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Abstract. Question Answering (QA) systems play an important role in
decision support systems. Deep neural network-based passage rankers
have recently been developed to more effectively rank likely answer-
containing passages for QA purposes. These rankers utilize distributed
word or sentence embeddings. Such distributed representations mostly
carry semantic relatedness of text units in which explicit linguistic fea-
tures are under-represented. In this paper, we take novel approaches to
combine linguistic features (such as different part-of-speech measures)
with distributed sentence representations of questions and passages. The
QUASAR-T fact-seeking questions and short text passages were used in
our experiments to show that while ensembling of deep relevance mea-
sures based on pure sentence embedding with linguistic features using
several machine learning techniques fails to improve upon the passage
ranking performance of our baseline neural network ranker, the concate-
nation of the same features within the network structure significantly
improves the overall performance of passage ranking for QA.

Keywords: Question answering · Passage ranking · Deep learning ·
Shallow linguistic features.

1 Introduction

Natural language Question Answering (QA) systems have recently been utilized
to support decision analysis and modeling (e.g., [7, 19]). Previous studies in the
QA domain show that answer extraction is more effective from passage-level
information compared with the analysis of full-text documents [12]. There is
evidence of positive correlation between the effectiveness of QA and answer pas-
sage ranking [9]. For QA, both the general semantic relevance of a passage to the
question and answer recall are of importance. For instance, given the question
“When did Google start?”, the passage “Google was launched by Larry Page and
Sergey Brin, students at Stanford University” will not be counted as an effec-
tive, answer-containing passage since it does not include the actual answer 1998.
Specificity of passages (i.e., containing answer candidates) in the QA domain
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necessitates the utilization of explicit and shallow linguistic features, especially
from within the passages to be considered in the process of passage ranking, those
that are under-represented in the general semantics of sentences (see Figure 1).

The.det most.adv frequent.adj symptom.noun
is.verb a.det stiff.adj jaw.noun, caused.v
by.adp spasm.noun of.adp the.det muscle.noun
that.adj closes.v the.det mouth.noun –
accounting.v for.adp the.det disease.noun
’s.part familiar.adj name.noun lockjaw.noun.

He.prp composed.v many.adj operas.noun,
but.conj his.adj greatest.adj triumph.noun
was.v “I.noun Pagliacci.noun” for.adp
which.adj he.prp wrote.v both.adj the.det
libretto.noun and.conj the.det music.noun.

At.adp that.det time.noun, it.prp was.v
called.v Edo.noun.

Tokyo.noun was.v formerly.adv called.v
Edo.noun.

Q1

Semantically relevant passage Specific answer-containing passage

Q2

Q3

Q1: Lockjaw is another name for which disease? (tetanus)

Q2: Who wrote the opera Pagliacci? (leoncavallo)

Q3: What city was originally called edo? (tokyo)

The.det first.adj sign.noun of.adp
tetanus.noun is.v a.det tightening.noun
of.adp the.det jaw.noun muscles.noun
that.adj gives.v the.det disease.noun
its.adj common.adj name.noun,
lockjaw.noun.

It.prp ’s.v a.det setting.noun that.adj
would.v have.v brought.v tears.noun
of.adp joy.noun to.adp Ruggero.noun
Leoncavallo.noun, the.det composer.noun
and.conj librettist.noun who.noun gave.v
Pagliacci.v life.noun in.adp 1892.num.

Fig. 1. Example question and passage cases where part-of-speech of tokens in pas-
sages, named entities, and query term coverage are shown. Answer-containing passages
demonstrate specific linguistic characteristics, e.g., more nominal terms, less pronouns,
and sufficient query term coverage. Note: The questions and passages are taken from
the QUASAR-T development set (see section 2.1 for more details).

Recent advances in fact-seeking QA and passage retrieval have been based
on the utilization of distributed word representations as well as deep learning
structures. The works in [9, 15] are based on the utilization of distributed word
embeddings learned using word2vec [10] and GloVe [13] to represent the text of
questions and passages with word-level embeddings and to find the most relevant
passages. The work in [15] relies mainly on Convolutional Neural Networks and
word embeddings as the discriminant analyzer to score and rank passages. The
several rankers developed in [9] with LSTMs have been reported to outperform
another deep learning-based passage retrieval system in [18] that developed a
Reinforced Ranker-Reader QA system. The LSTMs were also employed in [2] in
combination with word embeddings and character embeddings, and resulted in
improvements over several baseline traditional and deep learning-based answer
passage retrieval systems. The work in [11] made use of Bidirectional Encoder
Representations from Transformers (BERT) [5]. The evaluation results of this
technique on the TREC CAR and MS MARCO data sets show significant im-
provements over some of the state-of-the-art passage ranking techniques.
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Beyond the distributed representation of characters and terms, there have
been efforts to capture semantics of the larger portions of text, such as sen-
tences [3, 8]. InferSent [3], for instance, developed sentence embeddings to encode
the overall meaning of sentences. The InferSent encodings have been shown to
generalize well to several natural language processing (transfer) tasks, such as
multi-genre natural language inference and semantic textual similarity analysis.
InferSent embeddings were used in [9] with feed-forward neural networks to train
a passage ranking system which performed well on the QUASAR data set [6].

While previous works in the domain of answer passage retrieval and rank-
ing have made significant progress in retrieving and ranking answer candidate
passages at top ranks through the use of deep textual features (e.g., word and
sentence embeddings), the possible contribution of more explicit utilization of
linguistic features has not been studied.

Our approach to fill this gap is based on the utilization of both sentence-
level semantics and explicit representation of several linguistic passage features.
Focusing on passage ranking only and leaving aside answer extraction to further
machine comprehension stages of QA that are not part of this work, we represent
each sentence with its sentence embedding using InferSent [3]. The sentence
embeddings are fed into a deep feed-forward neural network to predict whether
or not a passage is likely to contain a candidate answer to a question. We then
make use of the linguistic features of passages including token count, noun count,
verb count, adverb count, pronoun count, query coverage, and named entity
count to analyze the contribution of these features in passage ranking and to
improve the final passage ranking effectiveness in terms of mean rank (MR) and
answer recall of passages.

2 Methods

2.1 Data set

The QUASAR-T QA data set [6] was used in our experiments which includes
training, development, and test subsets, each with short and long passages re-
trieved per question (100 short and 20 long passages). We focused on the short
passages in the development and test subsets, each of which containing 3,000
questions. While there are other data sets for QA, e.g., SQUAD [14], the 1-to-
many question-to-passage requirements are not met by such data sets to facilitate
passage ranking experiments.

2.2 Deep neural network ranker

The baseline ranker in our analyses was a feed-forward deep neural network
model. We constructed the input feature vector Xi to this ranker similar to the
work in [9] and by concatenating question embedding (qei) and passage embed-
ding (pei) that go through the network structure to find the answer-containing
probability for passage i, as shown in the following equations.
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Method mr r@1 r@2 r@3 r@4 r@5

BL-NN 9.58 0.25 0.39 0.47 0.54 0.58
R3 n/a 0.40 n/a 0.51 n/a 0.54
InferSent n/a 0.36 n/a 0.52 n/a 0.56

Table 1. MR and recall (r@top) analysis of our baseline model (BL-NN) and relevant
methods on the test set. The results that are not available (not reported in referenced
works) are shown with n/a.

Xi = [qe⊕ pei ⊕ (qe− pei)⊕ (qe� pei)] (1)

Xflat
i = flatten(Xi) (2)

D(1) = ReLU(W (1)Xflat
i ) (3)

Oi = softmax(W (2)D(1)) (4)

The embeddings for both questions and passages were constructed using In-
ferSent where the output embedding per sentence has 4096 features. The input
vector X, therefore, included 16,384 features. In cases where the text included
more than one sentence, the embeddings of sentences were vector summed to
create the representative sentence embedding of the entire text. To train this
baseline model, the QUASAR-T development set of questions and short con-
texts were utilized. For each question, the contexts were first pre-processed and
pseudo-labeled according to whether they contained the actual answer to the
question. Then, a subset of 1 positive context and 5 negative contexts were
extracted per question to train the baseline model in 500 epochs without any
early stopping criteria or any regularization method. The pseudo-labeling of
contexts resulted in a 2-feature output vector per context; hence, the output
layer of the model is a dense layer including two neurons with Softmax acti-
vation. We modeled the passage ranking task as a classification problem sim-
ilar to [11]; thus, the binary cross-entropy loss function was used, i.e., L =
−
∑

i∈Ppos
log(pi)−

∑
j∈Pneg

log(pj = 1− pi) where the Ppos and Pneg index sets
represent the positive and negative pseudo-labeled contexts, pi is the answer-
containing probability (class=1), and pj is the probability of class=0.

The trained model would then generate a probability per class, i.e., answer-
containing versus answer-free. The answer-containing probability of each passage
was used to rank passages. The loss and accuracy of the model in the training
phase is shown in Figure 2. Table 1 shows the detailed results of this model
when applied on the test set as compared with two existing, relevant (neural
network-based) systems R3 [18] and InferSent ranker [9] without the utilization
of other lexical semantic features.

2.3 Explicit shallow linguistic features

Distributed sentence representations capture several surface, syntactic, and se-
mantic characteristics of text [4]. However, in the context of QA, there are other
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Fig. 2. Loss and accuracy analysis of the baseline neural network ranker on the
QUASAR-T development set. Note: Higher validation accuracy values are due to the
validation accuracy being calculated at the end of each epoch versus training accuracy
being calculated batch-wise.

explicit linguistic features that can potentially enhance answer passage retrieval
and ranking and yet they are under-represented in distributed embeddings. The
explicit linguistic characteristics that we focused on included the following cat-
egories.

First, terms of specific part-of-speech can distinguish between an answer-
containing passage and the one that is less likely to include an explicit answer to a
question. These features include the number of nouns, verbs, adverbs, pronouns,
as well as the general count of tokens within the text of a passage. It can be
argued that for fact-seeking questions, it is less likely that the answer will be
in the form of an adverb (or a verb) while it is more likely to be a noun or
a nominal predicate. In addition, the larger number of tokens can be argued
to have a positive impact on the chances of a passage containing the actual or
candidate answer. Pronouns, on the other hand, can mask the actual answer
within a passage and as such, the smaller number of pronouns may result in
higher quality passages. As one example from the QUASAR-T data set, the
question “Which is considered the most powerful piece on the chess board?” has
contexts such as “The queen is the most powerful piece in the board ” and “She
is the most powerful piece on the board”. The correct answer is masked by the
pronoun “She” in the second passage, which makes the passage less effective for
QA purposes.

Second, in fact-seeking QA, the answer is most likely a text snippet that refers
to the name of a location, organization, or a person. In some other cases, the
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date, time, or a monetary reference is sought. While named entities have been
used as a category of features for matching answer candidates and questions
in [16], they have not been used for featurizing passages for their likelihood of
answer-containing. We will show that a larger number of named entities are
found in answer-containing passages.

Third, query term coverage within a passage was selected as another signal
to correctly identify answer-containing passages. The argument is on the basis
that correct actual answers to a given question may mostly be positioned in
the close proximity of the same query terms that are mentioned in the text of
the question. This is besides the fact that a larger proportion of query term
coverage also contributes to the semantic relatedness of passages and questions.
These two concepts (proximity of answers to query terms and coverage of terms)
can be found in a more traditional passage retrieval and ranking system called
MultiText [1].

We conducted an exploratory analysis of the above features in the QUASAR-
T development set. The contexts were first pseudo-labeled; then, features were
extracted for every context. There were 35,162 positive and 263,804 negative
(answer-free) contexts. Separated by pseudo-labels (class=1 indicating answer-
containing passages), Table 2 summarizes the descriptive statistics of the two
cohorts of passages. The chart demonstrates that the medians and distributions
of feature counts have meaningful differences between the two classes of passages
in most cases. A two-tailed statistical t-test was then conducted on the distribu-
tion of each feature in the two passage classes and it was found that, except in
the case of verb counts (p = 0.31), the means of all the other linguistic features
were significantly different from each other at the 95% confidence level (with
p = 0.00). The distributions show that answer-containing passages, on average,
have larger token counts, noun counts, named entity counts, and query coverage
while they also include smaller adverb and pronoun counts. These results were
contradictory to one previous work in [17] which found that verbs can substan-
tially contribute to the task of QA passage ranking. Our findings are, however,
in agreement with the same work in terms of noun counts as [17] reported that
nominal predicates can positively impact on answer passage ranking. As a result,
we preserved all the explicit linguistic features in our experiments.

2.4 Fusion of linguistic features and deep semantics

2.4.1 Traditional machine learning fusion In the first attempt to en-
hance our baseline deep neural network ranker using explicit linguistic features,
we used the answer-containing probability generated by the baseline ranker in
combination with the explicit features extracted for each passage as the predic-
tor set to re-classify the passages into positive versus negative classes. A number
of traditional machine learning algorithms, including logistic regression, Gaus-
sian naive Bayes, decision tree, random forest, linear support vector machines,
and Sigmoid support vector machines, were utilized. To train each classifier,
we applied our baseline neural network ranker on the QUASAR-T development
data set to obtain the answer-containing probabilities (1 positive and 5 negative
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Feature
class=0 class=1

p-value
mean stdv mean stdv

noun count 8.44 6.27 10.94 6.36 0.00
verb count 2.33 1.86 2.32 1.77 0.31
token count 21.83 10.72 25.49 9.79 0.00
adverb count 0.55 0.87 0.53 0.84 0.00
named entity count 2.00 2.01 2.94 2.21 0.00
query coverage 1.86 1.18 2.36 1.25 0.00
pronoun count 0.56 0.97 0.42 0.81 0.00

Table 2. Descriptive analysis of linguistic features between answer-free (class=0) and
answer-containing (class=1) contexts in the development data set.

Measure LR RF-bCV SVM-sigmoid SVM-linear GNB DT-bCV

AUC 0.59 0.81 0.53 0.48 0.56 0.58
Table 3. The AUC analysis of the second-level classification of passages using answer-
containing probabilities of the BL-NN ranker and the explicit linguistic features.

contexts per question), where a Gaussian noise (mean=0.0 and standard devia-
tion=0.1) was added to the probabilities for the baseline ranker was first trained
using the same data set. Then, the linguistic features of the same development
passages were extracted. These features and the answer-containing probabilities
were then normalized using the L2 normalization technique and were fed into the
machine learning techniques for training. Table 3 summarizes the AUC results
of the different techniques, where the random forest and decision tree models
went through a 5-fold cross-validation process to find the best maximum depth
of the trees.

From the above machine learning techniques, the best random forest model
found using cross validation (RF-bCV) had the best AUC; thus, it was selected
for ranking of passages in the QUASAR-T test set. This model did not perform
well as shown in Table 4.

2.4.2 Deep learning-based score and linguistic feature fusion A similar
procedure to the traditional machine learning fusion approach (detailed in the
previous section) was taken to train a deep feed-forward neural network model
(with the same structure as in the baseline neural network ranker) in 50 epochs
this time. The input to the second-level network (2nd-NN) was low-dimensional
and included the same answer-containing probabilities of the first baseline model
(plus the Gaussian noise for training) as well as the linguistic features of passages;
hence, the number of epochs was set to a much smaller number in this experiment
(50 epochs). This model, when tested on the QUASAR-T test set, resulted in a
better set of performance measures compared with the traditional random forest
model in the previous experiment; however, the baseline neural network model
was not improved upon as detailed in Table 4.
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2.4.3 Deep learning-based augmentation In another experiment, the base-
line deep neural network model was augmented with the explicit linguistic fea-
tures extracted for passages. The augmentation of these features was done in
the middle layer of the network by concatenating the outputs of the first dense
layer (including 10 nodes) with the 7 linguistic features. The overall process,
involving the augmented neural network ranker, is shown in Figure 3. The lin-
guistic feature augmentation process is especially structured in the middle layer
instead of the input layer with a large number of nodes (16,384) to more directly
and strongly infuse the effect of the linguistic characteristics of passages into the
neural model. The input vectors to this model include the same Xi in Equation 1
as well as LFsi for linguistic features of passage i which go through the network
structure to find the answer-containing probability of the passage as shown in
Equations 5-7.

Xflat
i = flatten(Xi) (5)

C(1) = ReLU(W (1)Xflat
i )⊕ LFsi (6)

Oi = softmax(W (2)C(1)) (7)
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Fig. 3. The schematic view of the linguistically augmented passage ranking process for
QA using a feed-forward deep neural network.

The augmented neural model was trained using the QUASAR-T development
set with the same settings as in the baseline deep neural network model; a
cross-entropy loss function, 500 training epochs, 1 positive passage, 5 negative
passages, no early stopping criteria, and without drop-out or any other type of
regularization. The loss and accuracy of the model in the training cycles were
similar to those of the baseline ranker as shown in Figure 2.

More importantly, this model outperformed the baseline deep neural network
ranker (BL-NN) with respect to all of the QA-based evaluation metrics in our
experiments, i.e., MR and recall at different levels. The detailed results of this
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Method mr r@1 r@2 r@3 r@4 r@5

BL-NN 9.58 0.25 0.39 0.47 0.54 0.58
RF-bCV 21.44 0.07 0.13 0.18 0.22 0.26

2nd-NN 13.61 0.24 0.36 0.45 0.52 0.56
aug-NN 8.79† 0.30† 0.44† 0.52† 0.59† 0.63†

Table 4. MR and recall analysis of the rankers developed. aug-NN is the neural model
augmented with linguistic features. The †s indicate statistically significant differences
compared with BL-NN at the 95% confidence level.

Method avg. loss avg. accuracy

BL-NN 0.3624 0.8869

2nd-NN 0.3580 0.8875
aug-NN 0.3610 0.8876

Table 5. Average loss and average accuracy analysis of the neural rankers developed
on the test questions/passages.

model along with the other experimental models are summarized in Table 4. Al-
though the improvements may seem marginal on the surface, the statistical test
of significance on the large number of questions and passages in the benchmark
data set proved otherwise. The statistical test was based on paired t-tests.

Our augmented neural model reached the performance of the best model in
Table 1 (InferSent ranker) at r@3 and outperformed this model with respect to
r@5 by a margin of 7%. It should be noted that the other comparison methods
(R3 and InferSent ranker) have relatively higher (base) performance values at
r@{1, 3} yet our proposed augmentation technique improves upon our weaker
baseline model (BL-NN) to reach the performance of InferSent ranker at r@3
and significantly outperforms the two comparison methods at r@5. Also, while
the proposed augmentation of shallow linguistic features was only applied on our
BL-NN model and resulted in statistically significant improvements, a similar
positive effect can be expected on the other comparison rankers too.

In terms of the classification performance of the several neural network mod-
els developed, the resulted of a detailed analysis of the average cross-entropy loss
and average accuracy of the models are summarized in Table 5. These results
are on the 3,000 QUASAR-T test questions and passages. As shown in Table 5,
the average loss and accuracy of the models do not differ significantly (all within
1% variance); however, the QA-based metrics of final passage ranking have been
shown to significantly improve using the augmented model.

3 Discussion

Passages that are more likely to contain specific answers to fact-seeking ques-
tions were shown to present with several linguistic features, mostly at the syn-
tactic and lexical levels, that can further separate them from those that are
less likely to recall any candidate answers. Even in presence of deep semantic
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relatedness between questions and passages, surface and explicit features can
eventually be assisting in distinguishing between positive answer-containing and
negative passages and thus in better ranking of answer passages with a vision
of improvements in overall QA effectiveness. The explicit lexical and syntactic
characteristics of passages intrinsically increase chances of the text of a passage
to contain a candidate or a correct answer to the question. The descriptive statis-
tical analysis that we conducted on the two cohorts of pseudo-labeled passages
(positive versus negative) along with statistical tests demonstrated significant
differences between the distributions of the textual features in the two passage
classes with the exception on verb counts. The latter finding regarding verbs is
contradictory to the previous studies that showed verbs play a substantial role
in answer passage retrieval [17].

In addition to the exploratory and descriptive statistical analysis of the sur-
face linguistic features within passages, that suggest there are lexical differences
between likely answer-bearing passages and those that are less likely to recall
a candidate answer, the procedure taken to utilize these features was demon-
strated to play an important role. The mere fusion of surface passage character-
istics with answer-containing probability calculated through a more sophisticated
deep semantic-oriented neural model was shown not to reach high levels of even-
tual answer passage ranking effectiveness measures. This failed experiment with
both traditional machine learning and deep neural network models indicates that
using the explicit linguistic features at a late stage of passage (re)classification
and ranking is not effective.

To understand the relationship between the semantic relatedness measure
of question-passage pairs and the explicit linguistic characteristics of passages,
we used the answer-containing probabilities calculated for the contexts in the
development set as a proxy for semantic relatedness and found the correlation
between this measure and each of the linguistic features. We used the same set of
1 positive and 5 negative passages per question, the same data set that was used
to train the second-level classifiers. As shown in Table 6, verb, adverb, and pro-
noun counts have the lowest correlations with the answer-containing probability
of a passage, the latter two are negative. Noun and named entity counts have
the largest (fair) correlations with the probability measure. None of the features
were overly correlated with the probability of answer-containing, which removes
the possibility of multicollinearity on answer-containing probability, and yet the
method fails in better positioning answer passages.

The set of the same surface textual features combined internally within the
structure of the deep neural network model (concatenated with the middle layer)
fulfill the expectation of improvement over the effectiveness of the linguistic-
feature-free baseline neural model. The statistically significant improvements
over the performances of the baseline neural ranker support our hypothesis that
the combination of the semantic relatedness of question-passage pairs (the output
of the middle dense layer of the neural network model) and the surface passage
features can improve answer passage ranking for fact-seeking QA.
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Feature #tokens #nouns #verbs #adverbs #pronouns query coverage #named entities

a.pr 0.48 0.57 0.01 -0.05 -0.14 0.22 0.55

Table 6. Correlation analysis between BL-NN answer-containing probabilities and the
linguistic features of development passages. Note: a.pr=answer-containing probability.

The three neural network rankers we developed have very similar average
cross-entropy loss and average accuracy values over the test questions and pas-
sages; however, in terms of the passage retrieval-based evaluation metrics (i.e.,
MR and recall), the ability of the rankers in positioning answer-containing pas-
sages at better ranks significantly differ from each other when linguistic features
of passages are augmented within the network structure.

4 Conclusions

We analyzed the effect of several explicit, shallow linguistic features of textual
passages that can enhance the overall effectiveness of answer passage ranking
for fact-seeking QA. Several experiments were carried out to improve upon a
baseline neural network ranker that makes use of deep semantics in sentence
embeddings. The fusion of token count, noun count, verb count, adverb count,
pronoun count, query coverage, and named entity count within passages with the
answer-containing probabilities obtained through the application of the baseline
neural model using traditional machine learning as well as a second-level neu-
ral network did not result in improved passage ranking effectiveness. However,
when the same features were internally augmented with the middle layer of the
baseline neural network ranker, the augmented model significantly outperformed
the baseline ranker with respect to MR and recall at different levels. Our next
steps will focus on more complex neural models and the effect of the infusion
of a more comprehensive set of linguistic features, such as scenario-based and
chunk-based textual relations as well as dependency trees/relationships.
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