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A B S T R A C T   

Breast cancer is one of the most widespread diseases with high incidence and mortality rate in females. The 
accurate biomarker discovery for the early detection of patients prone to breast cancer is crucial in the treatment 
and diagnosis of breast cancer. The current study employed a comprehensive approach to detect an epigenomic 
data pattern of breast cancer using meta-analysis and machine learning approaches. Meta-analysis is a precise 
method that combines the results of multiple experiments. On the other hand, integrating and combining the test 
results through machine learning algorithms can deal with data complexity and heterogeneity. The main purpose 
of the current study was to discover the patterns of epigenome changes in the treatment and prognosis of breast 
cancer. NCBI and EBI databases were searched for ChIP-Seq data regarding the effect of the drugs on breast 
cancer. There were ten investigations carried out, four of which were appropriate meta-analysis. NOV, JUN and 
ZBTB7A transcription factors were identified as the biomarkers of breast cancer. Finally, pattern recognition was 
performed using nine different attribute weighting algorithms. Fourteen genes were selected by the majority of 
attribute weighting algorithms as the most informative genes including KIP, TCF12, ABCC5, HDAC11, IPP, 
HIST1H2AM, ZNF33B, PHF2, ELAVL3, TBC1D9B, TMEM217, CD34, ARHGEF26, and CENPL. The selected genes 
play vital roles in the occurrence of neoplasms and breast cancer. In this study, using a combination of meta- 
analysis and data mining, more comprehensive and reliable information were derived compared to the indi-
vidual studies.   

1. Introduction 

Breast cancer is one of the most common malignant tumors [1] with 
the highest prevalence and mortality among women [2–4]. There is a 
growing concern worldwide associated with rising numbers of patients 
and their resistance to drugs [5]. Despite the considerable advances 
made in the early detection and clinical treatments, there are still 
various constraints including the molecular heterogeneity, resistance to 
endocrinology, diagnosis of disease progression, and the risk of disease 
recurrence. These limitations have led many researchers to identify new 
biomarkers in the disease progression and signaling pathways in order to 
facilitate the improvement of diagnostic and treatment procedures. A 
better understanding of cellular and molecular pathways of breast 
cancer is required to improve the treatment choices, clinical results, and 
consequently, prevention of the disease [6,7]. The early diagnosis and 

treatment have a significant importance in order to eliminate the disease 
before the metastatic stage; therefore, it is highly required to detect it at 
the early stages [1]. To predict and treat breast cancer in a timely 
manner, risk prediction models are implemented to identify women at 
risk of disease. Advanced preventive treatments and screening could 
also be used to identify eligible individuals and prevent the disease [8]. 
Moreover, the improvement of clinical outcomes requires discovering 
the therapeutic and prognostic biomarkers [9]. 

Epigenetic alterations can change the structure of chromatin through 
transforming its components, which leads to the transformation of the 
gene expression pattern. The most important epigenetic mechanisms 
include chromatin-modifying factors, histone-modifying agents, histone 
variations, and DNA methylation. These mechanisms are able to regu-
late the transcription machinery [10]. The functional modification of 
genes would be achieved through changing the number of regulatory 
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proteins of chromatin with the purpose of reaching the target position, 
as well as connecting them to these positions [11]. This provides evi-
dence that epigenetic modifications such as DNA methylation and 
chromatin remodeling at the early stages play a vital role in breast 
cancer [12]. 

The chromatin immune-precipitation method is a critical technique 
applied with the purpose of identifying promoter motifs (binding sites), 
transcription factors, and regulatory events. Understanding the inter-
action of protein with DNA and regulating gene expression could also 
help researchers to recognize the key biological processes [13,14]. 

Meta-analysis is a statistical analysis applied with the purpose of 
integrating the data collected from independently conducted studies 
[15,16]. Moreover, it is a precise process that combines the results of 
various experiments and derives more accurate and comprehensive 
conclusions [17]. 

Data mining is another relatively novel method, which is considered 
as the most crucial technology for efficient pattern discovery within data 
[18]. The term data mining refers to the extraction of hidden knowledge, 

patterns, and relationships in an enormous amount of data [19]. 
The purpose of current research was to identify the breast cancer- 

related biomarkers. The results showed an increase in the capacity of 
epigenetic pattern discovery as a result of combining the two data 
mining techniques of meta-analysis and machine learning. 

2. Material and methods 

The current study was carried out based on the following steps: First, 
ChIP-Seq data regarding the effects of drugs on breast cancer were 
collected from EBI and NCBI databases. Then, the Human Genome 
Reference and Human Genotype Annotation sequence leads were 
retrieved from the Ensembl repository. Using FASTQC software, the 
quality control was checked in the Linux command line environment. It 
was found that a wide range of factors could lead to quality control 
problems. Subsequently, low quality sequencing reads were removed 
using Trimmomatic, Trimmate software. Quality control was also per-
formed again through FASTQC software to confirm the suitability of the 

Fig. 1. Overview of the steps of the developed in pipeline.  
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performed steps. Afterwards, readings were mapped to the human 
reference genome using Bowtie2 software. Peak calling was applied to 
recognize those regions of the genome that were enriched by aligned 
reads in ChIP-Seq experiment. The peak calling was detected using 
MACS2 software. Then, the peaks achieved from the previous step 
through applying PeakAnnotator software were added to the Annotation 
file. The BCRANK package was also used in the R environment in order 
to predict the binding site consensus from the ranked DNA sequences 
and the motifs, and to identify downstream genes. Meta-analysis was 
conducted through metaSeq package in the R environment using the 
Fisher test on genes output from the peak call and binding site steps. 
Finally, data mining was carried out using RapidMiner software and 
nine weighting algorithms in order to determine the biomarkers and key 
genes (Fig. 1). 

2.1. Data collection 

ChIP-Seq data, which was related to the effects of drugs on breast 
cancer, was searched in NCBI and EBI databases. The raw data of ex-
periments were retrieved. 

2.2. Data quality control 

Data quality control is a significant step in ChIP-Seq testing. The 
quality control of the collected samples was conducted using FASTQC 
software [20]. 

2.3. Data trimming 

Based on the data quality control results, the low quality sequence 
reads were trimmed and corrected data were evaluated using Trimmo-
matic software to prepare the cleaned data for subsequent analysis [21]. 

2.4. Generating the referencing index and mapping readings with a 
reference genome 

The human hg19 genome was used in current study (ftp://ftp.ense 
mbl.org/pub/grch37/release-90/fasta/homo_sapiens/dna). To perform 
the mapping process, the index reference of the genome was first 
developed through Bowtie 2 software. Then, each sample was mapped 
using Bowtie 2 with the genome reference index [22]. 

2.5. Peak calling 

At this step, the high density areas (enrichment) of mapped sequence 
reads (peaks) to the reference genome were identified using MACS2 
software [23]. Also, the nearby genes to peaks were identified using 
PeakAnnotator software [24]. 

2.6. Motif discovery 

To achieve a better understanding of peaks, the processes of finding 
motifs were carried out [25]. The identification of motifs, which could 
lead to the prediction of applied binding site, was carried out using 
BCRANK package in the R environment at this stage [26]. 

2.7. Predicting the binding site 

Using the BCRANK package in R environment [26] and the output of 
motif discovery, the positions of the binding site were identified. 

2.8. Meta-analysis 

After performing ChIP-Seq analysis with the purpose of identifying 
the essential genes that were increased or decreased due to the treat-
ments effects, the outputs of all studies were used for the meta-analysis 

procedure. The meta-analysis procedure was carried out on the binding 
site and peak calling outputs through applying metaSeq package in the R 
environment. The Fisher test was used on peak calling and binding site 
in the mentioned package [27]. Meta-analysis techniques are widely 
implemented in order to combine the results of numerous clinical or 
genomic studies and consequently, increase the statistical power in 
obtaining accurate conclusions [28]. The Fisher method could imple-
mented for general meta-analysis because this is an effective approach of 
combining P values derived from independent studies [29,30]. In the 
randomized trials, especially in studies with small sample sizes, it would 
be better to implement the Fisher P-value [31] because the Fisher 
method is very sensitive to the smallest P-value [32]. 

2.9. Weighing algorithms applied in data mining 

To perform the data mining process, the Peak calling output was 
analyzed through applying RapidMiner software [33] and nine by 
applying nine different weighing algorithms including the Information 
Gain, Gini Index, Gain Ratio, Relief, Rule, SVM, Uncertainty, 
Chi-Squared Statistic, and Deviation to determine the most significant 
vital genes [21,34–36]. 

Information Gain (IG) is an entropy-based feature evaluation method 
that is widely applied in the machine learning and decision tree con-
struction processes. It is defined as the amount of information provided 
by attribute items to a text group, which is used in the attribute selec-
tion. Also, it is calculated through the value of the term that could be 
implemented for the information classification to measure the impor-
tance of related lexical items [3,21,37]. 

The Gini Index could identify pair patterns with the same entropy 
measurement. For each of the specific attributes, all states were 
considered in Pairs [21,38]. 

The Gain Ratio is implemented to overcome the IG algorithm prob-
lems because despite the poor performance, IG selects variables with 
different values [39]. 

Relief is considered as one of the most important families in the 
machine learning algorithms, which implements the nearest neighbors 
and different classes in order to select the same features or measure the 
interactions [40,41]. 

Rule is a data science process that derives rules from datasets or 
decision trees. Also, it is a part of unsupervised learning processes that 
identifies the hidden patterns of data in the form of easily recognizable 
rules [42]. 

Support vector machines (SVMs) are a collection of related managed 
learning methods that analyze data and identify patterns in the 
computational biology, which is applied for the classification and 
regression analysis [34,41]. 

Uncertainty can measure the significance of an attribute through 
evaluating the symmetrical uncertainty with reference to the class. Each 
attribute is compared to others according to the group in which it is 
located [41]. 

Chi-square is a feature selection algorithm that calculates the sta-
tistical value of chi-square for each attribute of the input data set to the 
class property. Chi-square is between each attribute and target variable, 
which selects the required number of attributes with the best χ2 scores 
[43]. 

Standard Deviation is one of the scatter indicators, which shows the 
difference of the average data and average value. Low standard devia-
tion indicates that data are close to the average value and have little 
scatter, while high standard deviation indicates that more data is spaced 
from the average [42]. 

The results of meta-analysis and data mining applied with the pur-
pose of identifying the key genes and biomarkers were entered into gene 
ontology and gene networks. Gene ontology and gene network analysis 
were conducted through Pathway Studio 2017. Two types of the gene 
network including Common Target and Common Regulator were also 
depicted using the above-mentioned software. Common Regulator was 
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implemented to identify the upstream regulators that could regulate ≥ 2 
selected entities. The purpose of applying Common Targets was identi-
fication of downstream targets that were set by at least two selected 
entities [44]. 

3. Results 

Ten related studies were found (see S1 Table); however, only four of 
them were appropriate enough to be used in the meta-analysis process. 
Information of the selected studies is provided in Table 1. The Ensembl 
repository was used as the main reference of the human hg19 genome 
(Homo_sapiens.GRCh37. dna) and the human genome (http://ftp. 
ensembl.org/pub/grch37/release-90/fasta/homo_sapiens/dna/). 

3.1. Gene ontology and gene regulatory network derived from the output 
genes of meta-analysis of the binding site’s 

Output genes derived from the meta-analysis of the binding sites 
were introduced into the gene ontology (see S3 Table). It was found from 
Common Regulator analysis that JUN transcription factor and CCNG1, 
NOV, and EDN2 genes are biomarkers of neoplasm and breast cancer, 
neoplasm and cancer, breast cancer, and cancer and neoplasm. Breast 
cancer could have positive effects on JUN, CCN1, NOV, USP9Y, SMC5, 
and PDE5A genes, while cancer and neoplasm would have a positive 
effect on PDE4D (Fig. 2-a). It was found from Common Target network 
analysis that PDE4D and PDE5A had a negative effect on cancer regu-
lation, while PDE5A had a positive effect on neoplasm regulation. JUN 
factor transcription would also play an unknown role in the regulation of 
cancer, neoplasm, and metastasis. Moreover, CCVG1 had an unknown 
effect on cancer and metastasis (Fig. 2-b). 

3.2. Gene ontology and network analysis of the output genes of peak 
calling meta-analysis 

The meta-analysis output meta-genes were divided into the following 
groups: 1) genes with increased the number of peaks after treatment, 
and 2) genes with reduced peak number. 

Meta-genes with increased peaks that were introduced into the gene 
ontology (see S4 Table). It was found from the Common Regulator 
analysis that CCND1 was a biomarker of cancer and neoplasm, while 
IER3 was a biomarker of neoplasm. Cancer and neoplasm would have a 
positive effect on CCND1 and RSF1 transcription factors. Also, neoplasm 
could have a negative effect on MSH3, IER3, and MZF1 transcription 
factors. Cancer had a negative effect on MSH3 and IER3; also, it had an 
unknown effect on FRAS1 (Fig. 3-a). The Common Target network 
analysis showed the negative impact of MSH3 on neoplasm, carcino-
genesis, and metastasis. MZF1 transcription factor had a negative effect 
on the neoplasm and apoptosis, a positive effect on metastasis. CCND1 
and IER3 had unknown effects on regulating metastasis, neoplasm, 
carcinogenesis, cancer, and apoptosis. RNF114 had a positive effect on 
the apoptosis, and an unknown effect on the cancer and neoplasm. RSF1 
transcription factor also had an unknown effect on the regulation of 
apoptosis, carcinogenesis, and metastasis. Finally, it was found that 
AUTS2 had a positive effect on the metastasis (Fig. 3-b). 

Meta-analysis output genes with reduced peaks were subjected to the 
gene ontology (see S5 Table). It was found from Common Regulator 
analysis that AIFM1, CLU, RCHY1, GUN genes, as well as RFX1tran-
scription factor were biomarkers of cancer. Cancer had a positive effect 
on FOXK1 transcription factor and POLQ, CLU, and EFNA1 genes; also, it 
had an unknown effect on RFX1 transcription factor and GUN, RAPH1, 
CEP76, GSTZ1, TP53BP2, EIF1AX, and AIMP2 genes. Furthermore, 
TP53BP2, AIFM1, CLU, DENND2D, and PZP genes were recognized as 
the biomarkers of neoplasm. Neoplasm had a negative effect on the 
regulation of TP53BP2 and ALFM1, and a positive effect on POLQ, 
RCHY1, CLU, EFNA1, and MAT1A. Moreover, it had an unknown effect 
on NR2E1 transcription factor and SH3GL1, EIF1AX, and GSTZ1 genes 
(Fig. 4-a). 

Common Target network showed that BARX2, FAM172A, DENND2D, 
RCHY1, AIMP2, MAT1A, CLU, AIFM1, SH3GL1, TP53BP2, and RAB7A 
genes had negative effects, while SH3GLI and NR2E1 had positive effects 
on neoplasm. Also, GAN and FAM49B, as well as FOXK1 transcription 
factor had unknown effects on the neoplasm. It was found that MAT1A, 
CLU, NR2E1, ARHGEF3, STRADB genes and FOXK1 transcription factor 
had negative effects and FAM172A, AIMP2, RAB7A, TP53BP2, AIFM1, 
GSPT1 genes, as well as RFX1 transcription factor had positive effects on 
the apoptosis. DENND2D, RCHY1, CCDC88A, GSTA5, and PZP genes had 
unknown effects on the apoptosis. 

The meta-analysis-derived genes were combined with the output of 
the peak number of those genes in the peak calling stage. Genes were 
drawn in order to achieve a better result confirmation and heat map 
visualization [45]. 

The heat map of essential genes with increased number of peaks with 
drug treatment in the peak calling stage was represented in current 
study. The vertical axis showed the genes. In the horizontal axis of 
studies, the letters S, T, and C respectively represented the study, 
treatment, and control. It could be found from the above-mentioned heat 
map that the genes derived from the meta-analysis of treatment had 
more peak calls than the control factor. This can be seen in red color, 
which implies an increase in the number of peaks. Furthermore, the 
green color shows a reduction in the number of peaks (Fig. 5). 

The heat map of essential genes with reduced number of peaks with 
drug treatment on the peak calling stage was also represented. It can be 
observed in the heat map that the genes derived from the meta-analysis 
of the control factor had more peak calls than treatment, which could be 
observed in red color (Fig. 6). 

3.3. Gene ontology and network drawing of the output genes of peak 
calling data mining 

Nine different attribute weighting algorithms (AWs) were imple-
mented including Gain, Gini Index, Gain Ratio, Relief, Rule, SVM, Un-
certainty, Chi Squares, and Deviation criteria to identify the important 
genes. It was expected that all weights would be between 0 and 1.0. 
Values that were closer to 1 indicated that a specific gene was an 
important attribute. Fourteen genes were detected by the majority of 
attribute weighting algorithms, which were with > 0.7 weights, as the 
most informative genes including KIP, TCF12, ABCC5, HDAC11, IPP, 
HIST1H2AM, ZNF33B, PHF2, ELAVL3, TBC1D9B, TMEM217, CD34, 

Table 1 
Summary of the ChIP-Seq studies employed for meta-analysis in this study.  

Study 
Number 

Accession 
Number 

Title Number of 
samples 

Cell 
Line 

Progesterone 
Receptor 

Estrogen 
Receptor 

Reference 

1 EGEOD605 Drug specific epigenetic reprogramming leads to increased cellular 
invasion in ERα positive breast cancer via de novo cholesterol 
biosynthesis 

3 MCF7 + + [26] 

2 EGEOD54027 HoxC11 ChIP-seq of LY2 Breast Cancer Cell Line 3 LY2 + + [27] 
3 EGEOD28987 SRC-1 targets ADAM22: an ER-independent mechanism of tumor 

progression in endocrine resistance 
5 LY2 + + [28] 

4 EGEOD26083 Genome-wide maps of Tamoxifen resistance MCF7 cell line 5 MCF7 + + [29]  
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ARHGEF26, and CENPL (Table 2). The key genes achieved from this step 
entered the gene ontology and network drawing. 

The key genes were entered from data mining into the gene ontology 
(see S6 Table). The Common Regulator showed that ZBTB7A tran-
scription factor was a biomarker of breast cancer. Breast cancer had a 
negative effect on CD34 regulation, and a positive regulatory effect on 
EIF3A and ZBTB7A transcription factor. Breast cancer has an unknown 
effect on the transcription factors of PLAGL1 and PHF2 (Fig. 7-a). 

The Common Target Network showed that PAPD5 gene and tran-
scription factors of TCF12, ZBTB7A, and PLAGL1 had a negative regu-
latory effect, while PHF2 transcription factor had a positive regulatory 
effect on neoplasm. CD34 gene and TOP2B factor transcription also had 
an unknown effect on neoplasm. Moreover, PLAG1 and ZBTB7A tran-
scription factors respectively had positive and negative regulatory ef-
fects on the apoptosis. CD34 and EIF3A genes, as well as transcription 
factors of TOP2B and PHF2 had unknown effects on the apoptosis (Fig. 7- 
b). 

The data mining-derived key genes were combined with the output 
of the peak number of genes in the peak calling stage. Fig. 8 shows the 
data mining-derived key genes with the most changes in the number of 
peaks treatment compared to controls. Red color indicates an increase in 
the number of peaks, while green color shows a decrease in the number 

of peaks. 

4. Discussion 

The main purpose of the current study was to discover patterns of 
epigenome changes in the treatment and prognosis of breast cancer. 
ChIP-Seq data has a high potential in the prediction and prevention of 
breast cancer. ChIP-Seq data are important resources to identify the gene 
regulatory regions, pathways of genes involved in breast cancer, and 
people prone to cancer. Two important statistical tools including the 
meta-analysis and machine learning were implemented to identify the 
biomarkers and key genes from several independent studies. Discov-
ering the proper biomarkers for early detection of patients prone to 
breast cancer and appropriate identification of high-risk patients are 
certified ways of the disease treatment and diagnosis [3]. Biomarkers are 
applied in order to identify the primary molecules and tumors for po-
tential prognostic [46]. Current study aimed to identify the potential 
biomarkers for the breast cancer treatment. An appropriate biomarker 
has to be specific to the disease; also, it has to remain constant with 
unrelated disorders. Moreover, biomarkers have to be reliable and 
reproducible [21]. We were able to identify NOV gene and transcription 
factors of JUN and ZBTB7A as the biomarkers of breast cancer. It was 

Fig. 2. The meta-analysis output meta-genes were divided into the following two groups: 1) genes with increased the number of peaks after treatment, and 2) genes 
with reduced peak number. a- Common Regulator network analysis of meta-genes. b- Common Target network meta-analysis output genes. 

Fig. 3. a-Common Regulatory Network Based on the meta-analysis results and the number of peaks increased by drug treatment. b- Common Target Network Based 
on the meta-analysis results and the number of peaks increased by drug treatment. 
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found that NOV (overexpressed nephroblastoma or CCN3) is a member 
of CCN family secreted from matricellular proteins. Moreover, CCN3 
gene played an important role in increasing the metastasis of breast 
cancer in bone and could be used as a biomarker for prostate cancer [47, 
48], and c-Jun was a protein encoded by JUN that plays an important 
role in carcinogenesis and cancer progression. Also, c-Jun over-
expression reduced tamoxifen sensitivity in ER + breast cancer cells and 
could be used as a biomarker in breast cancer [49,50]. ZBTB7A tran-
scription factor is involved in breast cancer, apoptosis, and neoplasm. 
The overexpression of ZBTB7A has been observed in numerous tumors 
including the lung cancer and breast cancer [51]. ZBTB7A could directly 
bind to ERα promoter in ER-positive breast tumors, and act as a tumor 

suppressor [52,53]. 
Meta-analysis at the binding sites showed (Fig. 2) that important 

genes such as PDE5A, PDE4D, CCNG1, SMC5, and EDN2 had the greatest 
changes in the expression pattern of breast cancer. Catalano et al. (2019) 
reported that PDE5A overexpression was frequently observed in various 
human cancers such as breast cancer [9]. Results of current study 
showed that PDE4D had a negative effect on cancer. Another study 
suggested that PDE4D is an appropriate target for anti-cancer therapies, 
and PDE4D inhibition might be a means of overcoming tamoxifen 
resistance in ER-positive models of breast cancer [54]. SMC5 gene had 
an increased expression in large intestinal cancers and neuroblastoma 
[55]. Also, results showed that CCNG1 and EDN2 were biomarkers of 
cancer and neoplasms, respectively. CCNG1 is involved in the aberrant 
cell division and tumorigenesis, and its overexpression was also noted in 
breast and colon cancers [56]. EDN2 can be served as a potentially 

Fig. 4. a- Common Regulatory Network Based on the meta-analysis results, the number of peaks reduced by drug treatment. b- Common Target Network Based on 
the meta-analysis results, the number of peaks reduced by drug treatment. 

Fig. 5. Heat map of the essential genes that have increased the number of peaks 
with drug treatment on peak calling stage. Red means an increase in the 
number of peaks and green indicates a decrease in the number of peaks. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 6. Heat map of the essential genes that have been treated with medication 
to reduce the number of peaks on peak calling stage. 
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effective biomarker in the prognosis of breast cancer and provide a new 
perspective in order to achieve a better understanding of the molecular 
network in the breast cancer progression [57]. 

Results of the meta-analysis of the peak calling stage are presented in 
Figs. 3 and 4. RFX1 can be used as a prognostic marker for cancer and 
breast cancer [58,59]. Results of current study showed that FOXK1 had a 

negative regulatory effect on the apoptosis and an unknown effect on the 
cancer, while previous studies played a vital role in cancer [60,61]. 
AIMP2 had an inhibitory effect on neoplasms, which could increase the 
tumor necrosis-induced signaling apoptosis. AIMP2 had 
anti-proliferative activities through specific mechanisms of action and 
can act as a potent tumor suppressor against various cancers [62]. Re-
sults also showed that NR2E1 played a role in the apoptosis inhibition, 
which had a positive effect on neoplasms. It was found by another 
investigation that NR2E1 could be applied to predict the risk metastasis 
of breast cancer [63]. Various studies indicated that CLU is involved in 
cancer, inhibiting cell death pathways, and modulating survival signals 
to enhance the cell growth [64]. Another report also indicated that CLU 
would be up- regulated in breast cancer [65]. CCN1 could be involved in 
many cellular biological functions such as mediating cell adhesion, 
migration, proliferation, apoptosis, and angiogenesis. Moreover, it is 
commonly expressed in breast cancer [66]. IER3 was involved in the 
apoptosis and cell cycle arrest [67]. Results of current study showed that 
cancer and neoplasm had a positive effect on RSF1 regulation. Another 
study indicated that interfering with RSF1 gene expression effectively 
prevented the proliferation of MCF-7 and SKBR-3 cells and conse-
quently, increased apoptosis. Also, interfering with RSF1 expression can 
be served as a new therapeutic target for the breast cancer treatment 
[68]. Findings also showed that MZF1 was involved in the development 
of aggressive breast cancer and metastasis [69]. 

The machine learning was applied in current study to prioritize the 

Table 2 
Key genes selected by from 9 weighting algorithms (AWs).  

Attribute Weight 
SVM 

Weight 
Relief 

Weight 
Uncertainty 

Weight Gini 
Index 

Weight Chi 
Squared 

Weight 
Deviation 

Weight 
Rule 

Weight Info Gain 
Ratio 

Weight Info 
Gain 

KIP 1 1 1 1 1 0.9 1 1 1 
TCF12 1 1 1 1 1 0.9 1 1 1 
ABCC5 1 1 1 1 1 0.9 1 1 1 
HDAC11 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
IPP 1 1 1 1 1 0.9 1 1 1 
HIST1H2AM 1 1 1 1 1 0.9 1 1 1 
ZNF33B 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
PHF2 1 1 1 1 1 0.9 1 1 1 
ELAVL3 1 1 1 1 1 0.9 1 1 1 
TBC1D9B 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
TMEM217 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
CD34 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
ARHGEF26 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8 
CENPL 0.7 1 0.7 0.9 0.9 1 0 0.7 0.8  

Fig. 7. a- Key genes derived from data mining were subjected to Common Regulatory Network analysis. b- Key genes derived from data mining in the Common 
Target Network. 

Fig. 8. Heat map of the key output genes of the data mining that has been 
affected by the drug causing changes in the number of peaks. 

R. Panahi et al.                                                                                                                                                                                                                                  



Informatics in Medicine Unlocked 24 (2021) 100629

8

meta-gens and detect the key differentiating genes in response to breast 
cancer. The top meta-gens including KIP, TCF12, ABCC5, HDAC11, IPP, 
HIST1H2AM, ZNF33B, PHF2, ELAVL3, TBC1D9B, TMEM217, CD34, 
ARHGEF26, and CENPL are provided in Table 2. The Inhibitory Protein 
Kinase (KIP) family is a mammalian cyclin kinase (CDK) inhibitor 
involved in the regulation of transcription, apoptosis, and cytoskeleton. 
CDK abnormal expression would lead to the cancer [70]. TCF12 may act 
as a regulator in breast cancer tumors; moreover, it was reported that it 
could be closely associated with tumor metastasis and invasion [71,72]. 
ABCC5 is an ATP-dependent transmitter, overexpressed in skeletal 
metastasis of breast cancer compared to primary breast tumors [73]. In 
another study, it was found that ABCC5 was functionally associated with 
bone metastases formation in breast cancer [74]. The role of histone 
acetylation in chromatin organization is completely established and it 
was found that high levels of histone deacetylase 11 (HDAC11) could 
mediate the breast cancer cell metastasis [75]. In another study, the 
inhibition of HDAC11 led to p53-dependent cell apoptosis in hepato-
cellular carcinoma cells [76]. The role of PHF2 in breast cancer is 
remained unclear [77]. PHF2 can act as a tumor suppressor through p53 
epigenetic regulation [78]. Results indicated that CD34 is a biomarker of 
cancer, and another study stated that it was a useful angiogenesis 
marker that could help to identify more aggressive breast tumors [79]. 
Studies confirmed that EIF3A is a proto-oncogene, and many other in-
vestigations also reported that it is related to cancer, metastasis, prog-
nosis, therapeutic response [80], and breast cancer [81] (Fig. 7). 
PLAGL1 encodes a zinc-finger nuclear transcription factor that can cause 
apoptosis, and cell cycle arrest [82]. 

5. Conclusion 

Results of current study demonstrated that a combination of machine 
learning and meta-analysis in the analysis of multiple experiments 
simultaneously is useful in understanding and identifying key genes in 
breast cancer progression. The achieved results can be employed in 
order to both identify the appropriate biomarkers and to predict or find 
more specific drugs for the breast cancer treatment. 
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