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Abstract  

 

Intercellular communication within the heart is critical for cardiac function and often 

dysregulated in diverse cardiovascular diseases. While extracellular vesicles (EVs) are 

emerging as important mediators of cardiac signalling, their isolation remains a technical 

challenge which has impeded our understanding of cardiac EV (cEV) protein composition. 

Here, we utilised Langendorff-collagenase-based enzymatic perfusion coupled with 

differential centrifugation to isolate cEVs from mouse heart (yield 3-6 g/heart). cEVs were 

~200 nm in size, expressed markers of classical EVs (Cd63/81/9+, Tsg101+, Pdcd6ip/Alix+), 

and were depleted in blood components (Alb/Fga/Hba). Mass spectrometry-based proteomic 

profiling revealed 1,721 proteins in cEVs, implicated in proteasomal and autophagic 

proteostasis, glycolysis and fatty acid metabolism; essential functions often disrupted in cardiac 

pathologies.  There was striking enrichment of 942 proteins in cEVs compared to mouse heart 

tissue, which were implicated in EV biogenesis, antioxidant activity, and lipid transport, 

suggesting active cargo selection and specialised function.  Interestingly, cEVs contain marker 

proteins for cardiomyocytes (Actn1/Myh6), cardiac progenitor cells (Cd34/Abcg2), B cells 

(Cd1d1/74), T cells (Cd55/14/38), macrophages (Cd163/36), smooth muscle cells 

(Cald1/Tagln), endothelial cells (Vwf), and cardiac fibroblasts (Ckap4), suggesting diverse 

cellular origin. Our data provide insight into potential cEV functions and enables future studies 

seeking to explore their role in cardiovascular diseases. 

  



 
 

Statement of significance  

Our understanding of the role of extracellular vesicles (EVs) in cardiac physiology and 

pathology is severely impeded by technical challenges in isolating cardiac EVs (cEVs). Here, 

we report an efficient method to isolate EVs from heart using collagenase-based perfusion that 

avoids mechanical disruption. This enabled us to gain a comprehensive insight into cEV 

proteome and their potential role in metabolism, proteostasis, and antioxidant activity – 

processes critical to heart function. This knowledge will give us valuable insights into 

signalling perturbations in pathological contexts and identify molecular leads for 

pharmacological intervention and design of therapies for managing cardiovascular pathologies.  

 

 

  



 
 

1. Introduction  

 

Intercellular communication between different cells of the heart is highly complex, tightly 

regulated, and plays critical physiological and pathological roles. This signalling is mediated 

through direct cell-cell, or cell-extracellular matrix (ECM) interactions, release of soluble 

secreted factors, and more recently extracellular vesicles (EVs).[1, 2] Dynamic interplay of these 

modes of intercellular communication collectively coordinate processes such as contractility, 

vasodilation, extracellular matrix (ECM) organisation, metabolism, etc., essential to normal 

cardiac function.[1-8] Therefore, understanding players of intercellular communication and how 

they potentially regulate the functions of cardiac cells will provide valuable insights into 

signalling perturbations in cardiac pathologies.   

 

EVs, membranous vesicles released by cells into the interstitial space and circulation, are 

important mediators of intercellular communication.[9, 10] They can functionally transfer 

proteins, nucleic acids, and metabolites between cells in different physiological (stem cell 

differentiation,[11], innate immunity,[12] and reproductive biology[13])  and pathological 

progression (cancer,[14-17] autoimmune disease,[18-20] and neurodegeneration[21-23]) processes.  

Importantly, cardiac cells have also been shown to release EVs into the extracellular space [24] 

where they can be internalised by neighbouring cardiac fibroblasts and disseminate 

systemically.[25] These observations have engendered vested interest in potential function of 

cardiac EVs with several studies reporting function of EVs derived from cardiac cells in vitro 

in immune regulation,[26] glucose uptake,[27] angiogenesis,[28] fibroblast activity,[29, 30] and 

cardiomyocyte behaviour.[31-34] However, our understanding of EVs in the heart tissue remains 

limited, mainly due to technical challenges associated with isolation. EVs have been isolated 

from the heart using two main approaches, namely, mincing of fresh or frozen samples,[32, 35-



 
 

37] and enzymatic tissue digestion followed by mechanical dissociation and pipetting.[38] Such 

mechanical disruption invariably leads to cell rupture, thereby contaminating EV preparations 

with intracellular components and membranous debris, confounding their functional study and 

omics-based characterisation.  

 

Here, we present a workflow for isolation of cardiac EVs (~200 nm, Cd63/81/9+, 

Pdcd6ip/Alix+, Tsg101+) from mouse heart via Langendorff-based collagenase perfusion. Mass 

spectrometry-based proteomic analysis identified key processes that are enriched within 

cardiac EVs and their potential role in regulating cardiac function.  

 

 

 

 

 

  



 
 

2. Experimental section  

 

2.1 Animals 

All animal care and experimentation were conducted in accordance with protocols approved 

by the Alfred Research Alliance Animal Ethics Committee.  

 

2.2 Collection of EV containing perfusates 

Hearts were excised from C57BL/6 and FVB/N animals who had been pre-treated with heparin 

(1 unit/g body weight) 30 min prior to euthanising with Lethabarb (300mg/kg) and cervical 

dislocation. Hearts were cannulated through the aorta using a 22G cannula, stopping before the 

aortic valve (fixed with thread), and attached to a Langendorff apparatus within 5 min of death 

to allow for perfusion through the coronary arteries. The aorta underwent retrograde perfusion 

(wash) for 5 min with oxygenated, 37C perfusion medium (5.4 mM KCl, 3.5 mM MgSO4, 

0.05 mM sodium pyruvate, 20 mM NaHCO3, 11 mM glucose, 20mM HEPES, 23.5 mM sodium 

glutamate, 4.87 mM sodium acetate, 56 µM phenol red, 10 mM 2,3-butanedione monoxime, 5 

mM creatine, 30 mM taurine, 0.1 IU/mL insulin, gassed with 95% O2 and 5% CO2, pH 7.25) 

at flow rate 2-3 mL/min with medium passing through a 0.45 m filter before entering the 

heart, the wash perfusate was collected as it left the heart. After 5 min, medium was replaced 

with 10 mL digestion medium (perfusion medium, 3 mg/mL collagenase II (ScimaR batch 

#40A19951, 0.2% BSA) and the heart was placed in the heated reservoir with continuing 

perfusion. After 20-25 min the heart was removed and digestion perfusate passed through a 

0.45 m filter before collection.  

 

2.3 Extracellular vesicle isolation 



 
 

The perfusates from the wash and digest were collected and immediately centrifuged at 500 x 

g and 2,000 x g (4°C) to remove any cellular debris. Supernatant underwent ultracentrifugation 

at 100,000 x g (1 h, 4°C) to pellet EVs from perfusate (EVs from digest (cEV) and wash (wEV). 

Pellets were washed twice by resuspension in PBS and centrifugation at 100,000 x g (1 h, 4°C), 

final pellets were resuspended in 30 µl and stored at -80°C.  

 

2.4 Soluble factor concentration 

The supernatant containing soluble factors (SF, SF from digest (dSF) and wash (wSF)) 

following ultracentrifugation was concentrated using Amicon® Ultra-3 Centrifugal Filter Unit 

(UFC800324, 3kDa cut-off) as per manufacturer’s instructions (4°C, 4,000 g) and stored at -

80°C.  

 

2.5 Nanoparticle tracking analysis 

Particle size distribution of EVs isolated from perfusates (cEV and wEV) were determined by 

nanoparticle tracking analysis (NanoSight NS300, Malvern). cEV and wEV were captured and 

analysed using camera level = 10, screen gain = 10, detection threshold = 10, flow rate = 100, 

and temperature = 25°C. Data obtained were analysed through NTA software (Version 3.2.16, 

ATA Scientific).  

 

2.6 Protein quantification 

Protein quantification was performed using the microBCA™ Protein Assay Kit (Thermo 

Scientific, 23235) as per manufacturer’s instructions.  

 

2.7 Proteomics: extracellular vesicles and soluble factors 



 
 

cEV/wEV (n=3) and dSF/wSF (n=4) were solubilised in 2% (v/v) sodium dodecyl sulphate 

(SDS), 50 mM triethylammonium bicarbonate (TEAB), pH 8.0, centrifuged at 16,000g for 10 

min at 4°C, and quantified by microBCA (Thermo Fisher Scientific). For mass spectrometry-

based proteomics, samples (EV = 3-5 g, SF = 10 g) were normalized and reduced with 10 

mM dithiothreitol (DTT) for 45 min at 25°C followed by alkylation with 20 mM iodoacetamide 

for 30 min at 25°C in the dark. The reaction was quenched to a final concentration of 20 mM 

DTT. Magnetic beads were prepared by mixing Sera‐Mag Speed Beads A and B at 1:1 (v:v) 

ratio and washing twice with 200 µL MS-water. Magnetic beads were reconstituted to a final 

concentration of 100 µg/µL. Magnetic beads were added to the samples at 10:1 beads-to-

protein ratio and ethanol added for a final concentration of 50% (v/v). Protein-bound magnetics 

beads were washed three times with 200 µL of 80% ethanol and reconstituted in 50 mM TEAB 

and digested with trypsin (Promega, V5111) at a 1:50 enzyme-to-substrate ratio for 16 h at 37 

°C at 1000 rpm. The peptide mixture was acidified to a final concentration of 2% formic acid, 

0.1% trifluoroacetic acid (TFA) and centrifuged at 20,000g for 1 min. The peptide digests were 

kept frozen at -80°C and dried by vacuum centrifugation, reconstituted in 0.07% trifluoroacetic 

acid, and quantified by Fluorometric Peptide Assay (Thermo Scientific, 23290) as per 

manufacturer’s instructions.  

 

2.8 Proteomics: heart tissue homogenisation 

Frozen heart tissues (-80°C, single thaw) were homogenized in 8 M urea, 50 mM HEPES lysis 

buffer pH 8.0, with HALT protease and phosphatase inhibitor (Thermo Fisher Scientific, 

78444) on ice by Tissue Ruptor (Qiagen) followed by tip-probe sonication (Misonix S-4000 

Sonicator, 3 cycles of 10 s, amplitude 23). Tissue homogenates were centrifuged at 20,000 g 

for 30 min, and supernatants were collected and quantified by microBCA (Thermo Fisher 

Scientific). 



 
 

 

2.9 High-pH fractionation of heart tissue proteome 

For heart tissue proteome, peptides (generated using single-pot, solid-phase-enhanced sample 

separation (SP3), Section 2.7) were fractionated by high pH separation, with ~10 µg peptide 

lysate fractionated into 10 fractions using in-house prepared C18 StageTips (Empore). Peptides 

were reconstituted in 25 mM ammonium formate (AF) in MS-grade water, pH 10. StageTips 

were primed sequentially with 250 µL of 100% acetonitrile (ACN), 50% ACN in 25 mM AF, 

pH 10 and 25 mM AF in MS-grade water, pH 10 by centrifuging at 1500 g for 5 min. Peptides 

were eluted using 2-50% ACN in 25 mM AF, dried by vacuum centrifugation, and 

reconstituted in 0.07% TFA in MS water, quantified by Fluorometric Peptide Assay and 

normalized by volume to 3 µL (100-500 ng). 

 

2.10 Proteomic liquid chromatography–tandem mass spectrometry 

Peptides were analysed on a Dionex UltiMate NCS-3500RS nanoUHPLC coupled to a Q-

Exactive HF-X hybrid quadrupole-Orbitrap mass spectrometer equipped with nanospray ion 

source in positive mode as described.[39, 40]  Peptides were loaded (Acclaim PepMap100 C18 5 

m beads with 100 Å pore-size, Thermo Fisher Scientific) and separated (1.9-µm particle size 

C18, 0.075 × 250 mm, Nikkyo Technos Co. Ltd) with a gradient of 2–28% acetonitrile 

containing 0.1% formic acid over 110 mins at 300 nL min-1 at 55°C (butterfly portfolio heater, 

Phoenix S&T). An MS1 scan was acquired from 350–1,650 m/z (60,000 resolution, 3 × 106 

automatic gain control (AGC), 128 msec injection time) followed by MS/MS data-dependent 

acquisition (top 30) with collision-induced dissociation and detection in the ion trap (15,000 

resolution, 1 ×105 AGC, 60 msec injection time, 28% normalized collision energy, 1.3 m/z 

quadrupole isolation width). Unassigned precursor ions charge states and slightly charged 

species were rejected and peptide match disabled. Selected sequenced ions were dynamically 



 
 

excluded for 30 sec. Technical replicates were performed for all analyses (n=2). Data was 

acquired using Xcalibur software v4.0 (Thermo Fisher Scientific). A list of samples and RAW 

data is available in ProteomeXchange. #PXD023570. 

 

2.11 Database searching and protein identification 

Identification and quantification of peptides was performed using MaxQuant (v1.6.14.0) [41] 

and Andromeda[42] as previously described.[43] Tandem mass spectra were searched as a single 

batch against Mus musculus (mouse) reference proteome (55,398, downloaded 15/01/2020) 

supplemented with common contaminants. Search parameters were as follows: 

carbamidomethylated cysteine as fixed modification, oxidation of methionine and N-terminal 

protein acetylation as variable modifications, trypsin/P as proteolytic enzyme with  2 missed 

cleavage sites, search tolerance 7 ppm, fragment ion mass tolerance 0.5 Da, <1% false 

discovery rate on peptide spectrum match with target-decoy approach at peptide and protein 

levels, match between runs selected, and label free quantification (LFQ) algorithm employed.  

 

2.12 Data analysis and informatics 

Protein lists for samples were generated in Perseus (Version 1.6.14.0)[44] based on  2 peptides 

and present in  60% sample replicates. Principal component analysis was performed in 

Perseus for proteins present in all replicates of all samples. Annotation of proteins into 

functional classes was performed using The Cell Surface Protein Atlas.[45] Protein lists were 

downloaded from Vesiclepedia[46] and Exocarta[47] for comparison. Venn diagram values were 

generated using the Bioinformatics Evolutionary Genomics web tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). Column and bar graphs were generated 

using GraphPad Prism (Version 8.1.2). GO and functional enrichment annotations were 

retrieved by submitting protein accession IDs to DAVID Bioinformatics Resources 



 
 

(https://david.ncifcrf.gov/).[48, 49] Hierarchical clustering was performed in Perseus using 

Euclidian distance and average linkage clustering, with missing values imputed from normal 

distribution (width 0.3, downshift 1.8). Pathway enrichment map analysis was performed using 

Cytoscape (Version 3.8.2, p-value  0.05, FDR  0.1 cut offs).  

 

3. Results  

3.1  EV isolation from cardiac tissue 

 

EVs have previously been isolated from hearts and cardiac tissues using mechanical 

dissociation[32, 35, 36, 38] which invariably results in cell lysis and intracellular contamination of 

EV preparations. To avoid this, we used collagenase II to gently hydrolyse the ECM and loosen 

cardiac tissue structure, a procedure commonly used for the isolation of cardiomyocytes.[50-53]  

Freshly isolated intact mouse hearts were perfused with perfusion medium (wash step) to 

deplete abundant blood proteins, followed by collagenase II-perfusion medium (digest step) 

(Fig 1A/B). This allowed us to obtain perfusates containing SFs and EVs present within the 

intercellular space. These perfusates were subjected to differential centrifugation to separate 

EVs from SFs (Fig 1A). 

 

3.2 Proteomic profiling of cardiac EVs  

To identify the EV-containing fraction, we performed proteomic profiling of EVs and SFs 

obtained from wash and digest heart perfusates (Fig 2A, Supplementary Table S1). Principal 

component analysis of proteins identified (and their abundance) revealed that fractions were 

distinct (Fig 2B). Classical EV markers[54] (Cd63,  Pdcd6ip/Alix, Tsg101) were enriched in EV 

fraction obtained from digest perfusate (Fig 2C). Importantly, during collagenase II-based 

digestion, levels of cytoplasmic proteins (Actc1, Gapdh, Tuba1b) and clinical markers of 



 
 

cardiac damage[55] (Ldhb, Mb, Tnnt2) did not increase (Fig 2D/E), and we did not detect 

proteins activated in apoptotic processes (Casp3/9, Bax, Bak) (Supplementary Table S2). 

Additionally, levels of Alb, Fga, and Hba were highest in wash fractions, suggesting successful 

perfusion of heart and depletion of abundant blood components from EV preparations (Fig 2F).  

 

Interestingly, of the 1,721 proteins identified in cEV, 1,575 were previously reported in EV 

databases (Exocarta[47] and Vesiclepedia[46]) (Fig 2G, Supplementary Table S2). Commonly 

identified proteins include those implicated in EV biogenesis: vesicle formation (Tsg101, 

Vps4b, Pdcd6ip/Alix, Cd9/63/82, Sdcbp), cargo sorting (Hnrnpa2b1, nSMase/Smpd2, Kras), 

membrane fusion and release (Rab11b/35/7, Vti1b).[56] On the other hand, 139 proteins in cEVs 

were not reported in EV databases, 12 of which are enriched in cardiac tissue (enzymes Dhrs7c, 

Hhatl, Hacd1, cardiac regulators Pln, Hrc, Csrp3, structural components Tnnt2, Sgcg, 

signalling factor C1qtnf9, and mitochondrial components Mpc2, Cox7a1, Ucp1) compared to 

other organs.[57] We also report 927/1,721 cEV proteins are co-identified in EVs from rat hearts 

isolated using mechanical extraction and purified using density gradient separation (including 

known cardiac components Casq2, Mybpc3, Ryr2, and Tnnt2), in addition to 794 proteins 

unique to this current study (including EV markers Cd63, Cd82, Chmp2/3/4/5, Vamp3/5/8) 

(Supplementary Table S2, Supplementary Fig 3).[37]  

 

Furthermore, nanoparticle tracking analysis revealed that these EVs were ~100-300 nm (mean 

~200 nm) in diameter (Fig 2H), consistent with previous reports for cardiac cell-derived 

EVs.[26, 30, 32] Typically, we obtained 3-6 µg of EVs (~2.5-8 × 108 particles) per heart; we refer 

to these EVs as cardiac EVs (cEVs). 

 

3.3 Functional annotation of global cardiac EV proteome 



 
 

Next, we dissected the cEV proteome to gain insight into potential function.  Annotating cEV 

proteome into functional protein classes[45] revealed 85 cluster of differentiation 

(Cd14/163/177//200), 7 tetraspanins (Cd63/81/82/9, Tspan8/9, Upk1b), 82 transporters 

(Vamp3/5/8, Stx2/4/7/8/12, Slc27a1/2/4, Atp2b1/4), 64 receptors (including 16 integrins, 

Epha4, Egfr, Npr1/2/3, Pdgfra/b), and 126 enzymes (including Adam10/17/9, Ndufa1/4, 

Cpt1a/b, Acaa2/t2) (Supplementary Table S2). 

 

Gene Ontology (GO) analysis for cellular component revealed that cEVs were enriched in 

extracellular exosome (Cd63/82/9, Tsg101, Chmp2/3/4/5), membrane (Anxa1, Egfr, Pdgfra/b), 

and focal adhesion (Ctnna1, Tln2, Zyx) proteins (Fig 3A, Supplementary Table S3). 

Molecular function and biological processes enriched in cEVs included protein stabilisation 

(Cdc37, Clu, Bag3), poly(A) RNA binding (Ybx1, Eif3a/5a, Pabpc1), and cell-cell adhesion 

(Epcam, Bsg, Ctnna2) (Fig 3A). 

 

Because EVs regulate several signalling pathways and are important in metabolic 

reprogramming,[58, 59] we performed KEGG pathway analysis on cEV proteome 

(Supplementary Table S3). This revealed enrichment of signalling pathways including 

cGMP-PKG (Kng-1, Npr1, Npr2), adrenergic signalling in cardiomyocytes (Prkaca, Mapk1/3, 

Gnas) and Rap1 (Rab1a/1b) (Fig 3B).  We have manually curated key signalling pathways and 

proteins in cEVs that are known to function in heart physiology; several of which have been 

shown to be functionally delivered or influenced by EVs in various cells/tissues, including 

heart (Table 1).   

 

Metabolic pathways enriched include proteasome (Psma1, Psmb1, Psme1), pentose phosphate 

(G6pd, Taldo1, Pgd), glutathione (Gpx1/3/4/7/8, Gstm1/2/5, Gsta3/4), and glycolysis (Hk2, 



 
 

Gpi1, Pkm) (Fig 3C, Table 1). Strikingly, cEVs contain proteins for each step of glycolysis, 

these include rate limiting enzymes Pfkl/m/p and Hk2 (Fig 3D). Indeed, these signalling and 

metabolic pathways are essential for cardiac homeostasis[60-64] and can be regulated by EV-

mediated intercellular communication in the heart (Table 1). 

 

3.4 Comparison with heart reveals biological processes enriched in cEV 

 

Although EV proteome represents a subset of parental tissue proteome, it is now well 

established that cells selectively sort proteins within the EVs to perform diverse functions.[65-

67] We next compared cEV proteome with heart tissue proteome (3,244 proteins identified, 

Supplementary Table 1).  Indeed, cEV and heart tissue were distinct; cEVs were enriched in 

EV markers (Cd63/81/9, Flot1/2, Pdcd6ip), while heart tissue was enriched in intracellular 

organelle proteins (Uqcrh and Ndufs6 (mitochondrial), Lmna and H1-2 (nuclear), Rplp2 and 

Rpl32 (ribosomal)) and contractile apparatus (Tnnt2 and Tnni3) (Fig 4A). This highlights 

selective packaging of proteins in cEVs; specifically, 942 components were selectively 

packaged in cEVs (538 unique and 404 enriched (log2(fold change) 1 over heart tissue) (Fig 

4B), and were enriched for GO terms (cellular component) including endosome (Cd63/81/82/9, 

Pdcd6ip/Alix, Chmp2/3/4/5), cell surface (Anxa1, Itga1/2, Itgb1/2, Bsg), and membrane raft 

(Raftn1, Flot2, Cav1/2, Gnai1/2/3) (Figure 4C). EnrichmentMap analysis of GO biological 

process revealed enrichment of adaptive immunity, cell surface interactions, lipid transport, 

and peptide processing (Fig 4D/E, Table 1, Supplementary Tables S4&5). Proteins enriched 

in cell surface interactions in cEVs include those implicated in heterotypic cell-cell adhesion 

(Ptprc, Itgb2, Itgav), cell adhesion (Ncam, Alcam, Bcam, Icam, Pecam), and integrin-mediated 

signalling pathway (Adam9/17, Itgam, Itgb3). Adaptive immunity components for antigen 

processing and presentation include major histocompatibility complex (MHC) class I/II 



 
 

subunits (H2-aa/-ab/d1/k1/q10) used by antigen presenting cells (APCs, dendritic cells, 

macrophages, B cells) to regulate T cell response.[68] cEV enriched peptide processing-

processes (proteolysis and regulation of blood pressure) contain enzymes (Ace, Anpep, Cma1, 

Enpep, Lnpep, Mme) for the processing of key signalling angiotensin peptides involved in 

cardiac physiology.[69] Additionally, cEVs were enriched in lipid metabolism proteins, 

including those involved in lipid transport (Cd36, Fabp3, Fatp1, Ldlr, Vldlr). Thus, our data 

show that cEVs contain selectively packaged proteins associated with blood pressure 

regulation, angiogenesis, immune response, and myocardial remodelling processes which are 

implicated in cardiac function.[68-73] 

  



 
 

4. Discussion  

 

EVs are potent and complex mediators of intercellular communication, transferring selectively 

packaged cargo between cells to induce functional response.[27, 74, 75]  In the heart, recent 

evidence suggest that EVs regulate immune response,[26] fibroblast gene expression and 

activation,[29, 30] cardiomyocyte size,[31, 32] and vascularisation,[28] regulation of which is often 

disrupted in cardiac pathologies. However, our understanding of cardiac EV protein 

composition remains limited due to technical challenges associated with EV isolation from 

cardiac tissue.  In this study, we isolated cEVs (~200 nm, Cd63/81/9+, Pdcd6ip/Alix+, Tsg101+) 

from mouse heart via collagenase perfusion and provide a comprehensive proteomic profile of 

these EVs to reveal insights into their composition and putative function. 

 

Previously, cardiac tissue-derived EV isolations have involved ‘dicing’ or ‘mincing’ of frozen 

tissue.[36, 37] However, tissue freezing and homogenisation results in tissue damage and cell 

disruption, thereby contaminating EV preparations with intracellular components and 

membrane debris.  Another major challenge includes removal of blood components that would 

otherwise impede mass spectrometry-based characterisation of cEVs. In this study, we 

immediately perfused freshly isolated intact heart to deplete blood components (Alb, Fga, 

Hba), and followed with collagenase perfusion. Collagenase II is a protease which cleaves 

collagen (Pro-X-Gly-Pro), thereby disrupting the ECM and heart tissue structure, while 

maintaining cardiomyocyte viability.[50-53] Because cardiac cells release EVs into the 

intercellular space,[24] collagenase-based disruption of the ECM potentially facilitates release 

of EVs during perfusion.  Indeed, the particle yield of cEVs isolated following digest was 

higher compared to that in the wash step (Supp Fig. S2).  While we expect some level of cell 

damage using collagenase-based perfusion which could contribute to increased levels of EVs 



 
 

observed in digest perfusate, we did not observe an increase in markers of cardiac damage or 

loss-of-cellular integrity/ intracellular components or proteins activated in apoptotic processes 

in cEVs (Actc1, Gapdh, Tnnt2, Mb, Casp3/9). Thus, we provide an efficient way to isolate EVs 

from heart that bypasses the need for mechanical disruption. 

 

cEVs contain an array of fatty acid (FA) binding proteins (Fabp3/4/5) and FA transport proteins 

(Fatp1/2/4, Cd36) which have been implicated in cardiac FA uptake.[72, 73] Previous reports 

have identified Fabp4[76] and Fatps[77] in circulating EVs, and demonstrated that Cd36+ EVs 

take up FA from circulation and deliver them to cardiomyocytes in vitro and in vivo,[78] 

whereby FAs are preferentially used to generate large volumes of ATP, required for cardiac 

contraction.[63, 79] Identification of these proteins in cEVs supports their role in cardiac substrate 

delivery. Moreover, cEVs contain enzymes required for glycolysis (Hk2, Gpi1, Pfkm, Aldoa, 

Tpi1, Gapdh, Pgk1, Pgam2, Eno1, Pkm), including rate limiting enzymes Pfkl/m/p and Hk2.[80]  

In addition to FA metabolism, the heart also performs glycolysis in the cytoplasm to produce 

ATP, NADH, and pyruvate.[63] ATP produced during cytoplasmic glycolysis is particularly 

important for regulation of ion pumps and channels in the cell periphery, contributing to the 

maintenance of essential ion gradients associated with contraction.[81] Importantly, EVs have 

been shown to regulate glucose metabolism between cells,[82, 83] with cardiomyocyte-derived 

EVs transferring glucose transporters between cells to increase glucose uptake.[83] Because EVs 

have been shown to contain functional glycolytic enzymes,[84] whether cEVs can regulate 

glycolysis between cells in the heart remains in question. Given altered substrate utilisation is 

associated with cardiac pathologies,[63, 64] altering composition of cEVs may provide an 

opportunity to restore balance through external metabolic regulation. 

 



 
 

Another interesting finding was enrichment of proteasomal subunits (Psma1-7, Psmb1/4/5) and 

components involved in proteasomal regulation (Psmc1-5, Psmd1/2/3/6/7, Psme1/2) in cEVs. 

In the heart high levels of active protein breakdown can be mediated by proteosomes.[79]  

Failure of which are associated with accumulation of misfolded proteins, or proteotoxicity 

which can contribute to cardiac pathologies.[85, 86]  Because proteasome units within 

mesenchymal stem cell (MSC)-derived EVs are capable of de novo proteasome activity,[87] 

whether cEVs can mediate functional transfer of active proteosome units to regulate 

proteostasis in the heart warrants investigation. Additionally, the proteasome system works in 

conjunction with chaperones and autophagy to regulate proteostasis in the heart.[86, 88]  Indeed, 

cEVs contain molecular chaperones associated with protein stability (Hsp90aa1/b1, 

Hspa1a/12b/13, Hspb1, Dnaja1/c13). Furthermore, we identified activators of AMPK 

signalling (Adipoq, C1qtnf9/Ctrp9) and AMPK kinase subunits (Prkaa1, Prkag1), a pathway 

which acts as a key modulator of proteostasis in the heart, regulating levels of autophagy for 

cardioprotection under pressure overload induced cardiac stress.[89, 90] EVs isolated from 

induced pluripotent stem cell-derived cardiomyocytes are able to enhance autophagy in 

cardiomyocytes and improve cardiac function and viability after myocardial infarction.[91] 

Moreover, EV transfer of Hsp40 (Dnaj proteins) regulates proteostasis in recipient proteotoxic 

cells in vitro and in vivo.[92] Whether cEVs assist in cardiac proteostasis through delivery of 

heat shock proteins, proteasomes, and promotion of autophagy warrants further investigation. 

 

We also observed a striking enrichment in cEVs in antioxidants, including Cat, Sod1/2/3, 

Gpx1/3/4/7/8, Gstm1/2/5, Gsta3/4. Tight regulation of redox signalling is central to cardiac 

physiology (ion channels, contraction) and pathology (fibrosis, hypertrophy), whereby excess 

oxidants, such as reactive oxygen species (ROS), result in oxidative stress, cell damage and 

cardiac pathologies.[93-95] While EVs have been shown to deliver functional antioxidant 



 
 

enzymes between cells (fibroblasts and hepatic cells[96, 97]), and particularly in the heart to 

reduce oxidative stress during myocardial infarction,[98] whether they regulate antioxidant 

levels in cardiac physiology remains unknown. Of note, cEVs also contain pentose phosphate 

pathway (PPP) proteins (G6pd, Taldo1, Pgd, H6pd, Tkt, Gpi1) that regulate NADPH 

production required for antioxidant machinery;[64] recently these PPP proteins in EVs were 

shown to be functionally active.[99] Collectively, this suggests that cEVs have the potential to 

act as independent ROS scavengers or donate antioxidant machinery to recipient cells to assist 

in redox regulation.  

 

Several outstanding questions remain, primarily which cells in the heart produce these cEVs 

and whether they are of non-cardiac origin. Comparison of cardiosphere cell-specific and 

immune cell markers listed in CellMarker[100] revealed cEV contained markers for 

cardiomyocytes (Actn1, Myh6), cardiac progenitor cells (Cd34, Abcg2), B cells (Cd1d1,  

Cd74), T cells (Cd55, Cd14, Cd38), macrophages (Cd163, Cd36), smooth muscle cells (Cald1, 

Tagln), endothelial cells (Vwf), and cardiac fibroblasts (Ckap4), suggesting the production of 

cEVs by a range of cardiac cells. This echoes the incredibly complex and interconnected nature 

of cardiac signalling.[1] To investigate potential non-cardiac tissue sources of EVs, we 

compared cEVs with the Human Protein Atlas.[57]  This revealed 60 cEV proteins reported to 

be ‘not detected’ in heart, but ‘elevated’ in bone marrow (6), brain (4), adrenal glands (2), 

kidney (7), pancreas (4), intestine (14), liver (32), lymphoid tissues (3), and lung (2) 

(Supplementary Table S2). Additionally, cEVs contain integrin expression patterns 

previously associated with EV homing to lung (Itga6/b4, Itga6/b1) and liver (Itgav/b5),[101] 

potentially contributing to their dissemination to lung and other organs.[25, 102] With many 

diseases involving multiple organs (e.g. cardiorenal and metabolic syndrome[103, 104]), gaining 

further insight into the role of EVs and how they can be dysregulated in organ crosstalk is 



 
 

essential. Developments in the study of organ profiling & mapping,[57] inter-organ 

communication,[105] and fluorescence-based in vivo tracking[106] will offer tools for future 

exploration.  

 

In summary, we have shown the successful isolation of EVs from a mouse heart and performed 

proteomic profiling to explore their composition. We propose cEVs may act as cardiac 

regulators by influencing peptide signalling, antigen presentation, proteostasis, metabolism, 

and oxidative stress (Fig 5). Further investigations into cEV origins, both cell and organ, will 

provide insight into biodistribution and inter-organ communication to develop our 

understanding of systemic pathologies. Additionally, isolation of cEVs from models of cardiac 

pathologies will provide insights into disease mechanisms, allowing development of 

therapeutic strategies.  
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Figures and legends 

 

 

 

 

 

 

 

Figure 1. Isolation of extracellular vesicles from mouse heart. (A) Workflow for isolation 

of extracellular vesicles and soluble factors from mouse hearts using enzymatic perfusion and 

differential ultracentrifugation. (B) Schematic outlining Langendorff-cannulation for 

myocardial perfusion. 

 

 

 

 



 
 

 

 

 

Figure 2. Characterisation of extracellular vesicles from mouse heart. (A) Venn diagram 

of proteins identified using mass spectrometry analysis in digest (cEV) and wash (wEV) 

extracellular vesicles, and digest (dSF) and wash (wSF) soluble factors. (B) Principal 

component analysis of cEV, wEV, dSF, and wSF. Normalised LFQ intensities of individual 

replicates for (C) Cd63, Pdcd6ip/Alix, Tsg101, (D) Actc1, Gapdh, Tuba1b, (E) Ldhb, Mb, 

Tnnt2, (F) Alb, Fga, Hba. (G) Venn diagram comparison of cEV proteome with EV proteins 

catalogued in Vesiclepedia and Exocarta. (H) Nanoparticle tracking analysis of cEVs (mean 

size ~200 nm, N = 3 biological, n =5 technical). Screen captures from video recorded using 

NTA. N/D = not detected, error bars = S.E.M, ns = not significant, *p < 0.05, **p <0.01, ***p 

<0.0001.  

 

 

 



 
 

 

Figure 3. Bioinformatic analysis of cEV proteome. (A) Gene Ontology (GO) terms for 

Biological Process, Molecular Function, and Cellular Component enriched in cEV proteome. 

KEGG-based (B) signalling and (C) metabolic pathways enriched in cEV proteome (p≤0.05). 

(D) Glycolytic and pyruvate pathways (KEGG) highlighting the presence of enzymes identified 

in cEV (green). 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

Figure 4. Comparison of cEV with cardiac proteome. (A) Hierarchical clustering of cEV 

proteome and heart tissue for expression of classical EV markers and cell 

organelle/compartment proteins; scale normalised LFQ intensity. (B) Comparison of cEV 

proteome with heart tissue proteome, cEV enriched proteins include proteins that are either 

uniquely identified or log2(fold change) ≥ 1 (in at least 2 biological replicates of cEV). (C) 

Cellular components enriched in cEV over heart tissue. (D) Network visualisation of GO 

biological processes of cEV enriched proteins using Cytoscape and EnrichmentMap (p<0.003). 

(E) biological processes enriched in cEV over heart tissue.   

 

 



 
 

 

 

 

 

 

 

Figure 5. Summary of cEV proteomic findings. Schematic highlighting key groups of 

proteins present in cEVs which suggest regulatory roles in intra-cardiac and inter-organ 

biology.  

 

 




