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Notation

Notation used in Chapter 2

Latin Alphabet

a centre of the interval [a− w, a+ w]

a a specified nonzero p-vector

A a compound used in a quantal bioassay

avar
(
θ̂;β

)
the asymptotic variance of θ̂

avar
(
τ̂ ;β

)
the asymptotic variance of τ̂

acov
(
θ̂, τ̂ ;β

)
the asymptotic covariance of θ̂ and τ̂

ACIL(y) a likelihood-based analogue of CI(bρ, sρ) which has

lower endpoint inf
(
SA(y)

)
and upper endpoint sup

(
SA(y)

)
ACIW(β̂) the analogue of CI(bρ, sρ), based on Wald test statistics

b b : R→ R is an odd continuous function, where b(x) = 0

for all |x| ≥ 6

bρ the function b computed using the R package ciuupi,

for given 1− α and ρ

B β belongs to the open set B

B a compound used in a quantal bioassay

c a specified value where 0 < c < 1/2

c̃ a value of c where the local minimum coverage probabilities

of ACIW
(
β̂∗
)

and IW(y∗; c̃) or the local minimum coverage

probabilities of ACIL
(
y∗
)

and IL(y∗; c̃) are the same
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c a specified nonzero p-vector

CI(bρ, sρ) the confidence interval for θ computed by the ciuupi package,

with minimum coverage 1− α, that utilizes the uncertain prior

information that τ = t

CP (γ; ρ) coverage probability of the confidence interval CI(bρ, sρ)

CP (γ∗, ρ(β̃)) coverage probability of the confidence interval CI
(
bρ(β̃), sρ(β̃)

)
cov(θ̂, τ̂) the covariance of θ̂ and τ̂ , given by σ2 a>(X>X)−1c

d any dose level of compound A

d′ any dose level of compound B

di i’th dose level where i = 1, . . . ,m

EDz the log-dose x of compound A for which the probability of

response S for a randomly chosen individual is z/100

ED′z the log-dose x′ of compound B for which the probability of

response S for a randomly chosen individual is z/100

Eβ∗(q
∗
L) the local scaled expected length of ACIL

(
y∗
)

g g : Rp → R is a sufficiently smooth function

h h : Rp → R is a sufficiently smooth function

i index for the dose level

I usual 1− α confidence interval for θ in the context of the

linear regression model with known error variance

IL(y;α) the likelihood-based analogue of the confidence interval I,

with nominal coverage 1− α, which has lower endpoint

inf
(
SPL(y)

)
and upper endpoint sup

(
SPL(y)

)
IW(y;α) the Wald-based analogue of the confidence interval I,

with nominal coverage 1− α

I(β) the Fisher information matrix

k a summation index

xix



l(θ, τ) log-likelihood function for a linear regression model,

with known error variance

`(β |y) log-likelihood function for a general regression model,

without a scale parameter

L the particular case that the regression model is linear and has

independent and identically normally distributed random errors

with known error variance

m number of dose levels

M number of simulation runs

M ′ initial number of simulation runs

n number of responses

ni number of individuals given dose di of compound A

ni
′ number of individuals given dose di of compound B

Ni number of individuals in the i’th group for i = 1, . . . n

p number of unknown parameters

p the probability of response S for a randomly chosen individual

from the population given dose level d of compound A

p′ the probability of response S for a randomly chosen individual

from the population given dose level d′ of compound B

q∗L defined to be the length of ACIL
(
y∗
)

divided by the

length of IL(y∗; c̃) computed from the same data

q∗L(k) an observation of q∗L generated on the kth simulation run

r1(θ
′) the SRLR statistic, sign(θ̂ − θ′)

√
2
(
l
(
θ̂, τ̂
)
− l
(
θ′, τ̂θ′

))
r1(θ

′ |y) the SRLR statistic, sign
(
θ̂ − θ′

)√
2
(
`
(
β̂
∣∣y)− `(β̂(θ′; θ)

∣∣y))
r2 the SRLR statistic, sign(τ̂ − t)

√
2
(
l
(
θ̂, τ̂
)
− l
(
θ̂t, t
))

r2(y) the SRLR statistic, sign(τ̂ − t)
√

2
(
`
(
β̂ |y

)
− `
(
β̂(t; τ) |y

))
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ri the number of individuals with response S out of ni

given dose di of compound A for i = 1, . . . ,m

ri
′ the number of individuals with response S out of n′i

given dose di of compound B for i = 1, . . . ,m

s s : R→ R is an even continuous function,

where s(x) = z1−α/2 for all |x| ≥ 6

sρ the function s computed using the R package ciuupi,

for given 1− α and ρ

S a possible value of a dichotomous response,

whose possible values are S and not-S

SEL(γ; ρ) scaled expected length of the confidence interval CI(bρ, sρ)

SEL(γ∗, ρ(β̃)) scaled expected length of the confidence interval

CI
(
bρ(β̃), sρ(β̃)

)
SRLR stands for the signed root likelihood ratio test statistic

SPL(y) the likelihood based confidence set for θ, with nominal

coverage 1− c, analogous to I

SA(y) the likelihood based confidence set for θ, with nominal

coverage 1− α, analogous to CI(bρ, sρ)

t a specified number

u a specified number which satisfies 1 ≤ u ≤ 10

var(θ̂) variance of θ̂, given by σ2 a>(X>X)−1a

var(τ̂) variance of τ̂ , given by σ2 c>(X>X)−1c

vθ compact notation for var(θ̂)

vτ compact notation for var(τ̂)

w half width of the interval [a− w, a+ w] (w > 0)

x log10(d)

x′ log10(d
′)
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xi a vector of explanatory variables of dimension p

for i = 1, . . . , n

X a known n× p matrix with linearly independent columns

yi i’th independent response variable which has pmf or pdf

fi(y |xi,β) evaluated at y

y a random n-vector of responses

y∗ the response vector for the simulated data

Yβ a set of values of y

z a specified number where 0 < z < 100

zp p’th quantile of the standard normal distribution,

defined by P (Z ≤ zp) = p for Z ∼ N(0, 1)
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Greek Alphabet

α 1− α is the nominal coverage

β1 intercept parameter in the Morphine model

β2 slope parameter in the Morphine model

β3 intercept parameter in the Amidone model

β4 slope parameter in the Amidone model

β an unknown parameter p-vector

β̂ the maximum likelihood estimator of β

β∗ defined to be β̃ + κ
(
∂h(β̃)

/
∂β
)>

β̂∗ the maximum likelihood estimator of β∗

β̂(θ′; θ) maximises `(β |y) with respect to β, subject to the constraint

that g(β) = θ′

β̂(t; τ) maximises `(β |y) with respect to β, subject to the constraint

that h(β) = t

β̃ a given value that satisfies h(β̃) = t

δ a positive number equal to u/5

δc a judiciously-chosen small positive number

ε random error vector with N(0, σ2 I) distribution

γ defined to be (τ − t)/
(
var(τ̂)

)1/2
γa a specified value in the interval [−u, u]

γ∗ defined to be τ ∗
/(

avar(τ̂ ; β̃)
)1/2

κ defined to be
(
avar(τ̂ ; β̃)

)1/2/∥∥∂h(β̃)
/
∂β
∥∥2 γa

λ a fixed positive number

ψi the i’th probability of response where yi ∼ Binomial(Ni, ψi)

for i = 1, . . . n

ρ the correlation between θ̂ and τ̂

ρ(β) defined to be acov
(
θ̂, τ̂ ;β

)/(
avar

(
θ̂;β

)
avar

(
τ̂ ;β

))1/2
σ2 known error variance

xxiii



τ scalar parameter, distinct from θ, given by h(β)

τ̂ maximum likelihood estimator of τ

τ̂θ the value of τ that maximizes l(θ, τ) with respect to τ , for given θ

τ ∗ given by h(β∗)

τ̂ ∗ maximum likelihood estimator of τ ∗

θ scalar parameter of interest, given by g(β)

θ′ a specified value of θ

θ̂ maximum likelihood estimator of θ

θ̂t the value of θ that maximizes l(θ, τ) with respect to θ, for τ = t

θ̂l lower endpoint of the confidence interval IL(y;α)

θ̂u upper endpoint of the confidence interval IL(y;α)

θ̃l lower endpoint of the confidence interval ACIL(y)

θ̃u upper endpoint of the confidence interval ACIL(y)

θ∗ given by g(β∗)

θ̂∗ maximum likelihood estimator of θ∗
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Notation used in Chapter 3

Latin Alphabet

a a smooth bounded real-valued function

a0 constant term in the polynomial p(y)

aν,α(x) defined to be 2 Φ(tν,1−α/2 x)− 1

a(y) defined to be λ
(
y
/
c(κ, ξ)

)
b a small positive integer multiple of h0

bν(z) defined to be a (F−1ν ((z + 1)/2))
/

2

cFT a positive number used in the description of the Assumption FT

c1, c2, c3 positive numbers that appear in the description of

double exponential decay

c4 a positive number used in the description of the Assumption FT

cT defined to be 9h0
/(

10 loge(2)
)

c(y) defined to be y(ν/2)−1 exp(−y), where y = ν x2/2

c(κ, ξ) defined to be
(
κ/(κ+ ξ)

)1/2
d defined to be nh

d0 the initial value of d

dν(y) defined to be a
(
(2y/ν)1/2

)
fν pdf of a random variable with the same distribution as R/ν1/2,

where R ∼ χν

Fν the cdf corresponding to the pdf fν

g a real-valued absolutely integrable function

gν(y) defined to be a(x(y))ψν(y)

gν,α(y) defined to be aν,α
(
x(y)

)
ψν(y)

G the Fourier transform of g

Gν the Fourier transform of gν(y)
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h the step length for the trapezoidal rule

h0 initial value of h

i defined to be
√
−1

k k is the iteration number of the exponentially convergent procedure

kν(s) defined to be a
(
x
(
((yu − yl)s)/2 + (yl + yu)/2

))
×

ψν
(
((yu − yl)s)/2 + (yl + yu)/2

)
m denotes the number of quadrature nodes for either Gauss Legendre

or Gauss Laguerre quadrature

M lower endpoint of the finite sum approximation,

based on the trapezoidal rule, to the integrand g(y)

n number of evaluations of the integrand a
(
x(y)

)
ψν(y)

n0 initial value of n

N upper endpoint of the finite sum approximation,

based on the trapezoidal rule, to the integrand g(y)

p a polynomial of degree u

Qν denotes the χ2
ν cdf

R a random variable with χν distribution

t a real-valued variable, where t ∈ (−∞, y∗ν ]

s defined to be
(
2/(yu − yl)

) (
y − ((yl + yu)/2)

)
tν,a a’th quantile of the tν distribution,

defined by P
(
T ≤ tν,a

)
= a for T ∼ tν

uν(y, d) defined to be Qν

(
ν x2(y)

)
+ 1−Qν

(
ν x2

(
y + d

))
wj j’th weight of the Generalized Gauss Laguerre quadrature

w̃j j’th weight of the Gauss Legendre quadrature

x(y) defined to be exp(y/2− e−y)

yj j’th node of the Generalized Gauss Laguerre quadrature
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y` the first evaluation of the integrand a
(
x(y)

)
ψν(y) is at y`

y`0 initial value of y`

yu is set equal to y` + d

yu0 is set equal to y`0 + d0

y∗ν the value of y at which ψν(y) is maximized

z is set equal to 2y − 1, where y = Fν(x)

zj j’th node of the Gauss Legendre quadrature
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Greek Alphabet

α 1− α is the nominal coverage probability

δ a small positive number, where δ ∈ [0, h)

ε a desired upper bound on the absolute value of the error of

approximation

κ a positive integer, which arises in the integral of interest

in the context of non-standard confidence regions

λ a smooth bounded real-valued function, where λ : [0,∞)→ R

ν a positive integer equal to κ+ ξ

ω angular frequency

ψν(y) defined to be fν
(
x(y)

)
dx(y)/dy

Φ denotes the N(0, 1) cdf

τν defined to be νν/2/
(
Γ(ν/2) 2(ν/2)−1)

ξ a positive integer, which arises in the integral of interest

in the context of non-standard confidence regions
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Notation used in Chapter 4

Latin Alphabet

a a specified nonzero p-vector, which defines

the parameter of interest θ, where θ = a>β

b b : R→ R is an odd continuous function, where b(x) = 0

for all |x| ≥ d

b1 the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

the standard choice of λ is CI(b1, s1)

b1λ the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

a given value of λ is CI(b1λ, s1λ)

b2 the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

the standard choice of λ is CI(b2, s2)

b2λ the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

a given value of λ is CI(b2λ, s2λ)

c a specified nonzero p-vector which defines

the parameter τ , where τ = c>β

c(κ, ξ) defined to be
(
κ/(κ+ ξ)

)1/2
CI(b, s) the confidence interval

[
θ̂ − v1/2θ σ̂ b(γ̂)± v1/2θ σ̂ s(γ̂)

]
CI(b1, s1) the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

the standard choice of λ

CI(b2, s2) the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

the standard choice of λ
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CI(b1λ, s1λ) the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

a given value of λ

CI(b2λ, s2λ) the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

a given value of λ

CP(γ; b, s) coverage probability of the confidence interval CI(b, s)

d a sufficiently large positive number,

eventually set equal to 6 tm,p/zp

E(W ) expected value of W

fW (w) pdf of W , evaluated at w, where W = σ̂/σ

g(z) defined to be exp (z/2− e−z)

h step length in the expression for the approximation to

the coverage probability

h1 step length in the expression for the approximation to

first definition of the scaled expected length

h2 step length in the expression for the approximation to

second definition of the scaled expected length

ICP(w, γ, ρ) defined to be
∫ d
0

IICP(x,w, γ, ρ) dx

IICP(x,w, γ, ρ) defined to be
(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ)+(

k(−x,w, γ, ρ)− k†(−x,w, γ, ρ)
)
φ(wx+ γ)

IOBJ1(x; s, λ) defined to be
(
s(x)− tm,1−α/2

)
×(

λ+ (1/
√

2π)
(
m/(x2 +m)

)(m/2)+1
)

IOBJ2(x; s, λ) defined to be
(
s(x)− tm,1−α/2

)
×(

λ+ (1/
√

2π)
(
m/(x2 +m)

)(m+1)/2
)

ISEL(w, γ) defined to be
∫ d
−d

(
s(x)− tm,1−α/2

)
φ(wx− γ) dx

k(x,w, γ, ρ) defined to be Ψ
(
w
(
b(x)− s(x)

)
, w
(
b(x) + s(x)

)
;

ρ(wx− γ), 1− ρ2
)
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k†(x,w, γ, ρ) defined to be Ψ
(
− tm,1−α/2w, tm,1−α/2w;

ρ(wx− γ), 1− ρ2
)

l length of the interval [0, d], where l ∈ {60, 120}

m defined to be n− p

n length of the response vector y

N number of outer integrand evaluations in the approximation

to the coverage probability

N1 number of outer integrand evaluations in the approximation

to the first definition of the scaled expected length

N2 number of outer integrand evaluations in the approximation

to the second definition of the scaled expected length

OBJ1(s;λ) the objective function based on SEL1(γ; s)

OBJ2(s;λ) the objective function based on SEL2(γ; s)

p length of the regression parameter vector β

q number of knots, where 0 = x1 < x2 < · · · < xq = d

Q a random variable with a χ2
m distribution

s s : R→ [0,∞) is an even continuous function where

s(x) = tm,1−α/2 for all |x| ≥ d

s1 the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

the standard choice of λ is CI(b1, s1)

s1λ the Kabaila & Giri (2009a) confidence interval for the

first definition of the scaled expected length and

a given value of λ is CI(b1λ, s1λ)

s2 the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

the standard choice of λ is CI(b2, s2)
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s2λ the Kabaila & Giri (2009a) confidence interval for the

second definition of the scaled expected length and

a given value of λ is CI(b2λ, s2λ)

SEL1(γ; s) defined to be the scaled expected length of CI(b, s),

according to the first definition of the scaled expected length

SEL2(γ; s) defined to be the scaled expected length of CI(b, s),

according to the second definition of the scaled expected length

t a specified number

tm,1−α/2 α/2’th quantile of the tm distribution,

defined by P (T ≤ tm,α/2) = α/2 for T ∼ tm

vθ compact notation for var(θ̂)/σ2

vτ compact notation for var(τ̂)/σ2

W random variable equal to σ̂/σ, which has the same

distribution as
√
Q/m

x a real-valued variable, where x ∈ [−d, d]

X a known n× p matrix

y defined to be c(m, 1)w

ỹ defined to be c(m, 2)w

y response vector

z` location of the first evaluation of the integrand,

ICP
(
g(z)

/
c(m, 1), γ, ρ

)
ψm+1(z)

z̃` location of the first evaluation of the integrand,

ISEL
(
g(z)

/
c(m, 2), γ

)
ψm+2(z)˜̃z` location of the first evaluation of the integrand,

ISEL
(
g(z)

/
c(m, 1), γ

)
ψm+1(z)

zp p’th quantile of the standard normal distribution,

defined by P (Z ≤ zp) = p where Z ∼ N(0, 1)
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Greek Alphabet

α the desired minimum coverage probability of the

confidence interval is 1− α

β an unknown parameter p-vector

β̂ the least squares estimator of β

ε a desired upper bound on the absolute value

of the error of the approximation

ε random error vector with N(0, σ2 I) distribution

γ defined to be (τ − t)
/(
σv

1/2
τ

)
γ̂ least squares estimator of γ

Γgrid the set of γ values used in the implementation of the

coverage constraint

γmax the maximum possible value in the set Γgrid

κ a positive integer variable

λ positive tuning parameter, which specifies the weight

given to the uncertain prior information

φ pdf of N(0, 1)

ψm+1(z) defined to be fm+1

(
g(z)

)
dg(z)/dz

Ψ(x, y;µ, v) defined to be P (x ≤ Z ≤ y) for Z ∼ N(µ, v)

ρ the correlation between θ̂ and τ̂

σ2 unknown error variance

σ̂2 least squares estimator of σ2

τ a parameter, distinct from θ, where τ = c>β

τ̂ least squares estimator of τ

θ parameter of interest, where θ = a>β

θ̂ least squares estimator of θ

ξ an integer variable belonging to the set {1, 2}
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Notation used in Chapter 5

Latin Alphabet

a` defined to be (1/
√
π)
∫ z`
−∞(k(z)− qm(z)) exp(−z2) dz

au defined to be (1/
√
π)
∫∞
zu

(k(z)− qm(z)) exp(−z2) dz

c0 defined to be (τ/
√

2πσ2)1/2

c1 defined to be θy + µ2/(4τ 2)

c2 defined to be y − µ/(2τ 2)

c3 defined to be 1/(4τ 2)− 1/(2σ2)

c(θ, σ) defined to be
∫∞
−∞ g(t; θ, σ)φ(t; 0, σ2) dt

cm(θ, σ) m-node adaptive Gauss-Hermite quadrature

approximation to c(θ, σ)

c̃M(θ, σ) importance sampling estimator of c(θ, σ)

em minimized value of maxz∈[z`,zu]
∣∣k(z)− pm(z)

∣∣
g(t; θ, σ) defined to be exp

(
(θ + t)y

)/(
1 + exp(θ + t)

)J
h(t; θ, σ) defined to be

(
g(t; θ, σ)φ(t; 0, σ2)

)/
φ(t;µ, τ 2)

i cluster index

J size of a given cluster

k(z) defined to be h
(
µ+
√

2τz; θ, σ
)

m number of Gauss-Hermite quadrature nodes

M number of simulation runs

N number of clusters

pm(z) a polynomial of degree 2m− 1

qm(z) polynomial pm(z) of degree 2m− 1 that minimizes

maxz∈[z`,zu]
∣∣k(z)− pm(z)

∣∣
r(t; θ, σ) defined to be h(t; θ, σ)

(
φ(t;µ, τ 2)

)1/2
v an N -vector, where v = (v1, ..., vN)

wi i’th Gauss-Hermite quadrature weight, where i = 1, . . . ,m
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x covariate for a given cluster

xi covariate for the i’th cluster, for i = 1, . . . , N

y observed response for a given cluster

yi observed response for the i’th cluster, where yi ∼ Binomial(Ji, πi)

for i = 1, . . . , N

z defined to be (t− µ)
/(√

2τ
)

zi i’th Gauss-Hermite quadrature node, where i = 1, . . . ,m

z` a Gauss-Hermite quadrature node, where z` ≤ z1

zu a Gauss-Hermite quadrature node, where zu ≥ zm
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Greek Alphabet

β1 intercept parameter in the binomial logistic regression model

β̂1 maximum likelihood estimate of β1

β2 coefficient of the covariate in the binomial logistic regression model

β̂2 maximum likelihood estimate of β2

η a random N -vector, where η = (η1, . . . , ηN) and ηi’s are independent

and identically N(0, σ2) distributed

µ mode of g(t; θ, σ)φ(t; 0, σ2) considered as a function of t

πi binomial probability for the i’th cluster

φ(t;µ, σ2) an approximation to g(t; θ, σ)φ(t; 0, σ2)

σ standard deviation of the distribution of ηi

σ̂ maximum likelihood estimate of σ

σ̃2 defined to be
∫∞
−∞

(
g(t; θ, σ)φ(t; 0, σ2)

)2
/φ(t;µ, τ 2) dt− c2(θ, σ)

τ 2 defined to be [−∂2 log (g(t; θ, σ)φ(t; 0, σ2))/∂t2 ]
−1

θ defined to be β1 + β2 x
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Summary

We consider a general regression model, without a scale parameter. We con-

struct a confidence interval for a scalar parameter of interest that utilizes the

uncertain prior information that a distinct scalar parameter takes a speci-

fied value. This confidence interval has good coverage properties. It also

has scaled expected length, where the scaling is with respect to the usual

confidence interval, that is (a) substantially less than 1 when the prior in-

formation is correct, (b) has a maximum value that is not too large and (c)

is close to 1 when the data and prior information are highly discordant. We

use the R package ciuupi, which computes a confidence interval that utilizes

uncertain prior information in a linear regression model with known error

variance, to build this confidence interval.

We also solve the problem of numerically evaluating the expected value

of a smooth bounded function of a chi-distributed random variable, divided

by the square root of the number of degrees of freedom, using Mori’s trans-

formation followed by the trapezoidal rule, which is exponentially convergent

for suitable integrands. This problem arises in simultaneous inference, selec-

tion and ranking of populations, the evaluation of multivariate t probabilities

and the assessment of the coverage and expected volume properties of non-

standard confidence regions.

We apply this solution in the new R package ciuupi2 that computes the

Kabaila & Giri (2009a) confidence interval, which utilizes uncertain prior

information in a linear regression model with unknown error variance. Pre-
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vious computations of this interval used MATLAB programs that were time-

consuming to run. By writing these programs in R, the computation time

is greatly reduced and they become freely available. We also assess a new

definition of scaled expected length.

Finally, we compare the computations of the log-likelihood function for

generalized linear mixed models using (a) adaptive Gauss-Hermite quadra-

ture and (b) importance sampling, where both methods share the same initial

step.
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Chapter 1

Introduction

1.1 Literature review

Uncertain prior information about the values of the parameters of a model

may result from previous experience with similar data sets and/or expert

view and/or scientific concepts. For example, it is widely believed, see Mead

(1988) and Wu & Hamada (2000), that for a factorial design the higher the

order of an interaction term the more likely it is that it differs negligibly from

zero. In a linear regression setting it is commonly believed that higher order

interaction terms are likely to be zero. In this setting, Pratt (1965), Cohen

(1974) and Leamer (1978) suggested that a preliminary test for an interaction

term being zero seems to be motivated by a desire to utilize uncertain prior

information that this term is zero.

The utilization of such prior information in frequentist inference was ini-

tiated by Hodges & Lehmann (1952). These authors considered frequentist

inference in which they sought “to utilize the available information”, while

providing “a safeguard in case this information is not correct”. They used

a decision-theoretic methodology that was extended by Kempthorne (1983,

1987, 1988) to more complicated uncertain prior information scenarios.

To say that a frequentist confidence region for the (vector) parameter
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of interest utilizes the uncertain prior information it must, at a minimum,

satisfy the following two requirements. It must have excellent coverage prop-

erties. It must also have a scaled expected volume, where the scaling is with

respect to the usual confidence region with the same nominal coverage, that

is substantially less than one when the prior information is correct.

The econometrician Leamer (1978) pointed out that the preliminary data-

based model selection may be motivated by a desire to utilize uncertain

prior information in subsequent inference. However, the confidence intervals

constructed after data-based model selection may have very unsatisfactory

coverage properties and so fail to utilize the uncertain prior information.

The literature on the coverage properties of such post-model-selection con-

fidence intervals is reviewed by Kabaila (2009). Frequentist model averaged

confidence intervals (Buckland et al. , 1997, Fletcher & Turek, 2011, Turek

& Fletcher, 2012, Efron, 2014) may, using an extension of the thinking of

Leamer (1978) and Kabaila (2009) on post-model-selection inference, also be

viewed as attempts to utilize uncertain prior information. Fletcher (2018)

presents numerous examples of the application of frequentist model averaged

confidence intervals to real-life data.

Kabaila et al. (2016) examined the performances of the model averaged

profile likelihood confidence interval (MPI), due to Fletcher & Turek (2011),

and the model averaged tail area (MATA) confidence interval, due to Turek

& Fletcher (2012), using a testbed scenario consisting of two nested linear

regression models. We refer to the two models in this testbed scenario as

the full model and the simpler model. They showed that in some cases, MPI

intervals have poorer performance than the post-model-selection confidence

interval with same nominal coverage probability. They also showed that the

MATA confidence interval performs “better than the MPI and post-model-

selection confidence intervals”. However, their overall finding was that it
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seemed to be difficult to find cases in which the MATA confidence interval

performed substantially better than the standard confidence interval (based

on the full model) with the same nominal coverage probability. The numerical

performance results presented by Kabaila et al. (2016) are for the case of

model weights based on the Akaike Information Criterion (AIC). Kabaila

et al. (2017) examined the performance of MATA intervals using the same

testbed scenario of two nested linear regression models for a family of data-

based weights on the two models. This family is indexed by a scalar tuning

parameter that defines the data-based weight given to the simplere model.

They find that the MATA interval perform best when this tuning parameter

corresponds to the minimum possible weight on the simpler model. Kabaila

(2018) assessed MATA interval for a large number of linear models and for a

variety of data-based model weights. He provided an easily-computed upper

bound on the minimum coverage probability of this interval. He used this

upper bound to argue against the use of weights based on the Bayesian

Information Criterion (BIC).

Consider the same testbed scenario consisting of two nested linear re-

gression models, with error variance assumed to be known. Also, consider a

preliminary test of the null hypothesis that the simpler model is correct. In

this scenario, Kabaila & Wijethunga (2019a) assessed the performance of a

confidence interval centred on the bootstrap smoothed estimator which has

a width proportional to the estimate of the delta method approximation, de-

rived by Efron (2014), to the standard deviation of this estimator. They also

consider a confidence interval centred on the boostrap smoothed estimator,

but with proportional to the estimate of the actual standard deviation of

the bootstrap smoothed estimator. They assessed the performance of these

intervals in terms of coverage probability and scaled expected length, where

scaling is with respect to the usual confidence interval based on the full model
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with the same minimum coverage. When considering coverage properties,

both of these intervals dominate the post-model-selection confidence inter-

val, with the same nominal coverage. However, these two intervals do not

have the desired scaled expected length properties. Kabaila & Wijethunga

(2019b) extended the assessment of Kabaila & Wijethunga (2019a) to the

same testbed situation, but for the case of unknown error variance. They

considered only the confidence interval centred on the bootstrap smoothed

estimator, with width proportional to the estimate of the delta method ap-

proximation to the standard deviation of this estimator. They observed that

for the variance unknown case, the scaled expected length shows some ap-

pealing features when the degrees of freedom for the estimation of the error

variance is small.

Kabaila et al. (2020) explored confidence intervals centred on the frequen-

tist model averaged estimator, proposed by Buckland et al. (1997), using

the testbed scenario of two nested linear regression models, with unknown

error variance. They considered two forms of standard error of this estimator

from Buckland et al. (1997) and Burnham & Anderson (2002). They also

consider four procedures for obtaining the half-width of the confidence inter-

val from the chosen standard error. Consequently, they consider eight model

averaged confidence intervals. They derived computationally convenient ex-

act formulas for the coverage probability and scaled expected length of each

of these eight confidence intervals. Numerical evaluations show that these

eight confidence intervals do not have satisfactory finite sample performance.

This fact, combined with the large sample result of Hjort & Claeskens (2003),

shows that these confidence intervals do not have satisfactory performances

in general. To summarise, the performance of frequentist model averaged

confidence intervals in terms of the utilization of uncertain prior information

(through favourable scaled expected length properties) is very patchy.
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Suppose that the parameter of interest is a scalar, there are no nuisance

parameters and there is uncertain prior information about this parameter of

interest. Pratt (1961, 1963) devised an elegant method, which makes clever

use of the Neyman-Pearson lemma, for the construction of a confidence inter-

val for this parameter that utilizes the uncertain prior information. Now sup-

pose that the parameter of interest is a scalar, there is a pivotal quantity for

this parameter and there is uncertain prior information about this parameter

of interest. The easily-understood “tail method”(Stein, 1962, Bartholomew,

1971, Puza & O’Neill, 2006b, Puza & O’Neill 2006a, Puza & Yang, 2016,

Yang & Puza, 2020) can be used to construct confidence intervals that uti-

lize the uncertain prior information.

Puza & O’Neill (2006b) applied the “tail method” to obtain confidence

intervals for the normal mean (for both known and unknown variance) and

the binomial success probability that have smaller expected length than the

usual confidence intervals in specified parts of the parameter space. This de-

crease in expected length comes at the cost of an increase in expected length

in other parts of the parameter space. Puza & O’Neill (2006a) applied the

“tail method” to a randomized confidence interval for the binomial success

probability. Puza & Yang (2016) used the “tail method” to construct fre-

quentist confidence intervals for the mean of the exponential distribution.

Using a similar approach, Yang & Puza (2020) constructed frequentist confi-

dence intervals for the parameter of the geometric distribution. Both of these

papers show that these confidence intervals outperform the usual confidence

intervals in some parts of the parameter space. A novel extension of the “tail

method” was put forward by Yu & Hoff (2018) and Hoff & Yu (2019). Yu &

Hoff (2018) used this novel method for the construction of confidence inter-

vals for the treatment means in a one-way layout that utilize the uncertain

prior information that these treatment means are the same.
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Henceforth, to qualify as a genuine confidence region that utilizes the

uncertain prior information this region must satisfy the following additional

requirement. The scaled expected volume (a) must have a maximum value

that is not too large and (b) be close to 1 when the data and the prior

information are in conflict. Such regions include (a) confidence regions for the

multivariate normal mean that dominate the usual confidence region (Casella

& Hwang, 1987, 2012) and (b) confidence intervals for the normal variance

that dominate the usual confidence interval (Maata & Casella, 1990).

Farchione & Kabaila (2008) constructed frequentist confidence intervals

for the normal mean that utilize the uncertain prior information that this

mean takes a specified value. They considered both the known and unknown

variance cases. These intervals have a scaled expected length that is sub-

stantially less than 1 when the prior information is correct and have a scaled

expected length with maximum value that is not too large. In addition,

these intervals reduce to the usual confidence interval when the data greatly

disagree with the prior information. Kabaila & Giri (2009a) considered a

linear regression model, with unknown error variance, and a parameter of

interest that is a specified linear combination of the regression parameters.

They supposed that there is uncertain prior information that a different lin-

ear combination of the regression parameters takes a specified value. They

showed how to construct a confidence interval for the scalar parameter of

interest that utilizes this uncertain prior information. They illustrated the

application of this confidence interval to the case of data from a 2×2 factorial

experiment with more than one replicate, the parameter of interest a specified

simple effect and the uncertain prior information that the two-factor inter-

action is zero. Kabaila & Giri (2014) considered data from a 2× 2 factorial

experiment and constructed simultaneous frequentist confidence intervals for

the four population cell means that utilized the same uncertain prior infor-
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mation. Kabaila & Tissera (2014) considered a linear regression model, with

unknown error variance, parameter of interest a specified linear combination

of the regression parameters and uncertain prior information that a vector

of regression parameters, with dimension two or greater, took the value zero.

They showed how to construct a confidence interval for this parameter of

interest that utilizes this uncertain prior information. Abeysekera & Kabaila

(2017) assessed the coverage and scaled expected volume properties of recen-

tered confidence spheres for the mean of a multivariate normal distribution

with a diagonal covariance matrix whose diagonal elements take the same

value. They considered both the case that this common value is known and

that it is unknown. They supposed that the uncertain prior information is

that the mean of this distribution is zero. By carefully choosing the data-

based radius and centre of these confidence spheres they were able to obtain

confidence spheres for the mean that utilize this uncertain prior information.

The confidence regions that utilize uncertain prior information put for-

ward by Farchione & Kabaila (2008), Kabaila & Giri (2009a), Kabaila & Giri

(2014), Kabaila & Tissera (2014) and Abeysekera & Kabaila (2017) were all

found using numerical nonlinear constrained optimizations implemented in

MATLAB programs. This made these computations unavailable to statisti-

cians who do not have a MATLAB licence. Also, these MATLAB programs were

slow because they used the MATLAB function dblquad for two-dimensional

numerical integration. This function has since been superseded in MATLAB by

a much more efficient numerical integration function integral2. To make

these confidence regions more widely accessible to statisticians it is impor-

tant to implement these methods, where possible, in R programs. Mainzer

& Kabaila (2019) considered a linear regression model, with known error

variance, that the parameter of interest is a given linear combination of the

regression parameters and the uncertain prior information that a distinct
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linear combination of these parameters takes a specified value. This is the

same scenario as that considered by Kabaila & Giri (2009a), except that

the error variance is assumed known. The case where the error variance is

assumed known can be regarded as an approximation to the case where the

error variance must be estimated, and the number of degrees of freedom for

its estimation is large. Mainzer & Kabaila (2019) describe their R package

ciuupi which computes the confidence interval for this parameter of interest

that utilizes this uncertain prior information.

Further developments of the numerical nonlinear constrained optimiza-

tion approach to the construction of confidence intervals that utilize uncer-

tain prior information will be in the following three areas. Firstly, finding

further examples where uncertain prior information can very reasonably be

assumed to exist. Secondly, expanding the range of models and types of

uncertain prior information for which confidence intervals that utilize uncer-

tain prior information can be constructed. Thirdly, the implementation of

the computations of these confidence intervals in R, to make them widely

accessible. In this thesis, we make contributions to each of these three areas.

1.2 Thesis overview

This thesis consists of five chapters. The first chapter presents the introduc-

tion and the remaining four chapters are described as follows.

Chapter 2

The most significant contributions of this thesis is in Chapter 2. In this

chapter, we consider a general regression model without a scale parameter.

An example for a general regression model, without a scale parameter is a

generalized linear model with binomial responses and canonical link function.

We suppose that we have uncertain prior information that a specified scalar
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parameter takes a given value. Our aim is to construct a confidence interval

for a distinct scalar parameter that utilizes this uncertain prior information.

The asymptotic joint distribution of the maximum likelihood estimators of

these two parameters is similar to the joint distribution of these estimators

in the particular case of a linear regression with normally distributed errors

having known variance. This similarity is used to construct a new confidence

interval for the parameter of interest, using the output from the R package

ciuupi described by Mainzer & Kabaila (2019). This confidence interval

has good coverage properties and has a scaled expected length that (a) is

substantially less than one when the prior information is correct, (b) has a

maximum value that is not too large and (c) approaches one when the data

and the prior information are highly contradictory.

An important practical application of the new confidence interval de-

scribed in Chapter 2 is to a quantal bioassay carried out to compare two

similar compounds. Finney (1955), Morgan (1992) and Robertson et al.

(2017) noted that such bioassays have broad applications in pharmacological

and toxicological studies. In these types of assays, we commonly have uncer-

tain prior information that the hypothesis of “parallelism” holds. For those

cases, a confidence interval that utilizes this uncertain prior information,

which we construct in our body of work, is an appealing option.

Finney (1964) emphasised the importance of pre-existing knowledge of

prior information when designing parallel line assays when he stated that

“Without a priori knowledge that the effective stimuli in the standard and

test preparations are qualitatively identical, the employment of 4-point de-

signs is sheer obscurantism”. Finney (1955) stated that ”Unless previous ex-

perience of an assay technique gives very strong reasons for believing that the

assumptions of linearity and parallelism are correct, 4-point assays provide

inadequate evidence for testing conditions that are essential to the validity
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of the analysis.” Khan (2003) and Khan (2008) considered the point estima-

tion of of the parameters in two normal straight line models in the presence

of uncertain prior information that the slopes of these straight lines are the

same i.e. that the hypothesis of “parallelism” holds.

Chapter 3

In Chapter 3, we consider the computation of the expected value of a

smooth bounded function of a chi-distributed random variable, divided by

the square root of the number of degrees of freedom. This type of com-

putation occurs in the evaluation of the coverage probabilities and scaled

expected volumes of post-model-selection confidence intervals, frequentist

model-averaged confidence intervals and other non-standard confidence re-

gions (Farchione & Kabaila, 2008, Kabaila & Giri, 2009a, Kabaila & Giri,

2009b, Kabaila & Farchione, 2012, Kabaila & Giri, 2013, Kabaila & Tissera,

2014, Kabaila et al. , 2016, Kabaila et al. , 2017, Abeysekera & Kabaila, 2017

and Kabaila, 2018). In all of these papers, this evaluation has previously

been carried out by first truncating the integral (the truncation error is eas-

ily bounded) and then applying an adaptive numerical integration method.

We seek a more efficient method for this evaluation. The new and more ef-

ficient method that we describe in Chapter 3 is applied in Chapter 4 of this

thesis to the computation of the Kabaila & Giri (2009a) confidence interval

that utilizes uncertain prior information.

We use the transformation (2.6) of Mori (1988), followed by the applica-

tion of the trapezoidal rule. As noted by Trefethen & Weideman (2014), the

trapezoidal rule has the remarkable property that, for suitable integrands, it

is exponentially convergent. The trapezoidal rule has the advantage that it

leads to a nested sequence of quadrature rules that can be used for estimation

of the approximation error.

We describe the properties of the trapezoidal rule using the Fourier trans-
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form of the integrand and the Poisson summation formula. The application

of the trapezoidal rule requires the approximation of an infinite sum by a

finite sum. We provide a new easily computed upper bound on the error

of this approximation. We describe two procedures for the computation of

the integral of interest. The first of these is a simple procedure that is ex-

pected to have good properties in practice. The second of these procedures

is a slight modification of this procedure which is proved to be exponentially

convergent. We also compare the performance of this simple procedure with

three other methods: (a) Gauss Legendre quadrature, (b) Generalized Gauss

Laguerre quadrature and (c) the inverse cdf method, using the simple test

scenario that consists of evaluating a known univariate t probability.

Chapter 4

Kabaila & Giri (2009a) considered a linear regression model, with un-

known error variance. They constructed a frequentist confidence interval for

a specified linear combination of regression parameters that utilizes the un-

certain prior information of a different linear combination of the regression

parameters is equal to a specified value.

This confidence interval was previously implemented using MATLAB pro-

grams, which were time-consuming to run and which cannot be used without

a MATLAB licence. In Chapter 4, we describe several computational innova-

tions that we have used to write the R programs for more efficient compu-

tation of this confidence interval. These R programs have been placed in

the R package ciuupi2. The confidence intervals and their properties pre-

viously calculated using MATLAB programs were re-calculated using ciuupi2

and were in good agreement with those previously calculated results. It is

planned to make the R package ciuupi2 available on CRAN after submission

of the thesis for examination. In Chapter 4 we also carry out an important

theoretical and computational analysis of a second (new) definition of the
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scaled expected length.

The computation of the Kabaila & Giri (2009a) confidence interval re-

quires evaluating double integrals in the expressions for the coverage prob-

ability and the scaled expected length. The inner integrals of these double

integrals have some special features that lead us first to divide them into

a sum of integrals and then apply Gauss Legendre quadrature to each inte-

gral in this sum. Mainzer & Kabaila (2019) used Gauss Legendre quadrature

with five nodes for a similar, but more straightforward, computation. We use

the new method described in Chapter 3 to approximate the outer integrals

of these double integrals. Computation of the Kabaila & Giri (2009a) con-

fidence interval also requires numerical nonlinear constrained optimization.

Kabaila & Giri (2009a) used the MATLAB function fmincon to perform this

computation using the sequential quadratic programming option. We carry

out sequential quadratic programming in R using the function slsqp in the

nloptr package (Johnson (2014)).

Chapter 5

As we have seen from the work in Chapter 3, the efficient numerical eval-

uation of integrals requires a careful analysis. In Chapter 5 of this thesis, we

explore the numerical evaluation of integrals in the context of the computa-

tion of the log-likelihood function for generalized linear mixed models.

Adaptive Gauss-Hermite quadrature can be used for the computation of

the log-likelihood function for generalized linear mixed models. For Gauss-

Hermite quadrature, Liu & Pierce (1994) proposed a method to transform

the variable of integration in such a way that the integrand is sampled at

relatively important values. Pinheiro & Bates (1995) referred to this method

put forward by Liu & Pierce (1994) as ‘adaptive’ Gauss-Hermite quadrature.

This method has found applications in the computation of the log-likelihood

function for generalized linear mixed models (Lesaffre & Spiessens, 2001,
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Demidenko, 2004, Hedeker & Gibbons, 2006, Tuerlinckx et al. , 2006, Rabe-

Hesketh & Skrondal, 2008, Kim et al. , 2013 and Chang & Hoaglin, 2017).

The basic first step in this method is to multiply and divide the inte-

grand of interest by a carefully chosen probability density function. The

same first step is used for the computation of this log-likelihood function

using simulations that employ importance sampling. As is well-known, im-

portance sampling needs to be applied with extreme care to be successful

(Robert & Casella, 2004 and Owen, 2013). We compare these two methods

by considering in detail a single cluster from a well-known teratology data

set that is modelled using a logistic regression with random intercept. We

show that while importance sampling fails for this computation, adaptive

Gauss-Hermite quadrature does not. We derive a new upper bound on the

error of approximation of adaptive Gauss-Hermite quadrature. Using this

new upper bound, we show that the feature of this problem that makes im-

portance sampling fail is useful in disclosing why adaptive Gauss-Hermite

quadrature succeeds.

1.2.1 Outline of the contributions due solely to the

author

Chapter 2

The work described in this chapter appears in Kabaila & Ranathunga (2020)

and has been submitted for publication.

Section 2.4: The standard confidence interval and the confidence interval

that utilizes uncertain prior information are defined in Section 2.2 in the

context of a linear regression model with known error variance. In Section 2.4,

we derive analogues of these confidence intervals, based on Wald statistics,

in a general regression model without a scale parameter.
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Subsection 2.9.1: A local asymptotic framework is described in subsection

2.6.1. In this framework the regression parameter vector lies on a straight line

segment centred at a particular value. A procedure for a data-based choice

of this particular value is described in subsection 2.6.2. In subsection 2.9.1,

we apply this procedure in the context of the quantal bioassay dataset from

Grewal (1952) for the comparison of the analgesic properties of Morphine

and Amidone in mice.

Subsection 2.9.2: Choice of the length of the straight line segment of

regression parameter vector values that specifies the local asymptotic frame-

work. This choice is based on an assessment, using Monte Carlo simulation,

of values of this parameter vector for which the profile likelihood confidence

interval is sometimes extremely long.

Subsections 2.10.1 - 2.10.2: Numerical evaluation, using Monte Carlo

simulations, of the local coverage probability and the local scaled expected

length of the likelihood-based confidence interval that utilizes uncertain prior

information in a general regression model without a scale parameter.

Appendix A.2: Numerical evaluation, using Monte Carlo simulations, of

the local coverage probability and the local scaled expected length of the

Wald-based confidence interval that utilizes uncertain prior information in a

general regression model without a scale parameter.

Appendix A.5: The two functions used in the specification of the confi-

dence interval that utilizes uncertain prior information, in the context of a

linear regression model with known error variance, are computed using the

R package ciuupi. Using values computed using this package, we set up a

look-up table for the fast evaluation of these two functions.

Subsection 2.10.3: Numerical evaluation of the large sample approximation

to the local coverage probability and the local scaled expected length of the
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likelihood-based confidence interval that utilizes uncertain prior information,

for a general regression model without a scale parameter.

Appendix A.8: The ratio of the length of the likelihood-based confidence

interval that utilizes uncertain prior information to the length of the profile

likelihood confidence interval computed from the same data, for a general

regression model without a scale parameter, is defined in subsection 2.10.2.

In Appendix A.8, we analyse the probability distribution of this ratio using

Monte Carlo simulations.

Appendix A.9: R programs for the computation of the coverage probabili-

ties of the profile likelihood confidence interval and the likelihood-based con-

fidence interval that utilizes the uncertain prior information and the scaled

expected length of the latter confidence interval, for a general regression

model without a scale parameter.

Chapter 3

The work described in this chapter appears in Kabaila & Ranathunga (2021).

Subsection 3.4.1 and Appendix B.2: Application of the transformation

(2.6) of Mori (1988) to the integral of interest.

Subsection 3.4.2: Proof of Lemma 3.4.1, an upper bound on the trimming

error, using the integral test for series convergence.

Section 3.5: A simple and effective procedure, similar to that described

by Mori (1988), for the evaluation of the integral of interest is described

in subsection 3.4.3. In Section 3.5, we apply this method to evaluate the

integral of interest for the simple test scenario that consists of evaluating a

known univariate t probability.

Subsection 3.6.1: Derivation of formulas to evaluate the integral of interest

using the Gauss-Legendre quadrature method. Using R programs, calculation
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of the approximation error resulting from this procedure and summarising

the results. This is in the context of the simple test scenario that consists of

evaluating a known univariate t probability.

Subsection 3.6.2 and Appendix B.4: Derivation of formulas to evaluate

the integral of interest using the Generalized Gauss Laguerre quadrature

method. Using R programs, calculation of the approximation error resulting

from this procedure and summarising the results. This is in the context

of the simple test scenario that consists of evaluating a known univariate t

probability.

Subsection 3.6.3 and Appendix B.5: Derivation of formulas to evaluate

the integral of interest using the inverse cdf method followed by the Gauss

Legendre quadrature. Using R programs, calculation of the approximation

error resulting from this procedure and summarising the results. This is in

the context of the simple test scenario that consists of evaluating a known

univariate t probability.

Appendix C.7: R programs for the computation of the integral of interest

by applying the methods (a) the transformation (2.6) of Mori (1988), followed

by the application of the trapezoidal rule, (b) Gauss Legendre quadrature,

(c) Generalized Gauss Laguerre quadrature and (d) the inverse cdf method

followed by Gauss Legendre quadrature.

Chapter 4

Subsection 4.3.2 and Appendix C.1.2: Application of the new method

described in Chapter 3 to the evaluation of the outer integrals of the double

integrals in the formulas for the coverage probability and the scaled expected

length of the Kabaila & Giri (2009a) confidence interval.

Subsection 4.4.2, Appendix C.2.1 and Appendix C.2.2: Derivation of

computationally convenient formulas for the second (new) definition of the
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scaled expected length and the resulting objective function.

Appendix C.2.3 and Appendix C.2.4: Application of the new method

described in Chapter 3 to the evaluation of the outer integral of the double

integral term in the formula for the scaled expected length. This is in the

context of the second definition of the scaled expected length.

Subsection 4.5.2, Appendix C.3 and Appendix C.3.1: The computa-

tion of the Kabaila & Giri (2009a) confidence interval that utilizes uncertain

prior information requires the choice of a number of computationally-related

quantities. In most cases these quantities must be chosen to be sufficiently

large so that the performance of this confidence interval is not degraded.

On the other hand, values of these quantities that are too large can lead

to excessive computation times and, potentially, unstable computed results.

Formulas for the choice of some of these quantities are presented in subsection

4.5.1. In subsection 4.5.2, Appendix C.3 and Appendix C.3.1, we choose the

remaining computationally-related quantities, based on numerical evidence.

Subsection 4.5.3 and Appendices C.4 - C.5: Computational analysis

for choosing the number of outer integrand evaluations and the number of

Gauss Legendre quadrature nodes.

Subsection 4.5.4 and Appendix C.6: Numerical comparison of the re-

sults obtained using the new R package ciuupi2 with some of the past results

obtained by Kabaila & Giri (2009a), Kabaila & Giri (2013) and Giri (2008)

for a given choice of the tuning parameter λ, which specifies the weight given

to the uncertain prior information, using MATLAB programs.

Subsections 4.6.1 - 4.6.2: Evaluate the efficiency of the Kabaila & Giri

(2009a) confidence interval for the “standard” choice of the tuning parameter

λ, using the new R package ciuupi2.

Section 4.7: A numerical comparison of the two definitions of scaled ex-
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pected length in terms of the resulting confidence intervals, for the “stan-

dard” choice of the tuning parameter λ, that utilize uncertain prior informa-

tion and their coverage and scaled expected lengths properties.

Appendix C.7: R programs for the efficient computation of the Kabaila &

Giri (2009a) confidence interval.

Chapter 5

The work described in this chapter appears in Kabaila & Ranathunga (2019).

Section 5.2 and Appendix D.5: Derivation of an expression for the log-

likelihood function of a logistic regression model with random intercept.

Appendix D.1: Details of a particular step in the derivation of the adaptive

Gauss-Hermite quadrature formula, using Theorem 5.1 of Carlin & Louis

(1996); Abeysekara (2014), are provided.

Section 5.3 and Appendix D.2: Further details of the derivation of an

expression for the adaptive Gauss-Hermite quadrature approach for the com-

putation of the log-likelihood function of the logistic regression model with

random intercept.

Section 5.4: For a logistic regression model with random intercept, the log-

likelihood function is the sum of the logarithms of similar terms, one term

per cluster. We evaluate the performance of importance sampling for the

computation of a specified term (corresponding to a specified cluster) for the

teratology dataset of Weil (1970).

Section 5.5: For the same situation as that considered in Section 5.4, we

evaluate the performance of the adaptive Gauss-Hermite quadrature using a

program written in Maple.

Appendix D.8: R programs for the computation of the maximum likelihood

estimates of the parameters of the logistic regression model with random
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intercept. R programs for the evaluation of the performance of importance

sampling.
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Chapter 2

Confidence intervals in general

regression models that utilize

uncertain prior information

2.1 Introduction

In this chapter, we consider a general regression model that does not include

a scale parameter. We construct a confidence interval for a scalar parameter

of interest θ that utilizes the uncertain prior information that a distinct scalar

parameter τ takes the specified value t.

The asymptotic joint distribution of the maximum likelihood estimators

of θ and τ is similar to the joint distribution of these estimators in the

particular case of a linear regression with normally distributed errors having

known variance. In the latter case, the R package ciuupi is used to compute

a confidence interval for θ that utilizes the uncertain prior information that

τ = t. We use this confidence interval to construct a new confidence interval

for θ that utilizes the uncertain prior information in the case of a general

regression model without a scale parameter.

In Section 2.2, we describe this confidence interval (constructed using the
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package ciuupi) in detail. In Section 2.3, we derive the asymptotic distribu-

tion of the maximum likelihood estimators θ and τ in the case of a general

regression model, without a scale parameter. In Sections 2.4 and 2.5, we

express the confidence interval for θ that utilizes the uncertain prior infor-

mation in the case of a general regression model without a scale parameter in

terms of Wald statistics and signed root likelihood ratio (SRLR) statistics,

respectively.

We also define the local coverage probability (Section 2.6) and the local

scaled expected length (Section 2.7) of a confidence interval for θ using a local

asymptotic framework, similar to the “local misspecification framework” of

Hjort & Claeskens (2003) and Claeskens & Hjort (2008) which was used by

Kabaila & Kuveke (2019). The confidence interval that we construct in this

chapter has the following desirable characteristics.

(1) It has endpoints that are smooth functions of the data.

(2) It has local coverage probability that is close to 1− α.

(3) It has local scaled expected length that (a) is substantially less than 1

when the prior information that τ = t is correct, (b) has a maximum

value that is not too large and (c) approaches 1 for large |τ − t|.

In Section 2.8, we provide a detailed description of a quantal bioassay

designed to compare two similar compounds. In this context, we have un-

certain prior information that the hypothesis of “parallelism” holds, which

can be expressed in the form τ takes the specified value t. In Sections 2.9

and 2.10, we provide extensive numerical results that illustrate the attractive

properties of the confidence interval that we construct in this chapter. The

work described in this chapter appears in Kabaila & Ranathunga (2020) and

has been submitted for publication.
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2.2 The confidence interval that utilizes un-

certain prior information in linear regres-

sion with known error variance

Consider the linear regression model

y = Xβ + ε,

where y is a random n-vector of responses, X is a known n × p matrix

with linearly independent columns, β is an unknown parameter p-vector and

ε ∼ N(0, σ2 I), where σ2 is known. Suppose that the parameter of interest

is θ = a>β, where a is a specified nonzero p-vector. Let τ = c>β, where

c is a specified nonzero p-vector that is linearly independent of a. Suppose

that we have uncertain prior information that τ = t, where t is a specified

number (commonly t = 0). Our aim is to construct a confidence interval

for θ, with minimum coverage probability 1− α, that utilizes this uncertain

prior information.

Let β̂ = (X>X)−1X> y, the least squares estimator of β. Then θ̂ = a>β̂

and τ̂ = c>β̂ are the least squares estimators of θ and τ , respectively. Note

that var(θ̂) = σ2 a>(X>X)−1a, var(τ̂) = σ2 c>(X>X)−1c and cov(θ̂, τ̂) =

σ2 a>(X>X)−1c, which are known quantities. Hence

ρ = corr
(
θ̂, τ̂
)

=
cov(θ̂, τ̂)(

var(θ̂) var(τ̂)
)1/2 (2.1)

is also known.

Our first step in the description of the CI for θ that utilizes the uncertain

prior information is to reduce the data to
(
θ̂, τ̂
)
. A justification for this data

reduction is provided by the change of parametrization described in Section 4

of the Supplementary Material for Kabaila et al. (2016) with t = 0. Observe
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that  θ̂

τ̂

 ∼ N


 θ

τ

 ,
 var(θ̂) cov(θ̂, τ̂)

cov(θ̂, τ̂) var(τ̂)


 . (2.2)

Let [a ± w] denote the interval [a − w, a + w] (w > 0). The usual 1 − α

confidence interval for θ is

I =
[
θ̂ ± z1−α/2

(
var(θ̂)

)1/2]
, (2.3)

where the quantile zp is defined by P (Z ≤ zp) = p for Z ∼ N(0, 1).

The confidence interval for θ computed by the R package ciuupi, with

minimum coverage probability 1− α, that utilizes the uncertain prior infor-

mation that τ = t, has the form

CI(b, s) =

[
θ̂ −

(
var(θ̂)

)1/2
b

(
τ̂ − t(

var(τ̂)
)1/2

)
±
(
var(θ̂)

)1/2
s

(
τ̂ − t(

var(τ̂)
)1/2

)]
,

(2.4)

where b : R → R is an odd continuous function and s : R → R is an even

continuous function. In addition, b(x) = 0 and s(x) = z1−α/2 for all |x| ≥ 6.

Define the scaled expected length of CI(b, s) to be

E(length of CI(b, s))/(length of I).

The R package ciuupi computes the functions b and s such that CI(b, s) has

the following properties. It has minimum coverage probability 1 − α and

scaled expected length for τ = t that is as small as possible, subject to an

upper bound on its maximum value. Mainzer & Kabaila (2019) describe

this computation in full detail. The functions b and s that are computed

by ciuupi are determined by ρ and 1 − α. We denote them by bρ and

sρ, respectively, so that the confidence interval computed by the R package

ciuupi is CI(bρ, sρ).

Let γ = (τ − t)/
(
var(τ̂)

)1/2
. The coverage probability of CI(bρ, sρ) is a
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function of γ, for given ρ. We denote this function by CP (γ; ρ). Note that

CP (γ; ρ) is an even function of γ for every given ρ and an even function of ρ

for every given γ. For later reference, we make the very simple observation

that the scaled expected length of CI(bρ, sρ) is

E
(
length of CI(bρ, sρ)

)(
length of I

) = E

(
length of CI(bρ, sρ)

length of I computed from the same data

)
.

(2.5)

The scaled expected length of CI(bρ, sρ) is a function of γ, for given ρ. We

denote this function by SEL(γ; ρ). Note that SEL(γ; ρ) is an even function

of γ for every given ρ and an even function of ρ for every given γ.

2.2.1 Likelihood-based approach for the confidence in-

terval CI(bρ, sρ)

The results in this subsection are due to Paul Kabaila. For later reference,

we note that the confidence interval CI(bρ, sρ) can be expressed in terms of

likelihood functions as follows. Let l(θ, τ) denote the log-likelihood function

based on (θ̂, τ̂). The distribution of (θ̂, τ̂) is given by (2.2). Let τ̂θ denote the

value of τ that maximizes l(θ, τ) with respect to τ , for given θ. Now define

the SRLR statistic

r1(θ
′) = sign(θ̂ − θ′)

√
2
(
l
(
θ̂, τ̂
)
− l
(
θ′, τ̂θ′

))
.

Let θ̂t denote the value of θ that maximizes l(θ, τ) with respect to θ, for

τ = t. Now define the SRLR statistic

r2 = sign(τ̂ − t)
√

2
(
l
(
θ̂, τ̂
)
− l
(
θ̂t, t
))
.
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For notational convenience, let vθ = var(θ̂) and vτ = var(τ̂), so that

 θ̂

τ̂

 ∼ N


 θ

τ

 ,
 vθ ρ v

1/2
θ v

1/2
τ

ρ v
1/2
θ v

1/2
τ vτ


 (2.6)

and

CI(bρ, sρ) =

[
θ̂ − v1/2θ bρ

(
τ̂ − t
v
1/2
τ

)
± v1/2θ sρ

(
τ̂ − t
v
1/2
τ

)]
.

Consider testing H0 : θ = θ′ against HA : θ 6= θ′. Suppose we accept H0

if and only if

θ′ ∈
[
θ̂ − v1/2θ bρ

(
τ̂ − t
v
1/2
τ

)
± v1/2θ sρ

(
τ̂ − t
v
1/2
τ

)]
.

Clearly, CI(bρ, sρ) is equal to

{
θ′ ∈ R : bρ

(
τ̂ − t
v
1/2
τ

)
− sρ

(
τ̂ − t
v
1/2
τ

)
≤ θ̂ − θ′

v
1/2
θ

≤ bρ

(
τ̂ − t
v
1/2
τ

)
+ sρ

(
τ̂ − t
v
1/2
τ

)}
.

Furthermore, as shown in Appendix A.1,

θ̂ − θ′

v
1/2
θ

= r1(θ
′) and

τ̂ − t
v
1/2
τ

= r2.

Hence the confidence interval CI(bρ, sρ) is given by{
θ′ ∈ R : bρ (r2)− sρ (r2) ≤ r1(θ

′) ≤ bρ (r2) + sρ (r2)
}
. (2.7)

2.3 Asymptotic results for a general regres-

sion model, without a scale parameter

In this section, we consider a general regression model without a scale pa-

rameter. Using the well-known asymptotic distribution of the maximum

likelihood estimator, we derive an asymptotic distribution that is analogous

to the distribution (2.2), which is for the linear regression model considered
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in the previous section.

We consider a general regression model with response vector y = (y1, . . . ,

yn), where (y1, . . . , yn) denotes a column n-vector. The random variables

y1, . . . , yn are independent and yi has pmf or pdf (as appropriate) fi(y |xi,β),

where β = (β1, . . . , βp) is an unknown parameter p-vector, which belongs to

the open set B, and xi a vector of explanatory variables of given dimension

(i = 1, . . . , n). Suppose that the scalar parameter of interest θ = g(β),

where g : Rp → R is a sufficiently smooth function. Also suppose that the

parameter τ = h(β), where h : Rp → R is a sufficiently smooth function.

Let ∂g(β)/∂β denote the row p-vector with ith component ∂g(β)/∂βi (i =

1, . . . , p). Suppose that ∂g(β)/∂β and ∂h(β)/∂β are linearly independent

p-vectors, for all β ∈ B. Finally, suppose that we have uncertain prior

information that τ = t, where t is a specified number.

Let I(β) denote the Fisher information matrix. In other words, I(β) is

the p× p matrix with (i, j)th element

−
n∑
i=1

E

(
∂2 log fi(yi |xi;β)

∂βi ∂βj

)
.

We suppose that I(β) is nonsingular for all β ∈ B. For convenience, we

do not make the dependence of this matrix on n explicit in the notation.

We also suppose that n−1I(β) converges to a finite nonsingular matrix as

n→∞, for each β ∈ B.

Denote the maximum likelihood estimator of β by β̂. Under the appro-

priate regularity conditions,

n1/2
(
β̂ − β

)
approx∼ N

(
0,
(
n−1I(β)

)−1)
, (2.8)

for large n. We use the following shorthand for this large sample distribution

β̂
asympt∼ N

(
β,
(
I(β)

)−1)
. (2.9)
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Let θ̂ = g(β̂) and τ̂ = h(β̂) denote the maximum likelihood estimators of θ

and τ , respectively. Similarly to Section 2.2, our first step in the description

of the CI for θ that utilizes the uncertain prior information is to reduce the

data to
(
θ̂, τ̂
)
.

By the mean value theorem,

θ̂ − θ ≈ ∂g(β)

∂β

(
β̂ − β

)
and τ̂ − τ ≈ ∂h(β)

∂β

(
β̂ − β

)
.

Thereforeθ̂
τ̂

 asympt∼ N


θ
τ

 ,
 avar

(
θ̂;β

)
acov

(
θ̂, τ̂ ;β

)
acov

(
θ̂, τ̂ ;β

)
avar

(
τ̂ ;β

)

 , (2.10)

where avar
(
θ̂;β

)
denotes the asymptotic variance of θ̂, acov

(
θ̂, τ̂ ;β

)
denotes

the asymptotic covariance of θ̂ and τ̂ ,

avar
(
θ̂;β

)
=
∂g(β)

∂β

(
I(β)

)−1(∂g(β)

∂β

)>
,

avar
(
τ̂ ;β

)
=
∂h(β)

∂β

(
I(β)

)−1(∂h(β)

∂β

)>
,

and acov
(
θ̂, τ̂ ;β

)
=
∂g(β)

∂β

(
I(β)

)−1(∂h(β)

∂β

)>
.

Similarly to (2.1), let

ρ(β) =
acov

(
θ̂, τ̂ ;β

)(
avar

(
θ̂;β

)
avar

(
τ̂ ;β

))1/2 . (2.11)

2.4 Analogues of I and CI(bρ, sρ) based on Wald

statistics

In this section, we describe analogues of the confidence intervals I and CI(bρ, sρ)

based on Wald statistics. The analogue of the confidence interval I, given by
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(2.3) and based on the assumption that
(
θ̂− θ

)/(
avar

(
θ̂; β̂

))1/2
has approx-

imately an N(0, 1) distribution, is IW(y;α), where

IW(y; c) =

[
θ̂ ± z1−c/2

(
avar

(
θ̂; β̂

))1/2]
,

with 0 < c < 1/2.

Let ACIW
(
β
)

denote the interval

[
θ̂ −

(
avar

(
θ̂;β

))1/2
bρ(β)

(
τ̂ − t(

avar
(
τ̂ ;β

))1/2
)

±
(
avar

(
θ̂;β

))1/2
sρ(β)

(
τ̂ − t(

avar
(
τ̂ ;β

))1/2
)]

,

where the functions bρ(β) and sρ(β) are the functions b and s, respectively,

computed using the R package ciuupi, with the desired minimum coverage

probability 1−α and ρ = ρ(β). We now apply the plug-in principle to obtain

the confidence interval ACIW(β̂) for θ. This confidence interval is given by

[
θ̂ −

(
avar

(
θ̂; β̂

))1/2
bρ(β̂)

(
τ̂ − t(

avar
(
τ̂ ; β̂

))1/2
)

±
(
avar

(
θ̂; β̂

))1/2
sρ(β̂)

(
τ̂ − t(

avar
(
τ̂ ; β̂

))1/2
)]

,

Note that
(
τ̂ − t

)/(
avar

(
τ̂ ; β̂

))1/2
is the Wald test statistic for testing the

null hypothesis H0 : τ = t against the alternative hypothesis HA : τ 6= t. The

similarity between the bivariate normal distribution (2.2) and asymptotic bi-

variate normal distribution (2.10) suggests that ACIW
(
β̂
)

will have coverage

probability approximately equal to 1 − α and the desired expected length

properties. To summarize, the analogues of the confidence intervals I and

CI(bρ, sρ), based on Wald statistics, are IW(y;α) and ACIW
(
β̂
)
, respectively.
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2.5 Analogues of I and CI(bρ, sρ) based on like-

lihood functions

The results in this section are due to Paul Kabaila. There is some evidence

that likelihood-based methods lead to better hypothesis tests and confidence

intervals than Wald based methods, see e.g. Meeker & Escobar (1995), Cox

(2006, p.117–118), Pawitan (2000), Young & Smith (2005, p.137) and Paw-

itan (2013). For this reason, in this section, we describe analogues of I and

CI(bρ, sρ) based on likelihood functions.

2.5.1 Profile likelihood confidence interval for θ

The profile likelihood confidence interval for θ, with nominal coverage 1−α,

is the likelihood-based analogue of the confidence interval I. Let `(β |y)

denote the log-likelihood function for the general regression model, without

a scale parameter, described in Section 2.3. To compute the profile likelihood

confidence interval for θ, with nominal coverage 1 − α, we invert a family

of hypothesis tests. We test the null hypothesis H0 : θ = θ′ against the

alternative hypothesis HA : θ 6= θ′ using the signed root likelihood ratio test

(SRLR) statistic

r1(θ
′ |y) = sign

(
θ̂ − θ′

)√
2
(
`
(
β̂
∣∣y)− `(β̂(θ′; θ)

∣∣y)), (2.12)

where β̂(θ′; θ) maximises `(β |y) with respect to β, subject to the con-

straint that g(β) = θ′. Suppose that we accept H0 if and only if −z1−c/2 ≤

r1(θ
′ |y) ≤ z1−c/2, where 0 < c < 1/2. The confidence set, with nominal

coverage 1− c and found by inverting the family of hypothesis tests obtained

as are vary over θ′ ∈ R, is

SPL(y) =
{
θ′ ∈ R : −z1−c/2 ≤ r1(θ

′ |y) ≤ z1−c/2
}
. (2.13)

29



Define the profile likelihood confidence interval, with nominal coverage 1−α,

as follows. This confidence interval, denoted by IL(y; c), has lower endpoint

inf
(
SPL(y)

)
and upper endpoint sup

(
SPL(y)

)
. When r1(θ

′ |y) is a decreas-

ing function of θ′, IL(y; c) =
[
θ̂l, θ̂u

]
, where θ̂l and θ̂u are the solutions for θ′

of

r1(θ
′ |y) = z1−c/2 and r1(θ

′ |y) = −z1−c/2, (2.14)

respectively. Thus the coverage probability of IL(y; c) is

P
(
θ′ ∈ R : θ̂l ≤ θ ≤ θ̂u

)
= P

(
θ′ ∈ R : −z1−c/2 ≤ r1(θ

′ |y) ≤ z1−c/2
)
.

To summarize, the analogue of the confidence interval I, based on likelihood

functions, is IL(y;α).

2.5.2 Likelihood-based analogue of CI(bρ, sρ)

The SRLR test statistic for testing H0 : τ = t against the alternative hy-

pothesis HA : τ 6= t is

r2(y) = sign(τ̂ − t)
√

2
(
`
(
β̂ |y

)
− `
(
β̂(t; τ) |y

))
,

where β̂(t; τ) maximises `(β |y) with respect to β, subject to the constraint

that h(β) = t. The likelihood-based confidence set for θ, with nominal

coverage 1− α, that is analogous to (2.7) is

SA(y) =
{
θ′ ∈ R : bρ(β̂)

(
r2(y)

)
− sρ(β̂)

(
r2(y)

)
≤ r1(θ

′ |y)

≤ bρ(β̂)
(
r2(y)

)
+ sρ(β̂)

(
r2(y)

)}
.

(2.15)

Define the confidence interval ACIL(y), with nominal coverage 1 − α, as

follows. This confidence interval has lower endpoint inf
(
SA(y)

)
and up-

per endpoint sup
(
SA(y)

)
. When r1(θ

′ |y) is a decreasing function of θ′,

ACIL(y) =
[
θ̃l, θ̃u

]
, where θ̃l and θ̃u are the solutions for θ′ of
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r1(θ
′ |y) = bρ(β̂)

(
r2(y)

)
+ sρ(β̂)

(
r2(y)

)
and

r1(θ
′ |y) = bρ(β̂)

(
r2(y)

)
− sρ(β̂)

(
r2(y)

)
, (2.16)

respectively. Thus the coverage probability of ACIL(y) is

P
(
θ′ ∈ R : θ̃l ≤ θ ≤ θ̃u

)
= P

(
θ′ ∈ R : bρ(β̂)

(
r2(y)

)
− sρ(β̂)

(
r2(y)

)
≤ r1(θ

′ |y)

≤ bρ(β̂)
(
r2(y)

)
+ sρ(β̂)

(
r2(y)

))
.

To summarize, the analogue of the confidence interval CI(bρ, sρ), based on

likelihood functions, is ACIL(y).

2.6 Assessment of the coverage probability of

a confidence interval

The results in this section are due to Paul Kabaila. How should we assess the

coverage probability of the confidence interval ACIW
(
β̂
)
, which has nominal

coverage 1−α? For the sake of concreteness, suppose that the response yi ∼

Binomial(Ni, ψi), with Ni given (i = 1, . . . n). Let logit(x) = log(x/(1− x)),

for 0 < x < 1. Also suppose that logit(ψi) =
∑p

j=1 xijβj, where the xij

are explanatory variables taking positive values and β1, . . . , βp are unknown

parameters. The coverage probabilty Pβ

(
θ ∈ ACIW

(
β̂
))

will take values far

below 1 − α for extreme values of β, such as when β1, . . . , βp all have the

same sign and |β1|, . . . , |βp| are all large. In fact, the infimum over β ∈ Rp of

Pβ

(
θ ∈ ACIW

(
β̂
))

is 0. We expect that such extreme values of β are unlikely

to occur in practice, so that this assessment of the coverage probability of

ACIW
(
β̂
)

is unduly conservative.
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2.6.1 Definition of the local minimum coverage prob-

ability, for given β̃

Let β̃ be a given value that satisfies h(β̃) = t. We deal with the choice of β̃

in the next subsubsection. Consider the straight line consisting of the values

of β satisfying
β = β̃ + κ

(
∂h(β̃)

/
∂β
)>
, (2.17)

where ∂h(β̃)
/
∂β denotes the row vector with ith element ∂h(β̃)

/
∂βi and

κ ∈ R. Let ‖ · ‖ denote the Euclidean norm. For given small ‖β − β̃‖,

|τ − t| =
∣∣h(β)− h(β̃)

∣∣ is maximized by choosing β to satisfy (2.17).

We will assess the coverage probability of ACIW
(
β̂
)

for values of β sat-

isfying (2.17) and for

κ =

(
avar(τ̂ ; β̃)

)1/2∥∥∂h(β̃)
/
∂β
∥∥2 γa, where γa ∈ [−u, u] (2.18)

and the chosen value of u satisfies 1 ≤ u ≤ 10. For the numerical illustration

presented in Sections 2.9 and 2.10, we have chosen u = 2.5. For the straight

line segment of values of β satisfying (2.17) and (2.18),

∥∥β − β̃∥∥ =

(
avar(τ̂ ; β̃)

)1/2∥∥∂h(β̃)
/
∂β
∥∥ |γa| ≤

(
avar(τ̂ ; β̃)

)1/2∥∥∂h(β̃)
/
∂β
∥∥ 10.

Note that, from the distribution (2.8) for large n, I(β) increases with n and

so
(
I(β)

)−1
decreases with n. It follows that

(
avar(τ̂ ; β̃)

)1/2
converges to 0,

as n → ∞. Thus the supremum, over the values of β satisfying (2.17) and

(2.18), of
∥∥β−β̃∥∥ converges to 0, as n→∞. Let γ = (τ−t)

/(
avar(τ̂ ; β̃)

)1/2
.

Recall that τ = h(β) and τ̂ = h(β̂). We apply the first order Taylor series

expansion for h(β) of β about β̃. Thus γ − γa → 0, as n→∞.

For given β̃ and for β satisfying (2.17) and (2.18), the coverage probability

Pβ

(
θ ∈ ACIW

(
β̂
))

is a function of the scalar parameter γa ∈ [−u, u]. For
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given β̃, we define the local minimum coverage probability of the confidence

interval ACIW
(
β̂
)

to be the minimum over the set of β satisfying (2.17) and

(2.18) of Pβ

(
θ ∈ ACIW

(
β̂
))

.

2.6.2 Data-based choice of β̃

Consider a given data set that is assumed to be correctly modelled by the

model described at the start of Section 2.3. As before, let β̂ denote the

maximum likelihood estimate of β. We choose β̃ to be the value of β that

(a) satisfies h(β) = t and (b) minimizes
∥∥β̃− β̂∥∥. This ensures that the β̃ is

a realistic value.

Let

β∗ = β̃ + κ
(
∂h(β̃)

/
∂β
)>
, (2.19)

where κ satisfies (2.18). Now let θ∗ = g(β∗) and let β̂∗ denote the maximum

likelihood estimator of β∗. We assess the coverage probability Pβ∗
(
θ∗ ∈

ACIW
(
β̂∗
))

of the confidence interval ACIW
(
β̂∗
)
, when the true parameter

value is set to β∗, by Monte Carlo simulation for each value in an equally-

spaced grid of values of γa ∈ [−u, u]. These simulation results can then be

used to estimate the local minimum coverage probability of the confidence

interval ACIW
(
β̂∗
)
, which is the minimum over the set of β∗ satisfying (2.19),

where κ satisfies (2.18), of Pβ∗
(
θ∗ ∈ ACIW

(
β̂∗
))

.

Let θ̂∗ = g(β̂∗), τ ∗ = h(β∗) and τ̂ ∗ = h(β̂∗). It follows from the asymp-

totic distribution (2.10) and Slutsky’s theorem that a large sample approxi-

mation to the distribution of
(
θ̂∗, τ̂ ∗

)
is

N


θ∗
τ ∗

 ,
 avar

(
θ̂; β̃

)
acov

(
θ̂, τ̂ ; β̃

)
acov

(
θ̂, τ̂ ; β̃

)
avar

(
τ̂ ; β̃

)

 . (2.20)

This distribution is obtained when we set var(θ̂), cov(θ̂, τ̂) and var(τ̂) equal
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to avar
(
θ̂; β̃

)
, acov

(
θ̂, τ̂ ; β̃

)
and avar

(
τ̂ ; β̃

)
, respectively, in (2.2). Conse-

quently, a large sample approximation to the coverage probability Pβ∗
(
θ∗ ∈

ACIW
(
β̂∗
))

is given by CP (γ∗, ρ(β̃)), the coverage probability of the confi-

dence interval CI(bρ(β̃), sρ(β̃)) computed using ciuupi.

2.7 Definition of the local scaled expected

length of a confidence interval

We consider the local parametric framework described in subsection 2.6.2. It

is within this framework that we define the local scaled expected length of

the confidence interval ACIW
(
β̂∗
)
, which has nominal coverage 1− α. This

definition is an analogue of the definition of the scaled expected length of

the confidence interval CI(bρ, sρ), as given by the right-hand side of (2.5).

The definition of the scaled expected length, as given by the right-hand side

of (2.5), is reasonable since the minimum coverage probabilities of CI(bρ, sρ)

and I are the same. However, the local minimum coverage probabilities of

ACIW
(
β̂∗
)

and IW(y∗;α) may not be the same. Therefore we define the local

scaled expected length of ACIW
(
β̂∗
)

to be

Eβ∗

(
length of ACIW

(
β̂∗
)

length of IW(y∗; c̃) computed from the same data

)
,

where c̃ is such that the local minimum coverage probabilities of ACIW
(
β̂∗
)

and IW(y∗; c̃) are the same.

Consider the argument given in the last paragraph of subsection 2.6.2.

This argument implies that a large sample approximation to the local scaled

expected length of ACIW
(
β̂∗
)

is given by SEL(γ∗, ρ(β̃)), the scaled expected

length of the confidence interval CI(bρ(β̃), sρ(β̃)) computed using the R package

ciuupi.
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2.8 Application to quantal bioassays

We consider a quantal bioassay carried out to compare two similar com-

pounds, labelled A and B. This comparison is with respect to a specified

dichotomous response, labelled S and not-S, for individuals that belong to

a specified large homogeneous population. Let d1, . . . , dm denote given dose

levels. Now let xi = log10(di) for i = 1, . . . ,m. Suppose that n1, . . . , nm and

n′1, . . . , n
′
m are given positive integers.

One half of the experiment consists of carrying out the following steps for

each i = 1, . . . ,m. Suppose that ni individuals are chosen at random from

the population and given dose di of compound A. Let ri denote the number of

these individuals with response S. The other half of the experiment consists

of carrying out the following steps for each i = 1, . . . ,m. Suppose that n′i

individuals are chosen at random from the population and given dose di of

compound B. Let r′i denote the number of these individuals with response S.

We will use the following logistic regression models. Suppose that r1, . . . ,

rm, r
′
1, . . . , r

′
m are independent. Also suppose that ri ∼ Binomial(ni, pi) and

r′i ∼ Binomial(n′i, p
′
i) for i = 1, . . . ,m. Let logit(p) = log

(
p/(1 − p)

)
for

0 < p < 1. Suppose that for any dose level d of compound A, the probability

p of response S for a randomly chosen individual from the population is given

by logit(p) = β1 + β2 x, where x = log10(d). This implies that

logit(pi) = β1 + β2 xi for i = 1, . . . ,m. (2.21)

Also suppose that for any dose level d′ of compound B, the probability p′ of

response S for a randomly chosen individual from the population is given by

logit(p′) = β3 + β4 x
′, where x′ = log10(d

′). This implies that

logit(p′i) = β3 + β4 xi for i = 1, . . . .m, (2.22)

Let y =
(
r1, . . . , rm, r

′
1, . . . , r

′
m

)
and β =

(
β1, . . . , β4

)
, so that this is a model
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of the type described in Section 2.3.

Let EDz denote the log-dose x of compound A for which the probability

of response S for a randomly chosen individual from the population is z/100.

Also let ED′z denote the log-dose x′ of compound B for which the probability

of response S for a randomly chosen individual from the population is z/100.

Suppose that the parameter of interest θ = EDz − ED′z, for some given z

(0 < z < 100).

Consider the case that for all possible dose levels d of compound A, the

probability p of response S for a randomly chosen individual from the popu-

lation is the same as that for a dose level d′ = λd of compound B, for some

fixed λ > 0. Therefore, the log-dose x = log10(d) of compound A leads to

the same probability p of response S for a randomly chosen individual from

the population as the log-dose log10(λd) = log10(λ) + log10(d) of compound

B. Hence logit(p) = β1 + β2 x and

logit(p) = logit(p′) = β3+β4
(

log10(λ)+log10(d)
)

=
(
β3+β4 log10(λ)

)
+β4 x.

Therefore β2 = β4, so that the straight lines β1+β2 x and
(
β3+β4 log10(λ)

)
+

β4 x are parallel. This condition of “parallelism”, i.e. that β2 = β4, greatly

simplifies the statistical analysis.

We consider the case that, although the compounds A and B are thought a

priori to be sufficiently similar that the hypothesis of “parallelism” is highly

plausible, we are not certain that this hypothesis holds. In other words,

suppose that we have uncertain prior information that the hypothesis of

“parallelism” holds.
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2.9 Numerical illustration: quantal bioassay

of Morphine and Amidone.

We illustrate the properties of the confidence interval ACIL(y), which utilizes

the uncertain prior information that the hypothesis of “parallelism” holds,

using data from Grewal (1952). This data was collected to compare the

analgesic properties of Morphine and Amidone (also known as Methadone)

in mice. A total of 616 homogeneous mice were randomly allocated to the

groups shown in Table 2.1. In this table xi denotes log10 of the dose and

ni and n′i denote the number of mice give this log-dose of Morphine and

Amidone, respectively. The experimenter recorded the number of shocks that

could be applied to the tail of the mouse before it squeaked. If the number

of shocks was four or more then the mouse was taken to give response S. In

Table 2.1, ri denotes the number of mice (out of ni mice) with response S for

the log-dose xi of Morphine. Similarly, r′i denotes the number of mice (out

of n′i mice) with response S for the log-dose xi of Amidone.

Table 2.1: Quantal bioassay of Morphine and Amidone

log10 dose Morphine Amidone

xi ni ri n′i r′i

0.18 103 19 60 14

0.48 120 53 110 54

0.78 123 83 100 81

Suppose that the parameter of interest is θ = EDz − ED′z, where EDz

and ED′z are the log-doses of Morphine and Amidone, respectively, for which

the probability of response S for a randomly chosen mouse is z/100. Also

suppose that our aim is to find a confidence interval for θ with minimum
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coverage probability 0.95.

Morphine and Amidone both belong to the family of drugs known as

opioids. Opioids act on the brain in a particular way that can provide pain

relief. Because Morphine and Amidone are both opioids, the hypothesis

of “parallelism” is highly plausible. However, we are not certain that this

hypothesis holds. In other words, we have uncertain prior information that

the hypothesis of “parallelism” holds.

The models that we use for the Morphine and Amidone data are (2.21)

and (2.22), respectively, with m = 3, n1 = 103, n2 = 120, n3 = 123, n′1 = 60,

n′2 = 110 and n′3 = 100 with

EDz =
1

β2

(
logit

( z

100

)
− β1

)
and ED′z =

1

β4

(
logit

( z

100

)
− β3

)
.

The parameter of interest is equal to

θ = g(β) =
1

β2

(
logit

( z

100

)
− β1

)
− 1

β4

(
logit

( z

100

)
− β3

)
.

Henceforth, we consider that case that z = 60. Let τ = h(β) = β2 − β4.

The uncertain prior information is that τ = 0.

2.9.1 Application of the procedure described in sub-

section 2.6.2

We apply the procedure described in subsection 2.6.2 to the Morphine/Ami-

done data. For this data, the maximum likelihood estimate β̂ = (−2.0652,

3.6418,−2.0968, 4.4581). We find that β̃ =
(
β̃1, . . . , β̃p

)
is given by

β̃1 = β̂1, β̃2 =
β̂2 + β̂4

2
, β̃3 = β̂3, β̃4 =

β̂2 + β̂4
2

.

The data for Morphine and Amidone come from independent experi-

ments, so that the estimators
(
β̂1, β̂2

)
and

(
β̂3, β̂4

)
are independent. As
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a result of this, the inverse of the Fisher information matrix,
(
I(β)

)−1
, is

block diagonal. Using the expression for the Fisher information matrix, in

the context of a logistic regression model, given on page 116 of McCullagh

& Nelder (1989) we find that

(
I(β̃)

)−1
=



0.086304 −0.142229 0 0

−0.142229 0.280902 0 0

0 0 0.132504 −0.216338

0 0 −0.216338 0.408074


.

Also note that,

∂g(β)

∂β
=

[
−1

β2

β1 − logit (z/100)

β2
2

1

β4

logit (z/100)− β3
β2
4

]

and

∂h(β)

∂β
=

[
0 1 0 −1

]
.

Therefore

avar
(
θ̂; β̃

)
=
∂g(β̃)

∂β

(
I(β̃)

)−1(∂g(β̃)

∂β

)>
= 0.002333,

avar
(
τ̂ ; β̃

)
=
∂h(β̃)

∂β

(
I(β̃)

)−1(∂h(β̃)

∂β

)>
= 0.688976,

acov
(
θ̂, τ̂ ; β̃

)
=
∂g(β̃)

∂β

(
I(β̃)

)−1(∂h(β̃)

∂β

)>
= −0.01603,

so that ρ(β̃) = −0.399855.

We also find that

β∗ = β̃ +

(
avar(τ̂ ; β̃)

)1/2
2

[
0 1 0 − 1

]>
γa.

Let τ ∗ = h(β∗) = β∗2 − β∗4 . Now let γ∗ = τ ∗
/(

avar(τ̂ ; β̃)
)1/2

. It follows that
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γ∗ = γa, so that β∗ =
(
β∗1 , . . . , β

∗
p

)
is given by

β∗1 = β̂1, β
∗
2 =

β̂2 + β̂4
2

+
τ ∗

2
, β∗3 = β̂3, β

∗
4 =

β̂2 + β̂4
2

− τ ∗

2
, (2.23)

where τ ∗ =
(
avar(τ̂ ; β̃)

)1/2
γ∗ and γ∗ ∈ [−u, u]. We deal with the choice of u

in the next subsection.

2.9.2 Choice of u

For β∗4 = 0 it is impossible to determine EDz for any 0 < z < 100. Further-

more, values of β∗4 < 0 seem impossible. Therefore, β∗4 = 0 is a boundary

point for impossible values of β∗4 . Note that β∗4 = 0 when τ ∗ = β̂2 + β̂4.

Similarly, for β∗2 = 0 it is impossible to determine EDz for any 0 < z < 100.

Furthermore, values of β∗2 < 0 seem impossible. Therefore, β∗2 = 0 is a bound-

ary value for impossible values of β∗2 . Note that β∗2 = 0 when τ ∗ = −
(
β̂2+β̂4

)
.

Therefore, u must be less than β̂2 + β̂4 = 8.0999.

In fact, u must be a good deal less than β̂2 + β̂4 for the profile likelihood

confidence interval for θ∗, with nominal coverage 0.95, not to have extremely

large lengths for a substantial proportion of samples. This is evident from Ta-

ble 2.2 which shows the values of τ ∗ and γ∗ and the percentage of simulation

runs for which the length of the profile likelihood confidence interval is greater

than 1000 for z = 60 and M = 5000 simulation runs. We have therefore cho-

sen u = 2.5, so that we restrict attention to γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. Note

that γ∗ = 2.5 corresponds to τ ∗ = 2.075. To get a sense of the difference in

slopes that this allows, consider the following.

(i) Suppose that γ∗ = 0, so that τ ∗ = 0 and the hypothesis of “parallelism”

is satisfied. In this case, β∗2 = β∗4 = 4.0499. Consequently, ED60 =

0.6101 and ED′60 = 0.6178, so that θ∗ = −0.0078.

(ii) Suppose that γ∗ = 2.5, so that τ ∗ = 2.075. In this case, β∗2 = 5.0874,
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β∗4 = 3.0124. Consequently, ED60 = 0.4856 and ED′60 = 0.8306, so that

θ∗ = −0.345.

(iii) Suppose that γ∗ = −2.5, so that τ ∗ = −2.075. In this case, β∗2 =

3.0124, β∗4 = 5.0874. Consequently, ED60 = 0.8202 and ED′60 = 0.4918,

so that θ∗ = 0.3283.

Table 2.2: The values of γ∗ and τ ∗ and the percentage of simulation runs (row

marked %) for which the length of the profile likelihood confidence interval

is greater than 1000 for z = 60 and M = 5000 simulation runs.

γ∗ −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

τ ∗ −4.15 −3.74 −3.32 −2.91 −2.49 −2.08 −1.66 −1.25 −0.83 −0.42

% 2.10 1.08 0.16 0.02 0.01 0.00 0.00 0.00 0.00 0.00

γ∗ 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

τ ∗ 0.00 0.42 0.83 1.25 1.66 2.08 2.49 2.91 3.32 3.74 4.15

% 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.53 1.50 3.92 7.51

2.10 Numerical Illustration: Monte Carlo sim-

ulation estimation of the local cover-

age probabilities and scaled expected

lengths of IL(y∗; c) and ACIL(y∗)

Suppose that β∗ is given by (2.23), where γ∗ (and therefore τ ∗) is specified.

Replace β by β∗ in the models (2.21) and (2.22) that we use for the Morphine

and Amidone data, respectively. For these models, k = 3, n1 = 103, n2 =

120, n3 = 123, n′1 = 60, n′2 = 110 and n′3 = 100. Let y∗ denote the response

vector.
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Our Monte Carlo simulation results show that the local coverage and

scaled expected length properties of ACIL(y∗) are superior to these prop-

erties for ACIW(β̂∗). Consequently, the description of these properties for

ACIW(β̂∗) have been relegated to Appendix A.2. For the remainder of this

chapter, we deal only with these properties for ACIL(y∗).

2.10.1 Monte Carlo simulation estimation of the local

coverage probabilities

The Monte Carlo simulation estimation of the local coverage probabilities of

IL(y∗; c), for given c, and ACIL(y∗) are very similar. Let θ∗ = g(β∗). We

carry out M independent simulation runs. The kth simulation run generates

an observation of y∗. We make Assumption A (stated in Appendix A.3) with

β and y replaced by β∗ and y∗, respectively. The Monte Carlo simulation

results reported in Appendix A.4 provide evidence in favour of the correctness

of this assumption.

We estimate the coverage probability Pβ∗
(
θ∗ ∈ IL(y∗; c)

)
, for given c, as

follows. On the kth simulation run we record 1
(
− z1−α/2 ≤ r1(θ

∗ |y∗) ≤

z1−α/2
)
. Using the recorded results for the M simulation runs, we estimate

this coverage probability and the standard error of this estimate in the ob-

vious way.

We estimate the coverage probability Pβ∗
(
θ∗ ∈ ACIL(y∗)

)
as follows. On

the kth simulation run we record

1
(
bρ(β̂∗)

(
r2(y

∗)
)
−sρ(β̂∗)

(
r2(y

∗)
)
≤ r1(θ

∗ |y∗) ≤ bρ(β̂∗)
(
r2(y

∗)
)
+sρ(β̂∗)

(
r2(y

∗)
))
.

(2.24)

Using the recorded results for the M simulation runs, we estimate this cover-

age probability and the standard error of this estimate in the obvious way. In

Appendix A.5, we describe the use of a look-up table for the fast evaluation
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of the functions bρ and sρ for any given ρ. In Appendix A.6, we describe the

computations of r1(θ
∗ |y∗) and r2(y

∗) in R.

The top panel of Figure 2.1 presents approximate 95% confidence intervals

for the coverage probability of the confidence interval IL(y∗; 0.05), which has

nominal coverage 0.95, evaluated at γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. The bottom

panel of this figure presents approximate 95% confidence intervals for the

coverage probability of the confidence interval ACIL(y∗), which has nominal

coverage 0.95, evaluated on the same set of values of γ∗. For both of these

panels, the number of simulation runs M = 40, 000. These figures show that

both IL(y∗; 0.05) and ACIL(y∗) have good local coverage properties as the

estimated coverage probabilities for the values of γ∗ considered are all very

close to 0.95.
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 Coverage Probability of IL( y*; 0.05)
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−2 −1 0 1 2

 Coverage Probability of ACIL(y*)

γ*

0.93

0.95

0.97

Figure 2.1: Approximate 95% confidence intervals for the coverage probabili-

ties of the confidence intervals IL(y∗; 0.05) (top panel) and ACIL(y∗) (bottom

panel), both with nominal coverage 0.95, for γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}.
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2.10.2 Monte Carlo simulation estimation of the local

scaled expected length of ACIL(y∗)

Let

q∗L =
length of ACIL

(
y∗
)

length of IL(y∗; c̃) computed from the same data
,

where c̃ is such that the local minimum coverage probabilities of ACIL
(
y∗
)

and IL(y∗; c̃) are the same. The local scaled expected length of ACIW
(
β̂∗
)

was defined in Section 2.7. The local scaled expected length of ACIL
(
y∗
)

is

similarly defined to be Eβ∗(q
∗
L).

We computed c̃ using the method described in subsection A.7.1 of Ap-

pendix A.7, with M ′ = 10, 000. We then used Monte Carlo simulation to

estimate Eβ∗(q
∗
L) as follows. We carry out M independent simulation runs.

On the kth simulation run we generate an observation q∗L(k) of q∗L. We es-

timate Eβ∗(q
∗
L) by

∑M
k=1 q

∗
L(k)

/
M . The analysis of the distribution of q∗L,

given in Appendix A.8, shows that this distribution does not have any long

or heavy tails.

The left panel of Figure 2.2 presents approximate 95% confidence intervals

for the local scaled expected length of the confidence interval ACIL
(
y∗
)
, with

nominal coverage 0.95, evaluated at each γ∗ ∈ {−2.5,−2, . . . , 2, 2.5} using

M = 40, 000 simulation runs. These approximate 95% confidence intervals

were found using the simplifying approximation that c̃ is computed without

error. This panel shows that the confidence interval ACIL(y∗) utilizes the

uncertain prior information that τ ∗ = 0.
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Figure 2.2: The left panel presents approximate 95% confidence intervals for

the local scaled expected length of the confidence interval ACIL
(
y∗
)
, with

nominal coverage 0.95, evaluated at γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. The right

panel is the graph of SEL(γ∗; ρ(β̃)) for the confidence interval CI(bρ(β̃), sρ(β̃)),

found using the R package ciuupi.

2.10.3 Large sample approximation to the local cover-

age probability and scaled expected length of

the confidence interval ACIL(y∗)

Application of the large sample approximations given in subsection 2.6.2 and

Section 2.7 to the Morphine/Amidone data gives the following results. The

coverage probability and the scaled expected length of the confidence interval

ACIL(y∗) are approximated by the coverage probability CP (γ∗; β̃) and the

scaled expected length SEL(γ∗; β̃) of the confidence interval CI(bρ(β̃), sρ(β̃))

computed using the R package ciuupi. Recall that ρ(β̃) = −0.399855 for

the Morphine/Amidone data,

Suppose that 1−α = 0.95. Graphs of the coverage probability CP (γ∗; β̃)

and the scaled expected length SEL(γ∗; β̃), considered as functions of |γ∗| ∈

[0, 10], are shown in Figure 2.3. The right panel of Figure 2.2 is a graph of
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SEL(γ∗; ρ(β̃)), considered as a function of γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. The

left and right hand panels of Figure 2.2 show very similar qualitative features.

 Coverage using ciuupi 

 

|γ*|

0.950000

0.950002

0.950004
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 SEL using ciuupi 

|γ*|

0 2 4 6 8 10

0.96

0.98

1

1.02

1.04

Figure 2.3: Graphs of the coverage probability CP (γ∗; ρ(β̃)) and the scaled

expected length SEL(γ∗; ρ(β̃)) for the confidence interval CI
(
bρ(β̃), sρ(β̃)

)
,

found using the R package ciuupi.

2.11 Conclusion

We constructed a confidence interval for a scalar parameter of interest θ

that utilizes the uncertain prior information that a distinct scalar parame-

ter τ takes the specified value t for a general regression model, without a

scale parameter. To construct this confidence interval, we consider the simi-

larity between the asymptotic joint distribution of the maximum likelihood

estimators of θ and τ and the joint distribution of these estimators in the

particular case of a linear regression with normally distributed errors having

known variance.

We expressed this similarity both in terms of Wald statistics and signed

root likelihood ratio (SRLR) statistics. As evidenced by the graphs of the

coverage probability and scaled expected length in Section 2.10 and Appendix

A.2, we observed that expressing this similarity in terms of SRLR statistics
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leads to the confidence interval in the general regression context having better

performance than when we express this similarity in terms of Wald statistics.

The coverage probability plots of the likelihood-based confidence intervals

IL(y∗; 0.05) and ACIL(y∗) both showed good local coverage properties and

the likelihood-based confidence interval ACIL
(
y∗
)

utilized the uncertain prior

information that τ ∗ = 0.
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Chapter 3

Computation of the expected

value of a function of a

chi-distributed random variable

3.1 Introduction

In this chapter, we consider the numerical evaluation of the expected value

of a smooth bounded function of a chi-distributed random variable, divided

by the square root of the number of degrees of freedom. This computation,

described in detail in Section 3.2, arises in the assessment of the coverage

probability and expected volume properties of some non-standard confidence

regions (Farchione & Kabaila, 2008, Kabaila & Giri, 2009a, Kabaila & Giri,

2009b, Kabaila & Farchione, 2012, Kabaila & Giri, 2013, Kabaila & Tissera,

2014, Kabaila et al. , 2016, Kabaila et al. , 2017, Abeysekera & Kabaila, 2017

and Kabaila, 2018). It also arises in simultaneous statistical inference and

the selection and ranking of populations (Miller, 1981, Hochberg & Tamhane,

1987, Gupta & Panchapakesan, 2002) and in the evaluation of central and

non-central (Kshirsagar definition, which is consistent with expression (1.4)

of Genz & Bretz, 2009) multivariate t probabilities (Dunnett & Sobel, 1955,
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Dunnett, 1989, Genz & Bretz, 2009). The new computational method that

we describe in the present chapter is applied in Chapter 4 to the computation

of the Kabaila & Giri (2009a) confidence interval that utilizes uncertain prior

information.

For the evaluation of the integral of interest, we initially seek out an ap-

propriate transformation of the variable of integration. As noted by Schwartz

(1969), “The real artistry of numerical integration lies in learning to make

changes of the variable” appropriate for the problem at hand and that “this

must be studied separately for every problem.” The literature on various ini-

tial changes of the variable of integration for the purpose of efficient numer-

ical integration is vast, with early references including Davis & Rabinowitz

(1984), Sag & Szekeres (1964), and Imhof (1963). Some simple illustrations

of the power of appropriate changes in the variable of integration before

numerical integration were provided by Avery & Soler (1988).

We carry out the numerical evaluation of interest using a transformation

put forward by Mori (1988), followed by the application of the trapezoidal

rule. This transformation belongs to a family of transformations proposed

and investigated by Takahasi & Mori (1973), Mori (1985), and others. The

trapezoidal rule has the advantage that it leads to a nested sequence of

quadrature rules that can be used for estimation of the approximation er-

ror. It has the remarkable property that, for suitable integrands, it is ex-

ponentially convergent (Trefethen & Weideman, 2014). There are several

well-known explanations for this remarkable property, including the Euler-

Maclaurin summation formula and Fourier transform methods.

We describe the properties of the trapezoidal rule using the Fourier trans-

form of the integrand and the Poisson summation formula in Section 3.3. In

Section 3.4, we describe in detail the application of the transformation (2.6)

of Mori (1988) followed by the application of the trapezoidal rule. We also
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describe a method of carrying out the required ‘trimming’ of the infinite sum

approximation to the integral that leads to an easily-computed upper bound

on the resulting trimming error. In subsection 3.4.3, we describe a simple

and effective procedure, similar to that described by Mori (1988), for the

evaluation of the integral of interest. In subsection 3.4.4, we describe an ex-

tension of this procedure that we prove to be exponentially convergent under

the appropriate regularity condition.

In Section 3.5, we provide numerical results for the method described in

subsection 3.4.3, using the simple test scenario that consists of evaluating a

known univariate t probability. In Section 3.6, we compare the performance

of the method described in subsection 3.4.3 with the three methods (a) Gauss

Legendre quadrature, (b) Generalized Gauss Laguerre quadrature and (c)

inverse cdf method followed by Gauss Legendre quadrature. The purpose of

this comparison is to illustrate the factors that can lead to a relatively poor

performance of these three methods.

Finally, in Section 3.7, we discuss the application of the procedures de-

scribed in Section 3.4 to the computation of the coverage probability and

scaled expected volume of some non-standard confidence regions. The com-

putations for this chapter were carried out using the R computer language.

The work described in this chapter appears in Kabaila & Ranathunga (2021).

3.2 Integral of interest

We consider the problem of finding an accurate and efficient method of nu-

merically computing an integral of the form∫ ∞
0

a(x) fν(x) dx, (3.1)

where a is a smooth bounded real-valued function, ν is a positive integer

and fν is the probability density function (pdf) of a random variable with
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the same distribution as R/ν1/2, where R has a χν distribution (i.e. R2 has

a χ2
ν distribution). Note that (3.1) = E

(
a(R/ν1/2)

)
, which is the expected

value of a smooth bounded function of R/ν1/2. We suppose that a computer

program for the accurate and efficient evaluation of a(x), for any given x > 0,

is either already available or can be easily written. In other words, our focus

is solely on the numerical evaluation of the integral (3.1).

The pdf fν is given by

fν(x) =


τν x

ν−1 exp
(
− ν x2/2

)
for x > 0

0 otherwise,

where

τν =
νν/2

Γ(ν/2) 2(ν/2)−1 .

Our search for a better method for the evaluation of an integral of the

form (3.1) has led us to seek out an appropriate transformation of the vari-

able of integration, followed by the application trapezoidal rule over the real

line. The trapezoidal rule also has the great advantage that it can be used

to create a nested sequence of quadrature rules, used for the estimation of

the approximation error, so that previous evaluations of the function a are

not wasted. For our purposes, the best description of the properties of the

trapezoidal rule is found using the Fourier transform of the integrand and

the Poisson summation formula. We describe this well-known description in

the next section.
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3.3 Properties of the trapezoidal rule found

using the Fourier transform of the inte-

grand

In this section we recall the Poisson summation formula and its well-known

use in assessing the error of the trapezoidal rule. Suppose that we wish to

evaluate ∫ ∞
−∞

g(y) dy, (3.2)

where g is a real-valued absolutely integrable function. Let G denote that

Fourier transform of g. This transform is defined by

G(ω) =

∫ ∞
−∞

g(y) exp(−i ω y) dy,

where i =
√
−1 and the angular frequency ω ∈ R. Since g is real-valued,

G(ω) is an even function of ω (see e.g. p.11 of Papoulis 1962). As shown in

Appendix B.1, it follows from the Poisson summation formula (see e.g. p.47

of Papoulis 1962) that

∣∣∣∣∣h
∞∑

j=−∞

g(jh+ δ)−
∫ ∞
−∞

g(y) dy

∣∣∣∣∣ ≤ 2
∞∑
j=1

∣∣∣∣G(2πj

h

)∣∣∣∣ , (3.3)

for all δ ∈ [0, h). The left-hand side is the discretization error. This error is

small when |G(ω)| decays rapidly as ω →∞ and h is sufficiently small.

We approximate the infinite sum

h

∞∑
j=−∞

g(jh+ δ) (3.4)

by the finite sum

h
N∑

j=M

g(jh+ δ), (3.5)
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for appropriately chosen integers M and N (M < N). The “trapezoidal rule”

approximation to (3.2) is (3.5). The absolute value of the difference (3.5) −

(3.4) is called the trimming error. For (3.5) to be a good approximation to

(3.2), we require that both the discretization error and the trimming error

are small.

3.4 Application of the transformation (2.6) of

Mori (1988), followed by the application

of the trapezoidal rule

In this section, we apply the transformation (2.6) of Mori (1988) to the

integral (3.1), followed by the application of the trapezoidal rule. We also

describe a method of carrying out the required ‘trimming’ of the infinite sum

approximation to the integral that leads to an easily-computed upper bound

on the resulting trimming error. Throughout this section we suppose that ν

is given.

3.4.1 Transformation (2.6) of Mori (1988)

To evaluate (3.1), we first apply the transformation (2.6) of Mori (1988),

namely

x(y) = exp

(
1

2
y − e−y

)
,

so that

dx(y)

dy
= exp

(
1

2
y − e−y

) (
1

2
+ e−y

)
and ∫ ∞

0

a(x) fν(x) dx =

∫ ∞
−∞

a
(
x(y)

)
ψν(y) dy, (3.6)
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where

ψν(y) = fν
(
x(y)

)dx(y)

dy
.

The formula for the function ψν(y) is given in Appendix B.2.

3.4.2 Assumption FT and exponential convergence

As noted by Mori (1985) this transformation leads to ψν(y) having double

exponential decay as y → ±∞, i.e. there exist positive numbers c1, c2 and

c3 such that

|ψν(y)| ∼ c1 exp
(
− c2 exp(c3|y|)

)
, y → ±∞. (3.7)

This implies that gν(y) = a
(
x(y)

)
ψν(y) also has double exponential decay

as y → ±∞. Computational results show that the function ψν is unimodal

for all positive integers ν. Figure 3.1 shows the distribution of the function

ψν(y) as a function of y for ν = 1, 2, 3, 10 and 100.
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ψ
ν (

y)

ν = 1
ν = 2
ν = 3
ν = 10
ν = 100    

Figure 3.1: Plot of the function ψν(y) as a function of y for ν = 1, 2, 3, 10

and 100

Let y∗ν denote the value of y at which ψν(y) is maximized. The value of

y∗ν is roughly 0.85 for all positive integers ν (as evidenced by Figure 3.1). We
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suppose, without loss of generality, that |a(x)| ≤ 1 for all x ∈ R.

Let Gν denote the Fourier transform of gν(y). We now introduce the

following assumption.

Assumption FT: There exist positive numbers c4 and cFT such that

|Gν(ω)| ≤ c4 exp
(
− cFT |ω|

)
for all ω ∈ R. In other words, Gν(ω) has single exponential decay as ω →

±∞.

Theorem 5.1 of Trefethen & Weideman (2014) provides conditions on the

function gν(y) that imply that this assumption holds.

We will approximate (3.6) by

h
n−1∑
j=0

a
(
x(y` + hj)

)
ψν(y` + hj), (3.8)

where n denotes the number of evaluations of the integrand a
(
x(y)

)
ψν(y), h

denotes the step length and the first evaluation of this integrand is at y`. Let

d = nh. Of course, our aim is to choose
(
n, h, y`

)
such that (3.8) provides an

efficient and accurate approximation.

We will use the following result which provides an easily computed upper

bound on the trimming error. This result is due to Paul Kabaila.

Lemma 3.4.1. Suppose that y` < y∗ν and that y` + d > y∗ν. Then, when we

approximate (3.6) by (3.8), the trimming error is bounded above by uν
(
y`, d

)
,

where

uν(y, d) = Qν

(
ν x2(y)

)
+ 1−Qν

(
ν x2

(
y + d

))
and Qν denotes the χ2

ν cdf.

Proof. Suppose that y` < y∗ν and that y` + d > y∗ν . The trimming error is

∣∣∣∣∣h
−1∑

j=−∞

a
(
x(y` + hj)

)
ψν(y` + hj) + h

∞∑
j=n

a
(
x(y` + hj)

)
ψν(y` + hj)

∣∣∣∣∣ .
(3.9)

55



The trimming error is bounded above by

h
−1∑

j=−∞

ψν(y` + hj) + h

∞∑
j=n

ψν(y` + hj),

since, for all positive integers ν, ψν(y) > 0 for all y ∈ R. Observe that

h

∞∑
j=n

ψν(y` + hj) = h

∞∑
j=1

ψν(yu + hj),

where yu = y` + d.

Figure 3.2 shows the plot of ψν(yu + t) as a function of t for ν = 10 and

h = 0.01.

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ψ
ν 

( 
y u

+
t)

t

Figure 3.2: Graph of ψν(yu + t) as a function of t for ν = 10 and h = 0.01.

We now use the same reasoning as for the integral test for series conver-

gence. Since ψν(yu+ t) is a decreasing function of t ≥ y∗ν (as shown in Figure

3.2 ),

h
∞∑
j=1

ψν(yu + hj) ≤
∫ ∞
yu

ψν(t) dt =

∫ ∞
yu

fν
(
x(y)

) dx(y)

dy
dy

= P
(
R > ν1/2x(yu)

)
,

= 1−Qν(ν x
2(yu))

where Qν denotes the χ2
ν cdf.
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Similarly, since ψν(y` + t) is an increasing function of t ∈ (−∞, y∗ν ],

h

−1∑
j=−∞

ψν(y` + hj) ≤
∫ y`

−∞
ψν(t) dt = Qν

(
ν x2(y`)

)
.

Therefore (3.9) is bounded above by uν
(
y`, d

)
.

3.4.3 A simple and effective procedure for evaluating

the integral (3.6)

Suppose that we are given the value ε > 0 of a desired upper bound on

the absolute value of the approximation error that we will develop. We now

describe a simple and effective procedure for evaluating the integral (3.6), to

roughly this accuracy, that leads to a nested sequence of quadrature rules.

This procedure, which is similar to that described by Mori (1988, pp.370–

371), consists of the following steps:

Step 1: Choose y` and d and an initial value of n

The upper bound (3.3) on the discretization error suggests that, for a given

value of the upper bound on the trimming error, as given in Lemma 3.4.1, it

makes sense to minimize h. This provides the motivation for the following

choice of d. Choose d such that

min
y
uν
(
y, d
)

= 10−3 ε.

Choose y` to be the value of y minimizing uν
(
y, d
)
. This will ensure that the

magnitude of the approximation error will be dominated by the discretization

error. This is not as wasteful of evaluations of the integrand gν(y) as it might

seem at first since gν(y) has double exponential decay as y → ±∞. We have

chosen the initial value of n to be 5. Proceed to the next step.

Step 2: For given (n, h, y`), evaluate the approximation (3.8)

Evaluate the approximation (3.8) and store the result. Using the stored

57



values of the approximations decide whether or not to stop the procedure.

Because the magnitude of the approximation error is dominated by the dis-

cretization error, this stopping rule can depend simply on estimating the

discretization errors, as in the procedure described by Mori (1988, pp.370–

371). Proceed to the next step.

Step 3: Halve h and go back to the previous step

3.4.4 An exponentially convergent procedure for eval-

uating the integral (3.6)

While the procedure described in the previous subsection is simple to pro-

gram and effective (as evidenced by the numerical results presented in Sec-

tion 3.5), it does not lead to exponential convergence. We now describe a

procedure that results in a nested sequence of quadrature rules that, under

Assumption FT, is exponentially convergent. The fact that gν(y) has double

exponential decay as y → ±∞, whereas its Fourier transform Gν(ω) has

only single exponential decay as ω → ±∞, implies that, at each iteration,

d should be increased at a slower rate than 1/h. By adding a given positive

number 2b to d and halving h at each iteration, we obtain exponential con-

vergence. For simplicity of exposition, we have not included a stopping rule

in the description of this procedure.

Step 1: An initial choice of a reasonable value of (y`, n, d)

Choose an initial value of n, which we denote by n0. The initial value of h,

denoted by h0, is the initial value of d (to be specified shortly) divided by n0.

We choose b to be some small positive integer multiple of h0. For the sake of

concretness, we have chosen b = h0. The initial value of d is such that

min
y
uν (y, d) is equal to some specified small positive number.

The initial value of y`, denoted by y`0, is the value of y minimizing uν(y, d)
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for the chosen initial value of d, denoted by d0. Let yu0 = y`0 + d0. Proceed

to the next step.

Step 2: For given (y`, n, d), evaluate the approximation (3.8)

Evaluate the approximation (3.8) and store the result. Proceed to the next

step.

Step 3: Add 2b to d, halve h and choose the new value of y`

Add 2b to d and halve h. Choose the new value of y` to be y` − b. It will be

convenient for the proof of exponential convergence to define the iteration

number k by h = h0/2
k. Go back to the previous step.

The following theorem and its proof, given in Appendix B.3, is due to Paul

Kabaila. This theorem states that under Assumption FT this procedure is

exponentially convergent. The type of convergence described in this theorem

is consistent with that other double exponential types of quadrature formulas

(Mori & Sugihara, 2001).

Theorem 3.4.1. Suppose that Assumption FT holds. Then the magnitude

of the approximation error is, for all sufficiently large iteration numbers k,

bounded above by

10 τν
9ν

(
exp

(
−ν

2
exp

(
9 yu0
10

)
2cT k

)
+ exp

(
−ν exp

(
−9 y`0

10

)
2cT k

))
+ 2 c4 exp

(
−
(

2π cFT
h0

)
2k
)
,

where cT = 9h0
/(

10 loge(2)
)
. Since, at iteration number k, n = (n0+2 k) 2k,

the magnitude of the approximation error converges exponentially to 0 as

n→∞.

Proof. Suppose that Assumption FT holds. By the proof of Lemma 3.4.1,

the trimming error for iteration number k, is bounded above by
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∫ ∞
yu0+kh0

ψν(t) dt+

∫ y`0−kh0

−∞
ψν(t) dt. (3.10)

As proved in part (a) and part (b) of Appendix B.3, there exist t1 <∞ and

t2 > −∞ such that

ψν(t) ≤
τν
2

exp

(
−ν

2
exp

(
9

10
t

))
for all t ≥ t1

and

ψν(t) ≤ τν exp

(
−ν exp

(
− 9

10
t

))
for all t ≤ t2.

It follows from this that∫ ∞
y

ψν(t) dt ≤
10 τν
9 ν

exp

(
−ν

2
exp

(
9

10
y

))
for all y ≥ t1

and ∫ y

−∞
ψν(t) dt ≤

10 τν
9 ν

exp

(
−ν exp

(
− 9

10
y

))
for all y ≤ t2

as shown in part (c) of Appendix B.3.

Therefore, from part (d) of Appendix B.3, for all sufficiently large itera-

tion numbers k, (3.10) is bounded above by

10 τν
9ν

(
exp

(
−ν

2
exp

(
9 yu0
10

)
2cT k

)
+ exp

(
−ν exp

(
−9 y`0

10

)
2cT k

))
,

where cT = 9h0
/(

10 loge(2)
)
.

According to part (e) of Appendix B.3, it follows from the upper bound

(3.3) on the discretization error and Assumption FT that, for all sufficiently

large iteration numbers k, the discretization error is bounded above by

3 c4 exp

(
−
(

2π cFT
h0

)
2k
)
.
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3.5 Numerical results for the transformation

(2.6) of Mori (1988), followed by the ap-

plication of the trapezoidal rule

In this section, we use the simple test scenario that consists of evaluating a

known univariate t probability.

Through the consideration of the coverage probability of a 1−α t-interval,

it may be shown that

1− α =

∫ ∞
0

aν,α(x) fν(x) dx, (3.11)

where

aν,α(x) = 2 Φ(tν,1−α/2 x)− 1,

with Φ the N(0, 1) cdf and the quantile tν,a defined by P
(
T ≤ tν,a

)
= a

for T ∼ tν . Figure 3.3 provides an illustration of the fact that the aν,α(x)’s

are smooth bounded functions of x for the values of α considered and all

positive integers ν. This figure presents graphs of aν,α(x) as a function of x

for α = 0.05 and ν = 1, 2 and ∞. The graph labeled ν = ∞ refers to the

case that tν,1−α/2 is replaced by its limit, as ν →∞.

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

x

 

ν = 1   
ν = 2
ν = ∞  

a  
ν 

, α
 (x

)

Figure 3.3: Graphs of aν,α(x) as a function of x for α = 0.05 and ν = 1, 2

and ∞
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Apply the transformation (2.6) of Mori (1988), so that∫ ∞
0

aν,α(x) fν(x) dx =

∫ ∞
−∞

gν,α(y) dy, (3.12)

where gν,α(y) = aν,α
(
x(y)

)
ψν(y).

We apply the simple procedure described in subsection 3.4.3, with ε =

10−17 and stopped after the computation of the approximation for n = 65

for ν = 1 and n = 33 for ν = 2, 3, 4, 5, 10, 100 and 1000. The approximation

error is defined to be this approximation minus 1−α. Table 3.1 presents the

approximation error for α = 0.10, 0.05 and 0.02 and ν = 1, 2, 3, 4, 5, 10, 100

and 1000. Due to the finite precision of our computations in R, we interpret

an entry 0 in this table as |approximation error| < 1.11× 10−16.

Table 3.1: The approximation error for the simple procedure described in

subsection 3.4.3, with ε = 10−17 and stopped after the computation of the

approximation for n = 65 for ν = 1 and n = 33 for ν = 2, 3, 4, 5, 10, 100 and

1000. Here α = 0.10, 0.05 and 0.02 and ν = 1, 2, 3, 4, 5, 10, 100 and 1000. We

interpret an entry 0 in this table as |approximation error| < 1.11× 10−16.

α ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0.10 −1.11× 10−16−2.22× 10−16 0 −2.22× 10−16−1.11× 10−16

0.05 9.66× 10−15 2.10× 10−14 −1.11× 10−16−1.11× 10−16−1.11× 10−16

0.02 −1.23× 10−12 5.82× 10−11 9.99× 10−16 −1.11× 10−16 0

α ν = 10 ν = 100 ν = 1000

0.10 2.00× 10−15 2.78× 10−14 −2.37× 10−13

0.05 2.11× 10−15 2.94× 10−14 −2.49× 10−13

0.02 2.22× 10−15 3.03× 10−14 −2.57× 10−13
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3.6 Comparison with three other methods of

numerical integration

In this section, we compare the performance of the method applied in the

previous section with three other methods (a) Gauss Legendre quadrature,

(b) Generalized Gauss Laguerre quadrature and (c) inverse cdf method fol-

lowed by the Gauss Legendre quadrature. We consider the same simple

test scenario, described in the previous section, that consists of evaluating

a known univariate t probability. The purpose of this comparison is to il-

lustrate the factors that may lead to a relatively poor performance of these

three methods.

3.6.1 Gauss Legendre quadrature

Once having the truncation parameters (n, h, yl) from Step 1 in subsection

3.4.3, one can simply use the Gauss-Legendre quadrature (instead of the

application of the trapezoidal rule) to evaluate the truncated integral

∫ yu

y`

aν,α
(
x(y)

)
ψν(y) dy. (3.13)

This application is made in the usual way by first carrying out a straight

line transformation of the interval [y`, yu] to [−1, 1]. We first change the

variable of integration in (3.13) to

s =
2

yu − yl

(
y −

(
yl + yu

2

))

so that ds = 2 dy/(yu − yl). Now

(3.13) =
yu − yl

2

∫ 1

−1
a

(
x

(
(yu − yl)

2
s+

(yl + yu)

2

))
×
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ψν

(
(yu − yl)

2
s+

(yl + yu)

2

)
ds

=
yu − yl

2

∫ 1

−1
kν(s) ds, (3.14)

where

kν(s) = a

(
x

(
(yu − yl)

2
s+

(yl + yu)

2

))
ψν

(
(yu − yl)

2
s+

(yl + yu)

2

)
.

We then approximate (3.14), using Gauss Legendre quadrature with m

nodes, by

yu − yl
2

m∑
j=1

w̃j kν(sj) (3.15)

for the appropriately chosen w̃j’s (which are all positive) and sj’s (−1 < s1 <

· · · < sm < 1). We define the approximation error to be (3.15) minus 1− α.

The resulting approximation errors are shown in Table 3.2. The magni-

tudes of these approximation errors are all larger than the magnitudes of the

corresponding approximation errors for the trapezoidal rule, with the same

number of integrand evaluations, reported in Table 3.1. In other words, for

the same number of evaluations of the integrand, the trapezoidal rule out-

performs Gauss-Legendre quadrature applied to the evaluation of (3.13), in

terms of magnitude of approximation error. This result may be explained by

the fact that the Gauss-Legendre quadrature nodes, which lie in the interval

[−1, 1], cluster near the values −1 and 1, where the transformed integrand

takes values very close to zero. This clustering also leads to Gauss-Legendre

quadrature nodes not far from 0, where the transformed integrand differs

most from zero, being more widely spaced than for the trapezoidal rule, with

the same number of evaluations of the integrand.
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Table 3.2: The approximation error for Gauss Legendre quadrature ap-

plied to the evaluation of (3.13), for α = 0.10, 0.05 and 0.02 and ν =

1, 2, 3, 4, 5, 10, 100 and 1000. The number of nodes m is 65 for ν = 1 and 33

for ν = 2, 3, 4, 5, 10, 100 and 1000.

α ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0.10 −2.84× 10−13−2.02× 10−10−1.26× 10−13−2.47× 10−13−6.75× 10−14

0.05 −1.67× 10−10 −2.01× 10−8 −6.44× 10−11 8.88× 10−13 1.47× 10−12

0.02 2.20× 10−7 −5.48× 10−7 −3.31× 10−9 1.70× 10−10 1.15× 10−12

α ν = 10 ν = 100 ν = 1000

0.10 −3.80× 10−14−9.33× 10−13 2.98× 10−13

0.05 3.09× 10−14 −1.06× 10−12 3.74× 10−13

0.02 6.85× 10−14 −1.13× 10−12 4.36× 10−13

An additional advantage of the trapezoidal rule is that, unlike Gauss-Legendre

quadrature, it leads to a nested sequence of quadrature rules that can be used

for the estimation of the approximation error.

3.6.2 Generalized Gauss Laguerre quadrature

To apply Generalized Gauss Laguerre quadrature to the evaluation of (3.1),

we first change the variable of integration to y = ν x2/2, so that

∫ ∞
0

a(x) fν(x) dx =
1

Γ(ν/2)

∫ ∞
0

dν(y) c(y) dy,

where c(y) = y(ν/2)−1 exp(−y) and dν(y) = a
(
(2y/ν)1/2

)
. We then apply

Generalized Gauss Laguerre quadrature, with m nodes (samples), to approx-

imate ∫ ∞
0

dν(y) c(y) dy
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by
m∑
j=1

wj dν(yj) (3.16)

for the appropriately chosen wj’s (which are all positive) and yj’s (0 < y1 <

· · · < ym <∞). We define the approximation error to be (3.16) minus 1−α.

Graphs of dν(y) as a function of y are shown in Figure 3.4 for ν = 1, 2, 3

and 10 and α = 0.10, 0.05 and 0.02. It should be noted that the horizon-

tal scales in each of the four panels of this figure are very different. It is

known that Generalized Gauss Laguerre quadrature with m nodes will lead

to the exact result if dν(y) is a polynomial in y ∈ [0,∞) of degree 2m − 1

(Chandrasekhar, 1960, p.65).
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Figure 3.4: Graphs of dν(y) as a function of y for ν = 1, 2, 3 and 10 and

α = 0.10, 0.05 and 0.02

We assess how well dν(y) can be approximated by a polynomial, over the

finite interval of values of y such that c(y)/Γ(ν/2) is substantially greater

than 0, as follows. Any polynomial p of degree u can be written as

p(y) = a0 −
u∑
j=1

aj(1− y)j

as shown in Appendix B.4.

Set a0 = 1 and require that
∑u

j=1 aj = 1, so that the functions p and dν

take the same values at both y = 0 and y = 1. A first approximation to

dν(y) by p(y) over the interval y ∈ [0, 1] is obtained by minimizing a measure
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of distance between dν(y) and 1 − (1 − y)j, over j ∈ {1, . . . , u}. A better

approximation is obtained by minimizing a measure of distance between dν(y)

and 1 −
∑u

j=1 aj(1 − y)j, over a1, . . . , au, subject to
∑u

j=1 aj = 1. It follows

from the shapes of the graphs in Figure 3.5 that to approximate dν(y) well

by a polynomial, over the finite interval of values of y such that c(y)/Γ(ν/2)

is substantially greater than 0, we would require this polynomial to be of

very high degree, particularly for small ν. This suggests that Generalized

Gauss Laguerre quadrature, with a given number of nodes m, will be most

inaccurate for ν = 1 and will have increasing accuracy as ν increases.

This suggested result is borne out by Table 3.3 , which lists the approx-

imation error for Generalized Gauss Laguerre quadrature for α = 0.10, 0.05

and 0.02 and ν = 1, 2, 3, 4, 5, 6, 10, 100 and 300. We have chosen the number

of nodes m to be the same as the number of integrand evaluations in Table

3.1. In other words, the number of nodes m is 65 for ν = 1 and 33 for

ν = 2, 3, 4, 5, 6, 10, 100 and 300.

Table 3.3: The approximation error for Generalized Gauss Laguerre quadra-

ture for α = 0.10, 0.05 and 0.02 and ν = 1, 2, 3, 4, 5, 6, 10, 100 and 300. The

number of nodes m is 65 for ν = 1 and 33 for ν = 2, 3, 4, 5, 6, 10, 100 and 300.

α ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0.10 1.44× 10−2 1.32× 10−3 1.63× 10−4 2.86× 10−5 6.08× 10−6

0.05 3.25× 10−2 2.04× 10−3 2.26× 10−4 3.77× 10−5 7.84× 10−6

0.02 2.00× 10−2 4.12× 10−3 3.39× 10−4 5.24× 10−5 1.05× 10−5

α ν = 6 ν = 10 ν = 100 ν = 300

0.10 1.48× 10−6 1.23× 10−8 −2.00× 10−14 −6.22× 10−15

0.05 1.88× 10−6 1.52× 10−8 −2.11× 10−14 −6.21× 10−15

0.02 2.46× 10−6 1.91× 10−8 −2.18× 10−14 −6.43× 10−15
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Further confirmation of the unsuitability of Generalized Gauss Laguerre

quadrature, in the scenario under consideration, for ν = 1 and ν = 2 is

provided by Figure 3.5. The top and bottom panels of this figure are scat-

terplots of the (yj, wj)’s for (ν,m) = (1, 65) and (ν,m) = (2, 33), respectively

(yj ≤ 50). For (ν,m) = (1, 65) and (ν,m) = (2, 33) there are 30 values of

yj > 50 and 9 values of yj > 50, respectively. When we compare the top

panel of Figure 3.5 with the top left panel (the case ν = 1) of Figure 3.4, we

observe the following. Generalized Gauss Laguerre quadrature uses very few

samples for the values of y where the function dν(y) is changing rapidly with

increasing y, while using a large number of samples for values of y at which

this function hardly changes with increasing y. Indeed, for (ν,m) = (1, 65)

there are only 2 nodes in the interval [0, 0.1]. A similar conclusion results

from comparing the bottom panel of Figure 3.5 with the top right panel (the

case ν = 2) of Figure 3.4. For (ν,m) = (2, 33) there are only 3 nodes in the

interval [0, 1].
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Figure 3.5: The top and bottom panels are scatterplots of the (yj, wj)’s for

(ν,m) = (1, 65) and (ν,m) = (2, 33), respectively

Of course, one could greatly increase the number of nodes m and then

approximate (3.16) by
∑q

j=1wj dν(yj), where q is much less than m. This

is unsatisfactory for the following two reasons. Firstly, the raison d’etre of

Generalized Gauss Laguerre quadrature is that with m nodes it leads to the

exact result for polynomials of degree 2m− 1. This fundamental property is

lost when this approximation is carried out. Secondly, this is a rather ad hoc

way of forcing more samples of the function dν(y) into the quadrature formula

for the values of y for which this function changes rapidly with increasing y.
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3.6.3 Inverse cdf method, followed by Gauss Legendre

quadrature

Change the variable of integration to y = Fν(x), where Fν denotes the cdf

corresponding to the pdf fν , so that x = F−1ν (y), dy = fν(x) dx and

∫ ∞
0

a(x) fν(x) dx =

∫ 1

0

a
(
F−1ν (y)

)
dy.

A similar transformation is used, for example, by Genz & Bretz (2009, p.32).

As shown in Appendix B.5, if desired, we can compute F−1ν (y) using either

F−1ν (y) =
(
Q−1ν (y)

/
ν
)1/2

or F−1ν (y) = F−1R (y)
/
ν1/2, where FR denotes the χν

cdf of R. We then change the variable of integration to z = 2y − 1, so that

dy = dz/2, to obtain ∫ 1

0

a
(
F−1ν (y)

)
dy =

∫ 1

−1
bν(z) dz,

where bν(z) = a (F−1ν ((z + 1)/2))
/

2. We then approximate the right-hand

side, using Gauss Legendre quadrature with m nodes, by

m∑
j=1

w̃j bν(zj) (3.17)

for the appropriately chosen w̃j’s (which are all positive) and zj’s (−1 < z1 <

· · · < zm < 1). We define the approximation error to be (3.17) minus 1− α.

Graphs of bν(z) as a function of z are shown in Figure 3.6 for ν = 1, 3, 10

and 100 and α = 0.10, 0.05 and 0.02. It should be noted that the horizontal

scale for the ν = 1 panel is different from the horizontal scale for the ν = 3,

ν = 10 and ν = 100 panels (which are the same). It is known that Gauss

Legendre quadrature with m nodes will lead to the exact result if bν(z) is a

polynomial in z ∈ [−1, 1] of degree 2m − 1. When interpreting Figure 3.6,

it is important to remember that bν(−1) = 0 and that bν(z) is an increasing
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continuous function of z ∈ [−1, 1]. It is evident, then, from this figure that

bν(z) increases very rapidly as z increases from zero for ν = 10 and ν = 100.
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Figure 3.6: Graphs of bν(z) as a function of z for ν = 1, 3, 10 and 100 and

α = 0.10, 0.05 and 0.02

It follows from Figure 3.6 and the same kinds of considerations as in

subsection 3.6.2 that the degree of the polynomial in z needed to approximate

bν(z) well in the interval z ∈ [−1, 1] increases with increasing ν. This suggests

that the inverse cdf method, using Gauss Legendre quadrature with a given

number of nodes m, will be most accurate for ν = 1 and will have decreasing

accuracy as ν increases.

This suggested result is borne out by the first 7 columns (the columns
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labelled ν = 1 to ν = 10) of Table 3.4, which lists the approximation er-

ror for Gauss Legendre quadrature for α = 0.10, 0.05 and 0.02 and ν =

1, 2, 3, 4, 5, 6, 10, 100 and 1000. We have chosen the number of nodes m to be

the same as the number of integrand evaluations in Table 3.1. In other words,

the number of nodes m is 65 for ν = 1 and 33 for ν = 2, 3, 4, 5, 6, 10, 100 and

1000.

Table 3.4: The approximation error for the inverse cdf method, us-

ing Gauss Legendre quadrature, for α = 0.10, 0.05 and 0.02 and ν =

1, 2, 3, 4, 5, 6, 10, 100 and 1000. The number of nodes m is 65 for ν = 1

and 33 for ν = 2, 3, 4, 5, 6, 10, 100 and 1000.

α ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

0.10 7.77× 10−16 6.39× 10−6 1.52× 10−5 2.07× 10−5 2.37× 10−5

0.05 8.88× 10−16 9.43× 10−6 2.06× 10−5 2.70× 10−5 2.96× 10−5

0.02 8.88× 10−16 1.53× 10−5 2.94× 10−5 3.58× 10−5 3.75× 10−5

α ν = 6 ν = 10 ν = 100 ν = 1000

0.10 2.47× 10−5 2.30× 10−5 4.01× 10−6 4.23× 10−7

0.05 3.02× 10−5 2.64× 10−5 4.06× 10−6 4.23× 10−7

0.02 3.68× 10−5 2.90× 10−5 3.36× 10−6 3.33× 10−7

3.7 Application to the computation of the

coverage probability and scaled expected

volume of non-standard confidence regions

To assess the coverage probability and expected volume properties of the non-

standard confidence regions considered in the references co-authored with

Kabaila, one needs to evaluate, for given ν, integrals of the form (3.1) for
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hundreds, or thousands or even tens of thousands of different functions a.

Each of these functions is smooth and bounded and the evaluation of a(y)

for any given y is computationally expensive. In this case, the following

“set-up costs” are negligible:

1. For the simple procedure described in Section 3.4 (the transformation

(2.6) of Mori (1988), followed by application of the trapezoidal rule),

the “set-up cost” is computing y` and d.

2. For Gauss Legendre quadrature, the “set-up cost” is computing y`, d

and the weights, w̃j’s, and nodes, sj’s, for this quadrature, followed by

the computation of the
(
(yu − yl) sj

)
/2 + (yl + yu)/2’s.

3. For Generalized Gauss Laguerre quadrature, the “set-up cost” is com-

puting the weights, wj’s, and nodes, yj’s, for this quadrature, followed

by the computation of the (2yj/ν)1/2’s

4. For the Inverse cdf method, the “set-up cost” consists of computing the

weights, w̃j’s, and nodes, zj’s, for Gauss Legendre quadrature, followed

by the computation of the F−1ν ((zj + 1)/2)’s.

In other words, the number of evaluations of the function a provides a rea-

sonable guide to the computational effort for each of these methods.

We now consider in detail the evaluations of integrals of the form (3.1)

in the references co-authored with Kabaila. Kabaila & Giri (2009a), Kabaila

& Giri (2009b), Kabaila & Tissera (2014) and Abeysekera & Kabaila (2017)

need to evaluate integrals of the form∫ ∞
0

λ(x)xξ fκ(x) dx (3.18)

where ξ and κ are a positive integers and λ : [0,∞)→ R is a smooth bounded

function. This integral can be converted into the form (3.1), as shown in
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Appendix B.6, by changing the variable of integration to y = c(κ, ξ)x, where

c(κ, ξ) =
(
κ/(κ+ ξ)

)1/2
, so that

∫ ∞
0

λ(x)xξ fκ(x) dx =

(
2

κ

)ξ/2
Γ(ν/2)

Γ(κ/2)

∫ ∞
0

a(y) fν(y) dy, (3.19)

where ν = κ + ξ and a(y) = λ
(
y
/
c(κ, ξ)

)
is a smooth bounded function of

y ≥ 0.

An important measure of the performance of a confidence interval is its

coverage probability function. The assessment of the coverage probability

functions of (a) the post-model-selection confidence intervals considered by

Kabaila & Giri (2009b) and Kabaila & Farchione (2012) and (b) the frequen-

tist model averaged confidence intervals considered by Kabaila et al. (2016)

is carried out by plotting the graphs of these functions. This requires the

evaluation, for some given ν, of an expression of the form (3.1) for, say, 200

different functions a. Each of these functions is smooth and bounded and

the evaluation of a(y) for any given y is computationally epxensive.

Abeysekera & Kabaila (2017), Kabaila & Giri (2009a), Kabaila & Giri

(2013) and Kabaila & Tissera (2014) construct non-standard confidence re-

gions with guaranteed coverage using the following computations. They nu-

merically optimize a criterion related to the expected volume of a parametric

family of non-standard confidence regions, subject to a coverage probabililty

constraint. The coverage probabililty, for a particular true parameter value,

of a member of this family is given by an expression of the form (3.1), for

some given ν. The function a is smooth and bounded and the evaluation of

a(y) for any given y is computationally expensive. As this numerical con-

strained optimization proceeds, the evaluation of an expression of the form

(3.1) needs to be carried out for thousands or even tens of thousands of

different functions a, for the same given ν.
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3.8 Remarks

For the computation of y` and d in Step 1 of our procedure, we have evaluated

Qν using the R function pchisq. This evaluation of Qν is carried out using

well-established methods for the evaluation of the incomplete gamma inte-

gral. These methods include the series expansion described by Shea (1988),

as well as a continued fraction expansion due to Gauss, which greatly simpli-

fies for ν an even positive integer. As already noted, for the types of problems

considered in the references co-authored with Kabaila, the “set-up cost” of

Step 1 is negligible. However, if one really needed to reduce the computation

time for Step 1 then one could do so by replacing the exact evaluation of the

tail probabilities of the χ2
ν distribution by upper bounds (such as Chernoff

bounds) on these probabilities and by simplifying the minimization and root

finding steps needed to evaluate y` and d.

3.9 Conclusion

In Section 3.6, for both Generalized Gauss Laguerre quadrature and the

inverse cdf method, we presented graphs whose features accurately predict

their performance in terms of accuracy for a given number of evaluations of

the function a. As noted in Section 3.7, the number of evaluations of the

function a is a reasonable measure of computational effort when the “set-

up costs” are negligible, as in the situations considered in the references

co-authored with Kabaila.

Our findings for the test scenario considered in Section 3.6 are as fol-

lows. The Gauss Legendre quadrature method has poor performances for

all the values of ν than the trapezoidal rule. The Generalized Gauss La-

guerre quadrature method performs worst for ν = 1, and has performance

that improves with increasing ν. It has the worst performance of the four
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methods for ν ∈ {1, 2, 3, 4}. The inverse cdf method, using Gauss Legendre

quadrature, has the best performance of the four methods for ν = 1 and

α ∈ {0.05, 0.02}, and has performance that decreases as ν increases through

the values 2, 3, 4, 5, 6 and 10. The method described in Section 3.4 (applica-

tion of the the transformation (2.6) of Mori, 1988) has the best performance

for ν = 1 and α = 0.1, ν ∈ {1, 2, 3, 4, 5, 10}, has very close to the best per-

formance for ν = 100 and has the best performance for ν = 1000. For many

of the situations considered in the references co-authored with Kabaila, the

smallest possible value of ν, in the evaluation of integrals of the form (3.1),

is 2.

The procedures described in Section 3.4 use a nested sequence of quadra-

ture rules, for the estimation of the approximation error, so that previous

evaluations of the integrand are not wasted. This nested sequence can be

implemented in a very simple computer program. This is an important ad-

vantage of this method over the other three methods.

Taken together, the results presented in this chapter show that the simple

procedure described in subsection 3.4.3 is a very suitable candidate for the

computation of the coverage and expected volume properties of non-standard

confidence regions considered in the references co-authored with Kabaila. We

apply this method in the next chapter to compute the Kabaila & Giri (2009a)

confidence interval.

77



Chapter 4

R programs for the

computation of the Kabaila &

Giri (2009a) confidence interval

4.1 Introduction

Kabaila & Giri (2009a) considered a linear regression model, with unknown

error variance. They describe a method for the construction of a confidence

interval for a given linear combination of the regression parameters that

utilizes the uncertain prior that a distinct linear combination of these pa-

rameters takes a specified value. They also describe methods for the efficient

computation of the coverage and scaled expected lengths of these confidence

intervals. Kabaila & Giri (2009a) computed their confidence interval using

MATLAB programs. These programs were not efficient and not accessible to

users who do not have a MATLAB licence. The main reason for this inefficiency

is that the MATLAB program dblquad, used for the numerical evaluation of

double integrals, turned out to be very inefficient.

In this chapter, we describe the computational and theoretical innova-

tions that we have implemented in the R programs for the computation of
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the Kabaila & Giri (2009a) confidence interval. With the application of more

efficient methods, we are able to greatly decrease the computation time. By

writing these programs in R, the Kabaila & Giri (2009a) confidence inter-

val becomes freely available. These R programs have been placed in the R

package ciuupi2.

In Section 4.2 of this chapter, we describe the Kabaila & Giri (2009a)

confidence interval in detail. In subsection 4.2.4, we describe the nonlin-

ear constrained optimization that needs to be carried out to compute the

Kabaila & Giri (2009a) confidence interval for a given choice of a parameter

λ, that specifies the weight given to the uncertain prior information. Section

4.3 and subsection 4.4.1 provide a new method for the computation, using

the computationally-convenient expressions due to Kabaila & Giri (2009a),

of the coverage probability and scaled expected length of this confidence in-

terval. One of the computational innovations we make is to apply Gauss

Legendre quadrature, with an appropriate number of nodes, to evaluate the

inner integrals of the double integral terms in the formulas for the coverage

probability and the scaled expected length. Another important computa-

tional innovation is applying the work described in Chapter 3 of this thesis

to evaluate the outer integrals of the double integrals that appear in these

formulas.

A major theoretical innovation in the present chapter is the analysis of

a (new) second definition of the scaled expected length. In subsection 4.4.2,

we describe this second definition. We also show how the methods used

for the computation of the confidence interval that utilizes the uncertain

prior information in the context of the first definition extend to the second

definition.

In Section 4.5, we provide a detailed description of the choice of some

of the parameters of the new confidence interval and the method used for
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its computation. We also compare our results with some of the past results

obtained by Kabaila & Giri (2009a), Kabaila & Giri (2013) and Giri (2008)

for a given choice of the parameter λ, which specifies the weight given to

the uncertain prior information, using MATLAB programs. Kabaila & Giri

(2009a) described a choice of the parameter λ that leads to what might

be called a “standard” confidence interval that utilizes the uncertain prior

information. However, because their MATLAB programs for a particular value

of λ took so long to run, they could not compute this confidence interval.

In Section 4.6, we describe this choice of the parameter value λ and the

computation times using the new R package ciuupi2. Finally, in Section 4.7,

we numerically compare the two definitions of scaled expected length in terms

of the resulting confidence intervals that utilize uncertain prior information

and their coverage and scaled expected lengths properties.

4.2 The confidence interval of Kabaila & Giri

(2009a)

In this section, we briefly describe the Kabaila & Giri (2009a) confidence

interval. In a later subsection, we provide a description of the nonlinear con-

strained optimization that needs to be carried out to compute this confidence

interval.

Consider the linear regression model

y = Xβ + ε, (4.1)

where y is a random n-vector of responses, X is a known n × p matrix

with linearly independent columns, β is an unknown parameter p-vector and

ε ∼ N(0, σ2 I), with σ2 an unknown positive parameter. Suppose that the

parameter of interest is θ = a>β, where a is a specified nonzero p-vector. Let

80



τ = c>β, where c is a specified nonzero p-vector that is linearly independent

of a. Suppose that we have uncertain prior information that τ = t, where

t is a specified number. Our aim is to construct a confidence interval for θ,

with minimum coverage probability 1 − α, that utilizes this uncertain prior

information.

Let β̂ = (X>X)−1X> y, the least squares estimator of β. Then θ̂ = a>β̂

and τ̂ = c>β̂ are the least squares estimators of θ and τ , respectively. Now

let vθ = var(θ̂)/σ2 = a>(X>X)−1a, vτ = var(τ̂)/σ2 = c>(X>X)−1c and

ρ = a>(X>X)−1c
/

(vθvτ )
1/2, which are known quantities. Let σ̂2 =

(
y −

Xβ̂
)>(
y−Xβ̂

)
/m, where m = n− p. Also let W = σ̂/σ, so that it has the

same distribution as
√
Q/m, where Q ∼ χ2

m. Now let γ = (τ − t)
/(
σv

1/2
τ

)
and γ̂ = (τ̂ − t)

/(
σ̂v

1/2
τ

)
.

We consider confidence intervals of the form

CI(b, s) =
[
θ̂ − v1/2θ σ̂ b(γ̂)± v1/2θ σ̂ s(γ̂)

]
,

where b : R → R is an odd continuous function and s : R → [0,∞) is an

even continuous function. In addition, b(x) = 0 and s(x) = tm,1−α/2 for all

|x| ≥ d, where d is a sufficiently large positive number.

4.2.1 Choice of d

Giri (2008) found that the value of d that needed to be chosen for the result-

ing confidence interval to utilize the uncertain prior information effectively,

depended on m, with d increasing as m decreases. For m = 1 and m = 2, Giri

(2008) chose d = 30 and d = 10, respectively. Kabaila & Giri (2013), chose

d = 14 for m = 2. Kabaila & Giri (2013), also chose d = 12 for m = 1, 2, 3

and 4 for the case that ρ = 0. The case that m is large is effectively equiva-

lent to the case that σ2 is known. In the case that σ2 is known, Mainzer &

Kabaila (2019) have chosen d = 6. We have automated the choice of d with
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the new formula proposed by Paul Kabaila as described in subsection 4.5.1.

4.2.2 Parametric form for the functions b and s

We specify the functions b and s in much the same way as Kabaila & Giri

(2009a). Suppose that x1, . . . , xq satisfy 0 = x1 < x2 < · · · < xq = d. Ob-

viously, b(x1) = 0, b(xq) = 0 and s(xq) = tm,1−α/2. The function b is fully

specified by the vector
(
b(x2), . . . , b(xq−1)

)
as follows. Because b is an odd

function, we know that b(−xi) = −b(xi) for i = 2, . . . , q. We specify the value

of b(x) for any x ∈ [−d, d] by cubic spline interpolation for these given func-

tion values. The function s is fully specified by the vector
(
s(x1), . . . , s(xq−1)

)
as follows. Because s is an even function, we know that s(−xi) = s(xi) for

i = 1, . . . , q. We specify the value of s(x) for any x ∈ [−d, d] by cubic spline

interpolation for these given function values.

We consider two types of cubic spline interpolation: natural cubic spline

interpolation and clamped cubic spline interpolation where the derivative

of the cubic spline is set to 0 at −d and d. Kabaila & Giri (2009a) used

a slightly different interpolation procedure to evaluate the function s. We

compute the natural cubic spline interpolation using the splinefun function

in the R package stats and the clamped cubic spline interpolation using the

cubicspline function in the R package pracma.

4.2.3 Choice of the knots x1, . . . , xq

If the number of knots q is too small, then the functions b and s do not have

enough flexibility for the resulting confidence interval to effectively utilize

the uncertain prior information. On the other hand, as the number of knots

q is increased, the computation time increases and the numerical nonlinear

constrained optimization seems to become unstable.

For the numerical example considered by Kabaila & Giri (2009a), the
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knots are evenly-spaced and take the values 0, d/6, 2(d/6), . . . , d, where d = 6.

For m = 1 and m = 2, Giri (2008) chose d = 30 and d = 10, respectively,

and the knots at 0, d/6, 2(d/6), . . . , d. Kabaila & Giri (2013), chose d = 14

for m = 2 and the knots at 0, 2, 4, . . . , 14. Kabaila & Giri (2013), also chose

d = 12 for m = 1, 2, 3 and 4 for the case that ρ = 0 and the knots at

0, 1.5, 3, 4.5, 6, . . . , 12. The case that m is large is effectively equivalent to

the case that σ2 is known. In the case that σ2 is known, Mainzer & Kabaila

(2019) have chosen d = 6. In all of these examples, the knots are equally-

spaced.

4.2.4 Description of the nonlinear constrained opti-

mization that needs to be carried out to compute

the Kabaila & Giri (2009a) confidence interval

for given λ

Assume that m and ρ are given. As shown by Kabaila & Giri (2009a),

the coverage probability of CI(b, s) is, for given functions b and s, an even

function of γ. We denote this function by CP(γ; b, s). A computationally

convenient formula for CP(γ; b, s) is provided in part (a) of Theorem 1 of

Kabaila & Giri (2009a). Giri (2008) evaluated the double integral in this for-

mula as follows. He first truncated the outer integral and found a convenient

formula for an upper bound on the absolute value of the truncation error.

He then used the MATLAB function dblquad to evaluate the resulting double

integral. The function dblquad evaluates this double integral by treating it

as two nested single integrals and evaluating each single integral using the

MATLAB function quad. The function quad uses recursive adaptive Simpson

quadrature.
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Shampine (2008) critically reviews the method used by dblquad and pro-

poses a two-dimensional adaptive quadrature method based on the product

of a particular pair of Gauss-Kronrod formulas. Shampine’s method was sub-

sequently implemented in the MATLAB function integral2. On 11 November

2020, the MATLAB documentation recommends against the use of dblquad

and proposes that integral2 be used instead.

In Section 4.3, we describe a new method for evaluating the double inte-

gral in the formula for CP(γ; b, s) given in Theorem 1(a) of Kabaila & Giri

(2009a). We do not truncate the outer integral and use, instead, the new

method described in Chapter 3. The inner integral has some special features

that lead us to first divide it into a sum of integrals and then to apply Gauss

Legendre quadrature to each integral in this sum.

The usual 1 − α confidence interval for θ is I =
[
θ̂ − tm,1−α/2 v1/2θ σ̂, θ̂ +

tm,1−α/2 v
1/2
θ σ̂

]
. The scaled expected length of CI(b, s) is defined to be

E
(
length of CI(b, s)

)
E
(
length of I

) . (4.2)

As shown by Kabaila & Giri (2009a), this scaled expected length is, for

given function s, an even function of γ. We denote this scaled expected

length by SEL1(γ; s). A computationally convenient formula for SEL1(γ; s)

is provided in part (b) of Theorem 1 of Kabaila & Giri (2009a). Giri (2008)

evaluated the double integral in this formula in a manner similar to that used

to evaluate the double integral in the computationally convenient formula for

CP(γ; b, s). In Section 4.4, we describe a new method for the evaluation of

the computationally convenient formula for SEL1(γ; s) that is similar to the

new method for the evaluation of the computationally convenient formula

for CP(γ; b, s).
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Define the objective function

OBJ1(s;λ) = λ

∫ ∞
−∞

(
SEL1(γ; s)− 1

)
dγ +

(
SEL1(0; s)− 1

)
, (4.3)

where λ is a positive tuning parameter that allows us to adjust the relative

weight given to the uncertain prior information that γ = 0. A computation-

ally convenient formula for this objective function was given by Kabaila &

Giri (2009a), which was simplified in Appendix A of Kabaila & Giri (2013).

As in Kabaila & Giri (2009a), our aim is to find the functions b and s

as follows. For given λ > 0, we minimize the objective function OBJ1(s;λ),

with respect to the vector
(
b(x2), . . . , b(xq−1), s(x1), . . . , s(xq−1)

)
, where the

function s is constrained to take positive values, subject to the coverage

constraint CP(γ; b, s) ≥ 1− α for all γ ≥ 0. Denote the resulting confidence

interval CI(b1λ, s1λ). Our computational implementation of this coverage

constraint is that CP(γ; b, s) ≥ 1−α for all γ belonging to an appropriately-

chosen finite set of nonnegative values, denoted by Γgrid.

4.3 New method for evaluating the computa-

tionally convenient formula of Kabaila &

Giri (2009a) for the coverage probability

of CI(b, s)

Theorem 1(a) of Kabaila & Giri (2009a) provides a computationally con-

venient formula for CP(γ; b, s), which we now describe. Let Ψ(x, y;µ, v) =

P (x ≤ Z ≤ y) for Z ∼ N(µ, v). Define the functions

k(x,w, γ, ρ) = Ψ
(
w
(
b(x)− s(x)

)
, w
(
b(x) + s(x)

)
; ρ(wx− γ), 1− ρ2

)
k†(x,w, γ, ρ) = Ψ

(
− tm,1−α/2w, tm,1−α/2w; ρ(wx− γ), 1− ρ2

)
.
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Note that these definitions differ from the definitions of the functions k and

k† used by Kabaila & Giri (2009a). By Theorem 1(a) of Kabaila & Giri

(2009a),

CP(γ; b, s) = 1− α +

∫ ∞
0

ICP(w, γ, ρ)w fm(w) dw, (4.4)

where fm(w) denotes the pdf of
√
Q/m where Q ∼ χ2

m, evaluated at w, and

ICP(w, γ, ρ) =

∫ d

−d

(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ) dx.

We use this formula for ICP(w, γ, ρ), but with the following modification.

Obviously,

ICP(w, γ, ρ) =

∫ d

0

(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ) dx

+

∫ 0

−d

(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ) dx.

Changing the variable of integration to u = −x in the second integral on the

right-hand side, we obtain

ICP(w, γ, ρ) =

∫ d

0

((
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ)

+
(
k(−x,w, γ, ρ)− k†(−x,w, γ, ρ)

)
φ(wx+ γ)

)
dx.

In other words,

ICP(w, γ, ρ) =

∫ d

0

IICP(x,w, γ, ρ) dx, (4.5)

where

IICP(x,w, γ, ρ) =
(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ)

+
(
k(−x,w, γ, ρ)− k†(−x,w, γ, ρ)

)
φ(wx+ γ).
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While interpolating cubic splines are extremely smooth between successive

knots, they are not particularly smooth at the knots (only the second deriva-

tive of the interpolating cubic spline is continuous at each knot). We therefore

express (4.5) as

∫ x2

x1

IICP(x,w, γ, ρ) dx+

∫ x3

x2

IICP(x,w, γ, ρ) dx+· · ·+
∫ xq

xq−1

IICP(x,w, γ, ρ) dx

and then compute each of the integrals in this sum using Gauss Legendre

quadrature, which is exact for polynomials of degree 2(number of nodes)−1.

This computation is implemented using the gauss.quad function in the R

package statmod.

4.3.1 Examination of IICP(x,w, γ, ρ)

The examinations of the two terms in the integrand IICP(x,w, γ, ρ) are very

similar. For the sake of brevity, we present only the examination of the first

term. Observe that

φ(wx− γ) = φ
(
w
(
x− γ

w

))
=

1√
2π

exp

(
− 1

2w−2

(
x− γ

w

)2)
. (4.6)

Considered as a function of x, this function has maximum value 1/
√

2π and

has peak width w−1. Thus, for small and moderate values of w, φ(wx − γ)

is a smooth function of x ∈ [0, d]. Also, for small and moderate values of w,

k(x,w, γ, ρ)− k†(x,w, γ, ρ) is a smooth function of x ∈ [0, d].

We now consider the case that w is large and the potential problems that

may arise in this case. It follows from (4.6) that φ(wx−γ) = w−1 φ(x; γ/w,w−2),

where φ(z;µ, v) denotes the N(µ, v) pdf, evaluated at z. Thus

∫ d

0

(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(wx− γ) dx

=
1

w

∫ d

0

(
k(x,w, γ, ρ)− k†(x,w, γ, ρ)

)
φ(x; γ/w,w−2) dx (4.7)
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The problematic term in (4.7) is φ(x; γ/w,w−2), whose graph has a peak

centred at x = γ/w, which becomes increasingly narrow as w increases.

Integrands with narrow peaks are very difficult for the numerical integration

methods to deal with. However, it would seem that (4.7) is close to 0 when

w is large. One reason for this is the 1/w term in front of the integral in

(4.7). In addition, consider the following argument. Consider γ ≥ 0 and

ρ ≥ 0. Suppose that w is so large that both γ/w and w−1 are small so that

φ(x; γ/w,w−2) differs negligibly from 0, unless x is close to 0. Recall that

k(x,w, γ, ρ)− k†(x,w, γ, ρ)

= Ψ
(
w
(
b(x)− s(x)

)
, w
(
b(x) + s(x)

)
; (ρx)w − ργ, 1− ρ2

)
−Ψ

(
− tm,1−α/2w, tm,1−α/2w; (ρx)w − ργ, 1− ρ2

)
.

Assume that b(x)−s(x) < 0. Obviously, b(x)+s(x) > 0. For x close to 0,

(ρx)w−ργ increases more slowly with increasing w than either w(b(x)+s(x))

or tm,1−α/2w. Consequently, for x close to 0, k(x,w, γ, ρ) − k†(x,w, γ, ρ)

approaches 0 as w increases.

4.3.2 Evaluation of the outer integral of the double

integral term in the expression of CP(γ; b, s)

To evaluate the outer integral of the double integral term in (4.4), we apply

the new method described in Chapter 3 as follows.

The integral (3.18) in Section 3.7 with κ = m and ξ = 1 has a similar

form to the integral in (4.4). We change the variable of integration in (4.4)

to y = c(m, 1)w, where c(κ, ξ) =
(
κ/(κ+ ξ)

)1/2
, so that∫ ∞

0

ICP(w, γ, ρ)w fm(w) dw

=

(
2

m

)1/2
Γ((m+ 1)/2)

Γ(m/2)

∫ ∞
0

ICP
(
y
/
c(m, 1), γ, ρ

)
fm+1(y) dy, (4.8)
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where ICP
(
y
/
c(m, 1), γ, ρ

)
is a smooth bounded function of y ≥ 0.

To evaluate the integral in (4.8), we first apply the transformation (2.6)

of Mori (1988), namely

g(z) = exp

(
1

2
z − e−z

)
, (4.9)

so that

dg(z)

dz
= exp

(
1

2
z − e−z

) (
1

2
+ e−z

)
and ∫ ∞

0

ICP
(
y
/
c(m, 1), γ, ρ

)
fm+1(y) dy

=

∫ ∞
−∞

ICP
(
g(z)

/
c(m, 1), γ, ρ

)
ψm+1(z) dz, (4.10)

where

ψm+1(z) = fm+1

(
g(z)

)dg(z)

dz
.

We approximate (4.10) by

h
N−1∑
j=0

ICP
(
g(z` + hj)

/
c(m, 1), γ, ρ

)
ψm+1(z` + hj), (4.11)

whereN denotes the number of evaluations of the integrand ICP
(
g(z)

/
c(m, 1)

, γ, ρ
)
ψm+1(z), h denotes the step length and the first evaluation of this inte-

grand is at z`. We evaluate (4.11) using the procedure described in subsection

3.4.3.

4.4 Computationally convenient formula for

the scaled expected length of CI(b, s)

In this section, we consider two definitions of the scaled expected length.

We first describe the first definition of the scaled expected length considered
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by Kabaila & Giri (2009a). Then we describe a second (new) definition of

the scaled expected length of CI(b, s). We also present new methods for

numerically evaluating these two definitions of the scaled expected length

efficiently.

4.4.1 First definition of scaled expected length and the

objective function based on it

Theorem 1(b) of Kabaila & Giri (2009a) provides a computationally conve-

nient formula for SEL1(γ; s), which is equal to

SEL1(γ; s) = 1 +
1

tm,1−α/2E(W )

∫ ∞
0

ISEL(w, γ)w2 fm(w) dw, (4.12)

where

ISEL(w, γ) =

∫ d

−d

(
s(x)− tm,1−α/2

)
φ(wx− γ) dx. (4.13)

The computation of SEL1(γ; s) is given in Appendix C.1.

This definition of the scaled expected length leads to the first objective

function (4.3). A computationally convenient formula for this objective func-

tion was given by Kabaila & Giri (2009a), which was simplified in Appendix

A of Kabaila & Giri (2013), to yield

OBJ1(s;λ) =
2

tm,1−α/2E(W )

∫ d

0

IOBJ1(x; s, λ) dx, (4.14)

where

IOBJ1(x; s, λ) =
(
s(x)− tm,1−α/2

)(
λ+

1√
2π

(
m

x2 +m

)(m/2)+1
)
.

Note that the term

1√
2π

(
m

x2 +m

)(m/2)+1

in the objective function is a smooth function of x for large m, as shown in
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Appendix C.1.4. We compute the integral

∫ d

0

IOBJ1(x; s, λ) dx

similarly to the computation of ICP(w, γ, ρ) in Section 4.3 using the Gauss

Legendre quadrature.

4.4.2 Second definition of scaled expected length and

the objective function based on it

The second definition of the scaled expected length of CI(b, s) is

E

(
length of CI(b, s)

length of I, computed from the same data

)
=
E
(
s(γ̂)

)
tm,1−α/2

. (4.15)

In some ways, this is a more natural definition of scaled expected length than

(4.2), as it takes the ratio of the lengths of CI(b, s) and I for the same data

and then averages this ratio. For given function s, (4.15) is an even function

of γ that we denote by SEL2(γ; s).

As shown in Appendix C.2.1, using the methods of Kabaila & Giri (2009a),

SEL2(γ; s) = 1 +
1

tm,1−α/2

∫ ∞
0

ISEL(w, γ)w fm(w) dw, (4.16)

where ISEL(w, γ) is defined by (4.13). We evaluate (4.16) as shown in Ap-

pendix C.2.3.

This second definition of the scaled expected length of CI(b, s) leads to

the second objective function

OBJ2(s;λ) = λ

∫ ∞
−∞

(
SEL2(γ; s)− 1

)
dγ +

(
SEL2(0; s)− 1

)
,

where λ is a positive tuning parameter that allows us to adjust the relative

weight given to the uncertain prior information. As shown in Appendix
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C.2.2, a formula for this objective function is given by

2

tm,1−α/2

∫ ∞
0

∫ d

0

(
s(x)− tm,1−α/2

) (
λ+ φ(wx)

)
dxw fm(w) dw,

which can be simplified to yield

OBJ2(s;λ) =
2E(W )

tm,1−α/2

∫ d

0

IOBJ2(x; s, λ) dx, (4.17)

where

IOBJ2(x; s, λ) =
(
s(x)− tm,1−α/2

)(
λ+

1√
2 π

(
m

x2 +m

)(m+1)/2
)
.

This second objective function is used in the numerical nonlinear constrained

optimization to compute the second confidence interval that utilizes the un-

certain prior information. For given λ > 0, we minimize the objective

function OBJ2(s;λ), with respect to the vector
(
b(x2), . . . , b(xq−1), s(x1), . . . ,

s(xq−1)
)
, where the function s is constrained to take positive values, subject

to the coverage constraint CP(γ; b, s) ≥ 1 − α for all γ ≥ 0. Denote the

resulting confidence interval CI(b2λ, s2λ). Note that the term

1√
2π

(
m

x2 +m

)(m+1)/2

in the objective function is a smooth function of x for large m, as shown in

Appendix C.2.4. We compute the integral∫ d

0

IOBJ2(x; s, λ) dx

similarly to the computation of ICP(w, γ, ρ) in Section 4.3 using the Gauss

Legendre quadrature.

92



4.5 Choice of some of the computational pa-

rameters of the new confidence interval

and the method used for its computation

In this section, we choose the appropriate values for d and the length of the

set Γgrid of γ values, which is used in the implementation of the coverage

constraint. Furthermore, we choose the number of intervals in [0, d], where

the endpoints of each of these intervals specify the knots of the cubic spline

interpolations of b1λ and s1λ, which we denote by n.ints in R programs. We

also select the number of evaluations requires to compute the inner and outer

integrands.

4.5.1 Choosing the value of d and the set Γgrid

Based on the choices of d and Γgrid that were made in the past, Paul Kabaila

proposed formulas for the value of d and the set Γgrid.

Let the quantile zp be defined by P (Z ≤ zp) = p where Z ∼ N(0, 1) and

the quantile tm,p be defined by P (T ≤ tm,p) = p where T ∼ tm. We chose p

such that zp = 1.545. Then we set d = 6 tm,p/zp. Since tm,p approaches zp

from above as m→∞, this formula leads to d approaching 6 from above as

m → ∞. The value of p was chosen so d = 6 tm,p/zp results in values of d

consistent with choices made in the past for m = 1 and m = 2. Figure 4.1

shows a graph of d as a function of m.

Now consider the choice of the set Γgrid. Let γmax denote the maximum

possible value in the set Γgrid. Set γmax = d + extra, where extra = tm,p′ ,

for p′ chosen so that zp′ = 2. Since tm,p′ approaches zp′ = 2 from above, as

m→∞, this formula leads to extra approaching 2 from above as m→∞.

Figure 4.1 shows a graph of extra as a function of m.
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Now the set Γgrid is determined by the integer l ∈ {60, 120} as follows.

Divide the interval [0, γmax] into two intervals [0, d] and [d, γmax]. Set the

length of the vector of equally-spaced values of Γgrid in the interval [0, d] to

l, so that these values are 0, d/(l− 1), 2d/(l− 1), . . . , d. Now set the equally-

spaced values of Γgrid in [d, γmax] to the sequence d, d+ 2(d/l), d+ 4(d/l), . . . ,

such that the maximum value of this sequence is less than or equal to γmax.

m

 

2

6

10

14

18

22

1 5 10 15 20 25 30 35 40

d
extra

Figure 4.1: Graphs of d and extra as a functions of m.

4.5.2 Choosing the values of l and n.ints

We choose the values of l and n.ints by computing the confidence interval

CI(b1λ, s1λ) for the numerical example given in Kabaila & Giri (2013). Note

that, for this example, m = 2, α = 0.05, ρ = −0.5 and λ = 0.15.

In Table 4.1, we compare the values of
(
SEL1(0; s1λ)

)2
, the maximum

of
(
SEL1(γ; s1λ)

)2
and the corresponding time needed to compute the vector

(b1λ(x2), . . . , b1λ(xq−1), s1λ(x1), . . . , s1λ(xq−1)) for l ∈ {60, 120} and n.ints ∈

{6, 7}. We also consider the two cases, d and d(1+(1/6)) for this comparison.

Recall that N,N1 and N2 denote the number of outer integrand eval-

uations in the expressions for the coverage probability, first definition of

the scaled expected length and the second definition of the scaled expected
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length, respectively. We have chosen N = N1 = N2 for simplicity. Recall

from Chapter 3 that ε is a desired upper bound on the absolute value of the

approximation error. We use N = 17, Gauss Legendre quadrature with 10

nodes and ε = 10−7 for the computations in this subsection. We describe

these choices, in detail, in subsection 4.5.3.

Table 4.1: The values of
(
SEL1(0; s1λ)

)2
,
(

max
γ≥0

SEL1(γ; s1λ)
)2

and the time

needed to compute the vector (b1λ(x2), . . . , b1λ(xq−1), s1λ(x1), . . . , s1λ(xq−1))

for m = 2, α = 0.05, ρ = −0.5 and λ = 0.15.

(
SEL1(0; s1λ)

)2 Maximum of(
SEL1(γ; s1λ)

)2 Time

(min)

l = 120

(a) d = 10.1 , n.ints=6 0.7882841 1.093538 21.40

(b) d = 10.1, n.ints=7 0.7885232 1.093049 27.55

(c) d(1+(1/6)) = 11.8, n.ints=7 0.7878176 1.093023 33.29

l = 60

(d) d = 10.1 , n.ints=6 0.7880789 1.093501 12.33

(e) d = 10.1, n.ints=7 0.7882304 1.093125 15.37

(f) d(1+(1/6)) = 11.8, n.ints=7 0.7875405 1.093098 17.90

Overall, the computation times for (a) - (c) for l = 120 are significantly

larger than the corresponding computation times for (d) - (f) for l = 60.

The values of
(
SEL1(0; s1λ)

)2
and the maximum of

(
SEL1(γ; s1λ)

)2
, for (d),

(e) and (f) are very similar to the corresponding values for (a), (b) and (c),

respectively. This led us to choose l = 60, which gives more efficient results,

for the computations carried out in the R package ciuupi2. The results in

Appendix C.3 led us to choose n.ints = 6 for the computations carried out

in the R package ciuupi2.
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To summarize: We choose l = 60, n.ints = 6 and the value d for the

computations carried out in the R package ciuupi2.

4.5.3 Choosing the number of outer integrand evalu-

ations, the value of ε and the number of Gauss

Legendre quadrature nodes

We consider the two cases (a) m > 2 and (b) m ∈ {1, 2}. The results in

Appendix C.4 led us to choose the following choices of N , the number of

Gauss Legendre quadrature nodes and the value of ε.

� Computation of the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . ,

s1λ(5d/6)
)

for case (a) :

N = 9, the Gauss Legendre quadrature with 5 nodes and ε = 10−7.

� Computation of the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . ,

s1λ(5d/6)
)

for case (b) :

N = 17, the Gauss Legendre quadrature with 10 nodes and ε = 10−7.

� Computation of the graphs of the coverage probability and the squared

scaled expected length for the two cases (a) and (b):

N = 33, the Gauss Legendre quadrature with 20 nodes and ε = 10−10.

4.5.4 Comparison with some of the past results ob-

tained by Kabaila and Giri

We consider the three examples, (a) Kabaila & Giri (2009a) for m = 76 and

λ = 0.2, (b) Kabaila & Giri (2013) for m = 2 and λ = 0.15 and (c) Giri

(2008) for m = 1 and λ = 0.2. We compute the plots of the functions b1λ

and s1λ, the coverage probability and the squared scaled expected length of
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the confidence interval CI(b1λ, s1λ) for these three examples in Appendix C.6,

using the R package ciuupi2. We compare these results with some of the

past results obtained by Kabaila and Giri as follows.

(a) Figure C.9 for m = 76 and λ = 0.2 :

The plots of the functions b1λ and s1λ are almost identical to Figure

2 of Kabaila & Giri (2009a). The graphs of the coverage probability

and the squared scaled expected length are also identical to the corre-

sponding plots in Figure 2 of Kabaila & Giri (2009a). Note that in Fig-

ure C.9,
(
SEL1(0; s1λ)

)2
= 0.8679 and

(
max
γ≥0

SEL1(γ; s1λ)
)2

= 1.1057.

These values are very similar to the corresponding values in Section

4 of Kabaila & Giri (2009a). The time needed to compute the vector(
b1λ(1), . . . , b1λ(5), s1λ(0), . . . , s1λ(5)

)
is 6.16 min.

(b) Figure C.10 for m = 2 and λ = 0.15 :

The plots of the functions b1λ and s1λ, the coverage probability and the

squared scaled expected length are very similar to the corresponding

plots in Kabaila & Giri (2013). Note that in Figure C.10,
(
SEL1(0; s1λ)

)2
= 0.7868 and

(
max
γ≥0

SEL1(γ; s1λ)
)2

= 1.0983. These values are very

similar to the corresponding values in Figure 1 of Kabaila & Giri (2013).

The time needed to compute the vector
(
b1λ(2), . . . , b1λ(12), s1λ(0), . . . ,

s1λ(12)
)

is 46.21 min.

(c) Figure C.11 for m = 1 and λ = 0.2 :

The plots of the functions b1λ and s1λ, the coverage probability and

the squared scaled expected length are approximately similar to the

corresponding plots in Figure 3.8 and 3.9 in Giri (2008). Note that

in Figure C.11,
(
SEL1(0; s1λ)

)2
= 0.7333 and

(
max
γ≥0

SEL1(γ; s1λ)
)2

=

1.0698. These values are approximately similar to the corresponding

results in Figure 3.9 of Giri (2008). The time needed to compute the
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vector
(
b1λ(5), . . . , b1λ(25), s1λ(0), . . . , s1λ(25)

)
is 1.52 hr.

4.6 Computation of the Kabaila & Giri (2009a)

confidence interval for the standard choice

of λ.

In this section, we find a standard choice of that leads to what might be called

a “standard” confidence interval that utilizes the uncertain prior information.

The previous MATLAB programs of Kabaila & Giri (2009a) for a particular

value of λ took so long to run and therefore they were not able to compute

this confidence interval. However, with the new methods for computing the

integrals that we implement in R, we are able to calculate this confidence

interval very efficiently.

As proposed by Kabaila & Giri (2009a), we find the standard choice of λ

for the first definition of the scaled expected length as follows. We choose λ

such that the “gain” when the prior information is correct, as measured by

1−
(
SEL1(0; s1λ)

)2
,

is equal to the maximum possible “loss” when the prior information happens

to be incorrect, as measured by(
max
γ≥0

SEL1(γ; s1λ)
)2
− 1.

We denote the resulting confidence interval by CI(b1, s1).

Similarly, we can find the standard choice of λ for the second definition

of the scaled expected length by choosing the value of λ such that

1−
(
SEL2(0; s2λ)

)2
=
(

max
γ≥0

SEL2(γ; s2λ)
)2
− 1.

We denote this resulting confidence interval by CI(b2, s2).

We consider the confidence interval CI(b1, s1) for the numerical evalua-
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tions in this section. We choose the value d and the set Γgrid as described in

subsection 4.5.1. According to subsection 4.5.2, n.ints = 6 and l = 60. We

choose N , the numer of Gauss Legendre quadrature nodes and the value of

ε as described in subsection 4.5.3. We consider the two cases (a) m > 2 and

(b) m ∈ {1, 2}.

4.6.1 Standard choice of λ for m > 2

We consider the numerical example in Kabaila & Giri (2009a). Recall that

m = 76, α = 0.05, ρ = −0.707 and λ = 0.2. The standard choice of λ is

found to be 0.104. The time needed to compute the vector
(
b1λ(d/6), . . . ,

b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)
)

is 24.13 min. The times needed to compute

the graphs of the coverage probability and the squared scaled expected length

are 2.42 secs and 0.57 secs, respectively.

Table 4.2 shows that for the standard choice of λ (λ = 0.104), there is a

higher gain than the λ = 0.2 and the ratio of gain to maximum possible loss

approaches 1. The left panels of Figures 4.2 and 4.3 show that the plots of

the functions b1, s1, the coverage probability and the squared scaled expected

length have the desired properties for this standard choice of λ.

Table 4.2: Performance of the confidence interval CI(b1, s1) for m = 76, α =

0.05, ρ = −0.707, d = 6.1, n.ints = 6 and l = 60 for λ ∈ {0.2, 0.105}.

λ 0.2 0.104

Gain 0.1321 0.1666

Maximum possible loss 0.1056 0.1665

(Gain)/(Maximum possible loss) 1.251 1.0008
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4.6.2 Standard choice of λ for m ∈ {1, 2}

We consider the numerical example in Kabaila & Giri (2013). Recall that

m = 2, α = 0.05, ρ = −0.5 and λ = 0.15. The standard choice of λ is

found to be 0.023. The time needed to compute the vector
(
b1λ(d/6), . . . ,

b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)
)

is 1.97 hr. The times needed to compute

thegraphs of the coverage probability and the squared scaled expected length

are 4.86 secs and 1.16 secs respectively.

Table 4.3 shows that for the standard choice of λ (λ = 0.023), there is a

higher gain than the λ = 0.15 and the ratio of gain to maximum possible loss

approaches 1. The left panels of Figures 4.4 and 4.5 show that the plots of

the functions b1, s1, the coverage probability and the squared scaled expected

length have the desired properties for this standard choice of λ.

Table 4.3: Performance of the confidence interval CI(b1, s1) for m = 2, α =

0.05, ρ = −0.5, d = 10.1, n.ints = 6 and l = 60 for λ ∈ {0.15, 0.023}.

λ 0.15 0.023

Gain 0.2119 0.3866

Maximum possible loss 0.0935 0.3866

(Gain)/(Maximum possible loss) 2.2669 1.0000

4.7 Comparison of the numerical results for

the two definitions of scaled expected leng-

th for the standard choice of λ

In this section, we numerically compare the two confidence intervals CI(b1, s1)

and CI(b2, s2) for the standard choice of λ in terms of the plots of the functions

b1 and s1, the coverage probability and the squared scaled expected length.
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Note that when m is getting large, the two objective functions OBJ1(γ; s1)

and OBJ2(γ; s2) become similar.

We choose the value d and the set Γgrid as described in subsection 4.5.1.

According to subsection 4.5.2, n.ints = 6 and l = 60. We choose N , the

numer of Gauss Legendre quadrature nodes and the value of ε as described

in subsection 4.5.3. We consider the two cases (a) m > 2 and (b) m ∈ {1, 2}.

4.7.1 Comparison for m > 2

We consider the numerical example in Kabaila & Giri (2009a) where m =

76, α = 0.05 and ρ = −0.707. The standard choice of λ is equal to 0.104 for

the both confidence intervals CI(b1, s1) and CI(b2, s2).

Figure 4.2 shows that the plots of the functions b1, s1 (left panel) and b2,

s2 (right panel) are identical. Figure 4.3 shows that graphs of the coverage

probability and the squared scaled expected length of the confidence intervals

CI(b1, s1) (left panel) and CI(b2, s2) (right panel) are also identical.
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Figure 4.2: Graphs of the functions b1 and s1 (left panel) and b2 and s2 (right

panel) for m = 76, α = 0.05, ρ = −0.707, d = 6.1, n.ints = 6 and l = 60.

The standard choice of λ is equal to 0.104 for the both confidence intervals

CI(b1, s1) and CI(b2, s2).
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Figure 4.3: Graphs of the coverage probability and the squared scaled ex-

pected length of the confidence intervals CI(b1, s1) (left panel) and CI(b2, s2)

(right panel) for m = 76, α = 0.05, ρ = −0.707, d = 6.1, n.ints = 6 and

l = 60. The standard choice of λ is equal to 0.104 for the both confidence

intervals CI(b1, s1) and CI(b2, s2).

4.7.2 Comparison for m ∈ {1, 2}

We consider the numerical example in Kabaila & Giri (2013) where m =

2, α = 0.05, ρ = −0.5. The standard choice of λs is equal to 0.023 and 0.020

for the confidence intervals CI(b1, s1) and CI(b2, s2), respectively.

Figure 4.4 shows that the plots of the functions b1, s1 (left panel) and b2,

s2 (right panel) are not identical but have somewhat similar shapes. Figure

4.5 shows that the graphs of the two coverage probabilities are very similar.

There is a moderate difference between the two graphs of the squared scaled
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expected length. The values of
(
SEL1(0; s1)

)2
and

(
max
γ≥0

SEL1(γ; s1)
)2

are

comparatively larger than the corresponding values of
(
SEL2(0; s2)

)2
and(

max
γ≥0

SEL2(γ; s2)
)2

.
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Figure 4.4: Graphs of the functions b1 and s1 (left panel) and b2 and s2 (right

panel) for m = 2, α = 0.05, ρ = −0.5, d = 10.1, n.ints = 6 and l = 60. The

standard choice of λs is equal to 0.023 and 0.020 for the confidence intervals

CI(b1, s1) and CI(b2, s2), respectively.
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Figure 4.5: Graphs of the coverage probability and the squared scaled ex-

pected length of the confidence intervals CI(b1, s1) (left panel) and CI(b2, s2)

(right panel) for m = 2, α = 0.05, ρ = −0.5, d = 10.1, n.ints = 6 and

l = 60. The standard choice of λs is equal to 0.023 and 0.020 for the confi-

dence intervals CI(b1, s1) and CI(b2, s2), respectively.

4.8 Conclusion

We have created the R package ciuupi2 to carry out the computations of the

Kabaila & Giri (2009a) confidence interval, which utilizes the uncertain prior

information in a linear regression model with unknown normal error variance.

Apart from the applications to the linear regression, ciuupi2 can also be

used as an approximate approach to the non-linear regression models with

unknown random error variance that utilizes uncertain prior information. In
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this case, one could use a similar approach, as described in Chapter 2, to

find the frequentist confidence intervals.

The development of the ciuupi2 package involved major computational

and theoretical innovations that led to computing the Kabaila & Giri (2009a)

confidence interval in significantly less time than the past implementations

carried out in MATLAB. The results obtained from ciuupi2 were compared

with some of the past results obtained by Kabaila and Giri and were found

to be very similar. Furthermore, the two definitions of the scaled expected

length showed identical results for larger values of m and there were some

moderate differences for smaller values of m.
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Chapter 5

On adaptive Gauss-Hermite

quadrature for estimation in

generalized linear mixed models

5.1 Introduction

As we have seen from the work in Chapter 3, the efficient numerical evaluation

of integrals requires a careful analysis. In the present chapter, we explore

the numerical evaluation of integrals in the context of the computation of

the log-likelihood function for generalized linear mixed models.

Adaptive Gauss-Hermite quadrature can be used for the computation of

the log-likelihood function for generalized linear mixed models. For Gauss-

Hermite quadrature, Liu & Pierce (1994) proposed a method to transform

the variable of integration in such a way that the integrand is sampled at

relatively important values. Pinheiro & Bates (1995) referred to this method

put forward by Liu & Pierce (1994) as ‘adaptive’ Gauss-Hermite quadrature.

This method has found applications in the computation of the log-likelihood

function for generalized linear mixed models (Lesaffre & Spiessens, 2001,

Demidenko, 2004, Hedeker & Gibbons, 2006, Tuerlinckx et al. , 2006, Rabe-
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Hesketh & Skrondal, 2008, Kim et al. , 2013 and Chang & Hoaglin, 2017).

The basic first step in this method is to multiply and divide the integrand

of interest by a carefully chosen probability density function. The same first

step is used for the computation of this log-likelihood function using sim-

ulations that employ importance sampling. As is well-known, importance

sampling needs to be applied with extreme care to be successful (Robert &

Casella, 2004 and Owen, 2013). We compare these two methods by consid-

ering in detail a single cluster from a well-known teratology data set that is

modelled using a logistic regression with random intercept.

In Section 5.2, we describe this model and its log-likelihood function. In

Section 5.3, we describe the adaptive Gauss-Hermite quadrature approach

for the computation of the log-likelihood function for this model. In Section

5.4, we introduce the teratology data set of Weil (1970). We also assess the

performance of importance sampling using a simulation method. We show

that while importance sampling fails for this computation, adaptive Gauss-

Hermite quadrature does not. In Section 5.5, we derive a new upper bound

on the error of approximation of adaptive Gauss-Hermite quadrature. Using

this new upper bound, we show that the feature of this problem that makes

importance sampling fail is useful in disclosing why adaptive Gauss-Hermite

quadrature succeeds. The work described in this chapter appears in Kabaila

& Ranathunga (2019).
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5.2 The logistic regression with random in-

tercept model and its log-likelihood func-

tion

We consider a logistic regression model with random intercept. Let yi and

xi denote the response and covariate, respectively, for the i’th cluster (i =

1, . . . , N). Let η = (η1, ..., ηN), where the ηi’s are independent and identically

N(0, σ2) distributed. Also let v = (v1, ..., vN). Suppose that, conditional on

η = v, the yi’s are independent and yi ∼ Binomial(Ji, πi), where Ji denotes

the size of the i’th cluster and

log

(
πi

1− πi

)
= β1 + β2 xi + vi

for i = 1, . . . , N . Let β̂1, β̂2 and σ̂ denote the maximum likelihood estimates

obtained from all of the data. Let y = (y1, . . . , yN). The probability mass

function (pmf) of y, conditional on η = v, is

N∏
i=1

(
Ji
yi

)
πi
yi (1− πi)(Ji−yi) (5.1)

where

πi =
exp(β1 + β2 xi + vi)

1 + exp(β1 + β2 xi + vi)

and so

(5.1) =
N∏
i=1

(
Ji
yi

)(
exp(β1 + β2 xi + vi)

1 + exp(β1 + β2 xi + vi)

)yi ( 1

1 + exp(β1 + β2 xi + vi)

)(Ji−yi)

=
N∏
i=1

(
Ji
yi

)
exp ((β1 + β2 xi + vi)yi)

(1 + exp(β1 + β2 xi + vi))Ji
.

Let φ(t;µ, σ2) denote the N(µ, σ2) pdf, evaluated at t. Let t denote the
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vector of variables (t1, . . . , tN). Now, the pmf of y = (y1, . . . , yN) is the

N -fold multiple integral

∫ ∞
−∞
· · ·
∫ ∞
−∞

N∏
i=1

exp ((β1 + β2 xi + ti)yi)

(1 + exp(β1 + β2 xi + ti))Ji
φ(t1; 0, σ2) . . . φ(tN ; 0, σ2) dt1 . . . dtN

=
N∏
i=1

∫ ∞
−∞

exp ((β1 + β2 xi + ti)yi)

(1 + exp(β1 + β2 xi + ti))Ji
φ(ti; 0, σ2) dti

The additive contribution of a given cluster of size J to the log-likelihood

function is, to within an additive constant, the logarithm of

∫ ∞
−∞

exp
[
(β1 + β2 x+ t)y

]
[1 + exp(β1 + β2 x+ t)]J

φ(t; 0, σ2) dt, (5.2)

where y and x denote the observed response and covariate, respectively, for

this cluster. Obviously, (5.2) is equal to c(θ, σ) which we define to be

∫ ∞
−∞

g(t; θ, σ)φ(t; 0, σ2) dt, (5.3)

where

g(t; θ, σ) =
exp

[
(θ + t)y

]
[1 + exp(θ + t)]J

,

with θ = β1 + β2 x.

5.3 Adaptive Gauss-Hermite quadrature

We now describe the adaptive Gauss-Hermite quadrature method for the

computation of c(θ, σ). Using the Theorem 5.1 on p.142 of Carlin & Louis

(1996), we approximate g(t; θ, σ)φ(t; 0, σ2) by φ(t;µ, τ 2), where

µ = mode of g(t; θ, σ)φ(t; 0, σ2), considered as a function of t

and
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τ 2 =

[
− ∂2

∂t2
(
log
[
g(t; θ, σ)φ(t; 0, σ2)

])]−1
.

These are derived in Appendix D.1.

This method is based on employing φ(t;µ, τ 2) as an approximation to

g(t; θ, σ)φ(t; 0, σ2). The first basic step in the description of adaptive Gauss-

Hermite quadrature is to write

c(θ, σ) =

∫ ∞
−∞

g(t; θ, σ)φ(t; 0, σ2) dt =

∫ ∞
−∞

g(t; θ, σ)φ(t; 0, σ2)

φ(t;µ, τ 2)
φ(t;µ, τ 2) dt.

(5.4)

This step of multiplying and dividing the integrand by a pdf is common

to both importance sampling and adaptive Gauss-Hermite quadrature. We

re-express (5.4) as

c(θ, σ) =

∫ ∞
−∞

h(t; θ, σ)φ(t;µ, τ 2) dt, (5.5)

where

h(t; θ, σ) =
g(t; θ, σ)φ(t; 0, σ2)

φ(t;µ, τ 2)
.

We now change the variable of integration in (5.5) to z = (t− µ)
/(√

2τ
)

so

that t = µ+
√

2 τ z. Thus, as shown in Appendix D.2,

c(θ, σ) =
1√
π

∫ ∞
−∞

h
(
µ+
√

2τz; θ, σ
)

exp(−z2) dz. (5.6)

Let
m∑
i=1

f(zi)wi

be the m-node Gauss-Hermite quadrature approximation to

∫ ∞
−∞

f(z) exp(−z2) dz.
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Therefore, the m-node adaptive Gauss-Hermite quadrature approximation

to c(θ, σ) is

cm(θ, σ) =
1√
π

m∑
i=1

h
(
µ+
√

2τzi; θ, σ
)
wi, (5.7)

where zi and wi are the Gauss-Hermite quadrature nodes and weights, re-

spectively.

5.4 The teratology data and importance sam-

pling

In this section, we compare the adaptive Gauss-Hermite quadrature approx-

imation (5.7) with importance sampling, using the importance pdf φ(t;µ, τ 2)

in (5.5), in the particular context of the teratology data described by Weil

(1970).

5.4.1 Description of the dataset and the maximum like-

lihood estimates

The teratology data set of Weil (1970) lists the number of rat pups in 16

control litters that survived and the number of rat pups in 16 treated litters

that survived. Each litter is treated as a cluster, so that the total number

of clusters N = 32. The covariate xi takes the value 1 for a litter i that

is treated and the value 0 for a litter i that is a control. For this dataset,

Ji and yi denote the number of pups and the number of surviving pups,

respectively, in litter i. This data is shown in Table 5.1. The litters are

numbered from 1 up to 32 with the litter in row j and column k allocated

the number i = 8(j − 1) + k.
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Table 5.1: Teratology data set of Weil (1970). This data lists the number of

rat pups in 16 control litters that survived and the the number of rat pups

in 16 treated litters that survived.

(number survived, number dead)

Control (13, 0) (12, 0) (9, 0) (9, 0) (8, 0) (8, 0) (12, 1) (11, 1)

(9, 1) (9, 1) (8, 1) (11, 2) (4, 1) (5, 2) (7, 3) (7, 3)

Treatment (12, 0) (11, 0) (10, 0) (9, 0) (10, 1) (9, 1) (9, 1) (8, 1)

(8, 1) (4, 1) (7, 2) (4, 3) (5, 5) (3, 3) (3, 7) (0, 7)

5.4.2 The performance of importance sampling

We describe a simulation method that employs importance sampling for the

computation of (5.7), using the importance pdf, φ(t;µ, τ 2), in (5.5). We

suppose that this simulation consists of M independent simulation runs. Let

vi denote the observation obtained in the i’th simulation run of a random

variable with pdf φ(t;µ, τ 2). The importance sampling estimator of c(θ, σ) is

c̃M(θ, σ) =
1

M

M∑
i=1

h(vi; θ, σ).

This is an unbiased estimator of c(θ, σ) and its variance is σ̃2/M , where

σ̃2 =

∫ ∞
−∞

[g(t; θ, σ)φ(t; 0, σ2)]
2

φ(t;µ, τ 2)
dt− c2(θ, σ),

see e.g. Owen (2013). Hence

σ̃2 =

∫ ∞
−∞

r2(t; θ, σ) dt− c2(θ, σ),
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where

r(t; θ, σ) = h(t; θ, σ)
[
φ(t;µ, τ 2)

]1/2
. (5.8)

As shown in Appendix D.3,

r(t; θ, σ) = c0
exp (c1 + c2t+ c3 t

2)

[1 + exp(θ + t)]J
,

where c0 = (τ/
√

2πσ2)1/2, c1 = θy+µ2/(4τ 2), c2 = y−µ/(2τ 2), c3 = 1/(4τ 2)−

1/(2σ2).

It follows from the definition of τ and Appendix D.4 that c3 > −1/(4σ2).

If c3 > 0 then r(t; θ, σ)→∞ as t→∞ and as t→ −∞. Thus, if c3 > 0 then

σ̃2 = ∞ and importance sampling fails spectacularly. If, however, c3 < 0

then (a) r(t; θ, σ) → 0 as t → ∞ and as t → −∞ and (b) σ̃2 is finite. Of

course, even if c3 < 0, importance sampling may still fail to improve on

simple Monte Carlo simulation.

Consider the particular values β1 = 2.6, β2 = −1.1 and σ = 1.3. These

are examples of values that might be encountered during the computation

of the maximum likelihood estimates, which are β̂1 = 2.6257, β̂2 = −1.0824

and σ̂ = 1.3457. We obtained these values by minimizing (D.6) in Appendix

D.5 using the R function nlminb. For the particular values of β1, β2 and σ

that we have chosen, θ = 2.6 for each litter in the control group and θ = 1.5

for each litter in the treatment group.

For litters 7-12, 14-19 and 21-32, we find that c3 > 0, so that σ̃2 = ∞

and importance sampling fails spectacularly for these litter numbers. Figure

5.1 presents graphs of log r(t; θ, σ), considered as a function of t, for control

litters 12 and 15 and treatment litters 29 and 32. These graphs confirm that

r(t; θ, σ) → ∞ as t → ∞ and as t → −∞. In other words, these graphs

confirm that σ̃2 =∞ for these litters.
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Figure 5.1: Graphs of log r(t; θ, σ) as a function of t for σ = 1.3, θ = 2.6 for

a control litter and θ = 1.5 for a treatment litter. The top two graphs are for

control litters 12 and 15. The bottom two graphs are for treatment litters

29 and 32.

5.5 The performance of adaptive Gauss-Her-

mite quadrature for cluster 29 of the ter-

atology data

The following theorem, which uses a well-known type of argument for bound-

ing the error of Gauss-Legendre quadrature, see e.g. Atkinson (1989) (pp.277–

278), describes a new upper bound on
∣∣c(θ, σ)− cm(θ, σ)

∣∣. This theorem and

its proof, given in Appendix D.6, are due to Paul Kabaila.

Theorem 5.5.1. Suppose that m, z` and zu, where z` ≤ z1and zu ≥ zm, are

given. Also suppose that J , y, θ and σ are given. For notational convenience

let k(z) = h
(
µ +
√

2τz; θ, σ
)
. Define qm(z) to be the polynomial pm(z) of

degree 2m− 1 that minimizes (either exactly or numerically)

max
z∈[z`,zu]

∣∣k(z)− pm(z)
∣∣.

115



Let em denote this minimized value. Then

∣∣c(θ, σ)− cm(θ, σ)
∣∣ ≤ 2 em + |a`|+ |au|, (5.9)

where

a` =
1√
π

∫ z`

−∞
(k(z)− qm(z)) exp(−z2) dz

and

au =
1√
π

∫ ∞
zu

(k(z)− qm(z)) exp(−z2) dz.

Furthermore:

If k(z) ≥ qm(z) ≥ 0 for all z ≤ z` then

0 ≤ a` ≤
∫ µ+

√
2τz`

−∞
g(t; θ, σ)φ(t; 0, σ2) dt. (5.10)

and

If k(z) ≥ qm(z) ≥ 0 for all z ≥ zu then

0 ≤ au ≤
∫ ∞
µ+
√
2τzu

g(t; θ, σ)φ(t; 0, σ2) dt. (5.11)

This theorem shows that if k(z) ≥ qm(z) for all z ≤ z` = z1 and for

all z ≥ zu = zm for every m in an increasing sequence of values of m, then

|a`|+ |au| → 0 as m increases through these values, since zm →∞ as m→∞

(see e.g. Szegö (1967)).

Figure 5.2 presents a graph of k(z)− qm(z) = h
(
µ+
√

2τz; θ, σ
)
− qm(z),

considered as a function of z, for litter 29 for adaptive Gauss-Hermite quadra-

ture with m = 5 nodes. The smallest and largest nodes z1 and zm, respec-

tively, are shown. This graph shows that, in this case, k(z) ≥ qm(z) for all

z ≤ z` = z1 and for all z ≥ zu = zm.
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Figure 5.2: Graph of the function k(z)− qm(z) = h
(
µ+
√

2τz; θ, σ
)
− qm(z),

considered as a function of z, for litter 29 for adaptive Gauss-Hermite quadra-

ture with m = 5 nodes. The smallest and largest nodes z1 and zm, respec-

tively, are shown.

Table 5.2 presents the values of 108 × em for cluster 29, where z1 and zm

are the smallest and largest nodes for Gaussian-Hermite with m nodes, where

m = 3, 5, 7, 9 and 11. Here z` and zu are the lower and upper limits such that

z` ≤ z1 and zu ≥ zm. For every value of m in this table, k(z) ≥ qm(z) ≥ 0

for all z ≤ z` and for all z ≥ zu. In other words, the upper bound on∣∣c(θ, σ)−cm(θ, σ)
∣∣ that results from (5.9), (5.10) and (5.11) applies. Note that

the values of em in this table decrease as m increases. Also, since z` decreases

and zu increases as m increases, |a`| and |au| decrease as m increases through
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the values m = 3, 5, 7, 9 and 11. Our conclusion from this table is that the

upper bound on
∣∣c(θ, σ) − cm(θ, σ)

∣∣ decreases as m increases through these

values. Figure 5.2 and Table 5.2 were obtained using the minimax command

in Maple.

Table 5.2: Values of 108×em for cluster 29, where z1 and zm are the smallest

and largest nodes for Gaussian-Hermite with m nodes. Here z` and zu are

the lower and upper limits such that z` ≤ z1 and zu ≥ zm.

m z` z1 zm zu 108×em

3 −2.100000000 −1.224744871 1.224744871 1.280000000 3.9453

5 −2.800000000 −2.020182870 2.020182870 2.020182870 1.4063

7 −3.400000000 −2.651961357 2.651961357 2.651961357 0.79274

9 −3.930000000 −3.190993202 3.190993202 3.190993202 0.51983

11 −4.400000000 −3.668470847 3.668470847 3.668470847 0.39768

5.6 Remark

As noted in section 5.4.2, if c3 > 0 then r(t; θ, σ) → ∞ as t → ∞ and

as t → −∞, so that σ̃2 = ∞ and importance sampling fails spectacularly.

However, (5.8) implies that if c3 > 0 then h(t; θ, σ) → ∞, as t → ∞ and

as t → −∞, faster than any polynomial. In other words, if c3 > 0 then

k(z) = h
(
µ+
√

2τz; θ, σ
)
→∞, as z →∞ and as z → −∞, faster than any

polynomial. This is shown in Appendix D.7. It is this fact than makes it

possible for the condition that k(z) ≥ qm(z) for all z ≤ z` and for all z ≥ zu

to be satisfied. This condition is used in Theorem 5.5.1 to bound |a`| and

|au| from above. In other words, the property of the function h(t; θ, σ) of t
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that leads to importance sampling failing spectacularly is useful in disclosing

why adaptive Gauss-Hermite quadrature succeeds.

5.7 Conclusion

Adaptive Gauss-Hermite quadrature and importance sampling share the same

basic first step of multiplying and dividing the integrand of interest by a cho-

sen pdf. However, this is where the similarity between these two methods

ends. Extreme care is required to apply importance sampling effectively.

Fortunately, for users of adaptive Gauss-Hermite quadrature for the com-

putation of the log-likelihood function of generalized linear mixed models,

this method can be applied effectively without approaching the same level of

concern.
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Appendix A

Proofs and R programs for

Chapter 2

A.1 Derivation of the expressions for r1(θ
′)

and r2 given in subsection 2.2.1

It follows from the joint distribution of (θ̂, τ̂), given by (2.6), that the joint

pdf of (θ̂, τ̂) is

1

2π v
1/2
θ v

1/2
τ

√
1− ρ2

×

exp

(
− 1

2(1− ρ2)

((
θ̂ − θ
v
1/2
θ

)2

− 2 ρ

(
θ̂ − θ
v
1/2
θ

)(
τ̂ − τ
v
1/2
τ

)
+

(
τ̂ − τ
v
1/2
τ

)2
))

.

Hence the log-likelihood function, denoted by `(θ, τ), is

− 1

2(1− ρ2)

(
(θ̂ − θ)2

vθ
− 2 ρ

(θ̂ − θ)(τ̂ − τ)

v
1/2
θ v

1/2
τ

+
(τ̂ − τ)2

vτ

)
+ constant.

Let τ̂θ denote the value of τ that maximizes l(θ, τ) with respect to τ , for

given θ. We find τ̂θ by minimizing

(θ̂ − θ)2

vθ
− 2 ρ

(θ̂ − θ)(τ̂ − τ)

v
1/2
θ v

1/2
τ

+
(τ̂ − τ)2

vτ
(A.1)
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with respect to τ . Thus τ̂θ is the solution for τ of

∂(A.1)

∂τ
= 2 ρ

(θ̂ − θ)
v
1/2
θ v

1/2
τ

− 2
(τ̂ − τ)

vτ
= 0

⇐⇒ ρ
(θ̂ − θ)
v
1/2
θ

− τ̂ − τ
v
1/2
τ

= 0

⇐⇒ τ̂ − τ
v
1/2
τ

= ρ
(θ̂ − θ)
v
1/2
θ

.

Therefore

τ̂ − τ̂θ
v
1/2
τ

= ρ
(θ̂ − θ)
v
1/2
θ

.

Hence (A.1), with τ replaced by τ̂θ, is

(θ̂ − θ)2

vθ
− 2 ρ

(θ̂ − θ)
v
1/2
θ

ρ
(θ̂ − θ)
v
1/2
θ

+ ρ2
(θ̂ − θ)2

vθ

=
(θ̂ − θ)2

vθ
− 2 ρ2

(θ̂ − θ)2

vθ
+ ρ2

(θ̂ − θ)2

vθ

= (1− ρ2) (θ̂ − θ)2

vθ
.

Hence, `
(
θ, τ̂θ

)
is equal to

− 1

2 (1− ρ2)
(1− ρ2) (θ̂ − θ)2

vθ
+ constant = −1

2

(θ̂ − θ)2

vθ
+ constant.

Thus

2
(
l
(
θ̂, τ̂
)
− l
(
θ, τ̂θ

))
= 2× 1

2

(θ̂ − θ)2

vθ
.

Therefore, for θ = θ′, the SRLR statistic is

r1(θ
′) = sign(θ̂ − θ′)

√
2
(
l
(
θ̂, τ̂
)
− l
(
θ′, τ̂θ′

))
=
θ̂ − θ′

v
1/2
θ

. (A.2)

Let θ̂τ denote the value of θ that maximizes l(θ, τ) with respect to θ, for
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given τ . Similarly to (A.2),

sign(τ̂ − τ)

√
2
(
l
(
θ̂, τ̂
)
− l
(
θ̂τ , τ

))
=
τ̂ − τ
v
1/2
τ

.

Therefore, for τ = t, the SRLR statistic is

r2 = sign(τ̂ − t)
√

2
(
l
(
θ̂, τ̂
)
− l
(
θ̂t, t
))

=
τ̂ − t
v
1/2
τ

.

A.2 Numerical results for the local coverage

probability and local scaled expected

length of the confidence interval ACIW(β̂
∗
)

The Monte Carlo simulation estimation of the local coverage probabilities of

the Wald-based confidence intervals IW(y∗; c) and ACIW(β̂
∗
) are very sim-

ilar. For the sake of brevity, we describe only the Monte Carlo simulation

estimation of the former.

Let θ∗ = g(β∗). We estimate the coverage probability Pβ∗
(
θ∗ ∈ IW(y∗; c)

)
by Monte Carlo simulation as follows. We carry out M independent simu-

lation runs. The kth simulation run we generate an observation of y∗ and

record 1
(
θ∗ ∈ IW(y∗; c)

)
. Using the recorded results for the M simulation

runs, we estimate the coverage probability and the standard error of this

estimate are carried out in the obvious way.

The top panel of Figure A.1 presents approximate 95% confidence inter-

vals for the coverage probability of the confidence interval IW(y∗; 0.05) for θ∗,

which has nominal coverage 0.95, evaluated at γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}.

The bottom panel of this figure presents approximate 95% confidence inter-

vals for the coverage probability of the confidence interval ACIW
(
β̂∗
)

for θ∗,

which has nominal coverage 0.95, evaluated on the same grid of values of
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γ∗. For each of these panels, the number of simulation runs M = 40, 000

for each value of γ∗. These panels show that the local minimum coverage

probabilities of IW(y∗; 0.05) and ACIW
(
β̂∗
)

are approximately 0.95 and 0.94,

respectively.
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Figure A.1: Approximate 95% confidence intervals for the coverage probabil-

ities of the confidence intervals IW(y∗; 0.05) (top panel) and ACIW
(
β̂∗
)

(bot-

tom panel), both with nominal coverage 0.95, for γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}.

We used the method described in subection A.7.1 to estimate local min-

imum coverage probability of IW(y∗; c), for c = 0.03, 0.05 and 0.07. Here,

M ′ = 10, 000. Figure A.2 plots these estimates. The red straight line is the

least squares fit to this data.

We also used the method described in subsection A.7.1 to estimate local

minimum coverage probability of ACIW
(
β̂
∗)

, with nominal coverage 0.95.

Here, M ′ = 10, 000. The resulting estimate is 0.940866. Using the method

described in subsection A.7.2, we estimated c̃ = 0.06502.

123



●

●

●

0.03 0.04 0.05 0.06 0.07

0.940

0.945

0.950

0.955

0.960

0.965

 

c

 

c~

0.940866M
in

. c
ov

er
ag

e 
pr

ob
. o

f  
I w

(y
*;

 c
)

Figure A.2: Plot of the estimated minimum coverage probability of IW(y∗; c)

for c = 0.03, 0.05 and 0.07. The red straight line is the least squares fit to

this data.

The left panel of Figure A.3 presents approximate 95% confidence inter-

vals for the local scaled expected length of the confidence interval ACIW
(
β̂
∗)

,

with nominal coverage 0.95, evaluated at each γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}

using M = 40, 000 simulation runs. These approximate 95% confidence in-

tervals were found using the simplifying approximation that c̃ is computed

without error. The right panel of this figure presents the scaled expected

length SEL(γ∗; β̃) for the confidence interval CI
(
bρ(β̃), sρ(β̃)

)
, found using

ciuupi, with ρ(β̃) = −0.399855.

Note that, for the same nominal coverage 0.95, the local scaled expected

length of the confidence interval ACIW
(
β̂
∗)

substantially exceeds that of

ACIL
(
y∗
)

for every γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. This shows that, in terms of

local scaled expected length, ACIL
(
y∗
)

outperforms ACIW
(
β̂
∗)

.
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Figure A.3: The left panel presents approximate 95% confidence intervals for

the local scaled expected length of the confidence interval ACIW
(
β̂
∗)

, which

has nominal coverage 0.95, for γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}. The right panel

is the graph of SEL(γ∗; β̃) for the confidence interval CI
(
bρ(β̃), sρ(β̃)

)
, found

using the R package ciuupi.

A.3 Expressions for the coverage probabili-

ties of IL(y; c) and ACIL(y) that do not

require the computation of the endpoints

of these confidence intervals

We make the following assumption.

Assumption A: For the chosen true value of β, there is a set Yβ of values

of y such that (a) the probability that y ∈ Yβ is very close to 1 and (b)

r1(θ
′ |y) is a decreasing function of θ′ for all y ∈ Yβ.

The coverage probability of the likelihood-based confidence interval IL(y; c)
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can be computed to a very good approximation, without computing the end-

points of this confidence interval, as follows. Since{
θ̂l ≤ θ ≤ θ̂u

}
=
{
−z1−α/2 ≤ r1(θ |y) ≤ z1−α/2

}
,

the coverage probability of IL(y; c) is, to a very good approximation, given

by Pβ

(
− z1−α/2 ≤ r1(θ |y) ≤ z1−α/2

)
.

Similarly, the coverage probability of ACIL(y) can be computed to a very

good approximation, without computing the endpoints of this confidence

interval, as follows. Since{
θ̃l ≤ θ ≤ θ̃u

}
=
{
bρ(β̂)

(
r2(y)

)
− sρ(β̂)

(
r2(y)

)
≤ r1(θ |y) ≤ bρ(β̂)

(
r2(y)

)
+ sρ(β̂)

(
r2(y)

)}
,

the coverage probability of ACIL(y) is, to a very good approximation, given

by

Pβ

(
bρ(β̂)

(
r2(y)

)
− sρ(β̂)

(
r2(y)

)
≤ r1(θ |y) ≤ bρ(β̂)

(
r2(y)

)
+ sρ(β̂)

(
r2(y)

))
.

A.4 Evidence in favour of the correctness of

Assumption A

In this section we report the results of a Monte Carlo simulation study that

provides evidence in favour of the correctness of Assumption A (defined in

Section A.3), with β and y replaced by β∗ and y∗, respectively. For each γ∗ ∈

{−2.5,−2, . . . , 2, 2.5}, we carried out M = 40, 000 independent simulation

runs. The kth simulation run generated an observation of y∗, followed by a

numerical check that r1(θ
′ |y∗) is a decreasing function of θ′. It was found

that, for every γ∗ ∈ {−2.5,−2, . . . , 2, 2.5} and every simulation run, this

numerical check showed that r1(θ
′ |y∗) is a decreasing function of θ′. This
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provides strong evidence in favour of the correctness of Assumption A, with

β and y replaced by β∗ and y∗, respectively.

We now provide a detailed description of this numerical check. In the case

of the linear regression model described in Section 2.2, the SRLR statistic

r1(θ
′) =

θ̂ − θ′(
var(θ̂)

)1/2 .
The similarity between the bivariate normal distribution (2.2) and the asymp-

totic bivariate normal distribution (2.20) suggests that, to a rough approxi-

mation,

r1(θ
′ |y∗) ≈ θ̂∗ − θ′(

avar(θ̂; β̃)
)1/2 .

Based on this approximation, we chose the following equally-spaced grid of

values of θ′. Let θ′1 = θ̂∗−5
(
avar(θ̂; β̃)

)1/2
, θ′2 = θ̂∗−4

(
avar(θ̂; β̃)

)1/2
, . . . , θ′10 =

θ̂∗ + 4
(
avar(θ̂; β̃)

)1/2
and θ′11 = θ̂∗ + 5

(
avar(θ̂; β̃)

)1/2
. Consequently, to a

rough approximation, r1(θ
′
1 |y∗) ≈ −5, r1(θ

′
2 |y∗) ≈ −4, . . . , r1(θ

′
10 |y∗) ≈ 4

and r1(θ
′
11 |y∗) ≈ 5. For each γ∗ ∈ {−2.5,−2, . . . , 2, 2.5}, in the kth sim-

ulation run we recorded whether or not r1(θ
′
i+1 |y∗) − r1(θ′i |y∗) < 0 for all

i ∈ {1, 2, . . . , 10}.

A.5 Fast evaluation of the functions bρ and sρ

for any given ρ

To compute the Wald-based confidence interval ACIW
(
β̂∗
)
, the expression

(2.24) and the likelihood-based confidence interval ACIL(y∗), we first com-

pute ρ
(
β̂∗
)
. Then we need to evaluate the functions bρ and sρ for ρ = ρ

(
β̂∗
)
.

For any given ρ, the R package ciuupi computes the information needed to

evaluate the functions bρ and sρ. On a typical PC this takes roughly 7 min-

utes, when we use the natural cubic spline option in ciuupi. To greatly speed
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up the computation of this information, we use a look-up table, followed by

the use of linear interpolation.

As described by Mainzer & Kabaila (2019), the functions bρ and sρ

have the following properties: bρ : R → R is an odd continuous func-

tion and sρ : R → [0,∞) is an even continuous function. In addition,

bρ(x) = 0 and sρ(x) = z1−α/2 for all |x| ≥ 6. The functions bρ and sρ are

fully specified by the vector
(
bρ(1), bρ(2), . . . , bρ(5), sρ(0), sρ(1), . . . , sρ(5)

)
. In

other words, this is the information needed to evaluate the functions bρ and

sρ. By assumption, bρ(−6) = 0, bρ(0) = 0, bρ(6) = 0, sρ(−6) = z1−α/2,

sρ(6) = z1−α/2,
(
bρ(−1), bρ(−2), . . . , bρ(−5)

)
=
(
− bρ(1),−bρ(2), . . . ,−bρ(5)

)
and

(
sρ(−1), . . . , sρ(−5)

)
=
(
sρ(1), . . . , sρ(5)

)
. The values of bρ(x) and sρ(x)

for any x ∈ [−6, 6] are found by natural cubic spline interpolation (using the

command bsspline from the package ciuupi) for the given values of bρ(i)

and sρ(i) for i = −6,−5, . . . , 0, 1, . . . , 5, 6. The vector
(
bρ(1), bρ(2), . . . , bρ(5),

sρ(0), sρ(1), . . . , sρ(5)
)

is a smooth function of ρ.

For fast evaluation of the functions bρ and sρ, for any given ρ, we use the

following method. Let ρ(1) = −0.96, ρ(2) = −0.92, . . . , ρ(25) = 0, . . . , ρ(48) =

0.92, ρ(49) = 0.96. We carry out the following preliminary computations (us-

ing the command bsciuupi from the package ciuupi) to prepare a look-up

table of values of the vector

(
bρ(i)(1), bρ(i)(2), . . . , bρ(i)(5), sρ(i)(0), sρ(i)(1), . . . , sρ(i)(5)

)
for i = 1, . . . , 49. This look-up table is used as follows. If ρ ≤ ρ(1) then we

approximate bρ(x) and sρ(x) by bρ(1)(x) and sρ(1)(x), respectively, using the

look-up table. Similarly, if ρ ≥ ρ(49) then we approximate bρ(x) and sρ(x)

by bρ(49)(x) and sρ(49)(x), respectively, using the look-up table. Otherwise,

we compute i such that ρ(i) ≤ ρ ≤ ρ(i+1). We then approximate the vector

128



(
bρ(1), bρ(2), . . . , bρ(5), sρ(0), sρ(1), . . . , sρ(5)

)
by

(
1− ρ− ρ(i)

ρ(i+ 1)− ρ(i)

)(
bρ(i)(1), bρ(i)(2), . . . , bρ(i)(5), sρ(i)(0), sρ(i)(1), . . . , sρ(i)(5)

)
+

(
ρ− ρ(i)

ρ(i+ 1)− ρ(i)

)(
bρ(i+1)(1), bρ(i+1)(2), . . . , bρ(i+1)(5), sρ(i+1)(0), sρ(i+1)(1), . . . ,

sρ(i+1)(5)
)
.

In other words, we use linear interpolation.

A.6 Computation of the SRLR statistics

We need to compute the signed root likelihood ratio test (SRLR) statistic

r1(θ
∗ |y∗) = sign

(
θ̂∗ − θ∗

)√
2
(
`
(
β̂∗
∣∣y∗)− `(β̂∗(θ∗; θ) ∣∣y∗)),

where β̂∗(θ∗; θ) maximises `(β |y∗) with respect to β, subject to the con-

straint that g(β) = θ∗. For the model used for the Morphine/Amidone data,

this is a nonlinear constraint on β. Consequently, β̂∗(θ∗; θ) needs to be com-

puted using an optimization method with nonlinear constraints such as the

slsqp function in the nloptr package in R.

We also need to compute the SRLR statistic

r2(y
∗) = sign(τ̂ ∗)

√
2
(
`
(
β̂∗
∣∣y∗)− `(β̂∗(0; τ)

∣∣y∗)),
where β̂∗(0; τ) maximises `(β |y∗) with respect to β, subject to the constraint

that h(β) = 0. For the model used for the Morphine/Amidone data, this

is a linear constraint on β. Consequently, β̂∗(0; τ) is computed using an

optimization method with linear constraints such as the solnl function in

the ‘NlcOptim’ package in R.
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A.7 Computation of c̃

The method used to compute c̃ such that the local minimum coverage proba-

bilities of likelihood-based confidence intervals ACIL(y∗) and IL(y∗; c̃) are the

same is very similar to the method used to compute c̃ such that the local min-

imum coverage probabilities of Wald-based confidence intervals ACIW
(
β̂∗
)

and IW(y∗; c̃) are the same. For the sake of brevity, we describe only the

latter method.

A.7.1 Monte Carlo simulation estimation of the min-

imum coverage probabilities of ACIW(β̂
∗
) and

IW(y∗; c)

The computation of the local minimum coverage probabilities of Wald-based

confidence intervals ACIW(β̂
∗
) and IW(y∗; c), for given c, are very similar.

For the sake of brevity, we describe only the latter.

If we estimate the local minimum coverage probability of IW(y∗; c) by

choosing the smallest of the estimated coverage probabilities, for γ∗ ∈ {−u,−u

+ δ, . . . , u− δ, u}, then this estimate will be biased downwards. We therefore

use the following three step process.

Step 1 : Estimate the coverage probability for each γ∗ ∈ {−u,−u+δ, . . . , u−

δ, u}, where δ = u/5. We use M ′ simulation runs for each value of γ∗. Pick

the 3 values of γ∗ that have the smallest estimated coverage probability.

Step 2 : For the 3 values of γ∗ chosen in Step 1, run new simulations using

10M ′ simulation runs for each value of γ∗. Choose the value of γ∗ (out of

these 3 values) that minimizes the estimated coverage probability.

Step 3 : For the value of γ∗ chosen in Step 2, run a new simulation with

100M ′ simulation runs to obtain the final estimate of the local minimum

coverage probability.
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This technique is a variant of the technique used in Section 3.1 of Kabaila &

Leeb (2006).

A.7.2 Use of a fitted straight line in c to compute c̃

Note that

Pβ∗
(
θ∗ ∈ IW(y∗; c)

)
= Pβ∗

(
−z1−c/2 ≤

θ̂∗ − θ∗(
avar(θ̂; β̂∗

)1/2 ≤ z1−c/2

)
≈ 1− c.

Consequently, to compute c̃, we make the very reasonable assumption that

the local minimum coverage probability of the Wald-based confidence interval

IW(y∗; c) is approximately a straight line function of c, for c close to α. We

choose 3 values of c: α − δc, α and α + δc, where δc is a judiciously-chosen

small positive number. We then fit a straight line to the local minimum

coverage probability of IW(y∗; c) evaluated at these 3 values of c to compute

c̃.

A.8 The distribution of q∗L

We examine the distribution of the random variable q∗L, which is defined in

subsection 2.10.2. For each γ∗ ∈ {−2.5,−1.5,−0.5, 0.5, 1.5, 2.5}, we carried

out M = 10, 000 simulation runs to obtain a sample q∗L(1), . . . , q∗L(M). Table

A.1 presents some descriptive statistics for each sample. These results show

that the distribution of q∗L does not have any long or heavy tails.
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Table A.1: Some descriptive statistics for q∗L(1), . . . , q∗L(M) for γ∗ ∈ {−2.5,

−1.5,−0.5, 0.5, 1.5, 2.5} where the number of simulation runs, for each value

of γ∗, is M = 10, 000.

γ∗ Min 1st Qu. Median Mean 3rd Qu. Max

−2.5 0.869597 1.002773 1.028431 1.015938 1.041444 1.069838

−1.5 0.862585 0.949561 0.997398 0.991340 1.036458 1.068194

−0.5 0.865069 0.922768 0.947702 0.958856 0.989541 1.077855

0.5 0.834319 0.914651 0.938062 0.950739 0.980454 1.077168

1.5 0.847077 0.924437 0.978760 0.977689 1.033684 1.286713

2.5 0.854067 0.988663 1.027716 1.010364 1.046152 2.631895
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A.9 R programs for computing the coverage

probability and the scaled expected length

of the likelihood-based confidence inter-

vals.

In this appendix, we list the R programs for computing the coverage probabil-

ity of the profile likelihood confidence interval, IL(y∗; 0.05), and the coverage

probability and the scaled expected length of the likelihood-based confidence

interval, ACIL(y∗), that utilizes the uncertain prior information.

A.9.1 Computation of the γ∗ values

GamVec <- function(Intdata , m, delta) {
# Compute the vector of gamma values for a given
# vector of tau values.
#
# Input:
# Intdata: Grewal1952.csv dataset
# delta: gap between the values of gamma vector
# m: choose m and delta such that m*delta = 10
#
# Output:
# A vector of gamma values of the same
# lenth as tau.vec.
#
# Written by N Ranathunga in May 2020

avartau <- AvarTau(Intdata)
tau.vec <- TauVec(Intdata , m, delta)

# Set up a vector to store results
gamma.vec <- rep(0, length(tau.vec))

for(i in c(1: length(tau.vec))) {
gamma.vec[i] <- tau.vec[i] / sqrt(avartau)

}
out <- gamma.vec

}
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AvarTau <- function(Intdata){
# Compute the asymptotic variance of tau.
#
# Input:
# Intdata: Grewal1952.csv dataset
# x= the 6 by 4 design matrix
# nvec= the 6-vector of cluster sizes
#
# Output:
# Asymptotic variance of tau.
#
# Written by N Ranathunga in May 2020

para.vec <- ParaVec(Intdata)
x <- as.matrix(Intdata[,c(7:10)], nrow=6, ncol =4)
nvec <- as.vector(Intdata [,6])
diff.hbeta <- c(0, 1, 0, -1)

# Set up a vector to store results
diag.vec <- rep(0, 6)

for (i in 1 : 6) {
term1 <- para.vec [1]*x[i, 1] +

((para.vec [2] + para.vec [4]) /2) * x[i, 2] +
para.vec [3]*x[i, 3] +
((para.vec [2] + para.vec [4]) /2) * x[i, 4]

term2 <- exp(term1) / (1 + exp(term1))^2
diag.vec[i] <- nvec[i] * term2

}

diag.mat <- diag(diag.vec , nrow = 6, ncol = 6)
info.mat <- t(x) %*% diag.mat %*% x
inv.info.mat <- solve(info.mat)
out <- t(diff.hbeta) %*% inv.info.mat %*% diff.hbeta

}
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TauVec <- function(Intdata , m, delta) {
# Compute the vector of tau values of
# length 2*m+1
#
# Input:
# Intdata: Grewal1952.csv dataset
# delta: gap between the values of gamma vector
# m: choose m and delta such that m*delta = 10
#
# Output:
# A vector of tau values.
#
# Written by N Ranathunga in May 2020

avartau <- AvarTau(Intdata)

# Set up a vector to store results
tau.vec <- rep(0, 2*m+1)

for(i in c(1:(2*m+1))) {
tau.vec[i] <- (i-m-1)*delta*sqrt(avartau)

}
out <- tau.vec

}
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A.9.2 Coverage probability of the likelihood-based con-

fidence intervals, IL(y∗; 0.05) and ACIL(y∗)

CovProblikCI <- function(tau , M, Intdata , z, bsmat , b0.vec ,
alpha){

# Compute the coverage probabilities of the profile
likelihood

# confidence interval and the confidence interval utilizing
# uncertain prior information in general regression model
# using the signed root likelihood ratios for a given tau.
#
# Input:
# tau: scalar paramer with uncertain prior information
# para.vec: the p-vector of parameters
# M: number of simulation runs
# n: number of responses
# Intdata: Grewal1952.csv dataset
# z: a specified value where 0 < z < 100
# bsmat: this matrix has (b(1),b(2) ,...,b(5),s(0),s(1) ,...,

s(5))
# vectors that specifies the CIUUPI for different
# values of rho.
# b0.vec: a 4-vector of starting values for searching the

optimum
#
# Output:
# List of two values of the coverage probabilities.
#
# Written by N Ranathunga in May 2020

c <- log((z/100) / (1 - (z/100)))
para.vec <- ParaVec(Intdata)
theta.obs <- (c - para.vec [1]) /(( para.vec [2]+ para.vec [4])/2

+ tau/2) -
(c - para.vec [3]) /(( para.vec [2]+ para.vec [4])/2 -

tau /2)
x <- as.matrix(Intdata[,c(7:10)], nrow=6, ncol =4)
nvec <- as.vector(Intdata [,6])
zquant <- qnorm(1 - alpha/2, 0, 1)

# Initialize vectors
record.ACIL <- rep(0, M)
record.IL <- rep(0, M)

for (i in 1 : M) {

# Generating Cases and Controls
mu.vec <- x %*% para.vec
term.vec <- exp(mu.vec)
pvec <- term.vec / (1 + term.vec)
r2vec <- rbinom(rep(1, 6), nvec , pvec)
nminr2vec <- nvec - r2vec
data.mat <- cbind(Intdata , r2vec , nminr2vec)

# Fitting the binomial logistic regression model
glm.fit <- glm(cbind(r2vec , nminr2vec) ~ x1 + x2 + x3 +

x4 - 1,
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data = data.mat , family = binomial(
logit))

beta1 <- coef(glm.fit)[1]
beta2 <- coef(glm.fit)[2]
beta3 <- coef(glm.fit)[3]
beta4 <- coef(glm.fit)[4]

loglik.thetahat <- logLik(glm.fit)[1]
theta.hat <- (1/ beta2)*(c - beta1) - (1/ beta4)*(c - beta3

)
tau.hat <- beta2 - beta4

#Finding rho value
inv.info.matrix <- vcov(glm.fit)
diff.gbeta <- c(-1/beta2 , (beta1 - c)/( beta2 ^2),

1/beta4 , (c - beta3)/( beta4 ^2))
diff.hbeta <- c(0, 1, 0, -1)

avar.theta <- t(diff.gbeta) %*% inv.info.matrix %*% diff.
gbeta

avar.tau <- t(diff.hbeta) %*% inv.info.matrix %*% diff.
hbeta

acov <- t(diff.gbeta) %*% inv.info.matrix %*% diff.hbeta
rho.est <- acov / sqrt(avar.theta*avar.tau)

# Find the vector (b(1),b(2) ,...,b(5),s(0),s(1) ,...,s(5))
that specifies the

# CIUUPI:
delta.rho <- 0.04
rho.vec <- seq(-0.96, 0.96, by=delta.rho)
if (rho.est >= -0.96 && rho.est <= 0.96){

up.i <- 1 + (0.96/ delta.rho) + ceiling(rho.est/delta.
rho)

low.i <- up.i - 1
term1 <- as.vector ((rho.est - rho.vec[low.i])/(rho.vec

[up.i] - rho.vec[low.i]))
bsvec <- (1 - term1)*bsmat[low.i, ] + term1*bsmat[up.i,

]

} else if (rho.est < -0.96) {
bsvec <- bsmat[1, ]

} else {
bsvec <- bsmat [49, ]

}

# Computing the ritheta function
r1theta <- Fun_r1(theta.prime=theta.obs , theta.hat ,

loglik.thetahat , nvec , rvec=r2vec , x=x,
b0.vec=b0.vec , z=z)

# Computing the r2 function
r2.stat <- Fun_r2(tau.hat , loglik.thetahat , nvec , rvec=

r2vec , x,
b0.vec)

# Record if r1theta is in [br2 -sr2 , br2+sr2] or not
val <- r2.stat
bs <- ciuupi :: bsspline(val , bsvec , alpha , natural = 1)
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br2 <- bs$b
sr2 <- bs$s

if (r1theta >= br2 -sr2 && r1theta <= br2+sr2) {
record.ACIL[i] <- 1

} else {
record.ACIL[i] <- 0

}

# Record if r1theta is in [-zquant , zquant] or not
if (r1theta >= -zquant && r1theta <= zquant) {

record.IL[i] <- 1
} else {

record.IL[i] <- 0
}

}

# Return the coverage probability of I_L(y*) and ACI_L(y*)

cp.IL <- mean(record.IL)
cp.ACIL <- mean(record.ACIL)
out <- list(cpIL=cp.IL , cpACILL=cp.ACIL)

}
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ParaVec <- function(Intdata){
# Compute the MLE of beta vector.
#
# Input:
# Intdata: Grewal1952.csv dataset
#
# Output:
# A 4-vector of MLEs of beta vector.
#
# Written by N Ranathunga in May 2020

# Fitting a binomial logistic regression
glm.fit <- glm(cbind(r, n_minus_r) ~ x1 + x2 + x3 + x4 - 1,

data = Intdata , family = binomial(logit))

beta1 <- coef(glm.fit)[1]
beta2 <- coef(glm.fit)[2]
beta3 <- coef(glm.fit)[3]
beta4 <- coef(glm.fit)[4]

para.vec <- c(beta1 , beta2 , beta3 , beta4)
}

Fun_r1 <- function(theta.prime , theta.hat , loglik.thetahat ,
nvec , rvec , x, b0.vec , z){

# Compute the r1(theta.prime) function.
#
# Input:
# theta.prime: a value for theta
# theta.hat: MLE of theta
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r1(theta.prime) function.
#
# Written by N Ranathunga in May 2020

heqfun <- functional :: Curry(Funheq , z=z, theta.prime=theta.
prime)

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = heqfun ,
nvec=nvec ,

rvec=rvec , x=x)

loglik.thetaprime <- -S$value
if (loglik.thetahat - loglik.thetaprime > 0){

diff <- loglik.thetahat - loglik.thetaprime
} else diff <- 0

r1theta <- sign(theta.hat - theta.prime) * sqrt(2 * diff)

}
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Fun_r2 <- function(tau.hat , loglik.thetahat ,
nvec , rvec , x, b0.vec){

# Compute the r2(y) function.
#
# Input:
# tau.hat: MLE of tau
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r2(y) function.
#
# Written by N Ranathunga in May 2020

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = FunheqTau ,
nvec=nvec ,

rvec=rvec , x=x)
loglik.tau <- -S$value

if (loglik.thetahat - loglik.tau > 0){
diff0 <- loglik.thetahat - loglik.tau

} else diff0 <- 0

r2 <- sign(tau.hat) * sqrt(2 * (diff0))

}
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Funheq <- function(bvec , z, theta.prime) {
# This function calculates the inequality constraint.
#
# Inputs
# bvec: parameter vector
# theta.prime: a value for theta
# z: a specified value 0 < z < 100
#
# Output
# Value of the inequality constraint.
#
# Written by N. Ranathunga in March 2020

c <- log((z/100) / (1 - (z/100)))
out <- (1/ bvec [2])*(c - bvec [1]) - (1/ bvec [4])*(c - bvec

[3]) - theta.prime
}

FunheqTau <- function(bvec) {
# This function calculates the equality constraint.
#
# Inputs
# bvec = parameter vector
#
# Output
# Value of the equality constraint
#
# Written by N. Ranathunga in March 2020

bvec [2] - bvec [4]
}

Loglik <- function(bvec , nvec , rvec , x) {
# This function calculates the log likelihood function of
# a logistic regression model.
#
# Inputs
# bvec = 4-vector of parameters
# nvec = 6-vector of cluster sizes
# r2vec = 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output
# Value of the log likelihood function
#
# Written by N. Ranathunga in March 2020

term1.vec <- log(factorial(nvec)) - log(factorial(rvec)) -
log(factorial(nvec - rvec))

par.vec <- c(bvec[1], bvec[2], bvec[3], bvec [4])
mu.vec <- x %*% par.vec
term2.vec <- mu.vec * rvec
term3.vec <- nvec * log(1 + exp(mu.vec))

out <- -sum(term1.vec) - sum(term2.vec) + sum(term3.vec)

}
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A.9.3 Scaled expected length of the likelihood-based

confidence interval ACIL(y∗)

SELlikCI <- function(tau , para.vec , M, n, Intdata , z, bsmat ,
b0.vec){

# Compute the coverage probabilities of the profile
likelihood

# confidence interval and the confidence intervarl
utilizing

# uncertain prior information using the signed root
likelihood

# ratios for a given tau.
#
# Input:
# tau: scalar paramer with uncertain prior information
# par.vec: the p-vector of parameters
# M: number of simulation runs
# x: the n by p design matrix
# n: number of responses
# grp: the n-vector of covariate
# rvec: the n-vector of response
# nvec: the n-vector of cluster sizes
#
# Output:
# List of two values of the coverage probabilities.
#
# Written by N Ranathunga in May 2020

c <- log((z/100) / (1 - (z/100)))
para.vec <- ParaVec(Intdata)
theta.obs <- (c - para.vec [1]) /(( para.vec [2]+ para.vec [4])/2

+ tau/2) -
(c - para.vec [3]) /(( para.vec [2]+ para.vec [4])/2 - tau/2)

x <- as.matrix(Intdata[,c(7:10)], nrow=6, ncol =4)
nvec <- as.vector(Intdata [,6])
zquant <- qnorm(1 - alpha/2, 0, 1)

# Initialize vectors
length.ACIL <- rep(0, M)
length.IL <- rep(0, M)

for (i in 1 : M) {

# Generating Cases and Controls
mu.vec <- x %*% para.vec
term.vec <- exp(mu.vec)
pvec <- term.vec / (1 + term.vec)
r2vec <- rbinom(rep(1, 6), nvec , pvec)
nminr2vec <- nvec - r2vec
data.mat <- cbind(Intdata , r2vec , nminr2vec)

# Fitting the binomial logistic regression model
glm.fit <- glm(cbind(r2vec , nminr2vec) ~ x1 + x2 + x3 +

x4 - 1,
data = data.mat , family = binomial(logit))

beta1 <- coef(glm.fit)[1]
beta2 <- coef(glm.fit)[2]
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beta3 <- coef(glm.fit)[3]
beta4 <- coef(glm.fit)[4]

loglik.thetahat <- logLik(glm.fit)[1]
theta.hat <- (1/ beta2)*(c - beta1) - (1/ beta4)*(c - beta3

)
tau.hat <- beta2 - beta4

#Finding rho value
inv.info.matrix <- vcov(glm.fit)
diff.gbeta <- c(-1/beta2 , (beta1 - c)/( beta2 ^2),

1/beta4 , (c - beta3)/( beta4 ^2))
diff.hbeta <- c(0, 1, 0, -1)

avar.theta <- t(diff.gbeta) %*% inv.info.matrix %*% diff.
gbeta

avar.tau <- t(diff.hbeta) %*% inv.info.matrix %*% diff.
hbeta

acov <- t(diff.gbeta) %*% inv.info.matrix %*% diff.hbeta
rho.est <- acov / sqrt(avar.theta*avar.tau)

# Find the vector (b(1),b(2) ,...,b(5),s(0),s(1) ,...,s(5))
that specifies the

# CIUUPI:
delta.rho <- 0.04
rho.vec <- seq(-0.96, 0.96, by=delta.rho)
if (rho.est >= -0.96 && rho.est <= 0.96){

up.i <- 1 + (0.96/ delta.rho) + ceiling(rho.est/delta.
rho)

low.i <- up.i - 1
term1 <- as.vector ((rho.est - rho.vec[low.i])/(rho.vec

[up.i] - rho.vec[low.i]))
bsvec <- (1 - term1)*bsmat[low.i, ] + term1*bsmat[up.i,

]

} else if (rho.est < -0.96) {
bsvec <- bsmat[1, ]

} else {
bsvec <- bsmat [49, ]

}

# Computing the r2 function
r2.stat <- Fun_r2(tau.hat , loglik.thetahat , nvec , rvec=

r2vec , x,
b0.vec)

# Finding the length of ACI_L(y*)
val <- r2.stat
bs <- bsspline(val , bsvec , alpha , natural = 1)
br2 <- bs$b
sr2 <- bs$s

thetatilde.l <- uniroot(r1lowACIL , theta.hat=theta.hat ,
loglik.thetahat=loglik.thetahat ,

nvec=nvec , rvec=r2vec , x=x, b0.
vec=b0.vec , z=z, br2=br2 ,
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sr2=sr2 , interval = c(-1,
1), extendInt="yes")$
root

thetatilde.u <- uniroot(r1upACIL , theta.hat=theta.hat ,
loglik.thetahat=loglik.thetahat ,

nvec=nvec , rvec=r2vec , x=x, b0.
vec=b0.vec , z=z, br2=br2 ,

sr2=sr2 , interval = c(-1, 1),
extendInt="yes")$root

length.ACIL[i] <- thetatilde.u - thetatilde.l

# Finding the length of I_L(y*)

thetahat.l <- uniroot(r1lowIL , theta.hat=theta.hat ,
loglik.thetahat=loglik.thetahat ,

nvec=nvec , rvec=r2vec , x=x, b0.vec=
b0.vec , z=z, zquant=zquant ,

interval = c(-1, 1), extendInt="yes
")$root

thetahat.u <- uniroot(r1upIL , theta.hat=theta.hat , loglik
.thetahat=loglik.thetahat ,

nvec=nvec , rvec=r2vec , x=x, b0.vec=
b0.vec , z=z, zquant=zquant ,

interval = c(-1, 1), extendInt="yes
")$root

length.IL[i] <- thetahat.u - thetahat.l

}

# Return the scaled expected length ACI_L(y*)
SEL.ACIL <- mean(length.ACIL/length.IL)

}
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r1lowACIL <- function(theta.prime , theta.hat , loglik.thetahat
,

nvec , rvec , x, b0.vec , z, br2 , sr2){
# Compute the function br2 + sr2 - r1(theta.prime)
#
# Input:
# theta.prime: a value for theta
# theta.hat: MLE of theta
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r1(theta.prime) function.
#
# Written by N Ranathunga in May 2020

heqfun <- functional :: Curry(Funheq , z=z, theta.prime=theta.
prime)

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = heqfun ,
nvec=nvec ,

rvec=rvec , x=x)

loglik.thetaprime <- -S$value
if (loglik.thetahat - loglik.thetaprime > 0){

diff <- loglik.thetahat - loglik.thetaprime
} else diff <- 0

out <- br2 + sr2 - sign(theta.hat - theta.prime) * sqrt(2 *
diff)

}
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r1upACIL <- function(theta.prime , theta.hat , loglik.thetahat ,
nvec , rvec , x, b0.vec , z, br2 , sr2){

# Compute the function br2 - sr2 - r1(theta.prime)
#
# Input:
# theta.prime: a value for theta
# theta.hat: MLE of theta
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r1(theta.prime) function.
#
# Written by N Ranathunga in May 2020

heqfun <- functional :: Curry(Funheq , z=z, theta.prime=theta.
prime)

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = heqfun ,
nvec=nvec ,

rvec=rvec , x=x)

loglik.thetaprime <- -S$value
if (loglik.thetahat - loglik.thetaprime > 0){

diff <- loglik.thetahat - loglik.thetaprime
} else diff <- 0

out <- br2 - sr2 - sign(theta.hat - theta.prime) * sqrt(2 *
diff)

}
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r1lowIL <- function(theta.prime , theta.hat , loglik.thetahat ,
nvec , rvec , x, b0.vec , z, zquant){

# Compute the function zquant - r1(theta.prime)
#
# Input:
# theta.prime: a value for theta
# theta.hat: MLE of theta
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r1(theta.prime) function.
#
# Written by N Ranathunga in May 2020

heqfun <- functional :: Curry(Funheq , z=z, theta.prime=theta.
prime)

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = heqfun ,
nvec=nvec ,

rvec=rvec , x=x)

loglik.thetaprime <- -S$value
if (loglik.thetahat - loglik.thetaprime > 0){

diff <- loglik.thetahat - loglik.thetaprime
} else diff <- 0

out <- zquant - sign(theta.hat - theta.prime) * sqrt(2 *
diff)

}
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r1upIL <- function(theta.prime , theta.hat , loglik.thetahat ,
nvec , rvec , x, b0.vec , z, zquant){

# Compute the function -zquant - r1(theta.prime)
#
# Input:
# theta.prime: a value for theta
# theta.hat: MLE of theta
# loglik.thetahat: log likelihood value
# nvec: 6-vector of cluster sizes
# rvec: 6-vector of responses
# x: the 6 by 4 design matrix
#
# Output:
# Value of the r1(theta.prime) function.
#
# Written by N Ranathunga in May 2020

heqfun <- functional :: Curry(Funheq , z=z, theta.prime=theta.
prime)

S <- nloptr :: slsqp(x0=b0.vec , fn = Loglik , heq = heqfun ,
nvec=nvec ,

rvec=rvec , x=x)

loglik.thetaprime <- -S$value
if (loglik.thetahat - loglik.thetaprime > 0){

diff <- loglik.thetahat - loglik.thetaprime
} else diff <- 0

out <- -zquant - sign(theta.hat - theta.prime) * sqrt(2 *
diff)

}

A.9.4 Grewal (1952) data set used in the R programs

Table A.2: Grewal1952.csv data set used in the R programs

ID Drug X r n minus r n

1 1 0.18 19 84 103

2 1 0.48 53 67 120

3 1 0.78 83 40 123

4 2 0.18 14 46 60

5 2 0.48 54 56 110

6 2 0.78 81 19 100
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Appendix B

Proofs and R programs for

Chapter 3

B.1 Application of the Poisson summation for-

mula to understanding the accuracy of

the trapezoidal rule

In this appendix, we describe a well-known application of the Poisson summa-

tion formula to get an understanding of the accuracy of the trapezoidal rule.

According to the Poisson summation formula (page 47, Papoulis (1962)),

∞∑
j=−∞

g(y + jh) =
1

h

∞∑
j=−∞

eijω0y G(jω0), where ω0 =
2π

h
.

In other words,

h

∞∑
j=−∞

g(y + jh) =
∞∑

j=−∞

eijω0y G(jω0) (B.1)

= G(0) +
∞∑

j=−∞
j 6=0

eijω0y G(jω0)

=

∫ ∞
−∞

g(y) dy +
∞∑

j=−∞
j 6=0

eijω0y G(jω0).
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Thus ∣∣∣∣∣h
∞∑

j=−∞

g(y + jh)−
∫ ∞
−∞

g(y) dy

∣∣∣∣∣ ≤
∞∑

j=−∞
j 6=0

∣∣∣∣G(2πj

h

)∣∣∣∣ .
As noted on page 14 of Papoulis (1962), if f(y) = g(y − y0) then the

Fourier transform of f , denoted by F (ω), is F (ω) = G(ω) e−iy0ω. It follows

from (B.1) that

h

∞∑
j=−∞

f(y + jh) =
∞∑

j=−∞

eijω0y F (jω0)

=
∞∑

j=−∞

eijω0y−iy0ω G(jω0)

=
∞∑

j=−∞

ei(jω0y−y0ω)G(jω0).

Thus ∣∣∣∣∣h
∞∑

j=−∞

f(y + jh)−
∫ ∞
−∞

f(y) dy

∣∣∣∣∣ ≤
∞∑

j=−∞
j 6=0

∣∣∣∣G(2πj

h

)∣∣∣∣ .
In other words,

∣∣∣∣∣h
∞∑

j=−∞

g(y + jh− y0)−
∫ ∞
−∞

g(y) dy

∣∣∣∣∣ ≤
∞∑

j=−∞
j 6=0

∣∣∣∣G(2πj

h

)∣∣∣∣ .
As noted on page 11 of Papoulis (1962), since g(y) is a real-valued function,

G(−ω) = G(ω) for all ω. Thus

∞∑
j=−∞
j 6=0

∣∣∣∣G(2πj

h

)∣∣∣∣ = 2
∞∑
j=1

∣∣∣∣G(2πj

h

)∣∣∣∣ .
Suppose δ = y − y0. Then

∣∣∣∣∣h
∞∑

j=−∞

g(jh+ δ)−
∫ ∞
−∞

g(y) dy

∣∣∣∣∣ ≤ 2
∞∑
j=1

∣∣∣∣G(2πj

h

)∣∣∣∣ ,
for all δ ∈ [0, h).
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B.2 Application of the transformation (2.6)

of Mori (1988)

Recall that the transformation (2.6) of Mori (1988) is equal to

x(y) = exp

(
1

2
y − e−y

)
and

dx(y)

dy
= exp

(
1

2
y − e−y

)
×
(

1

2
+ e−y

)
.

Also recall that the pdf fν is given by

fν(x) =


τν x

ν−1 exp
(
− ν x2/2

)
for x > 0

0 otherwise,

where

τν =
νν/2

Γ(ν/2) 2(ν/2)−1 .

Now consider

fν
(
x(y)

)
= τν

(
x(y)

)ν−1
exp

(
−ν

2

(
x(y)

)2)
= τν

(
exp

(
1

2
y − e−y

))ν−1
exp

(
− ν

2
exp

(
y − 2e−y

) )
= τν exp

(
(ν − 1)

(
1

2
y − e−y

)
− ν

2
exp

(
y − 2e−y

))
.

Therefore

ψν(y) = fν
(
x(y)

)dx(y)

dy

= τν exp

(
(ν − 1)

(
1

2
y − e−y

)
− ν

2
exp

(
y − 2e−y

)
+

1

2
y − e−y

)
×
(

1

2
+ e−y

)
= τν exp

(ν
2
y − νe−y − ν

2
exp

(
y − 2e−y

)) (1

2
+ e−y

)
.
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B.3 Proof of Theorem 3.4.1

The proof in this section is due to Paul Kabaila.

Part (a):

Note that, from Section B.2,

ψν(t) = τν exp
(ν

2
t− νe−t − ν

2
exp(t− 2e−t)

) (1

2
+ e−t

)
.

We need to bound ψν(t) from above for large t. Because e−t → 0 as

t→∞, we can approximate ψν(t) by

τν
2

exp
(ν

2
t− ν

2
et
)
, (B.2)

for large t. Since et →∞ faster than t→∞, we can approximate (B.2) by

τν
2

exp
(
−ν

2
et
)

(B.3)

for large t.

What we need, however, is an upper bound to ψν(t) for large t, not an

approximation. Let

ϕ1
ν(t) =

τν
2

exp

(
−ν

2
exp

(
9 t

10

))
.

We could have used any number belonging to (0, 1) instead of 9/10. However,

we have chosen this specific number for concreteness.

Note that for all t > 0,

9

10
t < t

⇒ exp

(
9

10
t

)
< exp(t)

⇒ −ν
2

exp

(
9

10
t

)
> −ν

2
exp(t)

⇒ exp

(
−ν

2
exp

(
9t

10

))
> exp

(
−ν

2
exp(t)

)
.
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Therefore, the function ϕ1
ν(t) is a good candidate for an upper bound on

ψν(t) since

ϕ1
ν(t) ≥ (B.3) for all t > 0.

Now, for all t > 0,

ψν(t)

ϕ1
ν(t)

=

τν exp
(ν

2
t− νe−t − ν

2
exp

(
y − 2e−t

))
×
(

1

2
+ e−t

)
τν
2

exp

(
−ν

2
exp

(
9t

10

))
= 2 exp

(
ν

2
t− νe−t − ν

2
exp

(
t− 2e−t

)
+
ν

2
exp

(
9t

10

))
×
(

1

2
+ e−t

)
< 3 exp

(
ν

2
t− νe−t − ν

2

(
exp(t− 2e−t)− exp

(
9

10
t

)))
, (B.4)

since e−t < 1 for all t > 0.

Consider

exp
(
t− 2e−t

)
− exp

(
9

10
t

)
= exp

(
9

10
t

) (
exp

(
t− 2e−t

)
exp

(
9
10
t
) − 1

)

= exp

(
9

10
t

) (
exp

(
1

10
t− 2e−t

)
− 1

)
. (B.5)

Since

exp

(
1

10
t− 2e−t

)
→∞ as t→∞,

there exists t′ <∞ such that

exp

(
1

10
t− 2e−t

)
≥ 1 for all t ≥ t′.

In other words,

(B.5) ≥ exp

(
9

10
t

)
for all t ≥ t′.

Hence
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(B.4) ≤ 3 exp

(
ν

2
t− νe−t − ν

2
exp

(
9

10
t

))
= 3 exp

(
ν

2

(
t− exp

(
9

10
t

))
− νe−t

)
(B.6)

for all t ≥ t′. Since exp (9t/10) → ∞ faster than t → ∞ and νe−t → 0 as

t→∞, (B.6)→ 0, as t→∞.

To summarise : ψν(t)/ϕ
1
ν(t)→ 0 as t→∞. Hence there exists t1 such that

ψν(t)/ϕ
1
ν(t) ≤ 1 for all t ≥ t1. Therefore, ψν(t) ≤ ϕ1

ν(t) for all t ≥ t1. In

other words, there exist t1 <∞ such that

ψν(t) ≤
τν
2

exp

(
−ν

2
exp

(
9

10
t

))
for all t ≥ t1.

Part (b):

We also need to bound ψν(t) from above for t negative and |t| large. Now,

e−t → ∞ as t → −∞ and exp(t − 2e−t) → 0 as t → −∞. Hence, for t

negative and |t| large, we approximate ψν(t) by

τν exp
(ν

2
t− νe−t

)
× exp(−t) = τν exp

((ν
2
− 1
)
t− νe−t

)
. (B.7)

Now −νe−t → −∞ faster than t → −∞. Hence we can approximate (B.7)

by τν exp (−νe−t).

What we need, however, is an upper bound to ψν(t) for t negative and |t|

large, not an approximation. Let

ϕ2
ν(t) = τν exp

(
−ν exp

(
− 9

10
t

))
.

Now,

ψν(t)

ϕ2
ν(t)

=

τν exp
(ν

2
t− νe−t − ν

2
exp

(
t− 2e−t

))
×
(

1

2
+ e−t

)
τν exp

(
−ν exp

(
− 9

10
t

))
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= exp

(
ν

2
t− νe−t − ν

2
exp

(
y − 2e−t

)
+ ν exp

(
−9 t

10

))
×
(

1

2
+ e−t

)
=

1

2
exp

(
ν

2
t− ν

2
exp

(
t− 2e−t

)
+ ν

(
exp

(
−9 t

10

)
− exp(−t)

))
+ exp

(
ν

2
t− t− ν

2
exp

(
t− 2e−t

)
+ ν

(
exp

(
−9 t

10

)
− exp(−t)

))
.

(B.8)

Consider

exp

(
−9 t

10

)
− exp(−t)

= exp

(
−9 t

10

)(
1− exp

(
−t+

9

10
t

))
= exp

(
−9 t

10

)(
1− exp

(
− 1

10
t

))
. (B.9)

Now, 1 − exp (−t/10) → −∞ as t → −∞. Hence, there exists t̃ < ∞ such

that 1 − exp (−t/10) ≤ −1 for all t ≥ t̃. Thus (B.9) ≤ − exp (−9 t/10) for

all t ≥ t̃. Therefore,

(B.8) ≤ 1

2
exp

(
ν

2
t− ν

2
exp

(
t− 2e−t

)
− ν exp

(
−9t

10

))
+ exp

(
ν − 2

2
t− ν

2
exp(t− 2e−t)− ν exp

(
−9t

10

))
. (B.10)

Now, −t→∞more slowly than exp (−9 t/10) as t→ −∞. Also (ν/2) exp
(
t−

2e−t
)
→ 0 as t→ −∞. Thus (B.10)→ 0 as t→ −∞.

To summarise : ψν(t)/ϕ
2
ν(t) → 0 as t → −∞. Hence there exists t2 > −∞

such that ψν(t)/ϕ
2
ν(t) ≤ 1 for all t ≤ t2. Therefore, ψν(t) ≤ ϕ2

ν(t) for all

t ≤ t2. In other words, there exist t2 > −∞ such that

ψν(t) ≤ τν exp

(
−ν exp

(
− 9

10
t

))
for all t ≤ t2.

Part (c):

To bound the trimming error from above, we will need to bound
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∫ ∞
y

ψν(t)dt (B.11)

from above. We know that

ψν(t) ≤
τν
2

exp

(
−ν

2
exp

(
9 t

10

))
for all t ≥ t1.

Thus

(B.11) ≤
∫ ∞
y

τν
2

exp

(
−ν

2
exp

(
9 t

10

))
dt for all y ≥ t1

=
τν
2

∫ ∞
y

exp

(
−ν

2
exp

(
9 t

10

))
dt for all y ≥ t1.

Change the variable of integration to z = exp(9 t/10), so that

dz

dt
=

9

10
exp

(
9

10
t

)

and ∫ ∞
y

exp

(
−ν

2
exp

(
9 t

10

))
dt =

10

9

∫ ∞
exp(9y/10)

exp
(
−ν

2
z
) 1

z
dz

≤ 10

9

1

exp(9y/10)

∫ ∞
exp(9 y/10)

exp
(
−ν

2
z
)
dz

=
10

9
exp

(
− 9

10
y

)
2

ν
exp

(
−ν

2
exp

(
9 y

10

))
≤ 20

9ν
exp

(
−ν

2
exp

(
9 y

10

))
for all y ≥ t1.

We have assumed here that t1 ≥ 0. Therefore∫ ∞
y

ψν(t) dt ≤
10 τν
9 ν

exp

(
−ν

2
exp

(
9

10
y

))
for all y ≥ t1.

We also need to bound ∫ y

−∞
ψν(t)dt (B.12)
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from above. We know that

ψν(t) ≤ τν exp

(
−ν exp

(
−9 t

10

))
for all t ≤ t2.

Thus

(B.12) ≤
∫ y

−∞
τν exp

(
−ν exp

(
−9 t

10

))
dt for all y ≤ t2

= τν

∫ y

−∞
exp

(
−ν exp

(
−9 t

10

))
dt for all y ≤ t2. (B.13)

Change the variable of integration to z = −t, so that

(B.13) = −τν
∫ −y
∞

exp

(
−ν exp

(
9 z

10

))
dt

= τν

∫ ∞
−y

exp

(
−ν exp

(
9 z

10

))
dt for all − y ≥ −t2.

Now change the variable of integration to w = exp(9z/10), so that

dw

dz
=

9

10
exp

(
9

10
z

)

and ∫ ∞
−y

exp

(
−ν exp

(
9 z

10

))
dz

≤ 10

9

1

exp(−9 y/10)

∫ ∞
exp(−9 y/10)

exp (−νw) dw

=
10

9
exp

(
9

10
y

)
1

ν
exp

(
−ν exp

(
−9 y

10

))
≤ 10

9ν
exp

(
−ν exp

(
−9 y

10

))
for all y ≤ t2.

Therefore∫ y

−∞
ψν(t) dt ≤

10 τν
9 ν

exp

(
−ν exp

(
− 9

10
y

))
for all y ≤ t2.
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To summarise :∫ ∞
y

ψν(t)dt ≤
10

9ν
τν exp

(
−ν

2
exp

(
9 y

10

))
for all y ≥ t1∫ y

−∞
ψν(t)dt ≤

10

9ν
τν exp

(
−ν exp

(
−9 y

10

))
for all y ≤ t2.

(B.14)

Part (d):

By the proof of Lemma 3.4.1, the trimming error for the iteration number

k, is bounded above by∫ ∞
yu0+kh0

ψν(t)dt+

∫ yl0−kh0

−∞
ψν(t)dt. (B.15)

It follows from (B.14) that for all sufficiently large iteration numbers k,

∫ ∞
yu0+kh0

ψν(t)dt ≤
10

9ν
τν exp

(
−ν

2
exp

(
9

10
(yu0 + kh0)

))
=

10

9ν
τν exp

(
−ν

2
exp

(
9

10
yu0

)
exp

(
9h0
10

k

))
. (B.16)

It follows from (B.14) that for all sufficiently large iteration numbers k,

∫ yl0−kh0

−∞
ψν(t)dt ≤

10

9ν
τν exp

(
−ν exp

(
− 9

10
(yl0 − kh0)

))
=

10

9ν
τν exp

(
−ν exp

(
− 9

10
yl0

)
exp

(
9h0
10

k

))
. (B.17)

Now we express the term exp (9h0 k/10) in (B.16) and (B.17) in the form

2ck. Thus c satisfies

exp

(
9h0
10

k

)
= 2ck

is denoted by cT . Therefore, for all sufficiently large iteration numbers k,

(B.15) is bounded above by

10τν
9ν

(
exp

(
−ν

2
exp

(
9

10
yu0

)
2cT k

)
+ exp

(
−ν exp

(
−9

10
yl0

)
2cT k

))
,
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where cT = 9h0/(10 loge(2)).

Part (e):

According to the Assumption FT,

|G(ω)| ≤ c4 exp(−cFT |ω|) for all ω ∈ R.

Note that from (3.3), the discretization error is bounded above by

2
∞∑
j=1

∣∣∣∣G(2πj

h

)∣∣∣∣
≤ 2 c4

∞∑
j=1

exp

(
−cFT

2πj

h

)

= 2 c4

∞∑
j=1

(
exp

(
−cFT

2π

h

))j
= 2 c4

∞∑
j=1

aj, where a = exp

(
−cFT

2π

h

)
,

= 2 c4
a

1− a
provided a < 1 i.e. h is sufficiently small,

≤ 3 c4 a provided h is sufficiently small,

= 3 c4 exp

(
−2 π cFT

h

)
for all sufficiently small h.

Note that, at iteration number k,

yu − yl = d0 + 2h0k and h =
h0
2k
,

and so

n =
d0 + 2h0k

h0/2k
=

(
d0
h0

+ 2 k

)
2k = (n0 + 2k) 2k.

Therefore, for all sufficiently large iteration numbers k, the discretization

error is bounded above by

3c4 exp

(
−
(

2πcFT
h0

)
2k
)
.
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B.4 An expression for a polynomial p of de-

gree u using the binomial theorem

Consider a polynomial

p(y) =
u∑
j=0

bj y
j

in y of degree u. We can express p(y) differently, as follows.

p(y) = b0 +
u∑
j=1

bj y
j

= b0 +
u∑
j=1

bj (1− (1− y))j . (B.18)

Now, by the binomial theorem,

(1− (1− y))j = 1 +

(
j

1

)
(−(1− y)) +

(
j

2

)
(−(1− y))2 + · · ·+ (−(1− y))j .

Therefore (B.18) can be written as

p(y) = b0 + u+
u∑
j=1

cj (1− y)j

= a0 +
u∑
j=1

cj (1− y)j,

where a0 = b0 + u. Now let aj = −cj for j = 1, . . . , u. Then

p(y) = a0 −
u∑
j=1

aj(1− y)j.
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B.5 Computation of F−1
ν (y)

Fν denotes the cdf of a random variable with the same distribution as R/ν1/2,

where R has a χν distribution. In this section, we show how to compute the

inverse of this cdf, using either (a) the inverse cdf of a χ2
ν distribution or (b)

the inverse cdf of a χν distribution.

Firstly, we can compute F−1ν (y) using F−1ν (y) =
(
Q−1ν (y)

/
ν
)1/2

, where

Qν denotes the χ2
ν cdf. We prove this result as follows. Note that

Fν(x) = P

(
R

ν1/2
≤ x

)
= P

(
R2 ≤ ν x2

)
= Qν(ν x

2).

Now y = Fν(x) is equivalent to x = F−1ν (y). But y = Fν(x) is also equivalent

to

y = Qν(ν x
2)

⇐⇒ ν x2 = Q−1ν (y)

⇐⇒ x =
(
Q−1ν (y)/ν

)1/2
, since x > 0

⇐⇒ F−1ν (y) =
(
Q−1ν (y)/ν

)1/2
.

Secondly, we can compute F−1ν (y) using F−1ν (y) = F−1R (y)
/
ν1/2, where

FR denotes the χν cdf of R. We prove this result as follows. Note that

Fν(x) = P

(
R

ν1/2
≤ x

)
= P

(
R ≤ ν1/2 x

)
= FR(ν1/2 x).

Now y = Fν(x) is equivalent to x = F−1ν (y). But y = Fν(x) is equivalent to
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y = FR(ν1/2 x)

⇐⇒ F−1R (y) = ν1/2 x

⇐⇒ x = F−1R (y)
/
ν1/2

⇐⇒ F−1ν (y) = F−1R (y)
/
ν1/2.

B.6 Proof of the result (3.19)

In this section, we prove the result (3.19), given in Section 3.7. Note that

fκ(x) =


κκ/2

Γ(κ/2) 2(κ/2)−1 x
κ−1 exp

(
− κx2/2

)
for x > 0

0 otherwise.

Thus

xξ fκ(x) =
κκ/2

Γ(κ/2) 2(κ/2)−1 x
(κ+ξ)−1 exp

(
− κx2/2

)
for x > 0.

Now, we want to convert exp
(
−κx2/2

)
in to exp

(
−(κ+ξ) y2/2

)
by changing

the variable of integration from x to y. Therefore, we want

κx2 = (κ+ ξ) y2

⇐⇒ y2 =

(
κ

κ+ ξ

)
x2

⇐⇒ y =

(
κ

κ+ ξ

)1/2

x = c(κ, ξ)x.

Thus

∫ ∞
0

λ(x)xξ fκ(x) dx

=

∫ ∞
0

λ

(
y

c(κ, ξ)

)
κκ/2

Γ(κ/2) 2(κ/2)−1

(
y

c(κ, ξ)

)(κ+ξ)−1

×

exp
(
− (κ+ ξ) y2/2

) dy

c(κ, ξ)
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=
κκ/2

Γ(κ/2) 2(κ/2)−1

(
1

c(κ, ξ)

)κ+ξ
Γ((κ+ ξ)/2) 2((κ+ξ)/2)−1

(κ+ ξ)(κ+ξ)/2
×∫ ∞

0

λ

(
y

c(κ, ξ)

)
(κ+ ξ)(κ+ξ)/2

Γ((κ+ ξ)/2) 2((κ+ξ)/2)−1 κ
(κ+ξ)−1 exp

(
− (κ+ ξ) y2/2

)
dy

=
κκ/2

Γ(κ/2)

Γ((κ+ ξ)/2)

(κ+ ξ)(κ+ξ)/2
(c(κ, ξ))−(κ+ξ) 2ξ/2

∫ ∞
0

λ

(
y

c(κ, ξ)

)
fκ+ξ(y)dy.

Note that

κκ/2

(κ+ ξ)(κ+ξ)/2
(c(κ, ξ))−(κ+ξ) =

κκ/2

(κ+ ξ)(κ+ξ)/2

(
κ

κ+ ξ

)−(κ+ξ)/2
=

κκ/2

(κ+ ξ)(κ+ξ)/2
(κ+ ξ)(κ+ξ)/2

κ(κ+ξ)/2

= κ−ξ/2

and

2ξ/2 κ−ξ/2 =

(
2

κ

)ξ/2
.

Thus ∫ ∞
0

λ(x)xξ fκ(x) dx

=

(
2

κ

)ξ/2
Γ((κ+ ξ)/2)

Γ(κ/2)

∫ ∞
0

λ

(
y

c(κ, ξ)

)
fκ+ξ(y)dy

=

(
2

κ

)ξ/2
Γ((κ+ ξ)/2)

Γ(κ/2)

∫ ∞
0

a(y) fκ+ξ(y)dy (B.19)

where a(y) = λ (y/c(κ, ξ)).
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B.7 R programs for the computation of the

integral (3.1)

In this appendix, we list the R programs for computing the integrals of the

form ∫ ∞
0

a(x) fν(x) dx,

defined in Section 3.2, by applying the methods (a) the transformation (2.6)

of Mori (1988), followed by the application of the trapezoidal rule, (b) Gauss

Legendre quadrature, (c) Generalized Gauss Laguerre quadrature and (e)

inverse cdf method followed by Gauss Legendre quadrature.

B.7.1 The transformation (2.6) of Mori (1988), fol-

lowed by the application of the trapezoidal rule

ApproxError <- function(nu.vec , alpha.vec , yl.vec ,
yu.vec , d.vec , n = 5){

# Compute the approximation error when approximate
# the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by the trapezoidal rule.
#
# Input:
# nu.vec: a vector of degrees of freedom
# alpha.vec: a 3-vector of alpha values where
# 1-alpha is the nominal coverage
# n: number of evaluations of the integrand
# d.vec: a vector of d’s with same length as nu.vec
# where d = n*h and h is the step length
# yl.vec: a vector of yl ’s with same length as nu.vec
# where the first evaluation of the integrand is at

yl
# yu.vec: a vector yl.vec + d.vec
#
# Output:
# A matrix with 3 rows and number of columns equal to
# the length of nu.vec.
#
# Written by N Ranathunga in November 2019

# Set up vectors to store the results
approxerror <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))
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for (i in 1: length(alpha.vec)){

alpha <- alpha.vec[i]

for(j in 1: length(nu.vec)){

nu <- nu.vec[j]
yl <- yl.vec[j]
yu <- yu.vec[j]
d <- d.vec[j]

#n = 5
h <- d/(n-1)
I1 <- approx_sum(yl , yu , h, nu , alpha)

#n = 9
h2 <- h/2
I2 <- approx_sum(yl , yu , h2 , nu , alpha)

#n = 17
h3 <- h2/2
I3 <- approx_sum(yl , yu , h3 , nu , alpha)

#n = 33
h4 <- h3/2
I4 <- approx_sum(yl , yu , h4 , nu , alpha)

#n = 65
h5 <- h4/2
I5 <- approx_sum(yl , yu , h5 , nu , alpha)

if (nu == 1){
approxerror[i, j] <- I5 - (1 - alpha)

} else {
approxerror[i, j] <- I4 - (1 - alpha)

}

}

}

out <- approxerror

}

165



ApproxSum <- function(yl, yu, h, nu, alpha){
# Compute the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by applying the trapezoidal rule.
#
# Input:
# nu: degrees of freedom
# alpha: 1-alpha is the nominal coverage
# h: step length
# yl: the first evaluation of the integrand is at yl
# yu: the last evaluation of the integrand is at yu
#
# Output:
# A value for the integrand a(x) f_nu(x).
#
# Written by N Ranathunga in November 2019

yvec <- seq(yl , yu , by = h)
xvec <- transf(yvec)
a.xvec <- funct_a(xvec , nu , alpha)
out <- h * kahanSum(a.xvec * FuncPsinew(yvec , nu))

}

transf <- function(y){
# This function applies the transformation (2.6)
# of Mori (1988) to the variable y
#
# Inputs:
# y = a value or vector
#
# Written by N. Ranathunga in November 2019

out <- exp((y/2) - exp(-y))

}

funct_a <- function(x.vec , nu, alpha){
# Compute the value of
# a(x(y)) = 2 * Phi(t_{nu, 1-alpha /2} x(y)) - 1
# where x(y) = exp(y/2 - exp(-y)) and Phi is
# N(0, 1) cdf.
#
# Input:
# x.vec: a vector of x(y) values
# nu: degrees of freedom
# alpha: 1-alpha is the nominal coverage
#
# Written by N Ranathunga in November 2019

tquant <- qt(1 - alpha/2, nu)
out <- 2 * pnorm(tquant * x.vec) - 1

}
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FuncPsinew <- function(y, nu){
# Compute the value of
# f_nu(x(y)) * dx(y)/dy where x(y) = exp(y/2 - exp(-y))
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution.
#
# Input:
# y: a value or a vector where the function
# needs to be evaluated
# nu: degrees of freedom
#
# Written by N Ranathunga in November 2019

const <- exp( (nu/2) * log(nu) - lgamma(nu/2) - ((nu/2) -
1) * log (2) )

tmp1 <- exp(-y)
term1 <- exp(nu*y/2 - nu*tmp1 - (nu/2)*exp(y - 2*tmp1))
term2 <- 1/2 + tmp1

out <- const * term1 * term2

}

Find_yvec <- function(eps.final , nu.vec){
# Compute the vectors of d, yl and yu for a
# given epsilon and a vector of degrees of freedom.
#
# Input:
# eps.final: 10e-3 * eps where eps is the upper
# bound of the approximation error
# nu.vec: a vector of degrees of freedom
#
# Output:
# A list containing vectors of d, yl and yu
# of same length.
#
# Written by N Ranathunga in November 2019

# Set up vectors to store the results
d.vec <- rep(0, length.out=length(nu.vec))
yl.vec <- rep(0, length.out=length(nu.vec))
yu.vec <- rep(0, length.out=length(nu.vec))

for (i in 1: length(nu.vec)){
nu <- nu.vec[i]
temp <- uniroot(MinUpBndTrErrMinEpsFin , nu=nu ,

eps.final=eps.final ,
interval = c(0, 10), extendInt="yes")

d.vec[i] <- temp$root
yl.vec[i] <- optimize(UpBoundTrimError , d=d.vec[i],

nu=nu, interval=c(-5, 1))$minimum
yu.vec[i] <- yl.vec[i] + d.vec[i]

}

out <- list(dvec=d.vec , ylvec=yl.vec , yuvec=yu.vec)

}
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MinUpBndTrErrMinEpsFin <- function(d, nu, eps.final){
# This function minimezes the upper bound of the
# trimming error and substract that value from the
# (eps.final)
#
# Input:
# d: n*h where n denotes the number of integrand
# evaluations and h denotes the step length
# nu: degrees of freedom
# eps.final: 10e-3 * eps where eps is the upper
# bound of the approximation error
#
# Written by N Ranathunga in November 2019

temp <- optimize(UpBoundTrimError , d=d, nu=nu , interval=c
(-4, 4))

out <- temp$objective - eps.final
}

UpBoundTrimError <- function(y, d, nu){
# This function computes the upper bound of the
# trimming error when approximate the outer integral by
# a finite sum.
#
# Input:
# y: location of the function evaluations
# d: n*h where n denotes the number of evaluations
# and h denotes the step length
# nu: degrees of freedom
#
# Written by N Ranathunga in November 2019

x1 <- transf(y)
x2 <- transf(y + d)
term1 <- nu * x1^2
term2 <- nu * x2^2
out <- pchisq(term1 , df=nu) + 1 - pchisq(term2 , df=nu)

}
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B.7.2 Gauss Legendre quadrature method

GaussLegendreError <- function(alpha.vec , nu.vec , yl.vec , yu.
vec){

# Compute the approximation error when approximate
# the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by the Gauss Legendre quadrature rule.
#
# Input:
# nu.vec: a vector of degrees of freedom
# alpha.vec: a 3-vector of alpha values where
# 1-alpha is the nominal coverage
# yl.vec: a vector of yl ’s with same length as nu.vec
# where the first evaluation of the integrand is at

yl
# yu.vec: a vector yl.vec + d.vec
#
# Output:
# A matrix with 3 rows and number of columns equal to
# the length of nu.vec.
#
# Written by N Ranathunga in November 2019

# Set up vectors to store the results
comp.int <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))
error <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))

for (i in c(1: length(alpha.vec))) {

for (j in c(1: length(nu.vec))) {

alpha <- alpha.vec[i]
nu <- nu.vec[j]
yl <- yl.vec[j]
yu <- yu.vec[j]

if (nu == 1){
n <- 65

} else n <- 33

tquant <- qt(1 - alpha/2, nu)
comp.int[i,j] <- LegendreQuadRule(nu , n, alpha , yl , yu)
error[i, j] <- comp.int[i,j] - (1 - alpha)

}
}
out <- error

}
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LegendreQuadRule <- function(nu , n, alpha , yl , yu){
# Compute the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by applying the Gauss Legendre
# quadrature rule.
#
# Input:
# nu: degrees of freedom
# n: number of evaluations of the integrand
# alpha: 1-alpha is the nominal coverage
# yl: the first evaluation of the integrand is at yl
# yu: the last evaluation of the integrand is at yu
#
# Output:
# A value for the integrand a(x) f_nu(x).
#
# Written by N. Ranathunga in April 2020

quad.rule <- gauss.quad(n, kind = "legendre")

z.i <- quad.rule$nodes
w.i <- quad.rule$weights

y.i <- ( (yu - yl) * z.i / 2 ) + ( (yu + yl) / 2 )
func.i <- FuncPsinew_a(yvec=y.i, nu=nu , alpha=alpha)
weighted.val <- w.i * func.i

out <- ((yu - yl)/2) * sum(weighted.val)

}

FuncPsinew_a <- function(yvec , nu, alpha){
# Compute the value of a(x(y)) psi_nu(y) where
# a(x(y)) = 2 * Phi(t_{nu, 1-alpha /2} x(y)) - 1
# and psi_nu(y) = f_nu(x(y)) * dx(y)/dy
# where x(y) = exp(y/2 - exp(-y))
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution.
#
# Input:
# yvec: a vector of y values
# nu: degrees of freedom
# alpha: 1-alpha is the nominal coverage
#
# Written by N Ranathunga in November 2019

xvec <- transf(yvec)
a.xvec <- funct_a(xvec , nu , alpha)

out <- a.xvec * FuncPsinew(yvec , nu)
}
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B.7.3 Generalized Gauss Laguerre quadrature method

GaussLaguerreError <- function(alpha.vec , nu.vec){
# Compute the approximation error when approximate
# the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by the Gauss Laguerre quadrature rule.
#
# Input:
# nu.vec: a vector of degrees of freedom
# alpha.vec: a 3-vector of alpha values where
# 1-alpha is the nominal coverage
#
# Output:
# A matrix with 3 rows and number of columns equal to
# the length of nu.vec.
#
# Written by N Ranathunga in November 2019

# Set up vectors to store the results
comp.int <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))
error <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))

for (i in c(1: length(alpha.vec))) {

for (j in c(1: length(nu.vec))) {

alpha <- alpha.vec[i]
nu <- nu.vec[j]

if (nu == 1){
n <- 65

} else n <- 33

tquant <- qt(1 - alpha/2, nu)
comp.int[i,j] <- LaguerreQuadRule(nu , n, tquant)
error[i, j] <- comp.int[i,j] - (1 - alpha)

}
}
out <- error

}
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LaguerreQuadRule <- function(nu , n, tquant){
# Compute the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by applying the Gauss Laguerre
# quadrature rule.
#
# Input:
# nu: degrees of freedom
# n: number of evaluations of the integrand
# talpha: quantile of the t distribution for nu and alpha
#
# Output:
# A value for the integrand a(x) f_nu(x).
#
# Written by N. Ranathunga in April 2017

quad.rule <- gauss.quad(n, kind = "laguerre",
alpha = (nu / 2) - 1)

x.i <- quad.rule$nodes
w.i <- quad.rule$weights
q.i <- sqrt ((2 * x.i)/nu)
p.i <- w.i / gamma((nu / 2))

gmw <- (2 * pnorm(tquant * q.i) - 1)
weighted.val <- p.i * gmw
out <- sum(weighted.val)

}
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B.7.4 Inverse cdf method followed by Gauss Legendre

quadrature

InvCDFLegendreError <- function(alpha.vec , nu.vec){
# Compute the approximation error when approximate
# the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by the Inverse cdf method followed by the
# Gauss Legendre quadrature rule.
#
# Input:
# nu.vec: a vector of degrees of freedom
# alpha.vec: a 3-vector of alpha values where
# 1-alpha is the nominal coverage
#
# Output:
# A matrix with 3 rows and number of columns equal to
# the length of nu.vec.
#
# Written by N Ranathunga in November 2019

# Set up vectors to store the results
comp.int <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))
error <- matrix(0, nrow=length(alpha.vec),

ncol=length(nu.vec))

for (i in c(1: length(alpha.vec))) {

for (j in c(1: length(nu.vec))) {

alpha <- alpha.vec[i]
nu <- nu.vec[j]

if (nu == 1){
n <- 65

} else n <- 33

tquant <- qt(1 - alpha/2, nu)
comp.int[i,j] <- InvCDFLegendreQuadRule(nu , n, tquant)
error[i, j] <- comp.int[i,j] - (1 - alpha)

}
}
out <- error

}
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InvCDFLegendreQuadRule <- function(nu, n, tquant){
# Compute the integral , int _0^{ infinity} a(x) f_nu(x) dx
# where a(x) = 2 * Phi(t_{nu, 1-alpha /2} x) - 1
# and f_nu is the pdf of a random variable with the
# same distribution as R/sqrt(R) where R ~ chi(nu)
# distribution , by applying the Inverse cdf method
# followed by the Gauss Legendre quadrature rule.
#
# Input:
# nu: degrees of freedom
# n: number of evaluations of the integrand
# talpha: quantile of the t distribution for nu and alpha
#
# Output:
# A value for the integrand a(x) f_nu(x).
#
# Written by N Ranathunga in October 2017

quad.rule <- gauss.quad(n, kind = "legendre")

y.i <- quad.rule$nodes
w.i <- quad.rule$weights

y1.i <- (y.i +1)/2
y2.i <- sqrt(qchisq(y1.i, nu))/sqrt(nu)
gmy <- (2 * pnorm(tquant * y2.i) - 1)
weighted.val <- w.i * gmy

out <- sum(weighted.val)/2

}
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Appendix C

Proofs and R programs for

Chapter 4

C.1 Computation of the first definition of scaled

expected length SEL1(γ; s)

In this section, we provide some details of the computation of the first defini-

tion of scaled expected length, SEL1(γ; s). We also state the formula, taken

from Giri (2008), used to compute E(W ).

C.1.1 Computation of the inner integral, ISEL(w, γ),

of the double integral term in the expression of

SEL1(γ; s)

Recall that

ISEL(w, γ) =

∫ d

−d

(
s(x)− tm,1−α/2

)
φ(wx− γ) dx.

We use this formula for ISEL(w, γ), but with the following modification.

Obviously,

175



ISEL(w, γ) =

∫ d

0

(
s(x)− tm,1−α/2

)
φ(wx− γ) dx

+

∫ 0

−d

(
s(x)− tm,1−α/2

)
φ(wx− γ) dx.

Changing the variable of integration to u = −x in the second integral on the

right-hand side, we obtain

ISEL(w, γ) =

∫ d

0

(
s(x)− tm,1−α/2

) (
φ(wx− γ) + φ(wx+ γ)

)
dx.

In other words,

ISEL(w, γ) =

∫ d

0

IISEL(x,w, γ) dx, (C.1)

where

IISEL(x,w, γ) =
(
s(x)− tm,1−α/2

) (
φ(wx− γ) + φ(wx+ γ)

)
.

While interpolating cubic splines are extremely smooth between successive

knots, they are not particularly smooth at the knots (only the second deriva-

tive of the interpolating cubic spline is continuous at each knot). We therefore

express (C.1) as

∫ x2

x1

IISEL(x,w, γ) dx+

∫ x3

x2

IISEL(x,w, γ) dx+ · · ·+
∫ xq

xq−1

IISEL(x,w, γ) dx

and then compute each of the integrals in this sum using Gauss Legendre

quadrature.

C.1.2 Computation of the outer integral of the double

integral term in the expression of SEL1(γ; s)

We compute the outer integral of the double integral term in SEL1(γ; s),

similarly to the computation of the outer integral of the double integral term
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in CP(γ; b, s) in subsection 4.3.2.

Let κ = m and ξ = 2. Change the variable of integration in (4.12) to

ỹ = c(m, 2)w, where c(m, 2) =
(
m/(m+ 2)

)1/2
, so that

∫ ∞
0

ISEL(w, γ)w2 fm(w) dw

=

(
2

m

)
Γ((m+ 2)/2)

Γ(m/2)

∫ ∞
0

ISEL
(
ỹ
/
c(m, 2), γ

)
fm+2(ỹ) dỹ, (C.2)

where ISEL
(
ỹ
/
c(m, 2), γ

)
is a smooth bounded function of ỹ ≥ 0.

After applying the transformation (2.6) of Mori (1988), i.e., g(z) in (4.9),

followed by the application of the trapezoidal rule, the integral in (C.2) is

approximated by the finite sum

h1

N1−1∑
j=0

ISEL
(
g(z̃` + h1j)

/
c(m, 2), γ

)
ψm+2(z̃` + h1j), (C.3)

where

ψm+2(z) = fm+2

(
g(z)

)dg(z)

dz
,

N1 denotes the number of evaluations of the integrand ISEL
(
g(z)

/
c(m, 2), γ

)
ψm+2(z), h1 denotes the step length and the first evaluation of this integrand

is at z̃`.

C.1.3 Computation of E(W )

As noted by Giri (2008),

E(W ) =

√
2

m

Γ
(
(m+ 1)/2

)
Γ(m/2)

.

When m is even moderately large, Γ(m/2) is extremely large. We therefore

first compute ln
(
Γ((m+1)/2)

)
and ln

(
Γ(m/2)

)
using the R function lgamma.

We then evaluate Γ
(
(m+ 1)/2

)/
Γ(m/2) by computing
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exp
(

ln
(
Γ((m+ 1)/2)

)
− ln

(
Γ(m/2)

))
.

C.1.4 Evaluation of the objective function OBJ1(γ; s)

It is important to check that the term

1√
2π

(
m

x2 +m

)(m/2)+1

(C.4)

in the objective function that results from the first definition of scaled ex-

pected length is a smooth function of x for large m. Now

(
m

x2 +m

)(m/2)+1

=
1

(1 + (x2/m))(m/2)+1

=
1(

1 + (x2/m)
)(m/2) 1

1 + (x2/m)

=
1(

1 + (x2/2)/(m/2)
)(m/2) 1

1 + (x2/m)

≈ 1

exp(x2/2)
= exp(−x2/2)

for all x ∈ [0, d] and large m. Thus, (C.4) → φ(x) as m → ∞, for every

x ∈ [0, d]. In other words, (C.4) is a smooth function of x for large m.

C.2 Computation of the second definition of

scaled expected length SEL2(γ; s)

In this section, we first derive computationally convenient expressions for the

second definition of scaled expected length, SEL2(γ; s), and the resulting ob-

jective function OBJ2(γ; s). We also provide some details of the computation

of this scaled expected length.
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C.2.1 Computationally convenient formula for the sec-

ond definition of scaled expected length SEL2(γ; s)

It follows from the methods of Kabaila & Giri (2009a) that,

SEL2(γ; s) = 1 +
1

tm,1−α/2

∫ ∞
0

∫ ∞
−∞

s

(
|h|
w

)
φ(h− γ) dh fm(w) dw. (C.5)

The scaled expected length of the standard 1− α confidence interval is

1 = 1 +
1

tm,1−α/2

∫ ∞
0

∫ ∞
−∞

tm,1−α/2 φ(h− γ) dh fm(w) dw. (C.6)

Note that s(x) = tm,1−α/2 for all |x| ≥ d. By subtracting (C.6) from (C.5),

we obtain

SEL2(γ; s) = 1+
1

tm,1−α/2

∫ ∞
0

∫ dw

−dw

(
s

(
|h|
w

)
−tm,1−α/2

)
φ(h−γ) dh fm(w) dw.

(C.7)

After changing the variable of integration in the inner integral from h to

x = h/w, we obtain

SEL2(γ; s) = 1+
1

tm,1−α/2

∫ ∞
0

∫ d

−d

(
s(x)− tm,1−α/2

)
φ(wx−γ) dxw fm(w) dw.

(C.8)

C.2.2 Computationally convenient formula for the ob-

jective function OBJ2(γ; s)

We minimize ∫ ∞
−∞

(SEL2(γ; s)− 1) dν(γ) (C.9)
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where the weight function ν is given by equation (5) of Kabaila & Giri

(2009a). By substituting (C.8) into (C.9), we obtain

1

tm,1−α/2

∫ ∞
−∞

∫ ∞
0

∫ d

−d

(
s(x)− tm,1−α/2

)
φ(wx− γ) dxw fm(w) dw dν(γ)

=
1

tm,1−α/2

∫ ∞
0

∫ d

−d

(
s(x)− tm,1−α/2

) ∫ ∞
−∞

φ(wx− γ) dν(γ) dxw fm(w) dw

=
2

tm,1−α/2

∫ ∞
0

∫ d

0

(
s(x)− tm,1−α/2

) (
λ+ φ(wx)

)
dxw fm(w) dw (C.10)

By interchanging the order of integration in (C.10) we obtain

(C.10) =
2

tm,1−α/2

∫ d

0

(
s(x)− tm,1−α/2

) ∫ ∞
0

(
λ+ φ(wx)

)
w fm(w) dw dx

=
2

tm,1−α/2

∫ d

0

(
s(x)− tm,1−α/2

)
×(∫ ∞

0

λw fm(w) dw +

∫ ∞
0

φ(wx)w fm(w) dw

)
dx (C.11)

Note that

∫ ∞
0

λw fm(w) dw

= λ

∫ ∞
0

w
mm/2

Γ(m/2) 2(m/2)−1 w
m−1 exp

(
−mw2/2

)
dw

= λ
mm/2

Γ(m/2) 2(m/2)−1

∫ ∞
0

w(m+1)−1 exp
(
−mw2/2

)
dw. (C.12)

By the result (A2.1.3) of Box & Tiao (1984), (C.12) is equal to

λ

√
2

m

Γ(m+ 1/2)

Γ(m/2)
= λE(W ). (C.13)

Also note that

∫ ∞
0

φ(wx)w fm(w) dw
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=

∫ ∞
0

1√
2π

exp
(
− (wx)2/2

) mm/2

Γ(m/2) 2(m/2)−1 w
m exp

(
−mw2/2

)
dw

=
mm/2

√
2π Γ(m/2) 2(m/2)−1

∫ ∞
0

w(m+1)−1 exp
(
− (x2 +m)w2/2

)
. (C.14)

By the result (A2.1.3) of Box & Tiao (1984), (C.14) is equal to

1√
2 π

(
m

x2 +m

)(m+1)/2
√

2

m

Γ(m+ 1/2)

Γ(m/2)
=

1√
2 π

(
m

x2 +m

)(m+1)/2

E(W ).

(C.15)

Therefore, from the results (C.13) and (C.15), (C.11) is equal to

2E(W )

tm,1−α/2

∫ d

0

(
s(x)− tm,1−α/2

)(
λ+

1√
2π

(
m

x2 +m

)(m+1)/2
)
dx.

C.2.3 Computation of the outer integral of the double

integral term in the expression of SEL2(γ; s)

We compute the inner integral of the double integral term in the expression

of SEL2(γ; s) using the same approach as that described in subsection C.1.1.

We compute the outer integral of this term similarly to the computation of

the outer integral of the double integral term in the expression for CP(γ; b, s),

described in subsection 4.3.2.

Let κ = m and ξ = 1. Change the variable of integration to y = c(m, 1)w,

where c(m, 1) =
(
m/(m+ 1)

)1/2
, so that

∫ ∞
0

ISEL(w, γ)w fm(w) dw

=

(
2

m

)1/2
Γ((m+ 1)/2)

Γ(m/2)

∫ ∞
0

ISEL
(
y
/
c(m, 1), γ

)
fm+1(y) dy, (C.16)

where ISEL
(
y
/
c(m, 1), γ

)
is a smooth bounded function of y ≥ 0.

After applying the transformation (2.6) of Mori (1988), i.e., g(z) in (4.9),

followed by the application of the trapezoidal rule, the integral in (C.16) is
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approximated by the finite sum

h2

N2−1∑
j=0

ISEL
(
g(˜̃z` + h2j)

/
c(m, 1), γ

)
ψm+1(˜̃z` + h2j), (C.17)

where

ψm+1(z) = fm+1

(
g(z)

)dg(z)

dz
,

N2 denotes the number of evaluations of the integrand ISEL
(
g(z)

/
c(m, 1), γ

)
ψm+1(z), h2 denotes the step length and the first evaluation of this integrand

is at ˜̃z`.
C.2.4 Evaluation of the objective function OBJ2(γ; s)

It is important to check that the term

1√
2π

(
m

x2 +m

)(m/2)+(1/2)

(C.18)

in the objective function that results from the second definition of scaled

expected length is a smooth function of x for large m. Similarly to subsection

C.1.4,

(
m

x2 +m

)(m/2)+(1/2)

=
1(

1 + (x2/2)/(m/2)
)(m/2) 1(

1 + (x2/m)
)1/2

≈ 1

exp(x2/2)
= exp(−x2/2)

for all x ∈ [0, d] and large m. Thus, (C.18) → φ(x) as m → ∞, for every

x ∈ [0, d]. In other words, (C.18) is a smooth function of x for large m.
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C.3 Exploration of the six cases given in Ta-

ble 4.1

Figures C.1 - C.4 show the plots of the functions b1λ and s1λ, the coverage

probability and the squared scaled expected length of the confidence interval

CI(b1λ, s1λ), respectively, for the six cases (a) - (f) given in Table 4.1.

Recall that m = 2, λ = 0.15 and ρ = −0.5. The functions b1λ and s1λ are

obtained for N = N1 = 17, Gauss Legendre quadrature with 10 nodes and

ε = 10−7. The coverage probability and the squared scaled expected length

plots are obtained for N = N1 = 33, ε = 10−10 and the Gauss Legendre

quadrature with 20 nodes.

For all the cases (a) - (f) in Table 4.1, the plots of the coverage probability

and the squared scaled expected length are almost identical. There are some

slight improvements in the functions b1λ and s1λ, when n.ints is increased

to 7 from 6. However, this adds about 3 min to the computation time. In

subsection C.3.1, we find that n.ints = 6 gives better results for the case

m = 1 than n.ints = 7. These findings led us to choose n.ints = 6 for the

computations carried out in the R package ciuupi2.
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Figure C.1: Graphs of the function b1λ for m = 2, α = 0.05, λ = 0.15,

ρ = −0.5, N = N1 = 17, ε = 10−7 and Gauss Legendre quadrature with 10

nodes for the cases (a) - (f) in Table 4.1.
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Figure C.2: Graphs of the function s1λ for m = 2, α = 0.05, λ = 0.15,

ρ = −0.5, N = N1 = 17, ε = 10−7 and Gauss Legendre quadrature with 10

nodes for the cases (a) - (f) in Table 4.1.
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Figure C.3: Graphs of the coverage probability of the confidence interval

CI(b1λ, s1λ) for m = 2, α = 0.05, λ = 0.15, ρ = −0.5, N1 = 33, ε = 10−10 and

Gauss Legendre quadrature with 20 nodes for the cases (a) - (f) in Table 4.1.
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Figure C.4: Graphs of the squared scaled expected length of the confidence

interval CI(b1λ, s1λ) for m = 2, α = 0.05, λ = 0.15, ρ = −0.5, N1 = 33,

ε = 10−10 and Gauss Legendre quadrature with 20 nodes for the cases (a) -

(f) in Table 4.1.

C.3.1 Numerical results for a given value of λ for m = 1

We consider the numerical example given in Giri (2008) where m = 1, α =

0.05, ρ = 0.4 and λ = 0.2. For m = 1, we find d = 20 using the method

described in subsection 4.5.1. Figures C.5 and C.6 are for the cases (a) l = 60,
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d = 20, n.ints = 6 and (b) l = 60, d = 20, n.ints = 7, respectively.

We consider the confidence interval CI(b1λ, s1λ). Previous experience of

Kabaila & Giri (2009a), Giri (2008) and Kabaila & Giri (2013) with the

computation of this confidence interval suggests that the function b1λ should

only take positive values when ρ > 0. The graph of the function b1λ in the

left panel of Figure C.5, for n.ints = 6, does not dip as far below zero as

the corresponding graph in the left panel of Figure C.6, for n.ints = 7.

The coverage probability and the squared scaled expected length plots are

very similar for both cases of n.ints. The computation time to compute

the vector (b1λ(x2), . . . , b1λ(xq−1), s1λ(x1), . . . , s1λ(xq−1)) is 38.89 min when

n.ints = 7 and 11.11 min when n.ints = 6. These findings led us to choose

n.ints = 6 for the computations carried out in the R package ciuupi2.
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Figure C.5: Graphs of the functions b1λ and s1λ, the coverage probability

and the squared scaled expected length of the confidence interval CI(b1λ, s1λ)

for (a) l = 60, d = 20, n.ints=6. Note that m = 1, α = 0.05, ρ = 0.4 and

λ = 0.2.
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Figure C.6: Graphs of the functions b1λ and s1λ, the coverage probability

and the squared scaled expected length of the confidence interval CI(b1λ, s1λ)

for (a) l = 60, d = 20, n.ints=7. Note that m = 1, α = 0.05, ρ = 0.4 and

λ = 0.2.

C.4 Choosing the number of outer integrand

evaluations, the value of ε and the num-

ber of Gauss Legendre quadrature nodes

The computation times for the graphs of the coverage probability and the

squared scaled expected length of CI(b1λ, s1λ) are negligible compared to

the time needed to compute the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . ,

s1λ(5d/6)
)

which specifies the functions b1λ and s1λ. Because of this large

difference in computational times, we have chosen the computational param-

eters differently in these two cases.
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Recall that N,N1 and N2 denote the number of outer integrand eval-

uations in the expressions for the coverage probability, first definition of

the scaled expected length and the second definition of the scaled expected

length, respectively. We have chosen N = N1 = N2 for simplicity. In sub-

section C.4.1, we choose N, ε and the number of Gauss Legendre quadrature

nodes for the computation of
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
.

In subsection C.4.2, we choose N, ε and the number of Gauss Legendre

quadrature nodes for the computation of the graphs of the coverage prob-

ability and the squared scaled expected length of CI(b1λ, s1λ). We consider

N ∈ {5, 9, 17, 33}.

C.4.1 Choice of N, ε and the number of Gauss Legendre

quadrature nodes to compute the functions b1λ

and s1λ

We chose the common value N , ε and the number of Gauss Legendre quadra-

ture nodes by comparing the values of
(
SEL1(0; s1λ)

)2
, the maximum of(

SEL1(γ; s1λ)
)2

and the corresponding time needed to compute the vector(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
, for N ∈ {5, 9, 17, 33}. We

consider the two cases (a) m > 2 and (b) m ∈ {1, 2}.

Case (a):

Consider the numerical example in Kabaila & Giri (2009a) where m = 76,

α = 0.05, ρ = −0.707 and λ = 0.2. For this example, d = 6 and n.ints = 6.

Note that Γgrid ∈ {0, 0.05, . . . , 8}, which is equally spaced grid of values.

Initially, we choose ε = 10−7 and Gauss Legendre quadrature with 5 nodes.

Table C.1 shows that for N ∈ {17, 33}, the values of
(
SEL1(0; s1λ)

)2
and(

max
γ≥0

SEL1(γ; s1λ)
)2

become stable. Also, note that the values of
(
SEL1(

0; s1λ)
)2

and
(

max
γ≥0

SEL1(γ; s1λ)
)2

are the same to the third decimal points
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for N ∈ {9, 17}. The computation time for N = 9 is 6.16 mins, which is a

decrement of roughly 4 mins compared to N = 17. This led us to choose

N = 9, ε = 10−7 and Gauss Legendre quadrature with 5 nodes to compute

the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
for m > 2.

The functions b1λ and s1λ for these chosen values are shown in the left

panel of Figure C.9. These are almost identical to Figure 2 of Kabaila & Giri

(2009a).

Table C.1: The values of
(
SEL1(0; s1λ)

)2
,
(

max
γ≥0

SEL1(γ; s1λ)
)2

and the times

needed to compute the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
for N ∈ {5, 9, 17, 33} for Gauss Legendre quadrature with 5 nodes and ε =

10−7.

N
(
SEL1(0; s1λ)

)2 (
max
γ≥0

SEL1(γ; s1λ)
)2

Time

5 0.8339138 1.1370920 2.84 min

9 0.8678885 1.1056900 6.16 min

17 0.8679618 1.1056200 10.03 min

33 0.8679618 1.1056200 26.58 min

Case (b):

Consider the numerical example in Kabaila & Giri (2013) where m = 2,

α = 0.05, ρ = −0.5 and λ = 0.15. For this example, d = 14 and n.ints = 7.

Note that Γgrid ∈ {0, 0.05, . . . , 15}, which is equally spaced grid of values.

Initially, we choose ε = 10−7 and Gauss Legendre quadrature with 10 nodes.

Table C.2 shows that the values of
(
SEL1(0; s1λ)

)2
and

(
max
γ≥0

SEL1(γ; s1λ)
)2

for N = 17 and N = 33 are approximately similar. Also, note that for N =

17, the computation time is roughly half the computation time for N = 33.

This led us to choose N = 17, ε = 10−7 and Gauss Legendre quadrature with

10 nodes to compute the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
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for m ∈ {1, 2}.

The functions b1λ and s1λ for these chosen values are shown in the left

panel of Figure C.10. These are very similar to the corresponding results in

Kabaila & Giri (2013).

Table C.2: The values of
(
SEL1(0; s1λ)

)2
,
(

max
γ≥0

SEL1(γ; s1λ)
)2

and the times

needed to compute the vector
(
b1λ(d/6), . . . , b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)

)
for N ∈ {5, 9, 17, 33} for Gauss Legendre quadrature with 10 nodes and

ε = 10−7.

N
(
SEL1(0; s1λ)

)2 (
max
γ≥0

SEL1(γ; s1λ)
)2

Time

5 0.8977795 1.0594070 16.72 min

9 0.7454967 1.1173540 31.90 min

17 0.7867843 1.0982670 46.21 min

33 0.7876437 1.0963369 1.56 hr

C.4.2 Choice of N, ε and the number of Gauss Legen-

dre quadrature nodes to compute the graphs of

the coverage probability and the squared scaled

expected length

As noted earlier, the computation times for the graphs of the coverage

probability and the squared scaled expected length of CI(b1λ, s1λ) are neg-

ligible compared to the time needed to compute the vector
(
b1λ(d/6), . . . ,

b1λ(5d/6), s1λ(0), . . . , s1λ(5d/6)
)

which specifies the functions b1λ and s1λ.

Therefore, initially, we increase N to 33, the number of Gauss Legendre

quadrature nodes to 20 and decrease ε to 10−10 when computing these graphs.

We consider the two examples used in subsection C.4.1 for the two cases

(a) m > 2 and (b) m ∈ {1, 2}, with N = 33, Gauss Legendre quadrature
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with 20 nodes and ε = 10−10. Figures C.9 and C.10 summarize the following

results.

(a) m = 76 : The right panel of Figure C.9 shows that the plots of the cov-

erage probability and the squared scaled expected length are identical

to the corresponding plots in Kabaila & Giri (2009a).

(b) m = 2 : The right panel of Figure C.10 shows that the plots of the

coverage probability and the squared scaled expected length are very

similar to the corresponding plots in Kabaila & Giri (2013).

This comparison led us to choose N = 33, Gauss Legendre quadrature

with 20 nodes and ε = 10−10 for computing the graphs of the coverage proba-

bility and the squared scaled expected length. We verify the appropriateness

of these choices in Section C.5.

C.5 Differences between the graphs of the

coverage probabilities and the differences

between the graphs of the squared scaled

expected lengths

We consider the two cases,

(1)N = 17, the number of Gauss Legendre nodes = 10, ε = 10−7

and

(2)N = 33, the number of Gauss Legendre nodes = 20, ε = 10−10.

Figures C.7 and C.8 show the plots of the differences, (1)− (2), between the

graphs of the coverage probabilities and the differences, (1) − (2), between
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the graphs of the squared scaled expected lengths, respectively, for the six

cases given in Table 4.1.

The differences, (1)−(2), between the graphs of the coverage probabilities

and the differences, (1) − (2), between the graphs of the squared scaled

expected lengths are very small for all the six cases. In fact, the absolute

differences of the graphs of the coverage probabilities are roughly < 5× 10−6

and the absolute differences of the graphs of the squared scaled expected

lengths are roughly < 2× 10−4. This suggests that choosing (2) should lead

to highly accurate results. Consequently, we have chosen (2).
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Figure C.7: Plots of the differences, (1) − (2), between the graphs of the

coverage probabilities for the confidence interval CI(b1λ, s1λ) for the six cases

(a) - (f) in Table 4.1. Note that m = 2, α = 0.05, ρ = −0.5, λ = 0.15.

195



0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

d = 10.1, n.ints = 6, l = 120

 

0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

d = 10.1, n.ints = 7, l = 120

 

0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

|γ|

d = 11.78, n.ints = 7, l = 120

 

0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

|γ|

d = 10.1, n.ints = 6, l = 60

 

0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

|γ|

d = 10.1, n.ints = 7, l = 60

|γ|

 

0 2 4 6 8 10 12 14
−2e−04

−1e−04

0e+00

1e−04

2e−04

|γ|

d = 11.78, n.ints = 7, l = 60

|γ|

 

Difference of Squared SEL,  m = 2

Figure C.8: Plots of the differences, (1) − (2), between the graphs of the

squared scaled expected lengths for the confidence interval CI(b1λ, s1λ) for

the six cases (a) - (f) in Table 4.1. Note that m = 2, α = 0.05, ρ = −0.5,

λ = 0.15.
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C.6 Comparison with some of the past re-

sults obtained by Kabaila and Giri

In this section, we compute the plots of the functions b1λ and s1λ, the coverage

probability and the squared scaled expected length of the confidence interval

CI(b1λ, s1λ) for the three examples (a) Kabaila & Giri (2009a) for m = 76

and λ = 0.2, (b) Kabaila & Giri (2013) for m = 2 and λ = 0.15 and (c)

Giri (2008) for m = 1 and λ = 0.2. We consider the same values of d and

n.ints used by these authors. We use Γgrid = {0, 0.05, . . . , 8} for m = 76,

Γgrid = {0, 0.05, . . . , 15} for m = 2 and Γgrid = {0, 0.05, . . . , 30} for m = 1,

which are all equally spaced grids of values of γ.

Plots of the functions b1λ and s1λ were obtained using N = 9, Gauss

Legendre quadrature with 5 nodes and ε = 10−7 for the example (a) and

N = 17, Gauss Legendre quadrature with 10 nodes and ε = 10−7 for the

examples (b) and (c), respectively. Plots of the coverage probability and the

squared scaled expected length were obtained using N = 33, Gauss Legendre

quadrature with 20 nodes and ε = 10−10 for the three examples.
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Figure C.9: Graphs of the functions b1λ and s1λ, the coverage probability and

the squared scaled expected length of the confidence interval CI(b1λ, s1λ) for

the example (a). In this example, m = 76, α = 0.05, ρ = −0.707, λ = 0.2,

d = 6 and n.ints = 6.
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Figure C.10: Graphs of the functions b1λ and s1λ, the coverage probability

and the squared scaled expected length of the confidence interval CI(b1λ, s1λ)

for the example (b). In this example, m = 2, α = 0.05, ρ = −0.5, λ = 0.15,

d = 14 and n.ints = 7.
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Figure C.11: Graphs of the functions b1λ and s1λ, the coverage probability

and the squared scaled expected length of the confidence interval CI(b1λ, s1λ)

for the example (c). In this example, m = 1, α = 0.05, ρ = 0.4, λ = 0.2,

d = 30 and n.ints = 6.
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C.7 R programs for the computation of the

Kabaila & Giri (2009a) confidence inter-

val for the standard choice of λ

In subsection C.7.1, we list the R programs for the computation of the vec-

tor (b1(d/6), . . . , b1(5d/6), s1(0), . . . , s1(5d/6)) which specifies the functions

b1 and s1 of the Kabaila & Giri (2009a) confidence interval that utilizes un-

certain prior information, for the standard choice of λ and for both possible

objective functions (corresponding to the two definitions of scaled expected

length). In subsection C.7.2, we list the R program for the computation of

the graphs of the functions b1 and s1. In subsection C.7.3, we list the R

program for the computation of the graph of the coverage probability of this

confidence interval. In subsections C.7.4 and C.7.5, we list the R programs

for the computation of the graphs of the scaled expected length, for both

definitions of scaled expected length, of this confidence interval.
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C.7.1 R programs for the computation of the vector

(b1(d/6), . . . , b1(5d/6), s1(0), . . . , s1(5d/6))

bsciuupi2 <- function(alpha , m, rho , obj = 1, natural = 1){
# Compute the vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# that specifies the confidence interval that utilizes
# uncertain prior information (CIUUPI) for the case where
# the error variance is unknown.
#
# Inputs:
# alpha: minimum coverage probability is 1 - alpha
# m: degrees of freedom n - p
# rho: a known correlation
# obj: equal to 1 (default) for the first definition of the
# scaled expected length or 2 for the second

definition
# of the scaled expected length
# natural: equal to 1 (default) if the functions b and s
# are found by natural cubic spline interpolation
# or 0 if these functions are found by clamped

cubic
# spline interpolation in the interval [-d, d]
#
# Output:
# The vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# that specifies the CIUUPI for unknown variance.
#
# Written by N Ranathunga in September 2020

# Specify the values of the inputs to other functions
n.iter <- 5
n.ints <- 6
eps <- 10^{ -7}
d <- choice_d(m)$d
gams <- choice_d(m)$gams

if(m==1 | m==2) {
N <- 17
n.nodes <- 10

} else {
N <- 9
n.nodes <- 5

}

# Set t.alpha for m and alpha
t.alpha <- stats::qt(1 - alpha/2, m)

# Find the nodes and weights of the legendre quadrature
quad.info <- statmod :: gauss.quad(n.nodes , kind="legendre")
nodes <- quad.info$nodes
weights <- quad.info$weights

# Specify where the knots for b and s are located
# as inputs to other functions
knots <- seq(0, d, by = d/n.ints)
knots.all <- seq(-d, d, by = d/n.ints)
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# Specify the values of the inputs to compute the
# outer integral in coverage probability
h <- OuterPara(m, nu=m+1, N, eps)$h
wvec <- OuterPara(m, nu=m+1, N, eps)$wvec
psinu.zvec <- OuterPara(m, nu=m+1, N, eps)$psinu.zvec
cons <- OuterPara(m, nu=m+1, N, eps)$cons1

# Find a starting value for the optimization problem
start.vec <- startOptim(n.ints=n.ints , t.alpha=t.alpha)

cat("Computing the bs vector that specifies the Kabaila and
Giri CI... ")

lambda <- compute_lambda(n.iter , rho , alpha , t.alpha , gams ,
d, m, n.ints , N, eps , knots , knots

.all , nodes ,
weights , natural , obj , start.vec)

new.par <- optimize_knots(lambda , rho , alpha , t.alpha , gams
, d, m,

n.ints , knots , knots.all , nodes ,
weights , wvec ,

psinu.zvec , h, cons , natural , obj
, start.vec)

cat("DONE", "\n")

out <- new.par

}
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choice_d <- function(m, length.out = 60){
# Compute the value of d and the vector
# (0:d+constant) of length 60 for a given m.
#
# Inputs:
# m: degrees of freedom n - p
# length.out: length of gams vector
#
# Output:
# A list which contains the value d and vector gams.
#
# Written by P Kabaila in September 2020
# Modified by N Ranathunga in October 2020

# Set a cutoff value to the Normal curve
init.cutoff.d <- 1.545

# Find a value for d
init.prob.d <- stats:: pnorm(init.cutoff.d, 0, 1)
multiplier <- 6 / init.cutoff.d
d <- round(multiplier * stats ::qt(init.prob.d, m), 1)

# Find a maximum possible value for gams
init.prob.extra <- stats:: pnorm(2, 0, 1)
extra <- round(stats ::qt(init.prob.extra , m), 1)
max.gamma.constr <- d + extra

# Find the gams vector
gams <- c(seq(0, d, length.out = length.out),

seq(d, max.gamma.constr , by = (2 * d / length.out
)))

out <- list(d=d, gams=gams)

}
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compute_lambda <- function(n.iter , rho , alpha , t.alpha , gams ,
d, m,

n.ints , N, eps , knots , knots.all ,
nodes ,

weights , natural , obj , start.vec){
# This program will find the optimized value of lambda for
# given rho and alpha.
#
# Details for finding the optimized value of lambda:
# For 5 iterations , the bisection method is used to find

the
# value of lambda such that the SEL "loss" is equal to the

SEL
# "gain". Once these iterations are performed , a final

answer
# for lambda is found by fitting a straight line to the two
# last iteration values , and finding the x-axis intercept

of
# this straight line.
#
# Inputs:
# n.iter: number of iterations
# rho: known correlation
# alpha: 1 - alpha is the minimum coverage probability of

the
# confidence interval
# t.alpha: quantile of the t distribution for m and alpha
# gams: constrain coverage probability at these values
# d: the b and s functions are optimized in the interval

(0, d]
# m: degrees of freedom n - p
# n.ints: number of intervals in [0,d]
# N: number of evaluations in the outer integrand
# eps: upper bound of the approximation error
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# natural: 1 (default) for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
# obj: 1 for definition 1 of SEL or 2 for definition 2 of

SEL
# start.vec: a starting vector to the optimization problem
#
# Output:
# The optimized value of lambda
#
# Written by R Mainzer , August 2017
# Modified by N Ranathunga in September 2020

# The lower and upper bounds of the initial search interval
# for the bisection root finding method
lower <- 0
upper <- 0.3

# Set up vectors to store results
res.lambda <- rep(0, n.iter)
res.fun <- rep(0, n.iter)
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# Implement the bisection method
for(i in 1:n.iter){

tmp.lambda <- (upper + lower)/2
tmp.fun <- compute_ratio_minus(tmp.lambda , rho , alpha , t.

alpha ,
gams , d, m, n.ints , N,

eps , knots ,
knots.all , nodes , weights

, natural ,
obj , start.vec)

if(tmp.fun < 0){
lower <- tmp.lambda

} else{
upper <- tmp.lambda

}

res.lambda[i] <- tmp.lambda
res.fun[i] <- tmp.fun

}

# Find lambda by a linear interpolation of the last
# upper and lower values
x1 <- lower
if(tmp.lambda == x1){

y1 <- tmp.fun
} else {

y1 <- compute_ratio_minus(x1 , rho , alpha , t.alpha ,
gams , d, m, n.ints , N, eps ,

knots ,
knots.all , nodes , weights ,

natural ,
obj , start.vec)

}

x2 <- upper
if(tmp.lambda == x2){

y2 <- tmp.fun
} else {

y2 <- compute_ratio_minus(x2 , rho , alpha , t.alpha ,
gams , d, m, n.ints , N, eps ,

knots ,
knots.all , nodes , weights ,

natural ,
obj , start.vec)

}

slope <- (y2 - y1) / (x2 - x1)
x3 <- x1 - (y1 / slope)

# Do the linear interpolation one more time
y3 <- compute_ratio_minus(x3 , rho , alpha , t.alpha ,

gams , d, m, n.ints , N, eps ,
knots ,

knots.all , nodes , weights ,
natural ,

obj , start.vec)
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if (sign(y1) != sign(y3)){
slope <- (y3 - y1) / (x3 - x1)
lambda <- x1 - (y1 / slope)

} else {
slope <- (y3 - y2) / (x3 - x2)
lambda <- x2 - (y2 / slope)

}

out <- lambda

}
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compute_ratio_minus <- function(lambda , rho , alpha , t.alpha ,
gams ,

d, m, n.ints , N, eps , knots ,
knots.all ,

nodes , weights , natural , obj ,
start.vec){

# Compute the ratio ( gain / maximum possible loss) - 1.
# Another program can then use this program to find the
# value of lambda which makes (this ratio - 1) = 0.
#
# Inputs:
# lambda: used in specifying the objective function
# rho: known correlation
# alpha: 1 - alpha is the minimum coverage probability of

the
# confidence interval
# t.alpha: quantile of the t distribution for m and alpha
# gams: constrain coverage probability at these values
# d: the b and s functions are optimized in the interval

(0, d]
# m: degrees of freedom n - p
# n.ints: number of intervals in [0,d]
# N: number of evaluations in the outer integrand
# eps: upper bound of the approximation error
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# natural: 1 (default) for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
# obj: 1 for definition 1 of SEL or 2 for definition 2 of

SEL
# start.vec: a starting vector to the optimization problem
#
# Output:
# The ratio (gain / maximum possible loss) - 1.
#
# Written by P.Kabaila in June 2008
# Rewritten in R by R Mainzer , March 2017
# Modified by N Ranathunga in September 2020

# Specify the values of the inputs to compute the
# outer integral in coverage probability and SEL2
h <- OuterPara(m, nu=m+1, N, eps)$h
wvec <- OuterPara(m, nu=m+1, N, eps)$wvec
psinu.zvec <- OuterPara(m, nu=m+1, N, eps)$psinu.zvec
cons <- OuterPara(m, nu=m+1, N, eps)$cons1

new.par <- optimize_knots(lambda , rho , alpha , t.alpha , gams
, d, m,

n.ints , knots , knots.all , nodes , weights ,
wvec ,

psinu.zvec , h, cons , natural , obj , start.vec)

s.spl <- spline_s(new.par , n.ints , knots.all , t.alpha ,
natural)

# Compute the required ratio
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if (obj == 1){

h1 <- OuterPara(m, nu=m+2, N, eps)$h
wvec1 <- OuterPara(m, nu=m+2, N, eps)$wvec
psinu.zvec1 <- OuterPara(m, nu=m+2, N, eps)$psinu.zvec
cons1 <- OuterPara(m, nu=m+2, N, eps)$cons2
exp.w1 <- OuterPara(m, nu=m+2, N, eps)$exp.w

sel.max <- stats:: optimize(compute_sel1_trapez , c(0, d),
maximum = TRUE ,

knots=knots , t.alpha=t.alpha , nodes=nodes ,
weights=weights ,

s.spl=s.spl , wvec=wvec1 , psinu.zvec=psinu.
zvec1 ,

h1=h1 , cons=cons1 , exp.w=exp.w1)$objective

sel.min <- compute_sel1_trapez(gam = 0, knots , t.alpha ,
nodes , weights ,

s.spl , wvec=wvec1 , psinu.zvec=psinu.zvec1 ,
h1=h1, cons=cons1 , exp.w=exp.w1)

} else if (obj == 2) {

sel.max <- stats:: optimize(compute_sel2_trapez , c(0, d),
maximum = TRUE ,

knots=knots , t.alpha=t.alpha , nodes=nodes ,
weights=weights ,

s.spl=s.spl , wvec=wvec , psinu.zvec=psinu.
zvec ,

h2=h, cons=cons)$objective

sel.min <- compute_sel2_trapez(gam = 0, knots , t.alpha ,
nodes , weights ,

s.spl=s.spl , wvec , psinu.zvec ,
h2=h, cons)

}

expected.gain <- 1 - sel.min^2
max.potential.loss <- sel.max^2 - 1

# Output the required ratio minus 1
out <- expected.gain / max.potential.loss - 1

}
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optimize_knots <- function(lambda , rho , alpha , t.alpha , gams ,
d, m,

n.ints , knots , knots.all , nodes ,
weights ,

wvec , psinu.zvec , h, cons , natural
, obj ,

start.vec){
# Find the value of the b s vector
# that specifies the Kabaila and Giri confidence interval ,
# for a given value of lambda.
# This vector is found by numerical constrained
# optimization.
#
# Inputs:
# lambda: a positive tuning parameter
# rho: a known correlation
# t.alpha: quantile of the t distribution for m and alpha
# gams: set of gammas at which the coverage is
# required to be greater than or equal to 1 - alpha
# d: the b and s functions are optimized in the interval

(0, d]
# m: degrees of freedom n - p
# n.ints: number of intervals in [0,d]
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# zvec: a vector of length N where outer integrand is

evaluated at
# wvec: g(zvec)/sqrt(m / (m + 1)) where g(z)=exp(z/2 - exp

(-z))
# psinu.zvec: f_m+1(g(z))*d(g(z))/dz evaluated at z=zvec
# h: step length
# cons: sqrt (2/m) * exp(lgamma ((m+1)/2) - lgamma(m/2))

where
# m is the degrees of freedom
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
# obj: 1 for definition 1 of SEL or 2 for definition 2 of

SEL
# start.vec: a starting vector to the optimization problem
#
# Output:
# The b s vector.
#
# Written by N Ranathunga in September 2020

# Specify lower and upper bounds on the vector of values
# of the b and s functions evaluated at the knots
low <- c(rep(-100, n.ints - 1), rep(0.5, n.ints))
up <- c(rep(100, n.ints - 1), rep(200, n.ints))

# Make the objective function a function of one argument , y
if (obj == 1) {
obj_fun <- functional :: Curry(objective1 , lambda = lambda , m

= m, n.ints = n.ints ,
knots = knots , knots.all =
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knots.all , t.alpha = t.
alpha ,

nodes = nodes , weights =
weights , natural =
natural)

} else {
obj_fun <- functional :: Curry(objective2 , lambda = lambda , m

= m, n.ints = n.ints ,
knots = knots , knots.all =

knots.all , t.alpha = t.
alpha ,

nodes = nodes , weights =
weights , natural =
natural)

}

# Make the constraint function a function of one argument ,
y

cons_fun <- functional :: Curry(constraints_slsqp_trapez ,
gams = gams , rho = rho ,

n.ints = n.ints , knots =
knots , knots.all = knots.
all ,

alpha = alpha , t.alpha = t.
alpha , nodes = nodes ,

weights = weights , wvec =
wvec , psinu.zvec = psinu.
zvec ,

h = h, cons = cons , natural =
natural)

# Find the values of the knots using the optimization
function

res <- nloptr :: slsqp(start.vec , obj_fun , hin = cons_fun ,
lower = low ,

upper = up, nl.info = FALSE)
new.par <- res$par

# Output the vector with knot values which specifies the
new

# confidence interval
out <- new.par

}
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objective1 <- function(y, lambda , m, n.ints , knots , knots.all
,

t.alpha , nodes , weights , natural){
# Computes the objective function of the scaled expected
# length 1 of Kabaila and Giri confidence interval.
# The integral from (0, d) is broken down to integrals
# over knots. Each integral is computed using gauss
# legendre quadrature.
#
# Inputs:
# y: contains knots values of the b and s functions
# lambda: a positive tuning parameter
# m: degrees of freedom n - p
# d: the b and s functions are optimized in the interval

(0, d]
# n.ints: number of intervals in (0, d]
# t.alpha: quantile of the t distribution for m and alpha
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
#
# Output:
# The value of the objective function.
#
# Written by N Ranathunga in September 2020

s.spl <- spline_s(y, n.ints , knots.all , t.alpha , natural)

# Set up a vector to store the results
int <- rep(0, length(knots))

for(i in 1:( length(knots) - 1)){
# Specify bounds of the integral
a <- knots[i]
b <- knots[i+1]

# Find the approximate integral
adj.nodes <- ((b - a) / 2) * nodes + (a + b) / 2
q <- integrand_obj1(adj.nodes , lambda , m, t.alpha , s.spl)
int[i] <- ((b - a) / 2) * sum(weights * q)

}

out <- sum(int)

}
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objective2 <- function(y, lambda , m, n.ints , knots , knots.all
,

t.alpha , nodes , weights , natural){
# Computes the objective function of the scaled expected
# length 2 of Kabaila and Giri confidence interval.
# The integral from (0, d) is broken down to integrals
# over knots. Each integral is computed using gauss
# legendre quadrature.
#
# Inputs:
# y: contains knots values of the b and s functions
# lambda: a positive tuning parameter
# m: degrees of freedom n - p
# d: the b and s functions are optimized in the interval

(0, d]
# n.ints: number of intervals in (0, d]
# t.alpha: quantile of the t distribution for m and alpha
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
#
# Output:
# The value of the objective function.
#
# Written by N Ranathunga in September 2020

s.spl <- spline_s(y, n.ints , knots.all , t.alpha , natural)

# Set up a vector to store the results
int <- rep(0, length(knots))

for(i in 1:( length(knots) - 1)){
# Specify bounds of the integral
a <- knots[i]
b <- knots[i+1]

# Find the approximate integral
adj.nodes <- ((b - a) / 2) * nodes + (a + b) / 2
q <- integrand_obj2(adj.nodes , lambda , m, t.alpha , s.spl)
int[i] <- ((b - a) / 2) * sum(weights * q)

}

out <- sum(int)

}
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integrand_obj1 <- function(x, lambda , m, t.alpha , s.spl){
# Evaluate the inner integrand of the objective function
# of the scaled expected length 1 for a vector x.
# In other words , this function computes
#
# (s(x) - t_alpha) (lambda +
# [((m/(x^2 + m))^((m/2) + 1) / sqrt(2 pi))] )
#
# Inputs:
# x: vector at which the integrand is to be evaluated
# lambda: a positive tuning parameter
# m: degrees of freedom n - p
# t.alpha: quantile of the t distribution for m and alpha
# s.spl: s function
#
# Output:
# A vector of values of the inner integrand with the
# same dimension as x.
#
# Written by N Ranathunga in September 2020

tmp1 <- s.spl(x) - t.alpha
term1 <- (1/ sqrt(2 * pi)) * (m / (x^2 + m)) ^ (m/2 + 1)
tmp2 <- lambda + term1

res <- tmp1 * tmp2

}

integrand_obj2 <- function(x, lambda , m, t.alpha , s.spl){
# Evaluate the inner integrand of the objective function
# of the scaled expected length 2 for a vector x.
# In other words , this function computes
#
# (s(x) - t_alpha) (lambda +
# [((m/(x^2 + m))^((m+1)/2) / sqrt(2 pi))] )
#
# Inputs:
# x: vector at which the integrand is to be evaluated
# lambda: a positive tuning parameter
# m: degrees of freedom n - p
# t.alpha: quantile of the t distribution for m and alpha
# s.spl: s function
#
# Output:
# A vector of values of the inner integrand with the
# same dimension as x.
#
# Written by N Ranathunga in September 2020

tmp1 <- s.spl(x) - t.alpha
term1 <- (1/ sqrt(2 * pi)) * (m / (x^2 + m)) ^ ((m + 1)/2)
tmp2 <- lambda + term1

res <- tmp1 * tmp2

}
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constraints_slsqp_trapez <- function(gams , rho , y, n.ints ,
knots , knots.all ,

alpha , t.alpha , nodes ,
weights , wvec ,

psinu.zvec , h, cons ,
natural){

# This function computes (coverage probability) - (1 -
alpha)

# for a vector of gamma values.
#
# Inputs:
# gams: set of gammas at which the coverage is
# required to be greater than or equal to 1 - alpha
# rho: a known correlation
# y: contains knots values of the b and s functions
# n.ints: number of intervals in (0, d]
# knots: location of knots in [0, d]
# knots.all: location of knots in [-d, d]
# alpha: nominal coverage is 1 - alpha
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# wvec: g(zvec)/sqrt(m / (m + 1)) where g(z)=exp(z/2 - exp

(-z))
# psinu.zvec: f_m+1(g(z))*d(g(z))/dz evaluated at z=zvec
# h: step length
# cons: sqrt (2/m) * exp(lgamma ((m+1)/2) - lgamma(m/2))

where
# m is the degrees of freedom
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
#
# Output:
# A vector of values of (coverage probability) - (1 - alpha

)
#
# Written by N Ranathunga in September 2020

len.gams <- length(gams)
covs <- rep(0, len.gams)

# Find b and s functions at y
b.spl <- spline_b(y, n.ints , knots.all , t.alpha , natural)
s.spl <- spline_s(y, n.ints , knots.all , t.alpha , natural)

for(i in 1:len.gams){
covs[i] <- compute_cov_trapez(gams[i], rho , knots , alpha ,

t.alpha ,
nodes , weights , b.spl , s.

spl , wvec ,
psinu.zvec , h, cons)

}

out <- covs - (1 - alpha)

}
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spline_b <- function(y, n.ints , knots.all , t.alpha , natural){
# Return the value of the b function at a given point x.
#
# Inputs:
# y: contains knot values of the b and s functions
# n.ints: number of intervals in (0, d]
# knots.all: location of knots in [-d, d]
# t.alpha: quantile of the t distribution for m and alpha
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
#
# Written by R Mainzer , March 2017
# Modified by N Ranathunga in September 2020

y.rev <- rev(y[1:(n.ints - 1)])
b.vals <- c(0, y[1:(n.ints - 1)], 0)
b.vals.all <- c(0, -y.rev , b.vals)

# If natural = 1 use natural cubic spline , otherwise use
clamped cubic

# spline
if(natural == 1){

b.spl <- stats :: splinefun(knots.all , b.vals.all , method =
"natural")

} else {
b.spl.pp <- pracma :: cubicspline(knots.all , b.vals.all ,

endp2nd = TRUE)
b.spl <- function(x) pracma ::ppval(b.spl.pp, x)

}

out <- b.spl

}
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spline_s <- function(y, n.ints , knots.all , t.alpha , natural){
# Return the value of the s function at a given point x.
#
# Inputs:
# y: contains knot values of the b and s functions
# n.ints: number of intervals in (0, d]
# knots.all: location of knots in [-d, d]
# t.alpha: quantile of the t distribution for m and alpha
# natural: equals to 1 for natural cubic spline

interpolation
# or 0 for clamped cubic spline interpolation
#
# Written by R Mainzer , March 2017
# Modified by N Ranathunga in September 2020

s.vals <- c(y[n.ints :(2 * n.ints - 1)], t.alpha)
s.vals.all <- c(rev(s.vals), s.vals [2:(n.ints +1)])

if(natural == 1){
s.spl <- stats :: splinefun(knots.all , s.vals.all , method =

"natural")
} else {

s.spl.pp <- pracma :: cubicspline(knots.all , s.vals.all ,
endp2nd = TRUE)

s.spl <- function(x) pracma ::ppval(s.spl.pp, x)
}

out <- s.spl

}
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compute_cov_trapez <- function(gam , rho , knots , alpha , t.
alpha ,

nodes , weights , b.spl , s.spl ,
wvec ,

psinu.zvec , h, cons){
# Compute the coverage probability of the Kabaila and Giri
# confidence interval.
# Apply the transformation (2.6) of Mori (1988) , followed

by
# the trapezoidal rule to the outer integral.
#
# Inputs:
# gam: parameter
# rho: a known correlation
# knots: location of knots in [0, d]
# alpha: nominal coverage is 1 - alpha
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# b.spl: b function
# s.spl: s function
# wvec: g(zvec)/sqrt(m / (m + 1)) where g(z)=exp(z/2 - exp

(-z))
# psinu.zvec: f_m+1(g(z))*d(g(z))/dz evaluated at z=zvec
# h: step length
# cons: sqrt (2/m) * exp(lgamma ((m+1)/2) - lgamma(m/2))

where
# m is the degrees of freedom
#
# Written by N Ranathunga , September 2020

# Set up a vector to store the results of ICP
ICP.zvec <- rep(0, length(wvec))

for(i in 1: length(wvec)){
w <- wvec[i]
ICP.zvec[i] <- ICP_legendre(gam , rho , w, knots , t.alpha ,

nodes , weights , b.spl , s.spl)
}

out.int <- h * PreciseSums :: kahanSum(ICP.zvec * psinu.zvec)

cp <- (1 - alpha) + cons * out.int

}
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ICP_legendre <- function(gam , rho , w, knots , t.alpha ,
nodes , weights , b.spl , s.spl){

# Compute the inner integral of the coverage probability
# of Kabaila and Giri confidence interval.
# The integral from (0, d) is broken down to integrals
# over knots. Each integral is computed using gauss
# legendre quadrature. The number of nodes and weights for
# the approximation of each integral can be changed.
#
# Input:
# gam: parameter
# rho: a known correlation
# w: a value of the variable of integration in the
# outer integral
# knots: location of knots in [0, d]
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# b.spl: b function
# s.spl: s function
#
# Output:
# A value for the inner integral of Kabaila and Giri
# confidence interval.
#
# Written by N. Ranathunga in September 2020

# Set up a vector to store the results
int <- rep(0, length(knots))

for(i in 1:( length(knots) - 1)){
# Specify bounds of the integral
a <- knots[i]
b <- knots[i+1]

# Find the approximate integral
adj.nodes <- ((b - a) / 2) * nodes + (a + b) / 2
q <- IICP(adj.nodes , gam , rho , w, t.alpha , b.spl , s.spl)
int[i] <- ((b - a) / 2) * sum(weights * q)

}

ICP <- sum(int)

}
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IICP <- function(x, gam , rho , w, t.alpha , b.spl , s.spl){
# Compute the function
# (k(x, w, gam , rho) - k_dag(x, w, gam , rho)) *
# phi(wx - gam) +
# (k(-x, w, gam , rho) - k_dag(-x, w, gam , rho)) *
# phi(wx + gam)
# for a vector x.
#
# Inputs:
# x: vector of nodes of the Gauss Legendre quadrature
# gam: parameter
# rho: a known correlation
# w: a value of the variable of integration in the
# outer integral
# t.alpha: quantile of the t distribution for m and alpha
# b.spl: b function
# s.spl: s function
#
# Output:
# A vector with the same dimension as x.
#
# Written by N. Ranathunga in September 2020

# Finding k_dag(x, w, gam , rho))
mu1 <- rho * (w*x - gam)
var <- 1 - rho^2
k.dag1 <- Psi(-t.alpha * w, t.alpha * w, mu1 , var)

# Finding k(x, w, gam , rho)
term.a1 <- b.spl(x)
term.b1 <- s.spl(x)
lh <- w * (term.a1 - term.b1)
uh <- w * (term.a1 + term.b1)
k1 <- Psi(lh , uh , mu1 , var)

# Finding phi(wx - gam)
term1 <- stats ::dnorm(w*x - gam , 0, 1)

# Finding k_dag(-x, w, gam , rho))
mu2 <- rho * (-w*x - gam)
k.dag2 <- Psi(-t.alpha * w, t.alpha * w, mu2 , var)

# Finding k(-x, w, gam , rho)
term.a2 <- b.spl(-x)
term.b2 <- s.spl(-x)
lh2 <- w * (term.a2 - term.b2)
uh2 <- w * (term.a2 + term.b2)
k2 <- Psi(lh2 , uh2 , mu2 , var)

# Finding phi(wx + gam)
term2 <- stats ::dnorm(w*x + gam , 0, 1)

res <- (k1 - k.dag1) * term1 + (k2 - k.dag2) * term2

}
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Psi <- function(x, y, mu , variance){
# This function calculates
# Psi(x,y,mu ,variance) which equals to
# P(x le Z le y) = P(Z le y) - P(Z le x)
# where Z ~ N(mu ,variance).
#
# Inputs:
# x: given value
# y: given value that is greater than or equal
# to x
# mu: mean of the normal distribution
# variance: variance of the normal distribution
#
# Output:
# A value for Psi(x,y,mu ,variance)
#
# Written by N. Ranathunga in September 2020

sigma <- sqrt(variance)
term1 <- stats ::pnorm(y, mean = mu, sd = sigma)
term2 <- stats ::pnorm(x, mean = mu, sd = sigma)
out <- term1 - term2

}

startOptim <- function(n.ints , t.alpha){
# Calculate a vector which provides
# starting values to optimize the objective
# function.
#
# Inputs:
# n.ints: number of intervals in (0, d]
# t.alpha: quantile of the t distribution for
# m and alpha
#
# Output:
# A vecror of length 2*n.ints - 1.
#
# Written by N Ranathunga in September 2020

out <- c(rep(0, n.ints - 1), rep(t.alpha , n.ints))

}
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OuterPara <- function(m, nu, N, eps){
# Compute a list of values and vectors which will
# be used as inputs to compute the outer integrals
# of the coverage probability and the two squared scaled
# expected lengths.
#
# Inputs:
# m: degrees of freedom n - p
# nu: m + positive integer
# N: number of evaluations in the outer integrand
# eps: upper bound of the approximation error
#
# Output:
# A list of values and vectors.
#
# Written by N Ranathunga in September 2020

# Step length to compute the outer integral
cm <- sqrt(m / nu)
d2 <- as.numeric(compute_zl(nu , eps)[1])
zl <- as.numeric(compute_zl(nu , eps)[2])
zu <- zl + d2
h <- d2/(N - 1)

# vectors which will be used to compute
# the outer integral
zvec <- seq(zl , zu , by = h)
wvec <- transf(zvec) / cm
psinu.zvec <- Func_psi_nu(zvec , nu)

# The constant term in CP for nu=m+1 or
# the constant term in SEL2 for nu=m+1
cons1 <- sqrt (2/m) * exp(lgamma(nu/2) - lgamma(m/2))

# The constant term in SEL1 for nu=m+2
cons2 <- (2/m) * exp(lgamma(nu/2) - lgamma(m/2))

# E(W) term in SEL1
exp.w <- sqrt (2/m) * exp(lgamma ((m + 1)/2) - lgamma(m/2))

out <- list(h=h, cons1=cons1 , cons2=cons2 , exp.w=exp.w,
wvec=wvec , psinu.zvec=psinu.zvec)

}

222



compute_zl <- function(nu , eps){
# Compute the length of the interval to apply
# the trapezoidal rule to the outer integral and
# compute the location of the first evaluation
# of the outer integrand.
#
# Input:
# nu: degrees of freedom + positive integer
# eps: upper bound of the error when approximate the
# outer integral by the trapezoidal rule
#
# Output:
# A list of two values
#
# Written by N Ranathunga , September 2020

# Find the length of the interval
d2 <- stats:: uniroot(MinUpBndTrErrMinEpsFin , nu , eps ,

interval = c(0, 10), extendInt="yes")$root

# Find the location of the first evaluation
zl <- stats:: optimize(UpBoundTrimError , d2 , nu , interval=c

(-5, 1))$minimum

out <- list(d2 , zl)

}

Func_psi_nu <- function(zvec , nu){
# This function computes a vector of values
# of f_nu(g(z)) * dg(z)/dz where g(z) = exp(z/2 - exp(-z))
# and f_nu is the pdf of a random variable with the
# same distribution as sqrt(Q/nu) where Q ~ chisq(nu)
# and nu = m + positive integer
#
# Input:
# zvec: a vector where function evaluations are at
# when applying the trapezoidal rule
# nu: degrees of freedom + positive integer
#
# Output:
# A vector of values of f_nu(g(z)) * dg(z)/dz
# with the same dimension as zvec.
#
# Written by N. Ranathunga in September 2020

const <- exp( (nu/2) * log(nu) - lgamma(nu/2) -
((nu/2) - 1) * log (2) )

tmp1 <- exp(-zvec)
term1 <- exp(nu*zvec/2 - nu*tmp1 - (nu/2)*exp(zvec - 2*tmp1

))
term2 <- 1/2 + tmp1

psinu.val <- const * term1 * term2

}
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transf <- function(z){
# This function applies the
# transformation (2.6) of Mori (1988)
# to the value z
#
# Inputs:
# z: a given value
#
# Written by N. Ranathunga in September 2020

out <- exp((z/2) - exp(-z))

}

MinUpBndTrErrMinEpsFin <- function(d2, nu, eps){
# This function minimizes
# (upper bound of the trimming error) - (10^( -3) * eps)
# when approximated the outer integral
# by the trapezoidal rule.
#
# Input:
# d2: (number of evaluations of the outer
# integrand) * (step length)
# nu: degrees of freedom + positive integer
# eps: a given value for the upper bound of the
# approximation error
#
# Written by N Ranathunga , September 2020

temp <- stats:: optimize(UpBoundTrimError , d2 , nu ,
interval=c(-4, 4))

out <- temp$objective - (10^( -3) * eps)

}

UpBoundTrimError <- function(z, d2 , nu){
# Computes the upper bound of the
# trimming error when approximate
# the outer integral by the trapezoidal rule.
#
# Input:
# z: a given value
# d2: (number of evaluations of the outer
# integrand) * (step length)
# nu: degrees of freedom + positive integer
#
# Written by N Ranathunga , September 2020

x1 <- transf(z)
x2 <- transf(z + d2)
term1 <- nu * x1^2
term2 <- nu * x2^2

out <- stats:: pchisq(term1 , df=nu) + 1 -
stats :: pchisq(term2 , df=nu)

}

224



C.7.2 R program for the computation of the graphs of

the functions b1 and s1

bsspline2 <- function(x, bsvec , alpha , m, natural = 1){
# Evaluate the functions b and s at x.
#
# Inputs:
# x: a value or vector of values at which the functions
# b and s are to be evaluated
# bsvec: the vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# where d is a positive number
# alpha: minimum coverage probability is 1 - alpha
# m: degrees of freedom n - p
# natural: equal to 1 (default) if the functions b and s
# are found by natural cubic spline interpolation
# or 0 if these functions are found by clamped

cubic
# spline interpolation in the interval [-d, d]
#
# Output:
# A data frame containing x and the corresponding values
# of the functions b and s.
#
# Written by N Ranathunga in September 2020

# Set input
n.ints <- 6
d <- choice_d(m)$d

# Specify where the knots for b and s are located
knots.all <- seq(-d, d, by = d/n.ints)

# Set t.alpha for m and alpha
t.alpha <- stats::qt(1 - alpha/2, m)

# Find b and s functions
sspl <- spline_s(bsvec , n.ints , knots.all , t.alpha , natural

)
bspl <- spline_b(bsvec , n.ints , knots.all , t.alpha , natural

)

x1 <- x[which(x <= -d)]
x2 <- x[which(x > -d & x < d)]
x3 <- x[which(x >= d)]

bspl.res <- c(rep(0, length(x1)), bspl(x2), rep(0, length(
x3)))

sspl.res <- c(rep(t.alpha , length(x1)), sspl(x2), rep(t.
alpha , length(x3)))

out <- data.frame(x = x, b = bspl.res , s = sspl.res)

}
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C.7.3 R program for the computation of the graph of

the coverage probability CP(γ; b1, s1)

cpciuupi2 <- function(gam , bsvec , alpha , m, rho , natural = 1)
{

# Compute the coverage probability of the CIUUPI for
# unknown error variance
#
# Inputs:
# gam: a value of gamma or vector of gamma values at which
# the coverage probability function is evaluated
# bsvec: the vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# where d is a positive number
# alpha: minimum coverage probability is 1 - alpha
# m: degrees of freedom n - p
# rho: a known correlation
# natural: equal to 1 (default) if the functions b and s
# are found by natural cubic spline interpolation
# or 0 if these functions are found by clamped

cubic
# spline interpolation in the interval [-d, d]
#
# Output:
# The value(s) of the coverage probability of the
# CIUUPI for unknown error variance at gam.
#
# Written by N Ranathunga in September 2020

# Specify the values of the inputs to other functions
n.ints <- 6
N <- 33
eps <- 10^{ -10}
n.nodes <- 20
d <- choice_d(m)$d

# Set t.alpha for m and alpha
t.alpha <- stats::qt(1 - alpha/2, m)

# Find the nodes and weights of the legendre quadrature
quad.info <- statmod :: gauss.quad(n.nodes , kind="legendre")
nodes <- quad.info$nodes
weights <- quad.info$weights

# Specify where the knots for b and s are located
# as inputs to other functions
knots <- seq(0, d, by = d/n.ints)
knots.all <- seq(-d, d, by = d/n.ints)

# Specify the values of the inputs to compute the
# outer integral in coverage probability
h <- OuterPara(m, nu=m+1, N, eps)$h
wvec <- OuterPara(m, nu=m+1, N, eps)$wvec
psinu.zvec <- OuterPara(m, nu=m+1, N, eps)$psinu.zvec
cons <- OuterPara(m, nu=m+1, N, eps)$cons1

# Find the b and s functions
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b.spl <- spline_b(bsvec , n.ints , knots.all , t.alpha ,
natural)

s.spl <- spline_s(bsvec , n.ints , knots.all , t.alpha ,
natural)

# Compute the coverage probability
res <- rep(0, length(gam))
for(i in 1: length(gam)){

res[i] <- compute_cov_trapez(gam[i], rho , knots , alpha ,
t.alpha , nodes , weights , b.spl , s.spl

,
wvec , psinu.zvec , h, cons)

}

out <- res

}
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C.7.4 R programs for the computation of the graph

of the first definition of scaled expected length

SEL1(γ; s1)

sel1ciuupi2 <- function(gam , bsvec , alpha , m, rho , natural =
1){

# Compute the first definition of the scaled expected
# length of the CIUUPI for unknown error variance.
#
# Inputs:
# gam: a value of gamma or vector of gamma values at which
# the coverage probability function is evaluated
# bsvec: the vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# where d is a positive number
# alpha: minimum coverage probability is 1 - alpha
# m: degrees of freedom n - p
# rho: a known correlation
# natural: equal to 1 (default) if the functions b and s
# are found by natural cubic spline interpolation
# or 0 if these functions are found by clamped

cubic
# spline interpolation in the interval [-d, d]
#
# Output:
# The value(s) of the first definition of the scaled

expected
# length of the CIUUPI for unknown error variance at gam.
#
# Written by N Ranathunga in September 2020

# Specify the values of the inputs to other functions
n.ints <- 6
N <- 33
eps <- 10^{ -10}
n.nodes <- 20
d <- choice_d(m)$d

# Set t.alpha for m and alpha
t.alpha <- stats::qt(1 - alpha/2, m)

# Find the nodes and weights of the legendre quadrature
quad.info <- statmod :: gauss.quad(n.nodes , kind="legendre")
nodes <- quad.info$nodes
weights <- quad.info$weights

# Specify where the knots for b and s are located
# as inputs to other functions
knots <- seq(0, d, by = d/n.ints)
knots.all <- seq(-d, d, by = d/n.ints)

# Specify the values of the inputs to compute the
# outer integral in SEL1
h1 <- OuterPara(m, nu=m+2, N, eps)$h
wvec <- OuterPara(m, nu=m+2, N, eps)$wvec
psinu.zvec <- OuterPara(m, nu=m+2, N, eps)$psinu.zvec
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cons <- OuterPara(m, nu=m+2, N, eps)$cons2
exp.w <- OuterPara(m, nu=m+2, N, eps)$exp.w

# Specify the function s
s.spl <- spline_s(bsvec , n.ints , knots.all , t.alpha ,

natural)

# Compute the scaled expected length
res <- rep(0, length(gam))
for(i in 1: length(gam)){

res[i] <- compute_sel1_trapez(gam[i], knots , t.alpha ,
nodes , weights ,

s.spl , wvec , psinu.zvec , h1
, cons , exp.w)

}

out <- res

}
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compute_sel1_trapez <- function(gam , knots , t.alpha , nodes ,
weights , s.spl , wvec , psinu.

zvec ,
h1, cons , exp.w){

# Compute the value of the scaled expected length 1 for
# given functions b and s.
# In other words , this function computes
#
# 1 + (1/(t_alpha E(W))) int_0^ infty (ISEL1(w,gam)) w^2 fW(

w) dw
#
# Inputs:
# gam: parameter
# knots: location of knots in [0, d]
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# s.spl: s function
# wvec: g(z)/sqrt(m / (m + 2)) where g(z)=exp(z/2 - exp(-z)

)
# evaluated at z=zvec
# psinu.zvec: f_m+2(g(z))*d(g(z))/dz evaluated at z=zvec
# h1: step length
# cons: (2/m) * exp(lgamma ((m+2)/2) - lgamma(m/2)) where
# m is the degrees of freedom
# exp.w: sqrt (2/m) * exp(lgamma ((m + 1)/2) - lgamma(m/2))
#
# Output:
# The scaled expected length 1 for given functions b and s.
#
# Written by N Ranathunga , September 2020

# Set up a vector to store the results of ISEL1
ISEL1.zvec <- rep(0, length(wvec))

for(i in 1: length(wvec)){
w <- wvec[i]
ISEL1.zvec[i] <- ISEL_legendre(gam , w, knots , t.alpha ,

nodes , weights , s.spl)
}

out.int <- h1 * PreciseSums :: kahanSum(ISEL1.zvec * psinu.
zvec)

sel1 <- 1 + (cons * out.int) / (t.alpha * exp.w)

}
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ISEL_legendre <- function(gam , w, knots , t.alpha ,
nodes , weights , s.spl){

# Computes the inner integral of the scaled expected
# length 1 and 2 of Kabaila and Giri confidence interval.
# The integral from (0, d) is broken down to integrals
# over knots. Each integral is computed using gauss
# legendre quadrature. The number of nodes and weights
# for the approximation of each integral can be changed.
#
# Inputs:
# gam: parameter
# w: a value of the variable of integration in the
# outer integral
# knots: location of knots in [0, d]
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# s.spl: s function
#
# Output:
# A value for the inner integral of the scaled expected
# length 1 and 2
#
# Written by N.Ranathunga in September 2020.

# Set up a vector to store the results
int <- rep(0, length(knots))

for(i in 1:( length(knots) - 1)){
# Specify bounds of the integral
a <- knots[i]
b <- knots[i+1]

# Find the approximate integral
adj.nodes <- ((b - a) / 2) * nodes + (a + b) / 2
q <- IISEL(adj.nodes , gam , w, t.alpha , s.spl)
int[i] <- ((b - a) / 2) * sum(weights * q)

}

ISEL <- sum(int)

}
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IISEL <- function(x, gam , w, t.alpha , s.spl){
# Evaluates the function
# (s(x) - t_alpha) * (phi(wx-gamma) + phi(wx+gamma))
# for a vector x.
#
# Inputs:
# x: vector of nodes of the Gauss Legendre quadrature
# gam: parameter
# m: degrees of freedom n - p
# w: a value of the variable of integration in the
# outer integral
# t.alpha: quantile of the t distribution for m and alpha
# s.spl: s function
#
# Output:
# A vector with the same dimension as x.
#
# Written by N.Ranathunga in September 2020.

tmp1 <- s.spl(x) - t.alpha
tmp2 <- stats:: dnorm(w*x - gam , 0, 1) +

stats ::dnorm(w*x + gam , 0, 1)
res <- tmp1 * tmp2

}
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C.7.5 R programs for the computation of the graph of

the second definition of scaled expected length

SEL2(γ; s2)

sel2ciuupi2 <- function(gam , bsvec , alpha , m, rho , natural =
1){

# Compute the second definition of the scaled expected
# length of the CIUUPI for unknown error variance.
#
# Inputs:
# gam: a value of gamma or vector of gamma values at which
# the coverage probability function is evaluated
# bsvec: the vector (b(d/6) ,...,b(5d/6),s(0) ,...,s(5d/6))
# where d is a positive number
# alpha: minimum coverage probability is 1 - alpha
# m: degrees of freedom n - p
# rho: a known correlation
# natural: equal to 1 (default) if the functions b and s
# are found by natural cubic spline interpolation
# or 0 if these functions are found by clamped

cubic
# spline interpolation in the interval [-d, d]
#
# Output:
# The value(s) of the second definition of the scaled

expected
# length of the CIUUPI for unknown error variance at gam.
#
# Written by N Ranathunga in September 2020

# Specify the values of the inputs to other functions
n.ints <- 6
N <- 33
eps <- 10^{ -10}
n.nodes <- 20
d <- choice_d(m)$d

# Set t.alpha for m and alpha
t.alpha <- stats::qt(1 - alpha/2, m)

# Find the nodes and weights of the legendre quadrature
quad.info <- statmod :: gauss.quad(n.nodes , kind="legendre")
nodes <- quad.info$nodes
weights <- quad.info$weights

# Specify where the knots for b and s are located
# as inputs to other functions
knots <- seq(0, d, by = d/n.ints)
knots.all <- seq(-d, d, by = d/n.ints)

# Specify the values of the inputs to compute the
# outer integral in coverage probability
h2 <- OuterPara(m, nu=m+1, N, eps)$h
wvec <- OuterPara(m, nu=m+1, N, eps)$wvec
psinu.zvec <- OuterPara(m, nu=m+1, N, eps)$psinu.zvec
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cons <- OuterPara(m, nu=m+1, N, eps)$cons1

# Specify the function s
s.spl <- spline_s(bsvec , n.ints , knots.all , t.alpha ,

natural)

# Compute the scaled expected length
res <- rep(0, length(gam))
for(i in 1: length(gam)){

res[i] <- compute_sel2_trapez(gam[i], knots , t.alpha ,
nodes , weights ,

s.spl , wvec , psinu.zvec , h2
, cons)

}

out <- res

}
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compute_sel2_trapez <- function(gam , knots , t.alpha , nodes ,
weights ,

s.spl , wvec , psinu.zvec , h2,
cons){

# Compute the value of the scaled expected
# length 2 for given functions b and s.
# In other words , this function computes
#
# 1 + (1/t_alpha) int_0^ infty (ISEL(w,gam)) w fm(w) dw
#
# Inputs:
# gam: parameter
# knots: location of knots in [0, d]
# t.alpha: quantile of the t distribution for m and alpha
# nodes: vector of Gauss Legendre quadrature nodes
# weights: vector of Gauss Legendre quadrature weights
# s.spl: s function
# wvec: g(z)/sqrt(m / (m + 1)) where g(z)=exp(z/2 - exp(-z)

)
# evaluated at z=zvec
# psinu.zvec: f_m+1(g(z))*d(g(z))/dz evaluated at z=zvec
# h2: step length
# cons: sqrt (2/m) * exp(lgamma ((m+1)/2) - lgamma(m/2))

where
# m is the degrees of freedom
#
# Output:
# The scaled expected length 2 for given functions b and s.
#
# Written by N Ranathunga , September 2020

# Set up a vector to store the results of ISEL2
ISEL2.zvec <- rep(0, length(wvec))

for(i in 1: length(wvec)){
w <- wvec[i]
ISEL2.zvec[i] <- ISEL_legendre(gam , w, knots , t.alpha ,

nodes , weights , s.spl)
}

out.int <- h2 * PreciseSums :: kahanSum(ISEL2.zvec * psinu.
zvec)

sel2 <- 1 + (cons * out.int) / t.alpha

}
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Appendix D

Proofs and R programs for

Chapter 5

D.1 Derivation of the mode and the variance

of the posterior distribution

In Section 5.3, we approximate g(t; θ, σ)φ(t; 0, σ2) by φ(t;µ, τ 2), where

µ = mode of g(t; θ, σ)φ(t; 0, σ2), considered as a function of t,

and

τ 2 =

[
− ∂2

∂t2
(
log
[
g(t; θ, σ)φ(t; 0, σ2)

])]−1
.

In the present section, we derive formulas for µ and τ 2.

We need to find the value of t maximising g(t; θ, σ)φ(t; 0, σ2). However, it

is algebraically easier to find the value of tmaximising log (g(t; θ, σ)φ(t; 0, σ2)),

where

log
(
g(t; θ, σ)φ(t; 0, σ2)

)
= log

(
exp

(
(θ + t)y

)
(1 + exp(θ + t))J

1√
2π σ

exp

(
−t2

2σ2

))
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= (θ + t) y − J log (1 + exp(θ + t))− t2

2σ2
− log(

√
2π σ). (D.1)

For given J, y, θ and σ, we maximise (D.1) numerically with respect to t using

the R function optimize. This value of t maximising (D.1) is the mode.

Note that

∂

∂t

[
log
(
g(t; θ, σ)φ(t; 0, σ2)

)]
= y − J

1 + exp(θ + t)
exp(θ + t) − t

σ2
,

so that

∂2

∂t2
[
log
(
g(t; θ, σ)φ(t; 0, σ2)

)]
= −J × exp(θ + t)

(1 + exp(θ + t))2
− 1

σ2
.

Therefore,

τ 2 =

(
−
[
−J × exp(θ + t)

(1 + exp(θ + t))2
− 1

σ2

])−1
,

where t is the mode found by maximising (D.1).

D.2 An expression for c(θ, σ) needed for the

application of Gauss-Hermite quadrature

We change the variable of integration in (5.5) to z = (t− µ)
/(√

2τ
)

so that

t = µ+
√

2 τ z and

(5.5) =

∫ ∞
−∞

h (t; θ, σ)
1√
2π τ

exp

(
−(t− µ)2

2τ 2

)
dt

=

∫ ∞
−∞

h
(
µ+
√

2 τ z; θ, σ
) 1√

2π τ
exp

(
−(
√

2τz)2

2τ 2

)
√

2τ dz

=
1√
π

∫ ∞
−∞

h
(
µ+
√

2 τ z; θ, σ
)

exp(−z2) dz.
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D.3 An expression for r(t; θ, σ)

The function r(t; θ, σ) is defined in subsection 5.4.2. In the present subsec-

tion, we derive the simplified expression for this function stated in subsection

5.4.2.
r(t; θ, σ)

= h(t; θ, σ)
(
φ(t;µ, τ 2)

)1/2
=
g(t; θ, σ)φ(t; 0, σ2)(

φ(t;µ, τ 2)
)1/2

=

(
exp((θ + t)y)/(1 + exp(θ + t))J

) (
1/
√

2π σ
)

exp (−t2/2σ2)(
1/(
√

2π τ)1/2
)

exp (−(t− µ)2/4τ 2)

=

(
τ√

2πσ2

)1/2 exp
(

(θ + t)y − (t2/2σ2) + (t2 − 2µt+ µ2)/4τ 2
)

(
1 + exp(θ + t)

)J
= c0

exp

(
θ y +

(
µ2/(4τ 2)

)
+
(
y −

(
µ/(2τ 2)

))
t+
(

1/(4τ 2)− 1/(2σ2)
)
t2

)
(
1 + exp(θ + t)

)J
= c0

exp
(
c1 + c2t+ c3 t

2
)(

1 + exp(θ + t)
)J (D.2)

where

c0 =

(
τ√

2πσ2

)1/2

, c1 = θ y +
µ2

4τ 2
, c2 = y − µ

2τ 2
and c3 =

1

4τ 2
− 1

2σ2
.

D.4 Examination of the possible values for c3

It follows from

log
(
g(t; θ, σ)φ(t; 0, σ2)

)
= log(g(t; θ, σ))− t2

2σ2
− log

√
2πσ2

that

− ∂2

∂t2
log
(
g(t; θ, σ)φ(t; 0, σ2)

)
=

1

σ2
− ∂2

∂t2
log(g(t; θ, σ).

Since ∂2 log(g(t; θ, σ)/∂t2 evaluated at the mode is less than zero,
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− ∂2

∂t2
log
(
g(t; θ, σ)φ(t; 0, σ2)

)
>

1

σ2

⇐⇒
(
− ∂2

∂t2
(
log
(
g(t; θ, σ)φ(t; 0, σ2)

)))−1
< σ2

⇐⇒ τ 2 < σ2.

Recall that c3 = 1/4τ 2 − 1/2σ2. Since τ 2 < σ2, c3 > −1/(4σ2). Now we

consider the following three possible cases for the values of c3.

Case 1: c3 = 0

When J 6= 0,

(D.2) = c0
exp

(
c1 + c2t

)
(1 + exp(θ + t))J

. (D.3)

For c3 = 0, (D.3) depends on the value of c2. If c2 > 0, (D.3)→ 0 as |t| → ∞.

If c2 < 0 (D.3)→ 0 as t→∞ and (D.3)→∞ as t→ −∞.

Suppose now that c2 = 0. In this case, (D.3) depends on the value of c1.

If c1 > 0, (D.3) → 0 as t → ∞ and (D.3) → constant as t → −∞ and the

value of the constant depends on the values of c0 and c1 (note that c0 > 0).

If c1 ≤ 0, (D.3) → 0 as t → ∞ and (D.3) → constant as t → −∞ and the

value of the constant depends on the values of c0 and c1.

Case 2: c3 > 0

When J 6= 0,

(D.2) = c0
exp

(
c1 + c2t+ c3 t

2
)

(1 + exp(θ + t))J
(D.4)

and (D.4)→∞ as |t| → ∞.

Case 3: c3 < 0

When J 6= 0,

(D.2) = c0
exp

(
c1 + c2t+ c3 t

2
)

(1 + exp(θ + t))J
(D.5)

and (D.5)→ 0 as |t| → ∞.
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D.5 Computation of the maximum likelihood

estimates of the parameters of the logis-

tic regression model with random inter-

cept

Recall that the probability mass function (pmf) of y is the one-dimensional

integral ∫ ∞
−∞

g(t; θ, σ)φ(t; 0, σ2) dt.

We change the variable of integration to u = t/(
√

2σ). Then, for a specific

cluster i, the pmf of y is the one-dimensional integral

1√
π

∫ ∞
−∞

g(ui; θ, σ) exp(−u2i ) dui.

Therefore, the pmf of y is the following product of N one-dimensional inte-

grals
N∏
i=1

1√
π

∫ ∞
−∞

g(ui; θ, σ) exp(−u2i ) dui

=
1

πN/2

N∏
i=1

∫ ∞
−∞

g(ui; θ, σ) exp(−u2i ) dui.

Interpreted as a function of the parameters (β1, β2, σ), this is the likelihood

function. Therefore, the log-likelihood is, to within an additive constant that

does not depend on any unknown parameters, equal to

N∑
i=1

log

(∫ ∞
−∞

g(ui; θ, σ) exp(−u2i ) dui
)
.
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We obtain the maximum likelihood estimate by minimizing

−
N∑
i=1

log

(∫ ∞
−∞

g(ui; θ, σ) exp(−u2i ) dui
)

≈ −
N∑
i=1

log

(
m∑
j=1

g(uij; θ, σ)wij

)
, (D.6)

where uij and wij are Gauss-Hermite nodes and weights, respectively. We

use the R function nlminb to carry out the minimization of (D.6) to find

the maximum likelihood estimates β̂1, β̂2 and σ̂ from the whole teratology

dataset.

D.6 Proof of Theorem 5.5.1

In this section, we prove Theorem 5.5.1, given in Section 5.5. This proof is

due to Paul Kabaila. The proof of this theorem consists of Parts (a) - (d)

described as follows.

Part (a):

Observe that

c(θ, σ)− cm(θ, σ)

=
1√
π

∫ ∞
−∞

k(z) exp(−z2)dz − 1√
π

m∑
i=1

k(zi)wi

=
1√
π

∫ ∞
−∞

k(z) exp(−z2)dz − 1√
π

∫ ∞
−∞

qm(z) exp(−z2)dz

+
1√
π

∫ ∞
−∞

qm(z) exp(−z2)dz − 1√
π

m∑
i=1

qm(zi)wi

+
1√
π

m∑
i=1

qm(zi)wi −
1√
π

m∑
i=1

k(zi)wi. (D.7)

Note that
1√
π

∫ ∞
−∞

qm(z) exp(−z2)dz − 1√
π

m∑
i=1

qm(zi)wi = 0.

Therefore
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(D.7) =
1√
π

∫ ∞
−∞

(k(z)− qm(z)) exp(−z2) dz +
1√
π

m∑
i=1

(qm(zi)− k(zi))wi

=
1√
π

∫ ∞
zu

(k(z)− qm(z)) exp(−z2) dz+

1√
π

∫ zu

zl

(k(z)− qm(z)) exp(−z2) dz+

1√
π

∫ zl

−∞
(k(z)− qm(z)) exp(−z2) dz +

1√
π

m∑
i=1

(qm(zi)− k(zi))wi

= a` + au +
1√
π

∫ zu

z`

(k(z)− qm(z)) exp(−z2) dz+

1√
π

m∑
i=1

(qm(zi)− k(zi))wi,

where

a` =
1√
π

∫ z`

−∞
(k(z)− qm(z)) exp(−z2) dz

and

au =
1√
π

∫ ∞
zu

(k(z)− qm(z)) exp(−z2) dz.

Part (b):

Now ∣∣∣∣ 1√
π

∫ zu

z`

(k(z)− qm(z)) exp(−z2) dz
∣∣∣∣

≤ 1√
π

∫ zu

z`

|k(z)− qm(z)| exp(−z2) dz

≤ 1√
π

∫ zu

z`

max
z∈[z`,zu]

|k(z)− qm(z)| exp(−z2) dz

= em
1√
π

∫ zu

z`

exp(−z2) dz

≤ em
1√
π

∫ ∞
−∞

exp(−z2) dz = em.

We evaluate

1√
π

∫ ∞
−∞

exp(−z2) dz (D.8)

242



by changing the variable of integration to z = l/
√

2, so that l =
√

2z and

(D.8) =
1√
π

∫ ∞
−∞

exp

(
−l2

2

)
dl√

2
=

1√
2π

∫ ∞
−∞

exp

(
−l2

2

)
dl = 1.

Note that

∣∣∣∣∣ 1√
π

m∑
i=1

(qm(zi)− k(zi))wi

∣∣∣∣∣
≤ 1√

π

m∑
i=1

|qm(zi)− k(zi)|wi

≤ 1√
π

m∑
i=1

max
z∈[z`,zu]

|k(z)− qm(z)|wi

≤ em
1√
π

m∑
i=1

wi = em.

Now ∫ ∞
−∞

1 exp(−z2) dz =
m∑
i=1

wi.

Hence

1√
π

m∑
i=1

wi =
1√
π

∫ ∞
−∞

exp(−z2) dz = 1.

Thus ∣∣c(θ, σ)− cm(θ, σ)
∣∣ ≤ 2 em + |a`|+ |au|.

Part (c):

If k(z) ≥ qm(z) ≥ 0 for all z ≤ z`, then

0 ≤ a` =
1√
π

∫ z`

−∞
(k(z)− qm(z)) exp(−z2) dz

=
1√
π

∫ zl

−∞
k(z) exp(−z2)dz − 1√

π

∫ zl

−∞
qm(z) exp(−z2)dz

≤ 1√
π

∫ zl

−∞
k(z) exp(−z2)dz. (D.9)
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Note that

1/
√
π

∫ zl

−∞
qm(z) exp(−z2)dz ≥ 0.

Now change the variable of integration to

z =
t− µ√

2τ

so that t = µ+
√

2τz and

(D.9) =
1√
π

∫ µ+
√
2τzl

−∞
k

(
t− µ√

2τ

)
exp

(
−(t− µ)2

2τ 2

)
dt√
2τ

=

∫ µ+
√
2τzl

−∞
k

(
t− µ√

2τ

)
1√
2πτ

exp

(
−(t− µ)2

2τ 2

)
dt

=

∫ µ+
√
2τzl

−∞
k

(
t− µ√

2τ

)
φ(t;µ, σ2) dt. (D.10)

Now

k

(
t− µ√

2τ

)
= h

(
µ+
√

2τ
t− µ√

2τ
; θ, σ

)
= h (t; θ, σ) .

Thus

(D.10) =

∫ µ+
√
2τz`

−∞
h(t; θ, σ)φ(t;µ, σ2) dt

=

∫ µ+
√
2τz`

−∞
g(t; θ, σ)φ(t; 0, σ2) dt.

Part (d):

If k(z) ≥ qm(z) ≥ 0 for all z ≥ zu, then

0 ≤ au =
1√
π

∫ ∞
zu

(k(z)− qm(z)) exp(−z2) dz

=
1√
π

∫ ∞
zu

k(z) exp(−z2)dz − 1√
π

∫ ∞
zu

qm(z) exp(−z2)dz

≤ 1√
π

∫ ∞
zu

k(z) exp(−z2)dz. (D.11)
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Note that

1/
√
π

∫ ∞
zu

qm(z) exp(−z2)dz ≥ 0.

Change the variable of integration to

z =
t− µ√

2τ

so that t = µ+
√

2τz and

(D.11) =

∫ ∞
µ+
√
2τzu

h(t; θ, σ)φ(t;µ, σ2) dt =

∫ ∞
µ+
√
2τzu

g(t; θ, σ)φ(t; 0, σ2) dt.

D.7 Evaluation of k(z) for c3 > 0

The function k(z) is defined in Section 5.5. Note that

r(t; θ, σ) = h(t; θ, σ)
(
φ(t;µ, τ 2)

)1/2
= h(t; θ, σ)

(
1√
2π τ

exp

(
−1

2

(
t− µ
τ

)2
))1/2

= h(t; θ, σ)

(
1√
2π τ

)1/2

exp

(
−1

4

(
t− µ
τ

)2
)
.

Hence

h(t; θ, σ) = (
√

2π τ)1/2 r(t; θ, σ) exp

(
1

4

(
t− µ
τ

)2
)
.

As noted in subsection 5.4.2, if c3 > 0 then r(t; θ, σ)→∞ as t→∞ and as

t→ −∞. We know that

exp

(
1

4

(
t− µ
τ

)2
)

“grows faster than any polynomial” (using the terminology on p.292 of Spivak

(1967)). Therefore, if c3 > 0 then h(t; θ, σ)→∞ as t→∞ and as t→ −∞,

faster than any polynomial. Thus, if c3 > 0 then k(z) = h
(
µ+
√

2τz; θ, σ
)
→

∞, as z →∞ and as z → −∞, faster than any polynomial.
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D.8 R programs for the evaluation of the per-

formance of importance sampling

In subsection D.8.1, we list the R programs for the computation of the max-

imum likelihood estimates of the parameters of the logistic regression model

with random intercept. In subsection D.8.2, we list the R programs for the

computation of the function log r(t; θ, σ).

D.8.1 R programs for the computation of the maximum

likelihood estimates β̂1, β̂2 and σ̂

CompMLE <- function(m, N, x.vec , J.vec , y.vec){
# This function calculates the maximum
# likelihood estimates of beta1 , beta2 and sigma
# for the given dataset.
#
# Input:
# m: number of Gauss Hermite quadrature nodes
# N: number of clusters
# x.vec: vector of covariates
# J.vec: vector of cluster sizes
# y.vec: response vector
#
# Output
# A vector of three values.
#
# Written by N. Ranathunga in August 2018

quad.rule <- gauss.quad(m, kind = "hermite")
gh.nodes <- quad.rule$nodes
gh.weights <- quad.rule$weights

#Set a vector to store the results
out.int <- seq(0, 0, length.out = N)

mle.out <- nlminb(start = c(0, 0, 0.2),
objective = MLEGH , hessian = TRUE)$par

}
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MLEGH <- function(para , m, x.vec , J.vec , y.vec ,
gh.nodes , gh.weights , N){

# This function calculates the value of
# - sum _{1}^{N} log(int_{-infinity }^{ nfinity}
# g(t;theta , sd)*exp(-t^2) dt)
# by applying Gausian Hermite quadrature.
#
# Input:
# para: parameters vector
# m: no.of nodes
# x.vec: vector of covariates
# J.vec: vector of cluster sizes
# y.vec: response vector
# gh.nodes.vec: GH nodes
# gh.weights: GH weights
# N: number of clusters
#
# Output
# A vector of three values.
#
# Written by N. Ranathunga in August 2018

for (i in c(1:N)) {

J <- J.vec[i]
v <- y.vec[i]
x <- x.vec[i]
out.int[i] <- IntClustGH(m=m, beta1=para[1],

beta2=para[2], sd=para[3], x=x, y=y, J=J,
nodes.vec=gh.nodes , w.vec=gh.weights)

}

out.mle <- -sum(log(out.int))
}
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IntClustGH <- function(m, beta1 , beta2 , x, sd, y, J, nodes.
vec , w.vec){

# This function calculates the integral
# from -infinity to infinity g(t;theta , sd)*exp(-t^2)
# by applying Gausian Hermite quadrature for a single
# cluster.
#
# Inputs
# m: no.of nodes
# beta1: intercept
# beta2: parameter of the covariate x
# sd: standard deviation
# x: value the covariate
# J: total no.of units within the cluster
# y: no.of survivals within the cluster
# nodes.vec: GH nodes
# w.vec: GH weights
#
# Written by N. Ranathunga in July 2018

expresssion0 <- seq(0, 0, length.out = m)
expresssion1 <- seq(0, 0, length.out = m)
expresssion2 <- seq(0, 0, length.out = m)

for (i in c(1:m)) {
expresssion0[i] <- beta1 + beta2*x + (nodes.vec[i]*sqrt

(2)*sd)
expresssion1[i] <- exp(expresssion0[i]*y)/(1 + exp(

expresssion0[i]))^J
expresssion2[i] <- expresssion1[i] * w.vec[i]

}

out <- sum(expresssion2)
}
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D.8.2 R programs for the computation of log r(t; θ, σ)

Logr <- function(theta , sd , J, y, t, post.mu , post.var){
# This function calculates the value of
# the function log r(t; theta , sd) where
# r(t; theta , sd) = c0 * exp(c1+c2t+c3t^2) /[1+ exp(theta+t)

]^J
#
# Input:
# theta: beta1 + beta2*x
# sd: standard deviation
# J: total no.of units within the cluster
# y: no.of survivals within the cluster
# t: a random value equals to mu + sqrt {2}* tau*z
# post.mu: posterior mode
# post.var: posterior variance obtained at posterior mode
#
# Output:
# Value of log r(t; sd , theta)
#
# Written by N. Ranathunga in August 2018

c0 <- sqrt( sqrt(post.var) / (sqrt (2*pi)*sd^2) )
c1 <- (theta*y) + (post.mu^2) /(4* post.var)
c2 <- y - post.mu/(2* post.var)
c3 <- 1/(4* post.var) - 1/(2*sd^2)

out <- log(c0) + (c1 + c2*t + c3*t^2) -
J*log(1 + exp(theta + t))

}
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post_mu_var <- function(theta , sd , y.vec , J.vec){
# This function computes the vector of posterior
# means and the vector of posterior variances
# of all the clusters.
#
# Inputs
# theta: beta1 + beta2*x
# sd: standard deviation
# J.vec: vector of cluster sizes
# y.vec: response vector
#
# Output
# A list containg two vectors.
#
# Written by N. Ranathunga in August 2018

post.mean <- seq(0, 0, length.out=length(J.vec))
post.var <- seq(0, 0, length.out=length(J.vec))

for (i in c(1: length(J.vec))) {
J.cluster <- J.vec[i]
y.cluster <- y.vec[i]
theta <- theta.vec[i]
post.mean[i] <- optimize(LogOfgPhi , c(-10, 10),

tol = 0.0001 , maximum = TRUE ,
theta=theta , sd=sd, y=y.cluster ,
J=J.cluster)$maximum

post.var[i] <- PostVar(theta=theta , sd=sd ,
J=J.cluster , t=post.mean[i])

}
out <- list(postmu= post.mean , postvar=post.var)

}

LogOfgPhi <- function(theta , sd, J, y, t){
# This function calculates the value of
# log( g(t;theta , sd) * phi(t;0, sd^2)) where
# g(t;theta , sd) = exp[( theta+t)y]/[1+ exp(theta+t)]^J
# and phi(t;0, sd^2)) denotes the N(0, sd^2) pdf
# evaluated at t.
#
# Input:
# theta: beta1 + beta2*x
# sd: standard deviation
# J: total no.of units within the cluster
# y: no.of survivals within the cluster
# t: a value equals to mu + sqrt {2}* tau*z
#
# Output
# Value of log( g(t;y,sd ,theta) * phi(t;0, sd^2))
#
# Written by N. Ranathunga in August 2018

expresssion0 <- theta + t
expresssion1 <- (expresssion0 * y) - ( (t^2) / (2*sd^2) ) -

(J * log(1 + exp(expresssion0))) -
log(sqrt (2*pi)*sd)

}
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PostVar <- function(theta , sd , J, t){
# This function computes the posterior variance ,
# (tau^2), evaluated at posterior mode (mu), where
# phi(t; mu , tau^2) is the approximation to the
# normalized/exact posterior density , with
# mu = posterior mode and tau^2 = posterior variance
# which is equal to the inverse of the information
# matrix evaluated at mu.
#
# Inputs
# theta: beta1 + beta2*x
# sd: standard deviation
# J: total no.of units within the cluster
# t: a value equals to mu + sqrt {2}* tau*z
#
# Output
# A value for the posterior variance (tau^2).
#
# Written by N. Ranathunga in August 2018

expresssion0 <- theta + t
expresssion1 <- (-J) * (exp(expresssion0) /

(1 + exp(expresssion0))^2) - (1/(sd^2))
out <- 1 / (-expresssion1)

}
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