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Extreme weather can have significant impacts on plant species demography; however, 
most studies have focused on responses to a single or small number of extreme events. 
Long-term patterns in climate extremes, and how they have shaped contemporary 
distributions, have rarely been considered or tested. BIOCLIM variables that are com-
monly used in correlative species distribution modelling studies cannot be used to 
quantify climate extremes, as they are generated using long-term averages and there-
fore do not describe year-to-year, temporal variability. We evaluated the response of 37 
plant species to base climate (long-term means, equivalent to BIOCLIM variables), 
variability (standard deviations) and extremes of varying return intervals (defined 
using quantiles) based on historical observations. These variables were generated 
using fine-grain (approx. 250 m), time-series temperature and precipitation data for 
the hottest, coldest and driest months over 39 years. Extremes provided significant 
additive improvements in model performance compared to base climate alone and 
were more consistent than variability across all species. Models that included extremes 
frequently showed notably different mapped predictions relative to those using base 
climate alone, despite often small differences in statistical performance as measured 
as a summary across sites. These differences in spatial patterns were most pronounced 
at the predicted range margins, and reflect the influence of coastal proximity, conti-
nentality, topography and orographic barriers on climate extremes. Species occupying 
hotter and drier locations that are exposed to severe maximum temperature extremes 
were associated with better predictive performance when modelled using extremes. 
Understanding how plant species have historically responded to climate extremes may 
provide valuable insights into our understanding of contemporary distributions and 
help to make more accurate predictions under a changing climate.
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Introduction

Extreme weather events are short in duration but can have 
significant impacts upon plant demography (Walter  et  al. 
2013). The global increase in heatwave and drought related 
mortality events since the start of the century (Allen  et  al. 
2015) has highlighted how extreme weather events can shape 
the abundance and distribution of plant communities (Allen 
and Breshears 1998, Breshears  et  al. 2009, Brouwers  et  al. 
2013, Wernberg et al. 2013, Duke et al. 2017, Brown et al. 
2018, Thomsen  et  al. 2019). Extremes of low temperature 
(i.e. frost events) can cause dieback (Cavanaugh et al. 2014, 
Matusick et al. 2014) and limit the poleward distribution of 
plants (Cavanaugh et al. 2014, 2015, Osland and Feher 2020, 
Osland et al. 2020). Observed declines in frost events have 
facilitated the expansion of frost sensitive species to cooler 
climes (Cavanaugh  et  al. 2014) while increases in hot and 
dry conditions are contributing to plant dieback at regional 
and global scales (Mitchell  et  al. 2014, Allen  et  al. 2015). 
Changes to the frequency and magnitude of extremes, and 
variability in climatic conditions more generally, are expected 
to promote more drastic shifts in species distributions than 
those expected by changes in mean climate (Adams  et  al. 
2009, Vasseur et al. 2014, Bailey and van de Pol 2016).

Weather and climate extremes can initiate demographic 
events that are not in equilibrium with long-term average 
conditions, leading to mortality and dieback in plant com-
munities (Law et al. 2019). Mitchell et al. (2016) estimated 
that in southeast Australia, short-duration extremes in water 
deficit every 1–2 years can lead to recruitment failures while 
more intense but rarer (every seven years) events could lead to 
tree dieback and mortality. Seasonal and annual variations in 
temperature and soil moisture are important determinants of 
recruitment success in plants (Ibáñez et al. 2007) and changes 
in recruitment ability due to these variations can lead to 
changes in landscape-scale distributions of plants (Mok et al. 
2012), particularly at their range margins (Zimmermann et al. 
2009). Mortality of adult plants under extremes are driven 
by physiological thresholds that prevent maintenance of 
water relations (Adams  et  al. 2009, Breshears  et  al. 2009) 
or photosynthetic function (Cavanaugh  et  al. 2015). At a 
broad temporal scale, climate extreme driven demographic 
events can expose maladaptation of species and genotypes 
to average climate conditions. Benito-Garzón  et  al. (2013) 
found that a 1-in-60 year extreme frost event (−22°C) trig-
gered widespread mortality of Iberian sourced Pinus pinaster 
individuals planted 35 years prior at a site in France. The 
Iberian population was sourced from a region in Spain with 
the same number of winter frost days as the French site but 
with a different frequency and magnitude of extreme frost 
events. In this case, the 1-in-10 year (−10°C) and 1-in-20 
year (−15°C) extreme frost events were not enough to cause 
mortality but the 1-in-60 year event pushed Iberian individu-
als past a critical threshold for survivorship. Understanding 
the frequency and or magnitude of climate extremes that 
push species past these critical thresholds is key to under-
standing how these events shape species demography and 

distributions (Cavanaugh et al. 2015, Mitchell  et  al. 2016, 
Law et al. 2019).

The importance of extreme events in shaping plant spe-
cies demography and distributions is well established; how-
ever, the incorporation of extremes into predictive models 
lags behind this understanding. Many modelling studies that 
aim to predict species distributions under current and future 
climates use statistical correlations between species observa-
tions and long-term climatic means (i.e. calculated over 30 
years or greater), and therefore few consider the potentially 
significant impacts of extremes and variability (Vasseur et al. 
2014, Lawson  et  al. 2015, Bailey and van de Pol 2016). 
Zimmermann et al. (2009) showed that incorporating inter-
annual variability around climate averages improved the 
predictive power of species distribution models (SDMs) for 
common tree species in central Europe. Cavanaugh  et  al. 
(2015) incorporated a metric that encapsulated extremes in 
frost days to model the distribution of mangroves in Florida, 
based on the annual average of extreme events. Law  et  al. 
(2019) developed an SDM based on experimental work that 
linked mortality to thresholds in plant available soil moisture. 
They used this model to explore how changes in the average 
frequency of extreme drought events could increase tree mor-
tality events. Brown et al. (2018) developed SDMs based on 
a single extreme event that lead to Quercus douglasii dieback 
in California. These studies have improved upon the limita-
tions that can arise when calibrating models using average 
climate metrics. However, they have not directly assessed how 
the frequency and magnitude of extremes, based on historical 
observations, have shaped contemporary plant distributions. 
For example, Zimmermann  et  al. (2009) did not consider 
extremes per se but variability in climate, Brown et al. (2018) 
modelled dieback to a single event, while Cavanaugh et al. 
(2015) focused on long-term average extremes.

Historically, the spatial and temporal resolution of climate 
datasets has presented a barrier to characterising extremes at 
ecologically relevant scales. The widely-adopted BIOCLIM 
variables (Xu and Hutchinson 2011), many of which are 
available globally at fine grain (approx. 1 km) as part of the 
WorldClim (Hijmans et al. 2005, Fick and Hijmans 2017) 
and CHELSA (Karger  et  al. 2017) datasets, are summaries 
of long-term average climate over periods of 30 years or 
greater. BIOCLIM variables include measures of temperature 
and moisture seasonality (e.g. BIO4, BIO15, BIO31) that 
describe month-to-month variability in long-term averages; 
however, they do not describe year-to-year variability which 
is necessary for examining temporal trends in extreme condi-
tions. For example, variables such as maximum temperature 
of the hottest month (BIO5) and minimum temperature 
of the coldest month (BIO6) describe the long-term aver-
age over several decades and therefore cannot describe how 
these variables fluctuate from year-to-year. Conversely, global 
time-series climate datasets such as those developed by the 
Climatic Research Unit (Harris  et  al. 2020) can describe 
year-to-year variability but tend to be much coarser in spatial 
resolution (approx. 55 km), which can limit suitability for 
species distribution modelling, particularly in topographically 
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complex terrain (Guisan et al. 2007, Franklin et al. 2013). 
Downscaling and blending techniques (Kriticos et al. 2012) 
can be used to increase both the spatial and temporal grain 
of climate datasets, meaning that increasingly the component 
inputs needed for estimating extremes are available (Karger 
and Zimmermann 2018). However, there are many ways 
that extremes may be quantified and identifying how best to 
summarise their properties remains both a challenge and an 
opportunity (Sofaer et al. 2017, Suggitt et al. 2017).

The objective of this study was to explore the long-term 
influence of extreme weather, that is known elsewhere to 
have significant impacts on plant species demography, on 
contemporary distributions of plants in southeast Australia. 
We developed extreme variables using monthly time-series 
data to describe the observed frequency and magnitude of 
events that are hotter, colder or drier than typically expected. 
Spatial patterns in these variables can identify regions that 
are prone to being exposed to the most severe conditions and 
thus characterise important survival thresholds. We address a 
key research gap by taking a climatological view of extremes 
that considers weather over many years, rather than a small 
number of specific events that have been the focus of most 
previous studies (Bailey and van de Pol 2016). Base climate 
variables, analogous to standard BIOCLIM variables, are 
used as a baseline for comparison with extremes and year-
to-year variability. Hence this study both showcases relevant 
methods for characterising extremes and tests their explana-
tory power for plant distributions in southeast Australia.

Material and methods

Study region

Species distribution models were developed for select plant 
species across the state of Victoria (141°–150°E, 34°–39°S), 
southeast Australia. Elevations reach approximately 2000 m 
above sea level in the alpine regions in the northeast of the 
state, where mean annual temperature (MAT) is typically 
10°C or below and precipitation (MAP) typically greater 
than 1400 mm. The landscape in the west of the state is 
generally much flatter, hotter (MAT up to 18°C) and drier 
(MAP of 600 mm or less) than the heavily forested and topo-
graphically complex regions to the east (Stewart and Nitschke 
2017a, Fedrigo et al. 2019). Record-breaking heatwaves and 
droughts have impacted the region in recent years (Bureau of 
Meteorology 2009, van Dijk et al. 2013), and are expected 
to increase in both severity and duration in the future 
(Herold et al. 2018, Trancoso et al. 2020).

Climate and extreme variables

Fine grained (approx. 250 m) monthly temperature (Stewart 
and Nitschke 2017a, b, 2018) and precipitation (Stewart et al. 
2020a) datasets, specifically developed for ecological model-
ling across Victoria, provided our foundational data. While 
the component datasets are available at a daily frequency, we 

decided to use monthly data to represent extremes, as this 
is the temporal frequency which is most likely to be avail-
able at fine spatial grain to species distribution modellers. 
Precipitation was expressed as a three-month rolling sum 
to represent cumulative seasonal dryness. Further details 
on how these datasets were generated, their availability and 
the associated cross validation statistics are provided in the 
Supporting information.

Variables representing extremes, and specifically the spa-
tial and temporal distribution of the hottest, coldest and 
driest conditions, were developed. We focused on hottest, 
coldest and driest because it is these that quantify the stresses 
on plant populations, and the extremes in these could char-
acterise the defining events in plant demography. The work-
flows for generating these variables are illustrated for a single 
location in Fig. 1 and a tutorial using spatial data with R 
code is provided in the Supporting information. Monthly 
time-series of maximum temperature, minimum temperature 
and precipitation were first collated for the period between 
1981 and 2019 (top row, Fig. 1). The maximum tempera-
ture of the hottest month (TMXH), minimum temperature 
of the coldest month (TMNC) and precipitation of the dri-
est quarter (PRDR) was then calculated for each year in the 
time series (middle row, Fig. 1). As our study site is in the 
southern hemisphere, annual periods were evaluated between 
July and June for TMXH and PRDR to avoid splitting years 
mid-summer. Finally, each of the annual values were collated 
(bottom row, Fig. 1), and used to calculate spatial predic-
tors. The series of annual mapped values for TMXH, TMNC 
and PRDR were used to quantify the base climate that can 
be expected on a typical year, variability that occurs across 
years, and the frequency with which extreme events of a spe-
cific magnitude have occurred (i.e. the expected return inter-
val based on historical observations). Base climate variables 
were calculated as the mean across all available years, and are 
equivalent to those estimated using the BIOCLIM approach 
(known as BIO5, BIO6 and BIO17; Xu and Hutchinson 
2011). Variability was represented using the standard devia-
tion to quantify spread around the base climate variables. 
Extremes were defined as the difference between base climate 
and the quantiles of annual values in our datasets correspond-
ing to return intervals of between 5 and 30 years (Fig. 1, bot-
tom row). For example, a 1-in-20 year extreme extracted 
from historical observations corresponds to the 95th per-
centile for TMXH and the 5th percentile for both TMNC 
and PRDR. This approach characterises the relative magni-
tude of extremes, that often have heavily-tailed distributions, 
while greatly reducing collinearity. The sets of variables used 
for species modelling (Table 1) included base climate alone 
(n = 1) and base climate in conjunction with either variability 
(n = 1) or extremes (n = 6).

Species data

Comprehensive vegetation surveys were collated from 1864 
sites within naturally occurring forested ecosystems across 
Victoria between 2006 and 2017 (Supporting information). 
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Surveys from the Victorian Forest Monitoring Program 
(Haywood  et  al. 2018) provided a large, systematically 
sampled, state-wide dataset representing a broad range of 
environmental conditions and plant species. The remain-
ing datasets were typically focused on specific, but distinct, 
forested regions across the state. Plant species (n = 37) were 
selected for modelling based on the following criteria: 1) 
being capable of reaching at least 3 m in height (to maximise 
detection probability); 2) having at least 80 presence records 
available (to ensure sufficient numbers for reliable modelling 

and evaluation); 3) comprising a variety of prevalent canopy 
and understory species (to represent an assortment of func-
tional traits and levels of exposure to climatic conditions); 
and, 4) covering a range of realised distributions with varying 
spatial configurations (to ensure contrasting gradients in base 
climate, variability and extremes). An exception to criterion 1 
was made for Xanthorrhoea minor (growing to approximately 
1 m above ground but with a branching subterranean stem; 
Conn 1994) to provide contrast against a second grass tree 
species, Xanthorrhoea australis.

Figure 1. Workflow for generating variables describing base climate, variability and extremes using monthly maximum temperature, mini-
mum temperature and precipitation data at a single location approximately 7 km east of Melbourne, Australia.
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Modelling and analysis

Distribution models for 37 plant species were fitted with 
boosted regression trees (Elith  et  al. 2008) using the gbm.
step function from the dismo package (Hijmans et al. 2017) 
in R. A total of eight models were fitted for each species using 
the variable sets described in Table 1. Models were fitted with 
a learning rate of 0.004, tree complexity of six and a bag frac-
tion of 0.75, ensuring that the final models contained enough 
trees (> 1000) for stable predictions. Model performance was 
assessed using the area under the receiver operating charac-
teristic (AUC) and the proportion of deviance explained (D2) 
on data held out for evaluation.

For evaluating the models, a spatially blocked k-fold 
cross validation design was used to ensure a robust analysis 
of model performance that reflects the ability of models to 
extrapolate into new space (Roberts et al. 2017, Valavi et al. 
2019). Spatial blocks were assigned using the blockCV pack-
age (Valavi et al. 2019) in R. A block size of 0.5° (approxi-
mately 50 × 50 km) was selected based on patterns of spatial 
autocorrelation in the predictor variables and species obser-
vations (spatialAutoRange function, blockCV package). The 
number of folds in the blockCV varied from 4 to 10, depend-
ing on the amount and distribution of presence records for 
any given species. The blockCV package allocates blocks to 
folds, choosing an arrangement that balances prevalence in 
training and test sets as well as possible. A random 10-fold 
cross validation was also run to provide an estimate of inter-
polation error. Statistical comparisons of model performance 
were conducted using two-sided Welch’s t-tests with p val-
ues adjusted for multiple comparisons using the method of 
Holm (1979).

In order to explore the drivers of model performance, we 
fitted a regression model with change in cross-validated D2 
as the response (n = 37; 1 row per species, modelled with 
1-in-15 year extremes for consistency) and climate, maxi-
mum species height (indicative of hydraulic functioning; 
Liu et al. 2019, Stovall et al. 2019), and species prevalence 
as explanatory variables. Climate variables included the mean 
base climate and 1-in-15-year extremes for TMXH, TMNC 
and PRDR at all sites with presence records for individual 
species. This analysis was performed to help identify the char-
acteristics of species and their recorded climatic niche that 
are associated with stronger predictive performance. Boosted 

regression trees were used as the regression method, with a 
tree complexity of 2 to allow for limited interactions. Partial 
dependence plots (i.e. holding all other variables equal) were 
generated to understand the modelled responses.

Results

The spatial distribution of the base climate and 1-in-15 year 
extremes across Victoria are illustrated in Fig. 2. The base 
climate variables show strong dependence upon topography, 
reflecting the methods used to create our foundational cli-
mate variables (Supporting information). Spatial patterns in 
extremes show how temporal variability in climate is influ-
enced by coastal proximity, continentality, topography and 
orographic barriers.

Under the spatially blocked cross validation design, sig-
nificant (p < 0.05) improvements in cross-validated D2 
and AUC were achieved across all species when either vari-
ability, or extremes at return intervals of 1-in-10 years or 
greater were added to the base variables as predictors of spe-
cies distributions. This is shown in Fig. 3 which compares 
model performance changes for each data set (Table 1) with 
the base climate variables as a baseline. Extremes with a 
1-in-15 year return interval were associated with the largest 
improvement in performance overall (ΔD2 = 0.030 ± 0.015; 
ΔAUC = 0.017 ± 0.007); however, return intervals corre-
sponding to the optimal model performance varied from spe-
cies to species. Inclusion of variability as a predictor led to 
significant, but smaller, improvements in performance across 
species (ΔD2 = 0.016 ± 0.013; ΔAUC = 0.011 ± 0.006). 
Model performance was low overall when using 1-in-5 year 
extremes (ΔD2 = 0.011 ± 0.009; ΔAUC = 0.002 ± 0.006), 
with no significant changes in AUC compared with mod-
els with base climate only. When the evaluation design did 
not enforce spatial separation of training and testing sets 
(i.e. CV), near-universal performance improvements were 
achieved for all variable sets (Fig. 3, right panels).

Focusing now on individual species, the median change 
in model performance with extremes relative to base climate 
models was positive for 24 of 37 species (Fig. 4) under the spa-
tially blocked cross validation design, including 19 that were 
statistically significant when considering all return intervals. 

Table 1. Sets of climate variables used for modelling species distributions.

Set Climate variablesa n variables

Base climateb Mean maximum temperature of the hottest month (TMXH), minimum temperature of the coldest 
month (TMNC) and precipitation of the driest quarter (PRDR)

3

Variability Base climate and variability (standard deviation) of TMXH, TMNC and PRDR 6
Extremes Base climate and extremesc of increasing magnitude and decreasing frequency for TMXH, 

TMNC, PRDR
6

a Calculated using monthly maximum temperature (July 1981–June 2019), monthly minimum temperature (January 1981–December 2019) 
and quarterly precipitation (calculated as three-month rolling sum; July 1981–June 2019).
b Base climate variables are equivalent to BIOCLIM variables (Xu and Hutchinson 2011) BIO5 (TMXH), BIO6 (TMNC) and BIO17 (PRDR) 
calculated using long-term averages.
c Extremes are calculated as the difference between the base climate and magnitude of extremes observed at a frequency of once every n 
years (where n = 5, 10, …, 30) based on quantiles of historical observations.
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Figure 2. Base climate (mean) and the magnitude of extremes (relative to mean) expected once every 15 years based on historical observa-
tions across Victoria, southeast Australia.
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Only 3 of 37 species showed a statistically significant decrease 
in D2 when modelled using extremes relative to base climate 
alone. The random cross validation results showed significant 
performance improvements for 34 of 37 species (top panel, 
Fig. 4). Cross validation statistics for all models are tabulated 
for each species in the Supporting information.

Most (14 of 18) species capable of reaching a height above 
20 m performed better with the inclusion of 1-in-15 year 
extreme variables (Supporting information). The four species 
not responsive to 1-in-15 extremes are largely found within 
the coldest or most arid areas of the study region. Eucalyptus 
delegatensis and Eucalypus regnans are montane species which 
persist in cooler, wetter environments. Eucalyptus globoidea 
and Eucalyptus polyanthemos both persist in some of the 
hottest and driest locations occupied by our study species. 
Prevalence was 0.1 or less for most species (7 of 9) with mod-
els that did not improve in response to extremes (Supporting 
information).

The regression model exploring correlates of model per-
formance explained 39.4% deviance in the data. Extreme 
TMXH was the most important explanatory variable, com-
prising 53.4% of the total relative variable importance (Fig. 5), 
followed by base TMXH (15.1%), base PRDR (9.2%) and 

maximum species height (8.4%). Improved model perfor-
mance was associated with hot (increasing extreme and base 
TMXH) and dry (decreasing base PRDR) conditions as mea-
sured at presence sites, and increasing species height. Models 
explained more deviance for species with less severe PRDR 
extremes (Fig. 5, bottom right panel); however, the PRDR 
extremes are restricted in dry environments as they already 
receive little rainfall.

The spatial distribution of predictions varied consider-
ably when modelled using base climate and extremes relative 
to base climate alone (Fig. 6). Relative changes in predic-
tions typically showed strong spatial autocorrelation, with 
large spatially contiguous trends in model divergence often 
at the periphery of the modelled range. These trends were 
frequently associated with coastal proximity and position-
ing relative to topographic features in the landscape that are 
reflected in climate extreme variables (Fig. 2). For exam-
ple, patterns in the predicted distribution of Eucalyptus 
obliqua were associated with strong TMXH and moder-
ate PRDR extremes. Patterns in TMNC extremes associ-
ated with coastal proximity and PRDR extremes associated 
with topography influenced the predicted distribution of 
Eucalyptus dives.

Figure 3. Pairwise comparisons of spatially blocked and random cross-validation performance for species distributions (n = 37) modelled 
using base climate and either variability or extremes at varying observed return intervals relative to base climate alone. p values indicate 
statistical significance relative to base climate models. Boxes correspond to interquartile range, whiskers to minimum and maximum 
values.
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Discussion

Our results highlight that climate extremes have shaped 
the contemporary distributions of plant species in our 
study region. Extremes with a fixed expected frequency 
(e.g. 15 years) remained effective across most species, 
despite differences in the statistically optimal return inter-
val, indicating that meaningful, parsimonious summaries 
of climate extremes can be produced using our methods. 
The main findings support but also build on the work by 
Zimmermann  et  al. (2009) and Cavanaugh  et  al. (2015) 
that considered climate variability and average extremes, 
respectively, to improve SDMs. Improvements in model 
performance, even where small, lead to considerable dif-
ferences in predicted distributions. Changes in the mod-
elled distribution of plant species were most pronounced 
at the range margins, indicating that the improvements in 
model performance are ecologically meaningful (Pulliam 
1988, Zimmermann  et  al. 2009, Ratajczak  et  al. 2017, 
Osland et al. 2020).

Our findings have potentially significant ramifications for 
modelling species distributions under future climate change as 
increases in the frequency and magnitude of extreme weather 
events are expected in many parts of the world (Rahmstorf 
and Coumou 2011, Diffenbaugh  et  al. 2017, Mann  et  al. 
2017), irrespective of mean conditions (Orlowsky and 
Seneviratne 2012). Neglecting to account for environmen-
tal variability, in this case climate extremes, can confound 
responses to changing mean conditions (Lawson et al. 2015). 
Our approach represents the frequency and magnitude of 
extremes that have historically been observed and allows for 
the skewed nature of extreme series to be represented using 
quantiles. This means that the extreme variables developed 
can be linked to projected climate change scenarios where 
both the mean and variability of extremes may change. Note, 
however, that there are considerable challenges and uncer-
tainties in downscaling climate projections to such fine spa-
tial grain (Chen et al. 2011, Baker et al. 2017), and therefore 
these efforts need to be treated with a large degree of cau-
tion. Provided suitable downscaling techniques are applied at 

Figure 4. Pairwise comparisons of cross-validated change in the proportion of deviance explained for species distributions modelled using 
base climate and extremes (boxplots; 1-in-5 to 1-in-30-year return intervals) or base climate and variability (points) relative to base climate 
alone. p values indicate statistical significance of base climate and extremes relative to base climate alone. Boxes correspond to interquartile 
range, whiskers to minimum and maximum values.
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appropriate spatial grain, these variables can be used to quan-
tify not only how the distribution of extremes may change in 
the future but also how this will impact species persistence 
(Lloret et al. 2012) and productivity (Rypkema et al. 2019).

We used both spatially blocked and randomly sampled 
cross validation designs to evaluate both extrapolation and 
interpolation error, a distinction that is of critical importance 
given that the environmental niche of a species will likely 
shift in both space and time with climate. We also considered 
the observed frequency and magnitude of adverse climatic 

conditions (i.e. hotter, colder or drier extremes) directly 
and tested the efficacy of a single (symmetrical) measure of 
variability. A near-universal improvement in model perfor-
mance was achieved using base climate with any measure 
of variability or extremes when evaluated using a randomly 
sampled cross validation design, which was consistent with 
Zimmermann et al. (2009). The spatially blocked cross vali-
dation design, however, indicated that climate extremes pro-
vided an additional improvement in model performance over 
variability, particularly at an intermediate return interval of 

Figure 5. Relative importance and partial dependence plots of variables explaining the change in model performance when using 1-in-
15-year extremes as predictors of species distributions.



635

Figure 6. Difference in predicted distributions of species fitted with base climate and 1-in-15-year extremes, and base climate alone.
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15 years. A simple, but probable, explanation for this is that 
the skewed distributions of extremes better capture the true 
constraints on plant species demography. This is supported 
by the results of the regression analysis, that indicated that 
hot and dry base climates and extremes as measured at pres-
ence sites were indicative of better statistical performance for 
our study species. By isolating the expected frequency and 
magnitude of the coldest winters, and the hottest and driest 
summers, we were thus able to characterise species responses 
to the extremes that limit their distributions.

Models for most (78%) species capable of growing to 20 
m or taller were improved with the inclusion of 1-in-15 year 
extremes (Supporting information). Large trees can be highly 
sensitive to drought conditions and risk of mortality increases 
non-linearly with height due to hydraulic stress (Choat et al. 
2012, Stovall  et al. 2019). Four species capable of growing 
to 20 m in height were insensitive to extreme variables. E. 
delegantesis and E. regnans are montane species whose distri-
butions do not appear to be limited by extreme maximum 
temperatures or very dry conditions relative to the remain-
der of the study region. Eucalyptus globoidea and Eucalyptus 
polyanthemos already occupy regions with the most severe 
maximum temperature and precipitation extremes across 
Victoria, resulting in fitted models that did not respond well 
to extremes.

Smaller species with a maximum height of 20 m also per-
formed better in most cases (74%) when modelled using 
1-in-15 year extremes. The results for these species were 
slightly more varied, potentially due to microclimatic effects 
that may attenuate the impacts of extreme weather events 
(Suggitt  et  al. 2011, Scheffers  et  al. 2014) or the potential 
for increased drought (Liu  et  al. 2019) or frost tolerance 
(Lim et  al. 2017). For example, Xanthorrhoea minor which 
grows as a subterranean branching stem (potentially mitigat-
ing the impact of extreme weather) did not perform better 
with extremes, yet Xanthorrhoea australis which has a stem 
that grows above ground did. Due to the potential for micro-
climatic buffering or increased drought or frost tolerance of 
shorter species it could be expected that they would be much 
less responsive to extremes; however, our analysis did not 
strongly support this argument. From a hydraulic function-
ing perspective this may be due to the role of other traits such 
as wood density, sapwood-specific hydraulic conductivity 
and P50 (i.e. xylem tension where 50% loss of the maximum 
hydraulic conductivity occurs; Liu et al. 2019). Our results 
indicate that the trait of maximum height may be indicative, 
but not a dominant factor for determining if a species distri-
bution has been influenced by extremes. Most importantly, 
it suggests that irrespective of plant height, extremes shape 
plant species distributions in southeast Australia.

The availability of suitable climate datasets (i.e. fine-
grained in both space and time, to characterise both tem-
poral patterns and spatial variability across complex terrain) 
has historically been a barrier to the implementation of 
these methods for describing extremes in SDM research. 
For this reason, we focused on developing extreme variables 
with monthly data so that the methods presented would be 

compatible with datasets such as CHELSAcruts (Karger and 
Zimmermann 2018) that are currently available at fine spa-
tial grain (approx. 1 km) globally. While extremes are likely 
to be important at finer temporal scales (e.g. daily), monthly 
surfaces are typically subject to fewer interpolation artefacts 
and are still capable of representing the spatial patterns of 
variability that are influenced by coastal proximity and ter-
rain features. One limitation of our approach, however, is 
that we did not consider compound extremes (i.e. tempo-
rally autocorrelated events), and therefore we may not have 
detected the impacts that multi-year events such as drought 
(Mitchell  et  al. 2014) have contributed to the current spa-
tial patterns in species distributions. Another limitation is 
that the analyses was limited to 39 years of monthly data. 
This may not have been long enough to suitably represent 
the distribution of extremes that have historically occurred, 
despite some of the most severe events on record across the 
study region having occurred within this time frame (Bureau 
of Meteorology 2009, van Dijk et al. 2013). We have focused 
on the long-term influence of extreme weather on plant spe-
cies distributions in southeast Australia, however, there are 
many potential use-cases for extreme variables in SDM stud-
ies. Further opportunities remain to better define ecologically 
meaningful extreme events, and longer time series, consider-
ation of temporal scale and autocorrelation are likely to be 
worth further examination.
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