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Abstract 
 
The rapid rise of nanotechnology has resulted in a parallel rise in the number of products 
containing nanomaterials. The unusual properties that nano forms of materials exhibit relative 
to the bulk has driven intense research interest and relatively rapid adoption by industry. 
Regulatory agencies are charged with protecting workers, the public, and the environment 
from any adverse effects of nanomaterials that may also arise because of these novel physical 
and chemical properties. They need data and models that allow them to flag nanomaterials 
that may be of concern, while balancing potential stifling of commercial innovation. 
Roadmaps for the future of safe nanotechnology were defined more than a decade ago, but 
many roadblocks identified in these studies remain.  Here, we discuss the roadblocks that are 
still hindering the effective application of informatics and predictive computational 
nanotoxicology methods from providing more effective guidance to nanomaterials regulatory 
agencies and safe-by-design rationale for industry. We describe how developments in high 
throughput synthesis, characterization, and biological assessment of nanomaterials will 
overcome many of these roadblocks, allowing a clearly defined roadmap for computational 
design of effective but safe-by-design nanomaterials to be realized. 
 
 
  



It is clear that the field of nanotechnology is advancing very rapidly; the number of published 
papers is increasing approximately exponentially from a total of 4,550 by 2000 to a total of 
326,925 by 2020, a >70-fold increase (WoS title search “nanotech* OR nanopart* OR 
nanomater*”). This compares with materials generally for which the number of publications 
has grown <4-fold, and biomaterials whose publications have grown <5-fold in the same 
period (WoS title search material* and WoS title search biomaterial*)), see Figure 1.  
 

 
Figure 1. Relative increase in cumulative publications in nanotechnology relative to those in 

materials generally, and biomaterials. 
 

Products taking advantage of the unique properties of nanomaterials are also increasing 
rapidly. While obtaining an accurate estimate of the number of new products is quite 
difficult, one source has listed in excess of 5000 products are currently on the market that 
contain nanomaterials (https://nanodb.dk/en/), up from 1860 in 2015[1].  Policymakers and 
regulatory agencies responsible for safe use of these materials are struggling to balance 
occupational health and safety (OH&S) and environmental risk against overregulation of the 
industry that stifles innovation, the so-called underregulation vs overregulation dilemma. 
Underregulation occurs when regulations are not sufficiently stringent to protect public and 
environmental health. For example, dietary supplements were underregulated in the United 
States (US), before the passing of dietary supplement legislation, because existing legal 
frameworks did not properly protect the public from risks these products posed. 
Overregulation occurs when regulations are more stringent than required to protect public 
and environmental health, causing negative effects on consumer autonomy, industry, and the 
economy. For example, HIV/AIDS activists argued that strict Food and Drug Administration 
(FDA) regulations for drug testing and approval were preventing patients from accessing to 
life-saving medications.[2-3] 
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Nanomaterials research is generating many new materials.  They are incorporated into 
products faster than safety data and mechanistic knowledge relating to adverse health or 
environmental impacts can be generated. Consequently, regulators are seeking faster methods 
of obtaining guidance on potentially problematic nanomaterials, through accelerated 
synthesis and biological screening,[4-5] surrogate assays involving omics technologies,[6-9] 
and by exploiting the impressive developments in artificial intelligence (AI), particularly 
machine learning (ML),[10-13]  that have occurred in the past decade. Clearly, most of these 
are platform technologies that have been deployed successfully in multiple science and 
technology areas. Nanotechnology is leveraging developments in omics technologies, 
robotics and automation, and combinatorial synthesis to obtain larger and richer data sources 
for regulatory decision making and design of safer products containing nanomaterials. 
 
As with small molecule drug candidates and biomaterials, testing of all possible 
nanomaterials that might be incorporated into products is infeasible due to the time and cost 
of doing so.  There is also increasing pressure on industry to reduce or eliminate animal 
testing for ethical reasons. Consequently, computational methods have become an 
increasingly important, complementary technology for design and development of drugs, 
biomaterials, and nanomaterials and for guiding regulatory decisions.[14-17] For 
nanomaterials, as with small molecule drug candidates and biomaterials, computational 
models are an important way of predicting potential adverse effects, understanding the 
mechanisms by which these materials interact with biology, identifying which nanomaterials 
should be subject to stricter regulation, and providing a rationale for building ‘safe-by-
design’ principles into new nanomaterials and the products containing them.  
 
This paper discusses the major roadblocks holding back the wider exploitation of 
computational methods for these purposes. It covers the commercial nanomaterials that 
interact with humans, animals and the environment incidentally during manufacture, use, and 
disposal, not nanomaterials deliberately administered for diagnostic and therapeutic purposes 
in medicine. Recent reviews summarize progress in medical applications of nanomaterials for 
readers interested in these aspects.[18-25] 
 
Differences between the properties of nanomaterials, bulk materials and biomaterials 
 
The most general definition of a nanomaterial, compared to the same material in bulk, is that 
it has at least one dimension <100 nm. Nanoobjects can be quite complex and require more 
specific classification.  They were originally classified by Gleiter [26], but this scheme did 
not account for the diverse dimensions of fullerenes, nanotubes or nanoflowers. Thus, 
Pokropivny and Skorokhod reported a classification scheme for zero-, one-, two- and three-
dimensional (0D, 1D, 2D, and 3D) materials [27] based on the number of nanomaterials 
dimensions that lie outside the nanoscale (≤100 nm) range (Figure 2). 0D nanomaterials have 
all dimensions within the nanoscale (≤ 100 nm, nanoparticles or nanospheres), 1D 
nanomaterials have one dimension outside the nanoscale (nanotubes, nanorods, nanofibres, 
and nanowires), and 2D nanomaterials have two dimensions outside the nanoscale (graphene, 
nanofilms, nanolayers, and nanocoatings). 3D nanomaterials are distributed forms of 



nanoscale objects that are not confined to the nanoscale in any dimension (powders, 
dispersions of nanomaterials, bundles of nanowires, nanotubes and multi-nanolayers, or 
nanoporous materials) so are more complex. Similarly, International Standards Organization 
(ISO) terminologies for nano-objects (ISO/TS 80004-2:2015) define nanoplates and 
nanoribbons as having one and two dimensions in the nanoscale but are significantly larger in 
the other dimensions. ISO/TS 80004-4:2011 defines nanostructured entities more complex 
these simple nano-objects e.g., a nanocomposite is a solid material containing at one or more 
physically or chemically distinct regions with at least one dimension in the nanoscale. 
Nanofoams are a liquid or solid matrix filled with a gaseous phase in which one of the two 
phases has nanoscale dimensions.  Conversely, a nanoporous material is a solid material 
containing nanoscale pores or cavities. The regulatory term nanoforms was defined in 2019 
to distinguish between compositionally similar nanomaterials of different sizes, shapes, or 
coatings.  
 

 
Figure 2. Overview of characteristic properties of nanomaterials (gold-based in this example) 
showing the different 0D, 1D, 2D, and 3D shapes, cores, sizes and its distribution, surface 
functionalizations, and types of bonding. Creative Commons Attribution (CC BY) license 
from Lynch et al.[28] 
 
Size is a major property that impacts strongly on nanomaterials behaviour and function 
because the surface to volume ratio of particles is inversely proportional to particle size.  
Thus, the main distinguishing features of nanomaterials relative to bulk materials are their 
much larger surface areas, their ability to transport readily and be taken up by cells, their 
potentially complex shapes summarized above, and the fact that they are distributions of 
physicochemical properties (rather than single values) that are often challenging to measure 
reliably. 
 
 



Implications of these differences for application of ML to nanomaterials regulation 
 
The simplification is often made that another distinguishing feature of nanomaterials is their 
ability to attract a macromolecular or ion coating or corona. This coating is often dynamic, 
changing over time and as the particle moves between different environmental compartments.  
However, bulk materials and biomaterials also become coated with these molecules in 
complex environments like serum, plasma, or environmental streams, albeit with much 
smaller surface contributions than for nanomaterials. The fact the nanomaterials are 
distributions of physicochemical properties, can be large and topographically complex, and 
can be altered dynamically by their environments present specific challenges for developing 
ML models linking these properties to biological impacts that I discuss in more detail below. 
 
Prior Nanosafety Roadmaps  
 
There have been a number of important Roadmaps for safe use of nanomaterials proposed in 
the past decade.  The first comprehensive list of milestones was compiled at the COST 
(European Cooperation in Science and Technology)-sponsored exploratory workshop on 
Quantitative Nanostructure Toxicity Relationships in Maastricht in 2011.[29] The 
nanomaterials-specific milestones identified in this roadmap and later reviews included: –  

• better characterization of materials for biological activity experiments  
• development of nanomaterials-specific descriptors 
• development of high throughput in vitro methods for measuring relevant endpoints 

and interactions of nanoparticles with plasma proteins 
• improved methods for tracking nanoparticles in the body 
• improved data storage, sharing and mark-up languages 
• generation of more in vivo data 
• generation of models to predict nanoparticle corona in diverse environments 
• elucidation of mechanisms of entry of nanoparticles into cells 
• development of ML models of in vitro and in vivo effects of nanoparticles suitable for 

regulatory purposes 
• and development of nanoparticle fingerprints for regulators to classify nanomaterials 

into hazard classes.  
 
While these were research-driven milestones in the roadmap, they have been directly or 
indirectly influential in driving research agendas in Europe and the US in particular. This 
initial Maastricht roadmap led directly to European Union (EU) funding of the COST Action 
MODENA and has been cited in Government policies on the safe use of nanomaterials 
(United Kingdom (UK) Parliamentary Office of Science and Technology POSTNOTE 
Number 562 October 2017 Risk Assessment of Nanomaterials). The roadmap was influential 
in funding of several other related COST Actions and, more recently, Horizon2020 projects 
on nanosafety. Subsequent publications have also reinforced the importance of the above 
milestones and issues to progress in the safe use of nanomaterials.[30-44]. Some milestones 
in the roadmap for future of safe nanotechnology we identify in this review are the same or 



similar to those proposed up to a decade ago because progress against these prior milestones 
has been slower than expected. This is due to a number of factors discussed in more detail 
below, including slower than anticipated uptake of high throughput synthesis and 
characterization technologies, consequential dearth of large and robust data sets for training 
ML models, and limited development of efficient and interpretable specific descriptors for 
nanomaterials. Thus, most milestones are carried forward and still need to be addressed 
properly in the future. To this end, The EU and US Roadmap for Nanoinformatics 2030 for 
computational prediction of potential adverse effects of nanomaterials was published recently 
by Haase & Klaessig.[45] This defined a similar set of milestones to those listed above. 

 
Figure 3. Two-, five-, and 10-year milestones from the 2012 Maastricht COST workshop. 
Used with permission from Winkler et al.[29]  
 
The majority of the 2-, 5-, and 10-year milestones defined in the Maastricht workshop 
(Figure 3) have not been achieved, many of the most important ones remain. The reasons for 
this, and how they can be overcome, constitute the main focus of this review. To help address 
these issues, a number of large projects have been funded by the EU Horizon 2020 program 
that aim to establish networks of researchers to develop computational tools for use in 
nanosafety prediction, e.g., NanoReg2 (https://nanoreg2.eu), NanoSolveIT 
(https://nanosolveit.eu) [46] and SABYDOMA (https://www.sabydoma.eu) and generation of 
relevant data e.g., NanoHarmony (https://nanoharmony.eu). One of the greatest challenges 
facing regulators is how to design and implement a regulatory process that is robust enough 
to deal with a rapidly diversifying system of manufactured nanomaterials over time. The 
NanoReg2 project will couple structure-based design to the regulatory process using ideas 
and data from value chain implementation studies. It will establish this paradigm as a 
fundamental method for validating novel manufactured nanomaterials based on the widely 
accepted grouping strategies for nanomaterials. NanoSolveIT will implement a 
nanoinformatics-driven decision-support strategy based on innovative in silico methods, 
models and tools to identify critical characteristics of nanomaterials responsible for their 



adverse effects on human health and the environment and for their utility in high-tech 
applications. SABYDOMA develops new methodology for safe-by-design using control 
systems. Screening at the point of production feeds back to modify the design of 
nanomaterials in an evolutionary optimization process. NanoHarmony develops test 
guidelines for eight nanomaterials endpoints identified as regulatory priorities. It also 
coordinates collection, exchange, and use of available data for test method development via a 
sustainable researcher network. These regulatory priority endpoints are: bioaccumulation; 
toxicokinetics; quantification of biological samples; intestinal fate; ecotoxicology; solubility 
and dissolution rate; surface chemistry; and dustiness. The projects discussed are only three 
of eleven H2020 funded projects on toxicity of nanomaterials from a total of 67 H2020 
projects related to toxicology in all fields (https://www.fabiodisconzi.com/open-h2020/per-
topic/toxicology/list/index.html) 
 
A very recent, seminal paper stressed the need for a sustainable nanotechnology system 
governance for European society.[47-48] Other regulatory and standardization communities 
(e.g. FDA, Environmental Protection Agency (EPA), European Chemicals Agency (ECHA), 
ISO and Organisation for Economic Co-operation and Development (OECD)) are strongly 
committed to development of validated methods for characterizing as-received intrinsic 
properties and medium-dependent extrinsic properties of nanomaterials, and to identifying 
the exposure/hazard posed by nanomaterials to humans and the environment.[48] These 
agencies, and the recent body of literature, have highlighted the major issues and milestones 
required for progress towards rational, safe use of nanomaterials. Consequently, this paper 
will focus on the main issues holding back the application of AI and ML methods to the 
prediction of adverse biological effects of nanomaterials. The primary adverse biological 
effects are cell viability, metabolic activity, oxidative stress, inflammation and genotoxicity. 
The most important remaining roadblocks that hinder generation of predictive models of 
nanomaterials properties with broad domains of applicability for use in regulation and safe-
by design relate to data, description of nanomaterials, descriptors, and domain of 
applicability. 
 
Data 
 
Machine learning methods offer great promise for modelling and prediction of beneficial and 
adverse properties of nanomaterials. This is because they are fast, do not rely on underlying 
mechanistic models, use open source accessible technologies, and have proven effective in 
modelling patterns in complex data in many other domains.[13] Being data driven methods, 
they are critically dependent on the information used to generate them.  Data quantity, 
quality, diversity, and range are all important for generating robust and predictive ML models 
with broad domains of applicability.  
 
Data quantity: Nanosafety research projects are still hampered by lack of sizable data sets, 
largely due to the time, cost, and animal and human ethics issues involved with collecting 
them. Compared to the measurement of properties of single, well-defined organic molecules 



or even those of pristine nanomaterials free of the influence of biological environments, 
assessing properties of nanomaterials that change over time or in different biological fluids is 
less standardized and more technically challenging.[48] Computational models and read 
across (imputation) methods are used to ‘fill in the gaps’ in data sets,[49] but making more 
data available is clearly preferable. Robotics and automation are making large inroads into 
other areas of science and technology, reviewed recently by Liu et al. for materials 
generally,[50] so should generate similar impacts in nanotoxicology. Within the past decade, 
methods have been reported for high throughput synthesis of nanomaterials,[51-53] 
accelerated characterization of their physicochemical properties,[54] and fast in vitro toxicity 
screening.[55-62] Further development, adoption, and application of these high throughput 
methods should greatly increase the amount of nanomaterials data in the future. 
 
Data quality: Apart from the size of data sets, as with other types of materials, there are often 
problems with the reliability of data from experiments on the physicochemical and biological 
effects of nanomaterials. The same time, cost and ethics issues that limit the amount of data, 
also effect the number of experimental replicates that can be done. This impacts data quality, 
signal-to-noise ratio, and occurrence and treatment of outliers. Reproducibility in science has 
become a key issue in the past few years, with recent studies specifically focusing on 
nanomaterials. Several research groups have published methods for improving the 
reproducibility of synthesis of nanomaterials.[63-66] The reproducibility of nanomaterials 
bioassays has been addressed by Petersen et al.[67] and the role of materials provenance on 
reproducibility has been discussed by Baer and co-workers.[68] Clearly, experiments are 
more difficult to perform on nanomaterials compared to small organic molecules because of 
the variations in size and shape, agglomeration behaviour, and corona formation inherent in 
nanomaterials. The effects of corona formation on experimental reproducibility have been 
studied by Galmarini et al.[69]  
 
Data diversity: Finally, widely applicable models of potential adverse properties of 
nanomaterials need to be trained on data derived from diverse types of nanomaterials and as 
wide a range of relevant biological endpoints as feasible (see also Domain). The need for 
systematic studies of diverse nanomaterials morphologies, types and endpoints has been 
stressed in recent papers.[70-71] 
 
Description 
 
The first step in addressing nano-safety issues is characterizing nanomaterials in relevant 
biological environments (describing the so-called biologically relevant entity) so that 
subsequent examinations can be linked to specific features of nanostructures. Nanoparticles 
can agglomerate, dissolve, have photocatalytic properties, and form persistent or dynamic 
complexes with biological molecules or ions. These properties can substantially affect the 
biological behaviour of nanomaterials.[72-77] While some progress has been made with 
regard to when, where, and how to characterize nanomaterials, this remains to be a challenge 
because the novel properties of nanomaterials that differ from those of the bulk materials may 



change significantly under different conditions and/or over time. These dynamic properties of 
nanomaterials are highly sensitive to the surrounding environment and the properties may 
interact (i.e., are interrelated), making the characterization process even more complicated 
(e.g., the zeta potential of nanoparticles varies greatly depending on whether they are pristine 
or in different types of biological fluids).  
 
Ideally, the physicochemical characterization of nanomaterials should be performed in 
relevant biological matrices because pristine nanomaterials become modified upon 
introduction to biological fluids [78]. The surfaces of nanomaterials are immediately covered 
by biological components, resulting in the formation of bio-corona that modifies materials 
characteristics such as particle size, surface charge and state of aggregation [79]. The corona 
varies with environment and over time because more abundant macromolecules that bind first 
are gradually replaced by less abundant but more tightly bound macromolecules. More 
research is needed on how the physicochemical properties of nanomaterials (e.g., size, 
surface chemistry, dissolution, aggregation etc.) change as a function of biological conditions 
and whether these transformations make nanomaterials more or less toxic than their pristine 
form. This will provide more detailed information on biological effects of nanomaterials that 
can be used by regulators to more accurately assess the risks that they pose to the human or 
environmental health.  
 
Fortunately, significant progress is being made in characterizing the nanoparticle corona as a 
function of nanomaterials physicochemical properties and the environment in which they are 
found. A number of studies in the past year have reported a range of spectroscopic, mass 
spectrometric, and chromatographic methods for characterizing nanoparticle coronas, some 
of which can be used to study the dynamic properties of biocoronas Figure 4).[80-89] These 
data have enabled development of explanatory and potentially predictive models of 
nanoparticle corona composition [90-95] and dynamic behaviour that form the basis for 
rational design and development of nanomaterials that attract little or no corona.[96] 

 
 
Figure 4. Use the fluorescence change from fluorescamine labelling of proteins, in the 
absence or presence of nanomaterials, as a novel descriptor to train ML models of corona 



formation. Fluorescence correlated with abundance of corresponding proteins in the corona 
on diverse nanomaterials. Used with permission from Duan et al.[94] 
 
Solubility and biopersistence of nanomaterials in biological fluids are other key 
considerations that need to be addressed in nanosafety evaluation, since they directly 
influence internal exposure to a nanomaterial. The biological activity of soluble 
nanomaterials may be largely due to the dissolved material rather than the particle per se e.g., 
ZnO. The rate of dissolution is affected by nanoparticle physical form (e.g. particle size, 
shape, coating, core doping) potentially providing methods for rational control of dissolution 
to minimize adverse biological effects.[97] Despite its critical importance, it is still unclear 
which nanomaterials characteristics affect solubility and particularly, biopersistence [98-99]. 
More research is also required to understand how nanomaterials dissolution in biological 
fluids or persistence in the body influence biodistribution and biological impacts, and how 
this can be modified by formulation, coatings, or other methods. 
 
Descriptors 
 
Molecular descriptors, mathematical entities that encode relevant structural and 
physicochemical properties of nanomaterials, can be generated by theoretical methods or by 
standardized experiments. They are one of the most important elements in computational 
modelling studies in medicinal/environmental chemistry, toxicology, pharmacology, 
genomics and drug design.[100-102] Computed theoretical descriptors that capture important 
structural properties of nanomaterials provide diverse sources of chemical properties and a 
broad coverage of the vast chemical property space describing all possible nanomaterials. 
Experimentally derived descriptors (e.g. size shape, solubility, agglomeration etc.) are of very 
limited use in ML models of biological effects of nanomaterials, not only because of their 
time and resource intensiveness (even using high throughput methods), but also because they 
are not available for designed or otherwise hypothetical materials not yet synthesized. [103] 
A large number of theoretically well-founded and chemically interpretable descriptors can 
now be directly calculated from molecular structure using various commercial and open-
source software packages [104]. However, almost all existing molecular descriptors and 
fingerprints currently used are not nano-specific, rather have been ‘borrowed’ from the 
pharmaceutical domain for organic small molecules.  Some of these descriptors are not 
directly applicable to nanomaterials due to the polydispersity of nanoparticle physical 
properties, the size and shape of nanomaterials, incomplete characterization of their 
compositions, and their complex interactions with each other and with biological 
macromolecules and ions. In other words, the interfacial properties of nanomaterials are 
highly affected by external conditions, and hence, cannot be simply reflected by their 
composition or chemical structure.  
 
The specificity of nanoscale properties and the lack of nano-specific molecular descriptors 
that can capture them constitutes a long-recognized but still only-partially addressed 
roadblock. Clearly there is a strong need for better descriptors for nanomaterials, providing 



an important challenge for researchers, but progress in this area has been disappointingly 
slow. However, interesting developments in deep learning have shown that imaging and 
related methods coupled with deep learning algorithms may provide a paradigm shift in the 
way nano-specific descriptors are generated for training predictive models in the future. For 
example, Russo et al.[105] used convolutional neural networks (CNNs) to encode complex 
nanostructures into data structures suitable for machine learning modelling. Nanostructures 
were represented by virtual molecular projections, a multidimensional digitalization of 
nanostructures, and used as input data to train predictive CNN models of nanoparticle 
biological properties. The CNN neurons recognized distinct nanostructure features critical to 
activities and physicochemical properties (Figure 5). Russo et al. proposed that this “end-to-
end” deep learning approach effectively digitizes complex nanostructures for data-driven ML 
models and that it can be applied to rationally design nanoparticles with desired activities. 
 

 
 
Figure 5. Virtual molecular projection and CNN modelling. (A) The 3D coordinates of atoms 
in a nanoparticle are projected to 2D, based on atom types. (B) The CNN modelling 
framework. The 2D molecular projections are processed by sequentially stacked convolution 
and pooling layers that abstract features and reduce data dimensions. A fully connected layer 
links the convolution–pooling layers to predict the experimental properties of nanoparticles. 
Reprinted with permission from Russo et al.[105]. Copyright (2020) American Chemical 
Society. 
 
Apart from their efficacy in ML models, another important property of nanomaterials 
descriptors (and descriptors more generally) is interpretability. That is, how easily can the 
most important descriptors controlling biological responses, identified by ML models, be 
used to rationally design improved materials and to understand the mechanisms by which 
they elicit their biological properties. Interpretable descriptors can be related easily to 
chemically recognizable features in nanomaterials. This is an important, ongoing issue for 



ML modelling of physicochemical and biological properties of molecules and materials 
generally.[102] Traditional molecular descriptors currently used in ML models are often 
arcane, and new descriptors are needed can be easily interpreted in terms of their biological 
(e.g. toxicity), physical (e.g. photocatalysis, solubility) and interaction (e.g. agglomeration, 
corona structure) properties.  To this end, research by De et al and Sizochenko and coworkers 
has described new methods for encoding the properties of nanomaterials that are both 
efficient and interpretable.[106-107] De et al. used a set of 23 descriptors obtained from the 
periodic table or derived from them. These included the molecular weight of a metal oxide, 
number of oxygen atoms, metal electronegativity, metal oxidation state, number of valence 
electrons and atomic number. These were found to be as effective as descriptors generated by 
time consuming quantum chemical methods. Sizochenko et al. used a ‘liquid drop’ model for 
nanoparticles in which a nanoparticle is represented as a spherical drop in which atoms or 
molecules are densely packed, and the density of cluster is equal to mass density (Figure 6). 
It distinguishes the nanoparticles’ surface molecules from the other molecules in volume. 
They also employed a simplex representation of molecular structure to encode the first level 
of organization of nanoparticles. Here, any molecule can be represented as a system of 
different simplexes (fragments of fixed composition and topology) that differentiate atoms in 
a simplex by their type and other properties such as electronegativity, lipophilicity, van der 
Waals interactions, etc.  

 
Figure 6. Liquid drop model of nanoparticles showing interactions between molecules 
located in the core (white circles and the surface of the nanoparticle (red circles) from Used 
with permission from The Royal Society of Chemistry. Reproduced from Sizochenko et 
al.[106] with permission from The Royal Society of Chemistry. 
 
Text string representations of molecular entities, such as SMILES and InChI, are being used 
increasingly to generate descriptors for ML models, often in conjunction with deep learning 
algorithms that generate latent features from them. InChI keys are textual identifiers for 
chemical substances that provide a standard way to encode molecular information. The recent 
report of the first definition of NInChI (an InChI representation for diverse types of 
nanomaterials) suggests their potential for use as unique identifiers for database searches. As 
they encode essentially all relevant properties of complex nanomaterials in a hierarchical and 
compact text format, they should allow generation of new types of nanospecific descriptors 



that incorporate the complex structures, different nanoforms of the same material, diverse 
types of nanomaterials, and provenance information.[28].  
 
New ‘surrogate’ methods of generating information useful for modelling properties of 
nanomaterials are showing considerable promise.  Spectroscopic, mass spectrometric, 
proteomic, and genomic ‘fingerprints’ of nanomaterials, and/or the effects they have on 
biological systems, can serve as useful descriptors when coupled with efficient sparse feature 
selection methods that identify a small pool of most relevant features. These have proven 
very useful in modelling the biological properties of other types of materials. For example, 
ion mass profiles generated by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-
SIMS) are very useful surface chemistry descriptors for ML models.[108] Given the 
importance of surface chemistry to nanomaterials, it is very likely such surface analysis 
fingerprints will prove equally useful for generating robust ML models of nanomaterials 
properties.  
 
Quantitative fingerprint information can also be extracted from microscopy images of 
nanomaterials, which then can be used to train predictive models. Although the idea of 
image-based nanodescriptors has been around for more than a decade [109], it still isn’t 
routinely used in molecular descriptor calculation tools, and remains at a more conceptual 
rather than practical level, with a few exception such as recently-released NanoXtract image 
analysis tool [110]. This uses electron microscopy images to generate 18 image 
nanodescriptors such as area, perimeter length, roughness, aspect ratio, and 
concavity/convexity (Figure 7).  

 
 



Figure 7. Schematic workflow of the image processing steps for NanoXtract nanoparticle 
image analysis. Used with permission from Varsou et al.[110]  
 
Another recent and novel approach is the use of information entropy to characterize 
distributions of nanoparticles.[111] The development of more sophisticated image analysis 
approaches and the application of image-based nanodescriptors is expected to evolve in the 
near future with the adaptation of existing tools to nanospecific needs. The predictive power 
of ML models can be boosted by incorporation of experimental fingerprints from surrogate 
analyses. However, in common with other experiment-based descriptors, these approaches 
are not useful for predicting the biological properties of nanomaterials not yet synthesized. 
 
Predictive models of biological effects of nanomaterials can also provide insight into how 
nanomaterials generate their biological effects, but only if the descriptors that constitute the 
model are physically or chemically interpretable. Therefore, special attention must be given 
to the interpretability as well as efficacy of nano-descriptors so that they can be used to 
develop models that are both predictive and explanatory. 
 
Domain 
 
Clearly, ML models are necessarily trained using limited datasets that cover a restricted range 
of physicochemical and biological properties. The relative dearth of large and diverse training 
datasets is one of the main limitations to the wide use of ML models of nanomaterials 
biological properties. Computational models are most useful for predicting the properties of 
nanomaterials that exist in, or near, their domains of applicability, the multidimensional space 
defined by the descriptors and biological responses of data used to train the models. When 
using these models for interpolation (e.g., to fill in gaps of studies using partial factorial 
design of experiments) or extrapolation close to the model domain, the predictions are 
generally reliable. The further predictions are made from the domain of applicability of the 
model, the less reliable the predicted properties will be. New modelling algorithms such as 
Nearest neighbour Gaussian Processes,[112] and existing ML methods that exploit Bayesian 
statistics,[113-114] can provide estimates of the reliability of the predictions. As larger, more 
diverse data sets become available, and ML methods better able to estimate the prediction 
uncertainties are adopted, ‘out of domain’ issues should diminish. 
 
The problem of predicting relevant in vivo responses to nanomaterials are likely to persist for 
some time.  Generation of experimental in vivo data is particularly restricted by ethical, time, 
and cost issues. By using efficient design of experiment methods, the number of in vivo 
experiments can be minimized, and ML models could be used to predict in vivo responses to 
other nanomaterials within their domains of applicability. However, realistically, the 
limitations of experimental in vivo testing will remain or may become even tighter, so we are 
unlikely to see large increases in the amount of available in vivo data. However, ongoing 
development of surrogate bioassays, such as gene expression profiles (toxicogenomics) or 
new phenotypic assays, should identify assays that correlate better with in vivo responses 
than current in vitro assays do. Rapid advances in intrinsically high throughput "omics" 



methods, transcriptomics, proteomics and metabolomics can generate large, rich datasets on 
the responses of cells or organisms to nanomaterials exposure.[115-116]  ML modelling 
methods could exploit these data in two main ways: using these expression profiles as 
descriptors to better predict in vivo responses; and using computed nanodescriptors to model 
the relationships between physicochemical properties of nanomaterials and important omics 
signatures or pathways identified through expression profiling. For example, Furxhi et al. 
used physicochemical descriptors for nanomaterials and experimental exposure conditions, 
cell line, cell type and tissue to model biological outcomes from genome wide studies using 
Bayesian networks.[117] Dysregulated genes were identified using fold change on exposure 
to nanomaterials, and Gene Ontology analysis functionally annotated the selected genes with 
the relevant biological effects. The model predicted the impact on 9 different biological 
pathways with a binary accuracy of 80-100% (50% is random chance). The Ahmad group has 
also been active in using ML to model toxicological properties of nanomaterials using omics 
data. They recently reviewed the potential of combining integrative omics with machine 
learning to profile nanomaterials and model their biological impact for safety and risk 
assessment.[118-120] Metabolomics now allows study of metabolic dysregulation in 
biological cells, tissues, and living objects caused by exposure to nanomaterials. Untargeted 
metabolomics (metabolic fingerprinting) can be valuable for risk assessment of 
nanomaterials. Genomic and metabolic fingerprints, used in conjunction with sparse feature 
selection and feature importance methods, can be used to train predictive and interpretable 
ML models of the possible adverse biological properties of nanomaterials.   
 
Hybrid ML modelling methods, where experimental in vitro assay results and 
nanodescriptors are used to model limited in vivo data and allow it to be leveraged more 
widely and reliably, show promise.[121-122] For example, Lee and co-workers reported that 
molecular descriptors for drugs combined with in vitro basal cytotoxicity was more 
successful in predicting human acute toxicity than descriptors or in vitro results alone.[123] 
Recent developments in high throughput surrogate methods for assessing nanomaterials 
toxicity have been comprehensively reviewed by Collins and co-workers.[61] 
 
Future of the Roadmap 
 
If the roadblocks detailed above can be removed or at least reduced, the nanotoxicity field 
will have available to it a relatively large number of substantial, diverse, and relevant data 
sets, and a suite of efficient nano-specific descriptors. There are a large number of efficient 
and well-validated ML algorithms available that can be trained by such data and descriptors 
to generate robust and useful models of important toxicological endpoints. Recent reviews 
have highlighted the role specific ML methods play in modelling nanotoxicity data.[10, 124-
128] For example, Brown and co-workers wrote a review focusing on: using ML to analyse 
and extract new insights from large nanoscience data sets; applying ML to accelerate material 
discovery, particularly the use of active learning to guide experimental design; and the 
science behind memristive devices that can be used for hardware implementation of 



ML.[129] Ahmad et al. have recently reviewed the application of deep learning ML methods 
to modelling of nanomaterials properties relevant to nanosafety (Figure 8).[119] 

 
Figure 8.  Characteristics and architectures of deep neural networks (DNNs), CNNs, and 
recurrent neural networks (RNNs).Reproduced from Ahmad et al.[119] with permission from 
The Royal Society of Chemistry. 
 
There is still a paucity of scientists with multidisciplinary domain knowledge required to 
apply new technological developments to (computational) nanotoxicology. Relatively few 
researchers are being rigorously trained in skills needed to develop robust models of possible 
adverse effects of nanomaterials and probe mechanistic aspects of nanomaterials biology 
interactions. Large multidisciplinary teams are the dominant paradigm in many areas of 
science, and nanosafety is no exception. The new H2020 initiatives referred to above, 
building on EU COST Actions before them, are helping build this critical mass – similar 
initiatives exist in the US [130] and Asia e.g. Asia Nanos Forum (https://www.asia-
anf.org/working-groups/nano-safety-risk-management/). 
 
With advances in the quantitative detection of small particles in complex samples, it has 
become clear that a wide range of processes and tools release nano-sized particles into the 
environment. The ability of some nanoparticles to pass through biological membranes opens 
up new possibilities in diagnostics and therapies but poses serious questions about human 
health risks associated with nanomaterial exposure. Experimental nanotoxicology, and its 
complementary computational equivalent, are making important contributions to 
understanding interactions of nanomaterials with biological systems, predicting possible 
adverse effects, developing safe-by-design methods for industry, and providing data and 
models to support regulatory decisions.   
 



Computational nanotoxicology supports human health risk assessment of nanomaterials by 
integrating, unifying, and completing empirical evidence. However, the chemical and 
physical complexity of nanomaterials will continue to make modelling and prediction of 
relevant biological and mechanisms impacts a mathematical and computational challenge. 
Subtle differences in nanomaterials properties may dramatically affect in vitro and in vivo 
responses. When coupled with the dynamic behaviour of the biologically relevant form of 
specific nanomaterials in different media, considerably more effort is needed to model 
nanomaterials properties relative to a bulk material or small organic molecules with precisely 
defined structures and properties.  
 
In summary, to overcome these challenges, future research should focus on: – 

• Development of improved computable, nanospecific, interpretable descriptors that 
represent unique and biologically relevant features of nanomaterials 

• Collection of post-transformational characterization data measured under conditions 
that mimic all relevant exposure scenarios 

• Development of models that can robustly predict the composition of the corona as a 
function of biological medium and time 

• Generation of large, information rich surrogate data sets and nanomaterials fingerprints 
based on imaging, surface analysis methods, proteomics, transcriptomics and related 
fields 

• Adoption of relevant sparse feature selection algorithms and deep learning methods that 
can generate and identify relevant nanomaterials features from a large pool of 
possibilities 

• Generation of larger sets of reliable in vitro and in vivo toxicity data for model 
development and calibration; further development of hybrid in vivo models based on 
molecular, physicochemical, and high throughput in vitro data 

• Creation of robust, searchable and self-updating databases that facilitate sharing and 
comparison of data on nanotoxicology 

• Training of researchers with both domain expertise and data analytics background, and 
establishment of tight networks of computational nanotoxicology researchers. 

 
Predictions are difficult, especially about the future, and especially in light of the failure to 
achieve the milestones in the roadmap developed almost 10 years ago. With these caveats, a 
roadmap capable of addressing the above nanomaterials research challenges should be 
achievable within a decade. Impressive developments in ML methods and applications, 
especially deep learning, will overcome some of the issues identified in the review. On the 
one hand, these methods require a lot of data.  On the other hand, they may simplify the 
development of nanospecific descriptors and may be amenable to using raw data in new way. 
Finally, publication of negative results from toxicological studies is critically important for 
the generation of cumulative knowledge in nanoscience, because no-adverse-effect is a 
positive result in nanosafety, and models need to understand what nanoparticle features 
produce adverse effects and which do not.  In this way the dream of rational ‘safe-by-design’ 
nanomaterials will become increasingly realized. It is interesting to speculate how quickly 



these new, exciting potential solutions to computational nanotoxicology roadblocks will be 
adopted, and whether the next decade will indeed see a golden age of safe use of 
nanotechnologies that will enrich the lives of us all. 
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