patients with 

Parkinson’s disease, another complex chronic disorder, exhibit a quite different pattern of 

abnormalities related to mitochondrial function (Annesley, Lay et al. 2016). Of course, 

Parkinson’s disease patients are unlikely to be confused clinically with ME/CFS patients in 

the first place. Thus, although the combination of cellular and molecular phenotypes 

reported here may well be unique to ME/CFS, it will be essential in future work to 

determine its specificity in relation to other, similar diseases.  

5.3.4 Decreased Viability of Frozen Lymphocytes from ME/CFS Patients 

Despite the clarity of the differences observed here in frozen lymphocyte viability, the 

underlying reason for the elevated death of ME/CFS lymphocytes after storage remains 

undetermined. Impaired mitochondrial respiratory function, including Complex V 

impairment, has long been known to result in apoptotic cell death in ex vivo lymphoid cells 

(Wolvetang, Johnson et al. 1994). In this project it has not been investigated whether the 

lymphocyte death observed is apoptotic or whether it is one of the other known forms of 

eukaryotic cell death. Whatever the specific cell death pathway involved, it may reflect an 

inability of ME/CFS patient cells to adequately respond to cellular damage or stress. In this 

case, such an insult could be introduced by freezing, which is well understood to damage 

biological systems by the formation of ice crystals, but has also been documented to 

specifically affect lymphocyte viability, function, and expression of stress response genes 

(Weinberg, Zhang et al. 2000; Yang, Diaz et al. 2016). While the elevated death rate of the 

ME/CFS lymphocytes could reflect a greater mechanical susceptibility to immediate 

structural damage by freezing, there remains another possibility. Compared with controls, 

the number of dead ME/CFS lymphocytes continued to increase at a faster rate than the 

controls over multiple days in culture. This suggests that underlying and ongoing 

cytopathological processes could be contributing towards cell death in culture of previously 

frozen lymphocytes. 
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5.4. Conclusions 

In previous chapters it was shown that ex vivo lymphocytes from ME/CFS patients exhibit 

an elevated death rate in culture after recovery from frozen storage and that lymphoblastoid 

cell lines isolated from them exhibit multiple mitochondrial and cellular stress signalling 

abnormalities, and highly distinct profiles of gene expression at both the transcript and 

protein levels. The objective in this preliminary investigation of discriminatory power was 

to determine if these abnormalities could be used as blood-based biomarkers of disease. 

The results here demonstrate that these abnormalities are, indeed, promising candidate 

biomarkers, each of them able to distinguish ME/CFS patient and control samples with 

better than 80% reliability, and with 100% perfect accuracy possible when using the best 

combinations of variables available. With some tests providing very high sensitivity 

(correct classification of positive samples) but lower specificity (correct classification of 

negative samples), and other tests favouring the opposite trend (better specificity, lower 

sensitivity) the results suggest these tests might be most usefully deployed as synergistic 

components of a staged protocol depending on the practical advantages of each assay. For 

example, the first stage could involve a cheap, rapid and sensitive screening test using the 

frozen lymphocyte death rate. The results from this could be used by clinicians and patients 

to decide whether to complete the 2nd stage in which other more specific assays are 

performed in lymphoblastoid cell lines derived from the frozen lymphocytes. In any case, 

the candidate biomarkers tested in this chapter could evidently provide a reliable cell-based 

blood testing protocol to aid in ME/CFS diagnosis. 
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6.0 Overall Conclusions 

This PhD project has both successfully fulfilled its initial aims and answered additional 

questions as they have arisen throughout. This iterative building of knowledge, using the 

same samples to address new questions, is made possible due to the phenotypic and 

proliferative stability of lymphoblast cell lines (Sie, Loong et al. 2009). Over the course of 

this project, our group’s ME/CFS and counterpart control lymphoblast cohorts have been 

built up to a collection from 66 ME/CFs individuals and 39 healthy controls. This represents 

a substantial, self-renewing and, to my knowledge, internationally-unique resource from 

which new research can continue to answer questions arising both from this and future 

work. This unique capability positions the work undertaken in this PhD to blaze the trail 

for additional discoveries in ME/CFS without the hurdle of subject recruitment or the issue 

of sampling variation. This is an exciting prospect, especially given the number of new 

investigational avenues which have since opened and begun to be pursued following the 

outcomes of my initial work here. 

My research successfully utilised lymphoblast cell lines created from ME/CFS patient 

blood to investigate mitochondrial function. related metabolic and signalling pathways, and 

potential biomarkers. I have shown that in ME/CFS lymphoblasts, there is an isolated 

inefficiency of ATP synthesis by Complex V. This is accompanied by multiple, presumably 

compensatory changes including increased respiratory capacity, elevated expression of a 

diverse array of mitochondrial proteins, elevated TORC1 activity, and non-significantly 

elevated AMPK activity. Extracellular acidification rate assays in conjunction with whole-

cell proteomics and transcriptomics subsequently indicated that ME/CFS lymphoblasts 

increase the use of alternatives to glycolysis in an “attempt” to compensate for the 

respiratory inefficiency by Complex V. Fatty acid β-oxidation, amino acid catabolism and 

the pentose phosphate pathway appear to be the pathways that are utilised in this way.  

Such compensatory mechanisms appear to be sufficient to meet the cell’s energy 

requirements despite the inefficiency of ATP synthesis by Complex V. However, this may 

leave the cells less able to respond to additional ATP demand despite the elevated 

respiratory capacity, since the signalling (TORC1 and AMPK), mitochondrial and other 

metabolic pathways are already chronically upregulated. This seems to reflect a cellular 

equivalent of key clinical features of ME/CFS – in other words a “cellular chronic fatigue”. 

If this is present in cell types or bodily tissues other than the B cells from which 
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lymphoblasts are derived, it may contribute to the unexplained fatigue and crippling PEM 

experienced by ME/CFS patients. This is suggested by the fact that the respiratory 

abnormalities I observed were correlated with the Weighted Standing Test measurements. 

My work in this area has laid the foundation for future projects to assess the cause-effect 

relationships between these various abnormalities, which will greatly increase our 

understanding of the underlying molecular mechanisms of ME/CFS. 

The lack of objective, timely, and accurate diagnostic criteria or biomarkers for ME/CFS 

has been a major challenge facing the field, patients, and clinicians. In my work I also 

identified biomarkers for ME/CFS that discriminated patients from controls with 100% 

accuracy even when subdivided into training and test datasets (at the cost of statistical 

power) to simulate the testing of “new” samples. Such an outcome is remarkable. This 

investigation also took practical concerns of time, cost and required expertise into account 

and assessed the efficacy of staged diagnostic protocols utilising rapid, cheap, simple to 

perform and sensitive screening tests followed by more specific confirmatory tests. My 

results demonstrate that measures of frozen lymphocyte death rate, lymphoblast respiratory 

function, TORC1 activity, and levels of specific proteins or transcripts are promising 

biomarkers for ME/CFS. With future work to further increase the clinical practicability of 

the protocol (higher throughput assays with minimal required expertise, applicability of 

lymphocytes to speed up confirmatory tests) and to validate these tests in larger cohorts, 

this project may very well have laid the groundwork for the design and testing of a refined 

diagnostic protocol for ME/CFS. 

In summation, my research has made significant strides in our mechanistic understanding 

of ME/CFS by identifying unique, specific defects in mitochondrial function with an 

accompanying array of compensatory cellular changes. This work has also highlighted 

multiple promising candidate diagnostic biomarkers with an impressive 100% 

discriminatory accuracy. This PhD project, which began with my exploratory investigation 

of mitochondrial function and signalling pathways, has since opened many promising new 

avenues of investigation for future projects to embark upon in the aims of solving the 

devastating disease that is Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.  
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Appendices 

Appendix 1: List of Chemicals and Suppliers 

Chemical Name Supplier 

2-Deoxyglucose Sigma 

Alexa Fluor 800 goat anti-mouse IgG Thermo Fisher 

Antimycin A Sigma 

Bromophenol blue Sigma 

Carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP) 
Sigma 

cOmplete™ EDTA-free Protease Inhibitor Cocktail Roche 

Corning® Matrigel® Matrigel Matrix Sigma 

Cyclosporin A Sigma 

D-Glucose BDH 

Dimethyl sulphoxide (DMSO) Ajax 

DNAzol® MRC 

Ficoll-Paque Plus GE 

GlutaMAX Supplement Thermo Fisher 

Glycerol Ajax 

HEPES sodium salt Sigma 

Hoechst 33342 Nuclear Stain Thermo Fisher 

L-Glutamine Thermo Fisher 

MitoTracker Red CMXRos Thermo Fisher 

MitoTracker™ Green FM Thermo Fisher 

NaCl Ajax 

Oligomycin Sigma 

Penicillin-Streptomycin (100X) Thermo Fisher 

Purezol RNA Isolation Reagent Bio-Rad 

Rotenone Sigma 

SDS Ajax 
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Table A1.1: List of chemicals and suppliers.  

Sodium hydroxide (NaOH) Ajax 

Sodium Pyruvate Sigma 

TORIN2 Sigma 

Trichloroacetic acid (TCA) Sigma 

Tricine Sigma 

Tris ICN 

Trypan Blue Sigma 

Tween 20 (polyoxyethylene-sorbitan Monolaurate) Sigma 

β-mercaptoethanol Sigma 
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Appendix 2: List of Media and Buffers 

 

Name of Medium or Buffer Composition/Supplier 

Complete Medium RPMI 1640 medium – no glutamine 

(Thermo Fisher) 

1× GlutaMAX 

1× Penicillin/Streptomycin 

1× Fetal Bovine Serum (Thermo Fisher) 

Growth Medium MEM alpha medium (Thermo Fisher) 

1× Penicillin/Strepomycin 

1× Fetal Bovine Serum (Thermo Fisher) 

Loading Buffer 63 mM Tris hydrochloride 

10% glycerol 

2% SDS 

10% mercaptoethanol 

0.0001% Bromophenol Blue 

1× Protease Inhibitor Cocktail (Roche) 

Phosphate Buffered Saline – endotoxin 

free (PBS) 

Sigma 

Storage Medium Recovery™ Cell Culture Freezing 

Medium (Thermo Fisher) 

Tris-buffered Saline (TBS) Buffer 150 mM NaCl 

50 mM Tris-HCl 

 pH 7.6 
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Wash Medium RPMI 1640 medium – no glutamine 

(Thermo Fisher) 

1× GlutaMAX 

1× Penicillin/Streptomycin 

XF Base Medium Agilent 

XF Calibrant Agilent 

Table A2.1: List of Media and Buffers  
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Appendix 3: Commercial Assays and Components 

Assay Name Manufacturer 

ATP Determination Kit Invitrogen 

Fluorometric Intracellular ROS Kit Sigma 

iTaq Universal SYBR Green Supermix Bio-Rad 

Phospho-4EBP1 (Thr37/46) cellular HTRF kit Cisbio 

Phospho-ACC (Ser79) cellular HTRF kit Cisbio 

Qubit Protein Assay Kit Thermo Fisher 

RQ1 RNase-Free DNase Promega 

Seahorse XFe24 FluxPak Agilent 

Total OXPHOS Human WB Antibody Cocktail Abcam 

Table A3.1: Commerical Assays and Components 

Full Company Names for Appendices 1-3: 

Abcam, Cambridge, UK. 

Agilent Technologies Inc., Santa Clara, California, USA. 

Ajax Finechem Pty Ltd., Auburn, NSW, Australia. 

BDH Chemicals Pty. Ltd., Kilysth, VIC, Australia. 

Bio-Rad Laboratories Inc., Hercules, California, USA. 

Cisbio Bioassays, Codolet, France. 

GE Healthcare, Chicago, Illinois, USA. 

ICN Biochemicals Inc., Aurora, Ohio, USA. 

Invitrogen, Carlsbad, California, USA. 

Molecular Research Centre Inc., Cincinnati, Ohio, USA. 

Promega Corporation, Madison, Wisconsin, USA. 

Roche Applied Science, Penzberg, Germany. 

Sigma-Aldrich Corporation, St Louis, Missouri, USA. 

Thermo Fisher Scientific, Waltham, Massachusetts, USA.  
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Appendix 4: Human Sample Information 

Sample Type Gender Age 

100026 CFS M 49 

100034 CFS M 42 

100048 CFS F 70 

100073 CFS F 38 

100107 CFS F 60 

100215 CFS F 62 

100227 CFS F 40 

100250 CFS F 48 

100332 CFS F 42 

100376 CFS F 56 

100422 CFS F 58 

100527 CFS F 67 

100541 CFS F 59 

100595 CFS F 38 

100617 CFS F 49 

100685 CFS M 61 

100713 CFS F 36 

100768 CFS F 67 

100857 CFS F 55 

100877 CFS F 28 

100910 CFS F 63 

100949 CFS F 56 

101022 CFS F 40 

101030 CFS F 62 

101092 CFS F 39 

101164 CFS F 62 

101212 CFS F 26 

101238 CFS F 52 

101348 CFS F 30 

101406 CFS M 51 

101407 CFS F 27 
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101468 CFS M 55 

101469 CFS F 54 

101527 CFS F 58 

101592 CFS F 36 

101610 CFS F 57 

101661 CFS F 63 

101712 CFS F 50 

101748 CFS M 38 

101869 CFS F 40 

101946 CFS F 43 

101996 CFS F 62 

101999 CFS F 46 

102002 CFS F 48 

102021 CFS F 62 

102051 CFS F 31 

102128 CFS F 42 

102233 CFS F 42 

102424 CFS M 63 

103001 CFS M 52 

103020 CFS M 38 

103041 CFS F 41 

103045 CFS M 40 

103092 CFS F 42 

103114 CFS F 48 

103129 CFS F 50 

103238 CFS F 54 

103464 CFS F 23 

103500 CFS F 29 

103527 CFS F 61 

103560 CFS F 33 

103606 CFS F 34 

103679 CFS F 45 

103690 CFS F 22 
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103737 CFS F 44 

103811 CFS M 38 

103989 CFS F 70 

201532 CFS F 53 

203253 CFS F 40 

103073 CFS F 40 

SA CFS F 71 

SA2 CFS F 70 

C0001 Control M 21 

C0002 Control F 26 

C0003 Control M 26 

C0004 Control F 41 

C0005 Control F 45 

C0006 Control F 44 

C0007 Control M 52 

C0008 Control F 50 

C0009 Control M 43 

C0010 Control F 53 

C0011 Control M 54 

C0012 Control F 36 

C0013 Control M 36 

C0014 Control F 58 

C0015 Control F 37 

C0016 Control F 28 

C0017 Control M 30 

C0018 Control F 27 

C0019 Control M 21 

C0020 Control F 26 

C0021 Control F 33 

C0022 Control M 21 

C0023 Control F 54 

C0024 Control F 25 

C0025 Control M 30 
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C0026 Control M 22 

C0027 Control F 54 

C0028 Control M 24 

C0029 Control M 34 

C0030 Control M 21 

C0031 Control M 19 

C0032 Control M 55 

C0033 Control F 44 

C0034 Control F 49 

C0035 Control F 24 

C0036 Control M 24 

C0037 Control M 29 

C101 Internal M 83 

C105 Internal M 64 

Table A4.1: Human sample information.  
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Appendix 5: Pathway Over-Representation Analysis of 

Differentially Expressed Transcripts and Proteins in ME/CFS 

Lymphoblasts 

Table A5.1. Pathways overrepresented amongst downregulated transcripts in ME/CFS 

lymphoblasts. 

Reactome 

pathway 

Number of genes 

Fold 

enrichment 

Binomial 

test P-

value 

False 

discovery 

rate (FDR) 

In entire 

experiment 

In 

downregulated 

fraction 

(Q<0.05) Expected 

Formation 

of a pool of 

free 40S 

subunits 

(R-HSA-

72689) 97 63 9.92 6.35 5.54× 10-30 1.20× 10-26 

GTP 

hydrolysis 

and joining 

of the 60S 

ribosomal 

subunit (R-

HSA-

72706) 107 65 10.94 5.94 2.68× 10-29 1.45× 10-26 

Cap-

dependent 

Translation 

Initiation 

(R-HSA-

72737) 114 67 11.66 5.75 2.35× 10-29 1.69× 10-26 

Eukaryotic 

Translation 

Initiation 

(R-HSA-

72613) 114 67 11.66 5.75 2.35× 10-29 2.54× 10-26 

L13a-

mediated 

translationa

l silencing 

of 

Ceruloplas

min 

expression 

(R-HSA-

156827) 106 64 10.84 5.9 1.01× 10-28 3.63× 10-26 

Viral 

mRNA 

Translation 

(R-HSA-

192823) 85 58 8.69 6.67 9.12× 10-29 3.94× 10-26 
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Translation 

(R-HSA-

72766) 286 105 29.24 3.59 1.94× 10-28 5.98× 10-26 

Peptide 

chain 

elongation 

(R-HSA-

156902) 85 57 8.69 6.56 6.35× 10-28 1.71× 10-25 

Selenocyste

ine 

synthesis 

(R-HSA-

2408557) 89 58 9.1 6.37 8.94× 10-28 1.93× 10-25 

Eukaryotic 

Translation 

Elongation 

(R-HSA-

156842) 89 58 9.1 6.37 8.94× 10-28 2.14× 10-25 

Regulation 

of 

expression 

of SLITs 

and 

ROBOs (R-

HSA-

9010553) 155 75 15.85 4.73 1.57× 10-27 3.08× 10-25 

Eukaryotic 

Translation 

Terminatio

n (R-HSA-

72764) 89 57 9.1 6.26 5.95× 10-27 1.07× 10-24 

Nonsense 

Mediated 

Decay 

(NMD) 

independen

t of the 

Exon 

Junction 

Complex 

(EJC) (R-

HSA-

975956) 91 57 9.31 6.13 1.74× 10-26 2.89× 10-24 

Nonsense 

Mediated 

Decay 

(NMD) 

enhanced 

by the 

Exon 

Junction 

Complex 

(EJC) (R-

HSA-

975957) 111 62 11.35 5.46 4.10× 10-26 5.89× 10-24 
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Nonsense-

Mediated 

Decay 

(NMD) (R-

HSA-

927802) 111 62 11.35 5.46 4.10× 10-26 6.31× 10-24 

Response 

of 

EIF2AK4 

(GCN2) to 

amino acid 

deficiency 

(R-HSA-

9633012) 97 58 9.92 5.85 6.10× 10-26 8.22× 10-24 

SRP-

dependent 

cotranslatio

nal protein 

targeting to 

membrane 

(R-HSA-

1799339) 108 60 11.04 5.43 3.39× 10-25 4.31× 10-23 

Selenoamin

o acid 

metabolism 

(R-HSA-

2408522) 106 59 10.84 5.44 7.75× 10-25 9.29× 10-23 

Metabolism 

of RNA (R-

HSA-

8953854) 635 159 64.93 2.45 1.11× 10-24 1.26× 10-22 

rRNA 

processing 

(R-HSA-

72312) 194 79 19.84 3.98 2.67× 10-24 2.88× 10-22 

Influenza 

Viral RNA 

Transcripti

on and 

Replication 

(R-HSA-

168273) 127 63 12.99 4.85 7.32× 10-24 7.52× 10-22 

rRNA 

processing 

in the 

nucleus and 

cytosol (R-

HSA-

8868773) 185 76 18.92 4.02 1.22× 10-23 1.19× 10-21 

Major 

pathway of 

rRNA 

processing 

in the 

nucleolus 175 73 17.89 4.08 3.99× 10-23 3.74× 10-21 
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and cytosol 

(R-HSA-

6791226) 

Signalling 

by ROBO 

receptors 

(R-HSA-

376176) 191 76 19.53 3.89 7.74× 10-23 6.96× 10-21 

Influenza 

Life Cycle 

(R-HSA-

168255) 136 63 13.91 4.53 2.30× 10-22 1.99× 10-20 

Influenza 

Infection 

(R-HSA-

168254) 146 64 14.93 4.29 1.71× 10-21 1.42× 10-19 

Metabolism 

of amino 

acids and 

derivatives 

(R-HSA-

71291) 278 89 28.43 3.13 2.06× 10-20 1.65× 10-18 

Infectious 

disease (R-

HSA-

5663205) 411 103 42.03 2.45 3.24× 10-16 2.50× 10-14 

Formation 

of the 

ternary 

complex, 

and 

subsequentl

y, the 43S 

complex 

(R-HSA-

72695) 49 31 5.01 6.19 3.65× 10-15 2.71× 10-13 

Translation 

initiation 

complex 

formation 

(R-HSA-

72649) 55 31 5.62 5.51 7.34× 10-14 5.11× 10-12 

Ribosomal 

scanning 

and start 

codon 

recognition 

(R-HSA-

72702) 55 31 5.62 5.51 7.34× 10-14 5.28× 10-12 

Activation 

of the 

mRNA 

upon 

binding of 

the cap- 56 31 5.73 5.41 1.17× 10-13 7.86× 10-12 
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binding 

complex 

and eIFs, 

and 

subsequent 

binding to 

43S (R-

HSA-

72662) 

Cellular 

responses 

to external 

stimuli (R-

HSA-

8953897) 486 106 49.7 2.13 7.00× 10-13 4.58× 10-11 

Cellular 

responses 

to stress 

(R-HSA-

2262752) 481 105 49.18 2.13 8.61× 10-13 5.46× 10-11 

Axon 

guidance 

(R-HSA-

422475) 402 91 41.11 2.21 4.76× 10-12 2.93× 10-10 

Respiratory 

electron 

transport, 

ATP 

synthesis 

by 

chemiosmo

tic 

coupling, 

and heat 

production 

by 

uncoupling 

proteins. 

(R-HSA-

163200) 109 40 11.15 3.59 1.33× 10-11 7.95× 10-10 

Respiratory 

electron 

transport 

(R-HSA-

611105) 90 34 9.2 3.69 2.14× 10-10 1.25× 10-8 

The citric 

acid (TCA) 

cycle and 

respiratory 

electron 

transport 

(R-HSA-

1428517) 152 44 15.54 2.83 1.95× 10-9 1.11× 10-7 

Mitochondr

ial 87 31 8.9 3.48 5.03× 10-9 2.78× 10-7 
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translation 

elongation 

(R-HSA-

5389840) 

Metabolism 

of proteins 

(R-HSA-

392499) 1533 226 156.76 1.44 1.21× 10-8 6.54× 10-7 

Mitochondr

ial 

translation 

initiation 

(R-HSA-

5368286) 87 30 8.9 3.37 1.80× 10-8 9.27× 10-7 

Mitochondr

ial 

translation 

termination 

(R-HSA-

5419276) 87 30 8.9 3.37 1.80× 10-8 9.50× 10-7 

Mitochondr

ial 

translation 

(R-HSA-

5368287) 93 31 9.51 3.26 2.23× 10-8 1.12× 10-6 

Metabolism 

(R-HSA-

1430728) 1513 221 154.71 1.43 3.80× 10-8 1.86× 10-6 

Complex I 

biogenesis 

(R-HSA-

6799198) 49 21 5.01 4.19 7.59× 10-8 3.64× 10-6 

Developme

ntal 

Biology (R-

HSA-

1266738) 616 105 62.99 1.67 3.82× 10-7 1.79× 10-5 

Disease (R-

HSA-

1643685) 863 136 88.25 1.54 5.25× 10-7 2.41× 10-5 

Regulation 

of mRNA 

stability by 

proteins 

that bind 

AU-rich 

elements 

(R-HSA-

450531) 84 25 8.59 2.91 3.57× 10-6 1.60× 10-4 

Protein 

localization 

(R-HSA-

9609507) 145 34 14.83 2.29 1.19× 10-5 5.23× 10-4 

Vif-

mediated 51 17 5.21 3.26 3.16× 10-5 0.0014 
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degradation 

of 

APOBEC3

G (R-HSA-

180585) 

Negative 

regulation 

of 

NOTCH4 

signalling 

(R-HSA-

9604323) 52 17 5.32 3.2 4.00× 10-5 0.0017 

Metabolism 

of 

polyamines 

(R-HSA-

351202) 55 17 5.62 3.02 7.83× 10-5 0.0033 

mRNA 

Splicing 

(R-HSA-

72172) 183 37 18.71 1.98 1.07× 10-4 0.0042 

Autodegrad

ation of 

Cdh1 by 

Cdh1:APC/

C (R-HSA-

174084) 62 18 6.34 2.84 1.06× 10-4 0.0042 

Oxygen-

dependent 

proline 

hydroxylati

on of 

Hypoxia-

inducible 

Factor 

Alpha (R-

HSA-

1234176) 62 18 6.34 2.84 1.06× 10-4 0.0043 

FBXL7 

down-

regulates 

AURKA 

during 

mitotic 

entry and in 

early 

mitosis (R-

HSA-

8854050) 52 16 5.32 3.01 1.32× 10-4 0.0050 

HIV 

Infection 

(R-HSA-

162906) 213 41 21.78 1.88 1.31× 10-4 0.0051 

Regulation 

of activated 48 15 4.91 3.06 1.79× 10-4 0.0067 
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PAK-2p34 

by 

proteasome 

mediated 

degradation 

(R-HSA-

211733) 

APC/C:Cdc

20 

mediated 

degradation 

of Securin 

(R-HSA-

174154) 65 18 6.65 2.71 1.88× 10-4 0.0069 

Degradatio

n of DVL 

(R-HSA-

4641258) 54 16 5.52 2.9 2.00× 10-4 0.0071 

mRNA 

Splicing - 

Major 

Pathway 

(R-HSA-

72163) 175 35 17.89 1.96 1.98× 10-4 0.0071 

Assembly 

of the pre-

replicative 

complex 

(R-HSA-

68867) 66 18 6.75 2.67 2.25× 10-4 0.0077 

Regulation 

of ornithine 

decarboxyl

ase (ODC) 

(R-HSA-

350562) 49 15 5.01 2.99 2.23× 10-4 0.0078 

Ubiquitin-

dependent 

degradation 

of Cyclin D 

(R-HSA-

75815) 50 15 5.11 2.93 2.75× 10-4 0.0085 

Autodegrad

ation of the 

E3 

ubiquitin 

ligase 

COP1 (R-

HSA-

349425) 50 15 5.11 2.93 2.75× 10-4 0.0086 

Vpu 

mediated 

degradation 

of CD4 (R- 50 15 5.11 2.93 2.75× 10-4 0.0087 
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HSA-

180534) 

Regulation 

of RAS by 

GAPs (R-

HSA-

5658442) 61 17 6.24 2.73 2.60× 10-4 0.0088 

Ubiquitin 

Mediated 

Degradatio

n of 

Phosphoryl

ated 

Cdc25A 

(R-HSA-

69601) 50 15 5.11 2.93 2.75× 10-4 0.0089 

Degradatio

n of GLI2 

by the 

proteasome 

(R-HSA-

5610783) 56 16 5.73 2.79 2.98× 10-4 0.0089 

p53-

Independen

t DNA 

Damage 

Response 

(R-HSA-

69610) 50 15 5.11 2.93 2.75× 10-4 0.0090 

GLI3 is 

processed 

to GLI3R 

by the 

proteasome 

(R-HSA-

5610785) 56 16 5.73 2.79 2.98× 10-4 0.0090 

p53-

Independen

t G1/S 

DNA 

damage 

checkpoint 

(R-HSA-

69613) 50 15 5.11 2.93 2.75× 10-4 0.0091 

Regulation 

of RUNX2 

expression 

and activity 

(R-HSA-

8939902) 62 17 6.34 2.68 3.12× 10-4 0.0092 

Orc1 

removal 

from 

chromatin 68 18 6.95 2.59 3.19× 10-4 0.0093 
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(R-HSA-

68949) 

Regulation 

of 

Apoptosis 

(R-HSA-

169911) 51 15 5.21 2.88 3.37× 10-4 0.0097 

Degradatio

n of GLI1 

by the 

proteasome 

(R-HSA-

5610780) 57 16 5.83 2.75 3.60× 10-4 0.010 

Cdc20:Pho

spho-

APC/C 

mediated 

degradation 

of Cyclin A 

(R-HSA-

174184) 69 18 7.06 2.55 3.78× 10-4 0.010 

Cellular 

response to 

hypoxia (R-

HSA-

1234174) 69 18 7.06 2.55 3.78× 10-4 0.010 

Switching 

of origins 

to a post-

replicative 

state (R-

HSA-

69052) 87 21 8.9 2.36 3.58× 10-4 0.010 

Mitochondr

ial protein 

import (R-

HSA-

1268020) 63 17 6.44 2.64 3.73× 10-4 0.010 

CDK-

mediated 

phosphoryl

ation and 

removal of 

Cdc6 (R-

HSA-

69017) 69 18 7.06 2.55 3.78× 10-4 0.010 

AUF1 

(hnRNP 

D0) binds 

and 

destabilizes 

mRNA (R-

HSA-

450408) 52 15 5.32 2.82 4.11× 10-4 0.011 
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APC:Cdc2

0 mediated 

degradation 

of cell 

cycle 

proteins 

prior to 

satisfation 

of the cell 

cycle 

checkpoint 

(R-HSA-

179419) 70 18 7.16 2.51 4.46× 10-4 0.012 

APC/C:Cd

h1 

mediated 

degradation 

of Cdc20 

and other 

APC/C:Cd

h1 targeted 

proteins in 

late 

mitosis/earl

y G1 (R-

HSA-

174178) 70 18 7.16 2.51 4.46× 10-4 0.011 

Degradatio

n of AXIN 

(R-HSA-

4641257) 53 15 5.42 2.77 4.98× 10-4 0.012 

Hh mutants 

that don't 

undergo 

autocatalyti

c 

processing 

are 

degraded 

by ERAD 

(R-HSA-

5362768) 53 15 5.42 2.77 4.98× 10-4 0.012 

SCF-beta-

TrCP 

mediated 

degradation 

of Emi1 

(R-HSA-

174113) 53 15 5.42 2.77 4.98× 10-4 0.013 

Regulation 

of RUNX3 

expression 

and activity 

(R-HSA-

8941858) 53 15 5.42 2.77 4.98× 10-4 0.013 
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Synthesis 

of DNA 

(R-HSA-

69239) 116 25 11.86 2.11 5.45× 10-4 0.013 

Processing 

of Capped 

Intron-

Containing 

Pre-mRNA 

(R-HSA-

72203) 229 41 23.42 1.75 5.50× 10-4 0.013 

DNA 

Replication 

(R-HSA-

69306) 123 26 12.58 2.07 5.65× 10-4 0.013 

Hh mutants 

abrogate 

ligand 

secretion 

(R-HSA-

5387390) 54 15 5.52 2.72 6.01× 10-4 0.014 

Stabilizatio

n of p53 

(R-HSA-

69541) 54 15 5.52 2.72 6.01× 10-4 0.014 

Regulation 

of PTEN 

stability 

and activity 

(R-HSA-

8948751) 66 17 6.75 2.52 6.22× 10-4 0.014 

APC/C:Cdc

20 

mediated 

degradation 

of mitotic 

proteins (R-

HSA-

176409) 72 18 7.36 2.44 6.15× 10-4 0.014 

Degradatio

n of beta-

catenin by 

the 

destruction 

complex 

(R-HSA-

195253) 79 19 8.08 2.35 6.94× 10-4 0.015 

ER-

Phagosome 

pathway 

(R-HSA-

1236974) 79 19 8.08 2.35 6.94× 10-4 0.015 

Activation 

of APC/C 

and 73 18 7.46 2.41 7.18× 10-4 0.016 
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APC/C:Cdc

20 

mediated 

degradation 

of mitotic 

proteins (R-

HSA-

176814) 

Cross-

presentatio

n of soluble 

exogenous 

antigens 

(endosomes

) (R-HSA-

1236978) 44 13 4.5 2.89 7.82× 10-4 0.017 

NIK--

>noncanoni

cal NF-kB 

signalling 

(R-HSA-

5676590) 57 15 5.83 2.57 0.0010 0.021 

The role of 

GTSE1 in 

G2/M 

progression 

after G2 

checkpoint 

(R-HSA-

8852276) 69 17 7.06 2.41 0.0010 0.021 

Hedgehog 

ligand 

biogenesis 

(R-HSA-

5358346) 57 15 5.83 2.57 0.0010 0.021 

CDT1 

association 

with the 

CDC6:OR

C:origin 

complex 

(R-HSA-

68827) 57 15 5.83 2.57 0.0010 0.022 

DNA 

Replication 

Pre-

Initiation 

(R-HSA-

69002) 82 19 8.38 2.27 0.0011 0.022 

UCH 

proteinases 

(R-HSA-

5689603) 89 20 9.1 2.2 0.0012 0.023 

Antigen 

processing- 89 20 9.1 2.2 0.0012 0.023 
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Cross 

presentatio

n (R-HSA-

1236975) 

SCF(Skp2)

-mediated 

degradation 

of p27/p21 

(R-HSA-

187577) 58 15 5.93 2.53 0.0012 0.023 

Dectin-1 

mediated 

noncanonic

al NF-kB 

signalling 

(R-HSA-

5607761) 58 15 5.93 2.53 0.0012 0.024 

mRNA 

Splicing - 

Minor 

Pathway 

(R-HSA-

72165) 52 14 5.32 2.63 0.0012 0.024 

Defective 

CFTR 

causes 

cystic 

fibrosis (R-

HSA-

5678895) 58 15 5.93 2.53 0.0012 0.024 

Regulation 

of APC/C 

activators 

between 

G1/S and 

early 

anaphase 

(R-HSA-

176408) 77 18 7.87 2.29 0.0013 0.025 

tRNA 

modificatio

n in the 

nucleus and 

cytosol (R-

HSA-

6782315) 41 12 4.19 2.86 0.0013 0.025 

Asymmetri

c 

localization 

of PCP 

proteins (R-

HSA-

4608870) 60 15 6.14 2.44 0.0017 0.031 

RAF/MAP 

kinase 162 30 16.57 1.81 0.0018 0.032 
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cascade (R-

HSA-

5673001) 

RUNX1 

regulates 

transcriptio

n of genes 

involved in 

differentiati

on of HSCs 

(R-HSA-

8939236) 80 18 8.18 2.2 0.0019 0.035 

KSRP 

(KHSRP) 

binds and 

destabilizes 

mRNA (R-

HSA-

450604) 17 7 1.74 4.03 0.0021 0.038 

p53-

Dependent 

G1 DNA 

Damage 

Response 

(R-HSA-

69563) 62 15 6.34 2.37 0.0023 0.040 

p53-

Dependent 

G1/S DNA 

damage 

checkpoint 

(R-HSA-

69580) 62 15 6.34 2.37 0.0023 0.041 

Signalling 

by 

NOTCH4 

(R-HSA-

9013694) 75 17 7.67 2.22 0.0024 0.041 

MAPK1/M

APK3 

signalling 

(R-HSA-

5684996) 167 30 17.08 1.76 0.0027 0.047 

Regulation 

of mitotic 

cell cycle 

(R-HSA-

453276) 83 18 8.49 2.12 0.0029 0.048 

APC/C-

mediated 

degradation 

of cell 

cycle 

proteins (R- 83 18 8.49 2.12 0.0029 0.049 



183 

 

HSA-

174143) 

PCP/CE 

pathway 

(R-HSA-

4086400) 83 18 8.49 2.12 0.0029 0.049 

Table A5.1: Pathway over-representation analysis of downregulated transcripts in the whole-

cell transcriptome using PANTHER gene expression analysis. “Reactome Pathway” was set as 

the level of biological granularity. Genes were included in the “downregulated fraction” on the basis 

of possessing a mean log fold change < 0 in the ME/CFS group versus the control mean, and a Q 

value < 0.05 according to the Benjamini-Hochberg method applied to P values from the F test. The 

PANTHER analysis was then applied to the list, testing for over-representation of particular 

pathways in the list using the binomial test, followed by calculation of the False Discovery Rate 

(FDR, using the Benjamini-Hochberg method). Output was sorted by statistical significance.  
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Table A5.2. Pathways overrepresented amongst upregulated transcripts in ME/CFS 

lymphoblasts. 

Reactome 

pathway 

Number of genes 

Fold 

enrichment 

Binomial 

test P-value 

In entire 

experiment 

In upregulated 

fraction (Q<0.05) Expected 

RNA 

Polymerase II 

Transcription 

(R-HSA-

73857) 1116 105 74.65 1.41 2.74 × 10-4 

Gene 

expression 

(Transcription) 

(R-HSA-

74160) 1234 113 82.55 1.37 4.30 × 10-4 

Generic 

Transcription 

Pathway (R-

HSA-212436) 997 93 66.69 1.39 8.18 × 10-4 

ZBP1(DAI) 

mediated 

induction of 

type I IFNs 

(R-HSA-

1606322) 20 6 1.34 4.48 0.0025 

Cytosolic 

sensors of 

pathogen-

associated 

DNA  (R-

HSA-

1834949) 61 11 4.08 2.7 0.0032 

RIP-mediated 

NFkB 

activation via 

ZBP1 (R-

HSA-

1810476) 16 5 1.07 4.67 0.0048 

Signalling by 

MET (R-HSA-

6806834) 56 10 3.75 2.67 0.0052 

Cargo 

recognition for 

clathrin-

mediated 

endocytosis 

(R-HSA-

8856825) 70 11 4.68 2.35 0.0086 

Transport of 

vitamins, 

nucleosides, 

and related 27 6 1.81 3.32 0.010 
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molecules (R-

HSA-425397) 

HATs 

acetylate 

histones (R-

HSA-

3214847) 93 13 6.22 2.09 0.011 

Antiviral 

mechanism by 

IFN-

stimulated 

genes (R-

HSA-

1169410) 75 11 5.02 2.19 0.014 

Netrin-1 

signalling (R-

HSA-373752) 29 6 1.94 3.09 0.014 

Interferon 

Signalling (R-

HSA-913531) 162 19 10.84 1.75 0.015 

p75NTR 

signals via 

NF-kB (R-

HSA-193639) 14 4 0.94 4.27 0.015 

Netrin 

mediated 

repulsion 

signals (R-

HSA-418886) 3 2 0.2 9.97 0.018 

Metabolism of 

ingested 

H2SeO4 and 

H2SeO3 into 

H2Se (R-

HSA-

2408550) 3 2 0.2 9.97 0.018 

Transport of 

nucleotide 

sugars (R-

HSA-727802) 9 3 0.6 4.98 0.023 

OAS antiviral 

response (R-

HSA-

8983711) 9 3 0.6 4.98 0.023 

STING 

mediated 

induction of 

host immune 

responses (R-

HSA-

1834941) 16 4 1.07 3.74 0.024 

Signalling by 

Hippo (R-

HSA-

2028269) 16 4 1.07 3.74 0.024 
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Regulation of 

cholesterol 

biosynthesis 

by SREBP 

(SREBF) (R-

HSA-

1655829) 52 8 3.48 2.3 0.026 

Downstream 

signal 

transduction 

(R-HSA-

186763) 25 5 1.67 2.99 0.028 

PPARA 

activates gene 

expression (R-

HSA-

1989781) 95 12 6.35 1.89 0.029 

Clathrin-

mediated 

endocytosis 

(R-HSA-

8856828) 106 13 7.09 1.83 0.029 

NR1H2 & 

NR1H3 

regulate gene 

expression 

linked to 

triglyceride 

lipolysis in 

adipose (R-

HSA-

9031528) 4 2 0.27 7.47 0.030 

Transport of 

organic anions 

(R-HSA-

879518) 4 2 0.27 7.47 0.030 

RHO GTPases 

activate KTN1 

(R-HSA-

5625970) 10 3 0.67 4.48 0.030 

Regulation of 

lipid 

metabolism by 

PPARalpha 

(R-HSA-

400206) 96 12 6.42 1.87 0.031 

Toll Like 

Receptor 9 

(TLR9) 

Cascade (R-

HSA-168138) 86 11 5.75 1.91 0.033 

CREB1 

phosphorylatio

n through 

NMDA 18 4 1.2 3.32 0.034 
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receptor-

mediated 

activation of 

RAS 

signalling (R-

HSA-442742) 

Nuclear 

Receptor 

transcription 

pathway (R-

HSA-383280) 27 5 1.81 2.77 0.037 

Transport of 

small 

molecules (R-

HSA-382551) 443 40 29.63 1.35 0.037 

N-Glycan 

antennae 

elongation (R-

HSA-975577) 11 3 0.74 4.08 0.039 

p75NTR 

recruits 

signalling 

complexes (R-

HSA-209543) 11 3 0.74 4.08 0.039 

PECAM1 

interactions 

(R-HSA-

210990) 11 3 0.74 4.08 0.039 

TRIF(TICAM

1)-mediated 

TLR4 

signalling  (R-

HSA-937061) 89 11 5.95 1.85 0.040 

MyD88-

independent 

TLR4 cascade  

(R-HSA-

166166) 89 11 5.95 1.85 0.040 

Retrograde 

transport at the 

Trans-Golgi-

Network (R-

HSA-

6811440) 47 7 3.14 2.23 0.041 

Membrane 

Trafficking 

(R-HSA-

199991) 526 46 35.19 1.31 0.042 

Transport to 

the Golgi and 

subsequent 

modification 

(R-HSA-

948021) 159 17 10.64 1.6 0.043 
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Vesicle-

mediated 

transport (R-

HSA-

5653656) 540 47 36.12 1.3 0.043 

NR1H2 & 

NR1H3 

regulate gene 

expression to 

limit 

cholesterol 

uptake  (R-

HSA-

9031525) 5 2 0.33 5.98 0.045 

Signalling by 

Receptor 

Tyrosine 

Kinases (R-

HSA-

9006934) 334 31 22.34 1.39 0.045 

Signalling by 

NTRKs (R-

HSA-166520) 80 10 5.35 1.87 0.046 

Diseases of 

Immune 

System (R-

HSA-

5260271) 20 4 1.34 2.99 0.047 

Diseases 

associated 

with the TLR 

signalling 

cascade (R-

HSA-

5602358) 20 4 1.34 2.99 0.047 

SLC 

transporter 

disorders (R-

HSA-

5619102) 59 8 3.95 2.03 0.048 

Gastrin-CREB 

signalling 

pathway via 

PKC and 

MAPK (R-

HSA-881907) 12 3 0.8 3.74 0.048 

Ion channel 

transport (R-

HSA-983712) 103 12 6.89 1.74 0.048 

TRAF6 

mediated 

induction of 

NFkB and 

MAP kinases 

upon TLR7/8 81 10 5.42 1.85 0.049 
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or 9 activation 

(R-HSA-

975138) 

Activation of 

gene 

expression by 

SREBF 

(SREBP) (R-

HSA-

2426168) 39 6 2.61 2.3 0.049 

Table A5.2: Pathway over-representation analysis of upregulated transcripts in whole-cell 

transcriptome data using PANTHER gene expression analysis. “Reactome Pathway” was set as 

the level of biological granularity. Genes were included in the “upregulated fraction” on the basis 

of possessing a mean log fold change > 0 in the ME/CFS group versus the control mean, and a Q 

value < 0.05 according to the Benjamini-Hochberg method applied to P values from the F test. 

Output was sorted according to statistical significance. The PANTHER analysis was then applied 

to the list testing for over-representation of particular pathways in the list using the binomial test. 

The FDR correction was not applied to the PANTHER analysis. Output was sorted by statistical 

significance. 
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Table A5.3. Pathways over-represented amongst upregulated proteins in ME/CFS 

lymphoblasts. 

Reactome pathway 

Number of proteins 

Fold 

enrichment 

Binomial 

test P 

value 

In 

entire 

dataset 

In significantly 

upregulated 

fraction 

(Q<0.05) Expected 

Metabolism (R-HSA-

1430728) 789 66 43.61 1.51 2.12 × 10-4 

Mitochondrial Fatty 

Acid Beta-Oxidation 

(R-HSA-77289) 23 7 1.27 5.51 3.32 × 10-4 

Interferon gamma 

signalling (R-HSA-

877300) 49 10 2.71 3.69 4.60 × 10-4 

Beta oxidation of 

palmitoyl-CoA to 

myristoyl-CoA (R-

HSA-77305) 3 3 0.17 18.09 6.64 × 10-4 

Mitochondrial fatty 

acid beta-oxidation of 

saturated fatty acids (R-

HSA-77286) 7 4 0.39 10.34 6.72 × 10-4 

Phosphorylation of 

CD3 and TCR zeta 

chains (R-HSA-

202427) 13 5 0.72 6.96 8.53 × 10-4 

Mitochondrial calcium 

ion transport (R-HSA-

8949215) 13 5 0.72 6.96 8.53 × 10-4 

Beta oxidation of 

lauroyl-CoA to 

decanoyl-CoA-CoA (R-

HSA-77310) 4 3 0.22 13.57 0.0015 

Glutamate 

Neurotransmitter 

Release Cycle (R-HSA-

210500) 4 3 0.22 13.57 0.0015 

Interleukin-2 family 

signalling (R-HSA-

451927) 15 5 0.83 6.03 0.0016 

PD-1 signalling (R-

HSA-389948) 15 5 0.83 6.03 0.0016 

Cytokine Signalling in 

Immune system (R-

HSA-1280215) 327 31 18.08 1.72 0.0023 

Interleukin-9 signalling 

(R-HSA-8985947) 5 3 0.28 10.85 0.0028 

Beta oxidation of 

hexanoyl-CoA to 5 3 0.28 10.85 0.0028 
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butanoyl-CoA (R-HSA-

77350) 

Beta oxidation of 

octanoyl-CoA to 

hexanoyl-CoA (R-

HSA-77348) 5 3 0.28 10.85 0.0028 

Beta oxidation of 

decanoyl-CoA to 

octanoyl-CoA-CoA (R-

HSA-77346) 5 3 0.28 10.85 0.0028 

Interleukin-21 

signalling (R-HSA-

9020958) 5 3 0.28 10.85 0.0028 

Mitochondrial fatty 

acid beta-oxidation of 

unsaturated fatty acids 

(R-HSA-77288) 5 3 0.28 10.85 0.0028 

Fatty acid metabolism 

(R-HSA-8978868) 63 10 3.48 2.87 0.0029 

Translocation of ZAP-

70 to Immunological 

synapse (R-HSA-

202430) 11 4 0.61 6.58 0.0035 

Generation of second 

messenger molecules 

(R-HSA-202433) 18 5 0.99 5.03 0.0035 

Cell-Cell 

communication (R-

HSA-1500931) 27 6 1.49 4.02 0.0042 

Interleukin-2 signalling 

(R-HSA-9020558) 6 3 0.33 9.05 0.0047 

Acyl chain remodeling 

of CL (R-HSA-

1482798) 2 2 0.11 18.09 0.0057 

Adenylate cyclase 

inhibitory pathway (R-

HSA-170670) 2 2 0.11 18.09 0.0057 

Beta oxidation of 

myristoyl-CoA to 

lauroyl-CoA (R-HSA-

77285) 2 2 0.11 18.09 0.0057 

Signalling by PDGF 

(R-HSA-186797) 13 4 0.72 5.57 0.0062 

Downstream signal 

transduction (R-HSA-

186763) 13 4 0.72 5.57 0.0062 

Nephrin family 

interactions (R-HSA-

373753) 7 3 0.39 7.75 0.0072 
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Signalling by cytosolic 

FGFR1 fusion mutants 

(R-HSA-1839117) 8 3 0.44 6.78 0.010 

Processing of SMDT1 

(R-HSA-8949664) 8 3 0.44 6.78 0.010 

Interleukin-20 family 

signalling (R-HSA-

8854691) 8 3 0.44 6.78 0.010 

Erythropoietin activates 

STAT5 (R-HSA-

9027283) 3 2 0.17 12.06 0.012 

Release of apoptotic 

factors from the 

mitochondria (R-HSA-

111457) 3 2 0.17 12.06 0.012 

STAT5 Activation (R-

HSA-9645135) 3 2 0.17 12.06 0.012 

Mitochondrial 

biogenesis (R-HSA-

1592230) 45 7 2.49 2.81 0.013 

Organelle biogenesis 

and maintenance (R-

HSA-1852241) 104 12 5.75 2.09 0.014 

FGFR1 mutant receptor 

activation (R-HSA-

1839124) 9 3 0.5 6.03 0.014 

Neurotransmitter 

release cycle (R-HSA-

112310) 9 3 0.5 6.03 0.014 

Growth hormone 

receptor signalling (R-

HSA-982772) 9 3 0.5 6.03 0.014 

TCR signalling (R-

HSA-202403) 80 10 4.42 2.26 0.014 

Immune System (R-

HSA-168256) 805 58 44.5 1.3 0.017 

Transmission across 

Chemical Synapses (R-

HSA-112315) 60 8 3.32 2.41 0.019 

Metabolism of amino 

acids and derivatives 

(R-HSA-71291) 220 20 12.16 1.64 0.021 

Signalling by Leptin 

(R-HSA-2586552) 4 2 0.22 9.05 0.021 

Gluconeogenesis (R-

HSA-70263) 19 4 1.05 3.81 0.022 

Signalling by FGFR1 in 

disease (R-HSA-

5655302) 11 3 0.61 4.93 0.024 
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EPH-Ephrin signalling 

(R-HSA-2682334) 40 6 2.21 2.71 0.025 

The citric acid (TCA) 

cycle and respiratory 

electron transport (R-

HSA-1428517) 115 12 6.36 1.89 0.027 

Formation of ATP by 

chemiosmotic coupling 

(R-HSA-163210) 12 3 0.66 4.52 0.030 

Pentose phosphate 

pathway (R-HSA-

71336) 12 3 0.66 4.52 0.030 

RAB 

geranylgeranylation (R-

HSA-8873719) 31 5 1.71 2.92 0.030 

Transcriptional 

activation of 

mitochondrial 

biogenesis (R-HSA-

2151201) 21 4 1.16 3.45 0.030 

Activation of GABAB 

receptors (R-HSA-

991365) 5 2 0.28 7.24 0.032 

VxPx cargo-targeting to 

cilium (R-HSA-

5620916) 5 2 0.28 7.24 0.032 

Interleukin-15 

signalling (R-HSA-

8983432) 5 2 0.28 7.24 0.032 

ADP signalling through 

P2Y purinoceptor 12 

(R-HSA-392170) 5 2 0.28 7.24 0.032 

Sulphide oxidation to 

sulphate (R-HSA-

1614517) 5 2 0.28 7.24 0.032 

G-protein activation (R-

HSA-202040) 5 2 0.28 7.24 0.032 

Interaction between L1 

and Ankyrins (R-HSA-

445095) 5 2 0.28 7.24 0.032 

Aspartate and 

asparagine metabolism 

(R-HSA-8963693) 5 2 0.28 7.24 0.032 

Phenylalanine and 

tyrosine metabolism 

(R-HSA-8963691) 5 2 0.28 7.24 0.032 

GABA B receptor 

activation (R-HSA-

977444) 5 2 0.28 7.24 0.032 
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GABA receptor 

activation (R-HSA-

977443) 5 2 0.28 7.24 0.032 

Interferon Signalling 

(R-HSA-913531) 121 12 6.69 1.79 0.038 

Detoxification of 

Reactive Oxygen 

Species (R-HSA-

3299685) 23 4 1.27 3.15 0.040 

Costimulation by the 

CD28 family (R-HSA-

388841) 34 5 1.88 2.66 0.042 

FLT3 Signalling (R-

HSA-9607240) 96 10 5.31 1.88 0.042 

Cargo trafficking to the 

periciliary membrane 

(R-HSA-5620920) 14 3 0.77 3.88 0.043 

Signalling by SCF-KIT 

(R-HSA-1433557) 14 3 0.77 3.88 0.043 

Prolactin receptor 

signalling (R-HSA-

1170546) 6 2 0.33 6.03 0.044 

Nef Mediated CD8 

Down-regulation (R-

HSA-182218) 6 2 0.33 6.03 0.044 

Lysine catabolism (R-

HSA-71064) 6 2 0.33 6.03 0.044 

Clathrin-mediated 

endocytosis (R-HSA-

8856828) 71 8 3.92 2.04 0.045 

Downstream TCR 

signalling (R-HSA-

202424) 71 8 3.92 2.04 0.045 

Neuronal System (R-

HSA-112316) 71 8 3.92 2.04 0.045 

Diseases of metabolism 

(R-HSA-5668914) 24 4 1.33 3.02 0.045 
Table A5.3: Pathway over-representation analysis of upregulated whole-cell proteome data 

using PANTHER gene expression analysis. “Reactome Pathway” was set as the level of 

biological granularity. Proteins were included in the “upregulated fraction” on the basis of 

possessing a mean fold change > 1 in the ME/CFS group versus the control mean, and a Q value < 

0.05 according to the Benjamini-Hochberg method applied to P-values from the t test. The 

PANTHER analysis was then applied to the list testing for over-representation of particular 

pathways in the list using the binomial test. The FDR correction was not applied to the PANTHER 

analysis as it obscured true positives confirmed by alternative investigation of concerned functional 

groups, including respirometry, western blotting and closer proteome analysis. Output was sorted 

by statistical significance.  
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Table A5.4. Pathways over-represented amongst downregulated proteins in ME/CFS 

lymphoblasts. 

Reactome 

pathway 

Number of proteins 

Fold 

enrichment 

Binomial 

test P-value 

In entire 

dataset 

In significantly 

downregulated 

fraction (Q<0.05) Expected 

Vitamin B1 

(thiamin) 

metabolism (R-

HSA-196819) 1 1 0.01 > 100 0.0097 

Defective PMM2 

causes PMM2-

CDG (CDG-1a) 

(R-HSA-

4043911) 1 1 0.01 > 100 0.0097 

Regulation of 

gene expression 

by Hypoxia-

inducible Factor 

(R-HSA-

1234158) 2 1 0.02 51.26 0.019 

Protein repair (R-

HSA-5676934) 2 1 0.02 51.26 0.019 

RHO GTPases 

activate PKNs (R-

HSA-5625740) 27 2 0.26 7.59 0.029 

NOTCH4 

Activation and 

Transmission of 

Signal to the 

Nucleus (R-HSA-

9013700) 3 1 0.03 34.17 0.029 

ALKBH3 

mediated reversal 

of alkylation 

damage (R-HSA-

112126) 3 1 0.03 34.17 0.029 

GP1b-IX-V 

activation 

signalling (R-

HSA-430116) 3 1 0.03 34.17 0.029 

Meiosis (R-HSA-

1500620) 29 2 0.28 7.07 0.033 

Synthesis of 

GDP-mannose 

(R-HSA-446205) 4 1 0.04 25.63 0.038 

Reproduction (R-

HSA-1474165) 32 2 0.31 6.41 0.039 

Reversal of 

alkylation damage 

by DNA 

dioxygenases (R-

HSA-73943) 5 1 0.05 20.5 0.048 
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Table A5.4: Pathway over-representation analysis of downregulated whole-cell proteome 

data using PANTHER gene expression analysis. “Reactome Pathway” was set as the level of 

biological granularity. Proteins were included in the “downregulated fraction” on the basis of 

possessing a mean fold change < 1 in the ME/CFS group versus the control mean, and a Q value < 

0.05 according to the Benjamini-Hochberg method applied to P-values from the t test. The 

PANTHER analysis was then applied to the list, testing for over-representation of particular 

pathways in the list using binomial test. The FDR correction was not applied to the PANTHER 

analysis as it obscured true positives confirmed by alternative investigation of concerned functional 

groups, including respirometry, western blotting and closer proteome analysis. Output was sorted 

by statistical significance. 
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Appendix 6: Levels of CD Cell Markers and Sirtuins Detected in 

Whole-Cell Proteomes and Transcriptomes of ME/CFS and 

Control Lymphoblasts  

Table A6.1. Transcript levels of CD cell markers and Sirtuins detected in whole cell 

transcriptomes of ME/CFS and control lymphoblasts. 

Gene Name LogFC P-value Q-value 

CD151 -0.13 0.51 1.71 

CD164 0.28 0.028 0.032 

CD180 -0.007 0.98 95.21 

CD19 -0.42 0.0007 0.00074 

CD200 -0.085 0.80 6.79 

CD22 0.051 0.80 6.72 

CD226 0.24 0.38 0.94 

CD24 0.38 0.31 0.68 

CD27 -0.33 0.22 0.40 

CD274 0.16 0.51 1.70 

CD2AP 0.11 0.24 0.45 

CD300A 0.31 0.13 0.19 

CD320 -0.37 0.052 0.065 

CD37 -0.12 0.33 0.73 

CD38 -0.15 0.55 1.96 

CD40 0.079 0.52 1.79 

CD44 -0.053 0.75 5.08 

CD46 0.19 0.21 0.38 

CD47 -0.33 0.031 0.035 

CD48 0.10 0.56 2.13 

CD52 -0.39 0.030 0.035 

CD53 0.24 0.057 0.072 

CD55 0.30 0.17 0.27 

CD58 0.026 0.85 9.64 

CD59 -0.13 0.27 0.54 

CD63 -0.33 0.056 0.070 

CD69 0.20 0.32 0.71 

CD70 -0.00068 1.00 341.15 

CD72 0.020 0.94 25.35 
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CD74 0.069 0.67 3.41 

CD79A -0.34 0.040 0.048 

CD79B -0.25 0.16 0.26 

CD80 0.047 0.82 7.79 

CD81 -0.15 0.22 0.39 

CD82 0.17 0.29 0.61 

CD83 0.23 0.22 0.40 

CD84 0.053 0.82 7.99 

CD86 -0.15 0.41 1.07 

CD99 0.045 0.79 6.66 

CD99L2 -0.23 0.14 0.21 

SIRT1 0.29 0.091 0.13 

SIRT2 0.23 0.0058 0.0060 

SIRT3 -0.22 0.011 0.012 

SIRT4 0.042 0.86 10.50 

SIRT5 -0.11 0.18 0.31 

SIRT6 -0.30 0.012 0.013 

SIRT7 -0.080 0.31 0.68 

Table A6.1: Transcript levels of CD cell markers and Sirtuins detected in whole cell 

transcriptomics of ME/CFS and control lymphoblasts. LogFC represents the log fold change in 

the ME/CFS group relative to the control group. Q values were assigned according to the 

Benjamini-Hochberg method. 
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Table A6.2. Protein levels of CD cell markers detected in whole cell proteomes of ME/CFS 

and control lymphoblasts. 

Protein Name Fold change P-value Q-value 

CD226 4.06 0.038 0.041 

CD2AP 0.95 0.67 2.48 

CD37 1.62 0.12 0.15 

CD38 1.42 0.11 0.13 

CD40 1.22 0.31 0.52 

CD44 1.18 0.17 0.23 

CD48 1.30 0.016 0.016 

CD59 1.04 0.82 5.66 

CD70 1.83 0.0010 0.0010 

CD74 1.12 0.29 0.45 

CD79A 0.56 0.39 0.75 

CD81 1.11 0.68 2.62 

CD97 1.20 0.39 0.74 

Table A6.2: Protein levels of CD cell markers detected in whole cell proteomics of ME/CFS 

and control lymphoblasts. Fold change represents the mean fold change in the ME/CFS group 

relative to the control group. Q values were assigned according to the Benjamini-Hochberg method. 
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Appendix 7: Confirmatory Tests Verifying the Proteomics and 

Transcriptomics Experiments 

Figure A7.1. Verification of proteomics and transcriptomics data. 

Figure A7.1: Western blots and qRT-PCR results verifying whole-cell proteome and 

transcriptome observations, respectively. (A) ACO2, SDHA and MDH1 expression as measured 

by semiquantitative Western blotting are consistent with expression as measured by whole-cell 

proteomics. In each pair of charts, the left panel is the result of semiquantitative western blotting 

and the right panel is the relative abundance of the same protein in the proteomics. Western blot 

sample sizes are as follows. ACO2: ME/CFS n = 21, Control = 22. SdhA: ME/CFS n = 17, Control 

= 19. MDH1: ME/CFS n = 6, Control = 7. Whole-cell proteomics experiment: ME/CFS n = 34, 

Control = 31. Western blots were assisted with by Oana Sanislav. (B) GLS, SdhB, NDUFB1 and 

NDUFB10 transcript levels relative to HIST1H1C were consistent in direction between qRT-PCR 

experiments and the whole-cell transcriptomes. In each pair of charts, the left panel is the result of 

semiquantitative qRT-PCR and the right panel is the relative abundance of the same transcript in 

the transcriptomics. GLS qRT-PCR: ME/CFS n = 23, Control = 16. SdhB qRT-PCR: ME/CFS n = 

23, Control = 16. NDUFB1 and NDUFB10 GLS qRT-PCR: ME/CFS n = 22, Control = 16. Whole-

cell transcriptomics experiment: ME/CFS n = 23, Control = 17.    
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Figure A7.2. Example semi-quantitative Western blot and loading control images as 

part of confirmatory experiments verifying the whole-cell proteomics data 

Figure A7.2: Example images of confirmatory semi-quantitative Western blots and loading 

controls (stain-free gels). (A) Example Western blot undertaken as part of the experiments 

verifying ACO2 levels in the whole-cell proteomes. The intensity of individual bands was 

digitally quantified and normalised to internal control cell lines included in every experiment. 

Protein ladder was visible in the stain-free gel but not in this particular corresponding blot. The 

chart below the blot shows the signal from the band of interest normalised to total protein loading. 

Western blots were assisted with by Oana Sanislav. (B) Example Western blot undertaken as part 

of the experiments verifying SDHA levels in the whole-cell proteomes. The intensity of 

individual bands was digitally quantified and normalised to internal control cell lines included in 

every experiment. The chart below the blot shows the signal from the band of interest normalised 

to total protein loading. (C) Example Western blot undertaken as part of the experiments verifying 

NDUFB8 levels in the whole-cell proteomes. The intensity of individual bands was digitally 

quantified and normalised to internal control cell lines included in every experiment. The chart 

below the blot shows the signal from the band of interest normalised to total protein loading. 

Mean NDUFB8 levels in the whole-cell proteomes of ME/CFS lymphoblasts were increased by 

25% compared with controls, consistent with the NDUFB8 signal normalised to total loading as 

seen in this representative blot.  
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Appendix 8: Enzyme Levels of SLC25A11, MDH1 and BCKDK 

in the Whole-Cell Proteomes 

Figure A8.1. SLC25A11 and MDH1 expression are elevated, while that of BCKDK is 

unaltered in ME/CFS lymphoblasts. 

Figure A8.1: Expression of SLC25A11 and MDH1 is elevated in the whole-cell proteomes of 

ME/CFS lymphoblasts, while that of BCKDK is unaltered (two-tailed t tests in each case). 

Error bars represent standard error of the mean. Relative protein abundance was obtained from 

iBAQ values normalised to the control average within the respective individual experiments. 
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Appendix 9: Combined Measures of Lymphocyte Death Rate, 

Lymphoblast TORC1 Activity and Respiratory Abnormalities as 

an ME/CFS Biomarker 

Figure A9.1. The combination of lymphocyte death rate, lymphoblast TORC1 

signalling and lymphoblast respiratory abnormalities accurately distinguishes 

ME/CFS from healthy control lymphoblasts. 

Figure A9.1: Logistic regression and ROC analysis of the combination of lymphocyte death 

rate, TORC1 activity and respiratory abnormalities. (A) Box plot showing the distribution of 

the propensity score in logistic regression resulting from analysis of the combined variables. The 

resulting regression coefficients are as indicated. The boxes show the median and the 25th and 75th 

percentiles, so that the height of the box is the interquartile range (IQR). The whiskers extend to the 

most extreme observations (largest and smallest) falling within ±1.5 × IQR of the box. Scores 

greater than 0.0 lead to classification of a sample as ME/CFS in the error matrix. (B) ROC analysis 

of the propensity score, plotting sensitivity (proportion of true positives) against specificity 

(proportion of true negatives) with 95% confidence limits (blue shading, N/A). The fractional area 

under the curve (AUC) is shown with 95% confidence limits. The “best” threshold for the 

propensity score (0.00) is shown, together with the specificity (1.00) and sensitivity (1.00) at that 

threshold.  



204 

 

References 

Aaron, L. A., M. M. Burke and D. Buchwald (2000). "Overlapping conditions among 

patients with chronic fatigue syndrome, fibromyalgia, and temporomandibular 

disorder." Arch Intern Med 160(2): 221-227. 

Abrego, J., V. Gunda, E. Vernucci, S. K. Shukla, R. J. King, A. Dasgupta, G. Goode, D. 

Murthy, F. Yu and P. K. Singh (2017). "GOT1-mediated anaplerotic glutamine 

metabolism regulates chronic acidosis stress in pancreatic cancer cells." Cancer Lett 

400: 37-46. 

Abuaita, B. H., T. L. Schultz and M. X. O'Riordan (2018). "Mitochondria-Derived Vesicles 

Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized 

Staphylococcus aureus." Cell Host Microbe 24(5): 625-636 e625. 

Adeva-Andany, M. M., L. Lopez-Maside, C. Donapetry-Garcia, C. Fernandez-Fernandez 

and C. Sixto-Leal (2017). "Enzymes involved in branched-chain amino acid 

metabolism in humans." Amino Acids 49(6): 1005-1028. 

Afari, N. and D. Buchwald (2003). "Chronic fatigue syndrome: a review." Am J Psychiatry 

160(2): 221-236. 

Allman, D. and S. Pillai (2008). "Peripheral B cell subsets." Curr Opin Immunol 20(2): 

149-157. 

Almenar-Perez, E., T. Ovejero, T. Sanchez-Fito, J. A. Espejo, L. Nathanson and E. Oltra 

(2019). "Epigenetic Components of Myalgic Encephalomyelitis/Chronic Fatigue 

Syndrome Uncover Potential Transposable Element Activation." Clin Ther 41(4): 

675-698. 

Almenar-Perez, E., T. Sanchez-Fito, T. Ovejero, L. Nathanson and E. Oltra (2019). "Impact 

of Polypharmacy on Candidate Biomarker miRNomes for the Diagnosis of 

Fibromyalgia and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Striking 

Back on Treatments." Pharmaceutics 11(3). 

Almenar-Perez, E., L. Sarria, L. Nathanson and E. Oltra (2020). "Assessing diagnostic 

value of microRNAs from peripheral blood mononuclear cells and extracellular 

vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome." Sci Rep 10(1): 

2064. 

Anand, S. K. and S. K. Tikoo (2013). "Viruses as modulators of mitochondrial functions." 

Adv Virol 2013: 738794. 

Annesley, S. J., S. T. Lay, S. W. De Piazza, O. Sanislav, E. Hammersley, C. Y. Allan, L. 

M. Francione, M. Q. Bui, Z. P. Chen, K. R. Ngoei, F. Tassone, B. E. Kemp, E. 

Storey, A. Evans, D. Z. Loesch and P. R. Fisher (2016). "Immortalized Parkinson's 

disease lymphocytes have enhanced mitochondrial respiratory activity." Dis Model 

Mech 9(11): 1295-1305. 

Antonogeorgos, G., D. B. Panagiotakos, K. N. Priftis and A. Tzonou (2009). "Logistic 

Regression and Linear Discriminant Analyses in Evaluating Factors Associated 

with Asthma Prevalence among 10- to 12-Years-Old Children: Divergence and 

Similarity of the Two Statistical Methods." Int J Pediatr 2009: 952042. 

Armstrong, C. W., N. R. McGregor, H. L. Butt and P. R. Gooley (2014). "Metabolism in 

chronic fatigue syndrome." Adv Clin Chem 66: 121-172. 

Armstrong, C. W., N. R. McGregor, D. Lewis, H. Butt and P. R. Gooley (2015). "Metabolic 

profiling reveals anomalous energy metabolism and oxidative stress pathways in 

chronic fatigue syndrome patients." Metabolomics 11(6): 1626–1639. 

Armstrong, C. W., N. R. McGregor, D. P. Lewis, H. L. Butt and P. R. Gooley (2017). "The 

association of fecal microbiota and fecal, blood serum and urine metabolites in 

myalgic encephalomyelitis/chronic fatigue syndrome." Metabolomics 13(8). 



205 

 

Armstrong, C. W., N. R. McGregor, J. R. Sheedy, I. Buttfield, H. L. Butt and P. R. Gooley 

(2012). "NMR metabolic profiling of serum identifies amino acid disturbances in 

chronic fatigue syndrome." Clin Chim Acta 413(19-20): 1525-1531. 

Barker, E., S. F. Fujimura, M. B. Fadem, A. L. Landay and J. A. Levy (1994). 

"Immunologic abnormalities associated with chronic fatigue syndrome." Clin Infect 

Dis 18 Suppl 1: S136-141. 

Barnes, P. R., D. J. Taylor, G. J. Kemp and G. K. Radda (1993). "Skeletal muscle 

bioenergetics in the chronic fatigue syndrome." J Neurol Neurosurg Psychiatry 

56(6): 679-683. 

Bartlett, K. and S. Eaton (2004). "Mitochondrial beta-oxidation." Eur J Biochem 271(3): 

462-469. 

Behan, W. M., I. A. More and P. O. Behan (1991). "Mitochondrial abnormalities in the 

postviral fatigue syndrome." Acta Neuropathol 83(1): 61-65. 

Benatti, U., A. Morelli, M. Frascio, E. Melloni, F. Salamino, B. Sparatore, S. Pontremoli 

and A. De Flora (1978). "Glucose 6-phosphate dehydrogenase activity in 

membranes of erythrocytes from normal individuals and subjects with 

Mediterranean G6PD deficiency." Biochem Biophys Res Commun 85(4): 1318-

1324. 

Benjamini, Y., Hochberg, Y. (1995). "Controlling the False Discovery Rate: A Practical 

and Powerful Approach to Multiple Testing." Journal of the Royal Statistical 

Society. Series B (Methodological) 57(1): 289-300. 

Bereiter-Hahn, J. and M. Voth (1994). "Dynamics of mitochondria in living cells: shape 

changes, dislocations, fusion, and fission of mitochondria." Microsc Res Tech 

27(3): 198-219. 

Besrat, A., C. E. Polan and L. M. Henderson (1969). "Mammalian metabolism of glutaric 

acid." J Biol Chem 244(6): 1461-1467. 

Bigot, A., V. Jacquemin, F. Debacq-Chainiaux, G. S. Butler-Browne, O. Toussaint, D. 

Furling and V. Mouly (2008). "Replicative aging down-regulates the myogenic 

regulatory factors in human myoblasts." Biol Cell 100(3): 189-199. 

Billing-Ross, P., A. Germain, K. Ye, A. Keinan, Z. Gu and M. R. Hanson (2016). 

"Mitochondrial DNA variants correlate with symptoms in myalgic 

encephalomyelitis/chronic fatigue syndrome." J Transl Med 14: 19. 

Blundell, S., K. K. Ray, M. Buckland and P. D. White (2015). "Chronic fatigue syndrome 

and circulating cytokines: A systematic review." Brain Behav Immun 50: 186-195. 

Bokko, P. B., L. Francione, E. Bandala-Sanchez, A. U. Ahmed, S. J. Annesley, X. Huang, 

T. Khurana, A. R. Kimmel and P. R. Fisher (2007). "Diverse cytopathologies in 

mitochondrial disease are caused by AMP-activated protein kinase signaling." Mol 

Biol Cell 18(5): 1874-1886. 

Booth, N. E., S. Myhill and J. McLaren-Howard (2012). "Mitochondrial dysfunction and 

the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 

(ME/CFS)." Int J Clin Exp Med 5(3): 208-220. 

Bradley, A. S., B. Ford and A. S. Bansal (2013). "Altered functional B cell subset 

populations in patients with chronic fatigue syndrome compared to healthy 

controls." Clin Exp Immunol 172(1): 73-80. 

Brenu, E. (2014). "Methylation Profile of CD4+ T Cells in Chronic Fatigue 

Syndrome/Myalgic Encephalomyelitis." Journal of Clinical & Cellular 

Immunology 05(03). 

Brenu, E. W., M. L. van Driel, D. R. Staines, K. J. Ashton, S. B. Ramos, J. Keane, N. G. 

Klimas and S. M. Marshall-Gradisnik (2011). "Immunological abnormalities as 



206 

 

potential biomarkers in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis." J 

Transl Med 9: 81. 

Bretin, A., A. T. Gewirtz and B. Chassaing (2018). "Microbiota and metabolism: what's 

new in 2018?" Am J Physiol Endocrinol Metab 315(1): E1-E6. 

Brown, A. E., B. Dibnah, E. Fisher, J. L. Newton and M. Walker (2018). "Pharmacological 

activation of AMPK and glucose uptake in cultured human skeletal muscle cells 

from patients with ME/CFS." Biosci Rep 38(3). 

Brown, A. E., D. E. Jones, M. Walker and J. L. Newton (2015). "Abnormalities of AMPK 

activation and glucose uptake in cultured skeletal muscle cells from individuals with 

chronic fatigue syndrome." PLoS One 10(4): e0122982. 

Brown, N. F., M. Stefanovic-Racic, I. J. Sipula and G. Perdomo (2007). "The mammalian 

target of rapamycin regulates lipid metabolism in primary cultures of rat 

hepatocytes." Metabolism 56(11): 1500-1507. 

Brown, R. L. and T. B. Clarke (2017). "The regulation of host defences to infection by the 

microbiota." Immunology 150(1): 1-6. 

Buchwald, D., R. L. Ashley, T. Pearlman, P. Kith and A. L. Komaroff (1996). "Viral 

serologies in patients with chronic fatigue and chronic fatigue syndrome." J Med 

Virol 50(1): 25-30. 

Burnet, R. B. and B. E. Chatterton (2004). "Gastric emptying is slow in chronic fatigue 

syndrome." BMC Gastroenterol 4: 32. 

Butt, H. L., R. Dunstan, N. R. McGregor and T. K. Roberts (2001). "Bacterial colonosis in 

patients with persistent fatigue. ." Proceedings of the AHMF international clinical 

and scientific conference. Sydney, Australia. 

Cabanas, H., K. Muraki, C. Balinas, N. Eaton-Fitch, D. Staines and S. Marshall-Gradisnik 

(2019). "Validation of impaired Transient Receptor Potential Melastatin 3 ion 

channel activity in natural killer cells from Chronic Fatigue Syndrome/ Myalgic 

Encephalomyelitis patients." Mol Med 25(1): 14. 

Cabanas, H., K. Muraki, N. Eaton, C. Balinas, D. Staines and S. Marshall-Gradisnik (2018). 

"Loss of Transient Receptor Potential Melastatin 3 ion channel function in natural 

killer cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients." 

Mol Med 24(1): 44. 

Cadenas, E. and K. J. Davies (2000). "Mitochondrial free radical generation, oxidative 

stress, and aging." Free Radic Biol Med 29(3-4): 222-230. 

Campanella, M., A. Seraphim, R. Abeti, E. Casswell, P. Echave and M. R. Duchen (2009). 

"IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial 

volume fraction in HeLa cells by regulating autophagy." Biochim Biophys Acta 

1787(5): 393-401. 

Carling, D., F. V. Mayer, M. J. Sanders and S. J. Gamblin (2011). "AMP-activated protein 

kinase: nature's energy sensor." Nat Chem Biol 7(8): 512-518. 

Carruthers, B. M., A. K. Jain, K. L. De Meirleir, D. L. Peterson, N. G. Klimas, A. M. 

Lerner, A. C. Bested, P. Flor-Henry, P. Joshi, A. C. Powles, J. A. Sherkey and M. 

I. Van de Sande (2003). "Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: 

Clinical Working Case Definition, Diagnostic and Treatment Protocols." Journal of 

Chronic Fatigue Syndrome, 11(1): 7-36. 

Carruthers, B. M., M. I. van de Sande, K. L. De Meirleir, N. G. Klimas, G. Broderick, T. 

Mitchell, D. Staines, A. C. Powles, N. Speight, R. Vallings, L. Bateman, B. 

Baumgarten-Austrheim, D. S. Bell, N. Carlo-Stella, J. Chia, A. Darragh, D. Jo, D. 

Lewis, A. R. Light, S. Marshall-Gradisbik, I. Mena, J. A. Mikovits, K. Miwa, M. 

Murovska, M. L. Pall and S. Stevens (2011). "Myalgic encephalomyelitis: 

International Consensus Criteria." J Intern Med 270(4): 327-338. 



207 

 

Castro-Marrero, J., M. D. Cordero, N. Saez-Francas, C. Jimenez-Gutierrez, F. J. Aguilar-

Montilla, L. Aliste and J. Alegre-Martin (2013). "Could mitochondrial dysfunction 

be a differentiating marker between chronic fatigue syndrome and fibromyalgia?" 

Antioxid Redox Signal 19(15): 1855-1860. 

Chambers, E. S., T. Preston, G. Frost and D. J. Morrison (2018). "Role of Gut Microbiota-

Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health." Curr 

Nutr Rep 7(4): 198-206. 

Ciechanover, A. and Y. T. Kwon (2015). "Degradation of misfolded proteins in 

neurodegenerative diseases: therapeutic targets and strategies." Exp Mol Med 47: 

e147. 

Ciregia, F., L. Kollipara, L. Giusti, R. P. Zahedi, C. Giacomelli, M. R. Mazzoni, G. 

Giannaccini, P. Scarpellini, A. Urbani, A. Sickmann, A. Lucacchini and L. Bazzichi 

(2016). "Bottom-up proteomics suggests an association between differential 

expression of mitochondrial proteins and chronic fatigue syndrome." Transl 

Psychiatry 6(9): e904. 

Clark, A. and N. Mach (2017). "The Crosstalk between the Gut Microbiota and 

Mitochondria during Exercise." Front Physiol 8: 319. 

Cliff, J. M., E. C. King, J. S. Lee, N. Sepulveda, A. S. Wolf, C. Kingdon, E. Bowman, H. 

M. Dockrell, L. Nacul, E. Lacerda and E. M. Riley (2019). "Cellular Immune 

Function in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)." 

Front Immunol 10: 796. 

Close, S., S. Marshall-Gradisnik, J. Byrnes, P. Smith, S. Nghiem and D. Staines (2020). 

"The Economic Impacts of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 

in an Australian Cohort." Front Public Health 8: 420. 

Conn, C. S. and S. B. Qian (2011). "mTOR signaling in protein homeostasis: less is more?" 

Cell Cycle 10(12): 1940-1947. 

Cortes Rivera, M., C. Mastronardi, C. T. Silva-Aldana, M. Arcos-Burgos and B. A. Lidbury 

(2019). "Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive 

Review." Diagnostics (Basel) 9(3). 

Cost, N. G. and M. F. Czyzyk-Krzeska (2015). "Regulation of autophagy by two products 

of one gene: TRPM3 and miR-204." Mol Cell Oncol 2(4): e1002712. 

Craddock, T. J., P. Fritsch, M. A. Rice, Jr., R. M. del Rosario, D. B. Miller, M. A. Fletcher, 

N. G. Klimas and G. Broderick (2014). "A role for homeostatic drive in the 

perpetuation of complex chronic illness: Gulf War Illness and chronic fatigue 

syndrome." PLoS One 9(1): e84839. 

Cunningham, J. T., J. T. Rodgers, D. H. Arlow, F. Vazquez, V. K. Mootha and P. Puigserver 

(2007). "mTOR controls mitochondrial oxidative function through a YY1-PGC-

1alpha transcriptional complex." Nature 450(7170): 736-740. 

Curriu, M., J. Carrillo, M. Massanella, J. Rigau, J. Alegre, J. Puig, A. M. Garcia-Quintana, 

J. Castro-Marrero, E. Negredo, B. Clotet, C. Cabrera and J. Blanco (2013). 

"Screening NK-, B- and T-cell phenotype and function in patients suffering from 

Chronic Fatigue Syndrome." J Transl Med 11: 68. 

Dalle Pezze, P., S. Ruf, A. G. Sonntag, M. Langelaar-Makkinje, P. Hall, A. M. Heberle, P. 

Razquin Navas, K. van Eunen, R. C. Tolle, J. J. Schwarz, H. Wiese, B. Warscheid, 

J. Deitersen, B. Stork, E. Fassler, S. Schauble, U. Hahn, P. Horvatovich, D. P. 

Shanley and K. Thedieck (2016). "A systems study reveals concurrent activation of 

AMPK and mTOR by amino acids." Nat Commun 7: 13254. 

de Vega, W. C., L. Erdman, S. D. Vernon, A. Goldenberg and P. O. McGowan (2018). 

"Integration of DNA methylation & health scores identifies subtypes in myalgic 

encephalomyelitis/chronic fatigue syndrome." Epigenomics 10(5): 539-557. 



208 

 

de Vega, W. C., S. Herrera, S. D. Vernon and P. O. McGowan (2017). "Epigenetic 

modifications and glucocorticoid sensitivity in Myalgic Encephalomyelitis/Chronic 

Fatigue Syndrome (ME/CFS)." BMC Med Genomics 10(1): 11. 

de Vega, W. C., S. D. Vernon and P. O. McGowan (2014). "DNA methylation 

modifications associated with chronic fatigue syndrome." PLoS One 9(8): e104757. 

Dowling, R. J., I. Topisirovic, T. Alain, M. Bidinosti, B. D. Fonseca, E. Petroulakis, X. 

Wang, O. Larsson, A. Selvaraj, Y. Liu, S. C. Kozma, G. Thomas and N. Sonenberg 

(2010). "mTORC1-mediated cell proliferation, but not cell growth, controlled by 

the 4E-BPs." Science 328(5982): 1172-1176. 

Du Preez, S., M. Corbitt, H. Cabanas, N. Eaton, D. Staines and S. Marshall-Gradisnik 

(2018). "A systematic review of enteric dysbiosis in chronic fatigue 

syndrome/myalgic encephalomyelitis." Syst Rev 7(1): 241. 

Duran, R. V. and M. N. Hall (2012). "Glutaminolysis feeds mTORC1." Cell Cycle 11(22): 

4107-4108. 

Duran, R. V., E. D. MacKenzie, H. Boulahbel, C. Frezza, L. Heiserich, S. Tardito, O. 

Bussolati, S. Rocha, M. N. Hall and E. Gottlieb (2013). "HIF-independent role of 

prolyl hydroxylases in the cellular response to amino acids." Oncogene 32(38): 

4549-4556. 

Duran, R. V., W. Oppliger, A. M. Robitaille, L. Heiserich, R. Skendaj, E. Gottlieb and M. 

N. Hall (2012). "Glutaminolysis activates Rag-mTORC1 signaling." Mol Cell 

47(3): 349-358. 

Elfaitouri, A., B. Herrmann, A. Bolin-Wiener, Y. Wang, C. G. Gottfries, O. Zachrisson, R. 

Pipkorn, L. Ronnblom and J. Blomberg (2013). "Epitopes of microbial and human 

heat shock protein 60 and their recognition in myalgic encephalomyelitis." PLoS 

One 8(11): e81155. 

Esfandyarpour, R., A. Kashi, M. Nemat-Gorgani, J. Wilhelmy and R. W. Davis (2019). "A 

nanoelectronics-blood-based diagnostic biomarker for myalgic 

encephalomyelitis/chronic fatigue syndrome (ME/CFS)." Proc Natl Acad Sci U S 

A. 

Everett, L., A. Galli and D. Crabb (2000). "The role of hepatic peroxisome proliferator-

activated receptors (PPARs) in health and disease." Liver 20(3): 191-199. 

Falk Hvidberg, M., L. S. Brinth, A. V. Olesen, K. D. Petersen and L. Ehlers (2015). "The 

Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis / 

Chronic Fatigue Syndrome (ME/CFS)." PLoS One 10(7): e0132421. 

Fletcher, M. A., X. R. Zeng, Z. Barnes, S. Levis and N. G. Klimas (2009). "Plasma 

cytokines in women with chronic fatigue syndrome." J Transl Med 7: 96. 

Fletcher, M. A., X. R. Zeng, K. Maher, S. Levis, B. Hurwitz, M. Antoni, G. Broderick and 

N. G. Klimas (2010). "Biomarkers in chronic fatigue syndrome: evaluation of 

natural killer cell function and dipeptidyl peptidase IV/CD26." PLoS One 5(5): 

e10817. 

Fluge, O. and O. Mella (2009). "Clinical impact of B-cell depletion with the anti-CD20 

antibody rituximab in chronic fatigue syndrome: a preliminary case series." BMC 

Neurol 9: 28. 

Fluge, O., O. Mella, O. Bruland, K. Risa, S. E. Dyrstad, K. Alme, I. G. Rekeland, D. 

Sapkota, G. V. Rosland, A. Fossa, I. Ktoridou-Valen, S. Lunde, K. Sorland, K. Lien, 

I. Herder, H. Thurmer, M. E. Gotaas, K. A. Baranowska, L. M. Bohnen, C. Schafer, 

A. McCann, K. Sommerfelt, L. Helgeland, P. M. Ueland, O. Dahl and K. J. Tronstad 

(2016). "Metabolic profiling indicates impaired pyruvate dehydrogenase function 

in myalgic encephalopathy/chronic fatigue syndrome." JCI Insight 1(21): e89376. 



209 

 

Fluge, O., I. G. Rekeland, K. Lien, H. Thurmer, P. C. Borchgrevink, C. Schafer, K. Sorland, 

J. Assmus, I. Ktoridou-Valen, I. Herder, M. E. Gotaas, O. Kvammen, K. A. 

Baranowska, L. Bohnen, S. S. Martinsen, A. E. Lonar, A. H. Solvang, A. E. S. Gya, 

O. Bruland, K. Risa, K. Alme, O. Dahl and O. Mella (2019). "B-Lymphocyte 

Depletion in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: 

A Randomized, Double-Blind, Placebo-Controlled Trial." Ann Intern Med. 

Fluge, O., K. Risa, S. Lunde, K. Alme, I. G. Rekeland, D. Sapkota, E. K. Kristoffersen, K. 

Sorland, O. Bruland, O. Dahl and O. Mella (2015). "B-Lymphocyte Depletion in 

Myalgic Encephalopathy/ Chronic Fatigue Syndrome. An Open-Label Phase II 

Study with Rituximab Maintenance Treatment." PLoS One 10(7): e0129898. 

Fox, J. (2005). "The R commander: a basic-statistics graphical user interface to R." J. Stat. 

Software 14: 1-42. 

Fremont, M., D. Coomans, S. Massart and K. De Meirleir (2013). "High-throughput 16S 

rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic 

encephalomyelitis/chronic fatigue syndrome patients." Anaerobe 22: 50-56. 

Fukuda, K., S. E. Straus, I. Hickie, M. C. Sharpe, J. G. Dobbins and A. Komaroff (1994). 

"The chronic fatigue syndrome: a comprehensive approach to its definition and 

study. International Chronic Fatigue Syndrome Study Group." Ann Intern Med 

121(12): 953-959. 

Garcia-Bermudez, J. and J. M. Cuezva (2016). "The ATPase Inhibitory Factor 1 (IF1): A 

master regulator of energy metabolism and of cell survival." Biochim Biophys Acta 

1857(8): 1167-1182. 

Gardiner, C. M. and D. K. Finlay (2017). "What Fuels Natural Killers? Metabolism and 

NK Cell Responses." Front Immunol 8: 367. 

Genomes Project, C., A. Auton, L. D. Brooks, R. M. Durbin, E. P. Garrison, H. M. Kang, 

J. O. Korbel, J. L. Marchini, S. McCarthy, G. A. McVean and G. R. Abecasis 

(2015). "A global reference for human genetic variation." Nature 526(7571): 68-74. 

Germain, A., D. K. Barupal, S. M. Levine and M. R. Hanson (2020). "Comprehensive 

Circulatory Metabolomics in ME/CFS Reveals Disrupted Metabolism of Acyl 

Lipids and Steroids." Metabolites 10(1). 

Germain, A., D. Ruppert, S. M. Levine and M. R. Hanson (2017). "Metabolic profiling of 

a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals 

disturbances in fatty acid and lipid metabolism." Mol Biosyst 13(2): 371-379. 

Germain, A., D. Ruppert, S. M. Levine and M. R. Hanson (2018). "Prospective Biomarkers 

from Plasma Metabolomics of Myalgic Encephalomyelitis/Chronic Fatigue 

Syndrome Implicate Redox Imbalance in Disease Symptomatology." Metabolites 

8(4). 

Ghini, V., D. Quaglio, C. Luchinat and P. Turano (2019). "NMR for sample quality 

assessment in metabolomics." N Biotechnol 52: 25-34. 

Ghosh Roy, S., E. S. Robertson and A. Saha (2016). "Epigenetic Impact on EBV Associated 

B-Cell Lymphomagenesis." Biomolecules 6(4). 

Ghosh, S., C. Dai, K. Brown, E. Rajendiran, S. Makarenko, J. Baker, C. Ma, S. Halder, M. 

Montero, V. A. Ionescu, A. Klegeris, B. A. Vallance and D. L. Gibson (2011). 

"Colonic microbiota alters host susceptibility to infectious colitis by modulating 

inflammation, redox status, and ion transporter gene expression." Am J Physiol 

Gastrointest Liver Physiol 301(1): G39-49. 

Gilardini Montani, M. S., R. Santarelli, M. Granato, R. Gonnella, M. R. Torrisi, A. Faggioni 

and M. Cirone (2019). "EBV reduces autophagy, intracellular ROS and 

mitochondria to impair monocyte survival and differentiation." Autophagy 15(4): 

652-667. 



210 

 

Giloteaux, L., J. K. Goodrich, W. A. Walters, S. M. Levine, R. E. Ley and M. R. Hanson 

(2016). "Reduced diversity and altered composition of the gut microbiome in 

individuals with myalgic encephalomyelitis/chronic fatigue syndrome." 

Microbiome 4(1): 30. 

Grainger, J., R. Daw and K. Wemyss (2018). "Systemic instruction of cell-mediated 

immunity by the intestinal microbiome." F1000Res 7. 

Grimm, C., R. Kraft, S. Sauerbruch, G. Schultz and C. Harteneck (2003). "Molecular and 

functional characterization of the melastatin-related cation channel TRPM3." J Biol 

Chem 278(24): 21493-21501. 

Haigis, M. C., R. Mostoslavsky, K. M. Haigis, K. Fahie, D. C. Christodoulou, A. J. Murphy, 

D. M. Valenzuela, G. D. Yancopoulos, M. Karow, G. Blander, C. Wolberger, T. A. 

Prolla, R. Weindruch, F. W. Alt and L. Guarente (2006). "SIRT4 inhibits glutamate 

dehydrogenase and opposes the effects of calorie restriction in pancreatic beta 

cells." Cell 126(5): 941-954. 

Halpin, P., M. V. Williams, N. G. Klimas, M. A. Fletcher, Z. Barnes and M. E. Ariza 

(2017). "Myalgic encephalomyelitis/chronic fatigue syndrome and gulf war illness 

patients exhibit increased humoral responses to the herpesviruses-encoded 

dUTPase: Implications in disease pathophysiology." J Med Virol 89(9): 1636-1645. 

Hara, K., K. Yonezawa, Q. P. Weng, M. T. Kozlowski, C. Belham and J. Avruch (1998). 

"Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 

through a common effector mechanism." J Biol Chem 273(23): 14484-14494. 

Hardcastle, S. L., E. W. Brenu, S. Johnston, T. Nguyen, T. Huth, N. Wong, S. Ramos, D. 

Staines and S. Marshall-Gradisnik (2015). "Characterisation of cell functions and 

receptors in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME)." 

BMC Immunol 16: 35. 

Hardie, D. G. (2011). "Adenosine monophosphate-activated protein kinase: a central 

regulator of metabolism with roles in diabetes, cancer, and viral infection." Cold 

Spring Harb Symp Quant Biol 76: 155-164. 

Hardie, D. G. and D. Carling (1997). "The AMP-activated protein kinase--fuel gauge of the 

mammalian cell?" Eur J Biochem 246(2): 259-273. 

Hardie, D. G. and D. A. Pan (2002). "Regulation of fatty acid synthesis and oxidation by 

the AMP-activated protein kinase." Biochem Soc Trans 30(Pt 6): 1064-1070. 

Harris, M. A., J. Clark, A. Ireland, J. Lomax, M. Ashburner, R. Foulger, K. Eilbeck, S. 

Lewis, B. Marshall, C. Mungall, J. Richter, G. M. Rubin, J. A. Blake, C. Bult, M. 

Dolan, H. Drabkin, J. T. Eppig, D. P. Hill, L. Ni, M. Ringwald, R. Balakrishnan, J. 

M. Cherry, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. Engel, D. G. Fisk, J. E. 

Hirschman, E. L. Hong, R. S. Nash, A. Sethuraman, C. L. Theesfeld, D. Botstein, 

K. Dolinski, B. Feierbach, T. Berardini, S. Mundodi, S. Y. Rhee, R. Apweiler, D. 

Barrell, E. Camon, E. Dimmer, V. Lee, R. Chisholm, P. Gaudet, W. Kibbe, R. 

Kishore, E. M. Schwarz, P. Sternberg, M. Gwinn, L. Hannick, J. Wortman, M. 

Berriman, V. Wood, N. de la Cruz, P. Tonellato, P. Jaiswal, T. Seigfried, R. White 

and C. Gene Ontology (2004). "The Gene Ontology (GO) database and informatics 

resource." Nucleic Acids Res 32(Database issue): D258-261. 

Harris, R. A., J. W. Hawes, K. M. Popov, Y. Zhao, Y. Shimomura, J. Sato, J. Jaskiewicz 

and T. D. Hurley (1997). "Studies on the regulation of the mitochondrial alpha-

ketoacid dehydrogenase complexes and their kinases." Adv Enzyme Regul 37: 271-

293. 

Hawley, S. A., D. A. Pan, K. J. Mustard, L. Ross, J. Bain, A. M. Edelman, B. G. Frenguelli 

and D. G. Hardie (2005). "Calmodulin-dependent protein kinase kinase-beta is an 



211 

 

alternative upstream kinase for AMP-activated protein kinase." Cell Metab 2(1): 9-

19. 

Helbig, K., R. Harris, J. Ayres, H. Dunckley, A. Lloyd, J. Robson and B. P. Marmion 

(2005). "Immune response genes in the post-Q-fever fatigue syndrome, Q fever 

endocarditis and uncomplicated acute primary Q fever." QJM 98(8): 565-574. 

Helbig, K. J., S. L. Heatley, R. J. Harris, C. G. Mullighan, P. G. Bardy and B. P. Marmion 

(2003). "Variation in immune response genes and chronic Q fever. Concepts: 

preliminary test with post-Q fever fatigue syndrome." Genes Immun 4(1): 82-85. 

Helliwell, A. M., E. C. Sweetman, P. A. Stockwell, C. D. Edgar, A. Chatterjee and W. P. 

Tate (2020). "Changes in DNA methylation profiles of myalgic 

encephalomyelitis/chronic fatigue syndrome patients reflect systemic 

dysfunctions." Clin Epigenetics 12(1): 167. 

Henriksson, A. E., C. Tagesson, A. Uribe, K. Uvnas-Moberg, C. E. Nord, R. Gullberg and 

C. Johansson (1988). "Effects of prostaglandin E2 on disease activity, gastric 

secretion and intestinal permeability, and morphology in patients with rheumatoid 

arthritis." Ann Rheum Dis 47(8): 620-627. 

Hernando, H., C. Shannon-Lowe, A. B. Islam, F. Al-Shahrour, J. Rodriguez-Ubreva, V. C. 

Rodriguez-Cortez, B. M. Javierre, C. Mangas, A. F. Fernandez, M. Parra, H. J. 

Delecluse, M. Esteller, E. Lopez-Granados, M. F. Fraga, N. Lopez-Bigas and E. 

Ballestar (2013). "The B cell transcription program mediates hypomethylation and 

overexpression of key genes in Epstein-Barr virus-associated proliferative 

conversion." Genome Biol 14(1): R3. 

Hindupur, S. K., A. Gonzalez and M. N. Hall (2015). "The opposing actions of target of 

rapamycin and AMP-activated protein kinase in cell growth control." Cold Spring 

Harb Perspect Biol 7(8): a019141. 

Holmes, G. P., J. E. Kaplan, N. M. Gantz, A. L. Komaroff, L. B. Schonberger, S. E. Straus, 

J. F. Jones, R. E. Dubois, C. Cunningham-Rundles, S. Pahwa and et al. (1988). 

"Chronic fatigue syndrome: a working case definition." Ann Intern Med 108(3): 

387-389. 

Horecker, B. L. (2002). "The pentose phosphate pathway." J Biol Chem 277(50): 47965-

47971. 

Hornig, M., G. Gottschalk, D. L. Peterson, K. K. Knox, A. F. Schultz, M. L. Eddy, X. Che 

and W. I. Lipkin (2016). "Cytokine network analysis of cerebrospinal fluid in 

myalgic encephalomyelitis/chronic fatigue syndrome." Mol Psychiatry 21(2): 261-

269. 

Hornig, M., J. G. Montoya, N. G. Klimas, S. Levine, D. Felsenstein, L. Bateman, D. L. 

Peterson, C. G. Gottschalk, A. F. Schultz, X. Che, M. L. Eddy, A. L. Komaroff and 

W. I. Lipkin (2015). "Distinct plasma immune signatures in ME/CFS are present 

early in the course of illness." Sci Adv 1(1). 

Horton, J. D., N. A. Shah, J. A. Warrington, N. N. Anderson, S. W. Park, M. S. Brown and 

J. L. Goldstein (2003). "Combined analysis of oligonucleotide microarray data from 

transgenic and knockout mice identifies direct SREBP target genes." Proc Natl 

Acad Sci U S A 100(21): 12027-12032. 

Hsieh, A. C., M. Costa, O. Zollo, C. Davis, M. E. Feldman, J. R. Testa, O. Meyuhas, K. M. 

Shokat and D. Ruggero (2010). "Genetic dissection of the oncogenic mTOR 

pathway reveals druggable addiction to translational control via 4EBP-eIF4E." 

Cancer Cell 17(3): 249-261. 

Hue, L. and H. Taegtmeyer (2009). "The Randle cycle revisited: a new head for an old hat." 

Am J Physiol Endocrinol Metab 297(3): E578-591. 



212 

 

Hughes, A. J., S. E. Daniel, Y. Ben-Shlomo and A. J. Lees (2002). "The accuracy of 

diagnosis of parkinsonian syndromes in a specialist movement disorder service." 

Brain 125(Pt 4): 861-870. 

Hurst, J. K. and S. V. Lymar (1997). "Toxicity of peroxynitrite and related reactive nitrogen 

species toward Escherichia coli." Chem Res Toxicol 10(7): 802-810. 

Hussain, T. and R. Mulherkar (2012). "Lymphoblastoid Cell lines: a Continuous in Vitro 

Source of Cells to Study Carcinogen Sensitivity and DNA Repair." Int J Mol Cell 

Med 1(2): 75-87. 

Hutson, S. M., A. J. Sweatt and K. F. Lanoue (2005). "Branched-chain [corrected] amino 

acid metabolism: implications for establishing safe intakes." J Nutr 135(6 Suppl): 

1557S-1564S. 

Huttenlocher, A., M. Lakonishok, M. Kinder, S. Wu, T. Truong, K. A. Knudsen and A. F. 

Horwitz (1998). "Integrin and cadherin synergy regulates contact inhibition of 

migration and motile activity." J Cell Biol 141(2): 515-526. 

Israel, B. F., M. Gulley, S. Elmore, S. Ferrini, W. H. Feng and S. C. Kenney (2005). "Anti-

CD70 antibodies: a potential treatment for EBV+ CD70-expressing lymphomas." 

Mol Cancer Ther 4(12): 2037-2044. 

Jackson, M. L., H. Butt, M. Ball, D. P. Lewis and D. Bruck (2015). "Sleep quality and the 

treatment of intestinal microbiota imbalance in Chronic Fatigue Syndrome: A pilot 

study." Sleep Sci 8(3): 124-133. 

Jager, S., C. Handschin, J. St-Pierre and B. M. Spiegelman (2007). "AMP-activated protein 

kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-

1alpha." Proc Natl Acad Sci U S A 104(29): 12017-12022. 

Janssen, A. W. and S. Kersten (2015). "The role of the gut microbiota in metabolic health." 

FASEB J 29(8): 3111-3123. 

Jason, L. A., A. Boulton, N. S. Porter, T. Jessen, M. G. Njoku and F. Friedberg (2010). 

"Classification of myalgic encephalomyelitis/chronic fatigue syndrome by types of 

fatigue." Behav Med 36(1): 24-31. 

Jason, L. A., K. Corradi, S. Torres-Harding, R. R. Taylor and C. King (2005). "Chronic 

fatigue syndrome: the need for subtypes." Neuropsychol Rev 15(1): 29-58. 

Jayakumar, A., M. H. Tai, W. Y. Huang, W. al-Feel, M. Hsu, L. Abu-Elheiga, S. S. Chirala 

and S. J. Wakil (1995). "Human fatty acid synthase: properties and molecular 

cloning." Proc Natl Acad Sci U S A 92(19): 8695-8699. 

Johnston, S., E. W. Brenu, D. Staines and S. Marshall-Gradisnik (2013). "The prevalence 

of chronic fatigue syndrome/ myalgic encephalomyelitis: a meta-analysis." Clin 

Epidemiol 5: 105-110. 

Johnston, S. C., D. R. Staines and S. M. Marshall-Gradisnik (2016). "Epidemiological 

characteristics of chronic fatigue syndrome/myalgic encephalomyelitis in 

Australian patients." Clin Epidemiol 8: 97-107. 

Joutsa, J., M. Gardberg, M. Roytta and V. Kaasinen (2014). "Diagnostic accuracy of 

parkinsonism syndromes by general neurologists." Parkinsonism Relat Disord 

20(8): 840-844. 

Kaliannan, K., B. Wang, X. Y. Li, K. J. Kim and J. X. Kang (2015). "A host-microbiome 

interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on 

metabolic endotoxemia." Sci Rep 5: 11276. 

Kanda, Y. (2013). "Investigation of the freely available easy-to-use software 'EZR' for 

medical statistics." Bone Marrow Transplant 48(3): 452-458. 

Kashi, A. A., R. W. Davis and R. D. Phair (2019). "The IDO Metabolic Trap Hypothesis 

for the Etiology of ME/CFS." Diagnostics (Basel) 9(3). 



213 

 

Kaur, J. and J. Debnath (2015). "Autophagy at the crossroads of catabolism and anabolism." 

Nat Rev Mol Cell Biol 16(8): 461-472. 

Kaushik, N., D. Fear, S. C. Richards, C. R. McDermott, E. F. Nuwaysir, P. Kellam, T. J. 

Harrison, R. J. Wilkinson, D. A. Tyrrell, S. T. Holgate and J. R. Kerr (2005). "Gene 

expression in peripheral blood mononuclear cells from patients with chronic fatigue 

syndrome." J Clin Pathol 58(8): 826-832. 

Kawasaki, A., Y. Shinkai, Y. Kuwana, A. Furuya, Y. Iigo, N. Hanai, S. Itoh, H. Yagita and 

K. Okumura (1990). "Perforin, a pore-forming protein detectable by monoclonal 

antibodies, is a functional marker for killer cells." Int Immunol 2(7): 677-684. 

Kerr, J. R., B. Burke, R. Petty, J. Gough, D. Fear, D. L. Mattey, J. S. Axford, A. G. 

Dalgleish and D. J. Nutt (2008). "Seven genomic subtypes of chronic fatigue 

syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and 

clinical phenotypes." J Clin Pathol 61(6): 730-739. 

Kerr, J. R., R. Petty, B. Burke, J. Gough, D. Fear, L. I. Sinclair, D. L. Mattey, S. C. 

Richards, J. Montgomery, D. A. Baldwin, P. Kellam, T. J. Harrison, G. E. Griffin, 

J. Main, D. Enlander, D. J. Nutt and S. T. Holgate (2008). "Gene expression 

subtypes in patients with chronic fatigue syndrome/myalgic encephalomyelitis." J 

Infect Dis 197(8): 1171-1184. 

Kim, C. W., Y. A. Moon, S. W. Park, D. Cheng, H. J. Kwon and J. D. Horton (2010). 

"Induced polymerization of mammalian acetyl-CoA carboxylase by MIG12 

provides a tertiary level of regulation of fatty acid synthesis." Proc Natl Acad Sci U 

S A 107(21): 9626-9631. 

Kim, J., M. Kundu, B. Viollet and K. L. Guan (2011). "AMPK and mTOR regulate 

autophagy through direct phosphorylation of Ulk1." Nat Cell Biol 13(2): 132-141. 

Klimas, N. G., F. R. Salvato, R. Morgan and M. A. Fletcher (1990). "Immunologic 

abnormalities in chronic fatigue syndrome." J Clin Microbiol 28(6): 1403-1410. 

Komaroff, A. L. and D. Buchwald (1991). "Symptoms and signs of chronic fatigue 

syndrome." Rev Infect Dis 13 Suppl 1: S8-11. 

Krebs, H. A. (1935). "Metabolism of amino-acids: The synthesis of glutamine from 

glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal 

tissues." Biochem J 29(8): 1951-1969. 

Landi, A., D. Broadhurst, S. D. Vernon, D. L. Tyrrell and M. Houghton (2016). "Reductions 

in circulating levels of IL-16, IL-7 and VEGF-A in myalgic 

encephalomyelitis/chronic fatigue syndrome." Cytokine 78: 27-36. 

Laplante, M. and D. M. Sabatini (2009). "An emerging role of mTOR in lipid biosynthesis." 

Curr Biol 19(22): R1046-1052. 

Lawson, N., C. H. Hsieh, D. March and X. Wang (2016). "Elevated Energy Production in 

Chronic Fatigue Syndrome Patients." J Nat Sci 2(10). 

Lecker, S. H., A. L. Goldberg and W. E. Mitch (2006). "Protein degradation by the 

ubiquitin-proteasome pathway in normal and disease states." J Am Soc Nephrol 

17(7): 1807-1819. 

Lidbury, B. A., B. Kita, D. P. Lewis, S. Hayward, H. Ludlow, M. P. Hedger and D. M. de 

Kretser (2017). "Activin B is a novel biomarker for chronic fatigue 

syndrome/myalgic encephalomyelitis (CFS/ME) diagnosis: a cross sectional 

study." J Transl Med 15(1): 60. 

Lidbury, B. A., B. Kita, A. M. Richardson, D. P. Lewis, E. Privitera, S. Hayward, D. de 

Kretser and M. Hedger (2019). "Rethinking ME/CFS Diagnostic Reference 

Intervals via Machine Learning, and the Utility of Activin B for Defining Symptom 

Severity." Diagnostics (Basel) 9(3). 



214 

 

Light, K. C., N. Agarwal, E. Iacob, A. T. White, A. Y. Kinney, T. A. VanHaitsma, H. 

Aizad, R. W. Hughen, L. Bateman and A. R. Light (2013). "Differing leukocyte 

gene expression profiles associated with fatigue in patients with prostate cancer 

versus chronic fatigue syndrome." Psychoneuroendocrinology 38(12): 2983-2995. 

Loebel, M., P. Grabowski, H. Heidecke, S. Bauer, L. G. Hanitsch, K. Wittke, C. Meisel, P. 

Reinke, H. D. Volk, O. Fluge, O. Mella and C. Scheibenbogen (2016). "Antibodies 

to beta adrenergic and muscarinic cholinergic receptors in patients with Chronic 

Fatigue Syndrome." Brain Behav Immun 52: 32-39. 

Loesch, D. Z., S. J. Annesley, N. Trost, M. Q. Bui, S. T. Lay, E. Storey, S. W. De Piazza, 

O. Sanislav, L. M. Francione, E. M. Hammersley, F. Tassone, D. Francis and P. R. 

Fisher (2017). "Novel Blood Biomarkers Are Associated with White Matter Lesions 

in Fragile X- Associated Tremor/Ataxia Syndrome." Neurodegener Dis 17(1): 22-

30. 

Loewith, R. and M. N. Hall (2011). "Target of rapamycin (TOR) in nutrient signaling and 

growth control." Genetics 189(4): 1177-1201. 

Lorusso, L., S. V. Mikhaylova, E. Capelli, D. Ferrari, G. K. Ngonga and G. Ricevuti (2009). 

"Immunological aspects of chronic fatigue syndrome." Autoimmun Rev 8(4): 287-

291. 

Ma, X. M. and J. Blenis (2009). "Molecular mechanisms of mTOR-mediated translational 

control." Nat Rev Mol Cell Biol 10(5): 307-318. 

Maclachlan, L., S. Watson, P. Gallagher, A. Finkelmeyer, L. A. Jason, M. Sunnquist and J. 

L. Newton (2017). "Are current chronic fatigue syndrome criteria diagnosing 

different disease phenotypes?" PLoS One 12(10): e0186885. 

Maes, M., F. Coucke and J. C. Leunis (2007). "Normalization of the increased translocation 

of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a 

remission of chronic fatigue syndrome." Neuro Endocrinol Lett 28(6): 739-744. 

Maes, M. and J. C. Leunis (2008). "Normalization of leaky gut in chronic fatigue syndrome 

(CFS) is accompanied by a clinical improvement: effects of age, duration of illness 

and the translocation of LPS from gram-negative bacteria." Neuro Endocrinol Lett 

29(6): 902-910. 

Maes, M., J. C. Leunis, M. Geffard and M. Berk (2014). "Evidence for the existence of 

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with and 

without abdominal discomfort (irritable bowel) syndrome." Neuro Endocrinol Lett 

35(6): 445-453. 

Maes, M., I. Mihaylova and J. C. Leunis (2007). "Increased serum IgM antibodies directed 

against phosphatidyl inositol (Pi) in chronic fatigue syndrome (CFS) and major 

depression: evidence that an IgM-mediated immune response against Pi is one 

factor underpinning the comorbidity between both CFS and depression." Neuro 

Endocrinol Lett 28(6): 861-867. 

Maes, M., F. N. Twisk, M. Kubera and K. Ringel (2012). "Evidence for inflammation and 

activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic 

Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-alpha, 

PMN-elastase, lysozyme and neopterin." J Affect Disord 136(3): 933-939. 

Maes, M., F. N. Twisk, M. Kubera, K. Ringel, J. C. Leunis and M. Geffard (2012). 

"Increased IgA responses to the LPS of commensal bacteria is associated with 

inflammation and activation of cell-mediated immunity in chronic fatigue 

syndrome." J Affect Disord 136(3): 909-917. 

Maher, K. J., N. G. Klimas and M. A. Fletcher (2005). "Chronic fatigue syndrome is 

associated with diminished intracellular perforin." Clin Exp Immunol 142(3): 505-

511. 



215 

 

Mandarano, A. H., J. Maya, L. Giloteaux, D. L. Peterson, M. Maynard, C. G. Gottschalk 

and M. R. Hanson (2019). "Myalgic encephalomyelitis/chronic fatigue syndrome 

patients exhibit altered T cell metabolism and cytokine associations." J Clin Invest. 

Marshall-Gradisnik, S., T. Huth, A. Chacko, S. Johnston, P. Smith and D. Staines (2016). 

"Natural killer cells and single nucleotide polymorphisms of specific ion channels 

and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome." Appl 

Clin Genet 9: 39-47. 

Mastorodemos, V., I. Zaganas, C. Spanaki, M. Bessa and A. Plaitakis (2005). "Molecular 

basis of human glutamate dehydrogenase regulation under changing energy 

demands." J Neurosci Res 79(1-2): 65-73. 

Mathew, S. J., X. Mao, K. A. Keegan, S. M. Levine, E. L. Smith, L. A. Heier, V. 

Otcheretko, J. D. Coplan and D. C. Shungu (2009). "Ventricular cerebrospinal fluid 

lactate is increased in chronic fatigue syndrome compared with generalized anxiety 

disorder: an in vivo 3.0 T (1)H MRS imaging study." NMR Biomed 22(3): 251-

258. 

McCarthy, D. J., Y. Chen and G. K. Smyth (2012). "Differential expression analysis of 

multifactor RNA-Seq experiments with respect to biological variation." Nucleic 

Acids Res 40(10): 4288-4297. 

McCully, K. K., B. H. Natelson, S. Iotti, S. Sisto and J. S. Leigh, Jr. (1996). "Reduced 

oxidative muscle metabolism in chronic fatigue syndrome." Muscle Nerve 19(5): 

621-625. 

Mejia, E. M., S. Chau, G. C. Sparagna, S. Sipione and G. M. Hatch (2016). "Reduced 

Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to 

Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly." 

Lipids 51(5): 561-569. 

Mensah, F. F. K., C. W. Armstrong, V. Reddy, A. S. Bansal, S. Berkovitz, M. J. Leandro 

and G. Cambridge (2018). "CD24 Expression and B Cell Maturation Shows a Novel 

Link With Energy Metabolism: Potential Implications for Patients With Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome." Front Immunol 9: 2421. 

Mensah, F. K. F., A. S. Bansal, B. Ford and G. Cambridge (2017). "Chronic fatigue 

syndrome and the immune system: Where are we now?" Neurophysiol Clin 47(2): 

131-138. 

Mi, H., Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis and P. D. Thomas (2010). 

"PANTHER version 7: improved phylogenetic trees, orthologs and collaboration 

with the Gene Ontology Consortium." Nucleic Acids Res 38(Database issue): 

D204-210. 

Milrad, S. F., D. L. Hall, D. R. Jutagir, E. G. Lattie, G. H. Ironson, W. Wohlgemuth, M. V. 

Nunez, L. Garcia, S. J. Czaja, D. M. Perdomo, M. A. Fletcher, N. Klimas and M. 

H. Antoni (2017). "Poor sleep quality is associated with greater circulating pro-

inflammatory cytokines and severity and frequency of chronic fatigue 

syndrome/myalgic encephalomyelitis (CFS/ME) symptoms in women." J 

Neuroimmunol 303: 43-50. 

Missailidis, D., S. J. Annesley, C. Y. Allan, O. Sanislav, B. A. Lidbury, D. P. Lewis and P. 

R. Fisher (2020). "An isolated Complex V inefficiency and dysregulated 

mitochondrial function in immortalized lymphocytes from ME/CFS patients." Int. 

J. Mol. Sci. 21(3): 1074. 

Missailidis, D., O. Sanislav, C. Y. Allan, S. J. Annesley and P. R. Fisher (2020). "Cell-

Based Blood Biomarkers for Myalgic Encephalomyelitis/Chronic Fatigue 

Syndrome." Int J Mol Sci 21(3). 



216 

 

Missailidis, D., O. Sanislav, C. Y. Allan, P. K. Smith, S. J. Annesley and P. R. Fisher 

(2021). "Dysregulated Provision of Oxidisable Substrates to the Mitochondria in 

ME/CFS Lymphoblasts." Int J Mol Sci 22(4). 

Moneghetti, K. J., M. Skhiri, K. Contrepois, Y. Kobayashi, H. Maecker, M. Davis, M. 

Snyder, F. Haddad and J. G. Montoya (2018). "Value of Circulating Cytokine 

Profiling During Submaximal Exercise Testing in Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome." Sci Rep 8(1): 2779. 

Montoya, J. G., T. H. Holmes, J. N. Anderson, H. T. Maecker, Y. Rosenberg-Hasson, I. J. 

Valencia, L. Chu, J. W. Younger, C. M. Tato and M. M. Davis (2017). "Cytokine 

signature associated with disease severity in chronic fatigue syndrome patients." 

Proc Natl Acad Sci U S A 114(34): E7150-E7158. 

Morissette, M. R., V. P. Sah, C. C. Glembotski and J. H. Brown (2000). "The Rho effector, 

PKN, regulates ANF gene transcription in cardiomyocytes through a serum 

response element." Am J Physiol Heart Circ Physiol 278(6): H1769-1774. 

Morita, M., S. P. Gravel, L. Hulea, O. Larsson, M. Pollak, J. St-Pierre and I. Topisirovic 

(2015). "mTOR coordinates protein synthesis, mitochondrial activity and 

proliferation." Cell Cycle 14(4): 473-480. 

Murrough, J. W., X. Mao, K. A. Collins, C. Kelly, G. Andrade, P. Nestadt, S. M. Levine, 

S. J. Mathew and D. C. Shungu (2010). "Increased ventricular lactate in chronic 

fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with 

major depressive disorder." NMR Biomed 23(6): 643-650. 

Myhill, S., N. E. Booth and J. McLaren-Howard (2009). "Chronic fatigue syndrome and 

mitochondrial dysfunction." Int J Clin Exp Med 2(1): 1-16. 

Myhill, S., N. E. Booth and J. McLaren-Howard (2013). "Targeting mitochondrial 

dysfunction in the treatment of Myalgic Encephalomyelitis/Chronic Fatigue 

Syndrome (ME/CFS) - a clinical audit." Int J Clin Exp Med 6(1): 1-15. 

Nacul, L., B. de Barros, C. C. Kingdon, J. M. Cliff, T. G. Clark, K. Mudie, H. M. Dockrell 

and E. M. Lacerda (2019). "Evidence of Clinical Pathology Abnormalities in People 

with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) from an 

Analytic Cross-Sectional Study." Diagnostics (Basel) 9(2). 

Nacul, L. C., K. Mudie, C. C. Kingdon, T. G. Clark and E. M. Lacerda (2018). "Hand Grip 

Strength as a Clinical Biomarker for ME/CFS and Disease Severity." Front Neurol 

9: 992. 

Nagy-Szakal, D., D. K. Barupal, B. Lee, X. Che, B. L. Williams, E. J. R. Kahn, J. E. 

Ukaigwe, L. Bateman, N. G. Klimas, A. L. Komaroff, S. Levine, J. G. Montoya, D. 

L. Peterson, B. Levin, M. Hornig, O. Fiehn and W. I. Lipkin (2018). "Insights into 

myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through 

comprehensive metabolomics." Sci Rep 8(1): 10056. 

Nakajima, A., A. Vogelzang, M. Maruya, M. Miyajima, M. Murata, A. Son, T. Kuwahara, 

T. Tsuruyama, S. Yamada, M. Matsuura, H. Nakase, D. A. Peterson, S. Fagarasan 

and K. Suzuki (2018). "IgA regulates the composition and metabolic function of gut 

microbiota by promoting symbiosis between bacteria." J Exp Med 215(8): 2019-

2034. 

Narita, M., A. R. Young, S. Arakawa, S. A. Samarajiwa, T. Nakashima, S. Yoshida, S. 

Hong, L. S. Berry, S. Reichelt, M. Ferreira, S. Tavare, K. Inoki, S. Shimizu and M. 

Narita (2011). "Spatial coupling of mTOR and autophagy augments secretory 

phenotypes." Science 332(6032): 966-970. 

Naviaux, R. K. (2012). "Oxidative shielding or oxidative stress?" J Pharmacol Exp Ther 

342(3): 608-618. 



217 

 

Naviaux, R. K. (2014). "Metabolic features of the cell danger response." Mitochondrion 

16: 7-17. 

Naviaux, R. K., J. C. Naviaux, K. Li, A. T. Bright, W. A. Alaynick, L. Wang, A. Baxter, 

N. Nathan, W. Anderson and E. Gordon (2016). "Metabolic features of chronic 

fatigue syndrome." Proc Natl Acad Sci U S A 113(37): E5472-5480. 

Neishabouri, S. H., S. M. Hutson and J. Davoodi (2015). "Chronic activation of mTOR 

complex 1 by branched chain amino acids and organ hypertrophy." Amino Acids 

47(6): 1167-1182. 

Nelson, C., V. Ambros and E. H. Baehrecke (2014). "miR-14 regulates autophagy during 

developmental cell death by targeting ip3-kinase 2." Mol Cell 56(3): 376-388. 

Neumann, C., J. Blume, U. Roy, P. P. Teh, A. Vasanthakumar, A. Beller, Y. Liao, F. 

Heinrich, T. L. Arenzana, J. A. Hackney, C. Eidenschenk, E. J. C. Galvez, C. Stehle, 

G. A. Heinz, P. Maschmeyer, T. Sidwell, Y. Hu, D. Amsen, C. Romagnani, H. D. 

Chang, A. Kruglov, M. F. Mashreghi, W. Shi, T. Strowig, S. Rutz, A. Kallies and 

A. Scheffold (2019). "c-Maf-dependent Treg cell control of intestinal TH17 cells 

and IgA establishes host-microbiota homeostasis." Nat Immunol 20(4): 471-481. 

Nguyen, T., S. Johnston, L. Clarke, P. Smith, D. Staines and S. Marshall-Gradisnik (2017). 

"Impaired calcium mobilization in natural killer cells from chronic fatigue 

syndrome/myalgic encephalomyelitis patients is associated with transient receptor 

potential melastatin 3 ion channels." Clin Exp Immunol 187(2): 284-293. 

Nguyen, T., D. Staines, S. Johnston and S. Marshall-Gradisnik (2018). "Reduced glycolytic 

reserve in isolated natural killer cells from Myalgic encephalomyelitis/chronic 

fatigue syndrome patients: A preliminary investigation." Asian Pac J Allergy 

Immunol. 

O'Neill, H. M., S. J. Maarbjerg, J. D. Crane, J. Jeppesen, S. B. Jorgensen, J. D. Schertzer, 

O. Shyroka, B. Kiens, B. J. van Denderen, M. A. Tarnopolsky, B. E. Kemp, E. A. 

Richter and G. R. Steinberg (2011). "AMP-activated protein kinase (AMPK) 

beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining 

mitochondrial content and glucose uptake during exercise." Proc Natl Acad Sci U 

S A 108(38): 16092-16097. 

Osinska, I., K. Popko and U. Demkow (2014). "Perforin: an important player in immune 

response." Cent Eur J Immunol 39(1): 109-115. 

Owen, O. E., S. C. Kalhan and R. W. Hanson (2002). "The key role of anaplerosis and 

cataplerosis for citric acid cycle function." J Biol Chem 277(34): 30409-30412. 

Pansarasa, O., M. Bordoni, L. Drufuca, L. Diamanti, D. Sproviero, R. Trotti, S. Bernuzzi, 

S. La Salvia, S. Gagliardi, M. Ceroni and C. Cereda (2018). "Lymphoblastoid cell 

lines as a model to understand amyotrophic lateral sclerosis disease mechanisms." 

Dis Model Mech 11(3). 

Pendergrass, W., N. Wolf and M. Poot (2004). "Efficacy of MitoTracker Green and 

CMXrosamine to measure changes in mitochondrial membrane potentials in living 

cells and tissues." Cytometry A 61(2): 162-169. 

Peng, T., T. R. Golub and D. M. Sabatini (2002). "The immunosuppressant rapamycin 

mimics a starvation-like signal distinct from amino acid and glucose deprivation." 

Mol Cell Biol 22(15): 5575-5584. 

Perdomo-Celis, F., D. M. Salgado, D. M. Castaneda and C. F. Narvaez (2016). "Viability 

and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in 

Pediatric Dengue." Clin Vaccine Immunol 23(5): 417-426. 

Peterson, D., E. W. Brenu, G. Gottschalk, S. Ramos, T. Nguyen, D. Staines and S. Marshall-

Gradisnik (2015). "Cytokines in the cerebrospinal fluids of patients with chronic 

fatigue syndrome/myalgic encephalomyelitis." Mediators Inflamm 2015: 929720. 



218 

 

Porstmann, T., C. R. Santos, B. Griffiths, M. Cully, M. Wu, S. Leevers, J. R. Griffiths, Y. 

L. Chung and A. Schulze (2008). "SREBP activity is regulated by mTORC1 and 

contributes to Akt-dependent cell growth." Cell Metab 8(3): 224-236. 

Proal, A. and T. Marshall (2018). "Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 

in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic 

Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity." 

Front Pediatr 6: 373. 

Qin, X., B. Jiang and Y. Zhang (2016). "4E-BP1, a multifactor regulated multifunctional 

protein." Cell Cycle 15(6): 781-786. 

Ransohoff, R. M., D. Schafer, A. Vincent, N. E. Blachere and A. Bar-Or (2015). 

"Neuroinflammation: Ways in Which the Immune System Affects the Brain." 

Neurotherapeutics 12(4): 896-909. 

Rasa, S., Z. Nora-Krukle, N. Henning, E. Eliassen, E. Shikova, T. Harrer, C. 

Scheibenbogen, M. Murovska, B. K. Prusty and M. C. European Network on 

(2018). "Chronic viral infections in myalgic encephalomyelitis/chronic fatigue 

syndrome (ME/CFS)." J Transl Med 16(1): 268. 

Rekeland, I. G., O. Fluge, K. Alme, K. Risa, K. Sorland, O. Mella, A. de Vries and J. Schjott 

(2018). "Rituximab Serum Concentrations and Anti-Rituximab Antibodies During 

B-Cell Depletion Therapy for Myalgic Encephalopathy/Chronic Fatigue 

Syndrome." Clin Ther. 

Reznick, R. M. and G. I. Shulman (2006). "The role of AMP-activated protein kinase in 

mitochondrial biogenesis." J Physiol 574(Pt 1): 33-39. 

Ricciardi, S., N. Manfrini, R. Alfieri, P. Calamita, M. C. Crosti, S. Gallo, R. Muller, M. 

Pagani, S. Abrignani and S. Biffo (2018). "The Translational Machinery of Human 

CD4(+) T Cells Is Poised for Activation and Controls the Switch from Quiescence 

to Metabolic Remodeling." Cell Metab 28(6): 895-906 e895. 

Richardson, A. M., D. P. Lewis, B. Kita, H. Ludlow, N. P. Groome, M. P. Hedger, D. M. 

de Kretser and B. A. Lidbury (2018). "Weighting of orthostatic intolerance time 

measurements with standing difficulty score stratifies ME/CFS symptom severity 

and analyte detection." J Transl Med 16(1): 97. 

Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. C. Sanchez and M. Muller 

(2011). "pROC: an open-source package for R and S+ to analyze and compare ROC 

curves." BMC Bioinformatics 12: 77. 

Robinson, M. D., D. J. McCarthy and G. K. Smyth (2010). "edgeR: a Bioconductor package 

for differential expression analysis of digital gene expression data." Bioinformatics 

26(1): 139-140. 

Roerink, M. E., M. E. van der Schaaf, L. Hawinkels, R. P. H. Raijmakers, H. Knoop, L. A. 

B. Joosten and J. W. M. van der Meer (2018). "Pitfalls in cytokine measurements - 

Plasma TGF-beta1 in chronic fatigue syndrome." Neth J Med 76(7): 310-313. 

Ruprecht, J. J. and E. R. S. Kunji (2020). "The SLC25 Mitochondrial Carrier Family: 

Structure and Mechanism." Trends Biochem Sci 45(3): 244-258. 

Russell, L., G. Broderick, R. Taylor, H. Fernandes, J. Harvey, Z. Barnes, A. Smylie, F. 

Collado, E. G. Balbin, B. Z. Katz, N. G. Klimas and M. A. Fletcher (2016). "Illness 

progression in chronic fatigue syndrome: a shifting immune baseline." BMC 

Immunol 17: 3. 

Rutherford, G., P. Manning and J. L. Newton (2016). "Understanding Muscle Dysfunction 

in Chronic Fatigue Syndrome." J Aging Res 2016: 2497348. 

Rutter, J., D. R. Winge and J. D. Schiffman (2010). "Succinate dehydrogenase - Assembly, 

regulation and role in human disease." Mitochondrion 10(4): 393-401. 



219 

 

Saint-Georges-Chaumet, Y. and M. Edeas (2016). "Microbiota-mitochondria inter-talk: 

consequence for microbiota-host interaction." Pathog Dis 74(1): ftv096. 

Salazar, D., L. Zhang, G. D. deGala and F. E. Frerman (1997). "Expression and 

characterization of two pathogenic mutations in human electron transfer 

flavoprotein." J Biol Chem 272(42): 26425-26433. 

Santos Ferreira, D. L., H. J. Maple, M. Goodwin, J. S. Brand, V. Yip, J. L. Min, A. Groom, 

D. A. Lawlor and S. Ring (2019). "The Effect of Pre-Analytical Conditions on 

Blood Metabolomics in Epidemiological Studies." Metabolites 9(4). 

Scheibenbogen, C., M. Loebel, H. Freitag, A. Krueger, S. Bauer, M. Antelmann, W. 

Doehner, N. Scherbakov, H. Heidecke, P. Reinke, H. D. Volk and P. Grabowski 

(2018). "Immunoadsorption to remove ss2 adrenergic receptor antibodies in 

Chronic Fatigue Syndrome CFS/ME." PLoS One 13(3): e0193672. 

Schlauch, K. A., S. F. Khaiboullina, K. L. De Meirleir, S. Rawat, J. Petereit, A. A. 

Rizvanov, N. Blatt, T. Mijatovic, D. Kulick, A. Palotas and V. C. Lombardi (2016). 

"Genome-wide association analysis identifies genetic variations in subjects with 

myalgic encephalomyelitis/chronic fatigue syndrome." Transl Psychiatry 6: e730. 

Schvartzman, J. M., C. B. Thompson and L. W. S. Finley (2018). "Metabolic regulation of 

chromatin modifications and gene expression." J Cell Biol 217(7): 2247-2259. 

Sharpe, M. C., L. C. Archard, J. E. Banatvala, L. K. Borysiewicz, A. W. Clare, A. David, 

R. H. Edwards, K. E. Hawton, H. P. Lambert, R. J. Lane and et al. (1991). "A report-

-chronic fatigue syndrome: guidelines for research." J R Soc Med 84(2): 118-121. 

She, Q. B., E. Halilovic, Q. Ye, W. Zhen, S. Shirasawa, T. Sasazuki, D. B. Solit and N. 

Rosen (2010). "4E-BP1 is a key effector of the oncogenic activation of the AKT 

and ERK signaling pathways that integrates their function in tumors." Cancer Cell 

18(1): 39-51. 

Sheedy, J. R., R. E. Wettenhall, D. Scanlon, P. R. Gooley, D. P. Lewis, N. McGregor, D. 

I. Stapleton, H. L. Butt and D. E. M. KL (2009). "Increased d-lactic Acid intestinal 

bacteria in patients with chronic fatigue syndrome." In Vivo 23(4): 621-628. 

Shikova, E., V. Reshkova, C. Kumanova capital A, S. Raleva, D. Alexandrova, N. Capo, 

M. Murovska and M. C. European Network on (2020). "Cytomegalovirus, Epstein-

Barr virus, and human herpesvirus-6 infections in patients with myalgic small ie, 

Cyrillicncephalomyelitis/chronic fatigue syndrome." J Med Virol. 

Shukla, S. K., D. Cook, J. Meyer, S. D. Vernon, T. Le, D. Clevidence, C. E. Robertson, S. 

J. Schrodi, S. Yale and D. N. Frank (2015). "Changes in Gut and Plasma 

Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic 

Fatigue Syndrome (ME/CFS)." PLoS One 10(12): e0145453. 

Shungu, D. C., N. Weiduschat, J. W. Murrough, X. Mao, S. Pillemer, J. P. Dyke, M. S. 

Medow, B. H. Natelson, J. M. Stewart and S. J. Mathew (2012). "Increased 

ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical 

glutathione and clinical symptoms implicate oxidative stress in disorder 

pathophysiology." NMR Biomed 25(9): 1073-1087. 

Sie, L., S. Loong and E. K. Tan (2009). "Utility of lymphoblastoid cell lines." J Neurosci 

Res 87(9): 1953-1959. 

Smits, B., L. van den Heuvel, H. Knoop, B. Kusters, A. Janssen, G. Borm, G. Bleijenberg, 

R. Rodenburg and B. van Engelen (2011). "Mitochondrial enzymes discriminate 

between mitochondrial disorders and chronic fatigue syndrome." Mitochondrion 

11(5): 735-738. 

Stine, Z. E. and C. V. Dang (2020). "Glutamine Skipping the Q into Mitochondria." Trends 

Mol Med 26(1): 6-7. 



220 

 

Straus, S. E., G. Tosato, G. Armstrong, T. Lawley, O. T. Preble, W. Henle, R. Davey, G. 

Pearson, J. Epstein, I. Brus and et al. (1985). "Persisting illness and fatigue in adults 

with evidence of Epstein-Barr virus infection." Ann Intern Med 102(1): 7-16. 

Sweetman, E., T. Kleffmann, C. Edgar, M. de Lange, R. Vallings and W. Tate (2020). "A 

SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome 

peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction." J 

Transl Med 18(1): 365. 

Tapiero, H., G. Mathe, P. Couvreur and K. D. Tew (2002). "II. Glutamine and glutamate." 

Biomed Pharmacother 56(9): 446-457. 

Taylor, W. A., E. M. Mejia, R. W. Mitchell, P. C. Choy, G. C. Sparagna and G. M. Hatch 

(2012). "Human trifunctional protein alpha links cardiolipin remodeling to beta-

oxidation." PLoS One 7(11): e48628. 

Theorell, T., V. Blomkvist, G. Lindh and B. Evengard (1999). "Critical life events, 

infections, and symptoms during the year preceding chronic fatigue syndrome 

(CFS): an examination of CFS patients and subjects with a nonspecific life crisis." 

Psychosom Med 61(3): 304-310. 

Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, 

A. Muruganujan and A. Narechania (2003). "PANTHER: a library of protein 

families and subfamilies indexed by function." Genome Res 13(9): 2129-2141. 

Thomas, P. D., A. Kejariwal, N. Guo, H. Mi, M. J. Campbell, A. Muruganujan and B. 

Lazareva-Ulitsky (2006). "Applications for protein sequence-function evolution 

data: mRNA/protein expression analysis and coding SNP scoring tools." Nucleic 

Acids Res 34(Web Server issue): W645-650. 

Tirelli, U., G. Marotta, S. Improta and A. Pinto (1994). "Immunological abnormalities in 

patients with chronic fatigue syndrome." Scand J Immunol 40(6): 601-608. 

Tomas, C., A. Brown, V. Strassheim, J. L. Elson, J. Newton and P. Manning (2017). 

"Cellular bioenergetics is impaired in patients with chronic fatigue syndrome." 

PLoS One 12(10): e0186802. 

Tomas, C., A. E. Brown, J. L. Newton and J. L. Elson (2019). "Mitochondrial complex 

activity in permeabilised cells of chronic fatigue syndrome patients using two cell 

types." PeerJ 7: e6500. 

Tomas, C., J. L. Elson, J. L. Newton and M. Walker (2020). "Substrate utilisation of 

cultured skeletal muscle cells in patients with CFS." Sci Rep 10(1): 18232. 

Tomas, C., T. A. Lodge, M. Potter, J. L. Elson, J. L. Newton and K. J. Morten (2019). 

"Assessing cellular energy dysfunction in CFS/ME using a commercially available 

laboratory test." Sci Rep 9(1): 11464. 

Tomoda, A., T. Joudoi, M. Rabab el, T. Matsumoto, T. H. Park and T. Miike (2005). 

"Cytokine production and modulation: comparison of patients with chronic fatigue 

syndrome and normal controls." Psychiatry Res 134(1): 101-104. 

Trivedi, M. S., E. Oltra, L. Sarria, N. Rose, V. Beljanski, M. A. Fletcher, N. G. Klimas and 

L. Nathanson (2018). "Identification of Myalgic Encephalomyelitis/Chronic 

Fatigue Syndrome-associated DNA methylation patterns." PLoS One 13(7): 

e0201066. 

Tsai, S. Y., H. J. Chen, C. F. Lio, C. F. Kuo, A. C. Kao, W. S. Wang, W. C. Yao, C. Chen 

and T. Y. Yang (2019). "Increased risk of chronic fatigue syndrome in patients with 

inflammatory bowel disease: a population-based retrospective cohort study." J 

Transl Med 17(1): 55. 

Valeri, C. R. and L. E. Pivacek (1996). "Effects of the temperature, the duration of frozen 

storage, and the freezing container on in vitro measurements in human peripheral 

blood mononuclear cells." Transfusion 36(4): 303-308. 



221 

 

Vega, R. B., J. M. Huss and D. P. Kelly (2000). "The coactivator PGC-1 cooperates with 

peroxisome proliferator-activated receptor alpha in transcriptional control of 

nuclear genes encoding mitochondrial fatty acid oxidation enzymes." Mol Cell Biol 

20(5): 1868-1876. 

Vermeulen, R. C., R. M. Kurk, F. C. Visser, W. Sluiter and H. R. Scholte (2010). "Patients 

with chronic fatigue syndrome performed worse than controls in a controlled 

repeated exercise study despite a normal oxidative phosphorylation capacity." J 

Transl Med 8: 93. 

Vermeulen, R. C. and I. W. Vermeulen van Eck (2014). "Decreased oxygen extraction 

during cardiopulmonary exercise test in patients with chronic fatigue syndrome." J 

Transl Med 12: 20. 

Vernon, S. D., T. Whistler, B. Cameron, I. B. Hickie, W. C. Reeves and A. Lloyd (2006). 

"Preliminary evidence of mitochondrial dysfunction associated with post-infective 

fatigue after acute infection with Epstein Barr virus." BMC Infect Dis 6: 15. 

Wanders, R. J., H. R. Waterham and S. Ferdinandusse (2015). "Metabolic Interplay 

between Peroxisomes and Other Subcellular Organelles Including Mitochondria 

and the Endoplasmic Reticulum." Front Cell Dev Biol 3: 83. 

Waters, L. R., F. M. Ahsan, D. M. Wolf, O. Shirihai and M. A. Teitell (2018). "Initial B 

Cell Activation Induces Metabolic Reprogramming and Mitochondrial 

Remodeling." iScience 5: 99-109. 

Weinberg, A., L. Zhang, D. Brown, A. Erice, B. Polsky, M. S. Hirsch, S. Owens and K. 

Lamb (2000). "Viability and functional activity of cryopreserved mononuclear 

cells." Clin Diagn Lab Immunol 7(4): 714-716. 

Weisel, F. J., S. J. Mullett, R. A. Elsner, A. V. Menk, N. Trivedi, W. Luo, D. Wikenheiser, 

W. F. Hawse, M. Chikina, S. Smita, L. J. Conter, S. M. Joachim, S. G. Wendell, M. 

J. Jurczak, T. H. Winkler, G. M. Delgoffe and M. J. Shlomchik (2020). "Germinal 

center B cells selectively oxidize fatty acids for energy while conducting minimal 

glycolysis." Nat Immunol 21(3): 331-342. 

Whitehead, S. J. and S. Ali (2010). "Health outcomes in economic evaluation: the QALY 

and utilities." Br Med Bull 96: 5-21. 

Williams, G. J. (2011). "Data Mining with Rattle and R." Use R!, Springer. 

Winder, W. W. and D. G. Hardie (1996). "Inactivation of acetyl-CoA carboxylase and 

activation of AMP-activated protein kinase in muscle during exercise." Am J 

Physiol 270(2 Pt 1): E299-304. 

Wise, D. R., R. J. DeBerardinis, A. Mancuso, N. Sayed, X. Y. Zhang, H. K. Pfeiffer, I. 

Nissim, E. Daikhin, M. Yudkoff, S. B. McMahon and C. B. Thompson (2008). 

"Myc regulates a transcriptional program that stimulates mitochondrial 

glutaminolysis and leads to glutamine addiction." Proc Natl Acad Sci U S A 

105(48): 18782-18787. 

Wolvetang, E. J., K. L. Johnson, K. Krauer, S. J. Ralph and A. W. Linnane (1994). 

"Mitochondrial respiratory chain inhibitors induce apoptosis." FEBS Lett 339(1-2): 

40-44. 

Woods, A., K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic, S. R. Johnstone, M. 

Carlson and D. Carling (2005). "Ca2+/calmodulin-dependent protein kinase kinase-

beta acts upstream of AMP-activated protein kinase in mammalian cells." Cell 

Metab 2(1): 21-33. 

Xia, C., Z. Fu, K. P. Battaile and J. P. Kim (2019). "Crystal structure of human 

mitochondrial trifunctional protein, a fatty acid beta-oxidation metabolon." Proc 

Natl Acad Sci U S A 116(13): 6069-6074. 



222 

 

Yamano, E., M. Sugimoto, A. Hirayama, S. Kume, M. Yamato, G. Jin, S. Tajima, N. Goda, 

K. Iwai, S. Fukuda, K. Yamaguti, H. Kuratsune, T. Soga, Y. Watanabe and Y. 

Kataoka (2016). "Index markers of chronic fatigue syndrome with dysfunction of 

TCA and urea cycles." Sci Rep 6: 34990. 

Yang, J., N. Diaz, J. Adelsberger, X. Zhou, R. Stevens, A. Rupert, J. A. Metcalf, M. Baseler, 

C. Barbon, T. Imamichi, R. Lempicki and L. M. Cosentino (2016). "The effects of 

storage temperature on PBMC gene expression." BMC Immunol 17: 6. 

Yang, T., Y. Yang, D. Wang, C. Li, Y. Qu, J. Guo, T. Shi, W. Bo, Z. Sun and T. Asakawa 

(2019). "The clinical value of cytokines in chronic fatigue syndrome." J Transl Med 

17(1): 213. 

Yoo, H. C., Y. C. Yu, Y. Sung and J. M. Han (2020). "Glutamine reliance in cell 

metabolism." Exp Mol Med. 

Zeng, J., S. Deng, Y. Wang, P. Li, L. Tang and Y. Pang (2017). "Specific Inhibition of 

Acyl-CoA Oxidase-1 by an Acetylenic Acid Improves Hepatic Lipid and Reactive 

Oxygen Species (ROS) Metabolism in Rats Fed a High Fat Diet." J Biol Chem 

292(9): 3800-3809. 

Zhang, J., F. E. Frerman and J. J. Kim (2006). "Structure of electron transfer flavoprotein-

ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone 

pool." Proc Natl Acad Sci U S A 103(44): 16212-16217. 

Zhang, L., J. Gough, D. Christmas, D. L. Mattey, S. C. Richards, J. Main, D. Enlander, D. 

Honeybourne, J. G. Ayres, D. J. Nutt and J. R. Kerr (2010). "Microbial infections 

in eight genomic subtypes of chronic fatigue syndrome/myalgic 

encephalomyelitis." J Clin Pathol 63(2): 156-164. 

Zhen, H., Y. Kitaura, Y. Kadota, T. Ishikawa, Y. Kondo, M. Xu, Y. Morishita, M. Ota, T. 

Ito and Y. Shimomura (2016). "mTORC1 is involved in the regulation of branched-

chain amino acid catabolism in mouse heart." FEBS Open Bio 6(1): 43-49. 

Zhenyukh, O., E. Civantos, M. Ruiz-Ortega, M. S. Sanchez, C. Vazquez, C. Peiro, J. Egido 

and S. Mas (2017). "High concentration of branched-chain amino acids promotes 

oxidative stress, inflammation and migration of human peripheral blood 

mononuclear cells via mTORC1 activation." Free Radic Biol Med 104: 165-177. 

Zong, H., J. M. Ren, L. H. Young, M. Pypaert, J. Mu, M. J. Birnbaum and G. I. Shulman 

(2002). "AMP kinase is required for mitochondrial biogenesis in skeletal muscle in 

response to chronic energy deprivation." Proc Natl Acad Sci U S A 99(25): 15983-

15987. 

 

 

 

 


