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Diastolic dysfunction in a pre‑clinical 
model of diabetes is associated with changes 
in the cardiac non‑myocyte cellular composition
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Abstract 

Background:  Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific 
pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular 
changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the 
cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart.

Methods:  Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. 
Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ven-
tricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow 
cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice.

Results:  Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiogra-
phy revealed reduced E:A and e’:a’ ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not 
different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchy-
mal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth 
muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart 
and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in 
diabetic mice.

Conclusions:  Murine diabetes results in distinct changes in cardiac cellularity. These changes—in particular 
increased levels of fibroblasts—offer a framework for understanding how cardiac cellularity changes in diabetes. The 
results also point to new cellular mechanisms in this context, which may further aid in development of pharmaco-
therapies to allay the progression of cardiomyopathy associated with diabetes.
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Background
Diabetes mellitus is a leading cause of death worldwide, 
with a total global prevalence exceeding 450 million indi-
viduals [1]. In 2015, diabetes was attributed to 12.8% of 
total all-cause mortality worldwide, providing a substan-
tial socioeconomic burden and health concern [2, 3].
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Diabetes is associated with a significantly elevated 
risk of cardiovascular death and hospitalisation for 
heart failure (HF) [4, 5]. However, there remains no spe-
cific treatment for HF or its development in individuals 
with diabetes. HF in diabetes is often accompanied by 
impaired cardiac output, cardiac fibrosis, cardiomyocyte 
hypertrophy, cell death, and oxidative stress [6]. Diabetes 
also involves chronic and systemic inflammation [7, 8] 
with monocytosis and neutrophilia [7–9]. Despite exten-
sive efforts to characterise diabetes-induced HF, inherent 
cellular mechanisms underpinning cardiac dysfunction 
in diabetes remain to be ascertained.

The mammalian heart consists of a diverse range 
of cell types [10]. Cardiac non-myocytes—comprised 
of endothelial cells (ECs), resident mesenchymal cells 
(RMCs) and leukocytes—outnumber myocytes, and are 
critical for maintaining homeostasis of the heart [10, 11]. 
While a number of recent studies have provided valua-
ble new insights into the disparate roles of non-myocyte 
cells in cardiac homeostasis [10, 12, 13] and pathologi-
cal remodelling [14–16], the cellular dynamics of non-
myocytes during development of diabetes-induced heart 
failure remains unexplored. Using a recently published 
murine model of diabetes-induced cardiomyopathy [17], 
this study aimed to determine the difference in cardiac 
non-myocyte cellular proportions compared to non-
diabetic mice. Here, we show that experimental diabe-
tes impacts multiple cellular compartments in the heart, 
providing a framework for understanding the cellular 
dynamics and mechanisms driving development of dia-
betes-induced heart failure.

Research design and methods
Animal experiments
All animal-related experiments were approved by the 
Alfred Research Alliance (ARA) Animal Ethics Commit-
tee (Ethics number: E/1681/2016/B) and were performed 
in accordance with the National Health and Medical 
Research Council of Australia. FVB/N mice were sourced 
from the ARA Animal Services (provided in three sepa-
rate cohorts). Mice had access to food and water ad libi-
tum and were housed at 22 °C on a 12 h light/dark cycle. 
Male 6-week-old FVB/N mice were randomly allocated 
into the non-diabetic (ND, n = 7) citrate vehicle control 
group fed standard chow diet, or diabetes mellitus (dia-
betes, n = 19) which was induced by the combination of 
low-dose streptozotocin (STZ; cat# AG-CN2-0046, Adi-
poGen Life Sciences, NSW, Australia) and high-fat-diet 
(HFD; SF04-001, Specialty Feeds, WA, Australia, 43% 
total calculated digestible energy from lipids). STZ was 
administered by three consecutive daily intraperitoneal 
(i.p.) injections (55 mg/kg body weight in 0.1 mol/L cit-
ric acid vehicle, pH 4.5 [cat# 251275, Sigma-Aldrich, 

USA]). Mice administered STZ were subsequently fed 
a HFD ad  libitum for 26-weeks, as previously described 
[17]. Blood glucose levels were measured fortnightly via 
saphenous vein bleeds using a glucometer (Accu-Chek® 
Performa II, Roche Diagnostics, NSW, Australia). Intra-
peritoneal glucose and insulin tolerance tests were con-
ducted at endpoint (26-weeks of diabetes) to assess 
glucose clearance and insulin resistance, as previously 
described [17]. Whole-body composition analysis was 
performed at endpoint using an Echo-MRI™ 4-in-1 700 
Analyser (EchoMRI, Houston, TX, USA) to assess per-
centage fat mass and total lean mass. Percentage glycated 
haemoglobin (% HbA1c) was also measured at endpoint 
to assess long-term blood glucose levels (Cobas b 101 
POC system, Roche Diagnostics, NSW, Australia). Mice 
were euthanised by administration of Ketamine/Xylazine 
(85/8.5 mg/kg, i.p.) and subsequent cardiac exsanguina-
tion. As previously described [10–12], the thoracic cavity 
was exposed and right atrium was cut to allow for cardiac 
perfusion through the left-ventricular apex (PBS, 0.9 mM 
CaCl2, 200 mM KCl), after which the heart was excised 
and ventricles were used for flow cytometry.

Echocardiography
Echocardiography was conducted in mice under 
anaesthesia (Ketamine/Xylazine/Atropine [KXA], 
80/8/0.96  mg/kg, i.p.) at 26-weeks post diabetes (32-
weeks of age) using a Philips iE33 ultrasound machine 
with a 15-MHz linear-array transducer. Analysis was 
conducted at the Baker Heart and Diabetes Institute and 
quality control was completed by technicians at the Pre-
clinical Cardiology Microsurgery & Imaging Platform 
(PCMIP). Doppler flow echocardiography was used to 
assess cardiac transmitral flow velocity in each phase 
of diastole, where the early phase (E wave) and the late 
phase (A wave) were measured to determine the E:A 
ratio. Similarly, tissue Doppler was performed to examine 
the tissue motion of the mitral annulus (early phase = e’, 
late phase = a’ wave). M-mode echocardiography was 
conducted to assess left ventricle (LV) systolic function. 
Variables obtained from M-mode analysis included LV 
end-diastolic dimension (LVEDD) and LV end-systolic 
dimension (LVESD) to calculate fractional shortening 
(%FS = [(LVEDD-LVESD)/LVEDD] × 100).

Flow cytometry
Blood, spleen and bone marrow
Whole blood was obtained by cardiac puncture at end-
point and stained using a leukocyte-specific antibody 
panel (Additional file  1: Table  S4). Bone marrow from 
the tibia and femur were flushed using PBS without 
Mg2+ and Ca2+ into 50  mL centrifuge tubes. Spleens 
were manually dissociated and passed through a 35 µM 
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filter into 50  mL centrifuge tubes to obtain a single cell 
suspension as previously described [7]. Blood, spleen 
and bone marrow were then subjected to red blood cell 
(RBC) lysis for 15 min at 4 °C using an ammonium chlo-
ride based commercial lysis buffer (1X dilution, 555899, 
Becton Dickinson, USA). After RBC lysis, the remain-
ing stained cells were washed twice in ‘Fx buffer’ (1 X 
HBSS [Gibco™, NY, USA], 2% FCS). Between each wash, 
cells were centrifuged at 400 × g for 5 min at 4  °C. Cells 
were then resuspended in 200  µl of Fx buffer contain-
ing 4′,6-diamidino-2-phenylindole (DAPI [0.1  µg/mL]); 
and filtered through 35 µM mesh into 5 ml polystyrene 
round-bottom tubes (352052, Falcon®, NY, USA) for flow 
cytometry. Gating strategies for each of the above cell 
suspensions are provided in Additional file 1: Figures S3–
S5. For normalisation of flow cytometry data, 20  µl of 
blood was used to measure total white blood cell count 
using a Sysmex XS-1000i Hematology Analyzer.

Heart
High-dimensional flow-cytometry was performed on 
cardiac ventricles (comprising the LV, ventricular septum 
and right ventricle) from ND and mice with diabetes. Fol-
lowing perfusion, hearts were minced using curved scis-
sors (14077-09, Walton, USA) as previously described 
[10], and transferred to 5  ml microfuge tubes for enzy-
matic digestion at 37  °C (2  mg/mL collagenase type IV 
[LS004188, Worthington Biochem, NJ, USA], 1  mg/
mL Dispase II [04942078001, Roche, NSW, Australia] in 
0.9 mM CaCl2 in PBS). Cardiac non-myocyte cells were 
triturated three times at 15-min intervals using a Pas-
teur pipette to mechanically aid enzymatic digestion for a 
total of 45 min. Digested non-myocyte cardiac cells were 
then filtered through 75  µM nylon mesh into a 15  mL 
tube containing 10 mL of cold PBS (0.9 mM CaCl2) and 
subjected to centrifugation (200  g, 15  min, 4  °C—no 
breaks) for debris clearance. The majority of the super-
natant was aspirated and the remaining volume (~ 1 mL) 
was washed with a further 1  mL of Fx buffer supple-
mented with 0.9 mM CaCl2. Cells were pelleted at 400 × g 
(4 min, 4 °C) and resuspended in 200 µl of Fx Buffer with 
Ca2+ to yield the single cell suspension of non-myocyte 
cardiac cells. Cells were then stained using the antibody 
panel designed for examining the non-myocyte frac-
tion of the heart (Additional file 1: Table S5). Cells were 
strained through a 35 µm filter and flow cytometry was 
performed on a BD LSR Fortessa™ X-20 Special Order 
system located at the Baker Heart and Diabetes Institute.

Histological analysis
Age and sex-matched, fresh-frozen LV samples embed-
ded in Optimal Cutting Temperature (OCT) compound 
were acquired from a separate cohort of ND and mice 

with diabetes [17] for histological analysis. LV sections 
were cut (10 µm) on a cryostat (CM1950, Leica Biosys-
tems) for staining (ND: n = 11, diabetes: n = 11). LV sec-
tions were co-stained with GATA4 (1:100, 14-9980-80, 
eBioScience™, Invitrogen, Australia) and PCM1 (1:100, 
19856-1-AP, ProteinTech Group, USA) antibodies to 
delineate the cell abundance of RMCs (PCM1−GATA4+ 
cells) as recently reported [12]. Serial sections were 
stained with DACH1 (1:100, 10914-1-AP, ProteinTech, 
USA) to quantify EC abundance [10, 12]. All immuno-
fluorescence sections were counterstained with DAPI 
to identify total cell nuclei. Immunofluorescence micro-
graphs of each LV sample were acquired at a 20X objec-
tive and tiled (3 × 3 fields of view) on a Nikon A1R 
confocal laser scanning microscope. Quantified values 
of immunofluorescence signal were normalised to total 
nuclei (DAPI+).

Statistical analysis
Flow cytometry data was analysed using FlowJo (v10.7.1) 
software. Raw cardiac flow cytometry data was normal-
ised to the mean of the ND values within each batch, 
such that the mean of each ND cell type is equal to 1. Raw 
blood flow cytometry data was normalised to total white-
blood cell count obtained from the hematology analyser, 
then subsequently batch normalised as aforementioned. 
Immunofluorescence micrographs were analysed by 
QuPath software (v0.2.3), using the cell count function 
to quantify nuclei. Echocardiography data was analysed 
using RadiAnt DICOM viewer software (v2020.2), after 
which quantification was performed in accordance with 
the PCMIP guidelines. All data was illustrated and ana-
lysed statistically using GraphPad Prism (v8.1.2). Com-
parison of experimental groups was conducted using 
an unpaired t-test, whereby statistical significance was 
determined as P < 0.05.

Results
The STZ‑HFD model recapitulates primary features 
of diabetes
The presence of diabetes was confirmed by a range of 
physiological tests prior to euthanasia. Consistent with 
our previous report [17], mice with diabetes exhibited 
significantly elevated blood glucose at endpoint (Addi-
tional file  1: Table  S1). This was corroborated by meas-
urement of glycated haemoglobin (% HbA1c) at endpoint, 
which was significantly increased in mice with diabetes 
(P < 0.0001; Additional file 1: Table S1). In this study how-
ever, mice exhibiting diabetes did not gain more weight 
than their ND counterparts (Additional file 1: Table S1). 
This was recapitulated by the EchoMRI body compo-
sition analysis, showing no differences in lean or fat 
mass (Additional file 1: Table S1) between experimental 
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groups. Impaired glucose tolerance was evident in mice 
with diabetes, indicating reduced clearing efficiency of 
systemic glucose, presented as the area under the curve 
(AUC, P < 0.0001, Additional file 1: Table S1). In contrast, 
there was no difference in the AUC from the insulin tol-
erance test between ND and mice with diabetes (Addi-
tional file 1: Table S1).

STZ‑HFD mice exhibit LV diastolic dysfunction, 
but not systolic dysfunction
Echocardiography measurements of LV diastolic and sys-
tolic function were recorded in  vivo, to determine the 
degree of cardiac functional impairment in mice with 
diabetes relative to their ND counterparts. Pulsed-wave 
Doppler echocardiography was conducted to measure 
mitral blood flow velocity during the early (E-wave) and 
late (A-wave) filling phases of diastole (Additional file 1: 
Fig. S1A). Heart rate (HR) tended to be elevated in mice 
with diabetes, but this did not reach statistical signifi-
cance (P = 0.07; Additional file 1: Figure S1B). Although 
no differences were detected in the peak E wave (Addi-
tional file  1: Figure S1C), the peak A wave velocity was 
significantly elevated in mice with diabetes compared to 
ND mice (P < 0.05; Additional file 1: Figure S1D). Conse-
quently, a significant reduction in E:A ratio (a hallmark 
feature of diastolic dysfunction) was observed in diabetic 
hearts vs. ND (P < 0.05 Additional file  1: Figure S1E). 
There were no differences in other measurements of dias-
tolic function including deceleration time or isovolumic 
relaxation time (IVRT) between experimental groups 
(Additional file 1: Figure S1F, G, respectively).

To accompany transmitral blood flow, tissue Doppler 
echocardiography was used to assess the velocity of the 
mitral valve itself in each phase of diastole (e’ = early 
phase, a’ late phase, Additional file  1: Figure S1H–L). 
Although the peak e’ velocity was only modestly reduced 
(P = 0.054, Additional file  1: Figure S1I) and the peak a’ 
velocity exhibited a minor increase (P = 0.072, Additional 
file  1: Figure S1J), the e’:a’ ratio was significantly lower 
in mice with diabetes compared to ND mice (P < 0.05, 
Additional file 1: Figure S1K). There were no detectable 
changes in the E:e’ ratio between cohorts (Additional 
file 1: Figure S1L).

M-Mode echocardiography was also performed to 
assess the difference in ventricular wall thickness and 
systolic function in mice with diabetes. The anterior wall 
thickness at diastole (AWd), LV end-diastolic dimen-
sion (LVEDD) and posterior wall thickness at diastole 
(PWd) were not different between groups (Additional 
file  1: Table  S2). Interestingly, fractional shortening (% 
FS) was significantly elevated in mice with diabetes com-
pared with ND mice (P < 0.05; Additional file 1: Table S2), 
consistent with a recent report in spontaneously type-1 

diabetic (T1D) Akita mice [18]. Importantly however, 
diastolic dysfunction was observed in the absence of sys-
tolic dysfunction.

Diabetes alters the cardiac non‑myocyte cellular 
composition
To assess differences in cardiac cellularity associated 
with diabetes-induced HF, we performed flow cytometric 
analysis of murine cardiac ventricles at study endpoint. 
Examination of viable single-cells (see Additional file  1: 
Figure S2A) revealed significant differences in endothelial 
cell (EC) and resident mesenchymal cell (RMC) propor-
tions (0.26-fold decrease, twofold increase, respectively), 
indicating that diabetes alters the relative levels of car-
diac non-myocyte cells (Fig.  1A, B). Conversely, leuko-
cytes were at similar levels in ND and mice with diabetes 
(Fig. 1A, B).

Next, we sought to validate the proportional shifts in 
EC and RMC populations in diabetes observed by flow 
cytometry, with immunohistochemical analysis (Fig. 1C, 
D). To achieve this, we stained left ventricular sections 
of both cohorts with an antibody cocktail of GATA4 
and PCM1 (Fig.  1C) or DACH1 (Fig.  1D), which we 
have previously employed to quantify proportions of 
RMCs and ECs [12]. These analyses revealed that RMC 
(PCM1−GATA4+) cell counts were significantly ele-
vated in diabetic heart sections compared to ND coun-
terparts (P < 0.05, Fig.  1C). Using the same approach 
for ECs, serial sections stained with DACH1 indicated 
no differences in EC abundance between experimental 
groups (Fig. 1D), suggesting that the proportional differ-
ence observed by flow cytometry is due to the increased 
RMCs [10].

Considering the proportion of RMCs were markedly 
elevated in the diabetic heart, a range of RMC subtypes 
were investigated from the initial RMC gate (Additional 
file 1: Fig.S2). Fibroblasts were significantly increased in 
diabetic hearts compared to ND (2.36-fold, P < 0.0001, 
Fig.  2B). In contrast, the proportion of smooth muscle 
cells (SMCs), were reduced in the diabetic cohort com-
pared to ND controls (0.27-fold, P < 0.05, Fig.  2B). No 
major changes were observed in total mural cells, peri-
cyte or Schwann cell populations (Fig. 2B).

While we did not detect any changes in total resident 
leukocyte proportions in diabetic mouse hearts com-
pared to ND (Fig.  1B), diabetes has been previously 
associated with cardiac inflammation and systemic 
monocytosis [7, 19, 20]. To develop an overview of leu-
kocyte diversity and abundance in diabetic hearts, we 
identified an array of leukocytes including myeloid and 
lymphoid cell populations and their subsets (Fig.  3A). 
There were no differences in cardiac leukocyte subsets 
between cohorts, except Ly6Chi monocytes, which were 
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significantly increased in the myocardium of mice with diabetes (1.8-fold, Fig. 3B).
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Fig. 1  Differences in the abundance of major non-myocyte cell classes in the diabetic heart. A Flow cytometry contour plot displaying gating of 
major non-myocyte cell types for quantification of cell type proportion (summarised in B). For full gating strategy see Additional file 1: Figure S2. 
Endothelial cells (ECs; CD31+), resident mesenchymal cells (RMCs; CD31−CD45−) and leukocytes (Leuks; CD45+). B Proportions of major cell types 
in non-diabetic (ND; n = 7) and diabetic (DM; n = 19) mouse hearts. Individual sample values are shown with mean ± SEM. C Immunohistochemical 
analysis of the abundance of RMCs in ND and diabetic mouse heart left ventricles. Left and middle panels show representative confocal 
micrographs of mouse heart tissue stained for PCM1 and GATA4. PCM1+GATA4+ and PCM1−GATA4+ nuclei correspond to nuclei of cardiomyocytes 
(CM) and RMCs respectively. Nuclei are counterstained with DAPI. Right panel (box-plot) summarises proportion of nuclei corresponding to RMCs in 
ND (n = 9) vs. DM (n = 10) enumerated from micrographs. Whiskers of box-and-whisker plot indicate max and min. (D) As for C, heart left ventricle 
sections were stained with DACH1 to identify nuclei corresponding to endothelial cells in ND (n = 10) and DM (n = 9) left ventricles. *P < 0.05, **** 
P < 0.0001 (Student’s unpaired t-test). Scale bar = 100 µM
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Circulating Ly6Chi monocytes are elevated in diabetes
To confirm systemic monocytosis, we quantified cir-
culating leukocytes and their broad subtypes by flow 
cytometry. As shown previously [7], monocytes, particu-
larly the Ly6Chi subset, were significantly elevated in the 
blood of mice with diabetes (2.2-fold, 2.3-fold, respec-
tively; P < 0.05 for both; Fig. 4B). Numbers of circulating 
neutrophils and Ly6Clo monocytes were also marginally 
elevated in diabetic mice compared to their ND counter-
parts (P = 0.09, P = 0.054 respectively; Fig.  4B,). By con-
trast, numbers of circulating lymphocytes (B and T-cells) 
did not differ between cohorts (Fig. 4C).

Systemic monocytosis likely occurs via extramedullary 
myelopoiesis
To identify the potential sources of the observed mono-
cytosis in this model, we performed flow cytometry of 
the bone marrow and spleen. Within the bone mar-
row, LSKs (haematopoietic stem and progenitor cells; 
[Lin−Sca1+cKit+]) were significantly increased in mice 
with diabetes (1.8-fold, P < 0.01, Fig.  5A). However, 

bone-marrow derived common myeloid progenitors 
(CMP) and granulocyte-myeloid progenitors (GMP) were 
not different between experimental groups (Fig.  5A). 
Monocytes (both Ly6Chi and Ly6Clo) were significantly 
increased in the spleen in mice with diabetes compared 
to their ND controls (1.7-fold, 1.3-fold respectively, 
P < 0.05, Fig.  5B). These data suggest that the increased 
proportion of bone-marrow LSKs could be influencing 
these cells to mobilise to the spleen to undergo extramed-
ullary myelopoiesis (Fig. 5C).

Discussion
The relationship between diabetes and HF remains poorly 
understood. Diabetes-associated cardiac remodelling— 
encompassing myocyte hypertrophy, fibrosis, oxidative 
stress and apoptosis [21] is well established. However, 
how the cardiac non-myocyte networks change in diabe-
tes and contribute to this remodelling is unclear. Using a 
recently characterised mouse model of diabetes-induced 
cardiomyopathy [17], we aimed to determine how dia-
betes affects cardiac non-myocyte cell proportions and 

Fig. 2  Differences in resident mesenchymal cell (RMC) subtypes in the diabetic heart. A Flow cytometry contour plots display gating strategy 
for cardiac RMCs and subsets (fibroblasts, SMCs, pericytes and Schwann cells) for quantifying RMC proportions (summarised in B). For full gating 
strategy see Additional file 1: Figure S2. B Proportions of RMC sub-classes in ND (n = 7) and diabetic (n = 19) mouse ventricles. Fibro: Fibroblast; 
Mural: Mural cells; SMCs: smooth muscle cells. Data is displayed as mean ± SEM. *P < 0.05, **** P < 0.0001 (Student’s unpaired t-test)
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A

B

Fig. 3  Ly6Chi monocytes, but not resident leukocytes are increased in the diabetic heart. A Flow cytometry contour plots display gating strategy for 
quantifying cardiac leukocytes (summarised in B). For full gating strategy see Additional file 1: Figure S2. B Proportions of leukocyte sub-types in ND 
(n = 7) and DM (n = 19) mouse ventricles. Data is displayed as mean ± SEM. *P < 0.05 (Student’s unpaired t-test)

Fig. 4  Mice with diabetes exhibit systemic monocytosis. A Flow cytometry contour plots display gating strategy for circulating leukocytes in 
whole blood (summarised in B and C). For full gating strategy see Additional file 1: Figure S2. B–C Proportions of circulating myeloid leukocytes 
and lymphocytes in ND (n = 7) vs. DM (n = 19) mice. Monocytes (Monos.), Ly6Chi monocytes (Ly6Chi), Neutrophils (Neuts.) and Ly6Clo monocytes 
(Ly6Clo). Data is displayed as mean ± SEM. *P < 0.05 (Student’s unpaired t-test)
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abundance, to develop a framework for future mechanis-
tic studies to consider. We revealed that with diabetes-
associated diastolic dysfunction, proportions of cardiac 
fibroblasts are significantly increased in the myocardium. 
We also noted increased levels of Ly6Chi monocytes and 
decreased levels of SMCs in diabetic hearts.

Numerous studies have implicated cardiac fibroblasts 
in diabetic cardiomyopathy, however their precise role 
in diabetes in  vivo is still unknown. Cardiac fibroblasts 
are the primary cell type involved in deposition of extra-
cellular matrix (ECM) in both states of acute injury or 
chronic stress [14, 15]. However, in these contexts, fibro-
blast gene expression and phenotype are distinct [22]. 

A

B

C

Fig. 5  Bone marrow and spleen myelopoiesis evident in mice with diabetes. A Quantified proportions of bone marrow progenitor cells. LSK 
cells (Lineage−, Sca-1+, cKit+; haematopoietic stem cells), common myeloid progenitors (CMPs) and granulocyte myeloid progenitors (GMPs). B 
Proportions of spleen monocytes in ND (n = 7) vs. DM (n = 19) mice. C Proposed mechanism by which systemic monocytosis occurs in diabetic 
mice administered STZ-HFD. See Additional file 1: Figure S4 and S5 for full gating strategies for flow cytometry analysis. Data displayed as 
mean ± SEM. *P < 0.05, **P < 0.01 (Student’s unpaired t-test)
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For example, in myocardial infarction (MI), fibroblasts 
rapidly differentiate into activated fibroblasts and myofi-
broblasts—both well-established drivers of cardiac ECM 
deposition [23]. Conversely, we have recently reported 
that myofibroblasts are absent during the development of 
chronic fibrosis in angiotensin II-induced cardiac remod-
elling [14]. Observations from the present study reveal 
that fibroblasts are the predominant non-myocyte cell 
type most dramatically affected by diabetes—suggest-
ing an important role for fibroblasts in the development 
of diabetes-induced HF. Indeed, chronic hyperglycaemia 
is known to up-regulate various pro-fibrotic genes in the 
diabetic heart as a whole, including Col1a1, Postn, Timp-
2 and Ccn2 [17, 24, 25]. Furthermore, diabetes is asso-
ciated with fibroblast-to-myofibroblast differentiation 
and ECM deposition [26, 27]. However, further research 
such as single-cell sequencing or targeted cell depletion 
experiments are needed to further elucidate the precise 
role of the cardiac fibroblast in diabetes and the regula-
tory mechanisms that drive these changes.

In the current study, we also observed an increase in 
monocyte numbers in the heart in diabetic mice, which 
is likely the result of increased systemic inflammation. 
In the non-injured heart, circulating leukocytes, such 
as monocytes primarily reside in the vascular lumens 
of cardiac capillaries [28], therefore reflecting changes 
occurring in the circulation. Systemic monocytosis is 
reported in both T1D and insulin resistant obese mice 
(i.e. leptin mutant ob/ob mice and diet-induced obese 
mice) [7, 8]. Consistent with systemic inflammation, the 
diabetic heart exhibits upregulation of pro-inflammatory 
cytokines such as TNFα, MCP-1 and IL-1β [29–31]. Cor-
responding to the monocytosis, we also noted increased 
progenitor cells and splenic monocytes—the major site 
of secondary myelopoiesis [32]. Monocytosis is a well-
established feature of diabetes and obesity/insulin resist-
ance [33, 34]. However, in this model we only detected a 
significant increase in haematopoietic stem and progeni-
tor cells (HSPCs), but not common myeloid progenitors 
(CMPs) or granulocyte–macrophage progenitors (GMPs) 
in the bone marrow. Given HSPCs can migrate to sec-
ondary myelopoietic sites, such as the spleen, to increase 
monocyte numbers [35–37], our findings suggest that 
this may be the primary mode of monocytosis observed 
in our model (Fig. 5C).

In contrast to the diabetes-induced increases in car-
diac fibroblasts and monocyte numbers, we observed a 
decrease in SMC proportions. This was unexpected given 
hyperglycaemia has previously been associated with inhi-
bition of aortic vascular SMC apoptosis in T1D patients, 
and in STZ-induced T1D mice [38, 39]. Conversely, met-
abolic syndrome and hypercholesterolaemia are both 
associated with increased apoptosis in aortic VSMCs of 

mice and humans [33, 34]. Therefore, the precise mecha-
nism leading to the reduction in SMC proportions in the 
hearts of STZ-HFD mice warrants further investigation.

Although there are a number of studies examining the 
role of individual cardiac cell types in diabetes, to our 
knowledge this is the first study to consider the entire 
cardiac non-myocyte network to understand differences 
in tissue cellularity. While novel technologies such as sin-
gle-cell RNA sequencing have been successfully applied 
to tissues such as the pancreas [35, 36, 40], kidney [41, 
42] and liver [43] in diabetes, detailed interrogation of 
the cellular heterogeneity in these tissue systems are lack-
ing in this context. This study invites future research to 
consider cellular plasticity in diabetes to better under-
stand the development of its associated pathologies.

Study limitations
While this study provides a basis for providing new 
understanding of the cardiac cellular dynamics in the 
context of diabetes, a number of limitations are note-
worthy. First, cardiomyocytes were not considered 
in this study, as they are too large in diameter to pass 
through the flow cytometer available in our laboratories. 
Although cardiomyocytes are detectable by histology 
(PCM1+GATA4+ cells), they are often multi-nucleated, 
thus counting nuclei abundance is unlikely to yield accu-
rate information. Furthermore, we did not measure 
morphological changes in cardiomyocyte size or depo-
sition of myocardial fibrosis, despite there being no dif-
ferences in our previous characterisation of this model 
[17]. Second, we only examined male mice in our study. 
Given that cardiac pathology is sex-specific in mice [44, 
45] and in humans [46], cardiac cellular composition and 
gene expression are sexually-dimorphic [12, 14]. Future 
work should examine the impact of biological sex in 
the development of diabetic cardiomyopathy. Third, the 
STZ-HFD model used in this study did not yield a pop-
ulation of mice with elevated fat mass and body weight 
as expected [47]. Adiposity and obesity are important 
comorbidities contributing to pathology in experimental 
and clinical type-2 diabetes (T2D) [48, 49], albeit obesity 
is not essential for development of T2D [48, 49]. Impor-
tantly however, in this study mice with diabetes exhibited 
hyperglycaemia, impaired glucose tolerance and LV dias-
tolic dysfunction, which are clinically relevant features 
of HF associated with diabetes. Furthermore, we were 
unable to ascertain whether the observed differences are 
attributed to the combination of STZ and HFD, or one 
of these individual insults. Future work using this model 
should consider the effect of STZ and HFD alone in addi-
tion to the combination of STZ-HFD to delineate the role 
of both factors in the development of diabetic HF. Lastly, 
this study did not consider how circulating populations 
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of cells such as mesenchymal stem cells may contrib-
ute to the cardiac RMC compartment. Future work will 
consider whether resident or circulating cell populations 
drive the expansion of fibroblasts in the diabetic heart.

Conclusion
Here we have profiled the differences in the cardiac non-
myocyte network, observing that the cellular landscape 
of the heart changes in a murine model of diabetes. By 
quantifying proportional shifts in a wide array of cell 
types simultaneously, these results offer a framework for 
understanding the cellular mechanisms that may drive 
pathological remodelling of the heart during the devel-
opment of diabetes-induced HF. Future research will 
determine the precise cellular and molecular mecha-
nisms that drive increased fibroblast numbers and the 
impact of this for development of diabetic cardiomyo-
pathy. Targeting the molecular pathways that drive these 
non-myocyte cellular changes may offer new therapeutic 
avenues to address the cardiac complications associated 
with diabetes.
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