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Abstract 

The soaring maturity of technological innovation and its rapid adoption by human societies has 

led to the orchestration of a novel Hyper-Connected Digital Environment (HCDE) that 

transcends the boundaries of natural, human-made, social, virtual and artificial environments. 

Human behaviours and activities are no longer confined to a single environment as our presence 

is perpetually intertwined within the expanse of an HCDE. The digital data representations 

generated by this HCDE can provide unique insights into the structures and functions of the 

individual environments, constituent features, atomic elements and the interplay across multiple 

layers. These unique insights translate into decisions and actions that drive value in 

organisations, economies, societies and communities. However, the inherent sophistication of 

data streams and data repositories of an HCDE pose several complex challenges that need to be 

addressed. Although conventional Artificial Intelligence has been effective in singular digital 

environments, the plurality of an HCDE requires a novel approach. This thesis presents such 

an approach, that is motivated and modelled on the theories of system dynamics and general 

equilibrium. The notion of 'digital equilibrium' is introduced and formalised as an extension of 

general equilibrium and an abstraction of the complexity of an HCDE. This novel approach is 

materialised in Self-Structuring Artificial Intelligence, with a specific focus on change 

detection and causality of change that drives the digital equilibrium of an HCDE. The design 

and development of two new machine learning algorithms for change detection and causality 

of change are further technical contributions of this thesis. Hierarchical depiction of influence, 

similarity and gradual causality, as well as an online, incremental and decremental learning 

functionality are unique features of these two algorithms. Both algorithms are empirically 

evaluated across diverse HCDE settings of air traffic, smart energy, smart city traffic, physical 

activity monitoring, and sport analytics, to demonstrate the effectiveness and practicality of 

Self-Structuring Artificial Intelligence in addressing the complexities of HCDE.   
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Chapter 1  

Introduction 

This chapter introduces the thesis. It begins with an explication of Hyper-Connected Digital 

Environments (HCDE), followed by the research questions, research objectives and the 

research contributions. The chapter concludes with an outline of the subsequent chapters of this 

thesis.  

1.1 Hyper-Connected Digital Environment 

Human society is rapidly transitioning from the Information Age (Cortada, 2020) to an Age of 

Connections, where intelligent and automation technologies are interconnecting the animate 

and inanimate across physical, geographical, socio-demographic, behavioural, psychological 

and emotional boundaries. Social media platforms with billions of participants, gig economies 

of lifestyle convenience, smart mobility with driverless vehicles, robotic surgery using 

augmented reality and decentralised digital currencies are some of the prime technological 

manifestations of this Age of Connections.   

The Information Age is depicted in the bottom half of Figure 1.1, where the environments that 

surround us, natural, human-made, virtual, social and artificial, are digitally represented. A  

digital representation of (a) natural environment captures and represents behaviours of living 
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and non-living things occurring naturally, (b) human-made environment represents buildings, 

bridges, and roads, (c) virtual environment represents interaction via networks (such as email, 

chat, web-based document sharing platforms), (d) the social environment represents the 

interaction between people on various social media channels and (e) the artificial environment 

represents interactions between robots, chatbots and agents. These digital representations of 

different environments capture the corresponding entities' behaviours and interactions at high 

granularity, scale, and frequency.  

 

Figure 1.1 In the Age of Information, natural, human-made, virtual, social and artificial 

environments are represented in the digital environment. In the Age of Connections, those 

digital representations of different environments would be interacting with each other, creating 

a Hyper-Connected Digital Environment. 
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The Age of Connections has led to the conception of hyper-connectivity, where these digital 

environments (natural, human-made, virtual, social and artificial) that existed in siloes are 

interconnected through intelligent and automation technological innovations (top half of Figure 

1.1). This thesis refers to this novel environment as Hyper-Connected Digital Environment 

(HCDE). In an HCDE, service provision, resource utilisation and personalisation will be hyper-

optimised to suit each individual's needs and expectations. For instance, the movement of 

individuals and groups will be optimised in a social setting based on data from autonomous 

vehicles scheduled on entries in electronic diaries and real-time conversations on email or social 

media. In a smart city setting, pedestrian and vehicular movement will be optimised based on 

congestion, public events and the weather. Drawing on this context of an HCDE, let us now 

explore the research motivation of this thesis.  

1.2 Research Motivation 

As explicated above, an HCDE is a network of environments that surround us - natural, social, 

virtual, human-made and artificial. Although these environments are inherently complex and 

systems within these environments are quite different, they demonstrate similar properties at a 

high level (Mitchell, 2011). These properties are (1) complex collective behaviour that gives 

rise to the complex, hard to predict and changing patterns of behaviour, (2) signalling and 

information processing where the system in these environments use information and signals 

from both their internal and external environments and (3) adaptation to change their behaviour 

to improve their chance of survival or success through the learning of evolutionary processes 

(Johnson, 2009; Mitchell, 2011). These characterise unexpected events, both natural and 

human-made, and consequences that change the complex systems' structure and function. Even 

though these events and consequences are influenced by the interconnectivity between natural, 

social, virtual and artificial environments, every environment returns to stability, followed by 

equilibrium (Meadows, 2008). The digital representations of HCDE enable researchers to 

understand the complexities in this dynamic network of environments and analyse the events 
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in the form of a coherent whole to provide actionable insights leading to informed decisions (S. 

K. Kim & Kim, 2020).  

This thesis draws inspiration from natural equilibrium to comprehend the digital representations 

of an HCDE, based on the properties of self-organisation (organising and grouping underlying 

concepts), hierarchy (arranging objects or behaviours linked directly or indirectly) and 

resilience (the ability of the environment to adapt to changes or disturbances). However, 

understanding the environments is faced with the complexities of these environments, such as 

voluminous high-velocity data streams, non-linear relationships, non-existent boundaries, 

ubiquitous delays, and granularity layers. This thesis is motivated by the potential role of 

artificial intelligence to understand and address these complexities of an HCDE. An HCDE 

generates dynamic, unlabelled, and continuous data in structured and unstructured digital big 

data streams which can be better understood, analysed and synthesised using novel artificial 

intelligent algorithms that detect these changes and infer causality for such changes.  

1.3 Research Questions 

Motivated by the opportunities presented by artificial intelligence to understand and address 

the complexities of digital representations of an HCDE based on the notions of digital 

equilibrium, the high-level research question is: 

How can Artificial Intelligence orchestrate equilibrium in a Hyper-Connected Digital 

Environment? 

The primary research question is dissected into specific research questions as follows.   

1. What factors of natural equilibrium stabilise a natural environment, and how are these 

factors represented in an HCDE? 

2. How can these factors of equilibrium be used to design an artificial intelligence model 

capable of detecting changes that lead to disequilibrium and detecting the causality of 

such change in an HCDE?  
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3. How can unsupervised machine learning be advanced to develop new algorithms based 

on the artificial intelligence model designed in Question 2? 

4. How can the algorithms developed in Question 3 be applied to address the practical 

challenges and complexities of real-world HCDE, demonstrated in use cases of smart 

cities, smart homes, digital health and sport? 

1.4 Research Objectives 

The first objective is to explore existing methods for understanding complex systems and 

identify the factors that influence these complex systems to remain stable. These factors will be 

used to develop a conceptual model for detecting change and the causality of changes in a 

complex environment.  

The second objective is to design and develop an artificial intelligence approach for change 

detection in an HCDE and causality analysis of that change. This approach is based on Self-

Structuring Artificial Intelligence (Self-Structuring AI). Self-Structuring AI is defined as 

intelligence structures that autonomously evolve based on the unstructured and unlabelled 

nature of data, spatially, temporally, laterally, and semantically (De Silva et al., 2020). This 

objective will explore the existing methods for change detection, investigate the limitations of 

those methods, and propose a novel Self-Structuring AI algorithm for change detection and 

causality analysis of that change in an HCDE.  

The third objective is to evaluate the proposed machine learning technique in a wide range of 

real-world applications representative of HCDE. This objective aims to demonstrate the 

effectiveness, accuracy and utility of the proposed techniques in detecting change and causality 

of change in an HCDE, leading to digital equilibrium.  
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1.5 Research Contributions 

The contributions of this thesis are: 

1. A comprehensive review of the state of the art of HCDE, system dynamics, and 

machine learning techniques for concept change detection.  

2. The design of a conceptual model for the detection of concept change and causality of 

change in HCDE.  

3. Based on the conceptual model, the design and development of a Self-Structuring AI 

algorithm for concept change detection using three machine learning paradigms, 

online, incremental and decremental.  

4. The design and development of a Self-Structuring AI algorithm for understanding 

causality of concept change in HCDE using a generalised suffix trie and a behaviour 

tree algorithm that identifies the causal relationships between multiple data streams.  

5. Demonstration of the Self-Structuring AI algorithm for concept change detection using 

a widely-cited benchmark SEA dataset (Street & Kim, 2001). 

6. Application of the concept change detection algorithm in real-life HCDE scenarios of 

air traffic, smart energy, smart city traffic and physical activity monitoring.  

7. Application of both algorithms on an intelligent transport case study based on real-time 

data from the arterial road network of Victoria, in collaboration with VicRoads, the 

Victorian Roads Authority.  

8. Application of the causality of change detection algorithm on physical activity 

monitoring dataset and video analytics for sports.  
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1.6 Chapter Outline of the Thesis 

Chapter 2 presents the literature review on HCDE, system dynamics, and AI techniques for 

concept change detection. The chapter elaborates how theories of system dynamics are used in 

this thesis to understand the natural, social and human-made complex environments and the 

limitations of this approach. Further, the chapter provides an overall understanding of data 

streams and knowledge discovery from data streams. Moreover, the chapter provides a 

complete theoretical background of concept change.  

Chapter 3 begins by describing several instances of natural equilibrium to understand how 

nature handles change. Following this delineation, theories of system dynamics are utilised to 

design a conceptual model to detect and understand the causality for concept change. The 

proposed model proposes a novel artificial intelligence technique based on self-structuring 

artificial intelligence capable of detecting changes that lead to disequilibrium and detecting the 

causality of such change in an HCDE.  

Chapter 4 presents Self-Structuring AI algorithm for change detection. The chapter discusses 

in detail the learning paradigms of the proposed techniques; incremental, decremental and 

online. Then the chapter provides the algorithmic contribution followed by a demonstration of 

the technique with SEA benchmark dataset. 

Chapter 5 presents the empirical evaluation of the proposed Self-Structuring AI algorithm for 

change detection proposed in chapter 4. The algorithm was applied to six scenarios that are 

representatives of an HCDE settings, including four real-world datasets in air traffic, smart 

energy, smart city traffic, physical activity monitoring, and two real-world case studies on the 

arterial road network of VicRoads and an annotated driving recordings of autonomous vehicles.  

Chapter 6 presents Self-Structuring AI algorithm for concept change causality, based on several 

existing research on understanding a system's behaviour as sequences of behaviours and causal 

relationships between several data streams. The techniques are; generalised suffix trie for 

exploration of sequences of behaviour in data streams, behaviour tree method for identifying 
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causal relationships between multiple data streams. The experiments were conducted on digital 

health dataset mentioned in chapter 5 and on a publicly available video stream of a volleyball 

game. The chapter provides a comprehensive view of the proposed Self-Structuring AI 

algorithm applied to understand digital equilibrium.  

Chapter 7 concludes with a discussion of the research contributions in response to the research 

questions and directions for future work. 
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Chapter 2                             

Literature Review 

The chapter aims to characterise and examine the constructs of a Hyper-Connected Digital 

Environment (HCDE) by studying the concepts and theories of complex environments. The 

chapter elaborates how theories of system dynamics are used to find a solution in the natural, 

social and human-made complex environments and the limitations of this approach. It presents 

a real-world scenario from a road traffic environment analysed using system dynamics, the 

study of information flows in the feedback relationships. The section delineates the challenges 

that make a system extremely complex and properties that maintain the stability of the system. 

The chapter further investigates how a natural system is sensed through events and how they 

accumulate into the system behaviour, which provides information on the underlying system 

structure. The chapter also provides a detailed literature study on knowledge discovery from 

data streams in HCDE and summarise research problems and challenges. A detailed discussion 

of theories of concept change is undertaken while two types of concept change and rate of 

change are presented. The existing work on concept change is discussed in line with data 

management, forgetting mechanisms, detection methods, adaption methods and learning 

methods.  
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2.1 Hyper-Connected Digital Environments (HCDE) 

An HCDE is a conception of the hyper-connectivity of the Age of Connections where digital 

representations of the environments surrounding us (natural, human-made, virtual, social and 

artificial) are interconnected across their corresponding siloes through intelligent and 

automation technological innovations. In the current socio-technical domain, we have become 

increasingly connected physically, socially, and virtually due to improved information and 

communication technologies. Some of the applications showcase the opportunity to capture 

data in HCDE and generate analytical insights in real-time. For example (1) by applying 

analytical models in real-time smart city IoT infrastructure, (a) A city can improve the 

efficiency of urban systems such as highways and arterial roads. Real-time detection of traffic 

congestion and providing alerts to the commuters to take alternate routes identified by 

optimisation systems. (b) Optimise the power grid networks based on existing power demand 

and projections. (c) Monitor water systems for the detection of leaks and understanding the 

impact of water usage in the community. (d) Manage a wide range of infrastructures related to 

public safety and security, parking management, streetlight management. (2) Industry 4.0 

connects smaller objects such as components within a machine on a production line (Shrouf et 

al., 2014). The manufacturing process becomes more effective due to gathering, analysing and 

utilising information from these objects. The dynamic interaction between people, 

organisations and businesses have given rise to a massive surge in complexity; hence, created 

complex systems which are difficult to interpret or predict (Cortada, 2020).  

2.1.1 Understanding Complex Environments 

By their very nature, complex systems have agents compete for limited resources, such as food, 

space, power, energy or wealth (Johnson, 2009). The complexity is created with a large number 

of interactions between these heterogeneous agents, where many of those interactions result in 

new phenomena (Johnson, 2009). Further, all complex systems exist within their environment 

and are part of that environment (Ball, 2012). As the environment changes, the adaptation 
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affects the behaviour of the whole environment. The emergent behaviour of the whole cannot 

be construed by the sum of individual agents (Ball, 2012).  For the easier explanation; if we 

look into a traffic example where cars (agents) consuming roads (limited resources) create 

waves of traffic jams (emergent behaviour). The traffic is not merely about the number and 

speed of cars but the roads, traffic lights and even potholes. Changes of those components will 

result in the traffic pattern to change, and the agents adapt to their environment resulting the 

system and its environment to co-evolve. Drivers of the cars stop the car by seeing the taillights 

of the car in front of them, meaning that the agents are interconnected and have non-linear 

interactions (Ball, 2012). This interconnectivity can be seen even within environments 

(Mitchell, 2011). For example, (1) a pandemic involves the interplay of people, viruses, travel, 

social interaction and medical care, (2) financial system constantly fluctuates due to the 

interaction between financial instruments, banks and the investor psychology. The major 

challenge of these complex systems is to recover quickly from the next unexpected event in our 

natural, social and artificial systems (Axelrod & Cohen, 1999).  

2.2 System Dynamics  

'System Dynamics' is the study of natural and human-made complex and dynamic systems 

(Springael & Kunsch, 2002). To understand how system dynamics theories can be applied in 

HCDE, let's look at a study that uses data from a digital representation of a human-made 

environment. This study has been conducted in Accra (5° 33′ N and 0° 13′ W), the capital city 

of Ghana to understand the traffic congestion (Armah et al., 2010). The reason for the study to 

be conducted in Accra is the poor urban transport system as opposed to the increased 

population. The transport system is characterised by long commuting times, extended journey 

delays, lengthy waiting lines for public transport, high accident rate and poor environment 

standards (Obeng-Odoom, 2009). This situation can be seen in many cities of developing 

countries across Asia and South-America (Faiz et al., 1995; Kutzbach, 2009; Mahendra, 2008; 

Obeng-Odoom, 2009), and even worse conditions in megacities such as Bangkok, Manila, Sao 

Paulo, Shanghai and Mexico City (Cervero & Golub, 2007; Mahendra, 2008). To overcome 
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this situation, Armah et al. (2010) have created a causal loop to understand the complexity of 

the system (Figure 2.1).  

In Figure 2.1, everything else being the same, a (+) sign indicates that changes are reinfored 

and (-) sign indicates changes are resisted. Reinfored effects are not necessarily good and 

resisted effects are not necessarily bad. Delays, shown by the double line on an arrow, occur in 

all systems and maybe in in seconds, minutes, hours, months or years. The delay marked on 

road construction and highway capacity is in years. The two counter-scting processes, pressure 

to reduce congesition and need for road contruction results in a closed-loop reinforcement. As 

far as the behaviour is concerned, there is compensating feeback as a response to the congestion. 

Decreased congestion makes driving more attractive, people use less public transport and public 

transport service go down. Hence, in the end, the whole system is caught in a feedback structure 

where public transport degrades, traffic increases, and congestion increases more and more.   

  

Figure 2.1 Traffic volume dynamics of traffic congestion in Accra (Armah et al., 2010). A plus 

sign (+) over an arrow from X to Y implies that if X increases so does Y, or if X decreases, Y 

also decreases. A minus sign (–) indicates an inverse effect.  

 

A 

 

B 
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Further, in Figure 2.1 (B), attractiveness of driving coupled with inadequate public transport is 

increased by reduced travel time. Increasing the attractiveness of driving leads to trips per day 

and average trip length. These two factors feed into increased traffic volume. The delay in 

public transport patronage is arisen by the time taken by an individual to save money to buy a 

car as well as readiness to change lifestyle. Gross Domestic Product (GDP) and livelihoods take 

significant time to improve. Therefore, the shift from public transport to personal cars often 

goes unobserved. Eventually, the number of cars in the Accra increases, leading to an increase 

in traffic volume. Therefore, even though the original goal was to reduce traffic congestion, the 

outcome indicates that the feedback loops rather reinforce the problem. 

The resulting causal loop diagram from the case study helps us understand the robustness in the 

traffic environment and understand the complexity of the smart city system. Even though 

Armah et al., (2010) are successful in understanding the complexity of this transportation and 

traffic congestion, we believe that the transforming this environment to an HCDE managed by 

artificial intelligence can be used to understand and intervene any adverse situations such as 

traffic congestions.  

2.2.1 What is a Natural System? 

A system is defined as "a set of elements, interconnections and functions coherently organised 

to achieve a function or purpose" (Meadows et al., 1992).  We explain this through three 

different use cases; natural ecosystem, a sports game and a novel smart city environment.  

Use case 1: A natural predator-prey system consists of elements such as predators, preys, food 

etc.; interconnections such as sensing, running, attacking, hiding; and the purpose is the 

survival. 

Use case 2: A volleyball team is a system with elements such as players, ball, coach and field; 

interconnections are the rules of the game, coach's strategy, players' communications and the 

laws of physics which govern the motion of the ball and players; and purpose of the team is to 

win the game, or have fun, or get exercise, make money, or all of the above.  



Chapter 2 

28 

 

Use case 3: A smart city traffic environment consists of subsystems with elements such as 

vehicles, roads and traffic lights, interconnections such as road rules, speed limits and driver 

behaviours and the purpose could be safety or minimising travel time or both.  

Systems can change, adapt, respond to events, seek goals, mend injuries, and attend to their 

survival in realistic ways, although they may contain or consist of nonliving things (Figure 

2.2)(Meadows, 2008). Systems are self-organising, self-repairing, resilient, and most of them 

are evolutionary. Completely new, unimaginable new systems can evolve from one system.  

 

Figure 2.2 Changes in Natural System: as for the natural equilibrium/phenomena, changes can 

occur in the system's elements, interconnections and functions. Changing elements usually has 

the least effect on the system. Changing interconnections will have a greater impact on the 

system. Changes in the function or purpose can have a drastic impact on the system. 

Use case 1: Changes in the population of a predator will affect the prey population. Changes in 

the interactions such as sensing will change how a predator hunt prey or ability of prey to escape 

from a predator. What if we keep the prey and predator population and the interactions the 

same, but change the purpose to reduce the population? 

Use case 2: It is still recognised as a volleyball game even if all the players in a team are 

changes, although, this might have an impact on the performance of the team. Changing the 

rules of the game will change the volleyball game to a basketball game. What if you keep the 

player and the rules the same but change purpose of the game from winning to losing?  

Use case 3: In a road traffic environment, changing the vehicles or the drivers will not change 

the traffic situation drastically although, this might have an impact on the traffic condition. A 

Change in function

Drastic influence on 
the behaviour of the 
system

Change in Interconnection

Greater impact on the 
behaviour of the 
system

Change in element

Small effect on the 
behaviour of the system

Behaviour 
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change in the road rules will have a bigger influence on a traffic situation. What if we keep the 

drivers and the roads rules the same and change the purpose?  

A change in function changes a system profoundly, even if every element and interconnection 

remain the same. Changes in the function, interconnections and elements change the behaviour 

of the system and set the pace of the dynamics. With the changes, a system comes to a state of 

dynamic equilibrium and creates mutual causal interaction, where x affects y and y affects x, 

and so on. State of dynamic equilibrium creates an ongoing process called feedback loops. The 

natural environment is full of these mechanisms formed by the links between living and non-

living things. For instance, this builds resilience by governing the way populations and food 

webs respond to events.  

Stabilising Loops – Balancing Feedback 

One common type of feedback loop that stabilises the system or sub-system is called a 

balancing feedback loop, and it aims at goal-seeking or equilibrating (Meadows, 2008). A 

balancing feedback loop opposes whatever direction of change that is imposed on the system. 

For example, if you push the number of elements too far up, a balancing feedback loop will try 

to pull it back down; if you shove the number of elements too far down, a balancing loop will 

try to bring it back up. This behaviour pattern can be seen in many systems in the world such 

as when (a) your body adjusts to blood-sugar concentration, (b) you pull your car to a stop at a 

stoplight, (c) a reservoir is brought up or down to its desired level, (d) a missile finds its target.  

Reinforcing Feedback Loop 

The second kind of feedback loop is called a reinforcing feedback loop that enhances whatever 

direction of change imposed on it (Meadows, 2008). Reinforcing feedback loops can be found 

wherever a system element can reproduce itself or grow as a constant fraction of itself, for 

example, money in the bank or pests in a cornfield.  

Feedback loops are linked together in natural systems, often in tremendously complex patterns 

(Meadows, 2015). Many feedback loops in a complex system tug against each other, 
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maintaining the natural equilibrium and denoting the cause and effect in a system. This 

nonlinear relationship between cause and effect does not produce a proportional effect. For 

example, as traffic flow on a highway increases, car speed is affected only slightly over a large 

range of car density (Figure 2.1). Eventually, however, small further increases in density 

produce a rapid drop-off in speed. When the cars on the highway build up to a certain point, it 

can result in a traffic jam, and car speed drops to near-zero.  

Figure 2.3 summarises the components of a system structure. System structure consists of three 

components; elements, interconnections and purpose/function. Change in each component 

influences the system in different levels: element has the smallest influence and 

purpose/function has the biggest influence from a change. Changes in the elements, 

interconnections or functions set the pace for mutual causal relationships and create balancing 

and reinforcing feedback loops to maintain the equilibrium. As an HCDE is the digital 

representation of the natural environment, the digital environment can be represented with the 

same underlying system structure.  

 

Figure 2.3 A system structure: Changes in elements have the lowest influence, whereas changes 

in the purpose or function have the biggest influence in the whole system structure. Change 

creates mutual causal relationships and identified as balancing and reinforcing feedback loops. 
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2.2.2 How Do Systems Keep Stability/Equilibrium? 

In any highly dynamic systems such as ecosystems, stability is maintained through one of the 

three characteristics; resilience, self-organisation or hierarchy (Meadows, 2015) (Figure 2.4). 

These three characteristics lend systems the ability to function well over the long term and to 

be sustainable. As explained above, the digital environment represents the natural environment; 

hence, the properties of a natural environment that keep stability is applicable in the digital 

environment.  

Resilience: "The ability to bounce or spring back into shape, position, etc. after being pressed 

or stretched." Resilience is a measure of a system's ability to stabilise within a dynamic 

environment. Resilience arises from a rich structure of many feedback loops that can work in 

different ways to restore a system even after a large perturbation. Ecosystems "learn" and 

evolve through their incredibly rich genetic variability. Awareness of changes in the system 

enables one to see many ways to preserve or enhance a system's resilience powers.  

Self-Organisation: An impressive characteristic of a complex system is their ability to learn, 

diversify, complexify and evolve, known as self-organisation. Like resilience, the purpose of 

self-organisation is to provide short-term productivity and stability. Self-organisation produces 

heterogeneity and unpredictability, allowing and creating whole new structures. Ecosystems 

are remarkably self-organising, with multiple species holding each other in check, moving 

around in space, multiplying or declining over time in response to weather and food availability. 

The world is organised in self-organised subsystems aggregated into larger subsystems.  

Hierarchy: In creating new structures and increasing complexity, one thing that a self-

organising system often generates is a hierarchy. Hierarchies give system stability and 

resilience and reduce the amount of information that any part of the system has to track. 

Hierarchical systems are partially decomposable. When hierarchies break down, they usually 

split along their self-organised subsystem boundaries. Hierarchical systems evolve from the 
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bottom up. The purpose of the upper layers of the hierarchy is to serve the purposes of the lower 

layers.  

 

Figure 2.4 Properties of a System: self-organising, hierarchy and resilience. 

2.2.3 Challenges of Systems 

The systems are more complex due to non-linear relationships, non-existent boundaries, 

ubiquitous delays and layers of limits (Meadows, 2015) (Figure 2.5). The digital environment 

that represents the natural environment comprises of these challenges. These challenges depict 

the need for an AI algorithm to understand the digital environment.  

Non-linear Relationships 

To understand the nature of the relationships, we tend to look at the world as having linear 

relationships. However, the world is full of non-linear relationships where the cause and effect 

do not produce a proportional effect. Below are a couple of examples for non-linear 

relationships explained by (Meadows, 2008). 

• As traffic flow on a highway increases, car speed is affected only slightly over a large 

range of car density. Eventually, however, small further increases in density produce a 
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rapid drop-off in speed. And when the number of cars on the highway builds up to a 

certain point, it can result in congestion, and speed drops to zero.  

• Soil erosion can proceed for a long time without much effect on crop yield—until the 

topsoil is worn down to the depth of the crop's root zone. Beyond that point, a little 

further erosion can cause yields to plummet.  

• A little tasteful advertising can awaken interest in a product. A lot of blatant advertising 

can cause disgust for the product. 

Nonlinearities are important because they change the relative strength of feedback loops. It 

changes the behaviour of a system from one mode to another.  

Non-existent Boundaries 

A system is connected to everything else, but not neatly. That is, systems are not separate as 

the world is a continuum. There are only boundaries of word, thought, perception, social 

agreement and mental model. A boundary is defined based on the purpose or task. If a boundary 

is defined too narrowly, that is, if we separate a system from everything else, the system will 

surprise us. For example:  

• We try to separate and solve the urban traffic problem by building highways, attracting 

new housing systems and more cars coming to the road. As a result, the urban traffic 

problem will continue.  

• We try to solve the sewage problem by throwing the waste into the river; the boundary 

for sewage problem becomes the whole river, soil and groundwater surrounding the 

river. 

• The boundary for a national park does not end at the park's physical border, but rather 

by migrating wildlife, by waters that flow in and out of or under the park, by the effects 

of economic development at the park's edges and even the climate change.  

Finding the correct boundary is often challenging. The boundaries are of our own making and 

that they can and should be reconsidered for each new discussion, problem, or purpose.  
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Layers of Limits 

The world comprises of many causes that consistently work together resulting in many effects. 

In other words, multiple inputs produce multiple outputs, and therefore virtually all of the inputs 

and outputs are limited. For example:  

• A manufacturing process needs labour, capital, energy, land, raw materials, water, 

credit, technology, insurance, management, customers, public-funded infrastructure 

and government services such as health, police, and fire protection, a healthy 

ecosystem.  

The concept of layers of limit is simple yet widely misunderstood. Any physical system with 

multiple inputs and outputs such as an economy, a production process or a population is 

surrounded by this limiting factor. As a system grows, it interacts with itself and influences its 

limits. A coevolving dynamic system is created by the growing entity and its limited 

environment together.  

Ubiquitous Delays 

Delays are ubiquitous in systems. For example: 

• The delay between catching an infectious disease and getting sick enough to be 

diagnosed, for example, COVID-19.  

• The delay between pollution emission and the purification or diffusion or absorption of 

the pollutant to the point at which it harms the ecosystem. 

• The gestation and maturation delay in breeding animals or plants. 

• The delay in changing the social norms for desirable family size. 

• The delay in retooling a production stream and the delay in turning over a capital stock. 

The production of a new car takes about three to eight years. That car may stay on the 

road for about ten to fifteen years. 
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Delays determine how timely is the information passed around a system, how accurately they 

hit their targets, and how fast systems can react.  

 

Figure 2.5 Challenges of a system: Nonlinear relationships, non-existent boundaries, ubiquitous 

delays and layers of limit 

2.2.4 Events and System Behaviour for Understanding the System 

Structure 

Human often observes the interconnected, feedback dominated world as a series of events 

(Meadows, 2008) (Figure 2.6). Daily news provides us glimpse of natural disasters, civil 

unrests, wars, political agreements, real estate booms or busts, technological advancements etc. 

These events, each one different from another, can be fascinating and does not hold much 

explanatory or predictive value. Events are the most visible aspect of a larger complex like the 

tip of an iceberg rising above the water but not always the most important.  
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Events accumulate into a dynamic pattern of behaviour that provides more explanatory and 

predive value (Figure 2.6). A system's behaviour can be seen by its growth, stagnation, decline, 

oscillation, randomness, or evolution. A better behaviour level understanding can be achieved 

if the above-mentioned daily news is provided with a historical perspective. This behaviour 

relates information on the underlying system structure and structure is the key to understanding 

what is happening and why (Meadows, 2008).   

 

Figure 2.6 Overall view of a system - we sense the changes in the system as events, events 

accumulate into system behaviour, system behaviour provides information to the system 

structure. 

System thinking looks at the structure of the system with its interlocking stocks, flows, and 

feedback loops and at the behaviour with time graphs. System structure determines the 

behaviours that are hidden in a system. A goal-seeking balancing feedback loop holds a 

dynamic equilibrium. A reinforcing feedback loop generates exponential growth. The two of 

them linked together are capable of growth, decay, or equilibrium. If it contains delay, it may 

produce oscillations. 
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2.3 Related Work in Conventional Digital 

Environments 

Many data stream applications work in dynamic environments where the underlying process is 

not strictly stationary. This results in variability, a research challenge that is discussed in 

detailed in this section. As our environment is naturally dynamic and constantly changing over 

time, the big data generated in the current digital environments have variability embedded in 

them. Examples of such systems are real-time surveillance systems, telecommunication 

systems, sensor networks. For an accurate result, learning algorithms that learn from these data 

must track this changing behaviour and adapt the decision models accordingly.  

2.3.1 Knowledge Discovery from Conventional Digital Environment 

Extracting potentially useful knowledge from data streams is challenging. Machine learning 

and knowledge discovery techniques in research and practice focused on small datasets where 

the whole training dataset is available to the algorithm. These algorithms usually process the 

training data multiple times and output a decision model. The rationale behind this practice is 

that examples are generated at random according to some stationary probability distribution 

(stochastics) (Brain & Webb, 2002). Most of these machine learning algorithms use a greedy, 

gradient descent or ascent search in the space of the learning model and are prone to high-

variance and overfitting problems. In current big-data applications, learning algorithms need to 

learn in dynamic environments, where the data are collected over time. A desirable property of 

these algorithms is the ability to incorporate new data resembling new concepts. If the process 

is not strictly stationary, as are most real-world applications, the target concept could gradually 

change over time.  

This new world in movement induced by ubiquitous environments redefines the characteristics 

for the data (Gama, 2010): 
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• Data are made available through unlimited streams that continuously flow, eventually 

at high speed, over time. 

• The underlying regularities may evolve over time rather than be stationary. 

• The data can no longer be considered as independent and identically distributed. 

• The data are now often spatially as well as time situated.  

These new characteristics of data affect even the very basic operations at the core of learning 

methods. For example, (1) when all data are available and stored in a working matrix, we can 

apply any clustering algorithm over the transpose of the working matrix. This is not applicable 

when the data evolve over time as the transpose operator is a blocking operation where the first 

output tuple is available only after processing all the input tuples (Barbará, 2002); (2) 

computation of entropy of a data stream which is no longer finite, the number of variables is 

huge, and the target classes are not known prior; (3) continuous maintenance of the k-most 

frequent items in a retail data warehouse with three terabytes of data, hundreds of gigabytes of 

new sales records updated daily with millions of different items. Solutions to these problems 

require new sampling and randomising techniques, together with new approximate and 

incremental algorithms (Aggarwal, 2007; Gama & Gaber, 2007; Muthukrishnan, 2005).  

2.3.2 Research Problems and Challenges in Data Stream Analytics 

There are many research problems and challenges addressed in data stream learning (Gaber, 

Krishnaswamy, et al., 2005; Gaber, Zaslavsky, et al., 2005; Golab & Özsu, 2003). The major 

challenge in data stream mining is the variability discussed in detail in section 2.3.3. Another 

main issue addressed is the continuous flow of data streams where traditional database 

management systems cannot deal with a high velocity of data. Novel indexing, storage and 

querying techniques are required to handle this fluctuated flow of information streams. 

Scalability is another issue addressed in data stream analytics. A large amount of streaming 

data are generated in resource-constrained networks such as sensors networks (Bhargava et al., 

2003). Scalability is a crucial issue as the generated streams are sent to a central site. With the 

scalability, unbounded memory must be addressed as well. Most of the machine learning 



Literature Review 

39 

 

methods require data to be present in memory while executing learning algorithms. Due to the 

high volume of data generated from the streams, machine learning algorithms have to be 

executed online.  

Apart from the data management issues in data streams analytics, issues related to the results 

also need to be addressed. Techniques based on space and time must be accompanied with 

acceptable accuracy levels. Approximations algorithms (Muthukrishnan, 2005) can guarantee 

error bounds and sampling techniques such as VFML (Domingos & Hulten, 2001) allows 

adaptation to the concept seen before. Further, how the results changed over time would provide 

an insight into the dynamics of the data streams and benefit many temporal-based analysis 

applications. This issue has been addressed in MAIDS (Cai et al., 2004). Finally, the 

visualisation of the data mining results is also quite challenging and is addressed in (Kargupta 

et al., 2002). 

There are many more research issues and challenges that have not been addressed (Gaber, 

Zaslavsky, et al., 2005). The integration between data stream management systems and the 

ubiquitous data stream mining approaches is an essential issue that needs to be addressed for 

a fully functioning ubiquitous mining. Further, the possibility of data pre-processing in stream 

mining process has not been addressed so far in the literature. Data pre-processing consumes 

major effort in the data mining process, and it is challenging to automate this process.  

Limitation of data stream mining technologies is also an important issue that needs to be 

addressed for real-world applications. Thus far, techniques proposed to improve the 

computational complexity of the mining algorithms within some margin of error without noting 

the real needs of the applications. Providing the user with the environment's real-time situation 

will be more useful than achieving better computational accuracy.  

In addition to the data stream mining problems and challenges addressed above, a major issue 

in data stream mining is the variability known as concept change elaborated next in this chapter.  
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2.3.3 Concept Change 

Due to the variability of the data stream, the underlying concepts could evolve from time to 

time, each time after minimum permanence. The change is reflected in the feature vector, where 

old observations that reflect the behaviour becomes irrelevant to the current state of the 

phenomena. Formally, concept change (known widely as concept drift) between time point 𝑡𝑜 

and time point 𝑡1 can be defined as equation 2.1, 

where 𝑃𝑡0
 denoted the joint distribution at time point 𝑡0 between the set of input variables 𝑥⃗𝑖 

and the target variable 𝑦 (Gama et al., 2014).  

To explain the change detection further, suppose we have a sequence of pairs (𝑥⃗𝑖, 𝑦𝑖) where 

𝑦𝑖 ∈ {𝐶1, 𝐶2, … , 𝐶𝑘}. At each time stamp 𝑡 the learning algorithm outputs a prediction class 𝑦̂𝑡. 

If the examples are independent and generated at random by a stationary distribution 𝐷, a 

traditional supervised machine learning algorithm (decision tree, regression etc.) learning from 

the sequence can approximate the class label. If 𝐷 is not stationary, time to time, the distribution 

that is generating the examples changes. In this case, the data stream can be defined as 

sequences 〈𝑆1, 𝑆2, … , 𝑆𝑘 , … 〉, where each element is a set of examples generated by a stationary 

distribution 𝐷. A traditional machine learning algorithm learning from this data stream cannot 

guarantee arbitrary precision. The main problem of learning from this stream is not knowing 

when the change occurs. Figure 2.7 illustrates two different examples of change.  

A concept can be defined as the relationship between a set of independent variables, 𝑥⃗, and a 

dependent variable, 𝑦. The joint probability 𝑃(𝑥⃗, 𝑦) can be decomposed in (equation 2.2):  

Lazarescu et al. (2004) define concept change in terms of consistency and persistence. 

Consistency refers to the change 𝜖𝑡 =  𝜃𝑡 −  𝜃𝑡−1 that occurs between consecutive examples of 

the target concept from time 𝑡 − 1 to 𝑡, with 𝜃𝑡 being the state of the target function in time 𝑡. 

 ∃𝑥: 𝑃𝑡0
(𝑥⃗𝑖, 𝑦) ≠  𝑃𝑡1

(𝑥⃗𝑖, 𝑦) (2.1) 

 𝑃(𝑥⃗, 𝑦) = 𝑃(𝑦 𝑥⃗⁄ ) × 𝑃(𝑥⃗) (2.2) 
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A concept is consistent if 𝜖𝑡 is smaller or equal than a consistency threshold 𝜖𝑐. A concept is 

persistent if it is consistent during 𝑝 times, where 𝑝 ≥  
𝜔

2
 where 𝜔 is the size of the window. If 

a concept change is both consistent and persistent, it is considered permanent or as a real 

concept change. If the concept change is consistent but not persistent, it is a virtual concept 

change. Noise has neither consistency nor persistency.  

In the setting that we are considering, the nature of change is diverse and abundant. Existing 

machine learning algorithms learn from observations described by a finite set of attributes. 

However, in IoT applications, important properties that influence the behaviour of nature could 

be hidden. As a result, concepts learned at one time can become inaccurate. There could be two 

implications of these changes:  

1. The data distribution 𝑃(𝑦 𝑥⃗⁄ ) changes and affects the predictive decision. This is 

known as Real Concept Change (or Real Concept Drift). Such changes can happen 

with or without changes in 𝑃(𝑥⃗). An illustrative example of a real concept change in 

two-dimensional feature space with two classes is presented in Figure 2.7 Real 

Concept Change - example demonstrates how the decision boundary changes in a two-

dimensional feature space. Different colours represent different classes. 

 

Figure 2.7 Real Concept Change - example demonstrates how the decision boundary changes 

in a two-dimensional feature space. Different colours represent different classes. 
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2. The changes are visible from the data distribution without knowing the true labels, that 

is, changes in the distribution of incoming data 𝑃(𝑥⃗) without affecting 𝑃(𝑦 𝑥⃗⁄ ). This 

is known as Virtual Concept Change (or Virtual Concept Drift). An example of virtual 

concept change is spam filtering applications, where the data priors change but not the 

meaning (Figure 2.8). 

 

Figure 2.8 Virtual Concept Change - corresponds to a change in data distribution that leads to 

changes in the decision boundary. Different colours represent different classes.  

Further, the rate of change over time also provides important information regarding the concept 

change. Figure 2.9 illustrates different forms of change on one-dimensional data where the 

change happens in the data mean.  
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Figure 2.9 A demonstration of concept change types (A. Liu, 2018). Sudden Drift - A concept 

change may happen suddenly or abruptly by switching from one concept to another. In this 

case, drifts may introduce new concepts that were not seen before. Gradual Drift – A concept 

change may happen gradually with going back to the previous concept from time to time, for 

some time, before changing completely to a different concept. Incremental Drift – A concept 

change may happen incrementally with many intermediate concepts in between. Reoccurring 

Drift - A concept change may introduce previously seen concepts may reoccur after some time.  

Most commonly found concept changes are abrupt drifts, which is also known as concept shift, 

and reoccurring drifts, which denotes a pattern (Gama & Gaber, 2007). Gradual and incremental 

changes in the target concept, such as the rate of changes in price, are another types of concept 

change. However, gradual drifts and incremental drifts are not common in the current digital 

environment (Gama, 2010). Further, slow changes can be confused with stationarity.  

A challenge faced by concept change detection algorithms is that they must differentiate noise 

or outliers from change (Gama et al., 2014). The difference between noise and a concept change 

is persistence, where there would be a consistent set of examples in the new concept (Gama et 

al., 2014). Algorithms for change detection must combine robustness to noise with sensitivity 

to concept change (Gama et al., 2014).  
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2.3.4  Characterisation of Change Detection Methods 

Most machine learning techniques that deal with changing concepts assume that most recent 

examples are the most relevant ones (Klinkenberg, 2004; Widmer & Kubat, 1996). In this 

section we investigate a taxonomy for adaptive algorithms that learn a predictive model from 

evolving data with unknown dynamics; (1) data management, (2) forgetting mechanisms, (3) 

detection method, (4) adaptation method.  

2.3.4.1 Data Management 

Learning under concept change requires updating the underlying predictive model with new 

information and forgetting the old and irrelevant information (Gama et al., 2014). Data 

management methods represent how the information is stored and used by machine learning 

techniques. Data can be characterised as short-term memory represented as data and long-term 

memory represented as a generalization of data. The short-term memory or data will be 

consumed as a full dataset or partial dataset by the machine learning algorithms. Learning from 

partial memory typically aims at learning from most recent data: either a single example or 

multiple examples (Figure 2.10).  

Short-term Memory (Data) – Full Dataset 

Some machine learning algorithms use the full dataset stored in memory to learn and detect 

concept changes. In this data management method, weighting to the examples is included based 

on the age so that high importance is added to the most recent data and decrease the importance 

with time. Therefore, the oldest information has less importance. The strategy can be 

implemented using linear decay (Koychev, 2000, 2002) or exponential decay (Klinkenberg, 

2004).  

Short-term Memory (Data) – Partial Dataset 

This data management method stores only the most recent examples in a first-in-first-out (fifo) 

data structure, where fifo define a time window over the stream of examples. At each processing 
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time, the learning algorithm uses only the examples that are available in the current time 

window.  

Single Examples: Online learning algorithms hold the base of using only one example at a time 

in the order of arrival (fifo). In this approach, the learning algorithm does not store the training 

dataset in memory and does not access the previous examples. The online learning algorithms 

are recognised as naturally adaptive to evolving concepts. These algorithms update to the 

model-driven by the error; hence, the model will be continuously updated with the most recent 

examples. However, online learning systems do not have explicit forgetting mechanisms. 

Adaptation to new concepts would be visible only as the old concepts are diluted due to the 

new incoming data. Such existing machine learning algorithms that use single instance memory 

systems include STAGGER (Schlimmer & Granger, 1986), DWM (J. Zico Kolter & Maloof, 

2007, 2003), SVM (Syed et al., 1999), IFCS (Bouchachia, 2011), and GT2FC (Bouchachia & 

Vanaret, 2014). Although algorithms such as WINNOW (Littlestone, 1988) and VFDT 

(Domingos & Hulten, 2000) can adapt to slow changes over time, their slow adaptation affects 

the detection of abrupt concept changes.  

Multiple Examples: This data management method aims at learning from a set of recent 

examples. FLORA (Widmer & Kubat, 1996) is a supervised incremental learning algorithm for 

detecting concept changes in evolving data that uses a window of data based on fifo. In general, 

the training window size can be fixed or variable. Fixed-size sliding windows will store a fixed 

number of most recent examples where the oldest example will be discarded when a new 

example arrives. Variable size sliding window varies the number of examples in a window over 

time, depending on the indication of changed concept.  

These learning algorithms are updated following two processes, (1) learning process in which 

the algorithm builds a new model based on the examples available on the new window (2) and 

a forgetting process in which the data that are moving out of the window are discarded. The 

key limitation of the sliding window approach is the need for defining the appropriate window 
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size. Although a short window would reflect the current distribution more accurately and ensure 

fast adaptation to concept changes, it could affect the system's performance during the stable 

periods. A large window will provide a better performance in a stable time, but detection and 

adaption to concept change will not be efficient. There are two implementations of windows: 

I. Fixed-size windows – This method stores a fixed number of examples in memory 

where new examples are available oldest examples are discarded. This is the simplest 

method in handling concept changes and can be used as a baseline for performance.  

II. Adaptive size windows – This method stores carriable number of examples in the 

window and is decided based on the detection model. The addition of new data and the 

deletion of old data keep the window consistent with the current concept. The most 

common implementation is to decrease the window size in case of change detection 

and increase the window size otherwise.  

FLORA2 (Widmer & Kubat, 1996) was the first algorithm to use adaptive windows. 

Modifications of these algorithms deal with recurring concepts (FLORA3) and noisy 

data (FLORA4). A study that uses support vector machines (SVMs) for detection and 

adaptation concept change maintains an appropriate size window, adjusting the window 

size based on the estimate of the generalization error. João Gama et al., (2004),  

Klinkenberg (2004), and Maloof & Michalski (1995) have also proposed similar 

algorithms for concept change detection and adaption based on learning window of 

variable length. Although these methods assume that recency of the data is associated 

with importance and relevance, this assumption may not be true in every circumstance 

(when the data is noise or concept reoccur). Also, windowing may fail if a change lasts 

longer than the window size.  
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Figure 2.10 Data management methods – how the data processed as a data stream are stored or 

retrieved by the learning algorithm to detect and adapt to concept change.  

2.3.4.2 Forgetting Mechanisms 

Dynamic environments with non-stationary distributions must forget the observations that are 

not consistent with the current natural behaviour (Gama et al., 2014). Change detection 

algorithms will only adapt to the new concepts only if old information is forgotten. The data 

management models also need to address forgetting mechanisms. Weighting examples 

corresponds to gradual forgetting, and time windows correspond to abrupt forgetting (Figure 

2.11). It is possible to combine both forgetting mechanisms by weighting the examples in a 

time window (Klinkenberg, 2004).  

There are several models based on abrupt forgetting have been presented in the literature which 

can be separated into implementations of two basic types of sliding windows;  

I. sequence-based – where the number of observations defines the window size. There 

are different models for sequence-based windows; 

a. sliding windows of size 𝑗 which stored only the most recent examples in a fifo 

data structure.  

b. landmark window which stored all the examples during a given timestamp, 

resulting in a variable size window.  

II. timestamp-based – where the window size is defined by the time duration 𝑡 includes 

all the elements that arrived within the time.  
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Gradual Forgetting is a full memory approach where no examples are completely discarded 

from memory. Examples in memory are associated with weights that reflect their age where the 

importance of an example in the training set decreases over time. Suppose at time 𝑡, the stored 

sufficient statistics is 𝑆𝑡 − 1 and the example is 𝑋𝑡. If the aggregation function is 𝐺(𝑋, 𝑆), the 

new sufficient statistics are computed as 𝑆𝑡 = 𝐺(𝑋𝑡 , 𝛼𝑆𝑖 − 1) where 𝛼 ∈ (0,1) is the fading 

factor. Further, Koychev (2000, 2002) has presented a technique based on linear decay and 

Klinkenberg (2004) has proposed a technique based on exponential decay where weights are 

assigned to examples according to their age using an exponential aging function 𝑤𝛽(𝑋) =

exp(−𝛽𝑘), where the example 𝑋 appeared 𝑘 timestamps ago and the parameter 𝛽 defines how 

fast the weight decrease.  

 

Figure 2.11 Forgetting mechanisms - how the information that is no longer relevant, are 

removed.  

2.3.4.3 Detection Methods 

Detection methods characterise the techniques and mechanisms of concept change detection. 

Change detection algorithms can provide a meaningful description indicating change-points or 

small time-windows where the change occurs (Gama et al., 2014). Two different approaches 

are used in literature (Figure 2.12);  
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I. Monitoring the evolution of performance indicators. Indicators such as performance 

and properties of data are monitored over time for a good overview of these indicators. 

II. Monitoring distributions between a reference window summarises past information and 

a window representing the most recent examples.  

 

Figure 2.12 Concept change detection methods 

Change Detection based on Performance Indicators 

Majority of the work in literature are based on performance indicators. These algorithms 

monitor the changes in the performance indicators such as accuracy or error-rate of the learning 

algorithm and detects as a concept change if there is a statistically significant increase (error 

rates) or decrease (accuracy). Widmer & Kubat (1996) have developed a rule-based classifier 

based on window adjustment heuristic. To detect a concept change, the accuracy of the 

algorithm is monitored over time where the window size is adjusted accordingly. Klinkenberg 

& Renz (1998) propose monitoring accuracy, recall and precision over time and later compare 

with the confidence interval of standard sample errors for a moving average value of each 

indicator. Klinkenberg & Joachims (2000) have proposed an effective and efficient method of 

detection using properties of Support Vector Machines in which the window size is selected to 

minimise the generalization error on new examples.  

Drift Detection Method (DDM) (Gama et al., 2004) defines warning levels and drift levels for 

concept change detection. DDM monitors the online error-rate of the algorithm in a fixed 

window while the training examples are presented in sequence. The algorithm will classify the 

newly arriving examples with the current model. Although the algorithm expects a low error 
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value in this classification, the error will increase if the distribution changes. Here the algorithm 

defines a warning level and subsequently a drift level. When the warning level is reached, DDM 

starts training another model while the current model continues to provide classifications. When 

the drift level is reached, the old model is replaced by the new model. This principle has been 

adopted and applied in Learning with Local Drift Detection (Gama & Castillo, 2006), 

Heoffding's inequality based Drift Detection Method (Frías-Blanco et al., 2015), Fuzzy 

Windowing Drift Detection Method (A. Liu et al., 2017), and Dynamic Extreme Learning 

Machine (S. Xu & Wang, 2017).  

In contrast to DDM, Nishida & Yamauchi (2007) have proposed a statistical test of equal 

proportions based method where the concept change is detected by comparing the examples of 

the most recent time window with the overall examples available. The time window is defined 

by the user, and each timestamp comprises of two-time windows. ADaptive WINdowing 

(ADWIN) (Bifet & Gavaldà, 2007) is another popular drift detection method that uses two-time 

windows. Unlike the above statistical method, ADWIN uses sliding windows whose size does 

not need to be defined in advance. Sliding window size is recomputed online based on the rate 

of change observed from the data in the current window. There are many concept change 

detection algorithms/methods that are derived from ADWIN: (Bifet & Gavaldà, (2009), Bifet, 

Holmes, Pfahringer, & Gavaldà, (2009), Bifet, Holmes, Pfahringer, Kirkby, et al., (2009), 

Gomes et al., (2017)).  

Change Detection based on Distribution 

Methods that use distribution for concept change detection use a distance function or metric to 

quantify the dissimilarity between the distribution between the old window and new window 

(Dasu et al., 2006; Lu et al., 2014; Shao et al., 2014).  If there is a statistically significant 

dissimilarity, the learning model needs to be changed. The advantage of this method is that the 

algorithms address the concept change from the root sources, which is the distribution of the 

data. With this drift detection method, more information regarding the drift such as the time the 

drift occurred can be identified accurately. However, these algorithms need the user to predefine 
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the old window size and new window size and keep the historical data in the memory. This is 

infeasible in the current digital environment in which high volumes of data are processed in 

high velocity. Further, these algorithms are known to incur a high computational cost.  

Kifer et al. (2004) have proposed a method that uses the distribution for concept change 

detection. They propose algorithms that monitor two probability distributions drawn from 

samples and decide whether these distributions are different. VFDc is another algorithm that 

uses the same approach continuously monitor the differences between two class distributions 

of the examples.  

2.3.4.4 Adaptation Methods 

The adaptation methods characterise the adaptation of the learning models to the changing 

concepts. In literature there are two different approaches (Figure 2.13);  

I. Blind methods where the learning algorithm is adapted at regular time intervals without 

considering whether changes have occurred. This is implemented with the methods that 

weight the examples according to their age and the methods that use time window of 

fixed size explained earlier (Klinkenberg & Joachims, 2000; Klinkenberg & Renz, 

1998; Maloof & Michalski, 1995; Widmer & Kubat, 1996).  

II. Informed methods where the learning algorithm is modified only after a change has 

occurred (Gama & Castillo, 2006). This method is used in conjunction with a detection 

method.  

 

Figure 2.13 Adaptation methods – how the learning algorithm is adapted to the new concept.  
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2.3.4.5 Learning Methods 

The learning methods characterise techniques and mechanisms for generalising from examples 

and updating the predictive models from evolving data. Learning can carryout whenever new 

examples are available. The literature discusses two different learning modes (Figure 2.12);  

I. Retraining where the current model is discarded, and a new model is built from 

scratch using buffered data. In the beginning, the learning model is trained with all 

the available data. Whenever new data are available, the previous model is 

discarded, and a new model is learning from all the available data (Klinkenberg & 

Joachims, 2000; Street & Kim, 2001; Zeira et al., 2004). Retraining has to emulate 

incremental learning with batch-learning algorithms (Gama et al., 2004). 

II. Incremental where the model is incrementally updated and adapted to the new 

data. Incremental learning algorithms process input data one by one or in batches 

and update the statistics (from previous data or summaries of data) of the existing 

model. Implementations of incremental learning in concept change detection and 

adaption include WINNOW (Littlestone, 1988) and MBW (Carvalho & Cohen, 

2006). MBW is developed based on a well-known algorithm including perceptron 

and multilayer perceptron. Although they have usually been using several passes 

through the training data when restricted to a single training passing over the data, 

they are particularly relevant for massive streaming data. The learning model is 

updated with the current data and with time, newly arrived data tend to erase the 

prior knowledge. In models such as artificial neural networks, learning in 

inevitably connected with forgetting. The ability to continuously learn from a 

stream of examples while preserving previously learned knowledge is known as 

the stability plasticity dilemma [Carpenter et al. 1991a]. It is a dilemma because 

there needs to be a balance between being stable to handle noise and being able to 

learn new patterns. 
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Figure 2.14 Learning methods for concept change detection and adaptation 

2.4 Chapter Summary 

The chapter presented a comprehensive literature survey on HCDE, system dynamics and 

current state of the art machine learning techniques for concept change detection on 

conventional digital environments. The chapter characterised an HCDE by studying the theories 

of complex environments and elaborated on how theories of system dynamics are used to 

characterise natural, social and human-made complex environments and the limitations of this 

approach. The latter delineated the challenges that make a system extremely complex and 

properties that keep a system's stability. The chapter elaborated how a natural system is sensed 

through events and how the events accumulate into system behaviour. Understanding the 

system behaviour relates information on the underlying system structure.  

The chapter further provided a detailed literature study on knowledge discovery from data 

streams in an HCDE and summarized research problems and challenges. It discusses the 

theories of concept change and existing work on change detection in line with data 

management, forgetting mechanisms, detection, adaption and learning methods. Data 

management methods represent how the information is stored and used by machine learning 

techniques and categorized mainly into short term memory and long-term memory. Forgetting 

mechanisms represent how to forget the observations that are not consistent with the current 

natural behaviour and mainly categorized into abrupt forgetting and gradual forgetting. 

Detection methods characterise the techniques and mechanisms of concept change detection 

and are based on monitoring the evolution of performance indicators and monitoring the 
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distributions between reference windows. The adaptation methods characterise the adaptation 

of the learning models to the changing concepts and are categorized into blind adaption and 

information adaptation. Learning methods characterise techniques and mechanisms for 

generalizing from examples and updating the predictive models with evolving data where 

retraining and incremental methods are discussed. 
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Chapter 3                        

A Conceptual Model of Self-

Structuring AI 
 

The constituents of an HCDE, the natural, social, virtual and artificial environments, are 

dynamic and continuously evolving. An HCDE wherein electronic devices sense an 

environment will contain the changes that occur in that setting. Drawing inspiration from nature 

to understand an HCDE, firstly, this chapter elaborates on natural equilibrium; (a) a classic 

example of natural equilibrium in eco-systems, (b) the stability in internal, physical, and 

chemical conditions maintained by living systems and (c) a situation in which supply and 

demand decide equilibrium values of economic variables. Next, the chapter investigates the 

need for equilibrium in HCDE and conceptualises the equilibrium in an HCDE using system 

dynamics theories. This section explores how the digital representation of natural environment 

is generated by sensing the natural environment. Finally, a conceptual model materialized in 

Self-Structuring AI is proposed for concept change detection and understanding the causality 

for concept change.  
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3.1 Equilibrium in Nature 

The idea of ‘Balance of Nature’ has been a long-standing concept where the entire earth has 

been viewed as a potentially self-regulating system kept in stable equilibrium by predictable 

forces if left alone. It is usually implied that undisturbed nature is ordered and harmonious, and 

with feedbacks, systems return to equilibrium/stabilization after disturbances (Wu & Loucks, 

1995). The natural world is full of such systems trying to stabilize with feedback mechanisms 

formed by the links between living and non-living things. This can be observed in areas such 

as ecosystems, biological systems, societies, economies etc. For example, in natural 

ecosystems, nature builds resilience by governing how populations and food webs respond to 

events. That is, when predators hunt preys, prey population drops, causing the predation rate to 

drop and allowing the prey population to grow again (Figure 3.1). Ecosystems would maintain 

a long-term equilibrium allowing food chains to persist over time. Both populations' dynamic 

equilibrium is interesting because it shows a direct cause and effect relationship between 

different species in ecosystems.  

 

Figure 3.1 Ecosystem feedback is the effect that change in one part of an ecosystem has on 

another and how this effect then feeds back to affect the source of the change inducing more or 

less of it. These feedback loops form the basic dynamics for regulating the state of the 

ecosystem. (Green, 2019) 
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Tropical Cascade – “Wolfs Change Flow of Rivers”  

Tropical cascade is an ecological process that starts at the top of the food chain and tumbles 

down to the bottom, involving predators, preys and plants. A classic example of the topical 

cascade occurred in Yellowstone National Park (YNP), the USA in 1995-96 when grey wolves 

were reintroduced after seven decades of absence (Fortin et al., 2005). The historical presence, 

then absence, and now the presence of wolfs in YNP represents natural experiment through 

time and an opportunity to study cascading trophic interactions. Even though wolfs are known 

to be predators, the ecological study showed that they gave life to many more (Figure 3.2).  

The 70 years of the wolf-free period significantly impacted wildlife habitat, soils and woody 

plants resulting in a collapse of a tri-trophic cascade. Due to the absence of wolfs, there was a 

significant increase in the number of elk in the YNP. It was very difficult to manage the elk 

population despite the human effort to control them. As a result, the natural vegetation in YNP 

reduced to almost nothing.   

The reintroduction of wolfs, even in a small number, made a remarkable change in the 

environment. Other than been eaten by the wolfs, the behaviour of the elk changed significantly. 

They started to avoid some parts of the park such as valleys and gorges, areas that are a problem 

of crypsis. As a result, these areas started to regenerate with more biodiverse plant communities 

leading to an increase in beavers, who are known to be ecosystem engineers. When the beaver 

number increased, the number and diversity of insects, reptiles, fish and amphibian species 

increased. Wolfs also killed small predators like coyote; hence the pronghorn and small 

mammals such as rabbits and mice increased, resulting in more hawks, weasels, badgers, foxes 

and eagles. Scavengers such as bears increased not only because there was more left-over food 

by wolfs, but because there were more plants for them to eat due to regenerated crops. The 

bears reinforced the impact of wolfs by killing some of the calves of the elk. The most 

interesting observation due to all these biodiverse changes was the rivers' behaviour change, 

such as water flow. In conclusion, the reintroduction of wolves transformed the ecosystem of 

the YNP and its physical geography. 
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Figure 3.2 Trophic Cascade – an example from Yellowstone National Park: The reintroduction 

of grey wolves into Yellowstone National Park in the USA is a classic example of a terrestrial 

trophic cascade. The wolf’s absence had a huge impact on the park’s ecology. Elk populations 

began to rise, and subsequent overgrazing had a knock-on effect on other organisms. The image 

describes how the park’s ecology changed before and after the reintroduction of wolves (image: 

(Eco Sapien - An Infographic Exploring Yellowstone National Park..., 2015)). 
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Homeostasis 

The previous example highlighted equilibria that exist externally and at a macro level. 

However, internal equilibrium, known as homeostasis, is prevalent and crucial for all living 

beings. Homeostasis refers to maintaining chemical and physical conditions such as body 

temperature, fluid state, chemical concentrations etc. in steady-state inside living systems for 

its optimal functioning. The internal chemical and physical conditions that are essentially 

needed to be maintained include body temperature, fluid balance (amount of water), pH level, 

blood sugar level, blood oxygen level and concentration of calcium, sodium, potassium, iron, 

copper. 

The equilibrium is maintained by a dynamic process. That is, regulation feedback is brought 

about as a response to any change of the above variables that are already in its optimal range. 

Individual regularization mechanisms include a) receptor(s) to sense changes in the variable 

being monitored and trigger action potential for the regularization feedback in response to a 

substantial change in the condition, b) a control centre that sets the desired range to maintain 

the equilibrium and c) effector(s) that carry out compensatory actions to bring the variable to 

an equilibrium state. For example, osmoreceptors in the median preoptic nucleus work as the 

receptors for the fluid level in human beings. At the same time, the hormone system known as 

the renin-angiotensin-aldosterone system initiates the regularization feedback. The 

compensatory action is carried by kidney acting as the effector, which reabsorbs water to reduce 

water loss as urine. 

There have also been efforts to formalize homeostasis from the theoretical perspective of 

thermodynamics and systems theory (Bailey, 1984; Recordati & Bellini, 2004). They describe 

internal homeostasis from a thermodynamic perspective as a stationary state of nonequilibrium 

since equilibrium in thermodynamic is well and strictly defined.  They formalize the actual state 

of rest, 𝛽(𝑡), as  

 𝛽(𝑡) = 𝛽𝑠 + 𝜌(𝑡) (3.1) 
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where 𝛽𝑠 is the time‐independent steady-state of reference and 𝜌(𝑡) is the time‐dependent 

fluctuations of the state variables. They note that, amongst these states of rest, quiet wakefulness 

seems to be only locally stable. In contrast, sleep stages III and IV are the globally stable and 

has the nearest thermodynamic equilibrium. 

3.2 Equilibrium in Human Society 

Economic Equilibrium 

Another example of a system that demonstrates ideal/close to ideal equilibrium characteristics 

is the macroeconomy. Competitive equilibrium is the traditional formulation of ideal 

equilibrium conditions valid for markets with flexible prices and a large number of buyers and 

sellers. In a competitive equilibrium, economic variables remain unchanged as the economic 

forces such as the supply and demand for goods are balanced. That is, the economic equilibrium 

occurs at the point where the quantity of goods supplied equals the quantity of goods demanded. 

Moreover, the prices of the goods are established by this equilibrium state and referred to as 

the competitive price. This ideal equilibrium condition assumes that each buyer/seller decides 

upon only a small quantity compared to the overall volumes of the market-leading to 

no/minimal influence on the overall price.  

Hux Dixson (2001) identifies three properties of economic equilibrium; a) The behaviour of 

agents is consistent, b) No agent has an incentive to change its behaviour, and c) Equilibrium 

is the outcome of some dynamic process. Competitive equilibrium satisfies all three conditions. 

Since the supply equals demand, the property (a) is fulfilled. At the market price, neither the 

buyers nor the sellers have any incentives to demand/supply any more/less as the change of 

equilibrium price negates any gains. This satisfies the property (b). Finally, competitive 

equilibrium satisfies property (c) as there would be downward/upward pressure on the market 

prices in the case of an excess/short supply leading to self-adjustments in the market to bring 

the economy back the equilibrium state. 
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While competitive equilibrium is the ideal version of the economic equilibrium, it is more 

theoretical than practical due to its hard assumption of individual traders' influence. Research 

discipline named ‘game theory’ has been advanced to model the equilibrium shown in macro-

economic environments. John Nash (1950), who worked on game theory, showed that the 

economy would still be in an equilibrium state even in the absence of hard assumptions of 

competitive equilibrium.  

Each trader in the economy is trying to optimize given its anticipation of others’ strategies. This 

was shown to lead to an equilibrium - now referred to as Nash equilibrium - which is a 

configuration of strategies - one for each trader - such that no trader gains by unilaterally 

changing its strategy. More formally, if there are 𝑛 traders, where each trader 𝑖 (𝑖 = 1 … 𝑛) has 

a strategy space 𝑆𝑖, the economy is a function, 

and  𝑔𝑖(𝑠1, … , 𝑠𝑖 , … , 𝑠𝑛) is 𝑖𝑡ℎ trader’s profit when strategies (𝑠1, … , 𝑠𝑖, … , 𝑠𝑛) are followed. 

John Nash proved that there exists a configuration of strategies (𝑠1
∗, … , 𝑠𝑖

∗, … , 𝑠𝑛
∗)  such that, 

That is, no trader profits more by unilaterally deviating from the equilibrium strategy 𝑠𝑖
∗ to 𝑠𝑖. 

 

  

 𝑔: 𝑆1 × … × 𝑆𝑖 × … × 𝑆𝑛 → ℝ𝑛 (3.2) 

 ∀ 𝑠𝑖 ∈ 𝑆𝑖, 𝑔𝑖(𝑠1
∗, … , 𝑠𝑖

∗, … , 𝑠𝑛
∗) >  𝑔𝑖(𝑠1

∗, … , 𝑠𝑖 , … , 𝑠𝑛
∗),     𝑖 = 1 … 𝑛 (3.3) 
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3.3 Equilibrium in an HCDE 

As explained from the above examples, it is evident that ‘natural equilibrium’ exists in natural 

and human-driven environments. The undisturbed environment is ordered and harmonious, and 

the systems return to previous equilibrium after disturbances. The ability to understand the 

natural systems and artificial environments were studied extensively by Jay Forrester of 

Massachusetts Institute of Technology in the 1950s. Jay W. Forrester (1971) proposed a 

methodology and a mathematical modelling technique to frame, understand, and discuss 

complex issues, especially in artificial systems. This approach aims at understanding the non-

linear behaviour of complex systems over time using stocks, flows, internal feedback loops, 

table functions and time delays.  

Sterman (2001) proposed an extension to System Dynamics which focuses on human-driven 

complex systems (such as a living being, a corporation, a city, an economy or an ecosystem) 

where a small change in one element can produce a big change in the whole system. Sterman 

(2001) elaborates how change, such as the effects of information technology or the effects of 

greenhouse gases on the global climate, is transforming our world. Some of these changes 

amaze and delight us, but others impoverish the human spirit and threaten our survival. All too 

often, well-intentioned efforts to solve pressing problems provoke feedback and create 

unforeseen reactions. Some of the examples of such situations are California’s failed electricity 

reforms (Joskow, 2001), road building programs that create suburban sprawl and increase 

traffic congestion (Downs, 1999) and failed change initiatives in organizations (Sterman, 2001).  

The classical natural equilibrium view, however, has not been studied with respect to the current 

HCDE. The current digital environment is a globally dynamic infrastructure that refers to 

connectivity with their internal and external environments (Devi & Rukmini, 2016). This 

environment consists of physical objects called “things” connected through information 

technology. The recent advances in this digital environment have accelerated the deployment 

of billions of interconnected, smart and adaptive applications in critical infrastructures such as 
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healthcare, transportation, environment control and home automation (Stoyanova et al., 2020; 

Zou et al., 2020).  

The HCDE bridges the gaps between the physical and digital environment and will represent 

the disturbance present in the natural environment. To understand the digital environment, we 

need to study the information flows in the feedback relationships. As a change in the 

natural/human-driven environment occurs, surrounding information changes. Flows of 

information in the digital environment are thus analogous to flows of matter and energy in 

natural environments. Due to this correspondence, a ‘Digital Equilibrium’ can be described 

using the theories of system dynamics.  

3.4 A Conceptual Model for Understanding Digital 

Equilibrium using for Self-Structuring AI (SS-AI) 

The above section explains how natural equilibrium maintains any natural system stable with 

continuous changes. In this section, we look at how the equilibrium is maintained in an HCDE. 

The system structure represented by the natural behaviours and events holds the same 

underlying structure for an HCDE. As explained in the previous sections, it is important to 

understand the system structure to get a better idea of how the system works and as a result 

being able to predict the environment. Therefore, we assume and conceptualize that the HCDE 

comprises of digital representations of the natural events and digital representations of natural 

behaviour (Figure 3.3). Similar to how we sense the natural environment with our five senses, 

an artificial being observes the environment with digital data. In an HCDE, digital data is 

characterised by high volume, velocity and variety. Therefore, the detection of digital 

representation of the natural events will need to be facilitated by artificial intelligence. Similar 

to how events accumulate into behaviours, digital representation of the natural events is 

assumed to be accumulated into a digital representation of natural behaviour. This digital 

representation of natural behaviour will reveal information about the system structure and 

understanding the system structure provides the base for prediction.  
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Figure 3.3 Conceptualization of a Digital System: a digital representation of the natural 

environment.  

With the advent of HCDE, there are many examples of digital systems such as smart homes, 

smart city, industry 4.0. These systems generate dynamic, unlabelled, continuous data in the 

form of structured and unstructured digital data streams.  

When learning from data streams, the following challenges need to be considereded, 

• Volatility – continuously and autonomously evolving data streams, 

• Velocity – real-time analysis from data generated from IoT, text, image and video 

streams, 

• Volume - access, integrate, store/process analyse the massive amount of data,  

• Variety - manage different types of data and varied data formats such as structured, 

unstructured, semi-structured,  

• Veracity – create reliable data as the basis for data-driven decision making by filtering, 

validating, profiling and cleansing.  

On top of these, as an HCDE consists of digital representation of the natural environment, 

digital systems inherit the properties of the natural environment. Therefore, the properties of a 

system: self-organization, hierarchy and resilience can be used to build a machine learning 

technique to detect the natural events and interpretation of these events automatically. 

Resilience represents the ability of the components in the digital environment to adapt from a 
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change or disturbance. Self-organization property organizes the digital data into concepts in the 

feature space. The hierarchy represents the arrangement of objects or behaviours in the digital 

environment linked directly and indirectly. Artificial intelligent algorithms can be implemented 

using self-organization, hierarchy and resilience as properties of the environment.  

Understanding the system structure through digital data face major complexities due to the 

challenges imposed on a system structure such as non-linear relationships, non-existent 

boundaries, ubiquitous delays and layers of limit. The relationships comprehended in data 

streams are non-linear. These challenges make it challenging to analyse the digital environment 

without the use of artificial intelligence. 

These challenges and complexities are addressed by Self-Structuring AI (SS-AI) (Figure 3.4). 

Self-Structuring AI is an emerging paradigm of artificial intelligence defined as intelligence 

structures that autonomously evolve based on the unstructured and unlabelled nature of data, 

spatially, temporally, laterally, and semantically (De Silva et al. 2020). In SS-AI, the digital 

representation of the natural events will be captured through concept changes, and digital 

representation of natural behaviours captured through sequences and causality. Concept 

changes will denote ‘what’ is happening in the environment, and sequences and behaviours will 

provide an understanding of ‘why’ it is happening.  
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Figure 3.4 Conceptual model for understanding digital equilibrium using Self-Structuring AI 

(SS-AI) 

Self-Structuring AI for Concept Change  

To detect the concept changes, a human observes a change in the natural environment as events 

and an artificial system or an artificial being observes the natural environment through digital 

data. Changes in elements, interconnections or purpose/function (the system structure) are 

manifested as an event. These changes impact the environment at different levels. The digital 

representation of a natural event can be represented as a concept change. Duration of an event 

or a concept change cannot be pre-determined, and time of an event or a concept change cannot 

be pre-defined.  

The digital environment comprises of data streams. As explained in chapter 2, one major 

challenge in working with data streams is their evolving nature, i.e., the concept at a given time, 

𝑡, will evolve to another concept at a time, 𝑡 + 𝛼 (Lam & Mostafa, 2001). This is known as 

concept change, or concept drift in literature. The majority of existing work on concept change 

detection is based on supervised learning applied in traditional environments where the data are 

infrequent, small, isolated, sparse and labelled. The change detection algorithm monitors the 
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accuracy of the underlying predictive model, and a reduction of the accuracy (lower than a 

certain threshold) is detected as a concept change. Detection of a concept change will trigger 

the predictive model to retrain. This implementation is not feasible in the HCDE where large 

volumes of data are executed in high velocity, connected, dense and unlabelled. Therefore, this 

thesis aims at developing an unsupervised method for change detection and adaptation (Figure 

3.5).  

  

Figure 3.5 Self-Structuring AI (SS-AI) for Change Detection in HCDE. In a traditional 

environment, concept change is detected through monitoring the classifier accuracy. An 

HCDE, detection of a concept change triggers retraining of the classifier. Alerts can be 

generated by distinguishing abrupt concept changes from reoccurring concept changes. 

Reoccurring concept changes are further used in Self-Structuring AI (SS-AI) algorithm for 

concept change causality.  

As shown in Figure 3.5, it is important to distinguish between reoccurring and abrupt concept 

changes. Reoccurring concept changes allows us to know the general patterns in the 

environment, hence apply general rules in the environment. For example, in a big data driven 

smart city traffic environment, understanding peak/off-peak travel patterns will facilitate traffic 

light management. This pattern would depend on many dynamic factors such as school day, 
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holidays, city events and weather. The behaviour pattern provides an understanding of natural 

behaviours and is further examined in this thesis. Abrupt concept changes allow us to detect 

sudden changes in the environment which would need quick responses. For example, in the 

smart city traffic environment – a road accident will affect the traffic flow not only in the 

surrounding environment but possibly the whole system. Abrupt changes will need further 

attention from a human. Feedback is sent to the underlying supervised learning algorithm 

(classifier) when a concept change is detected. Concept change detection allows the supervised 

learning algorithm to trigger retraining to facilitate successful and efficient adaptation to the 

new concept.  

Self-Structuring AI for Sequences and Causality Detection  

The pattern of behaviour can be determined based on an event or a concept as natural events 

accumulate into system behaviour. Similarly, digital representation of the natural behaviour 

provides information on the underlying system structure and can be predicted using sequences 

and causality.  

Perceiving the sequence of events or concepts provides an understanding of the behaviour of 

an individual component in the environment. For example, in a smart city traffic environment, 

there is a peak and off-peak behavioural pattern. The sequence of behaviours defines the 

temporal dynamic of the environment and explains why a change occurred. An AI algorithm is 

proposed to detect the sequence of behaviour when a concept change is detected (Figure 3.6). 

The algorithm creates a stabilized sequence tree that will learn from reoccurring concept 

changes in individual data streams and would explain ‘why’ a concept change in the data stream 

occurred. The proposed algorithm will output a stabilized sequence tree at each time 𝑡. 
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Figure 3.6 Self-Structuring AI (SS-AI) for Concept Change Causality. 𝑡 is the time a concept 

change is detected. (a) sequence breakdown of the behaviours – each point is a unique 

event/action which is stabilized over time based on the repetition of behaviours. (b) behavioural 

tress provides an abstract view of the environment – S1, S2, S3, S4 and S5 are five different 

data streams and figure demonstrated the distance/similarity between each data stream over 

time. For example: at 𝑡 = 3, behaviour of S1, S2 and S3 are similar than S4 and S5; at 𝑡 = 6, 

behaviour of S1 and S2 are still similar, but the behaviour of S3 has changed.   

Understanding the causalities in the environment will denote the non-linear dynamic 

relationships existent within the environment. For example, traffic congestion in one road might 

affect some neighbouring roads in the road network in a smart city traffic environment. 

Causality defines the spatial dynamic of the environment and provides an overview of the 

groupings in the environment, explaining how a change occurred.  

An AI algorithm is proposed to execute at time 𝑡 + 𝛼 to provide a high-level overview of the 

environment based on multiple data streams (Figure 3.6). The algorithm creates a behavioural 

tree that indicates the similarity or distance between different data streams and explains ‘how’ 

the concept change influences the overall environment.  
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3.5 Chapter Summary 

The chapter elaborated on the natural equilibrium as the inspiration to understand an HCDE. 

Further, this chapter presented examples of natural equilibrium in eco-systems, homeostasis, 

and economic equilibrium to study the information flows in the feedback relationships.  

An HCDE bridges the gaps between the physical and digital environment and will represent the 

disturbance present in the natural environment. As a change in the natural/human-driven 

environment occurs, surrounding information changes. Therefore, the chapter justified the need 

for equilibrium in HCDE called ‘digital equilibrium’ and conceptualized the equilibrium in an 

HCDE as opposed to the natural environment. The proposed conceptual model used Self-

Structuring AI to detect digital representation of natural events and behaviours. 
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Chapter 4  

A Self-Structuring AI Algorithm 

for Change Detection 
 

 

This chapter proposes the Self-Structuring AI algorithm for concept change detection outlined 

in chapter 3. Self-Structuring AI is defined as intelligence structures that autonomously evolve 

based on the unstructured and unlabelled nature of data, spatially, temporally, laterally, and 

semantically (De Silva et al., 2020). The proposed algorithm is based on three learning features 

that are fundamental for concept change detection from unlabelled data streams. They are, 1) 

incremental learning, 2) decremental learning, and 3) online learning. With these learning 

features, the proposed algorithm facilitates unsupervised, self-adaptive learning in unlabelled 

big data streams. As explained earlier in chapter 3, the chapter will distinguish between 

reoccurring and abrupt concept changes. This will allow further actions or automation, as 

explained in chapter 6.  

The chapter is organized as follows. Section 4.1 presents how the change detection can be used 

in the digital environment and provides a high-level design for automatic detection of concept 

changes in a data stream. Section 4.2 described the learning paradigms; incremental, 

decremental and online learning of the proposed technique. Section 4.3 explains the incremental 
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knowledge acquisition and self-learning (IKASL) algorithm, upon which the proposed 

algorithm built on, in detail. Section 4.4 provides a detailed description of the proposed change 

detection algorithm, where abrupt and reoccurring change detection is distinguished. Section 

4.5 presents the empirical evaluation using benchmark SEA dataset. 

4.1 Learning Paradigms of the Proposed Algorithm 

The proposed technique is based on three learning paradigms that are fundamental for concept 

change detection from unlabelled data streams. They are, 1) incremental, 2) decremental, 3) 

online learning.  

4.1.1 Incremental Learning 

Incremental learning is necessary for learning from data streams as it effectively addresses both 

time and memory constraints (Furao & Hasegawa, 2006; Mouchaweh et al., 2002; Navarro-

Gonzalez et al., 2015). Incremental learning methods do not require an initially labelled dataset 

for training since they continue to learn from an incoming data stream. They assume that the 

hypotheses (source, concept, distribution, etc.) learned before are always valid for the new 

incoming data (Sayed-Mouchaweh, 2016). Therefore, incremental learning can be used to adapt 

to a known concept and detect concept change by differentiating between previously known 

concepts and new concepts.  

IKASL (De Silva & Alahakoon, 2010) is an implementation to facilitate incremental learning, 

preserve acquired knowledge and apply knowledge gained for subsequent learning. Learning 

outcomes of past data form the foundation for self-organization of new data. The actualization 

of incremental learning in this manner is computationally reasonable due to low resource 

requirement for maintaining hit node lists from past learning. Achieving these aims enables the 

IKASL algorithm to overcome the stability-plasticity dilemma. IKASL algorithm is described 

in detail in section 4.4.  
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4.1.2 Decremental Learning 

Decremental Learning is used to unlearn (to forget) representations of the data stream, which 

are no longer relevant (Gama et al., 2014). Learning from data streams should be continuous 

while preserving the previously known useful knowledge. Natural cognitive systems gradually 

forget previously learned information. Plausible models of human cognition should, therefore 

exhibit similar patterns of gradual forgetting of old information as new information is acquired 

(French, 1999). Only rarely does new learning in natural cognitive systems completely disrupt 

or erase previously learned information. That is, in general, natural cognitive systems do not 

forget ‘catastrophically’. However, catastrophic forgetting does occur under certain 

circumstances in distributed connectionist networks. The same feature gives these networks 

their remarkable ability to generalize, to function in the presence of degraded input etc.   

Neuronal rigidity of this nature leads to an unstable network (stability dilemma) in a continuous 

learning environment. An unstable network starts forgetting learned patterns (catastrophic 

interference) resulting in rigid/partially forgotten (plasticity dilemma) learning outcomes. 

Therefore, to overcome the limitations of data stream analysis, translating from the biological 

process of learning an adaptive learning algorithm should be able to learn from new data 

without requiring access to previous data, preserve acquired knowledge, unlearn knowledge 

that is no longer relevant, accommodate new learning outcomes and relate these to previously 

acquired knowledge. 

4.1.3 Online Learning 

Data streams tend to generate data at high speed and in large quantity. This can become a 

limitation for an offline iterative machine learning process where the whole training data must 

be available at the time of model training. In online learning, algorithms process input data 

sequentially as the data become available, and the model is continuously updated. It is important 

to continuously update machine learning outcomes as concepts evolve over time. Online 
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learning can be incorporated with incremental and decremental machine learning to keep up 

with high frequency and high-velocity data streams. 

4.2 Incremental Knowledge Acquisition and Self-

Learning (IKASL) Algorithm 

The Incremental Knowledge Acquisition and Self-Learning (IKASL) algorithm is an 

unsupervised, incremental learning algorithm that continues to learn new data based on 

generalized layers of past learning outcomes. It has been successfully demonstrated on social 

media text mining (Bandaragoda et al., 2017) and smart electricity meter data for pattern 

classification and demand forecasting (D. De Silva et al., 2011a, 2011b, 2011c). Incremental 

learning in IKASL is initiated by aggregation of unsupervised machine learning outcomes with 

the formation of generalization layers. Each generalized node expands into its own feature map 

to generate a topological representation of subsequent input vectors.  

Morphologically, the IKASL model is an n-layer network structure, with n periods of 

incremental learning. The layers are virtual; they are not predefined and come into existence as 

required by the incremental learning process. Each layer is composed of two sub-layers, 

learning, 𝐿𝑛 and generalization, 𝐺𝑛. 

The functionality of the learning layer is based on the GSOM algorithm (Alahakoon et al., 

2000). The first learning layer, which is also the starting layer of the process, generates a 

dynamic feature map based on the growing, self-organizing process. The corresponding dataset 

is fed into the network, Starting with four randomly initialized output nodes. For each input, 

the closest output node is selected as the winner using the Euclidean distance measurement. 

The weight vector of the winner and its neighbourhood are adapted to reflect the win. 

The weight adaptation rule is shown in Equation 1. 

 ∆𝑤𝑖 =  𝜌∅(𝑟𝑗 , 𝑟j∗)(𝑥𝑖
𝑚 − 𝑤𝑖) (4. 1) 
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where; 

i the number of attributes, 

x𝑚 m-th input vector from a set of vectors X, 

wi i-th weight of the winning node, 

𝑗∗ index of the winning node, 

ρ a predefined weight update ratio, 

∅(ri, ri∗) the neighbourhood function 

 

Separately, the error value of the winning node is also increased to distinguish it from the rest 

of the network. Node growth occurs when this error value exceeds a predefined growth 

threshold, 𝐺𝑇. New nodes grow out of the node with the highest accumulated error, 𝑁𝑒 and are 

initialized to reflect the neighbourhood of 𝑁𝑒. Upon learning for a predefined number of epochs, 

a calibrating phase smooths out irregularities in recent weight adaptations. Learning outcomes 

of the dynamic feature map can now be identified. 

(a) Primary learning outcome: The knowledge embodied in weight vectors of 

winning nodes. Taking the weight vector 𝑤 as the representative vector, the 

primary learning outcomes of the dynamic feature map can be shown as an 

integration, 𝑘𝑤, 

where 𝑉 = 𝑈𝑖∈𝑆𝑉𝑖 is the input data space with 𝑆 vectors, p(x) the probability 

distribution of input vectors 𝑉 and ∝ as the learning rate. 

(b) Secondary learning outcome: Identified as a proportionate learning outcome, 

knowledge embodied in weight vectors of the winner's neighbourhood nodes. 

Given the proximity to the winning node, these vectors represent the variation of 

 
𝑘𝑤 =  ∫ ∝ (|𝑥 − 𝑤|)2𝑝(𝑥)𝑑𝑥

0

𝑣

 
(4. 2) 
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the primary learning outcome (i.e., the corresponding feature) as per the data 

space. These outcomes can also be shown as, 𝐾𝑛𝑛,  

with ŋ (𝑣, 𝑘) is a representation of the proportion of learning being dispersed to the 

neighbourhood nodes. 

Thereby, the total knowledge acquired by a dynamic feature map is expressed as per Eq. 4. It 

is 𝐾𝑇𝑜𝑡 that should be considered to maintain continuity in learning and not 𝐾𝑤 which is only 

part of learning outcomes. 

The identified primary and secondary learning outcomes are combined into a single structure 

to form the generalization layer, 𝐺𝑛. Representing primary and secondary learning outcomes in 

a simple data structure which can form the basis for further learning, is the key purpose of the 

generalization layer. Aggregation refers to the process of combining values into a single 

outcome which takes into account, in a given fashion, all input values (Beliakov et al., 2007). 

The existence of a weak order relation on the set of all possible values is the minimal 

requirement to be satisfied to perform aggregation. An aggregation operation considers several 

aspects, such as the expected outcome from the aggregation operation, the nature of values to 

be aggregated and the type of scale being used. 

The fuzzy integral has been selected as the aggregation function for the generalization layer, 

mainly due to its natural framework for inclusion of behavioural properties, such as the ability 

to express the importance of criteria, the behaviour of the decision-making requirement 

(tolerance, intolerance of criteria fulfilment) and interaction between criteria (redundancy and 

reinforcement of multiple criteria) (Yager, 1993). The fuzzy integral's nonlinear approach to 

combine multiple sources of information (which is reflective of human non-linear decision 

 
𝐾𝑛𝑛 =  ∫ ∝ ŋ (𝑣, 𝑘)(|𝑥 − 𝑤|)2𝑝(𝑥)𝑑𝑥

0

𝑣

 (4. 3) 

 𝐾𝑇𝑜𝑡 = {𝐾𝑤 , 𝐾𝑛𝑛}    (4. 4) 
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making (J. Li et al., 2004)) and ability to handle multiple sources (Lühr & Lazarescu, 2009) are 

further contributions. The fuzzy integral considers both objective evidence supplied by various 

sources and the expected worth of subsets of these sources in the fusion process (Beliakov et 

al., 2007). 

Each node in the generalization layer has the potential to grow into a feature map. The 

subsequent learning phase, 𝐿𝑛+1, will start by identifying, for each input vector, the winning 

node from the generalization layer. Instead of generating a single map, each generalized node 

expands into its own feature map to generate a topological representation of the corresponding 

input vectors. The winning nodes, primary and secondary learning outcomes of the phase 𝐿𝑛+1 

will be distributed among these maps. The following aggregation process will produce a 𝐺𝑛+1 

generalization layer from the outcomes of the phase 𝐿𝑛+1. 𝐺𝑛+1 will form the basis for 𝐿𝑛+2 

learning; the two phases will thus continue until all data sequences have been 

processed/learned. 

When a generalized node is not the winner for any of the inputs in the dataset of the subsequent 

learning phase, the non-utilized node is added to the list of nodes in the new generalization 

layer. This allows the non-utilized node to continue learning in the current phase, even though 

it does not represent any inputs from the subsequent phase (D. De Silva & Alahakoon, 2010). 

The capacity to accommodate non-utilized nodes for further learning enables the algorithm to 

preserve knowledge, regardless of its relationship to the data space presented in current 

learning. Associations between nodes in the generalization layers will be persistent, leading to 

creating a memory-like structure based on the aggregated outcomes of the learning stages. 

The main features of the algorithm are, 

1. A continuous, self-learning algorithm. 

2. A dynamic structure for acquisition and preservation of learning outcomes. 

3. Generation and sustenance of computationally efficient, generalized representations 

of learning outcomes. 
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4. Regulation of generalized representations as for the basis for subsequent learning.  

 

4.3 The HCDE Context for the Proposed Algorithm 

In this section, we introduce an overview of the proposed Self-Structuring AI algorithm for 

concept change detection. As outlined in section 4.1, the algorithm uses online, incremental, 

and decremental learning for concept change detection and distinguishes between abrupt and 

reoccurring concept changes.  

 

Figure 4.1 The HCDE context for the proposed Self-Structuring AI algorithm for concept 

change detection.  

As shown in Figure 4.1, a data stream generated by an application in HCDE is monitored by 

the Self-Structuring AI algorithm executed in a cloud setting. The online learning algorithm 
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captures the data in a time window defined by the algorithm. The output of the online learning 

algorithm is presented to unsupervised incremental and decremental learning. The incremental 

and decremental learning output is used for concept change detection and as learning feedback 

to the next learning iteration. A significant movement in feature space between the outputs of 

two corresponding learning iterations is detected as a concept change. A concept change 

detected is distinguished between abrupt and reoccurring. Detection of abrupt concept change 

is alerted to humans for further actions. Detection of reoccurring concept change is used to 

understand the concept change using Self-Structuring AI algorithm for concept change 

causality explained in chapter 6.  

4.4 Proposed Self-Structuring AI Algorithm for 

Concept Change Detection 

We build on the success of the IKASL algorithm by advancing it into decremental learning and 

online learning for continuous detection and adaption to concept change from an unlabelled 

data stream. A variation of this technique was applied to explore the importance of context 

awareness to estimate road traffic (Nallaperuma et al., 2017), investigate the impact of driver 

behaviour change on the coordination between self-driven and human-driven vehicles 

(Nallaperuma et al., 2018), and as the core machine learning function of an expansive, 

intelligent traffic data integration and analysis platform (Nallaperuma et al., 2019). The 

proposed algorithm consists of three primary functions, 1) online learning, 2) incremental and 

decremental learning and 3) concept change detection (Figure 4.2). Each function is discussed 

below, alongside its algorithmic representation.  
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Figure 4.2 Proposed Self-Structuring AI algorithm for concept change detection  

Online learning: Online k-means clustering is used for one-pass online learning for efficient 

one-pass processing of a stream of data rather than storing and processing in batches (Câmpan 

& Şerban, 2006). In the first iteration 𝑘 (number of cluster feature vectors) and 𝑡𝑎 (processing 

time of initial learning iteration) are user-defined for online k-means and the generated cluster 

feature vectors (𝐶𝐹𝑉𝑂𝐶) are input to the offline IKASL function. In subsequent iterations, 𝑘 is 

the number of cluster feature vectors (#𝐺𝐹𝑉𝐼𝐾𝐴𝑆𝐿), 𝑡𝜃 (e.g. 𝑡𝑏-𝑡𝑎) is the time taken by IKASL 

for the learning process, and cluster feature vectors for online k-means are the generalized nodes 

received from the IKASL function. These automated 𝑘 and 𝑡𝜃 implements the nonparametric 

nature of the algorithm.  

Initialization of the algorithm  

1: 𝐶𝐹𝑉𝑂𝐶  ←  random cluster feature vectors 

2: Initialize starting node (ℵi) of the IKASL algorithm with random values for weight 

vector (𝑤𝑖), zero for error value (𝑒𝑖) and zero for hit count (ℎ𝑖).  

3: 𝑘 ←  the initial number of cluster feature vectors, 𝑡𝑎 ← processing time of initial 

learning iteration 

 

Online learning – algorithmic representation 

4: for 𝑑𝑖 ∈ 𝐷 do 

5: 𝑘∗ ←  arg 𝑚𝑖𝑛1
𝑘 (‖ 𝑑𝑖 −  (𝐶𝐹𝑉𝑂𝐶)𝑘 ‖) 

6: if ‖ 𝑑𝑖 − (𝐶𝐹𝑉𝑂𝐶)𝑘∗  ‖ ≥  Ø then 

7: (𝐶𝐹𝑉𝑂𝐶)𝑘+1  ←   𝑑𝑖, 𝑘 ← 𝑘 + 1  

… 
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8: else 

9: Update (𝐶𝐹𝑉𝑂𝐶)𝑘∗ 

10: end if 

11: end for 

 

Incremental and decremental learning: IKASL learning occurs as per the original algorithm 

for incremental learning. Inputs are batches of 𝐶𝐹𝑉𝑂𝐶 received periodically from the online 

learning function (Fig 2). We further extended the IKASL function to facilitate decremental 

learning by forgetting the generalized node that is not the winner of any of the inputs in the 

dataset of the subsequent learning phase. In this case, the generalized node is forgotten, 

indicating the concept has changed or evolved. Associations between nodes in the 

generalization layers will be persistent, leading to the creation of a memory-like structure based 

on the aggregated outcomes of the learning stages. Adaptation to a new concept is formalized 

with the incremental and decremental learning.  

Incremental Learning – algorithmic representation 

12: while 𝐷 ≠  ∅ 

13: for 𝑥𝑖 ∈ 𝐶𝐹𝑉𝑂𝐶 do 

14: Select winner as  𝑛∗  ←  arg 𝑚𝑖𝑛1
𝑛 (‖ 𝑥𝑖 − 𝑤𝑛 ‖) 

15: Calculate updated weights as 

𝑤𝑗(𝑡 + 1) =  {
𝑤𝑗(𝑡) , 𝑗 ∉  𝑁𝑛∗(𝑡 + 1)

𝑤𝑗(𝑡)  + 𝐿𝑅(𝑡) (𝑥𝑘 −  𝑤𝑗(𝑡)) , 𝑗 ∈ 𝑁𝑛∗(𝑡 + 1) 

  

16: 𝑒𝑛∗ ←  𝑒𝑛∗ +  ‖ 𝑥𝑖 −  𝑤𝑛 ‖ 

17: ℎ𝑛∗  ←  ℎ𝑛∗ + 1 

18: end for 

19: if 𝑒𝑖  ≥ 𝐺𝑇 then 

20: if i is a boundary node then 

21: Grow the map by creating a new node 

22: Initialize the new node vector 𝑤(𝑛𝑒𝑤) to match the 

neighbouring node weights  

23: else 

24: Distribute weights to neighbours 

25: end if 

26: end if 

27: 𝐿𝑅 ← reduce 𝐿𝑅 

28: 𝑁 ← reduce neighbourhood size 

29: end while 

30: Select Hit Nodes 𝐻𝑖 ⊆ ℵ, 𝑠. 𝑡. ℎ𝑖 ≥  ℎ𝑖𝑡𝑇  
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Decremental Learning – algorithmic representation 

 

Concept change detection: Concept change detection is carried out by calculating the distance 

between generalized nodes (𝐶𝐹𝑉𝐼𝐾𝐴𝑆𝐿) of consecutive iterations. The algorithm is sufficiently 

generic for any distance measure to be used, such as Euclidean distance (Yanhong Li et al., 

2014; Tran, 2013), heterogeneous Euclidean overlap distance (Sobhani & Beigy, 2011; 

Tsymbal & Puuronen, 2000), Mahalanobis distance (Gonçalves Jr. et al., 2014; Toubakh & 

Sayed-Mouchaweh, 2015), Hellinger distance (Ditzler & Polikar, 2011). As a concept change 

occurs, there would be a significant distance change, followed by a reduced distance change in 

the following iteration. Concept changes detected are further classified by the algorithm as 

abrupt concept change and reoccurring concept change.  

 

31: Calculate the proximity matrix, 𝑆, where 𝑠𝑘𝑚 contains the proximity of 𝑛𝑘(𝐻𝑖)𝑚 , 
the 𝑚𝑡ℎ node of the 𝑘𝑡ℎ neighbourhood to the corresponding hit node, 𝐻𝑖. 

32: 𝑆 = (𝑠𝑘𝑚) ∈ ℝ𝑢 × 𝑣, 𝑠𝑘𝑚 is calculated as 𝑠𝑘𝑚 =  |𝑎𝑞 −  𝑏𝑞| ∀𝑞 ∈ ℕ, where 𝑎, 𝑏 

are weight vectors of 𝑛𝑘(𝐻𝑖)𝑚 and 𝐻𝑖 respectively and 𝑞 the position vector. 

33: if ℎ𝑖 <  ℎ𝑖𝑡𝑇 , ∀𝑖 ∈ ℕ do 

34: forget node 𝑖 from the map 

35: end if 

36: if 𝐺𝐹𝑉𝐼𝐾𝐴𝑆𝐿(𝑡)  ≠  ∅ do 

37: 𝐶𝐹𝑉𝑂𝐶 (𝑡 + 1) ←  𝐺𝐹𝑉𝐼𝐾𝐴𝑆𝐿(𝑡)    

38: end if 

Concept Change Detection – Algorithmic Representation 

39: Calculate 𝐸𝐷𝑡  ← distance measure between 𝐺𝐹𝑉𝐼𝐾𝐴𝑆𝐿(𝑡) and 𝐺𝐹𝑉𝐼𝐾𝐴𝑆𝐿(𝑡 − 1 ) 

40: 𝐿𝑖𝑠𝑡(𝐶𝐷) ← list of 𝐸𝐷𝑡 

41: if 𝐸𝐷𝑡  >  𝐸𝐷𝑡−1 and 𝐸𝐷𝑡  >  𝐸𝐷𝑡+1  do 

42: Identify (𝑡) as an occurrence of Concept Change, 𝐶𝐷𝑡  

43: 𝐿𝑖𝑠𝑡(𝐶𝐷) +=  𝐸𝐷𝑡 

44: end if  
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Abrupt Concept Change Detection – Algorithmic Representation 

45: Calculate 𝑚𝑒𝑎𝑛(𝐶𝐷) 

46; for 𝐶𝐷𝑡 ∈  𝐿𝑖𝑠𝑡(𝐶𝐷) do 

47: identify neighbourhood 

                𝑡′ = 𝑡 − 1  
𝑡′′ = 𝑡 + 1 

48: if 𝐶𝐷𝑡  <  𝐶𝐷𝑡′ do 

49: Calculate 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 ←  |𝐶𝐷𝑡′ − 𝐶𝐷𝑡|  

50: if 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 > 𝑚𝑒𝑎𝑛(𝐶𝐷) do 

51: Identify(𝑡) as Abrupt Concept Change, 𝐶𝐷𝑡 
𝐴 

52: end if 

53: else if 𝐶𝐷𝑡  <  𝐶𝐷𝑡′′ do 

54: Calculate 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 ←  |𝐶𝐷𝑡′′ −  𝐶𝐷𝑡|  

55: if 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 > 𝑚𝑒𝑎𝑛(𝐶𝐷) do 

56: Identify(𝑡) as 𝐶𝐷𝑡 
𝐴 

57: end if 

58: else 

59: expand the neighbourhood 

  𝑡′ = 𝑡′ − 1 

  𝑡′′ = 𝑡′′ + 1 

60: end if 

61: end for 

Reoccurring Concept Change Detection – Algorithmic Representation 

62: 𝐹𝑠 = 1 

63: 𝑁𝑓 = 512 

64: 
𝑑𝑓 =

𝐹𝑠

𝑁𝑓
 

65: 
𝑓 = 0 ∶ 𝑑𝑓:

𝐹𝑠

2
− 𝑑𝑓 

66: 𝑡𝑟𝑒𝑆𝑝𝑜𝑡𝑠 = 𝑓𝑓𝑡𝑠ℎ𝑖𝑓𝑡(𝑓𝑓𝑡(𝐶𝐷𝑡 −  𝐶𝐷𝑡
𝐴) − 𝑚𝑒𝑎𝑛(𝐶𝐷𝑡), 𝑁𝑓) 

67: 

𝑑𝐵𝑠𝑝𝑜𝑡𝑠 = 20 × 𝑙𝑜𝑔10 (𝑎𝑏𝑠 (𝑡𝑟𝑆𝑝𝑜𝑡𝑠 (
𝑁𝑓

2
+ 1: 𝑁𝑓))) 

68: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐹𝑟𝑒𝑞 ← 𝑆𝑜𝑟𝑡(𝑑𝑏𝑆𝑝𝑜𝑡𝑠, 𝐷𝐸𝑆𝐶) 

69: #𝐶𝐷𝑅 = 1/𝑓(ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐹𝑟𝑒𝑞 ) 

70: Identify (𝑡) as Reoccurring Concept Change, 𝐶𝐷𝑡 
𝑅 every #𝐶𝐷𝑅 

68: ℎ𝑖𝑔ℎ𝑒𝑠𝑡𝐹𝑟𝑒𝑞 ← 𝑆𝑜𝑟𝑡(𝑑𝑏𝑆𝑝𝑜𝑡𝑠, 𝐷𝐸𝑆𝐶) 
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4.5 Demonstration 

SEA dataset (Street & Kim, 2001), a benchmark dataset widely used in supervised concept 

change detection, was used to demonstrate features of the proposed algorithm.  

Figure 4.3 SEA dataset – Concept Change Detectionillustrates concept changes detected from 

the SEA dataset. The x-axis denotes timestamps of incremental learning, and distance measure 

(in this case Euclidean distance, 𝐸𝐷𝑛) calculations from step 5 of the algorithm are denoted on 

the y-axis. Abrupt concept changes were detected at timestamps 2, 9, 16 and 26 with 𝐸𝐷𝑛 0.43, 

0.39, 0.31 and 0.39 respectively. Results were validated with concept changes detected in the 

same dataset in (Street & Kim, 2001) and (Bifet et al., 2010). 

To demonstrate the importance of real-time concept change detection, the accuracy of a 

supervised predictive algorithm with and without concept change detection was compared 

(Figure 4.4). For the latter case, the algorithm was trained with first 1000 records, and the 

trained model was used to test the data in each subsequent batch of 1000 records. The accuracy 

of the algorithm reduces as the concepts evolve over time (Figure 4.4). For the former case, the 

 
Figure 4.3 SEA dataset – Concept Change Detection 
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algorithm was trained and retrained at each concept change detection with the most recent 1000 

records. The accuracy of the algorithm improves as the algorithm was re-trained with the 

evolved concepts. 

 

 
Figure 4.4 Support Vector Machine Accuracy with and without Concept Drift Detection 
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4.5.1 Demonstration with Modified SEA Dataset 

An advantage of the SEA dataset generator is that it can be configured to generate data with the 

repetition of the same four concepts to evaluate the identification of reoccurring concepts. For 

this demonstration, we re-generated the SEA dataset with the four concepts repeated three 

times, creating twelve concept changes (Figure 4.5). This allows us to evaluate how the 

proposed algorithm performs in learning the concepts that have already been learnt and how 

that affects the concept change detection over time. The proposed unsupervised algorithm was 

analysed against the corresponding concept changes shown by MOA (Bifet et al., 2010) (Figure 

4.5). All of the twelve (four concepts repeated three times) concept changes were identified by 

the proposed algorithm (Figure 4.6) and directly corresponded to the MOA output. Concept 

changes were identified at execution timestamps; [t2], [t4], [t7], [t9], [t12], [t14], [t16], [t18], 

[t20], [t23], [t5], [t28]. 

 

 

  

Figure 4.5 MOA (Bifet et al., 2010) output for modified SEA dataset 
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As shown in Table 4-1, time taken to detect a reoccurring concept change reduces over time, 

demonstrating the incremental nature of learning. 

 
 

  

 

Table 4-1 Automated Time Window Analysis  

 

SEA dataset 1 SEA dataset 2 SEA dataset 3 

Concept 

Drift 

Execution 

Time (ms) 

Concept 

Drift 

Execution 

Time (ms) 

Concept 

Drift 

Execution 

Time (ms) 

Concept A [t2] 295 [t12] 285 [t20] 279 

Concept B [t4] 271 [t14] 267 [t23] 258 

Concept C [t7] 247 [t16] 239 [t25] 234 

Concept D [t9] 244 [t18] 234 [t28] 230 

 

Figure 4. 6 Concept Change Detection for Modified SEA dataset 
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4.6 Chapter Summary 

The chapter presented a novel Self-Structuring AI algorithm for change detection in data 

streams of an HCDE. The proposed algorithm uses three learning paradigms: online learning 

to handle high volume and velocity of data present in HCDE, incremental learning to provide 

the ability to learn new concepts, and decremental learning to forget the concepts that are no 

longer relevant. The proposed Self-Structuring AI algorithm was built upon the success of 

incremental learning of the IKASL algorithm by advancing it to support decremental learning 

and online learning for continuous detection and adaption to concept change from an unlabelled 

data stream in HCDE. The chapter provided a detailed algorithmic description of the proposed 

algorithm. The proposed Self-Structuring AI algorithm executes on automated time windows 

set by the algorithm, detects change based on the movement of feature space and determine the 

type of concept change (abrupt or reoccurring) based on the movement of time. The chapter 

demonstrated the proposed algorithm of SEA benchmark dataset.  
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Chapter 5  

Empirical Evaluation of the 

Proposed Algorithm 

This chapter presents the empirical evaluation of the Self-Structuring AI algorithm for change 

detection proposed in chapter 4. The algorithm was applied to six scenarios that are 

representatives of HCDE settings, including four real-world datasets in air traffic, smart energy, 

physical activity monitoring, smart city traffic, and two real-world case studies on the arterial 

road network of VicRoads and the first annotated driving recordings of self-driving cars. 

5.1 Air Traffic 

The dataset consists of 116 million records of flight arrival and departure details of all 

commercial flight details within the USA from October 1987 to April 2008. The dataset is 

represented by 13 input attributes: year, month, day of the month, day of the week. CSR 

departure time, CSR arrival time, unique carrier, flight number, actual elapsed time, origin, 

destination, distance and diverted and the target variable is arrival delay (as multiple target 

variables: diverted, carrier delay, weather delay, security delay) given in seconds. 

The input data in the dataset was simulated as a continuous data stream, and the proposed 

algorithm learnt as the data are presented (as described in section 4.4). In each iteration of 
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learning, distance measure (Euclidean Distance is used in this scenario) is calculated as 

explained in the algorithm (Step 38 - 43). A segment of the output is used in this section to 

demonstrate the occurrence of an abrupt concept change (𝐶𝐷𝑡 
𝐴) in the airline data stream.  The 

algorithm detects an abrupt concept change at timestamp-33 (t=33), 𝐶𝐷33 
𝐴 . There has been a 

significant distance variation between t=32 and t=33, followed by a reduced distance variation 

at t=34 (Figure 5.1). As there is an increased distance followed by a reduced distance, it 

confirms that a concept change has occurred, not an outlier.  

 

Figure 5.1 Airline dataset: Concept Change Detection 

To analyse the causality for the concept change, the variance of the input variables and target 

variables at the time of the concept change occurrence was investigated. We could observe that 

the input variable, arrival time, has a change in the density denoting an increase in the number 

of flights (Figure 5.2). This has been denoted in target variables such as diverted carried delay, 

weather delay and security delay, which might have occurred the increased number of flights 

arriving at the airports at a particular time (Figure 5.3).   
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Figure 5.2 Airline dataset: Input Variable Analysis 

 

Figure 5.3 Airline dataset: Target Variable Analysis 

This experiment demonstrates how the proposed concept change algorithm can be used to detect 

abnormal traffic build ups in near real-time that could otherwise have resulted in delays. 
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5.2 Smart Energy 

The dataset comprises electricity power consumption of a household with a one-minute 

sampling rate, containing 2075259 records for 47 months (between December 2006 and 

November 2010). The electricity meter is sub-metered into three, submeter1: corresponds to 

the kitchen appliances such as a dishwasher, an oven and a microwave, submeter2: corresponds 

to laundry room appliances such as a washing machine, a tumble dryer, submeter3: corresponds 

to an electric water heater and an air-conditioner. With this unlabelled dataset, we aim to 

evaluate the features of the algorithm and detect reoccurring concept changes.  

Different concept changes and patterns such as daily patterns (day/night) and seasonal patterns 

could be identified from the electricity dataset by differentiating the algorithmic parameters 

such as initial processing time. A daily pattern recognized with concept change detection is 

demonstrated in Figure 5.4 (top). An explanation of the concept change occurrences, we could 

see an increase in usage of submeter3 which has occurred a concept change (Figure 5.4 

(bottom). Hence, on the extracted day (Sunday, 17th December 2006), events in Table 5-1 are 

anticipated. 

 

Figure 5.4 Demonstration of concept change detection in Electricity dataset. Top: Concept 

change detection, Bottom: Hourly electricity usage (segment marked in concept change 

detection diagram): Sub_meter_1 – kitchen appliances (dishwasher, oven, and microwave), 

Sub_meter_2 – laundry room (washing machine, tumble dryer, refrigerator and, a light), 

Sub_meter_3 – electric water heater and air-conditioner 
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Table 5-1 Electricity dataset: event mapping on concept change 

The application of proposed concept change algorithm in smart energy environment will allow 

detection of any usual activity such as malfunctioning of an electrical equipment as well as to 

profile regular power consumption patterns.    

5.3 Physical Activity Monitoring Dataset 

The PAMAP2 Physical Activity Monitoring dataset (Reiss & Stricker, 2012) consists of data 

from a heart rate monitor and three inertial measurement units (IMU) worn in hand, chest and 

ankle. The IMU measures the body part’s specific force, angular rate, the magnetic field 

surrounding the body using a combination of accelerometers, gyroscopes and magnetometers. 

The data were collected from 9 subjects which performing 18 different physical activities; 

lying, sitting, standing, walking, running, cycling, Nordic walking, watching TV, computer 

work, car driving, ascending stairs, descending stairs, vacuum cleaning, ironing, folding 

laundry, house cleaning, playing soccer and rope jumping.  

This multivariant time series dataset consists of more than 3.8 million data records with 54 

columns; timestamp, 52 attributes of raw sensory data, and the activity label (the ground truth). 

Data pre-processing is conducted based on (Jayaratne et al., 2017), and new data are engineered 

to achieve better comprehension based on (Anguita et al., 2013) as follows.  

Data Pre-processing 

• Removal of transient activities which are coded with class ‘0’.  

Concept Change Event 

CD [40] Use of washing machine overnight. 

CD [43]  Use of heating 

CD [48]  Preparation of breakfast, use of the dryer and heating.  

CD [55]  Preparation of lunch 
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• Removal of records with missing values due to the loss of wireless network 

connectivity.  

• Disregarding 3D-acceleration data with the scale of ±6g resolution as the readings get 

saturated with acceleration over 6g during high impact activities such as running.  

• Removal of orientation data due to the errors in data collection.  

• Interpolation of heart rate values to compensate for the low sampling frequency 

compared to IMUs. As shown in Table 5-2, the average heart rate increase for each 

activity is calculated based on the resting heart rate for each participant. Based on the 

activities, heart rate resembles low-intensity activities such as lying, sitting, standing; 

moderate-intensity activities such as walking, Nordic walking, cycling; and high-

intensity activities such as running, rope jumping.  

Table 5-2 Average heart rate increase (Jayaratne et al., 2017) 

Activity HR increase (bps) Intensity 

Lying 9.02 

Low 

Sitting 13.21 

Standing 22.42 

Ironing 24.34 

Vacuum Cleaning 37.69 

Walking 46.46 

Moderate 

Nordic walking 58.21 

Cycling 58.85 

Descending Stairs 62.94 

Ascending Stairs 63.01 
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Data Engineering 

• New features are calculated from the triaxial signals of each IMU; triaxial acceleration, 

acceleration magnitude, triaxial acceleration jerk, acceleration jerk magnitude, triaxial 

angular speed, angular speed magnitude, triaxial angular acceleration, angular 

acceleration magnitude and triaxial magnetism.  

After data pre-processing and data engineering, 2,872,533 records and 43 attributes are used in 

the experiments. The records from one subject are processed as a single data stream is used in 

a single instance of a proposed algorithm.  

 

Figure 5.5 Activity Dataset: Unsupervised Concept Change Detection 

Figure 5.5 illustrates the concept changes detection from User 2. Each detected concept change 

was mapped to a labelled activity which denotes high accuracy of the algorithm. Also, concept 

change was detected in the same time window the new data representing the new activity 

received by the algorithm which denotes the almost real-time detection. CD6 and CD8 were 

identified as a reoccurring concept change, which was confirmed by the labels ‘Ascending stairs 

→ Descending stairs’. 

Running 81.62 

High 

Rope Jumping 90.16 



Chapter 5 

 

96 

 

 

 

Table 5-3 Activity mapping for Concept Change Detection 

Further, the multi-dimensional generalization nodes (explained in chapter 4) is visualized using 

Sammon-mapping (Thrun, 2018) to understand the concept change detection (Figure 5.6). Each 

activity is learnt in several execution timestamps and is denoted by several generalization 

nodes. Generalization nodes mapping to an activity are clustered together, and low-intensity 

activities and high-intensity activities are separated in the feature space. This maps to the 

Concept Change Activity Change 

CD1 Lying → Sitting 

CD2 Sitting →  Standing 

CD3 Standing →  Ironing 

CD4 Ironing → Vacuum Cleaning   

CD5 Vacuum Cleaning → Ascending Stairs 

CD6 Ascending Stairs → Descending Stairs 

CD7 Descending Stairs → Ascending Stairs 

CD8 Ascending Stairs → Descending Stairs 

CD9 Descending Stairs → Walking 

CD10 Walking → Nordic Walking 

CD11 Nordic Walking → Cycling 

CD12 Cycling → Running 

CD13 Running → Rope Jumping 
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categorization done in Table 5-3. Hence, Sammon’s mapping results confirm the learning of 

the concept change detection and adaptation is accurate.  

 

Figure 5.6 Sammon's Mapping of Generalization Nodes 

This experiment demonstrates how concept change detection algorithm can be used in a human 

activity monitoring. An application area would be generating alerts in health care or aged care, 

where people can be monitored for any unusual activity.  

5.4 Smart City Traffic 

Aarhus city of Denmark smart city traffic publicly available dataset (Kolozali et al., 2014) is 

generated by the source and destination pairs of sensors placed on various traffic roads in 

different cities of City of Aarhus. The recorded traffic data estimate the traffic flow between 

two points in the road providing information regarding the geographical location, timestamp 

and traffic intensity such as average speed and vehicle count. This setup has generated more 

than 23 million unlabelled IoT data, recorded every 5 minutes from 449 observation points over 
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a period of 6 months. Results of this experiment have been used to explain the cognitive data 

stream mining technique for context-aware IoT systems (Nallaperuma et al., 2017).  

Data between two observation points are generated as a single data stream input to the proposed 

algorithm to experiment the use of the proposed algorithm in IoT traffic scenario. As explained 

in Chapter 4, concept changes were identified as either abrupt or reoccurring.  

 

 

 

Figure 5.7 Reoccurring concept change detection (CD).  
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To identify the causes of the concept changes, the number of vehicles - the important 

contributing attribute - was analysed corresponding to the times of the concept changes ( 

 

Figure 5.7). It can be observed that from 0000 hours on 7/10/2014 till approximately 0500 hours 

on 7/10/2014 there was a reduced number of vehicles on this street. The vehicle count has 
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increased from approximately 0500 hours to approximately 1900 hours on 7/10/2014, resulting 

in a concept change in timestamp-9 (t9 in  

 

Figure 5.7). Similarly, from approximately 1900 hours on 7/10/2014 to approximately 0500 

hours on 8/10/2014, the vehicle count has reduced again, which has resulted in another concept 

change depicted at timestamp-13 (t13 in  

 

Figure 5.7). An increase in the vehicle count from approximately 0500 hours on 8/10/2014 to 

approximately 1900 hours has resulted in the concept change at timestamp-20 (t20 in  
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Figure 5.7). These results are summarized in Table 5-4. 

Table 5-4 Activity mapping for Concept Change Detection 

In a smart traffic scenario, detection of abrupt concept changes almost real-time is very 

important. For example: if an accident occurs, there would be an abrupt concept change in the 

traffic condition. Generation of an alert based on the detection of abrupt concept changes 

(Figure 4.1) can be used for effective decision making in real-time (e.g., reducing traffic 

congestion by a traffic diversion). An abrupt concept change has occurred in timestamp-14 (t14 

in Figure 5.8).  

Time Duration General Concept Concept Change? 

7/10.2014 00:00 – 

7/10/2014 4:48 
A low number of vehicles  

7/10/2014 4:48 – 

7/10/2014 19:12 
A high number of vehicles 

Concept change at execution 

timestamp-9 

7/10/2014 19:12 – 

8/10/2014 4.48 
A low number of vehicles 

Concept change at execution 

timestamp-13 

8/10/2014 4:48 – 

8/10/2014 19:12 
A high number of vehicles 

Concept change at execution 

timestamp-20 
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Figure 5.8 Abrupt concept change detection (CD) 

To evaluate the accurate detection of concept change, data distribution over three days were 

analysed. Concept change has occurred due to a remarkable reduction in the number of vehicles 

on that road compared to the generally high number of vehicles. The concept change has 

continued, as the number of vehicles was quite less in the next day. This could be due to an 

event such as a holiday. 

 

Figure 5.9 Data distribution of detected abrupt concept change 
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5.5 Case Study: Detecting Changes in Motor Traffic in 

the Arterial Road Network of Victoria, Australia 

Road traffic conditions and flow management continue to be an important area of research with 

many practical implications. During the last decade, the technological landscape of 

transportation has gradually integrated disruptive technology paradigms into current 

transportation management systems, leading to Intelligent Transportation Systems (ITS) (Lana 

et al., 2018; Vlahogianni et al., 2014). The emergence of the Internet of Things (IoT) and sensor 

networks have surpassed traditional means of collecting data by creating voluminous and 

continuous streams of real-time data. Leveraging such big data environments is a formidable 

issue, due to the intense volume and velocity at which data is generated by transportation and 

mobility systems (Lana et al., 2018). Furthermore, the dynamic nature of these environments 

makes the data generation volatile, which impedes the effectiveness of decision-making in ITS. 

The dynamicity of data generated by transportation systems consists of continuously changing 

patterns and concept changes. In a traffic context, concept changes are the changes to data 

distributions in a traffic data stream over time (Gama et al., 2014). These changes are further 

classified as abrupt and reoccurring concept changes based on the nature of fluctuations in data 

streams. For example, traffic congestion changes due to peak/ off-peak traffic is a reoccurring 

concept change, whereas the change in traffic congestion due to an accident or breakdown is 

an abrupt concept change. Special importance should be placed into identifying abrupt concept 

changes as it could have an unexpected influence on the entire road network.  

This section experimentally evaluates the proposed algorithm using real traffic data from the 

arterial road network of the State of Victoria, Australia. This experiment has appeared in 

(Nallaperuma et al., 2019). The traffic information has been acquired from the Bluetooth traffic 

monitoring system (BTMS) used to monitor the road traffic of arterial roads in Victoria. BTMS 

is a type of automatic vehicle detector used to estimate travel times in a road network (Bhaskar 

& Chung, 2013; Mori et al., 2015).  
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As shown in Figure 5.10, BTMS consists of a network of Bluetooth traffic scanners placed in 

the junctions of arterial roads. These Bluetooth scanners capture the Bluetooth devices that 

transit the scanning zone, which is either Bluetooth enabled vehicle stereo systems or the mobile 

devices of the occupants. The scanners capture the unique electronic identifier (MAC address) 

of the Bluetooth devices that transit the scanning area and the transit timestamp (Bhaskar & 

Chung, 2013). Each Bluetooth scanner periodically transmits those records to a central 

database. Since the electronic identifier is unique to each Bluetooth devices, its travel path can 

be traced across the network of Bluetooth scanners placed in the road network. 

For this study, the dataset was obtained from Victoria road authority (VicRoads) and comprised 

all vehicle records for October 2017. This dataset consists of approximately 190 million vehicle 

records obtained from 1,408 Bluetooth scanners placed at the junctions of arterial roads. It 

contains records from 545,851 unique MAC-IDs, which is assumed to be unique vehicles. 

The capability of the proposed platform is demonstrated by analysing the traffic behaviour 

around a key Shopping Centre (SC), which is often a volatile traffic region in Victoria. It is one 

of the largest stand-alone shopping centres in Australia, with over 20 million annual visitor 

turnarounds. Thus, it accounts for a large traffic footprint in surrounding arterial roads. In 

addition, it is sandwiched between two large freeways (Princess Hwy and Monash Fwy) which 

are the key freeways that connect Melbourne Metropolitan Area to Southeast Victorian suburbs.  

 
 

Figure 5.10 Bluetooth traffic monitoring system (BTMS) 

 

 

Figure 0.1:    
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The combination of the abovementioned factors yields unique and highly volatile traffic 

patterns in the selected region. Moreover, the surrounding arterial roads are often operated near 

saturation; thus, any non-recurrent incident can result in significant congestion and its impact 

often propagated significantly across the arterial road network. Figure 5.11 presents a schematic 

of the selected SC and the surrounding arterial roads. 

5.5.1 Traffic Flow Modelling 

The raw traffic data are pre-processed, transformed and integrated into a computational format 

that can be effectively ingested by the proposed algorithm. 

The traffic flow 𝑇(𝑡, 𝑠)  at location 𝑠 and time 𝑡 is a directional measure determined separately 

for each direction of traffic at 𝑠, based on the number of vehicles that pass through location 𝑠 

towards a particular direction at time interval 𝑡 to 𝑡 + ∆𝑡 (Lighthill & Whitham, 1955). In 

legacy approaches, traffic flow is measured from several reference points and then extrapolated 

to determine the traffic flow of the road network based on the density flow theories of 

hydrodynamics (Aw et al., 2002; Daganzo, 1994; Lighthill & Whitham, 1955; Richards, 1956). 

However, as the arrival of more comprehensive traffic data collections systems, fully data-

driven methods have been recently proposed to estimate the traffic flow (Y. Lv, Duan, Kang, 

Li, & Wang, 2015; Michau et al., 2017; Yu, Li, Shahabi, Demiryurek, & Liu, 2017). 

In addition to point-based traffic flow, the availability of vehicle trajectory data enables the 

traffic flow to be estimated for road segments (between any two sensor locations). For example, 

the traffic flow of road segment AB can be determined by 𝑇(𝑡, 𝐴 → 𝐵) and 𝑇(𝑡, 𝐵 → 𝐴), 

which denotes directional traffic flow at time 𝑡 from 𝐴 to 𝐵 and 𝐵 to 𝐴 respectively.  
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In this dataset, each record 𝐷 =  {(𝑣, 𝑠, 𝑡)} can be denoted by (𝑣, 𝑠, 𝑡) where 𝑣 is the vehicle 

denoted by the MAC-ID, 𝑠 is the location denoted by the site id, and 𝑡 is the time denoted by 

the timestamp.  The traffic flow of road segments was derived from these traffic records.  

Based on the above definition, the traffic flow 𝑇(𝑡, 𝐴 → 𝐵) of the road segment, 𝐴𝐵 can be 

defined as the number of vehicles that are first detected in 𝐴 at time 𝑡 and subsequently detected 

in 𝐵, which can be denoted as, 

 
𝑇(𝑡, 𝐴 → 𝐵) =  ∫ ∑ 𝐼(𝑣, 𝐴 → 𝐵, 𝑡)𝑑𝑡

∀𝑣

𝑡+ ∆𝑡

𝑡

 (5.1) 

where ∆𝑡 is the sampling interval for the traffic flow, which can be adjusted to obtain the 

required granularity of the traffic flow. 𝐼(𝑣, 𝐴 → 𝐵, 𝑡) is an indicator function which is active 

if the vehicle 𝑣 is first detected at 𝐴 at time 𝑡 and subsequently detected at 𝐵 within a time 

threshold 𝜏. It can be defined as, 

𝐼(𝑣, 𝐴 → 𝐵, 𝑡) = {
1
0

𝑖𝑓∃(𝑣, 𝐴, 𝑡) ∈ 𝐷 𝑎𝑛𝑑 ∃(𝑣, 𝐵, 𝑡′) ∈ 𝐷, 𝑤ℎ𝑒𝑟𝑒 𝑡 < 𝑡′ ≤ 𝑡 + 𝜏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(5.2) 

 

where 𝜏 is the trip threshold which is set enough for a single trip in the road segment. The idea 

of setting this threshold is to filter out noisy trips (Nantes et al., 2014) such as pedestrians as 

well as vehicles that make a stop inside the segment.   

 
 

Figure 5.11 Schematic of the road network in the area of interest selected for traffic analysis. 
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Transformed data were presented in the form of a data stream to the proposed algorithm. Figure 

5.12 illustrates the concept changes detected in the selected traffic area Figure 5.12 

demonstrated the recurrent and non-recurrent concept changes identified by the algorithm. 

The algorithm identified three recurrent concept changes throughout the data stream. These 

recurrent concept changes relate to the traffic flow changes due to longer shopping hours, 

weekdays to weekend traffic flow and vice versa. A summary of the recurrent traffic flow 

changes is denoted in  

Table 5-5.  

 Moreover, the algorithm identified two non-recurrent concept changes at execution timestamps 

[t22] and [t32]. These incidents occurred at the Warrigal Rd-Waverly Rd intersection (see 

Figure 5.12). The tweets relevant to this incident were collected using the technique delineated 

in (Nallaperuma et al., 2019).  The collected tweets found that these non-recurrent traffic flow 

changes had occurred due to an accident (Error! Reference source not found.). Tweets in 

Error! Reference source not found. (right) show a communication gap of more than 45 

minutes to gather information on the situation. Due to the algorithm's data-driven nature, 

concept changes on traffic flow can be detected almost real-time. Providing a real-time 

 
 

Figure 5.12 Recurrent and non-recurrent concept change detection 
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notification on non-recurrent traffic flow changes will allow better communications and 

effective optimizations.  

 

Table 5-5 Summary of recurrent concept drift detection 

5.6 Case Study: Detecting Change in Driving 

Behaviours of Autonomous and Human Driven 

Vehicles 

 

The reality of mixed road traffic, composed of vehicles aided or controlled by autonomous 

systems and vehicles operated by human drivers, is fast approaching (Katrakazas et al., 2015). 

In this context, artificial intelligence algorithms in autonomous vehicles face advanced 

Traffic 

flow 

change 

Execution 

Timestamp 

Explanation 

Wednesday 

→ 

Thursday 

[t5]:  4-5/10/2017 

[t12]: 11-12/10/2017 

[t19]: 18-19/10/2017 

[t30]: 25-26/10/2017 

Traffic is affected by the longer shopping hours on 

Thursday. 

Friday → 

Saturday 

[t7], [t26], [t34] The area is a central suburb where most of the traffic 

would cross while travelling from outer suburbs to 

city. Traffic will reduce on Saturday compared to 

Friday, as Saturday is a holiday. 

Sunday → 

Monday 

[t10], [t15], [t28], 

[t37] 

The area is a central suburb where most of the traffic 

would cross while travelling from outer suburbs to 

city. Traffic will increase on Monday compared to 

Sunday as most people work in the city. 
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challenges as driving requires not only accurate perception and cognition of information 

pertaining to vehicle performance and traffic but also coordination and communication with 

human drivers. Human driving behaviour recognition is necessary to improve communication 

and coordination between autonomous vehicles and human drivers to increase the overall 

efficiency of traffic flow, hazard detection and collision avoidance (W. Wang et al., 2014). 

Current driving and collision avoidance systems are developed exclusively based on average 

driver performance without any consideration for unique individual behaviour in each situation 

(W. Wang et al., 2014).  

General human behaviour recognition using biological data has been extensively researched in 

numerous studies on human physiology and psychology (Candamo et al., 2010; E. Kim et al., 

2010; Maurer et al., 2006; Shinar, 2017; Yin et al., 2008). Similarly, driver behaviour 

recognition and change detection can be determined using endogenous factors such as 

experience, training, human personality and exogenous factors such as vehicle status, speed, 

road conditions and trajectory, environment, other road users (Shinar, 2017). These endogenous 

and exogenous factors representing driver behaviour are unique to the situation and the human 

driver. Some behaviour changes are abrupt, occurs due to a sudden change of environment, 

such as road hazards. In contrast, other behaviour changes are routine actions such as changing 

freeway and stopping for traffic lights. Driver Demands and Capabilities Model proposed by 

Fuller (2005) demonstrates the influence of exogenous and endogenous factors towards the 

control or loss of control of a motor vehicle. The model explains how the loss of control would 

lead to a collision or result in an escape by luck or by the complementary actions been taken by 

other drivers.  

Given its dynamic and complex nature, it is pertinent to explore an artificial intelligence 

solution to address the problem of behaviour change recognition. We propose an extension to 

the Driver Demands and Capabilities Model, which is implemented as a Self-Structuring AI 

algorithm for human driver behaviour change detection, abrupt and repeating changes. 
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A majority of related work in autonomous vehicle navigation and communication focus on in-

built intelligent algorithms to investigate and understand the surrounding environment. 

According to the environment, the autonomous car would transform its configurations such as 

vehicle position, orientation, linear or angular velocities etc. (Howard, 2009). Some of these in-

built algorithms focus on searching the continuous coordinates using road boundaries and the 

position of the obstacles (Hardy & Campbell, 2010; Jeon et al., 2013; Wille & Form, 2008). 

Implementation of continuous coordinates is driving corridors which guide the vehicle in a 

collision-free space avoiding obstacles (Fletcher et al., 2008). Voronoi diagrams (Takahashi & 

Schilling, 1989) are another method used in inbuilt algorithms, which generates paths to 

maximize the distance between the vehicle surrounding and obstacles. Path planning of an 

autonomous vehicle travelling in a parking lot has been programmed using Voronoi diagrams 

and an obstacle avoidance system modified from a mobile robot system (Dolgov et al., 2010). 

Both Costmaps (Broggi et al., 2012; Murphy & Newman, 2011) and Occupancy grids (W. Xu 

et al., 2014) use the probability of a cell in the grid to be associated with an obstacle, road 

boundary or lane. The grid-based approach is more efficient and uses low computational power, 

but demonstrates shortcomings in dynamic environments.  

Although the above techniques generate an efficient and safe trajectory for autonomous driving, 

they are inadequate to handle mixed traffic that consists of human-driven vehicles and 

autonomous vehicles. In mixed traffic scenarios, autonomous vehicles require a higher level of 

intelligence to understand environmental dynamics and coordinate effectively with other 

vehicles to ensure traffic flow optimization, collision avoidance, and hazard detection. Fuller 

(2005) has proposed Driver Demand and Capabilities Model (Figure 5.13) that represents the 

dynamic interface between the capability of the driver and demands of the driving task. 

Capabilities of the driver refer to the endogenous factors such as experience, training, and 

personality. Task demands refer to exogenous factors such as vehicle status, speed, road 

conditions and trajectory, environment, other road users. This model can be extended to 

incorporate driver behaviour change detection using Self-Structuring AI.  
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The proposed extension to the Driver Demands and Capabilities Model (Fuller, 2005) 

successfully address diverse driver behaviour using driver behaviour change detection (2). This 

extension has been proposed in (Nallaperuma et al., 2018). As shown in Figure 5.14, the task 

is easily completed when capabilities (C) are higher than demand (D). When the demand 

becomes higher than capabilities, there is an inclination towards abrupt behaviour change. 

When the behaviour changes and tasks become more difficult than the capabilities, the driver 

fails at the task and loses control of the vehicles. In many instances, the increased demands are 

such that the driver is simply unable to maintain the desired trajectory, avoid an obstacle or stop 

in time. Sometimes the actions of another user can be complementary and avoid the situation. 

Humans have situational awareness and take impulsive actions, resulting in a lucky escape from 

uncontrollable situations. Capabilities (C) and task demands (D) are unique to each situation, 

thereby necessitating the need for Self-Structuring AI for personalization and real-time 

detection of the behaviour change. 

 

 
 

Figure 5.13 Fuller's Driver Demands and Capabilities Model (Fuller, 2005) 
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This extended Driver Demands and Capabilities model is implemented as Self-Structuring AI 

algorithm for concept change detection proposed in Chapter 4. Further, the proposed model was 

experimented using DDD17 (Binas et al., 2017), the first openly available dataset of annotated 

DAVIS driving recordings accompanying driving data. The dataset comprises 12 hours of 

driving data recording vehicle speed, GPS position, driver steering, throttle, and brake captured 

from the vehicle’s onboard diagnostics interface. The data were collected while driving on 

 

 
 

Figure 5.14 Extended Driver Capacity and Driving Demands Model for behavior recognition 

and change detection 

 

 

 

 
Figure 5.15 Intelligent Detection of Driver Behaviour Change 
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highway and city in the daytime, evening, night, dry and wet weather conditions. The driving 

data from the onboard diagnostic interface generates a continuous stream of data. 

The vehicle is being driven on a highway, and during the period of experimentation of 2720 

seconds, several behavioural changes occur. The video feed was independently analysed to 

identify behaviour changes to be used as gold standard data to evaluate the algorithm. The gold 

standard data include eleven behaviour changes, including two repeating behaviour changes. 

Out of these eleven behaviour changes, the proposed algorithm identified five abrupt behaviour 

changes and one set of repeating behaviour changes (Figure 5.15). Table 5-6 presents the events 

that caused behavioural changes, time of the event and detection by the algorithm.  

 

Table 5-6 Intelligent Detection of Driver Behaviour Change 

 Event Time Description 

Detection 

by 

algorithm 

Abrupt/ 

Reoccurring 

E1 Lane 

closure 
190s 

Sudden reduction of speed due 

to a road closure 
No  Abrupt 

E2 A sudden 

change of 

lanes 

670s 
The vehicle moves to another 

lane to avoid a crash 
Yes Abrupt 

E3 Uneven 

Road 
950s 

Vehicle vibrates due to the 

uneven road segment 
No Abrupt 

E4 Another 

car 

changing 

lanes 

1540s 
A car entered the lane which 

affects the speed 
No Abrupt 

E5 Change of 

highway 
2020s 

Vehicle enters a highway with 

different restrictions 
Yes Abrupt 

E6 Highway 

exit 
2375s 

Vehicle exit the highway to a 

normal road 
Yes Abrupt 
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The events comprise of different task demands and driver’s capabilities (Table 5-6). Events E1, 

E3 and E7 occurred due to environmental factors. Events E2 and E4 have occurred due to the 

influence of another vehicle. Events E5 and E6 have occurred due to change of speed. Events 

E8-E11 have occurred due to road position and trajectory.  

Given that the dataset is unlabelled, an effective means of evaluation of behaviour change 

detection is to reference the time stamp of behaviour change detection to the corresponding 

video stream. Due to space limitation, only one event is explained.  This event is illustrated in 

Figure 5.16, a brief narrative as follows. “E2”: The vehicle is travelling on a highway when a 

truck enters the highway via the ramp at time 668s. After 7 seconds, the driver suspects the 

truck will merge into the same lane, and he/she reacts by attempting to change lanes, as shown 

in Figure 5.16. This sudden change in driving behaviour would have affected the other drivers 

if they did not comprehend the situation, which could be the case for autonomous vehicles. To 

further explain, the vehicle immediately returns to the first lane at 684s as there is a vehicle 

already on that lane, which could have led to a collision.  This sudden change of behaviour has 

occurred within about 16-second short time frame. Detection of this behaviour change in almost 

real-time successfully demonstrates the capabilities of the proposed algorithm.  

E7 Traffic 

congestion 
2410s Built-up area Yes Abrupt 

E8 Tunnel 

entrance 
2535s Vehicle enters a tunnel Yes Reoccurring 

E9 Tunnel 

exit 
2550s Vehicle exit the tunnel Yes Reoccurring 

E10 Tunnel 

entrance 
2630s Vehicle enters a second tunnel Yes Reoccurring 

E11 Tunnel 

exit 
2680s 

Vehicle exit the tunnel to a 

normal road 
No Reoccurring 
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The accuracy of abrupt and repeating behaviour change detection was measured using 

precision, recall, and F1 as shown in Table 5- 7. 

Table 5- 7 Precision, Recall and F1 of behaviour change detection 

High precision is generally at the expense of recall. However, recall still lies at 57.14%, 75% 

and 63.63% in abrupt, repeating and overall behaviour change detections respectively. Using 

 Precision Recall F1 

Abrupt behaviour change detection 100% 57.14% 72.72% 

Repeating behaviour change detection 100% 75%  86% 

Behaviour change Detection 100% 63.63% 77.77% 

 

 

Figure 5.16 Explanation of the change of behaviour detected by the algorithm: Top left – truck 

entering the highway, Top right – the truck is close to entering the lane of the car, Bottom left 

– a sudden change of lane by the human driver, Bottom right – car returns to original lane to 

avoid likely collision 
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the gold standard evaluation, we have determined the following limitations for failing to detect 

the abrupt behaviour changes in E1, E3, and E4.  

E1: Event occurred right at the start of the learning process. 

E3: Event was not captured in any of the driving data. 

E4: Speed change was insignificant. 

5.7 Chapter Summary 

The chapter presented the empirical evaluation of the proposed Self-Structuring AI algorithm 

for change detection. The algorithm was applied to six different real-world data streams 

representatives of various HCDE settings.  

• An air traffic dataset comprises 116 million records of flight arrival and departure 

details of all commercial flight details within the USA.  

• A smart electricity meter dataset on the power consumption of a household with a one-

minute sampling rate, containing around 2 million records for a duration of 47 months. 

• A physical activity monitoring dataset consisting of data from a heart rate monitor and 

three inertial measurement units (IMUs) worn in hand, chest and ankle. The data were 

collected from 9 subjects while performing 18 different physical activities. 

• A smart city traffic dataset generated by sensors placed in the City of Aarhus. The 

dataset contains more than 23 million unlabelled IoT data, recorded every 5 minutes 

from 449 observation points over a period of 6 months. 

• A case study carried out with a dataset obtained from Victorian road authority, 

VicRoads. This dataset consists of approximately 190 million vehicle records obtained 

from 1,408 Bluetooth scanners placed at the junctions of arterial roads.  

• A case study carried out with the DAVIS dataset. The dataset comprises of 12 hours of 

driving data recording vehicle speed, GPS position, driver steering, throttle, and brake 

captured from the vehicle’s onboard diagnostics interface. 
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Chapter 6                             

A Self-Structuring AI Algorithm 

for Concept Change Causality 
 

 

This chapter proposes the Self-Structuring AI algorithm for concept change causality outlined 

in chapter 3. The proposed algorithm uses the output of the change detection algorithm (chapter 

4) and comprises of (1) a new generalised data structure based on suffix trie to explore 

sequences of behaviours embedded in each data stream at each ∆𝑡, and (2) a behavioural tree-

based method to detect the causal relationship between related multiple data streams at each 

∆𝑇, where ∆𝑇 >  ∆𝑡. The proposed approach is successfully evaluated using two datasets; a 

publicly available video stream of a volleyball game and PAMAP2 physical activity monitoring 

dataset. The volleyball game results were evaluated with published annotations of player 

behaviour, and the results of PAMAP2 dataset were evaluated with corresponding activity 

labels.   

The chapter is organised as follows. Section 6.1 provides an overview of data streams in an 

HCDE and highlights the importance of understanding multiple data streams and causal 

relationships. Section 6.2 defines the terms and provide background on sequence analysis and 
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causal relationships in the context of multiple data streams. Section 6.3 proposes two Self-

Structuring AI algorithms. Section 6.4 presents an empirical evaluation of the proposed 

methodology using two real datasets; PAMAP2 physical activity monitoring dataset and 

annotated video stream of a volleyball game.  

6.1 Identifying Causal Relationships between Multiple 

Data Streams  

Data streamed in HCDE contain a large volume of useful information. Understanding causality 

for concept change in these data streams and taking appropriate actions in a timely manner is 

crucial for many applications such as healthcare, transportation, manufacturing, and sports. As 

explained in chapter 1, most of these applications in HCDE generate multiple data streams, 

rather than single, isolated data stream. A set of related data streams at a given moment will 

have components that reference each other, which together represent a single event (Krempl et 

al., 2014). Hence, to comprehend such an event, we need to understand the multiple data 

streams and the relationships among them.   

As explained in chapters 2 and 4, one major challenge in working with data streams is their 

evolving nature, i.e., the concept at a given time, 𝑡, will evolve to another concept at time, 𝑡 +

𝛼 (Lam & Mostafa, 2001). Further, most concepts reoccur over time (Gama et al., 2014). 

However, real data streams are not necessarily characterised by a single sequence of concepts 

that reoccur (Han et al., 2011). Instead, data streams behave as a mix of multiple sequences, 

each having different conditional probabilities attached to them. We define such sequences and 

their respective probabilities as the behaviour of the data stream. The first part of this chapter 

focuses on understanding these intricate behaviours of data streams.  

Further, these behaviours are affected by related data streams. There is no simple or a linear 

causal relationship between data streams, and the causal assertions depend on temporal 

constraints between the set of data streams  (Jalali & Jain, 2015; W. Liu et al., 2011). The 
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second part of the chapter emphasises on detection of causal relationships over time on a set of 

data streams.  

6.2 Related Work in Change Detection Causality 

The essence of causality is the generation and determination of one phenomenon by another 

(Spirkin, 1975).  It is imperative to identify the causal relationships across multiple data streams 

that are generated in an environment. To the author’s best knowledge, literature does not have 

a comprehensive solution that addresses all the challenges mentioned above. Related work on 

detecting evolving concepts, exploration of sequences of behaviour, and identifying causal 

relationships are discussed in the sections below.   

In related literature, model-based approaches for recognition, tracking, and segmentation of 

behaviours are widely used (Fleet et al., 2000; Oliver et al., 2002). A model-based approach for 

behaviour segmentation carried out by Arikan, Forsyth, O’Brien, & O’Brien (2003) uses hand-

annotated training data. Recent years have seen a number of algorithms for behaviour 

sequencing from annotated data. These algorithms (Arikan & Forsyth, 2002; Lee et al., 2002; 

Yan Li et al., 2002; Pullen & Bregler, 2002; Tanco & Hilton, 2000) can identify in a video of 

real person, sequences that follow a path, go to a particular position, perform a particular 

activity at a specific time. However, these approaches can only capture the limited direction of 

behaviour; for example, there are many ways to follow a specified path. Kovar, Gleicher, & 

Pighin (2008) have addressed this limitation by using motion graphs which confines their search 

to subgraphs induced by the desired action. Nevertheless, this method is ill-suited if the desired 

actions have short temporal span, such as “jumping” or “catching” or if the actions are to be 

composed: “jump and catch while running”. Hence, this work focuses on capturing the 

behaviour that will denote the sequence and the temporal span of the behaviour.  

Availability of large volume of diverse data streams can now be used to make efficient analysis 

on different applications. A data stream is often available as a part of a set of related data 
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streams. Hence, understanding causal relationships across multiple data streams are essential to 

maximizing the utility of these data (Jalali & Jain, 2015).  

6.3 A Self-Structuring AI Algorithm for Concept 

Change Causality 

This section introduces the proposed Self-Structuring AI algorithm for concept change causality 

that uses a generalised data structure to capture sequences of behaviours and a similarity-based 

method to detect the causal relationship between data streams.   

 

Figure 6.1 Overview of the proposed approach for capturing the causal relationship between 

related data streams as a sequence of evolving concepts 

As shown in Figure 6.1, each data stream of HCDE is processed by a unique instance of the 

algorithm, in which the first two research challenges are addressed. (1) Concept change 

detection algorithm: The Self-Structuring AI algorithm described in detail in chapter 4, detects 

concept changes in any type of data stream. This spatio-temporal technique uses online learning 

to handle the velocity and volume of the data streams, incremental learning to learn from 
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incoming data representing new concepts, and decremental learning to forget the memories that 

are no longer relevant. The method will also calculate the usual number of reoccurring concept 

changes available in the data stream. (2) Generalised suffix trie: A novel generalised algorithm 

based on suffix trie captures frequent reoccurring concept changes. The algorithm learns online 

as new concept changes are presented. The resulting generalised suffix trie is used to explore 

the dynamic behaviours embedded in the data stream represented by continuous behaviours 

from multidimensional data. (3) Behaviour Tree: An algorithm based on phylogenetic tree 

theories to identify causal relationships among interrelated data streams. The behaviour 

algorithm calculates the similarities based on the distance on multiple iterations and executes 

based on temporality. 

Each contributing algorithm is explained in detail in the next sections.  

6.3.1 Concept Change Detection Algorithm for Detection of Evolving 

Concepts 

Real-time detection of evolving concepts is implemented based on Self-Structuring AI 

algorithm proposed in chapter 4. As shown in Figure 6. 2, the proposed algorithm consists of 

one pass online clustering and offline learning. Online clustering addresses the volume and 

velocity challenges of the data stream and presents aggregated data to offline learning. Offline 

learning consists of two learning features: (1) incremental learning to learn from new incoming 

data. With incremental learning, the algorithm can determine the difference between the 

previously learned concepts and new concepts represented by incoming data. (2) Decremental 

learning to forget the previous concepts that are no longer useful and relevant.  Data-driven 

triggers define the processing time window and the level of abstraction.  
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Figure 6. 2 Proposed concept change detection algorithm for detection of evolving concepts 

using online, incremental and decremental learning 

Initialisation: 

In the initialisation phase, starting cluster centroids for the online clustering algorithm 𝐶𝐹𝑉𝑂𝐶, 

number of clusters 𝑛, initial processing time window 𝑡 and cluster creation threshold ∅ is 

initialised.  

Online Clustering: 

In the first iteration, for each incoming data point in the time window 𝑡, find the nearest cluster 

centroid 𝐶𝐹𝑉𝑂𝐶
𝑞′

 using Euclidean geometry such that |𝑣 −  𝑤𝑞′| ≤  |𝑣 −  𝑤𝑞| ∀𝑞 ∈ 𝑁, where 𝑣, 

𝑤 are the input and centroid weight vectors, respectively, and 𝑞  is the index of the cluster 

centroid. Calculate the new centroid for updated 𝐶𝐹𝑉𝑂𝐶
𝑞′

. If |𝑣 −  𝑤𝑞′|  ≥  ∅, a new centroid 

𝐶𝐹𝑉𝑂𝐶
𝑛+1 is created to present the data point. In the subsequent iterations, the time window 𝑡 is 

the time taken by the offline algorithm.  

Offline Incremental and Decremental Learning: 

The list of 𝐶𝐹𝑉𝑂𝐶 is the aggregated data that is sent to the offline incremental and decremental 

learning. Incremental learning is carried out as per the Incremental Knowledge Acquisition and 

Self Learning (IKASL) algorithm (D. De Silva & Alahakoon, 2010). Inputs to the algorithm 
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are batches of 𝐶𝐹𝑉𝑂𝐶 received by the online function processed during the time window 𝑡. 

Decremental learning is facilitated by forgetting the IKASL learning nodes that are not winners 

in the subsequent iteration. This denotes that the concept represented by the IKASL learning 

node has changed or evolved. Using decremental learning allows the algorithm to learn from 

the current concept and differentiate between the current and old concept. Associations between 

IKASL learning nodes will be persistent, leading to the creation of memory like structure based 

on the aggregated outcomes of the learning stages. Adaptation to a new concept is formalised 

with the incremental and decremental learning.  

Detection of evolving concepts: 

As explained in chapter 4, to detect an evolving concept, the spatial distance between the 

IKASL learning nodes, 𝐶𝐹𝑉𝑜𝑓𝑓𝑙𝑖𝑛𝑒 on consecutive iterations are calculated. If a concept has 

evolved, there would be a significant distance change 𝐷𝑡 at 𝑡 followed by a reduced distance 

change 𝐷𝑡+1 in the following iteration. 

Algorithm 1: Concept Change Detection Algorithm 

1.  Calculate the distance measure change (𝐷𝑡) between offline learning nodes 

𝐶𝐹𝑉𝑜𝑓𝑓𝑙𝑖𝑛𝑒
𝑡  and  𝐶𝐹𝑉𝑜𝑓𝑓𝑙𝑖𝑛𝑒

𝑡−1  

2.  
if 𝐷𝑡  >  𝐷𝑡−1 and 𝐷𝑡  >  𝐷𝑡+1 

Detect 𝑡 as an occurrence of the evolution of concept,  𝐸𝐶𝒕 

end if  

3.  if 𝑃𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 (𝐸𝐶𝑡) > 𝑚𝑒𝑎𝑛 (𝐸𝐶) 

Detect 𝐸𝐶𝑡 as an occurrence of abrupt concept change  

else  

Detect 𝐸𝐶𝑡 as an occurrence of reoccurring concept change 

Use IKASL learning nodes of 𝐸𝐶𝑡 in the generalised suffix trie 

end if 

 

Algorithm 1 is explained in detail in chapter 4. Evolution of concepts are categorised into two; 

abrupt and reoccurring. This categorisation depends on how often the concepts appear in the 

data stream. Abrupt concept changes result in relatively higher knowledge acquisition in 
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IKASL learning as that concept has not been learned by the algorithm before. Therefore, the 

spatial movement of the IKASL learning nodes between the two learning iterations containing 

an occurrence of abrupt concept change will be higher. This would be resembled by the 

prominence of the spatial movement. In contrast, reoccurring concept changes result in lower 

knowledge acquisition as they have been learned before. As the reoccurring concept change is 

identified, the IKASL learning nodes are sent to the generalised suffix trie algorithm and will 

be processed as explained below.  

6.3.2 Generalised Suffix Trie for Exploration of Sequences of 

Behaviour 

In this section, an adaptation of (Gunasinghe & Alahakoon, 2010, 2013) is introduced for 

capturing frequent variable-length sequences and their substructures by enhancing the suffix 

trie data structure. The proposed algorithm is an online algorithm as it can learn and incorporate 

new concepts as they are presented. As shown in Figure 6.3, the proposed algorithm could 

capture continuous patterns embedded in multidimensional data. The algorithm is a 

continuation of the proposed concept change detection algorithm above and consists of three 

layers; multidimensional IKASL learning nodes (output) from the offline learning layer, 

discretisation/clustering layer which consists of a pretrained GSOM cluster and pattern 

arrangement layer which results in the generalised suffix tree.   
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Figure 6.3 Exploration of dynamic behaviours using generalised suffix trie.  

The first layer is the output from the offline learning layer of concept change detection 

algorithm which consist of IKASL learning nodes, 𝐶𝐹𝑉𝑜𝑓𝑓𝑙𝑖𝑛𝑒. The algorithm will trigger every 

time an IKASL learning node is available.  

The second layer is the discretisation layer which consists of a GSOM (Alahakoon et al., 2000) 

map. GSOM has the ability to grow the map dynamically allowing the size of the map to be 

defined based on the underlying concepts. The GSOM layer is used for labelling the reoccurring 

concept changes detected by the algorithm 1.  

The output of the GSOM is a two-dimensional map of nodes which gives a discretised 

representation of the input to the algorithm. The nodes are positioned depending on their 

similarity to each other’s weight vectors. To build the generalised suffix trie, the GSOM nodes 

in the discretisation layer are added as child nodes to the root of the suffix trie. These will then 

correspond to the initial elements of the sequences captured by the algorithm. Nodes of this 

layer will have a set of attributes corresponding to the GSOM nodes including a weight vector, 
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positions in the output layer (which is usually a pair of (x, y) coordinates) and the accumulated 

error value. 

The final layer is the sequencing layer in which the generalised suffix trie is constructed. In the 

generalised suffix trie, the path from the root to each node represents a sequence learned by the 

algorithm. The generalised suffix trie stabilises as the learning continues and can be used for 

predictions. Each node in the tree has a weight and a parameter resembling the maturity. The 

learning rate and threshold in the algorithm define when a node should be considered as a 

matured node (weight adaptation of the algorithm). Modifying the values of the learning rate 

and threshold can be used to capture sequences with different characteristics. Both these 

parameters can take a value between 1 and 0 and 0 for the calculated weight is considered as 

the most matured. Child nodes can be added only to the mature nodes. The weights of the non-

mature nodes are adapted towards the weight of their parent nodes, using a weight adaptation 

rule based on Hebbian learning until the weight difference between the parent node and child 

node reaches a predefined threshold. When the weight different reaches the threshold value, the 

node is marked as mature, and child nodes can be added to it.  

The proposed algorithm consists of two phases: initialisation phased and training phase, which 

is described below. 

The Initialisation Phase: 

During the initialisation phase, the root node is created as a matured node with a weight of 0. 

As the root node is defined with maximum maturity, children nodes can be added without 

further learning. Further, the learning parameters; learning rate and threshold are initialised 

such that the sequence with the required characteristics can be captured by the algorithm. The 

GSOM is trained with the past data based on (Alahakoon et al., 2000).  

The Training Phase: 

In the training phase, labelled IKASL learning nodes are processed to build an implicit 

generalised suffix trie which holds frequent subsequence. The algorithm retains the root and a 
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list of mature nodes corresponding to previous elements and the root in memory. The algorithm 

checks whether the sequence has a child corresponding to each IKASL learning node presented 

by the concept change detection algorithm. If a child does not exist, a new node is created with 

a weight of 1 and its maturity property set to false. If a non-mature node exists, the weight is 

adapted towards the weight of the root. The weight adaptation of a node depends on the learning 

rate and is used to stop the growth of the tree after a certain depth has been reached. At any 

given time, the generalised suffix trie that is created represents the frequent sequences present 

at that time.  

Algorithm 2: Generalised suffix trie algorithm 

I. Initialisation 

 
1.  rootNode ← create a new node  

2.  rootNode.maturity ← true 

3.  rootNode.weight ← 0 

4.  initialise the LEARNING_RATE and THRESHOLD 

5.  trainGSOM() for labelling 

 

II. Train generalised suffix trie 

 

6.  for each 𝑆 ∈ 𝐿𝑖𝑠𝑡 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠  

7.  nodeList ← add root to the list 

8.  for each 𝑠 ∈ 𝑆 

9.  newNodeList ← add root to a temporary list 

10.  for each 𝑛 ∈ 𝑛𝑜𝑑𝑒𝐿𝑖𝑠𝑡 

11.  childNode ← find whether the node has a child s 

12.  newNodeList ← add childNode to the temporary list 

13.  if childNode equals to s  

14.  childNode ← update weight of the node 

15.  else  

16.  If childNode = null 

17.  childNode ← create a childNode s for node 

18.  else if childNode is not mature 

19.  childNode ← update weight of the node 

20.  end if 

21.  end if 

22.  if childNode is mature 

23.  newNodeList ← add the childNode 

24.  end if 

25.  end for 

26.  nodeList ← newNodeList 
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27.  end for 

28.  end for 

29.  Prune non-mature nodes 

 

III. Weight adaptation 

 

30.  node.weight  ← (1-LEARNING_RATE) × nodeCurrentWeight 

31.  If node.weight ≤ THRESHOLD 

32.  node ← set as a mature node 

 

 

6.3.3 Behaviour Tree Method for Identification of Causal 

Relationships in Multiple Data Streams 

To understand the causal relationships between the related data streams, a computational 

phylogenetic algorithm is proposed in this section. A phylogenetic tree is a diagram showing 

inferred evolutionary relationships (Meneely et al., 2017). The branching pattern in the 

phylogenetic tree reflects the process of descent with modification which can be used to denote 

the causal relationships. Sequences of behaviour with shorter evolutionary distance are 

expected to be more similar to one another than the ones that are separated over longer 

evolutionary distance. Further, sequences of behaviour in data streams vary as the concepts 

evolve; hence the causal relationships between the data streams change. Therefore, the 

behaviour tree generation needs to be carried out incrementally. 

In the proposed algorithm, a behaviour tree is built after each time window, 𝑇. The algorithm 

considers the label generated in each iteration by the GSOM algorithm, as explained in 

algorithm 2: generalised suffix trie. The behavioural labels at time 𝑇 of multiple data streams 

are compared together to distinguish the distance between their behaviour and build the 

behaviour tree. The results of the tree can be used to determine the causal relationship between 

the data streams at that point. In the next time window 𝑇, the behaviour tree is modified, which 

will resemble the new and current causal relationships between the data streams.  

 



 Self-Structuring AI for Concept Change Causality 

129 

 

Algorithm 3: Behaviour Tree Algorithm 

1.  L ← List of sequences 

2.  while size (L) > 1 

3.  for each 𝑙𝑖, 𝑙𝑗 ∈ 𝐿, 𝑖 ≠ 𝑗 

4.  𝑑𝒊𝒋  ← count number of position differences 

5.  end for 

6.  𝑚 ← min (𝑑𝒊𝒋) 

7.  Draw a phylogenetic tree with 𝑙𝑖, 𝑙𝑗 in the 𝑚 grouping 

8.  𝐿 ← 𝐿. 𝑟𝑒𝑚𝑜𝑣𝑒(𝑙𝑖 , 𝑙𝑗) 

9.  𝐿 ← 𝐿. 𝑎𝑑𝑑(𝑎𝑣𝑔(𝑙𝑖 , 𝑙𝑗)) 

10.  end while 

 

 

 

6.4 Experiments and Results 

The proposed approach is evaluated using two publicly available datasets; an annotated video 

of a volleyball game and PAMAP2 physical activity monitoring dataset.  

6.4.1 Video Analytics for Sports 

Publicly available video streams of volleyball games are used to evaluate the proposed Self 

Structuring AI algorithm for Concept Change Causality. The output of the concept change 

detection algorithm is evaluated against the annotations provided by Ibrahim, Muralidharan, 

Deng, Vahdat, & Mori (2015). This large-scale annotated dataset contains labels for player 

locations and their corresponding actions. It consists of 55 volleyball games where each player 

is annotated with one of the nine individual actions resulting in 4830 labelled frames altogether. 

We would like to point out that the players in the game tend to present more in static behaviours 

such as standing, waiting as compared to dynamic actions such as blocking, spiking, setting etc. 

For the demonstration of the proposed approach, 2012 Olympic women’s volleyball 

quarterfinals match between Brazil and Russia and the corresponding annotations are used. 

To utilize the video stream in the proposed approach, the video was processed as a raw image 

sequence and features were extracted for each individual player.  
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6.4.2 Feature Extraction from the Video 

It is important to extract features from each individual player for behaviour analysis; otherwise, 

the features will be overpowered by the features of the volleyball court. Therefore, a boundary 

box of each player was captured manually in each frame (Figure 6.4 - A) as the region of interest 

(ROI). A new frame is created with the black background in the ROI (Figure 6.4 - B) for focused 

features on the player.  

 

Figure 6.4 Selection of a player for feature extraction: A – capturing the ROI of the player, B – 

conversion of the black background of the ROI for focused feature extraction. 

To extract features and trajectory information, Improved Trajectory (IT) features proposed in 

(H. Wang & Schmid, 2013) were used. IT is based on the trajectory of local features and have 

shown impressive performance for many human activity recognition benchmark datasets (Gaur 

et al., 2011; H. Wang & Schmid, 2013).  In this approach, points are densely sampled at several 

spatial scales. Points located in homogeneous areas are suppressed as it will not be practical to 

track them reliably. The tracking point in the current frame is achieved by median filtering of a 

dense optical flow field (Farnebäck, 2003). To avoid drifting, tracking is carried out to 15 

frames, followed by new frames to sample them. Also, the approach removes static trajectories 

before feature extraction as those do not contain motion information. As the next step, the IT 

approach computes several descriptors such as Histograms of Oriented Gradients (HOG), 

Histograms of Optical Flows (HOF) and Motion Boundary Histograms (MBH) for each 

trajectory (Heng Wang et al., 2013). Final trajectory descriptors are a concatenation of 

normalised vectors of HOG, HOF, and MBH, forming a 204-dimensional feature vector.  
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6.4.3 Evaluation of Proposed Approach 

An overview of our approach for identifying causal relationships between data streams as a 

sequence of evolving concepts is described in Figure 6.5.  

 

Figure 6.5 Overview of the proposed algorithm applied in the Volleyball dataset 

As shown in Figure 6.5, each player is processed as a separate data stream. First, dense 

trajectory feature extraction is carried out for each individual player. Then the extracted features 

processed as a data stream are fed into an instance of proposed concept change detection 

algorithm. After each learning iteration of the concept change detection algorithm, learning 

nodes in the current layer are labelled using the pretrained GSOM cluster. These labelled nodes 

are used to explore dynamic behaviours using the proposed suffix trie based generalised data 

structure. Finally, results from the multiple data streams are used to identify the causal 

relationship between data streams using the proposed behaviour tree.  

6.4.4 Detection of Concept Changes  

In Figure 6.6, there are two concept changes detected by the algorithm at learning iteration [t5] 

and [t8]. The corresponding annotation of the player is presented in Table 6-1.  
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Figure 6.6 Concept change detection in the Volleyball dataset 

 

Table 6-1 Explanation of the concept in each learning iteration 

Learning Iteration Behaviour activity (as per the 

annotations from the dataset) 

Concept Change 

Detection? 

[t3] Standing No 

[t4] Standing No 

[t5] Moving Yes 

[t7] Standing No 

[t8] Falling Yes 

[t11] Standing No 

[t12] Standing No 

[t15] Standing No 

[t16] Standing No 
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In Figure 6.6, there are three different activities taking place in the video segment. From 

learning iteration [t3] – [t4] the player is standing, at learning iteration [t5] the player is 

moving/jumping which has caused a concept change, from learning iteration [t6] -  [t7] the 

player was standing and at the end of [t7] player started to fall which continues to [t8] causing 

another concept change, from [t12] – [t17] the player continues to stand which is a learned 

activity by the algorithm.  

Exploration of Sequences of Behaviour using Generalised Suffix Trie 

Understanding each player's usual behaviour lets the algorithm understand the learning and use 

it for causality analysis and implement the predictive capability. Therefore, suffix trie based 

generalised data structure described in section 6.3.2 provides an overview of the dynamic 

behaviours that generate concepts. Below sections explain the different sequences of behaviour 

of each player in the Brazil team. As explained in the dataset, players tend to present more in 

static behaviours such as standing and waiting than dynamic behaviours. As this could make a 

biased outcome when determining the frequent sequence of behaviour, sequences starting with 

static behaviours such as standing is not considered. When the arrangement is frequently 

reoccurring, the nodes get mature (weight 𝑤 gets closer to 0).  

[t17] Standing No 

[t18] Standing No 

[t3] Standing No 
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Figure 6.7 Sequence of behaviour generated by Brazilian Player – Libero. 𝑤 represent the 

maturity of each activity, 𝑤 = 0 is the most mature.  

Libero’s most frequent sequence of behaviour (Figure 6.7) is digging (𝑤 0.05) → standing (𝑤 

0.02) → digging (𝑤 0.14) → standing (𝑤 0.02) or digging (𝑤 0.05) → standing (𝑤 0.02) → 

moving (𝑤 0.21). Libero is the player in the second line and is more prompt to be digging the 

ball and play a defence role.  

 

Figure 6.8 Sequence of behaviour generated by Brazilian Player – Setter. 𝑤 represents the 

maturity of each activity, 𝑤 = 0 is the most mature.   

Setter of the Brazil team (Figure 6.8) plays a more active role where her most matured activity 

arrangement is moving (𝑤 0.02) → standing (𝑤 0.02) → moving (𝑤 0.09) → standing (𝑤 0.02) 
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or moving (𝑤 0.02) → standing (𝑤 0.02) → digging (𝑤 0.26) → standing (𝑤 0.02) or moving 

(𝑤 0.02) → standing (𝑤 0.02) → falling (𝑤 0.26) → standing (𝑤 0.02).  

Identification of the Causal Relationship between Data Streams using Behaviour 

Tree 

In a game, the player and neighbouring players handling the ball are more likely to act in 

synchrony as they are working towards the same local objective. In the next time interval, the 

outer neighbours will get a concept change when the ball is released. This behaviour will be 

denoted by data streams and the relationship between them. As explained in Section 0, concepts 

of Phylogenetic trees are used to identify a similar neighbourhood. Figure 6.9 (a) shows the 

similar neighbourhood based on the first 25 sequences of behaviours of all the players and 

Figure 6.9 (b) shows the similar neighbourhood based on the first 50 sequences of behaviours.  

As shown in Figure 6.9, during the first 25 behaviours Outside Hitter (P1), Opposite Hitter (P4), 

Libero (P2) and Middle Blocker (P5) have similar behaviour. In the next 25 behaviours, Middle 

Blocker (P5) behaves differently to the others in the earlier group. The number of differences 

in the first and second instance is calculated as follows.  
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Figure 6.9 Causal relationship between the Brazil team players 

6.4.5 PAMAP2 Physical Activity Monitoring Dataset 

The proposed algorithm was also evaluated based on the PAMAP2 Physical Activity 

Monitoring dataset (Reiss & Stricker, 2012). The PAMAP2 dataset consists of data from a heart 

rate monitor and three inertial measurement units (IMU) worn in hand, chest, and ankle. The 

IMU measures the body part’s specific force, angular rate, the magnetic field surrounding the 

body using a combination of accelerometers, gyroscopes, and magnetometers. The data were 

collected from 9 subjects who performed 18 different physical activities such as lying, walking, 

running, cycling. This multivariate time series dataset consists of more than 3.8 million data 

records timestamp, 52 attributes of raw sensory data, and the activity label (the ground truth).  

Datastream from each subject was processed by a single instance of a proposed algorithm. 

Unsupervised detection of evolving concepts and exploration of sequences of behaviour is 

demonstrated using a single subject. Unfortunately, causal relationships between the subjects 

cannot be demonstrated in this dataset as the subjects perform the activities independently and 

do not have an impact on causality.  

(a) Brazil– Behaviour 

tree for the first 50 

learning iterations 
(a) Brazil– Behaviour 

tree for the first 25 

learning iterations 
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Detection of Evolving Concepts using Concept Change Detection Algorithm 

The results from the concept change detection algorithm are discussed in detailed in section 

5.3. In this section, the results are summarised for the purpose of explaining the behaviour. As 

shown in Figure 6.10, the algorithm detects 13 behaviour changes which correspond to the 13 

activity changes (Table 6-2) marked with a  (14 activities).  

 

Figure 6.10 Concept change detection in the PAMAP2 Physical Activity Monitoring dataset 
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Table 6-2 Explanation of captured concept changes 

 

 

 

 

 

 

 

 

  

Concept Changes Activity Change 

CD1 Lying → Sitting 

CD2 Sitting →  Standing 

CD3 Standing →  Ironing 

CD4 Ironing → Vacuum Cleaning   

CD5 Vacuum Cleaning → Ascending Stairs 

CD6 Ascending Stairs → Descending Stairs 

CD7 Descending Stairs → Ascending Stairs 

CD8 Ascending Stairs → Descending Stairs 

CD9 Descending Stairs → Walking 

CD10 Walking → Nordic Walking 

CD11 Nordic Walking → Cycling 

CD12 Cycling → Running 

CD13 Running → Rope Jumping 



 Self-Structuring AI for Concept Change Causality 

139 

 

Exploration of Sequences of Behaviour using Generalised Suffix Tries 

As shown in Figure 6.11, vacuum cleaning is identified as the activity that has been learned by 

the algorithm longest number of iterations, achieving a high maturity (weight close to 0). 

Vacuum cleaning has a variation within the activity due to gradual increase of heart rate as the 

activity is being carried out. In the sequence of behaviour, this is identified by a higher maturity 

in the nodes; vacuum cleaning – 0.02, walking – 0.07, rope jumping – 0.07, running – 0.07. 

Also, the algorithm takes less number of iterations to learn the activities that has a small 

variance such as sitting (w – 0.26), standing (w - 0.41), ironing (w – 0.26). Ascending stairs (w 

– 0.21) activity has a slightly less variance compared to descending stairs (w – 0.17) due to 

recordings from IMUs on hand and ankle. Further, cycling and nordic walking achieved a less 

maturity than deserved as the activities were carried out only a short period of time. Therefore, 

it is evident that the behaviour of the activities are demonstrated by the behaviour tree.  
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  Figure 6.11 Sequence of behaviour in PAMAP2 Physical Activity Monitoring Dataset 
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6.5 Chapter Summary 

This chapter proposed two novel Self-Structuring AI algorithms for concept change causality. 

First, the chapter provided an overview of the proposed algorithm and highlighted the 

importance of understanding multiple data streams and the causal relationships among them. 

Next, the chapter provided a background study on sequence analysis and causal relationships 

and described the proposed algorithms in detail. The first algorithm proposed, based on a 

generalized suffix tree, is to identify the common sequences of behaviour which facilitate 

predicting the next behaviour. The second proposed algorithm generates a behavioural tree to 

identify the causal relationship between multiple data streams in HCDE and outlines an 

overview of the environment. The chapter presented the empirical evaluations of these 

algorithms on real-world data streams from HCDE settings, including physical activity 

monitoring and sports video analytics. In conclusion, the proposed algorithm captures the 

sequences of behaviours in a data stream. This enables the predictive capability of data stream 

mining as well as provide evidence on past learnings in causality. 
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Chapter 7  

Conclusion 
 

The complexities and plurality in HCDE need a novel artificial intelligence approach as 

conventional artificial intelligence has not been effective.  Therefore, in this thesis, we 

presented a novel approach motivated by general equilibrium and system dynamics. We 

introduced and formalised ‘digital equilibrium’ as an extension of the general equilibrium and 

proposed a conceptual model for detecting concept change and understanding the causality of 

concept change. The conceptual model was materialised with Self-Structuring AI by designing 

and developing novel algorithms for concept change detection and concept change causality. 

These proposed algorithms are facilitated by online, incremental, and decremental learning, 

hierarchical depiction of influence as well as similarity and gradual causality. This novel 

approach is empirically evaluated in different HCDE settings using real-world datasets of air 

traffic, smart motor traffic, smart energy, health and sports analytics.  

This chapter concludes this thesis by summarizing the research contributions in section 7.1, 

addressing the research questions in section 7.2 and finally providing directions for future work 

in section 7.3.  
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7.1 Summary of Research Contributions 

This section provides a summary of each research contribution delineated in chapter 1 of this 

thesis.  

1. A comprehensive literature survey on HCDE, system dynamics, and state of the art machine 

learning techniques for concept change detection and concept change causality was carried 

out and presented in chapter 2. We studied the theories of complex environments and 

system dynamics to characterise an HCDE. The system dynamics theories delineated the 

challenges that make a system extremely complex and properties that keep a system's 

stability. We further looked into how a natural system is sensed through events and how 

the events accumulate into system behaviour. Understanding the system behaviour will give 

us information related to the underlying system structure. The literature study on machine 

learning techniques summarized the research problems and challenges in an HCDE. 

Finally, we carried out a detailed discussion of concept change theories and existing work 

on change detection in line with data management, forgetting mechanisms, detection, 

adaption and learning methods.  

2. A conceptual model for detecting concept change and causality of change was designed to 

understand an HCDE and presented in chapter 3. We studied information flows and 

feedback relationships of natural equilibrium with examples from eco-systems, 

homeostasis, and macroeconomics. We explored the need for equilibrium in HCDE and 

theories of equilibrium and complex environment. The proposed conceptual model uses 

Self-Structuring AI to detect digital representation of natural events and behaviours.  

3. Based on the above conceptual model, a novel Self-Structuring AI algorithm was designed 

and developed to detect concept change in data streams of an HCDE. The proposed 

algorithm was presented in chapter 4 of this thesis. This Self-Structuring AI algorithm uses 

three learning paradigms: online learning to handle high volume and velocity of data 

present in HCDE, incremental learning to provide the ability to learn new concepts, and 

decremental learning to forget the concepts no longer relevant. The algorithm was built 
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upon the success of incremental learning of the IKASL algorithm by advancing it to support 

decremental learning and online learning for continuous detection and adaption to concept 

change from an unlabelled data stream in HCDE. Key characteristics of the above-proposed 

algorithm are: 1) unsupervised to learn from unlabelled HCDE, 2) automated time windows 

as the time of concept change is unpredictable, 3) detection of concept change based on the 

movement in feature space, and 4) determination of the type of concept change (abrupt or 

reoccurring) based on the movement of time.  

4. Two novel Self-Structuring AI algorithms were designed and developed for understanding 

concept change causality in HCDE. These algorithms were presented in chapter 6 of the 

thesis. We explored the data streams in HCDE and highlighted the importance of 

understanding multiple data streams and the causal relationships among them. As a result, 

two novel algorithms, a generalized suffix trie and a behaviour tree were proposed. Based 

on generalized suffix tree, the first algorithm proposed is to identify the common sequences 

of behaviour which facilitate predicting the next behaviour. The second proposed algorithm 

generates a behavioural tree to identify the causal relationship between the multiple data 

streams in HCDE and outlines an overview of the environment. 

5. The proposed Self-Structuring AI algorithm for concept change detection was 

demonstrated in chapter 4 on the SEA dataset, a widely used benchmark dataset for concept 

change detection. Further demonstrations of the proposed algorithm were carried out on the 

SEA dataset modified to 12 concepts evaluated against MOA dataset (Bifet et al., 2010). 

6. The proposed Self-Structuring AI algorithm for concept change detection was empirically 

evaluated on six different real-world data streams representatives of various HCDE settings 

and presented in chapter 5. These include four real-world datasets in air traffic, smart 

energy, physical activity monitoring, smart city traffic. 

7. The proposed Self-Structuring AI algorithm for concept change detection was applied on 

two real-world case studies and presented in chapter 5. (1) detecting change in motor traffic 

in the arterial road network of Victoria, Australia (2) detecting change in driving behaviours 

of autonomous and human-driven vehicles.  
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8. The proposed Self-Structuring AI algorithm for concept change causality was evaluated on 

a physical activity monitoring dataset and publicly available video streams of volleyball 

games and presented in chapter 6.   

7.2 Addressing the Research Questions 

This section describes how the above contributions addressed the research questions delineated 

in chapter 1. The main research question was composed of four sub-questions.  

1. What factors of natural equilibrium stabilise a natural environment, and how are these 

factors represented in an HCDE? 

This research question was formulated to investigate the established theories on natural 

equilibrium applied in complex environments and how these theories can be applied to HCDE. 

System dynamics, a study of natural and human-made, complex and dynamic systems, was 

explored in chapter 2 to identify the properties and challenges HCDE.  

With this research question, it was identified that any complex environment, including an 

HCDE, consists of an interconnected set of elements, interconnections and functions coherently 

organized to achieve a function or purpose. As any of the elements, interconnections or 

functions can change in these environments, the environments' stability is maintained through 

resilience, self-organization and hierarchy amid challenges such as non-linear relationships, 

non-existent boundaries, ubiquitous delays and layers of limit. As explained in chapter 2, 

changes in a natural or human-made environment are sensed by humans through events, events 

accumulate into a dynamic pattern of behaviour, behaviour relates information on the 

underlying system structure and structure is the key to understanding not just what is happening, 

but why.  

This research question was further addressed in chapter 3, creating a conceptual model to 

introduce and formalize digital equilibrium in HCDE as an extension to general equilibrium. 

The system structure represented by the natural behaviours and natural events holds the same 
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underlying structure for the digital environment. Therefore, the abstraction of the complexity 

of an HCDE is denoted by digital representations of the events behaviours. An artificial being 

or system observes the environment with digital data. The digital equilibrium is materialized 

with Self-Structuring AI, focusing on concept change detection and understanding the causality 

of concept change.   

2. How can these factors of equilibrium be used to design an artificial intelligence model 

capable of detecting changes that lead to disequilibrium and detecting the causality of 

such change in an HCDE?  

This research question investigates how factors of equilibrium explained above can be used to 

design an artificial intelligence model to understand the causality for a concept change. The 

conceptualization of an HCDE includes digital representations of natural events and natural 

behaviours that hold the system structure. An HCDE consist of challenges such as non-linear 

relationships, non-existent boundaries, ubiquitous delays and layers of limit, and properties 

such as self-organization, resilience and hierarchy.  

In an HCDE, digital data have high volume, velocity and variety. Chapter 3 justified that 

artificial intelligence facilitates detection of digital representation of natural events and 

understanding system structure using the digital representation of natural. With the above-

mentioned challenges and properties, chapter 3 proposed a Self-Structuring AI algorithm, 

where digital representations of natural events are captured through concept change, and digital 

representations of natural behaviours are captured through sequences and causality.  

3. How can unsupervised machine learning be advanced to develop new algorithms based 

on the artificial intelligence model designed in Question 2? 

This research question is aimed at designing and developing a novel Self-Structuring AI 

algorithm. As justified in chapter 3, unsupervised, Self-Structuring AI algorithms are suitable 

for concept change detection and concept change causality in HCDE settings.  
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Majority of existing work on concept change detection is based on supervised learning where 

the data are infrequent, small, isolated, sparse, and labelled. Supervised learning is not feasible 

in an HCDE where data are connected, dense, unlabelled, and processed in high volume and 

velocity. Therefore, the proposed concept change detection algorithm developed an 

unsupervised method for change detection. The proposed algorithm is based on three learning 

features: 1) incremental learning, 2) decremental learning, and 3) online learning as elaborated 

in chapter 4. With these learning features, the proposed algorithm facilitates unsupervised, self-

adaptive learning in unlabelled data streams to detect concept changes and distinguish between 

abrupt and reoccurring changes.  

Digital representation of natural behaviour reveal information about the system structure that 

can be predicted using sequences and causality. Perceiving the sequence of events or concepts 

provides an understanding of the behaviour of an individual component in the environment. 

Proposed Self-Structuring AI algorithm creates a stabilized sequence tree that learns from 

reoccurring concept changes in individual data streams and explains ‘why’ a concept change 

occurred. Causalities describe the non-linear dynamic relationships that exist within the 

environment. The proposed algorithm creates a behavioural tree that indicates the similarity or 

distance between different data streams and explains ‘how’ the concept change influences the 

overall environment. Sequences of dynamic behaviours in HCDE was explored by designing 

and developing a generalized data structure based on suffix trie. Behavioural tree-based method 

explored the causal relationships between data streams in HCDE.  

4. How can the algorithms developed in Question 3 be applied to address the practical 

challenges and complexities of real-world HCDE, demonstrated in use cases of smart 

cities, smart homes, digital health and sports analytics? 

This research question was formulated to evaluate the Self-Structuring AI algorithms proposed 

in research question 3 above. These experiments were carried out on a number of real-world 

HCDE use cases such as air traffic, smart city traffic, smart home, digital health and sports.  

The datasets include, 
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• An air traffic dataset comprising of 116 million records of flight arrival and departure 

details.  

• A smart electricity meter dataset on the power consumption of a household with a one-

minute sampling rate, containing around 2 million records for a duration of 47 months. 

• A physical activity monitoring dataset containing data from a heart rate monitor and 

three inertial measurement units (IMUs) worn in hand, chest and ankle. The data were 

collected from 9 subjects while performing 18 different physical activities. 

• A smart city traffic dataset consisting of source and destination pairs generated by 

sensors placed on various road segments in different parts of the City of Aarhus. The 

dataset contains more than 23 million unlabelled IoT data, recorded every 5 minutes 

from 449 observation points over a period of 6 months. 

• A case study was carried out with a dataset obtained from Victorian road authority, 

VicRoads, which comprised all vehicle records for October 2017. This dataset consists 

of approximately 190 million vehicle records obtained from 1,408 Bluetooth scanners 

placed at the junctions of arterial roads.  

• A case study carried out with the DAVIS dataset and annotated driving recordings 

accompanying driving data. The dataset comprises 12 hours of driving data recording 

vehicle speed, GPS position, driver steering, throttle, and brake captured from the 

vehicle’s onboard diagnostics interface. The data were collected while driving on 

highway and city in the daytime, evening, night, dry and wet weather conditions. The 

driving data from the onboard diagnostic interface generates a continuous stream of 

data. 

• A complete case study on concept change detection and causality was carried out using 

a video stream of a publicly available volleyball game consisting of 55 games. Each 

player is annotated with 9 individual actions resulting in 4830 labelled frames. 
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7.3 Future Directions 

The Self-Structuring AI algorithms proposed, designed and developed in this thesis have 

addressed numerous challenges in an HCDE, including volatility and causal relationships in 

data streams. However, considering the complexities in behaviours and relationships of an 

HCDE, data stream analytics is still in its infancy. Therefore, we would like to outline several 

future directions.  

The concept change detection algorithm presented in this thesis was developed targeting a 

processing environment based on a centralized server. However, there is an increased 

discussion on how the processing can be accommodated in IoT devices themselves. This would 

facilitate quick and accurate alerts in time-critical IoT applications such as patient monitoring. 

However, these IoT devices are low resource environments, both in processing power and 

memory. Hence, a future direction would be to revisit the proposed algorithms to optimize them 

for low resource environments. 

A challenge faced by the online learning layer of the concept change detection algorithm is 

handling high volumes of data arriving simultaneously. As a future direction, combining 

scalability of distributed computing to process the high volumes of streaming data with the 

efficiency of online learning can address this challenge. 

Currently, the concept change causality algorithm uses fixed time windows to assess the 

causality relationship among multiple data streams. A fixed time window might lose the 

opportunity to provide real-time analysis on causality. This limitation could be further improved 

to use data-driven, automated time windows similar to how the concept change algorithm 

operates. 

Another category of future improvements is the application of proposed algorithms in settings 

other than streaming data. For example, the proposed algorithms can be applied on time series 

datasets and sequential datasets by removing the online learning, which is used to learn from 

streams of data processed in high velocity. 
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Another research application of the proposed algorithms would be textual data streams such as 

Twitter streams. An embedding layer that derives numerical representation of textual content 

needs to be included to facilitate textual data. Such a setting will be able to detect changes in 

the discussion topic over time. 

In a potential scenario, where the traffic environment consists of fully autonomous vehicles, 

this environment will be managed by an ensemble of AI algorithms that receive multiple 

streams of IoT data to manage and control the behaviour of the entire system. The proposed 

self-structuring AI algorithm for concept change detection will detect the changes in traffic 

flow that occur due to natural events such as changes in weather or traffic incidents. These 

natural events would be captured through the proposed algorithm using their digital 

representations. Detection of these natural events in real-time will optimize the traffic flow and 

perform efficiently without human intervention.  

  

 

 

 

 



References 

151 

 

References 

Aggarwal, C. C. (2007). Data Streams: Models and Algorithms. Springer Science & Business 

Media. 

Alahakoon, D., Halgamuge, S., & Srinivasan, B. (2000). Dynamic Self-organizing Maps with 

Controlled Growth for Knowledge Discovery. IEEE Transactions on Neural Networks, 

11(3), 601–614. https://doi.org/10.1109/72.846732 

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J. L. (2013). A Public Domain 

Dataset for Human Activity Recognition using Smartphones. Proceedings of the 21th 

International European Symposium on Artificial Neural Networks, Computational 

Intelligence and Machine Learning, 437–442. 

https://upcommons.upc.edu/handle/2117/20897 

Arikan, O., & Forsyth, D. A. (2002). Interactive Motion Generation from Examples. 

Proceedings of the 29th Annual Conference on Computer Graphics and Interactive 

Techniques, 483–490. https://doi.org/10.1145/566570.566606 

Arikan, O., Forsyth, D. A., O’Brien, J. F., & O’Brien, J. F. (2003). Motion Synthesis from 

Annotations. ACM SIGGRAPH 2003 Papers, 402–408. 

https://doi.org/10.1145/1201775.882284 

Armah, F. A., Yawson, D. O., & Pappoe, A. A. N. M. (2010). A Systems Dynamics Approach 

to Explore Traffic Congestion and Air Pollution Link in the City of Accra, Ghana. 

Sustainability, 2(1), 252–265. https://doi.org/10.3390/su2010252 

Aw,  a., Klar, A., Rascle, M., & Materne, T. (2002). Derivation of Continuum Traffic Flow 

Models from Microscopic Follow-the-Leader Models. SIAM Journal on Applied 

Mathematics, 63(1), 259–278. https://doi.org/10.1137/S0036139900380955 

Axelrod, R., & Cohen, M. D. (1999). Harnessing Complexity: Organizational Implications of 

a Scientific Frontier. Free Press. 



References 

 

152 

 

Bailey, K. D. (1984). Equilibrium, Entropy and Homeostasis: A Multidisciplinary Legacy. 

Systems Research, 1(1), 25–43. https://doi.org/10.1002/sres.3850010104 

Ball, P. (2012). Why Society is a Complex Matter: Meeting Twenty-first Century Challenges 

with a New Kind of Science. Springer. 

Bandaragoda, T., De Silva, D., & Alahakoon, D. (2017). Automatic Event Detection in 

Microblogs using Incremental Machine Learning. Journal of the Association for 

Information Science and Technology, 68(10), 2394–2411. 

https://doi.org/10.1002/asi.23896 

Barbará, D. (2002). Requirements for Clustering Data Streams. ACM SIGKDD Explorations 

Newsletter, 3(2), 23–27. https://doi.org/10.1145/507515.507519 

Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation Functions: A Guide for 

Practitioners. Springer. https://doi.org/10.1007/978-3-540-73721-6 

Bhargava, R., Kargupta, H., & Powers, M. (2003). Energy Consumption in Data Analysis for 

On-board and Distributed Applications. Proceedings of the ICML’03 Workshop on 

Machine Learning Technologies for Autonomous Space Applications. 

Bhaskar, A., & Chung, E. (2013). Fundamental Understanding on the Use of Bluetooth Scanner 

as a Complementary Transport Data. Transportation Research Part C: Emerging 

Technologies, 37, 42–72. https://doi.org/10.1016/j.trc.2013.09.013 

Bifet, A., & Gavaldà, R. (2007). Learning from Time-Changing Data with Adaptive 

Windowing. In Proceedings of the 2007 SIAM International Conference on Data 

Mining (pp. 443–448). Society for Industrial and Applied Mathematics. 

https://doi.org/10.1137/1.9781611972771.42 

Bifet, A., & Gavaldà, R. (2009). Adaptive Learning from Evolving Data Streams. In N. M. 

Adams, C. Robardet, A. Siebes, & J.-F. Boulicaut (Eds.), Advances in Intelligent Data 

Analysis VIII (pp. 249–260). Springer. https://doi.org/10.1007/978-3-642-03915-7_22 

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive Online Analysis. 

Journal of Machine Learning Research, 11, 1601–1604. 



  References 

 

153 

 

Bifet, A., Holmes, G., Pfahringer, B., & Gavaldà, R. (2009). Improving Adaptive Bagging 

Methods for Evolving Data Streams. In Z.-H. Zhou & T. Washio (Eds.), Advances in 

Machine Learning (pp. 23–37). Springer. https://doi.org/10.1007/978-3-642-05224-

8_4 

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavaldà, R. (2009). New Ensemble 

Methods for Evolving Data Streams. Proceedings of the 15th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 139–148. 

https://doi.org/10.1145/1557019.1557041 

Binas, J., Neil, D., Liu, S.-C., & Delbruck, T. (2017). DDD17: End-To-End DAVIS Driving 

Dataset. ArXiv:1711.01458 [Cs]. http://arxiv.org/abs/1711.01458 

Bouchachia, A. (2011). Fuzzy Classification in Dynamic Environments. Soft Computing, 15(5), 

1009–1022. https://doi.org/10.1007/s00500-010-0657-0 

Bouchachia, A., & Vanaret, C. (2014). GT2FC: An Online Growing Interval Type-2 Self-

Learning Fuzzy Classifier. IEEE Transactions on Fuzzy Systems, 22(4), 999–1018. 

https://doi.org/10.1109/TFUZZ.2013.2279554 

Brain, D., & Webb, G. I. (2002). The Need for Low Bias Algorithms in Classification Learning 

from Large Data Sets. In T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Principles of 

Data Mining and Knowledge Discovery (pp. 62–73). Springer. 

Broggi, A., Medici, P., Zani, P., Coati, A., & Panciroli, M. (2012). Autonomous vehicles control 

in the VisLab Intercontinental Autonomous Challenge. Annual Reviews in Control, 

36(1), 161–171. https://doi.org/10.1016/j.arcontrol.2012.03.012 

Cai, Y. D., Clutter, D., Pape, G., Han, J., Welge, M., & Auvil, L. (2004). MAIDS: Mining 

Alarming Incidents from Data Streams. Proceedings of the 2004 ACM SIGMOD 

International Conference on Management of Data, 919–920. 

https://doi.org/10.1145/1007568.1007695 

Câmpan, A., & Şerban, G. (2006). Adaptive Clustering Algorithms. In L. Lamontagne & M. 

Marchand (Eds.), Advances in Artificial Intelligence (pp. 407–418). Springer. 

https://doi.org/10.1007/11766247_35 



References 

 

154 

 

Candamo, J., Shreve, M., Goldgof, D. B., Sapper, D. B., & Kasturi, R. (2010). Understanding 

Transit Scenes: A Survey on Human Behavior-Recognition Algorithms. IEEE 

Transactions on Intelligent Transportation Systems, 11(1), 206–224. 

https://doi.org/10.1109/TITS.2009.2030963 

Carvalho, V. R., & Cohen, W. W. (2006). Single-pass Online Learning: Performance, Voting 

Schemes and Online Feature Selection. Proceedings of the 12th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 548–553. 

https://doi.org/10.1145/1150402.1150466 

Cervero, R., & Golub, A. (2007). Informal Transport: A Global Perspective. Transport Policy, 

14(6), 445–457. https://doi.org/10.1016/j.tranpol.2007.04.011 

Cortada, J. W. (2020). Living with Computers. Springer. https://doi.org/10.1007/978-3-030-

34362-0 

Daganzo, C. F. (1994). The Cell Transmission Model. Part I: A Simple Dynamic 

Representation of Highway Traffic. Transportation Research Part B: Methodological, 

28(4), 269–287. 

Dasu, T., Krishnan, S., Venkatasubramanian, S., & Yi, K. (2006). An Information-Theoretic 

Approach to Detecting Changes in Multi-Dimensional Data Streams. In Proc. Symp. 

on the Interface of Statistics, Computing Science, and Applications. 

De Silva, D. (2010). A Cognitive Approach to Autonomous Incremental Learning [PhD Thesis]. 

Monash University. 

De Silva, D., & Alahakoon, D. (2010). Incremental Knowledge Acquisition and Self Learning 

from Text. The 2010 International Joint Conference on Neural Networks (IJCNN), 1–

8. https://doi.org/10.1109/IJCNN.2010.5596612 

De Silva, D., Sierla, S., Alahakoon, D., Osipov, E., Yu, X., & Vyatkin, V. (2020). Toward 

Intelligent Industrial Informatics: A Review of Current Developments and Future 

Directions of Artificial Intelligence in Industrial Applications. IEEE Industrial 

Electronics Magazine, 14(2), 57–72. https://doi.org/10.1109/MIE.2019.2952165 



  References 

 

155 

 

De Silva, D., Yu, X., Alahakoon, D., & Holmes, G. (2011a). A Data Mining Framework for 

Electricity Consumption Analysis From Meter Data. IEEE Transactions on Industrial 

Informatics, 7(3), 399–407. https://doi.org/10.1109/TII.2011.2158844 

De Silva, D., Yu, X., Alahakoon, D., & Holmes, G. (2011b). Incremental Pattern 

Characterization Learning and Forecasting for Electricity Consumption using Smart 

Meters. 2011 IEEE International Symposium on Industrial Electronics, 807–812. 

https://doi.org/10.1109/ISIE.2011.5984262 

De Silva, D., Yu, X., Alahakoon, D., & Holmes, G. (2011c). Semi-Supervised Classification of 

Characterized Patterns for Demand Forecasting using Smart Electricity Meters. 2011 

International Conference on Electrical Machines and Systems, 1–6. 

https://doi.org/10.1109/ICEMS.2011.6073434 

Devi, Y. U., & Rukmini, M. S. S. (2016). Iot In Connected Vehicles: Challenges and Issues — 

A Review. 2016 International Conference on Signal Processing, Communication, 

Power and Embedded System (SCOPES), 1864–1867. 

https://doi.org/10.1109/SCOPES.2016.7955769 

Ditzler, G., & Polikar, R. (2011). Hellinger Distance Based Drift Detection for Nonstationary 

Environments. 2011 IEEE Symposium on Computational Intelligence in Dynamic and 

Uncertain Environments (CIDUE), 41–48. 

https://doi.org/10.1109/CIDUE.2011.5948491 

Dixon, H. D. (2001). Surfing Economics. Palgrave. 

Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010). Path Planning for Autonomous 

Vehicles in Unknown Semi-structured Environments. The International Journal of 

Robotics Research, 29(5), 485–501. https://doi.org/10.1177/0278364909359210 

Domingos, P., & Hulten, G. (2001). A General Method for Scaling Up Machine Learning 

Algorithms and Its Application to Clustering. Proceedings of the Eighteenth 

International Conference on Machine Learning, 106–113. 



References 

 

156 

 

Domingos, P., & Hulten, G. (2000). Mining High-Speed Data Streams. Proceedings of the Sixth 

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 

71–80. https://doi.org/10.1145/347090.347107 

Downs, A. (1999). Some Realities about Sprawl and Urban Decline. Housing Policy Debate, 

10(4), 955–974. https://doi.org/10.1080/10511482.1999.9521356 

Eco Sapien. (2015). Eco Sapien—An infographic exploring Yellowstone National Park...  

https://ecosapienshow.tumblr.com/post/109408298159/an-infographic-exploring-

yellowstone-national-park 

Faiz, A., Gautam, S., & Burki, E. (1995). Air Pollution From Motor Vehicles: Issues and 

Options for Latin American Countries. Science of The Total Environment, 169(1), 303–

310. https://doi.org/10.1016/0048-9697(95)04662-K 

Farnebäck, G. (2003). Two-Frame Motion Estimation Based on Polynomial Expansion. In J. 

Bigun & T. Gustavsson (Eds.), Image Analysis (pp. 363–370). Springer. 

Fleet, D. J., Black, M. J., Yacoob, Y., & Jepson, A. D. (2000). Design and Use of Linear Models 

for Image Motion Analysis. International Journal of Computer Vision, 36(3), 171–193. 

https://doi.org/10.1023/A:1008156202475 

Fletcher, L., Teller, S., Olson, E., Moore, D., Kuwata, Y., How, J., Leonard, J., Miller, I., 

Campbell, M., Huttenlocher, D., Nathan, A., & Kline, F.-R. (2008). The MIT–Cornell 

Collision and Why it Happened. Journal of Field Robotics, 25(10), 775–807. 

https://doi.org/10.1002/rob.20266 

Forrester, J. W. (1971). Counterintuitive Behavior of Social Systems. Simulation, 16(2), 61–

76. https://doi.org/10.1177/003754977101600202 

Fortin, D., Beyer, H. L., Boyce, M. S., Smith, D. W., Duchesne, T., & Mao, J. S. (2005). Wolves 

Influence Elk Movements: Behavior Shapes a Trophic Cascade in Yellowstone 

National Park. Ecology, 86(5), 1320–1330. https://doi.org/10.1890/04-0953 

French, R. M. (1999). Catastrophic Forgetting in Connectionist Networks. Trends in Cognitive 

Sciences, 3(4), 128–135. https://doi.org/10.1016/S1364-6613(99)01294-2 



  References 

 

157 

 

Frías-Blanco, I., Campo-Ávila, J. del, Ramos-Jiménez, G., Morales-Bueno, R., Ortiz-Díaz, A., 

& Caballero-Mota, Y. (2015). Online and Non-Parametric Drift Detection Methods 

Based on Hoeffding’s Bounds. IEEE Transactions on Knowledge and Data 

Engineering, 27(3), 810–823. https://doi.org/10.1109/TKDE.2014.2345382 

Fuller, R. (2005). Towards a General Theory of Driver Behaviour. Accident Analysis & 

Prevention, 37(3), 461–472. https://doi.org/10.1016/j.aap.2004.11.003 

Furao, S., & Hasegawa, O. (2006). An Incremental Network for On-Line Unsupervised 

Classification and Topology Learning. Neural Networks: The Official Journal of the 

International Neural Network Society, 19(1), 90–106. 

https://doi.org/10.1016/j.neunet.2005.04.006 

Gaber, M. M., Krishnaswamy, S., & Zaslavsky, A. (2005). On-board Mining of Data Streams 

in Sensor Networks. In S. Bandyopadhyay, U. Maulik, L. B. Holder, & D. J. Cook 

(Eds.), Advanced Methods for Knowledge Discovery from Complex Data (pp. 307–

335). Springer. https://doi.org/10.1007/1-84628-284-5_12 

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining Data Streams: A Review. 

SIGMOD Record, 34(2), 18–26. https://doi.org/10.1145/1083784.1083789 

Gama, J. (2010). Knowledge Discovery from Data Streams (1st ed.). Chapman & Hall/CRC. 

Gama, J., & Castillo, G. (2006). Learning with Local Drift Detection. In X. Li, O. R. Zaïane, & 

Z. Li (Eds.), Advanced Data Mining and Applications (pp. 42–55). Springer. 

https://doi.org/10.1007/11811305_4 

Gama, J., & Gaber, M. M. (Eds.). (2007). Learning from Data Streams. Springer. 

https://doi.org/10.1007/3-540-73679-4 

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with Drift Detection. In A. 

L. C. Bazzan & S. Labidi (Eds.), Advances in Artificial Intelligence – SBIA 2004 (pp. 

286–295). Springer. https://doi.org/10.1007/978-3-540-28645-5_29 

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A Survey on 

Concept Drift Adaptation. ACM Computing Surveys, 46(4), 44:1-44:37. 

https://doi.org/10.1145/2523813 



References 

 

158 

 

Gaur, U., Zhu, Y., Song, B., & Roy-Chowdhury, A. (2011). A “String of Feature Graphs” 

Model for Recognition of Complex Activities in Natural Videos. 2011 International 

Conference on Computer Vision, 2595–2602. 

https://doi.org/10.1109/ICCV.2011.6126548 

Golab, L., & Özsu, M. T. (2003). Issues in Data Stream Management. SIGMOD Record, 32(2), 

5–14. https://doi.org/10.1145/776985.776986 

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., Holmes, G., & 

Abdessalem, T. (2017). Adaptive Random Forests for Evolving Data Stream 

Classification. Machine Learning, 106(9), 1469–1495. https://doi.org/10.1007/s10994-

017-5642-8 

Gonçalves Jr., P. M., de Carvalho Santos, S. G. T., Barros, R. S. M., & Vieira, D. C. L. (2014). 

A Comparative Study on Concept Drift Detectors. Expert Systems with Applications, 

41(18), 8144–8156. https://doi.org/10.1016/j.eswa.2014.07.019 

Green, W. (2019). ESS Topic 1.3: Energy and Equilibria. Amazing World of Science with Mr. 

Green. https://www.mrgscience.com/ess-topic-13-energy-and-equilibria.html 

Gunasinghe, U., & Alahakoon, D. (2010). A Biologically Inspired Neural Clustering Model for 

Capturing Patterns from Incomplete Data. 2010 Fifth International Conference on 

Information and Automation for Sustainability, 126–131. 

https://doi.org/10.1109/ICIAFS.2010.5715647 

Gunasinghe, U., & Alahakoon, D. (2013). The Adaptive Suffix Tree: A Space Efficient 

Sequence Learning Algorithm. The 2013 International Joint Conference on Neural 

Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2013.6707052 

Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques. Elsevier. 

Hardy, J., & Campbell, M. (2010). Contingency Planning over Probabilistic Hybrid Obstacle 

Predictions for Autonomous Road Vehicles. 2010 IEEE/RSJ International Conference 

on Intelligent Robots and Systems, 2237–2242. 

https://doi.org/10.1109/IROS.2010.5652763 



  References 

 

159 

 

Howard, T. (2009). Adaptive Model-Predictive Motion Planning for Navigation in Complex 

Environments [Master’s thesis, Carnegie Mellon University]. 

https://apps.dtic.mil/sti/citations/ADA507004 

Ibrahim, M., Muralidharan, S., Deng, Z., Vahdat, A., & Mori, G. (2015). A Hierarchical Deep 

Temporal Model for Group Activity Recognition. ArXiv:1511.06040 [Cs]. 

http://arxiv.org/abs/1511.06040 

Jalali, L., & Jain, R. (2015). Bringing Deep Causality to Multimedia Data Streams. Proceedings 

of the 23rd ACM International Conference on Multimedia, 221–230. 

https://doi.org/10.1145/2733373.2806278 

Jayaratne, M., Alahakoon, D., Silva, D. D., & Yu, X. (2017). Apache Spark based Distributed 

Self-Organizing Map Algorithm for Sensor Data Analysis. IECON 2017 - 43rd Annual 

Conference of the IEEE Industrial Electronics Society, 8343–8349. 

https://doi.org/10.1109/IECON.2017.8217465 

Jeon, J. hwan, Cowlagi, R. V., Peters, S. C., Karaman, S., Frazzoli, E., Tsiotras, P., & 

Iagnemma, K. (2013). Optimal Motion Planning with the Half-Car Dynamical Model 

for Autonomous High-Speed Driving. 2013 American Control Conference, 188–193. 

https://doi.org/10.1109/ACC.2013.6579835 

Johnson, N. (2009). Simply Complexity: A Clear Guide to Complexity Theory. Oneworld 

Publications. 

Joskow, P. L. (2001). California’s Electricity Crisis. Oxford Review of Economic Policy, 17(3), 

365–388. https://doi.org/10.1093/oxrep/17.3.365 

Kargupta, H., Park, B.-H., Pittie, S., Liu, L., Kushraj, D., & Sarkar, K. (2002). MobiMine: 

Monitoring the Stock Market from a PDA. SIGKDD Explorations, 3, 37–46. 

https://doi.org/10.1145/507515.507521 

Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-Time Motion Planning 

Methods for Autonomous On-Road Driving: State-Of-The-Art and Future Research 

Directions. Transportation Research Part C: Emerging Technologies, 60, 416–442. 

https://doi.org/10.1016/j.trc.2015.09.011 



References 

 

160 

 

Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting Change in Data Streams. Proceedings 

of the 30th VLDB Conference, 180–192. 

Kim, E., Helal, S., & Cook, D. (2010). Human Activity Recognition and Pattern Discovery. 

IEEE Pervasive Computing, 9(1), 48–53. https://doi.org/10.1109/MPRV.2010.7 

Kim, S. K., & Kim, S. (2020). Brain-inspired Method for Hyper-connected and Distributed 

Intelligence. 2020 International Conference on Artificial Intelligence in Information 

and Communication (ICAIIC), 657–660. 

https://doi.org/10.1109/ICAIIC48513.2020.9065226 

Klinkenberg, R. (2004). Learning Drifting Concepts: Example Selection vs. Example 

Weighting. Intelligent Data Analysis, 8(3), 281–300. https://doi.org/10.3233/IDA-

2004-8305 

Klinkenberg, R., & Joachims, T. (2000). Detecting Concept Drift with Support Vector 

Machines. In Proceedings of the Seventeenth International Conference on Machine 

Learning (ICML), 487–494. 

Klinkenberg, R., & Renz, I. (1998). Adaptive Information Filtering: Learning in the Presence 

of Concept Drifts. Learning for Text Categorization, 33–40. 

Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., & Barnaghi, P. (2014). A 

Knowledge-Based Approach for Real-Time IoT Data Stream Annotation and 

Processing. 2014 IEEE International Conference on Internet of Things (IThings), and 

IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical 

and Social Computing (CPSCom), 215–222. https://doi.org/10.1109/iThings.2014.39 

Kolter, J. Zico, & Maloof, M. A. (2007). Dynamic Weighted Majority: An Ensemble Method 

for Drifting Concepts. The Journal of Machine Learning Research, 8(91), 2755–2790. 

Kolter, Jeremy Z., & Maloof, M. A. (2003). Dynamic Weighted Majority: A New Ensemble 

Method for Tracking Concept Drift. Proceedings of the Third IEEE International 

Conference on Data Mining, 123–130. https://doi.org/10.1109/ICDM.2003.1250911 

Kovar, L., Gleicher, M., & Pighin, F. (2008). Motion Graphs. ACM SIGGRAPH 2008 Classes, 

51:1-51:10. https://doi.org/10.1145/1401132.1401202 



  References 

 

161 

 

Koychev, I. (2000). Gradual Forgetting for Adaptation to Concept Drift. Proceedings of ECAI 

2000 Workshop on Current Issues in Spatio-Temporal Reasoning, 101–107. 

Koychev, I. (2002). Tracking Changing User Interests through Prior-Learning of Context. In P. 

De Bra, P. Brusilovsky, & R. Conejo (Eds.), Adaptive Hypermedia and Adaptive Web-

Based Systems (pp. 223–232). Springer. https://doi.org/10.1007/3-540-47952-X_24 

Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., 

Shaker, A., Sievi, S., Spiliopoulou, M., & Stefanowski, J. (2014). Open Challenges for 

Data Stream Mining Research. ACM SIGKDD Explorations Newsletter, 16(1), 1–10. 

https://doi.org/10.1145/2674026.2674028 

Kutzbach, M. (2009). Motorization in Developing Countries: Causes, Consequences, and 

Effectiveness of Policy Options. Journal of Urban Economics, 65(2), 154–166. 

https://doi.org/10.1016/j.jue.2008.10.002 

Lam, W., & Mostafa, J. (2001). Modeling User Interest Shift Using a Bayesian Approach. 

Journal of the American Society for Information Science and Technology, 52(5), 416–

429. 

Lana, I., Ser, J. Del, Velez, M., & Vlahogianni, E. I. (2018). Road Traffic Forecasting: Recent 

Advances and New Challenges. IEEE Intelligent Transportation Systems Magazine, 

10(2), 93–109. https://doi.org/10.1109/MITS.2018.2806634 

Lazarescu, M. M., Venkatesh, S., & Bui, H. H. (2004). Using Multiple Windows to Track 

Concept Drift. Intelligent Data Analysis, 8(1), 29–59. https://doi.org/10.3233/IDA-

2004-8103 

Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., & Pollard, N. S. (2002). Interactive Control 

of Avatars Animated with Human Motion Data. Proceedings of the 29th Annual 

Conference on Computer Graphics and Interactive Techniques, 491–500. 

https://doi.org/10.1145/566570.566607 

Li, J., Chen, G., Chi, Z., & Lu, C. (2004). Image Coding Quality Assessment using Fuzzy 

Integrals with a Three-Component Image Model. IEEE Transactions on Fuzzy Systems, 

12(1), 99–106. https://doi.org/10.1109/TFUZZ.2003.822682 



References 

 

162 

 

Li, Yan, Wang, T., & Shum, H.-Y. (2002). Motion Texture: A Two-level Statistical Model for 

Character Motion Synthesis. Proceedings of the 29th Annual Conference on Computer 

Graphics and Interactive Techniques, 465–472. 

https://doi.org/10.1145/566570.566604 

Li, Yanhong, Li, D., Wang, S., & Zhai, Y. (2014). Incremental Entropy-Based Clustering on 

Categorical Data Streams with Concept Drift. Knowledge-Based Systems, 59, 33–47. 

https://doi.org/10.1016/j.knosys.2014.02.004 

Lighthill, M. J., & Whitham, G. B. (1955). On Kinematic Waves. II. A Theory of Traffic Flow 

on Long Crowded Roads. Proceedings of the Royal Society A: Mathematical, Physical 

and Engineering Sciences, 229(1178), 317–345. 

https://doi.org/10.1098/rspa.1955.0089 

Littlestone, N. (1988). Learning Quickly When Irrelevant Attributes Abound: A New Linear-

Threshold Algorithm. Machine Learning, 2(4), 285–318. 

https://doi.org/10.1023/A:1022869011914 

Liu, A. (2018). Concept Drift Adaptation for Learning with Streaming Data [PhD Thesis, 

University of Technology Sydney]. http://hdl.handle.net/10453/125627 

Liu, A., Zhang, G., & Lu, J. (2017). Fuzzy Time Windowing for Gradual Concept Drift 

Adaptation. 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–

6. https://doi.org/10.1109/FUZZ-IEEE.2017.8015596 

Liu, W., Zheng, Y., Chawla, S., Yuan, J., & Xing, X. (2011). Discovering Spatio-temporal 

Causal Interactions in Traffic Data Streams. Proceedings of the 17th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 1010–1018. 

https://doi.org/10.1145/2020408.2020571 

Lu, N., Zhang, G., & Lu, J. (2014). Concept Drift Detection via Competence Models. Artificial 

Intelligence, 209, 11–28. https://doi.org/10.1016/j.artint.2014.01.001 

Lühr, S., & Lazarescu, M. (2009). Incremental Clustering of Dynamic Data Streams Using 

Connectivity Based Representative Points. Data & Knowledge Engineering, 68(1), 1–

27. https://doi.org/10.1016/j.datak.2008.08.006 



  References 

 

163 

 

Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. (2015). Traffic Flow Prediction with Big Data: 

A Deep Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 

16(2), 865–873. https://doi.org/10.1109/TITS.2014.2345663 

Mahendra, A. (2008). Vehicle Restrictions in Four Latin American Cities: Is Congestion 

Pricing Possible? Transport Reviews, 28(1), 105–133. 

https://doi.org/10.1080/01441640701458265 

Maloof, M. A., & Michalski, R. S. (1995). A Method for Partial-Memory Incremental Learning 

and its Application to Computer Intrusion Detection. Proceedings of 7th IEEE 

International Conference on Tools with Artificial Intelligence, 392–397. 

https://doi.org/10.1109/TAI.1995.479784 

Maurer, U., Smailagic, A., Siewiorek, D. P., & Deisher, M. (2006). Activity Recognition and 

Monitoring using Multiple Sensors on Different Body Positions. International 

Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), 116–119. 

https://doi.org/10.1109/BSN.2006.6 

Meadows, D. H. (2008). Thinking in Systems: A Primer (D. Wright, Ed.). Chelsea Green 

Publishing. 

Meadows, D. H. (2015). Thinking in Systems: A Primer (1 edition). Chelsea Green Publishing 

Co. 

Meadows, D. H., Meadows, D. L., & Randers, J. (1992). Beyond the Limits: Global Collapse 

or a Sustainable Future. Earthscan Ltd. 

Meneely, P., Hoang, R. D., Okeke, I. N., & Heston, K. (2017). Genetics: Genes, Genomes, and 

Evolution. Oxford University Press. 

Michau, G., Nantes, A., Bhaskar, A., Chung, E., Abry, P., & Borgnat, P. (2017). Bluetooth Data 

in an Urban Context: Retrieving Vehicle Trajectories. IEEE Transactions on Intelligent 

Transportation Systems, 18(9), 2377–2386. 

https://doi.org/10.1109/TITS.2016.2642304 

Mitchell, M. (2011). Complexity: A Guided Tour (1st Edition). Oxford University Press. 



References 

 

164 

 

Mori, U., Mendiburu, A., Álvarez, M., & Lozano, J. A. (2015). A Review of Travel Time 

Estimation and Forecasting for Advanced Traveller Information Systems. 

Transportmetrica A: Transport Science, 11(2), 119–157. 

https://doi.org/10.1080/23249935.2014.932469 

Mouchaweh, M. S., Devillez, A., Lecolier, G. V., & Billaudel, P. (2002). Incremental learning 

in Fuzzy Pattern Matching. Fuzzy Sets and Systems, 132(1), 49–62. 

https://doi.org/10.1016/S0165-0114(02)00060-X 

Murphy, L., & Newman, P. (2011). Risky Planning: Path Planning Over Costmaps with a 

Probabilistically Bounded Speed-Accuracy Tradeoff. 2011 IEEE International 

Conference on Robotics and Automation, 3727–3732. 

https://doi.org/10.1109/ICRA.2011.5980124 

Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Foundations and 

Trends® in Theoretical Computer Science, 1(2), 117–236. 

https://doi.org/10.1561/0400000002 

Nallaperuma, D., Nawaratne, R., Bandaragoda, T., Adikari, A., Nguyen, S., Kempitiya, T., 

Silva, D. D., Alahakoon, D., & Pothuhera, D. (2019). Online Incremental Machine 

Learning Platform for Big Data-Driven Smart Traffic Management. IEEE Transactions 

on Intelligent Transportation Systems, 1–12. 

https://doi.org/10.1109/TITS.2019.2924883 

Nallaperuma, D., Silva, D. D., Alahakoon, D., & Yu, X. (2017). A Cognitive Data Stream 

Mining Technique for Context-Aware IoT Systems. IECON 2017 - 43rd Annual 

Conference of the IEEE Industrial Electronics Society, 4777–4782. 

https://doi.org/10.1109/IECON.2017.8216824 

Nallaperuma, D., Silva, D. D., Alahakoon, D., & Yu, X. (2018). Intelligent Detection of Driver 

Behavior Changes for Effective Coordination Between Autonomous and Human 

Driven Vehicles. IECON 2018 - 44th Annual Conference of the IEEE Industrial 

Electronics Society, 3120–3125. https://doi.org/10.1109/IECON.2018.8591357 



  References 

 

165 

 

Nantes, A., Miska, M. P., Bhaskar, A., & Chung, E. (2014). Noisy Bluetooth traffic data? Road 

& Transport Research: A Journal of Australian and New Zealand Research and 

Practice, 23(1), 33–43. 

Nash, J. F. (1950). Equilibrium Points in n-Person Games. Proceedings of the National 

Academy of Sciences, 36(1), 48–49. https://doi.org/10.1073/pnas.36.1.48 

Navarro-Gonzalez, J. L., Lopez-Juarez, I., Ordaz-Hernandez, K., & Rios-Cabrera, R. (2015). 

On-line Incremental Learning for Unknown Conditions During Assembly Operations 

With Industrial Robots. Evolving Systems, 6(2), 101–114. 

https://doi.org/10.1007/s12530-014-9125-x 

Nishida, K., & Yamauchi, K. (2007). Detecting Concept Drift Using Statistical Testing. In V. 

Corruble, M. Takeda, & E. Suzuki (Eds.), Discovery Science (pp. 264–269). Springer. 

https://doi.org/10.1007/978-3-540-75488-6_27 

Obeng-Odoom, F. (2009). The Future of Our Cities. Cities, 26(1), 49–53. 

https://doi.org/10.1016/j.cities.2008.11.001 

Oliver, N., Horvitz, E., & Garg, A. (2002). Layered Representations for Human Activity 

Recognition. Proceedings. Fourth IEEE International Conference on Multimodal 

Interfaces, 3–8. https://doi.org/10.1109/ICMI.2002.1166960 

Pullen, K., & Bregler, C. (2002). Motion Capture Assisted Animation: Texturing and Synthesis. 

Proceedings of the 29th Annual Conference on Computer Graphics and Interactive 

Techniques, 501–508. https://doi.org/10.1145/566570.566608 

Recordati, G., & Bellini, T. G. (2004). A Definition of Internal Constancy and Homeostasis in 

the Context of Non-Equilibrium Thermodynamics. Experimental Physiology, 89(1), 

27–38. https://doi.org/10.1113/expphysiol.2003.002633 

Reiss, A., & Stricker, D. (2012). Introducing a New Benchmarked Dataset for Activity 

Monitoring. Proceedings of the 2012 16th Annual International Symposium on 

Wearable Computers (ISWC), 108–109. https://doi.org/10.1109/ISWC.2012.13 

Richards, P. I. (1956). Shock Waves on the Highway. Operations Research, 4(1), 42–51. 

https://doi.org/10.1287/opre.4.1.42 



References 

 

166 

 

Sayed-Mouchaweh, M. (2016). Learning from Data Streams in Dynamic Environments. 

Springer International Publishing. https://doi.org/10.1007/978-3-319-25667-2 

Schlimmer, J. C., & Granger, R. H. (1986). Incremental Learning from Noisy Data. Machine 

Learning, 1(3), 317–354. https://doi.org/10.1007/BF00116895 

Shao, J., Ahmadi, Z., & Kramer, S. (2014). Prototype-based Learning on Concept-Drifting Data 

Streams. Proceedings of the 20th ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 412–421. 

https://doi.org/10.1145/2623330.2623609 

Shinar, D. (2017). Traffic Safety and Human Behavior (Second Edition). Emerald Group 

Publishing. 

Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart Factories in Industry 4.0: A Review of 

the Concept and of Energy Management Approached in Production Based on the 

Internet of Things Paradigm. 2014 IEEE International Conference on Industrial 

Engineering and Engineering Management, 697–701. 

https://doi.org/10.1109/IEEM.2014.7058728 

Sobhani, P., & Beigy, H. (2011). New Drift Detection Method for Data Streams. In Adaptive 

and Intelligent Systems (pp. 88–97). Springer Berlin Heidelberg. 

https://doi.org/10.1007/978-3-642-23857-4_12 

Spirkin, A. (1975). Dialectical Materialism. In T. J. Blakeley (Ed.), Themes in Soviet Marxist 

Philosophy: Selected Articles from the ‘Filosofskaja Enciklopedija’ (pp. 5–47). 

Springer. https://doi.org/10.1007/978-94-010-1873-9_2 

Springael, J., & Kunsch, P. L. (2002). A Multicriteria-based System Dynamics Modelling of 

Traffic Congestion Caused by Urban Commuters. Central European Journal of 

Operational Research, 10(1), 81–97. 

Sterman, J. (2001). System Dynamics Modeling: Tools for Learning in a Complex World. 

California Management Review, 43(4), 8–25. https://doi.org/10.2307/41166098 

Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., & Markakis, E. K. (2020). A 

Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches and Open 



  References 

 

167 

 

Issues. IEEE Communications Surveys Tutorials, 22(2), 1–38. 

https://doi.org/10.1109/COMST.2019.2962586 

Street, W. N., & Kim, Y. (2001). A Streaming Ensemble Algorithm (SEA) for Large-scale 

Classification. Proceedings of the Seventh ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 377–382. 

https://doi.org/10.1145/502512.502568 

Syed, N. A., Liu, H., & Sung, K. K. (1999). Handling Concept Drifts in Incremental Learning 

with Support Vector Machines. Proceedings of the Fifth ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 317–321. 

https://doi.org/10.1145/312129.312267 

Takahashi, O., & Schilling, R. J. (1989). Motion Planning in a Plane Using Generalized 

Voronoi Diagrams. IEEE Transactions on Robotics and Automation, 5(2), 143–150. 

https://doi.org/10.1109/70.88035 

Tanco, L. M., & Hilton, A. (2000). Realistic Synthesis of Novel Human Movements from a 

Database of Motion Capture Examples. Proceedings Workshop on Human Motion, 

137–142. https://doi.org/10.1109/HUMO.2000.897383 

Thrun, M. C. (2018). Projection-Based Clustering through Self-Organization and Swarm 

Intelligence. Springer. https://doi.org/10.1007/978-3-658-20540-9 

Toubakh, H., & Sayed-Mouchaweh, M. (2015). Hybrid Dynamic Data-Driven Approach for 

Drift-Like Fault Detection in Wind Turbines. Evolving Systems, 6(2), 115–129. 

https://doi.org/10.1007/s12530-014-9119-8 

Tran, D.-H. (2013). Automated Change Detection and Reactive Clustering in Multivariate 

Streaming Data. ArXiv:1311.0505 [Cs]. http://arxiv.org/abs/1311.0505 

Tsymbal, A., & Puuronen, S. (2000). Bagging and Boosting with Dynamic Integration of 

Classifiers. In D. A. Zighed, J. Komorowski, & J. Żytkow (Eds.), Principles of Data 

Mining and Knowledge Discovery (pp. 116–125). Springer. https://doi.org/10.1007/3-

540-45372-5_12 



References 

 

168 

 

Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014). Short-Term Traffic Forecasting: 

Where We Are and Where We’re Going. Transportation Research Part C: Emerging 

Technologies, 43, 3–19. https://doi.org/10.1016/j.trc.2014.01.005 

Wang, H., & Schmid, C. (2013). Action Recognition with Improved Trajectories. 2013 IEEE 

International Conference on Computer Vision, 3551–3558. 

https://doi.org/10.1109/ICCV.2013.441 

Wang, Heng, Kläser, A., Schmid, C., & Liu, C.-L. (2013). Dense Trajectories and Motion 

Boundary Descriptors for Action Recognition. International Journal of Computer 

Vision, 103(1), 60–79. https://doi.org/10.1007/s11263-012-0594-8 

Wang, W., Xi, J., & Chen, H. (2014). Modeling and Recognizing Driver Behavior Based on 

Driving Data: A Survey. Mathematical Problems in Engineering, 2014, 1–20. 

https://doi.org/10.1155/2014/245641 

Widmer, G., & Kubat, M. (1996). Learning in the Presence of Concept Drift and Hidden 

Contexts. Machine Learning, 23(1), 69–101. https://doi.org/10.1007/BF00116900 

Wille, J. M., & Form, T. (2008). Realizing Complex Autonomous Driving Maneuvers the 

Approach taken by Team Carolo At The DARPA Urban Challenge. 2008 IEEE 

International Conference on Vehicular Electronics and Safety, 232–236. 

https://doi.org/10.1109/ICVES.2008.4640889 

Wu, J., & Loucks, O. L. (1995). From Balance of Nature to Hierarchical Patch Dynamics: A 

Paradigm Shift in Ecology. The Quarterly Review of Biology, 70(4), 439–466. 

https://doi.org/10.1086/419172 

Xu, S., & Wang, J. (2017). Dynamic Extreme Learning Machine for Data Stream Classification. 

Neurocomputing, 238(C), 433–449. https://doi.org/10.1016/j.neucom.2016.12.078 

Xu, W., Pan, J., Wei, J., & Dolan, J. M. (2014). Motion Planning Under Uncertainty for On-

Road Autonomous Driving. 2014 IEEE International Conference on Robotics and 

Automation (ICRA), 2507–2512. https://doi.org/10.1109/ICRA.2014.6907209 



  References 

 

169 

 

Yager, R. R. (1993). Element selection from a fuzzy subset using the fuzzy integral. IEEE 

Transactions on Systems, Man, and Cybernetics, 23(2), 467–477. 

https://doi.org/10.1109/21.229459 

Yin, J., Yang, Q., & Pan, J. J. (2008). Sensor-Based Abnormal Human-Activity Detection. 

IEEE Transactions on Knowledge and Data Engineering, 20(8), 1082–1090. 

https://doi.org/10.1109/TKDE.2007.1042 

Yu, R., Li, Y., Shahabi, C., Demiryurek, U., & Liu, Y. (2017). Deep Learning: A Generic 

Approach for Extreme Condition Traffic Forecasting. Proceedings of the 2017 SIAM 

International Conference on Data Mining, 777–785. 

https://doi.org/10.1137/1.9781611974973.87 

Zeira, G., Maimon, O., Last, M., & Rokach, L. (2004). Change Detection in Classification 

Models Induced from Time Series Data. In M. Last, A. Kandel, & H. Bunke (Eds.), 

Data Mining in Time Series Databases (Vol. 57, pp. 101–125). World Scientific. 

https://doi.org/10.1142/9789812565402_0005 

Zou, N., Liang, S., & He, D. (2020). Issues and Challenges of User and Data Interaction in 

Healthcare-related IoT: A Systematic Review. Library Hi Tech, 38(4), 769–782. 

https://doi.org/10.1108/LHT-09-2019-0177 

  


