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ABSTRACT 

Prostate cancer remains one of the most prevalent cancers detected in males; yet current 

detection methods still lack adequate specificity and sensitivity. While major improvements 

in screening have led to a reduction in advanced disease and mortality, patient 

overdiagnosis and overtreatment have in turn, become problematic. The development and 

nature of most prostate tumours tend to be slow-growing and indolent, yet such high 

prevalence of the disease still results in a range of heterogenous clinical outcomes varying 

on a patient-by-patient basis. Many clinical, pathologic, molecular and genetic factors have 

been explored for prognostic utility, yet few are routinely used. These factors emphasise 

the growing need for the discovery of novel diagnostic and prognostic biomarkers capable 

of effectively distinguishing healthy and benign patients from those with prostate cancer, 

and effectively delineating indolent from aggressive disease.   

In this study, we screened a cohort (n=110) of retrospective serum samples from prostate 

cancer patients using a customised cancer array (CT100+) containing 123 cancer antigens, 

generating discrete autoantibody profiles for each patient. Downstream analyses were 

conducted to assess the efficacy of discovered cancer-associated autoantibodies as 

diagnostic and prognostic biomarkers using clinicopathological data, where available. 

Findings inferred that combinations of unique autoantibodies could be used to detect 

prostate cancer with high sensitivity and specificity and aid in the prediction of disease 

outcome (i.e., relapse and survival). We also conducted multiplex immunohistochemistry 

on prostatectomy tissue samples from a subset of these patients (n=64) in order to 

investigate correlations between the production, presence and quantity of antibody-

secreting cells and autoantibody profiles. Finally, our array-based diagnostic findings were 

validated using an additional external cohort (n=99) of prostate cancer patients.  
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In conclusion, the incorporation of circulating autoantibodies with current prostate cancer 

screening procedures has the potential to substantially improve diagnostics and prognostics, 

thereby reducing overdiagnoses and enabling informed therapeutic interventions.   
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CHAPTER 1  

INTRODUCTION 

 

1.1 Prostate Cancer Epidemiology 

Prostate cancer is the second-most frequently diagnosed cancer and fifth-leading cause of 

cancer-related deaths among males worldwide. GLOBOCAN estimates recently reported 

1,276,106 new cases and 358,999 fatalities during 2018 Bray et al (2018). Incidence and 

mortality rates vary widely between countries and ethnic populations. Countries of high 

incidence include Australia, New Zealand, Northern and Western Europe, and Northern 

America, whereas in countries constituting Asia, incidence is significantly lower. Such 

variability could be explained by differences in genetic susceptibility, exposure to unknown 

risk factors, or differences in health care systems (e.g. cancer registration protocols) 

Grönberg (2003). Globally, incidence of prostate cancer is predicted to steadily increase as 

the average life expectancy rises and screening tools become more prevalent Pishgar et al 

(2018). 

Thus far, few well-established risk factors exist pertaining to prostate cancer. These include 

advanced age, genetic susceptibility, ethnicity and familial history Menegoz et al (1994). 

Prostate cancer has the highest established age-incidence curve among all cancer types, 

with both incidence and mortality increasing at an almost exponential rate after the age of 

50 Pienta (1993). Autopsy studies show that most men older than 85 years of age have 

undiagnosed histological prostate cancer Sakr et al (1993). Concerning race, men of African 

American descent have a higher disposition towards developing prostate cancer and a far 

higher mortality rate in contrast to Hispanic and Caucasian men, though demographic 

factors do play a role (e.g., access to health care, poor lifestyle choices). Moreover, the risk 

of prostate cancer development for men with first-degree relatives that have the disease is 

nearly double Cuzick et al (2014). Genetic susceptibility can result from rare, high penetrant 
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mutations, genetic variants, or a combination of the two, though known prostate cancer-

associated genes explain only 35% of familial risk.  

prostate cancer is generally indolent in nature (besides from some rare, aggressive 

phenotypes) and upon early intervention is highly curable. In developed countries, 

approximately 90% of prostate cancer cases are identified prior to malignant 

transformation. In addition, the 5-year survival rate for localised and regional prostate 

cancer is almost 100%. Moreover, the 10-year survival rate for local, regional, and distant 

prostate cancer combined is around 98%.  

Although prostate cancer screening has led to a reduction in advanced disease and 

mortality, its implementation has resulted in a consequential increase in patient 

overdiagnoses, and hence overtreatment Esserman et al (2014); Loeb et al (2014).  

Due to the poor prognostic outlook associated with late-stage prostate cancer, early 

detection and intervention is critical in reducing morbidity and mortality. Current treatment 

options depend on the extent of disease and include active surveillance (low-risk cancer: 

small, slow growing, unlikely to spread), watchful waiting (monitoring of Prostate-Specific 

Antigen (PSA) levels), surgery (radical prostatectomy), radiotherapy and/or androgen 

deprivation therapy (combination hormone therapy). From the current literature, areas 

requiring urgent attention include validated diagnostic biomarkers to complement PSA for 

more sensitive screening and prognostic biomarkers Attard et al (2016). In this study, we 

will be specifically addressing the discovery of novel diagnostic and prognostic biomarkers 

using circulating tumour antigen-specific autoantibodies.  

 

1.2 Current Detection Methods for Prostate Cancer  

Current prostate cancer screening approaches include a blood-based test that measures 

circulating levels of PSA, with above-normal levels being indicative of disease Filella & Foj 
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(2015). However, major controversy still exists pertaining to its overall diagnostic accuracy 

and reliability Rao et al (2008). Namely, elevated PSA levels are not necessarily indicative 

of prostate cancer, as these may also be caused by benign prostatic hyperplasia, age, 

prostatitis and urinary tract infections Filella & Foj (2015). This often leads to overdiagnoses, 

overtreatment and unnecessary patient discomfort Ilic et al (2013). In addition to benign 

conditions, overdiagnosis also occurs with indolent prostate cancers that are incapable of 

causing harm within a patient’s lifetime. Despite the primarily indolent nature of prostate 

cancer, more than 90% of detected tumours are treated with radiation or surgery Esserman 

et al. (2014). Unnecessary medical interventions (e.g. radical prostatectomy, androgen 

deprivation therapy) of indolent disease poses risks and may lead to the development of 

life-long morbidities (e.g. sexual, urinary, gastrointestinal) Loeb et al. (2014). Moreover, 

overdiagnosis and overtreatment of prostate cancer presents an enormous burden on 

healthcare expenditure Krahn et al (2010). 

PSA levels lack reliability when distinguishing aggressive phenotypes from those that are 

indolent. Furthermore, little evidence suggests that routine PSA screening reduces overall 

patient mortality rates Ilic et al. (2013), despite remaining the best first line method for 

prostate cancer diagnosis Artibani (2012). This emphasises the need for more robust and 

accurate diagnostic and prognostic biomarkers, thereby allowing effective patient 

management strategies to be implemented Cuzick et al. (2014).  

To overcome the limitations of PSA screens, these are usually combined with a digital 

rectal exam, particularly if PSA levels are highly elevated, rising consistently over time, or 

accompanied by  physical symptoms  Cuzick et al. (2014). Prostate cancer diagnosis can be 

confirmed using transrectal or transperineal ultrasound-guided tissue biopsies, that albeit 

effective, may result in post-surgical infections Guo et al (2015). Incorrect tumour sampling 

can also occur, leading to false negative results. Recently, magnetic resonance imaging 
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(MRI) has shown  potential in surpassing the issues with systematic ultrasound-guided 

biopsies Marks et al (2013).  

Once resected, disease severity is generally classified using the Gleason Score system based 

on histopathologic tumour features Sadi (2017). Due to tumour heterogeneity, two scores 

are stipulated per tumour for each of their predominant heterogenic aspects Sadi (2017). 

Final Gleason Score grades therefore range from 2(1+1) to 10(5+5), with higher scores 

representing significant differentiation of the tumour and hence a greater chance of 

developing metastases and poor patient prognosis Sadi (2017). Genomic tests are currently 

being investigated that could aid determination of patient prognosis and improve 

predictions regarding likelihood of therapeutic response Boström et al (2015). 

 

1.3 Prostate Cancer 

1.3.1 Brief Overview of the Hallmarks of Cancer 

Oncogenesis is a complex multi-step process that is defined by the transition of normal 

human cells into cancer cells. Past research suggests that there are six essential alterations 

in cell physiology that simultaneously bring about cellular malignancy (Hanahan & 

Weinberg, 2000). These core hallmarks of cancer are a result of genome instability and 

mutation. Such alterations consist: 

1. Self-sufficiency in growth signals  

2. Insensitivity to growth-inhibitory signals  

3. Evasion of programmed cell death 

4. Limitless reproductive potential  

5. Sustained angiogenesis 

6. Tissue invasion and metastasis  

Acquisition of the ability to generate mitogenic growth signals intracellularly, allows 

tumour cells to autonomously bind distinct classes of signalling molecules (i.e., diffusible 
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growth factors, extracellular matrix components, cell-to-cell adhesion molecules), and thus 

remain in an active proliferative state regardless of their tissue microenvironment. In 

addition, acquisition of the ability to evade antiproliferative signals (i.e., soluble growth 

inhibitors, immobilised extracellular matrix and cell surface inhibitors) allows tumour cells 

to remain in this autonomously induced active proliferative state. To continue to expand in 

population size, cellular attrition rates are also minimised by tumour cells. They achieve 

this by evading mechanisms of programmed-cell death. This system is employed in latent 

forms of nearly all cell types throughout the body, and broadly speaking, is facilitated by 

sensors (responsible for monitoring the intracellular and extracellular environments for 

abnormalities) and effectors (responsible for inducing cell death). Perturbances in these 

normal homeostatic mechanisms (e.g., mutations in the P53 tumour suppressor gene, a 

DNA damage sensor) result in resistance capabilities to apoptosis, and hence proliferation 

of tumour cells. While acquisition of growth signal autonomy, insensitivity to antigrowth 

signals, and resistance to apoptosis all lead to uncontrolled cell growth and proliferation, 

disruption of an intrinsic cell program limiting the number of times a cell can replicate, is 

also required to ensure expansive growth of a tumour growth. This immortality phenotype 

results from genetic mutations that essentially act to effectively maintain the cells 

chromosomal telomeres (e.g., upregulating expression of telomerase) and avoid their 

progressive shortening which would ultimately lead to cell death.  

Another trait adapted by tumour cells is their ability to induce angiogenesis. They are able 

to do so by upregulating factors that exemplify angiogenesis-initiating signals (e.g., VEGF, 

FGF1/2), and/or downregulating endogenous factors that inhibit angiogenesis (e.g., 

thrombospondin-1, ß-interferon). This process leads to the growth of new blood vessels, 

and it is these blood vessels that provide the oxygen and nutrients critical for cell function 

and survival. Lack of angiogenic capabilities would ultimately restrict the expansion of 

aberrant proliferative lesions. Eventually, in most types of human cancer, primary tumours 
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will spawn cells capable of branching out and invading adjacent tissues, and therefrom 

travel to distant sites where they may potentially found new colonies. These distant 

settlements are better known as metastases. The genetic and biochemical determinants that 

govern the invasive and metastatic properties of cancer cells are extremely intricate and yet 

to be fully understood. That said, changes in the physical coupling of cells to their 

microenvironment (cell-cell adhesion molecules (CAMs) such as E-cadherin, and 

integrins), as well as regulation of extracellular proteases, are undoubtably necessary in the 

attainment of this capability (Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). 

Though an immense body of knowledge has been unveiled by focusing on cancer from a 

simplified perspective, a new focus has emerged whereby tumours are now being regarded 

as complex tissues in which mutant cancer cells have conscripted normal host cells and 

altered the surrounding microenvironment in order to coordinate success of their neoplastic 

development. It is this perspective that is now one of the main underlying factors when 

considering most cancer research (Hanahan & Weinberg, 2000; Hanahan & Weinberg, 2011). 

1.3.2 The Tumour Microenvironment and Prostate Cancer 

Prostate cancer tissue is comprised of tumour cells, host cells and the components derived 

from each Roca et al (2017). Host components comprise of soluble factors (e.g., cytokines), 

the stromal matrix and cells. The host cells and their derivatives present within the tumour 

are termed the tumour microenvironment (TME). The cellular component of the TME 

consists of host cells initially present within the primary or metastatic lesion, and those that 

are recruited in response to either host or tumour-derived factors Roca et al. (2017). Host 

cells, with the inclusion of stromal cells, vasculature and immune cells, can essentially all 

contribute to the TME. Furthermore, the TME acts as a platform for tumour growth and 

evolution, ultimately influencing tumour progression. Thus, the interactions that exist 

between tumour cells and the TME orchestrate evolution of both the tumour and the TME 
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Roca et al. (2017). Not only can these interactions influence tumour development, but also 

those that are facilitated directly by the immune system.  

A vital function of the immune system is to detect and eliminate pre-cancerous cells prior 

to their malignant transformation Da Gama Duarte et al (2018b). Such processes facilitating 

the surveillance and elimination of pre-cancerous cells are mediated by highly specialised 

immune effectors cells, molecules and signalling pathways, which vary depending on tissue 

type Swann & Smyth (2007). Failure of immunosurveillance mechanisms or incomplete 

elimination of persistent pre-cancerous cells can result in chronic inflammation, whereby 

the residual pre-cancerous cells act as chronic inflammatory stimuli. Pre-cancerous cells 

that avoid elimination bring about a bi-directional relationship between tumour progression 

and anti-tumour responses Dunn et al (2004). During this time, it is believed that pre-

cancerous cells either exhibit dormancy or undergo evolutionary changes that modulate the 

molecular structure and/or function of their stress-induced, tumour-associated antigens 

Swann & Smyth (2007). While in this state, the immune system exerts selective pressures by 

eliminating susceptible tumour cells where possible. This process inadvertently selects for 

tumour cell variants capable of avoiding, resisting or suppressing anti-tumour immune 

responses. The immune system is then rendered incapable of containing the tumour at 

which point the tumour is free to grow progressively Dunn et al (2002). This fundamental 

process is known as immunoediting and has been thoroughly reviewed in recent literature 

Da Gama Duarte et al. (2018b).  

1.3.3 Unique and Shared Antigens 

There are two key types of tumour antigens that are expressed by tumour cells: unique 

antigens and shared antigens. Unique antigens are specific to tumour cells, absent from 

normal host cells and generally arise from mutations in ubiquitously expressed genes, 

forming neoantigens. Shared antigens are tumour-associated antigens that are expressed by 

normal host cells as well as tumour cells, albeit slightly modified or at higher frequencies 
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and in ectopic locations. Shared antigens can be further sub-divided into three categories: 

1) Tumour-specific antigens that exhibit restricted normal expression, but are aberrantly 

expressed in tumours, 2) Differentiation antigens that are expressed on non-malignant cells 

prior to the occurrence of malignancy, and 3) Overexpressed antigens that are expressed 

by normal cells but overexpressed by tumour cells Vigneron (2015).   

Cancer-Testis (CT) antigens are a family of  >90 shared tumour-specific antigens that are 

typically expressed in germ cells of the adult testis, ovaries and placental trophoblast cells, 

but are also aberrantly expressed by somatic tissue in a variety of cancers Simpson et al 

(2005). This aberrant expression occurs during tumourigenesis due to complex mechanisms 

involved in gene regulation. Such antigens are naturally produced in the immune-privileged 

site of the testis, and thus expression elsewhere (i.e., somatic tissue) triggers a spontaneous 

immune response. CT antigens are known to be expressed in a range of cancer types, but 

no single CT antigen can be directly linked with a particular type of cancer Scanlan et al 

(2002). That said, it remains feasible that correlations between multiple CT antigens and/or 

other unique or shared antigens could be indicative of a specific cancer types, or hold value 

in detecting disease onset or progression Scanlan et al. (2002). Their strong immunogenicity 

has promoted much research based around their exploitation for anticancer vaccines, and 

their potential use as diagnostic biomarkers continues to be unveiled Whitehurst (2014).  

The immune system monitors and regulates the homeostasis of human tissue by mounting 

immune responses against foreign pathogens, substances, and host abnormalities (e.g. 

cancer), while concomitantly maintaining tolerance towards self-antigens De Visser et al 

(2006). Development of cancer cells is acquired by two distinct enabling characteristics:  

genomic instability, and hence mutability that endows cancer cells with genetic alterations 

driving tumourigenesis, as well as an innate immune cell-mediated induction of local 

inflammation and corresponding pro-tumoural consequences Hanahan & Weinberg (2011). 

Failure of the immune system to effectively detect and eliminate such cells prior to their 
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malignant transformation via immunosurveillance, can result in immunoediting and hence, 

tumour formation (Swann & Smyth, 2007).  

1.3.4 Anti- and Pro-Tumoural Responses 

During manifestation of cancerous cells in cancerous tissue, both arms of the immune 

system (innate and adaptive) collectively orchestrate an inflammatory response that, once 

chronic, results in the upregulation of several immune pro-tumour effector mechanisms 

Disis (2010). This dynamic relationship between both sets of anti- and pro-tumoural 

mediators is complex and paradoxical in effect; essentially involving a constant tug-of-war 

between the tumour and hosts immune system, whereby the prevailing side is that which is 

dominated by an imbalance of either an anti-tumoural (i.e. tumour recognition, engagement 

and destruction) or pro-tumoural (i.e. tumour survival, proliferation and dissemination) 

response by immune cell subtypes, their derivatives and interactions, an immune-mediated 

chronic inflammatory environment, and the genomic instability and mutability gained by 

cancer cells, capable of generating genetic alterations which may drive tumour progression 

and enable immune evasion mechanisms Hanahan & Weinberg (2011).   

Such pro-tumoural properties contribute to the development of the hallmarks of cancer and 

are primarily acquired through a combination of genetic instability, generally in 

combination with chronic inflammatory-mediated disturbances of the innate and adaptive 

(e.g. regulatory B and T cell-mediated suppression of immune response) arms of the 

immune system De Visser et al. (2006); Hanahan & Weinberg (2011). Such chronic 

perturbations of tissue homeostasis can disrupt the dynamic and interactive relationship that 

is coordinated by both the innate and adaptive arms of the immune system De Visser et al. 

(2006).  
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1.4 Immune Landscape of Prostate Cancer 

1.4.1 B Cells and Autoantibodies as Diagnostic Biomarkers for Prostate Cancer  

Though the vast majority of past research regarding immune response to cancer has been T 

cell focused, recent evidence has surfaced highlighting the importance of B cells and 

antibodies in pro- and anti-tumoural immune responses within the TME and circulation Da 

Gama Duarte et al. (2018b). Moreover, B cells and antibodies have proven useful as 

diagnostic and prognostic markers for a variety of cancer types Da Gama Duarte et al (2018a). 

Antibodies in particular are attractive cancer biomarkers due to their molecular stability in 

serum, ease of extraction, presence in early stages of disease and extensive half-life in 

serum Zaenker et al (2016). Furthermore, the presence of B cell subsets in the TME may also 

provide potential prognostic value Fujii et al (2013); Woo et al (2014).  

B cells are fundamental in the humoral immune component of the adaptive immune system, 

known widely for their ability to produce antibodies Gorosito Serrán et al (2015). They may 

also act as antigen-presenting cells, secrete cytokines, and facilitate interaction by surface 

co-stimulatory/inhibitory molecules. Thus, these immune cells may act as drivers of both 

innate and adaptive immunity Gorosito Serrán et al. (2015). Furthermore, a subtype known 

as regulatory B cells (Bregs) are a heterogeneous population of B cells that function to 

directly/indirectly supress chronic inflammatory responses caused by cancer, and thus 

contribute to tumour progression Gorosito Serrán et al. (2015).  

B cell implications in both pro- and anti-tumour responses influenced by dynamic sub-

population balance has been recently outlined He et al (2014), though little understanding 

has been achieved pertaining to exactly how and why this occurs. This is largely due to 

current research focused on mapping B cell infiltrates using pan-B cell markers in contrast 

to markers capable of identifying terminally differentiated antibody-secreting B cells (e.g. 

plasmablasts or plasma cells) Da Gama Duarte et al. (2018a). As a result of inadequate B cell 

phenotyping, correlation of a B cell infiltrate with clinical features or patient outcomes are 
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yet to yield consistent findings Flammiger et al (2012); Fujii et al. (2013); Woo et al. (2014). As 

such, the complete characterization of B cell subsets in the TME of prostate cancers remains 

to be investigated and may be of prognostic value Da Gama Duarte et al. (2018a).   

Antibodies are large, heavy plasma glycoproteins produced by antibody-secreting B cells 

(ASCs), specifically plasmablast (short-lived, proliferative) and plasma cell (short- or long-

lived, non-proliferative) subsets, in response to an immune stimulus. B cell activation and 

maturation is facilitated by B cell receptor interaction with an antigen supplied by an 

antigen-presenting cell, which is internalised and displayed via major histocompatibility 

complex class 2 (MHC-II), followed by interactions with pre-activated cognate CD4+ 

helper T cells Cyster (1999); Garside et al (1998).  

Activation of the humoural immune system results in the secretion of these highly variable 

and specific proteins that mediate functions such as neutralisation, agglutination, fixation 

with activation of complement, and activation of effector cells targeted towards foreign 

biological material Gundem et al (2015). This adaptive immune response occurs through 

binding between produced antibodies and their cognate antigens. Autoantibodies, while 

fundamentally similar to antibodies, are produced via stimulation of autologous cell 

antigens. They are generally involved in autoimmune diseases, though their production has 

also been established in response to tumourigenesis Zaenker et al. (2016). Furthermore, both 

antibodies (from unique antigens) and autoantibodies (from shared antigens) appear to play 

an important role in anti-tumoural immune responses.  

As cancer involves the genetic mutation and proliferation of autologous cells and 

molecules, the exact causative mechanisms that influence autoantibody production in 

response to tumourigenesis remain somewhat elusive, though major theories have been 

established in recent literature. Such mechanisms include tolerance defects and 

inflammation, altered antigen structure, cellular death mechanisms and, alterations to TAA 

expression Zaenker & Ziman (2013) (see Figure 1).  
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Tolerance defects and inflammation resulting in autoantibody production include defects 

in clonal selection, down regulation of regulatory T cells (Tregs) and abnormal expression 

of intracellular antigens in the inflammatory TME Carl et al (2005). Tregs modulate the 

immune system by supressing effector T cells via both receptor-mediated interaction and 

release of soluble factors (i.e. cytokines and chemokines), and are key mediators of self-

tolerance Kim et al (2010). Downregulation of Tregs has been correlated with high titres of 

autoantibodies in the TME leading to delayed tumour growth Kim et al. (2010). In contrast, 

upregulation of Tregs is seen to decrease autoantibody titres in the TME and hence promote 

tumour progression Zaenker et al. (2016). Additionally, cell death mechanisms (i.e. 

apoptosis, necrosis, and autophagy) resulting in aberrant release of autologous intracellular 

tumour content containing shared antigens into the blood, can effectively elicit the 

production of cognate autoantibodies Peter et al (2010); Tan & Zhang (2008). Furthermore, 

alterations to shared antigen expression, such as expression in aberrant locations (e.g. CT 

expression in somatic tissue) or overexpression (e.g. PSA overexpression in prostate tissue) 

play a role in facilitating an auto-immune response, and can lead to autoantibody production 

Watanabe et al (2000). Lastly, altered unique antigen structures resulting from neoepitope 

exposure from mutations that alter antigen conformation, and/or post-translational 

modifications (e.g. glycosylation, methylation etc.) have been shown to elicit 

immunological responses in cancer patients, including antibody production Liu et al (2012).  
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Figure 1. Proposed causes of autoantibody production in cancer. The four main causes of 

autoantibody production in cancer; mechanisms of cell death, tolerance defects and inflammation, 

altered protein structure, and variation in expression levels. Image adapted from Zaenker et al. 

(2016). 

Circulating autoantibodies can be measured using various techniques, predominantly 

among them being enzyme-linked immunosorbent assay (ELISA) and protein microarrays. 

ELISA techniques tend to lack sensitivity and multiplexing capacity, albeit simple to 

prepare Da Gama Duarte et al. (2018a). The high-throughput, multiplexing capacity of protein 

microarrays in conjunction with their ability to achieve high-specificity and minimal non-

specific binding when optimised, makes them more versatile as screening tools for cancer 

biomarkers Da Gama Duarte et al. (2018a). 

1.4.2 Tertiary Lymphoid Structures in Prostate Cancer 

Tertiary lymphoid structures (TLSs) are ectopic, specialised lymphoid aggregates that 

develop at sites of chronic inflammation Dieu-Nosjean et al (2014). In the context of cancer, 

their presence in the vicinity of many solid tumours for certain cancer types has been 

correlated with favourable patient outcomes Dieu-Nosjean et al (2016). As the name suggests, 

TLSs are lymph node-like structures that, when fully-formed and functional, exhibit all 

characteristics observed in an effective, adaptive immune response (e.g. antibody secretion 

and T cell-mediated cytotoxicity) Dieu-Nosjean et al. (2014). A functional TLS consists of a 
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marginal T cell zone containing mature dendritic cells (DC) adjacent to a B cell zone 

containing a germinal centre defined by a follicular dendritic cell (FDC) network, and 

localised high endothelial venules (HEVs) enabling extravasation of immune cells to the 

site of solid tumours Dieu-Nosjean et al. (2014). Presence of all features enable the 

proliferation, activation and maturation of B cells, leading to the development of antibody-

secreting cells that are capable of tumour antigen-triggered cognate autoantibody 

production. Tertiary lymphoid structures are yet to be clearly detailed in a prostate cancer 

setting.  

As the main function of these tertiary lymphoid structures is to provide a localised factory 

for antigen sampling, B cell activation, proliferation and ultimately differentiation of B 

cells into antibody-secreting cells (i.e., plasmablasts, plasma cells), one would assume that 

they play an anti-tumoural role in the TME of most cancers. The truth is, in the context of 

prostate cancer, the exact type of effect (i.e., anti- or pro-tumoural) and magnitude of impact 

that these structures exert is largely unknown. The presence of B cells themselves have 

been considered to be fairly reliable as predictors of patient survival and favourable 

outcomes, but many reports have surfaced regarding both anti- and pro-tumoural roles that 

they may play in the TME Shalapour et al (2014). 

Moreover, it is believed that B cell localisation in either immature or mature TLSs play 

varying roles in either promoting or suppressing the immune system’s ability to kill tumour 

cells (see Figure 2). It has been hypothesised that B cells situated within poorly structured, 

immature TLSs (a) secrete inhibitory factors that dampen the response of other local 

immune cell, or molecules present of the surface of B cells that hinder the targeting and 

destruction of tumour cells. This is thought to be a result of relatively limited B cell 

interaction with T cells, and instead more interaction with the tumour itself. This has been 

indirectly shown in multiple recent studies Cabrita et al (2020); Helmink et al (2020); Petitprez 

et al (2020). Alternatively, these studies also show that B cells situated within well-
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structured, mature TLSs (b) can release antibodies and present antigens to T cells in the 

tumour, activating them. B cell abundance within mature TLSs has been correlated with 

increased T cell activity, tumour targeting and destruction, and tumour response to 

immunotherapy Cabrita et al. (2020); Helmink et al. (2020); Petitprez et al. (2020).    

 

Figure 2. Varying B cell roles in tertiary lymphoid structures present within the tumour 

microenvironment Bruno (2020). (a) Immature TLS with B cells secreting inhibitory factors that 

suppress the immune systems activity, likely resulting from increased interaction with the tumour. 

(b) Mature TLS with B cells producing / secreting antibodies and engaging in presentation of 

tumour antigens to T cells. 

 

1.5 Cancer-Specific Protein Microarray 

Recent research has resulted in the development of a readily customisable cancer-specific 

protein microarray platform in conjunction with robust bioinformatics tools, capable of 

quantifying patient serum autoantibody profiles to 100 CT antigens in the pg/mL range 

Beeton-Kempen et al (2014). The study conducted by Beeton-Kempen et al. investigated the 

potential of using a CT antigen microarray to quantify shared tumour antigen-specific 

autoantibody profiles from melanoma patient sera. Through exploitation of the strong 
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affinity between shared tumour-specific antigens and their cognate autoantibodies, linearity 

of response and minimal non-specific binding was achieved. In addition, healthy 

individuals yielded no detectable autoantibodies, thus highlighting the specificity of this 

tool to cancer. The high specificity and sensitivity of this array may facilitate the discovery 

of novel cancer biomarkers, thereby potentially enabling pre-symptomatic cancer detection.  

The custom array used in this project consists of an expanded version of the above CT 

antigen array and contains 123 tumour-specific and associated antigens of interest. 

Quantification of patient autoantibody profiles to CT antigens could theoretically 

distinguish between cancer types and provide insight into disease progression Beeton-

Kempen et al. (2014). Preliminary data using this array on a cohort of 20 prostate cancer 

patients from a South African cohort showed that it can be used to identify potential 

diagnostic biomarkers with high sensitivity, while distinguishing prostate cancer from 

benign prostate hyperplasia and healthy individuals Adeola et al (2016). Promising tumour 

antigens identified included GAGE1, ROPN1, SPANXA1 and PRKCZ. Others have also 

investigated candidate shared tumour-specific antigens for prostate cancer via the detection 

of cognate autoantibodies in an ELISA or protein microarray–based assay format, and 

identified additional promising CT antigens (NY-ESO-1, SSX2, SSX4 and XAGE1B), all 

which are included in the custom array used in this study O'Rourke et al (2012); Wang et al 

(2005); Xie et al (2011). As such, this array will provide a suitable means to validate the above 

findings using a large adequately powered prostate cancer patient Australian cohort.  
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1.6 Aims and Hypotheses 

Aims: 

1) Screen retrospective serum samples from 54 low-grade and 56 high-grade prostate 

cancer patients for the presence of autoantibodies against cognate tumour-specific 

antigens using a customised tumour antigen microarray (Discovery Cohort);  

2) Validate array-based findings using a separate cohort of 50 low-grade and 49 high-

grade prostate cancer patients (Validation Cohort); 

3) Investigate prostatectomy specimens from 64 matched discovery cohort patients for 

the presence of antibody-secreting cells and tertiary-lymphoid structures using 

novel fluorescence multispectral immunohistochemistry panels. 

4) Compare these findings with available clinical characteristics (i.e., PSA levels, 

Gleason scores, PSA biochemical recurrence, and overall survival, where 

applicable). 

Hypotheses: 

• Circulating tumour autoantibodies can be used in combination with conventional 

PSA testing to increase sensitivity and specificity of prostate cancer detection.  

• Circulating tumour autoantibodies can be used to distinguish patients with indolent 

diseases from those with aggressive forms of prostate cancer. 

• Detectable circulating tumour autoantibodies reflect the presence of antibody-

secreting cells in the tumour microenvironment.  

• Tertiary Lymphoid Structures are present in prostate cancer tumours and 

responsible for the local production of antibody-secreting cells in the tumour 

microenvironment.  
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CHAPTER 2  

MATERIALS AND METHODS 

 

2.1 Sample Size and Statistical Justification 

A priori size-power calculations determined that a minimum sample size of 54 patients was 

recommended per patient group (i.e. G*Power 3.1.9.7 program, T-test, difference between 

two dependent means [matched pairs]) with a given probability of error (α=0.05), power 

(1-β=0.95) and effect size (dz=0.5) (Faul et al., 2007). Hence, 54 low-grade and 54 high-

grade patients in each patient cohort would ensure that the study resulted in findings with 

95% statistical power. Furthermore, novel biomarker regulations require the use of separate 

discovery and validation cohorts to ensure clinical applicability of findings.  

The prostate cancer patient samples used in this study were obtained via the Australian 

Prostate Cancer BioResource (APCB) and the Victorian Cancer Biobank (VCB). Full 

ethical approval for this study was granted by La Trobe University, Melbourne, Australia 

(HEC19147).  

From APCB, our discovery cohort included serum samples (n=110) from 54 low-grade and 

56 high-grade prostate cancer patients determined via Gleason score. In conjunction, 

complete clinical information, including PSA levels, Gleason scores, BPH status, PSA 

biochemical recurrence and overall survival was also provided. A single haematoxylin and 

eosin (H&E) stained slide and 7 unstained sequential Formalin-Fixed Paraffin-Embedded 

(FFPE) prostatectomy tissue sections were obtained from 64 of the above patients. Serum 

samples and PSA levels from 14 age- and gender-matched healthy individuals were also 

obtained.  

From VCB, our validation cohort included serum samples (n=99) from 50 low-grade and 

49 high-grade prostate cancer patients also determined via Gleason score. This is slightly 
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below the recommended cohort sample size, but still ensures a statistical power of 93% 

(post hoc analysis).  PSA values, Gleason scores, and benign conditions of the prostate were 

provided for each patient. Serum samples were obtained from 6 age- and gender-matched 

healthy individuals. FFPE prostate tissue sections were obtained from 5 bladder cancer 

patients presenting with clinically normal prostates. In addition, serum samples were 

obtained from 13 individuals with benign conditions of the prostate. FFPE prostate biopsy 

tissue sections were obtained from 16 individuals with benign prostate hyperplasia, 3 of 

which included matched serum.  

 

2.2 CT100+ Protein Microarray Fabrication 

CT100+ protein microarrays were prepared by Dr. Jessica Duarte, as described previously 

(Beeton-Kempen et al., 2014). Briefly, crude insect lysates of 123 tumour antigens (see 

Table 1) were diluted in printing buffer at a 1:1 ratio (1x PBS, 20% sucrose) and 40μL of 

the diluted crude protein extract for each BCCP-myc tagged protein was transferred to 

individual wells of a 384-well plate. Residual cell debris was pelleted via plate 

centrifugation at 1000 x g for 2 minutes at 4ºC and kept at 4ºC until, and during each 

microarray print run. Thawed streptavidin-coated microarray slides were printed with four 

identical CT100+ arrays using a QArray2 robotic arrayer (Genetix®) equipped with 8 x 

300μm flat-tipped solid pins. Arrays were printed in eight grids of 8 x 8 spots with ample 

spot-to-spot spacing of 562μm, allowing for all 123 tumour antigens, negative (BCCP-myc, 

ICL, buffer) and positive (biotinylated Cy3- BSA at 5, 10 and 15ng/μL, human IgG at 

10ng/μL and anti-human IgG at 100ng/μL) controls to be printed in triplicate within each 

array field, as per the array layout (Figure 3).  
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Table 1. List of the 123 tumour antigens included on the CT100+ array. 

ID Name ID Name ID Name ID Name ID Name 

001 BAGE2 026 LEMD1 051 SGY-1 076 CDK7 101 5T4/TPBG 

002 BAGE3 027 LIP1 052 SILV 077 FES 102 XAGE1B 

003 BAGE4 028 MAGEA1 053 SPAG9 078 FGFR2 103 SOX2 

004 BAGE5 029 MAGEA10 054 SPANXA1 079 MAPK1 104 ACVR2A 

005 CCDC33 030 MAGEA11 055 SPANXB1 080 MAPK3 105 ACVR2B 

006 CEP290 031 MAGEA2 056 SPANXC 081 PRKCZ 106 ITGB1 

007 COL6A1 032 MAGEA3 057 SPANXD 082 RAF 107 MAP9 

008 COX6B2 033 MAGEA4v2 058 SPO11 083 SRC 108 PIM1 

009 CSAG2 034 MAGEA4v3 059 SSX1 084 CALM1 109 TKTL1 

010 CT47.11 035 MAGEA4v4 060 SSX2A 085 CDC25A 110 SPATS1 

011 CT62 036 MAGEA5 061 SSX4 086 CREB1 111 DPPA2 

012 CTAG2 037 MAGEB1 062 SYCE1 087 CTNNB1 112 SOX1 

013 CXorf48.1 038 MAGEB5 063 SYCP1 088 TP53 113 ROPN1A 

014 DDX53 039 MAGEB6 064 THEG 089 ZBTB7B 114 CEACAM 

1 015 DSCR8 040 MART-1 065 TPTE 090 PRKCH 115 POU5F1 

016 FTHL17 041 MICA 066 TSGA10 091 PCTK1 116 NANOG 

017 GAGE1 042 NLRP4 067 TSSK6 092 PQBP1 117 BORIS B0 

018 GAGE2A 043 NXF2 068 TYR 093 UBE2V1 118 DPPA4 

019 GAGE4 044 NY-CO-45 069 XAGE-2 094 IRF4 119 DPPA3 

020 GAGE5 045 NY-ESO-1 070 XAGE3av1 095 MAPK8_tv2 120 GDF3 

021 GAGE6 046 OIP5 071 XAGE3av2 096 MSN 121 LAGE-1b 

022 GAGE7 047 p53 072 ZNF165 097 TPM1 122 CAMEL 

023 GRWD1 048 PBK 073 AKT1 098 CYP450 

3A4 

123 NY-ESO-1 

ORF2 024 HORMAD1 049 RELT 074 CDK2 099 CYP450 red  
025 LDHC 050 ROPN1 075 CDK4 100 EGFR 
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Figure 3. CT100+ protein microarray layout. The printing layout of four replicate arrays on each 

glass slide is depicted on the left. Each of the four arrays are direct replicates and the layout is 

depicted on right with BSA controls shown as circles with increasing red volume (5, 10 and 

15ng/μL) and hIgG (grid 4 & 5) / αhIgG (grid 6) controls shown as complete red circles. All other 

circles in the array are triplicates of immobilised antigens and their respective numbers can be 

referred to the antigen list described above (Table 1).  

 

2.3 CT100+ Protein Microarray Assay 

2.3.1 Determination of Optimal Patient Serum Concentration  

Prior to assaying patient samples, an optimal patient serum concentration was determined. 

In order to obtain the most optimal signal-to-noise ratio, a single patient sample with a 

known positive autoantibody profile was assayed on CT100+ arrays at four dilutions 

(1:800, 1:400, 1:200, 1:100 serum dilutions in PBST). The optimal sample dilution was 

selected based on detectable autoantibody levels well above background noise. 
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2.3.2 CT100+ Protein Microarray Quality Control Assays 

In order to ensure that each microarray print run met a pre-determined set of quality 

standards, quality control assays were performed per print run prior to assaying prostate 

cancer patient samples. 

2.3.2.1 Validation of Immobilised BCCP-tagged Proteins to Array Surface 

A c-Myc assay was conducted per individual print run to confirm that all antigens were 

successfully immobilised on the array surface. A single array was incubated with 300μL of 

13μg/ml monoclonal Cy3-anti-c-Myc goat antibody (Sigma, 1.3mg/mL, #C6594; 1:100 

dilution in PBST) for 1 hour at RT on an orbital shaker (20-40 rpm). The arrays were 

scanned at Cy3 to enable the detection of all c-Myc-tagged tumour antigens and Cy3-biotin-

BSA control spots, and hence confirm their presence. The resultant data was extracted and 

processed using Microsoft Excel. 

2.3.2.2 Validation of CT100+ Microarray Specificity for Cancer 

In order to validate the specificity of the CT100+ array for cancer, two control groups (i.e., 

healthy and cancer) were assayed per print run. The healthy donor (HD) group consisted of 

14 age- and gender-matched donors, ensuring all utilised antigens were in fact cancer-

specific. The cancer patient control consisted of a prostate cancer patient (ONJCRI#50035) 

with known signals for NY-ESO-1 and CTAG2.   

Both assays were conducted as patient serum assays and were anticipated to show either 

cancer antibody signals or no cancer antibody signals for the cancer and HD control groups, 

respectively. The resultant data was extracted and processed using Microsoft Excel. 

2.3.3 Patient Serum Assays  

CT100+ printed microarray slides were thawed for 1 hour at RT, blocked (50mM KCl, 20% 

glycerol, 0.1% Triton X-100, 25mM HEPES pH 7.5, 50µM biotin in dH2O) for 1 hour on 

ice, washed thrice in PBST for 5 minutes each at RT on an orbital shaker (20-40 rpm), and 
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dried via centrifugation at 287 x g for 5 minutes at RT. Customised 4-plex gaskets (Grace 

Bio-Labs, Oregon, USA) were assembled over the slides and clips were applied to hold 

them in place. Patient serum dilutions of 1:100 were prepared in PBST and 400μL added 

to each array chamber, wrapped in foil and incubated at RT for 1 hour on an orbital shaker 

(20-40 rpm). Following sample incubation, each array chamber was washed thrice in 300μL 

PBST for 5 minutes each at RT on an orbital shaker (20-40 rpm). Array chambers were 

then subjected to 300μL of 20μg/ml polyclonal Cy5-anti-human IgG detection antibody 

(Invitrogen, Alex fluor™ 647/Cy5, 2mg/mL, #A21445; 1:100 dilution in PBST), wrapped 

in foil and incubated at RT for 1 hour on an orbital shaker (20-40 rpm). Following detection 

antibody incubation, the gaskets were disassembled, and the slides were washed thrice in 

PBST and once in dH2O for 5 minutes each at RT on an orbital shaker (20-40 rpm). Slides 

were then dried via centrifugation at 287 x g for 5 minutes at RT and stored in an appropriate 

dark slide container until scanning. A flowchart of this assay pipeline is indicated in Figure 

4. 

 

Figure 4. Flowchart of CT100+ protein microarray assay. Printed slides are blocked, assembled 

with a multi-well gasket, incubated with patient serum samples, and cognate antibodies detected 

using a fluorescently labelled anti-human IgG antibody. Slides are imaged using a fluorescent 

scanner and the resulting data is then extracted, processed and analysed.  
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2.4 CT100+ Protein Microarray Scanning and Data Analysis 

The scanning of all slides was performed at Monash University using an on-site GenePix® 

4000B microarray scanner.  

2.4.1 GenePix Pro Settings Files and Photomultiplier Tube Gain Optimisation 

In order for consistent array analysis to be performed between slides and batches, two file 

types were prepared and generated when using the GenePix Pro Software (i.e. .gps and .gal) 

and then routinely applied to all subsequent CT100+ protein microarray slides prior to 

scanning. The GenePix Settings (.gps) file contains designated acquisition settings (i.e., 

Photomultiplier tube (PMT) gain and scan area), analysis settings (i.e., identification and 

locations of blocks) and display settings (i.e., brightness and contrast settings). The PMT 

gain settings were defined by averaging the optimal values observed across three individual 

patient samples (1:100 dilution) with positive autoantibody profiles.  

The GenePix Array List (.gal) file describes the number, position and size of each grid, the 

layout of spots within them, and the names, identities and annotations corresponding to 

each spot. These virtual parameters were set in accordance with the physical parameters 

used during the printing process (i.e., the physical distribution of the pins in the pinhead 

correlate with the virtual distribution of the spots within each grid, as well as their 

individual identities). 

2.4.2 Patient Array Scanning and Data Extraction 

All patient slides were dual (Cy3 and Cy5) scanned using a GenePix® 4000B microarray 

scanner. PMT gain settings were kept constant at 520 and 500 for the Cy5 and Cy3 lasers 

respectively, and a scan power of 100%. Prior to scanning, the GenePix Settings file was 

opened and integrated using GenePix Pro Version 4.0.0.54 to ensure that the settings were 

applied and remained constant amongst samples. Following scanning, the GenePix Array 

List file was opened and integrated, allowing automatic, and when required (e.g., as a result 
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of artefacts or spot merging), manual alignment of the grid and spot overlay to scanned 

images. Once effectively aligned, the resultant data from each array was extracted as text 

files. In addition, Tagged Image Format (TIF) and Joint Photographic Expert Group (JPEG) 

files of each slide were extracted at Cy3 and Cy5 wavelengths individually, as well as 

simultaneously for analysis. 

2.4.3 Patient Array Data Processing and Analysis 

Extracted array data was imported to Microsoft Excel where the median relative fluorescent 

units (RFU) (raw florescent intensity minus the average local background) of all tumour 

antigens and control spots (including replicates) at both Cy3 and Cy5 wavelengths (i.e., 

F532 – B532, F635 – F635) was separated out from the original raw data file. For each set 

of three replicates, the average and standard deviation (SD) was calculated, and a 

coefficient of variation (CV) threshold was set at ≤20%. For triplicates with a CV value 

>20%, a replicate outlier was removed from analysis. The resultant averages of all 

triplicates or duplicates were then used for further analyses.  

Noise thresholds were calculated for all patient and control arrays by adding the average 

background (i.e., B532 or B635) of all spots to 2x the average SD (i.e., B532 SD or B635 

SD) of all spots. All autoantibody signals below this threshold were excluded from 

subsequent analyses.  

Data analysis included detectable autoantibody and antigen specificity prevalence across 

patient cohorts, univariate and multivariate receiver-operating-characteristic curves (ROC) 

exploring the discriminative ability of candidate antigen signatures, protein-protein 

functional interaction networks (STRING), and correlation to clinical features (age, PSA 

levels, disease grade) and patient outcomes (PSA relapse and overall survival. Results were 

further compared to matched mRNA expression from an independent prostate cancer 

cohort accessible via the TCGA (CBIO), and protein expression in prostate cancer tissues 

accessible via the Human Protein Atlas.  



 35 

2.5 Multispectral IHC Staining of Patient Prostatectomy Tissue 

In order to investigate the presence of B cells and antibody-secreting cells (ASCs) in 

prostate tumours, a 5-plex ASC panel containing anti-CD19, CD38, CD45 and CD138, 

with DAPI counterstaining, was performed on 64 formalin-fixed paraffin-embedded 

(FFPE) prostatectomy tissue specimens.  

In addition, the presence of TLSs containing organized B and T cell zones with surrounding 

high endothelial venules were investigated using a 7-plex TLS panel containing anti-CD4, 

CD8, CD19, CD21, DC-LAMP and PNAd, with DAPI counterstaining, was performed on 

64 FFPE prostatectomy tissue specimens.   

All fluorescent mIHC staining (incl. optimisations and controls) was conducted using a 

BOND RX® Automated Research Stainer (Leica Biosystems, Newcastle, UK). 

2.5.1 Spectral Library Development 

For precise and comparable means of obtaining quantitative fluorescent data from 

multiplexed tissue samples, batch-specific spectral characteristics were determined for each 

fluorophore. Once defined, these spectral characteristics are used to accurately unmix 

images containing multiple fluorophores. This unmixing process allows crosstalk to be 

removed among markers that fluoresce at overlapping wavelengths, thus allowing markers 

to be distinctly examined, either individually or in combination.  

To build these libraries for the ASC panel, Opal™ fluorophores (Opal 540, 570, 620 and 

650) contained within each Opal™ IHC 50 slide kit (Cat# NEL821001KT, Perkin Elmer), 

were used to detect Human Leukocyte Antigen (HLA) 1 on HeLa cell lines. To build these 

libraries for the TLS panel, Opal™ fluorophores (Opal 520, 540, 570, 620, 650 and 690) 

contained within each Opal™ IHC 50 slide kit (Cat# NEL821001KT, Perkin Elmer), were 

used to detect Human Leukocyte Antigen (HLA) 1 on HeLa cell lines. The abundant 

expression of HLA on HeLa cell lines enabled inForm® to effectively extract each unique 
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spectral characteristic corresponding to each Opal fluorophore, used for subsequent 

unmixing of patient specimens.  

2.5.2 Primary Antibody Optimisation 

Optimisation of individual primary antibodies was performed to determine the most 

effective concentration (i.e., highest signal-to-background ratio) for staining of prostate 

cancer tissue prior to integration into multiplexed assays. Antibodies were tested at three 

distinct concentrations across two heat-induced epitope retrieval (ER) pH conditions (pH 

6.0 and 9.0) using marker-specific positive control FFPE healthy tissue. Starting 

concentrations were as recommended by each supplier and half-log (3.16-fold) serial 

dilutions were performed twice from that point onwards. Negative control tissues were 

included for comparison and confirmation of accurate staining, as well as tissue-specific 

autofluorescence controls. 

2.5.3 Multiplex Optimisation 

Following primary antibody optimisation, the most effective multiplex stain order was 

determined using a range of both 5-plex (ASC panel), and 7-plex (TLS panel) stain order 

variants. Each variant involved different combinations of primary antibodies and Opal 

Fluorophores, as well as different orders to find that which clearly labelled each antibody 

and exhibited the highest resolution of signal-to-noise ratio. In conjunction, primary 

antibodies from each multiplex panel were applied, in a monoplex manner, to positive 

control tissue at their optimal concentrations to ensure successful staining alongside their 

involvement in multiplex panels. The multiplex protocol deemed most optimal, as per its 

ability to retain all signals following staining while maintaining a relatively high signal-to-

noise ratio, was used for all patient mIHC assays.  

2.5.4 Multiplex Staining of Patient Prostate Cancer Tissue 

The optimal mIHC protocols for each panel (ASC & TLS) were performed on all 64 patient 

tissue specimens using the Bond RX Automated Stainer. Slides were placed on slide trays, 
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labelled with printed barcodes corresponding to the protocol performed on each slide and 

cover-tiled accordingly. Slide trays were then placed into the Bond RX autostainer 

following addition of all required reagents (antibodies, buffers, dewax, etc.) and the 

automated staining process initiated. Positive control specimens were included per batch of 

patient slides, undergoing the same protocols to ensure all antibodies and fluorophores 

worked effectively.  

Each specimen was first deparaffinised using Bond® Dewax Solution (Cat# AR9222, Leica 

Biosystems), followed by a 3% H2O2 (Cat# HA154-500M, Chem-Supply) treatment for 

peroxidase blocking purposes. Specimens then underwent sequential target staining 

through repetition of the following series of events: heat-induced epitope retrieval using 

Bond® Epitope Retrieval Solution (Leica Biosystems), blocking buffer (Product# 

ARD1001EA, PerkinElmer), primary antibody incubation, secondary antibody incubation 

(Opal® Polymer HRP, Product# ARH1001EA) and Opal fluorophore (PerkinElmer) 

incubation. After successful addition of all markers, slides were counterstained with 

Spectral DAPI (Product# FP1490, PerkinElmer). All wash phases were done using Bond® 

Wash Solution (Cat# AR9590) and deionised water. A flowchart of this assay pipeline is 

indicated in Figure 5. Following staining, all slides were coverslipped using 

VECTASHIELD® Hardset™ Antifade Mounting Solution (Cat# H-1400, Vector 

Laboratories), and left overnight in the dark. 
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Figure 5. Flowchart of multiplex fluorescent immunohistochemistry assay. Unstained FFPE 

tissue is loaded into the Bond RX. A protocol is developed and then initiated. Each tissue section is 

deparaffinised, and endogenous peroxidases are quenched. Sequential rounds of staining follow, 

involving epitope retrieval(s), primary / secondary antibody incubation(s), and detection via 

desired fluorophore(s). Each section is counterstained with DAPI, mounted with appropriate 

solution, coverslipped and then imaged using the Vectra 3.0® Automated Multispectral Imaging 

System 

2.5.5 Vectra 3.0® Multispectral Imaging 

Following immunofluorescence staining, each sample was microscopically imaged using a 

Vectra 3.0® Automated Multispectral Imaging System (PerkinElmer, Massachusetts, US.). 

Exposure time settings were defined per specimen across five major channels (DAPI, FITC, 
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Cy3, Texas Red and Cy5) for optimal Whole Slide Scanning (10x) and Multispectral 

Imaging (20x). Once optimal exposure times had been set, slides were loaded into a slide 

cassette and processed for automated whole slide scanning. Following whole-slide 

scanning, regions of interest were selected using Phenochart™ whole slide viewer and 

captured using Vectra automated multispectral image (MSI) capture.  

To accurately delineate areas of tumour tissue, a trained pathologist Dr. Louise Jackett 

(Austin Hospital Pathology) annotated sequential H&E slides for all prostate cancer and 

benign specimens used in the study (cut directly from the same tissue block).  

2.5.6 InForm® Data Processing and Analysis   

All acquired high-resolution MSIs (20x mag.) generated from the Vectra® 3.0 fluorescence 

microscope were spectrally unmixed using the inForm® Cell Analysis software 

(PerkinElmer, Massachusetts, U.S.), using a pre-generated spectral library.  

For the ASC panel, the software was trained to recognise various tissue segments including 

prostate glands (epithelial and basal cells), stroma and fibrous muscle by visually defining 

the respective areas with a drawing tool on, at minimum, 5 individual MSIs containing each 

tissue variety, prior to initiation of automated segmentation. As CD38 also stained prostate 

epithelium, CD138 stained basal cells, and DAPI counterstained cell nuclei, tissue 

segmentation training was effective. Following tissue segmentation, prostate epithelial and 

basal cells, all lymphocytes, B cells and ASCs were phenotyped using a similar training 

method. This method involved programming the software to identify cells based on 

individual or combined expression of their respective markers (CD38+ exclusively – 

prostate epithelium, CD138+ exclusively – basal cells, CD45+ exclusively – lymphocytes, 

CD19+CD45+ – B Cells, CD45+CD38+CD138- – plasmablasts, CD45+CD38+CD138+ – 

plasma cells). Cell phenotyping was achieved by specifying at minimum, 50 cells of each 

type manually before automatic phenotyping could be performed. Abundance of ASC 

counts were defined as follows: absent (0), scarce (1 to 20), abundant (20+). Abundance of 



 40 

B cell aggregate (BCA) counts were defined as follows: absent (0), scarce (1 to 4), abundant 

(4+). Distance to tumour tissue was defined as intratumoural (IT) if within tumour regions 

and peritumoural (PT) if outside of tumour regions. 

For the TLS panel, identified aggregates were classified as TLSs if these contained 

organised T and B cell zones with CD4+ and CD8+ cells, and CD19+ cells respectively, 

and high endothelial venules (HEVs) as PNAd+. These were further classified in 

accordance with their abundance (TLS0: none, TLS1-4: 1 to 4, and TLS5+: more than 5) 

and distance to tumour tissue, proximal if within or up to 500um from tumour tissue and 

distal if more than 500um. TLSs were deemed mature if these were releasing ASCs, or 

immature if not. Finally, CD8+ T cell abundance was defined as absent (0), poor (1 to 20), 

or rich (20+). 
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CHAPTER 3 

RESULTS 

 

3.1 Patient Cohort Characteristics  

This Section includes a summary of the clinical characteristics of all patient cohorts 

investigated in this study (i.e., cancer, healthy and benign).  

3.1.1 Prostate Cancer Cohorts 

All prostate cancer patient samples were categorised into two groups based on Gleason 

score. Low-grade samples were classified as having a Gleason score of 6-7 and high-grade 

samples of 8-10. Gleason scores were determined at diagnosis via analysis of radical 

prostatectomy or biopsy tissue. The grading classification used here was based on the 

sample allocation attributed by the APCB and the VCB and may not reflect the current 

clinical grading. However, this was maintained for the purposes of this study. Patient PSA 

levels were measured at time of patient consent and enrolment prior to surgical intervention. 

As autoantibody half-lives are between 30 to 90 days in circulation, it is anticipated that 

their presence would remain in samples up to at least 30 days following radical 

prostatectomy. However, after surgical resection of the cancerous prostate and associated 

tumour antigens, autoantibody production would cease and eventually be cleared from 

circulation. As such, all blood samples used in this study for antibody profiling were taken 

before or within a 30-day timeframe following radical prostatectomy, where performed. 

3.1.1.1 Discovery Cohort 

The patient characteristics at baseline of the discovery cohort accessed via the APCB are 

summarised in Table 2 below. 

Table 2. Discovery patient characteristics at baseline. This table summarises the clinical 
characteristics of all patients in the discovery cohort.   
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Characteristic 
Low-Grade 

Patients 
(n=54) 

High-Grade 
Patients 
(n=56) 

Total 
Patients 
(n=110) 

Age* — yr    
     Mean 62.5 64.0 63.2 
     Range 50.1–74.2 47.8–78.1 47.8–78.1 
Age Category — no. (%)    
     <60 yr 23 (42.6) 15 (26.8) 38 (34.6) 
     ≥60 to <70 yr 25 (46.3) 32 (57.1) 57 (51.8) 
     ≥70 yr 6 (11.1) 9 (16.1) 15 (13.6) 
PSA Level† — ng/mL    
     Mean 6.6 11.6 9.1 
     Range 0.9–17.9 2.0–98.0 0.9–98.0 
PSA Category — no. (%)    
     <4 ng/mL 10 (18.5) 6 (10.7) 16 (14.6) 
     ≥4 to ≤12 ng/mL 40 (74.1) 39 (69.7) 79 (71.8) 
     >12 ng/mL 4 (7.4) 11 (19.6) 15 (13.6) 
Gleason Score Source — no. (%)    
     Radical Prostatectomy 54 (100.0) 40 (71.4) 94 (85.5) 
     Core Biopsy 0 (0.0) 16 (28.6) 16 (14.5) 
Gleason Score    
     Range 6–7 8–10 6–10 
Prior Treatment — no. (%)    
     Yes 0 (0.0) 3 (5.4) 3 (2.7) 
     No 54 (100.0) 53 (94.6) 107 (97.3) 
Radical Prostatectomy — no. (%)    
     Yes 54 (100.0) 48 (85.7) 102 (92.7) 
     No 0 (0.0) 8 (14.3) 8 (7.3) 
Biochemical Recurrence‡ — no. (%)    
     Yes 5 (9.3) 11 (19.6) 16 (14.6) 
     No 45 (83.3) 37 (66.1) 82 (74.5) 
     Not Applicable 4 (7.4) 8 (14.3) 12 (10.9) 
Ethnicity — no. (%)    
     European 53 (98.1) 38 (67.9) 91 (82.7) 
     Other 1 (1.9) 0 (0.0) 1 (0.9) 
     Unknown 0 (0.0) 18 (32.1) 18 (16.4) 
Disease Specific Survival — no. (%) (as 
of 9/3/2020) 

   

     Alive  54 (100.0) 48 (85.7) 102 (92.7) 
     Dead  0 (0.0) 8 (14.3) 8 (7.3) 
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* Patient ages were recorded at diagnosis of disease. † PSA levels were those provided at informed 
patient consent. ‡ Biochemical recurrence was determined as a detected PSA level of at least 
0.4ng/mL followed by another subsequent increase, after radical prostatectomy where applicable 
(with surgery) and available (with follow-up) Stephenson et al (2006). Patients classified as ‘Dead’ 
included only individuals with prostate cancer-related deaths. The follow-up time for disease-
specific survival was 6.8years. Any patients with disease-specific death after 6.8 years were 
classified as alive. Abbreviations: PSA, prostate-specific antigen.  

This patient cohort contained a relatively comprehensive coverage and distribution of age 

of those typically seen to develop prostate cancer, with all patients displaying a mean of 

63.2 years, ranging from 47.8 to 78.1 years. The cohort ethnicity was largely of European 

descent (82.7%). PSA levels were higher in high-grade patients, exhibiting a mean of 

11.6ng/mL, and an overall range of 2.0 to 98.0ng/mL, in contrast to that of low-grade 

patients which displayed a mean of 6.6ng/mL and range of 0.9ng/mL to 17.9ng/mL. 

Gleason scores and hence diagnoses, were mainly determined via radical prostatectomy 

(85.5%), with the remaining samples determined by core biopsy (14.5%). Biochemical 

recurrence rates were higher amongst high-grade patients (19.6%) than low-grade patients 

(9.3%), with a mean PSA follow-up time of 45.3 months. Similarly, disease-specific 

survival at 6.8 years of follow-up was lower in high-grade patients (92.7%), with no deaths 

reported in low-grade patients. 

3.1.1.2 Validation Cohort 

The patient characteristics at baseline of the validation cohort accessed via the VCB are 

summarised in Table 3 below. 
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Table 3. Validation patient characteristics at baseline. This table summarises the clinical 

characteristics of all patients in the validation cohort.   

Characteristic Low-Grade 
Patients (n=50) 

High-Grade 
Patients (n=49) 

Total Patients 
(N=99) 

Age* — yr    
     Mean 61.9 62.4 62.2 
     Range 51.0–85.0 46.0–81.0 46.0–85.0 
Age Category — no. (%)    
     <60 yr 22 (44.0) 17 (34.7) 39 (39.4) 
     ≥60 to <70 yr 24 (48.0) 26 (53.1) 50 (50.5) 
     ≥70 yr 4 (8.0) 6 (12.2) 10 (10.1) 
PSA Level† — ng/mL    
     Mean 5.7 15.8 10.7 
     Range 2.3–12.0 2.6–63.5 2.3–63.5 
PSA Range — no. (%)    
     <4 ng/mL 10 (20.0) 3 (6.1) 13 (13.1) 
     ≥4 to ≤12 ng/mL 40 (80.0) 25 (51.0) 65 (65.7) 
     >12 ng/mL 0 (0.0) 21 (42.9) 21 (21.2) 
Gleason Score Source — no. (%)    
     Radical Prostatectomy 47 (94.0) 44 (89.8) 91 (91.9) 
     Core Biopsy 3 (6.0) 5 (10.2) 8 (8.1) 
Gleason Score    
     Range 6–7 8–10 6–10 
Radical Prostatectomy — no. (%)    
     Yes 47 (94.0) 44 (89.8) 91 (91.9) 
     No 3 (6.0) 5 (10.2) 8 (8.1) 
Benign Conditions — no. (%)    
     Present 32 (64.0) 26 (53.1) 58 (58.6) 
     Absent 18 (36.0) 23 (46.9) 41 (41.4) 
* Patient ages were recorded at diagnosis of disease. † PSA samples were those provided at 
informed patient consent. Abbreviations: PSA, prostate-specific antigen. 

This patient cohort displayed a comparable mean age of 62.2 years, ranging from 46.0 to 

85.0 years. PSA levels were higher in high-grade patients, displaying a mean of 15.8ng/mL, 

and an overall range of 2.63ng/mL to 63.5ng/mL, in contrast to that of low-grade patients 

which displayed a mean of 5.7ng/mL and range of 2.3ng/mL to 12.0ng/mL. Gleason scores 

and diagnoses were mainly determined via radical prostatectomy (91.9%), with the 

remaining samples determined by core biopsy (8.1%). Benign conditions were present in 

58.6% of patients and absent in 41.4%, with greater numbers observed among low-grade 

individuals.  
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3.1.2 Healthy and Benign Cohorts 

3.1.2.1 Healthy Cohort 

The clinical characteristics of all healthy donors accessed via the APCB are summarised in 

Table 4 below. 

Table 4. Healthy donor characteristics. This table summarises the characteristics of all healthy 
donors used in this study.  

Characteristic Healthy Donor Patients (n=14) 

Age — yr  
     Mean 72.2 
     Range 65.3–79.3 
PSA Level† — ng/mL  
     Mean 2.1 
     Range 0.1–5.6 
PSA Category — no. (%)  
     <4 ng/mL 11 (78.6) 
     ≥4 to ≤12 ng/mL 3 (21.4) 
     >12 ng/mL 0 (0.0) 

                    † PSA levels used for calculations were those provided at informed patient consent.  
                    Abbreviations: PSA, prostate-specific antigen. 

The healthy donor cohort displayed a mean age of 72.2 years, ranging from 65.3 to 79.3 

years. The mean PSA level was 2.1ng/mL, ranging from 0.1 to 5.6ng/mL, with most 

individuals below the threshold of concern (4.0ng/mL).  

3.1.2.2 Benign Cohort  

The clinical characteristics of all benign donors accessed via the VCB are summarised in 

Table 5 below. Benign conditions of the prostate included benign prostate hyperplasia, 

prostatic intraepithelial neoplasia, nodular hyperplasia, basal cell hyperplasia, squamous 

metaplasia, acinar hyperplasia, and parenchyma hyperplasia. 
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Table 5. Benign donor characteristics. This table summarises the characteristics of all benign 
donors used in this study.  

Characteristic 

Benign 
Disease 
Patients 
(N=13) 

Age* — yr  
     Mean 71.2 
     Range 48.0–

85.0 
PSA Level† — ng/mL  
     Mean 2.4–7.6 
     Range 5.0 
PSA Category — no. (%)  
     <4 ng/mL 1 
     ≥4 to ≤12 ng/mL 1 
     Unknown 11 

                    * Patient ages used for calculations were at diagnosis of benign disease. † PSA  
                    samples used for calculations were those provided at informed patient consent.  
                   Abbreviations: PSA, prostate-specific antigen. 

The benign donor cohort displayed an average age of 71.2 years, ranging from 48.0 to 85.0 

years. The majority of these patients did not have available PSA level measurements, and 

hence resulted in a limitation on potential analyses.  

 

3.2 CT100+ Protein Microarray Data 

This Section includes the complete set of results obtained whilst performing quality 

controls, optimisations and autoantibody profiling of healthy, benign, discovery and 

validation cohort patient samples on the CT100+ protein microarray. All arrays were dual 

scanned using fixed gain setting of 520(λ635) and 500(λ532) at 100% scan power.  

3.2.1 Determination of Optimal Patient Serum Concentration  

To determine the optimal serum dilution capable of resolving clear antibody signals 

concurrently with low background noise, serum dilution optimisation assays were 

performed. Serial dilutions of a known prostate cancer patient samples at 1:800, 1:400, 

1:200 and 1:100 were used to determine the optimal ratio of serum to PBST. The resulting 
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autoantibody profiles are graphed in Figure 6 below. It was apparent that a dilution of 

1:100, was able to resolve NY-ESO-1 and CTAG2 signals most optimally (best signal / 

noise ratio; e.g. signal / net intensity of NY-ESO-1 [23034 RFU] to noise / array 

background [354 RFU) ratio: 64.5), compared to the other dilutions tested. This was within 

the linear range (1:50 to 1:1250 serum dilutions) previously determined Beeton-Kempen et 

al. (2014). Henceforth, a 1:100 dilution of patient serum to PBST was conducted for patient, 

healthy and benign assays.  

 

Figure 6. Serum dilution optimisation assay. This graph depicts the average RFU for a known 

prostate cancer patient at four dilutions (1:100, 1:200, 1:400 and 1:800).  

3.2.2 CT100+ Protein Microarray Quality Control Assays 

Serum samples were assayed across 3 separate CT100+ print runs for the discovery cohort 

and 3 separate CT100+ print runs for the validation cohort, and hence warranted quality 

control assays to be performed for each batch to ensure robust array specificity, quality, 

antigen immobilisation and reproducibility. 

3.2.2.1 Validation of Immobilised BCCP-Myc-tagged Proteins to Array Surface 

As all antigens contain a c-Myc tag, anti-c-Myc assays were performed per print run to 

confirm antigen immobilisation on the array surface. The resulting c-Myc assays for all 
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batches used are graphed in Figure 7 below, as well as a representative scanned array 

image.  

 

Figure 7. Graphical and visual representations of CT100+ anti-c-myc assays. (Above) The bar 

charts depict the average RFU values for antigens that were successfully printed and immobilised 
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across all batches for each patient cohort. The average RFU scale was adjusted to a max of 2500 

for comparative purposes and hence does not provide complete coverage of all values. Antigens 

exceeding 2500RFU ranged from 2500 to 20665 for the discovery cohort, and from 2500 to 10707 

for the validation cohort. (Below) The image is a visual representation of a selected anti-c-myc 

assay conducted on a CT100+ array from batch 1, discovery cohort. Positive controls and antigens 

are depicted in green.  

Although the c-myc signals show significant differences in antigen densities, it is unlikely 

that these will be reflected in the resulting bound cognate antibody intensities because we 

(Figure 6) and others (Beeton-Kempen et al., 2014) have shown that decreasing serum 

dilutions down to 1:100 results in increased antibody signals, without reaching saturation. 

Hence, normalisation of subsequent serological data is not required.  

For the batches used in the discovery cohort, all but two antigens, ATK1 and SILV, showed 

successful immobilisation on the arrays across all 3 batches. A cut-off of <15 average RFU 

was used to define those that were not printed. In addition, instances involving inconsistent 

printing of antigens across all batches were removed, including GAGE2A, IRF4, 

MAGEA11, MAPK8_tv2, PCTK1, PQBP1, PRKCH, SYCP1, TP53, TPM1, UBE2V1 and 

ZBTB7B. All unprinted (2) and inconsistent (12) antigens mentioned above were removed 

from all subsequent analyses.  

For the batches used in the validation cohort, all but two antigens, TP53 and ZBTB7B, 

showed successful immobilisation on the array across all 3 batches. IRF4, MAPK8_tv2, 

MSN, PCTK1, PQBP1, PRKCH, SPATS1, SYCP1, TPTE, UBE2V1 and XAGE1B 

showed inconsistent printing. All unprinted (2) and inconsistent (11) antigens mentioned 

above were removed from subsequent analyses.  

3.2.2.2 Validation of CT100+ Microarray Specificity for Cancer 

In order to reconfirm CT100+ array specificity for cancer, a selected cancer patient and 

healthy individuals were tested. The first set of assays for each cohort involved testing of 
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serum from a single prostate cancer patient with a known, strong positive autoantibody 

profile across all batches. Here, a selected cancer patient (ONJ 072) with known, strong 

autoantibody titres against NY-ESO-1 and CTAG2 consistently reproduced significant 

titres across 4 different batches (see Figure 8).   

 

Figure 8. Graphical and visual representations of CT100+ positive control assays. (Above) The 

graphs depict the presence of consistently high autoantibody titres against CTAG2 and NY-ESO-1 

across all batches in both patient cohorts. (Below) The image is a visual representation of a selected 

positive control assay performed on a CT100+ array from batch 1 (discovery cohort) with triplicate 

spots of CTAG2 and NY-ESO-1 antigen. 

CTAG2

NY-ESO-1

0

500

1000

1500

2000

2500

5T
4/

TP
B

G
B

A
G

E3
C

A
LM

1
C

D
K

2
C

EP
29

0
C

SA
G

2
LA

G
E-

1b
C

Y
P4

50
 re

du
ct

as
e

D
PP

A
4

FG
FR

2
G

A
G

E5
G

R
W

D
1

LE
M

D
1

M
A

G
EA

2
M

A
G

EA
4v

4
M

A
G

EB
6

M
A

R
T-

1
N

X
F2

O
IP

5
PO

U
5F

1
R

O
PN

1
SO

X
2

SP
A

N
X

C
SS

X
1

TH
EG

TY
R

ZN
F1

65

A
ve

ra
ge

 R
FU

Antigens

Batch 1 Batch 2 Batch 3 Batch 4

CTAG2 

NY-ESO-1 

 

 



 51 

The second set of assays involved individual incubation of serum from 14 age and gender-

matched healthy donor (HD) samples. The resulting individual autoantibody levels were 

averaged across HD samples for each antigen, to generate a pooled HD profile (see Figure 

9 below). The resulting autoantibodies were negligible across all antigens, as expected. The 

average RFU and SD were calculated for the pooled data and combined (Average RFU of 

all healthy patients +1SD of all healthy patients = 307RFU cut-off) to determine a threshold 

(≥307 RFU) capable of detecting true autoantibody signals among cancer patients.  

 

Figure 9. Graphical and visual representations of CT100+ negative control assays. (Above) The 

graph depicts the average RFU for each antigen resulting from a pool of 14 individual HD patients. 

(Below) The image is a visual representation of a healthy donor patient assay performed on a 

CT100+ array.  
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3.2.2.3 Verification of Control Spots on CT100+ Array Surface  

Each batch of CT100+ arrays included a range of printed positive and negative controls to 

ensure that a high level of quality was achieved. These controls for a representative batch 

are shown in Figure 10. As expected, all negative controls displayed expected intensities; 

the ‘BCCP-myc’, ‘buffer’ and ‘insect cell lysate’ each displayed naught or negligible 

fluorescent intensities, confirming absence of non-specific binding. Positive controls also 

displayed expected intensities. All 5, 10 and 15ng/μL Cy3-biotin-BSA controls exhibited 

increasing intensities that neatly correlated with the increases in BSA concentration. The 

biotin-human IgG (hIgG) controls displayed stable intensities across all arrays confirming 

the addition of detection antibody for all assays. The anti-human IgG (ahIgG) displayed 

stable intensities across all arrays providing assurance that serum was always added and 

that autoantibodies were able to bind to cognate antigens present on the array. These 

controls yielded similar and consistent readouts across all array batches used in this study. 

 
Figure 10. Positive and negative controls for a selected batch of CT100+ arrays. The graph 

provides a full set of average RFU measurements for negative (buffer, ICL and BCCP-myc) and 

positive (Cy3-biotin-BSA at 5, 10 and 15ng/µl, biotin-hIgG at 10ng/µl and biotin-αhIgG at 100ng 

ng/µl) printing controls on all arrays for batch 1.  
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3.2.3 CT100+ Patient Sera Data Analyses 

The following Sections detail the array data analyses pertaining to the healthy, benign, 

discovery and validation patient cohorts. Following optimisation and screening for 

prominent antigens, three types of analyses were performed, where possible:  

1. Univariate antigen ROC curves and associated violin plots  

2. CombiROC multivariate antigen ROC curves  

3. mRNA expression hierarchical clustering and associated heat maps using TCGA 

prostate cancer data (PanCancer cohort) for all significant antigens 

The goal of performing these analyses was to obtain antigen combinations most capable of 

stratifying patients into pre-defined groups based on their autoantibody profiles. The best 

univariate antigens by count or capability of distinguishing between two groups of interest 

(e.g., healthy vs. cancer, relapse vs. non-relapse patients, low-grade vs. high grade patients) 

using relevant array data were defined. These antigens were then combined to generate 

multivariate antigen ROC curves (signatures) that surpass the ability of single markers at 

distinguishing between groups of interest. To strengthen our findings, we analysed mRNA 

expression data from an independent cohort accessible via the TCGA (PanCancer PRAD 

cohort – 460 patients) using CBIO (a user-friendly interface that allows non-

bioinformaticians to access, analyse and extract data from TCGA) to create heat maps 

which delineate the presence and prominence of these antigens in prostate cancer patients 

Cerami et al (2012); Gao et al (2013).  

In this study, we attempt to combine associated patient and healthy PSA levels with 

quantified array findings (autoantibody titres), to significantly improve diagnostic and 

prognostic potential of biomarker signatures when stratifying patients. Hence, it is 

necessary to first provide an overview of the diagnostic capability of PSA among the 

discovery and validation patient cohorts (see Figure 11 below). At a cut-off of 4ng/mL, an 

identical sensitivity and specificity of 84.6% and 78.6% respectively, was observed for both 
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patient cohorts. It is important to note that the observed diagnostic sensitivity and 

specificity for PSA seen among our cohorts was inflated in contrast to that commonly 

recorded at a clinical level. This is a direct result of sample collection, where cancer patients 

were selected upon confirmation of cancer presence (i.e., via biopsy or resection), hence 

displaying heightened PSA levels, in addition to the vast number of healthy donors 

displaying normal PSA levels (<4ng/mL). 

 
Figure 11. PSA level ROC curves and violin plots for discovery and validation prostate cancer 

cohorts. ROC curves (on left) outline the capabilities of PSA antigen levels to discriminate 

discovery and validation patients with healthy individuals, as indicated by their associated AUC 

values. Corresponding AUC values of 0.9279 (discovery cohort) and 0.9408 (validation cohort) 

were observed. Violin plots showing PSA data distribution (on right) using the Mann-Whitney U 

test. Values £0.05 were considered significant.  
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3.2.3.1 Healthy and Benign Cohorts 

Based on the established concept / understanding that benign conditions (e.g., high-grade 

PIN) commonly act as precursors to prostate cancer, we generated univariate and 

multivariate ROC curves comparing our healthy (n=14) and (n=13) benign cohorts to 

determine if there were any key markers capable of distinguishing these (see Figures 12 

and 13). Remarkably, four antigens consisting COL6A1 (AUC 0.7198; p-value 0.0543), 

COX6B2 (AUC 0.7033; p-value 0.0743), MART-1 (AUC 0.7143; p-value 0.0592), and 

MICA (AUC 0.7143; p-value 0.0609) showed strong discriminative capabilities for 

distinguishing benign patients from healthy individuals.  

 

Figure 12. Top univariate antigen ROC curves and violin plots capable of distinguishing healthy 

from benign individuals.  ROC curves for the top univariate antigens observed when comparing 
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healthy and benign cohort array data (on left) with AUC values of 0.7198 (COL6A1), 0.7033 

(COX6B2), 0.7143 (MART-1), and 0.7143 (MICA). Corresponding antigen violin plots are shown 

(on right), with included Mann-Whitney U test (CI of 95%) p-values of 0.0543 (COL6A1), 0.0743 

(COX6B2), 0.0592 (MART-1), and 0.0609 (MICA).  

 
Figure 13. Top multivariate antigen ROC curves discriminating benign from healthy individuals. 

Top AUC combination – Combo XIII (blue) consisting of COL6A1, COX6B2, and MART-1 

generating an AUC of 0.764, sensitivity of 92%, and specificity of 57%. Highest sensitivity 

combination – Combo XX (dark grey) consisting of COL6A1, MART-1, and MICA generating an 

AUC of 0.753, sensitivity of 92%, and specificity of 64%. Highest specificity combination – Combo 

X (green) consisting of COL6A1, COX6B2, MART-1 and MICA generating an AUC of 0.714, 

sensitivity of 46%, and specificity of 93%.  

3.2.3.2 Discovery Cohort 

3.2.3.2.1 Prevalence of Autoantibodies in Prostate Cancer (Discovery Cohort) 

The following Section details the prevalence of autoantibodies in all discovery cohort 

prostate cancer patients (n=110). 
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The prevalence of autoantibodies towards specific tumour antigens was determined by 

quantifying autoantibody signals above the determined threshold for all 110 patients in the 

APCB cohort. Throughout the entire cohort, autoantibody signals were detected in 86 of 

110 patients (78%). It was apparent that antigen specificities varied among the patient 

cohort. Patients either exhibited high autoantibody titres towards multiple or few tumour 

antigens or lacked detectable autoantibodies entirely (Figure 14).  

 

Figure 14. Representative autoantibody profiles of prostate cancer patients. These graphs portray 

an overview of the types of autoantibody profiles that were generated while sampling prostate 

cancer patients using the CT100+ array.  

Prevalent autoantibodies were detected against 16 leading antigens, included in Figure 15. 

These included MAGEB1 (n=70/110; 64%), MAGEB6 (n=62/110; 56%), MAGEB5 

(n=57/110; 52%), GAGE4 (n=31/110; 28%), GAGE1 (n=30/110; 27%), CTNNB1 

(n=28/110; 25%), GAGE5 (n=27/110; 25%), OIP5 (n=26/110; 24%), SPANXC (n=25/110; 

23%), CT47.11 (n=23/110; 21%), LEMD1 (n=23/110; 21%), MAPK3 (n=23/110; 21%), 

GRWD1 (n=22/110; 20%), MAGEA2 (n=22/110; 20%), MAGEA4v4 (n=22/110; 20%), 
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and MAGEA1 (n=21/110; 19%), in order of prevalence. The number of patients exhibiting 

autoantibody titres towards the top 16 antigens varied from 22 to 70, with the top antigen 

MAGEB1, detected above the pre-determined threshold (≥307 RFU) in 70 of 110 patients 

(64% of the cohort).  

 

Figure 15. Top antigens detected among the discovery patient cohort. A graphical breakdown of 

all antigens detected among the patient cohort determined by prevalence, with the top 16 

highlighted in red. Antigens (in red) from left to right: MAGEB1, MAGEB6, MAGEB5, GAGE4, 

GAGE1, CTNNB1, GAGE5, OIP5, SPANXC, CT47.11, LEMD1, MAPK3, GRWD1, MAGEA2, 

MAGEA4v4 and MAGEA1. 

In regard to the prevalence of autoantibody titres against these top 16 antigen specificities 

for the entire cohort, a stacked graph was generated showing the combined RFU per antigen 

(Figure 16). Some patients exhibited high autoantibody titres towards all top antigens (e.g., 

ONJ 075), whereas others displayed titres towards only few or one antigen. 
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Figure 16. Average RFU values for the top 16 antigens among the entire patient cohort. This 

graph illustrates the distribution of average RFU values between prostate cancer patients for the 

top 16 most prevalent antigen specificities. Each bar is the stacked average RFU value for a 

particular antigen, with each colour corresponding to an individual patient. Patient IDs are 

denoted as ‘ONJ 001’ to ‘ONJ 110’ under the graph. Abbreviations: LG, low-grade; HG, high-

grade. 
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As a means of further understanding why these particular antigen specificities would be 

seen so prevalently among the prostate cancer patient cohort, a STRING (Search Tool for 

the Retrieval of Interacting Genes/Proteins, https://string-db.org/) analysis was conducted. 

This tool is capable of identifying functional enrichments that exist within a given network 

of defined proteins using access to publication and protein databases, such as KEGG, 

UniProt, PFAM, INTERPRO, and SMART. The resulting network derived from our top 

antigens shown below (Figure 17) had a PPI enrichment p-value of <1.0e-16, indicating 

that the identified top proteins were not co-occurring randomly and hence, are at least in 

part biologically connected as a group. The STRING analysis revealed a high association 

between 8 of our identified proteins (i.e. top antigens detected using the CT100+ array) and 

those identified in the Adeola et al. study via the reference publication analysis with a false 

discovery rate of 2.13e-11 (red nodes in Figure 17) Adeola et al. (2016). This was the 

preliminary study using the CT100+ array on a South African Prostate cancer cohort. In 

addition, 7 of our identified proteins were present in another study investigating inducible 

expression of CT antigens in human prostate cancer Heninger et al (2016), with a false 

discovery rate of 2.88e-10 (blue nodes in Figure 17). Note that GAGE4 was unable to be 

included in the STRING analysis due it its absence from the STRING protein database.  
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Figure 17. STRING network of the top antigens detected among the discovery patient cohort. 

Coloured nodes are indicative of proteins found to be significant among prostate cancer patients 

in alternate prostate cancer studies conducted by Adeola et al. (red nodes) and Heninger et al. 

(cyan nodes).  Protein aliases include GAGE5 = GAGE12F. Legend corresponding to the network 

features is displayed below the netork.  

Confirmation of mRNA transcripts for these proteins in known prostate cancer patients was 

conducted using data from an external patient cohort (The Cancer Genome Atlas (TCGA) 

PanCancer Atlas – Prostate Adenocarcinoma Cohort; accessed via CBIO) consisting 494 

patients, 493 with mRNA data Cerami et al. (2012); Gao et al. (2013). Of the patients with 

accessible mRNA data, 33 were removed due to lack of one or more data points. CT47.11, 

GAGE5, BAGE5, and MAGEB5 were removed entirely from analyses due to lack of data 

for these antigens. Ultimately, 460 patients remained, and their data was used to generate 

all heat maps in this study. All mRNA data was quantified using RSEM quantification 

software to obtain absolute values, then converted to z-score for heat map construction Li & 

Dewey (2011). Prevalence of mRNA expression among patients is shown as a percentage of 

the cohort (i.e., n=n/460x100). 

As seen in Figure 18 below, mRNA expression was observed in prostate cancer patients 

for antigens MAGEB1 (2%), MAGEB6 (1%), GAGE4 (2%), GAGE1 (1%), LEMD1 

(53%), MAPK3 (100%), GRWD1 (100%), MAGEA2 (15%), MAGEA4 (6%), CTNNB1 

(100%), MAGEA1 (20%), SPANXC (1%), and OIP5 (100%). mRNA findings for 
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MAGEB1, MAGEB6, GAGE4, GAGE1, MAGEA4 and SPANXC were inconsistent with 

the prevalence of antigens obtained when probing autoantibodies in prostate cancer patients 

with the CT100+ array. 

 

Figure 18. mRNA expression heat map of available antigens from CBIO for the most prominent 

antigens in the discovery cohort. The heat map represents the hierarchical clustering by Pearson 

correlation of MAGEB1, MAGEB6, GAGE4, GAGE1, LEMD1, MAPK3, GRWD1, MAGEA2, 

MAGEA4, CTNNB1, SPANXC, MAGEA1 and OIP5 mRNA expression in 460 prostate 

adenocarcinoma cancer patients (PanCancer Atlas– TCGA Database). mRNA expression is 

displayed as z-scores (RNA Seq V2 RSEM).  

3.2.3.2.2 Diagnostic Efficacy of Autoantibodies in Prostate Cancer (Discovery Cohort) 

The following Section details the results pertaining to the assessment of cancer-associated 

autoantibodies as diagnostic biomarkers, generated using the discovery cohort. 

Following rigorous trialling with numerous antigens, data from 4 of the 16 most prevalent 

antigens (CTNNB1, MAGEA1, OIP5 and SPANXC, univariate ROC curves seen in Figure 

19 below), and 3 of the best antigen univariate ROC curves (CAMEL, LAGE1b/CTAG2 

and ROPN1A, univariate ROC curve seen in Figure 20 below) were selected. The 

prominent univariate antigens (MAGEA1, SPANXC, OIP5, and CTNNB1) were selected 

as having a presence of at least 19% among the 110 patients from the discovery cohort 

(MAGEA1 19.1%, SPANXC 22.7%, OIP5 23.6% and CTNNB1 25.5%). Best univariate 
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antigens (CAMEL, LAGE1b and ROPN1A) were selected as having ROC curves with 

corresponding AUC values >0.7000. This combination of markers was best in terms of 

cohort coverage, while concomitantly maintaining high sensitivity and specificity for 

distinguishing cancer patients from healthy individuals.   
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Figure 19. Top univariate ROC Curves for 4 prevalent antigens found in the discovery cohort. 

ROC curves for the top 4 most prevalent antigens determined by counts above threshold (≥307 

RFU), generated by comparing prostate cancer patients (discovery cohort) and healthy individuals 

(healthy cohort) array data (on left), with AUC values of 0.5867 (CTNNB1), 0.6331 (MAGEA1), 

0.6698 (OIP5), and 0.5708 (SPANXC). Corresponding antigen violin plots are shown (on right), 

with included Mann-Whitney U test (CI of 95%) p-values of 0.2962 (CTNNB1), 0.1065 (MAGEA1), 

0.0382 (OIP5), and 0.3945 (SPANXC). 

 
Figure 20. Top univariate antigen ROC curves capable of distinguishing prostate cancer patients 

(discovery cohort) from healthy individuals (healthy cohort). ROC curves for the top univariate 

antigens observed when comparing discovery cohort prostate cancer patients from healthy 

individuals using array data (on left) with AUC values of 0.7068 (CAMEL), 0.7052 (LAGE-1b), 

and 0.7114 (ROPN1A). Corresponding antigen violin plots are shown (on right), with included 
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Mann-Whitney U test (CI of 95%) p-values of 0.0109 (CAMEL), 0.0116 (LAGE-1b), and 0.0092 

(ROPN1A). 

In order to test the diagnostic potential of these univariate antigens, CombiROC analyses 

were then conducted Mazzara et al (2017). This web application allows users to input 

multimarker panels and define the stringency of their test by adjusting sensitivity and 

specificity thresholds in order to determine the combination of markers capable of best 

distinguishing between two groups of interest. RFU values for each of these antigens from 

all patients was uploaded to the web application, and when appropriate, corresponding PSA 

values were added as well. The lowest threshold for sensitivity and specificity was selected 

in order to ensure that all possible combinations and their resulting AUCs, sensitivities, and 

specificities could be assessed. This was the case for all further CombiROC analyses.  

Of the marker combinations resulting from the CombiROC analysis (using the previously 

defined univariate antigens), Combo LXXI had the highest AUC (0.847), with a 90% 

sensitivity a 64% specificity. The combination with the highest sensitivity was Combo 

XCVI, with an AUC of 0.847, a 92% sensitivity and a 64% specificity, while the highest 

specificity was Combo C, with an AUC of 0.802, a 56% sensitivity and a 100% specificity. 

These 3 combinations were plotted as multivariate ROC curves below in Figure 21. 
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Figure 21. Top multivariate antigen ROC curves discriminating prostate cancer patients 

(discovery cohort) from healthy individuals (healthy cohort). Top AUC combination – Combo 

LXXI (blue) consisting of CAMEL, ROPN1A, CTNNB1, and SPANXC generating an AUC of 0.847, 

sensitivity of 90%, and specificity of 64%. Highest sensitivity combination – Combo XCVI (dark 

grey) consisting of CAMEL, CTAG2, ROPN1A, CTNNB1, and SPANXC generating an AUC of 

0.847, sensitivity of 92%, and specificity of 64%. Highest specificity combination – Combo C 

(green) consisting of CAMEL, CTAG2, MAGEA1 and SPANXC generating an AUC of 0.802, 

sensitivity of 56%, and specificity of 100%.  

A realistic application of a novel diagnostic test would be to complement current screening 

methods, such as PSA levels testing. The inclusion of PSA levels would also render any 

resultant diagnostic signatures specific to prostate cancer. To test whether the addition of 

patient PSA levels (univariate AUC 0.9279) bolstered the 3 best marker combinations a 

second CombiROC analysis was performed. We found that the incorporation of PSA levels 

substantially improved diagnostic potential. Combo CLXXXIII (above Combo LXXI 
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+PSA) generated an AUC of 0.959, with an 89% sensitivity a 93% specificity; Combo 

CCXIX (above Combo XCVI +PSA) generated an AUC of 0.960, an 89% sensitivity and 

a 93% specificity; Combo CCXXIV (above Combo C +PSA) generated an AUC of 0.942, 

a 90% sensitivity and an 86% specificity. These 3 combinations were plotted below in 

Figure 22.  

 

Figure 22. Top multivariate antigen/PSA ROC curves discriminating prostate cancer patients 

(discovery cohort) from healthy individuals (healthy cohort). Top AUC combination – Combo 

CCXIX (dark grey) consisting of CAMEL, ROPN1A, CTNNB1, SPANXC, and PSA generating an 

AUC of 0.960, sensitivity of 89%, and specificity of 93%. Highest sensitivity combination – Combo 

CCXXIV (green) consisting of CAMEL, CTAG2, MAGEA1, OIP5, SPANXC, and PSA generating 

an AUC of 0.942, sensitivity of 90%, and specificity of 86%. Highest specificity combination – 

Combo CLXXXIII (blue) consisting of CAMEL, ROPN1A, CTNNB1, SPANXC and PSA generating 

an AUC of 0.959, sensitivity of 89%, and specificity of 93%.  

Following multivariate ROC analysis to distinguish discovery cohort prostate cancer 

patients from healthy individuals, mRNA expression of genes associated with the resultant 
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antigens involved was assessed using the PanCancer Atlas cohort. Of these genes displayed 

in Figure 23 below, ROPN1 (99%), CTNNB1 (100%), OIP5 (100%), and KLK3 (PSA; 

100%) displayed mRNA expression in relatively high quantities in the majority of the 

cohort, whereas CTAG2 (17%), MAGEA1 (20%), and SPANXC (1%) displayed relatively 

low / negligible expression. 

 

Figure 23. mRNA expression heat map of available antigens from CBIO included in the top 

multivariate combinations that discriminate prostate cancer patients (discovery cohort) from 

healthy individuals (healthy cohort). The heat map represents the hierarchical clustering by 

Pearson correlation of ROPN1, CTNNB1, SPANXC, STAG2, MAGEA1, and OIP5, and KLK3 

(PSA) mRNA expression in 460 prostate adenocarcinoma cancer patients (PanCancer Atlas– 

TCGA Database). mRNA expression is displayed as z-scores (RNA Seq V2 RSEM).  

Following acquisition of benign samples during the validation phase of this study, we were 

able to assess whether there were any potential univariate antigens capable of not only 

distinguishing cancer from healthy individuals, but distinguishing cancer from healthy 

AND benign individuals; eliminating individuals with benign conditions from being 

detected. Each univariate ROC curve was generated using the fluorescence values of all 

antigens for all patients among the healthy, benign and discovery cohorts.   

Top univariate antigens (i.e., ACVR2B, CAMEL, CT47.11v, NY-ESO-1, ROPN1A, 

CALM1, CEP290, MART-1 and PRKCZ) were chosen if their corresponding ROC curve 
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AUC values were >0.6500. ROC curves with AUC values and associated violin plots with 

Mann-Whitney U test results can be seen in Figure 24 below.  

 
Figure 24. Top univariate antigen ROC curves capable of distinguishing prostate cancer patients 

(discovery cohort) from healthy and benign individuals (healthy and benign cohorts). ROC 
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curves for the top univariate antigens observed when comparing prostate cancer patients from 

healthy individuals using array data (on left) with AUC values of 0.6931 (ACVR2B), 0.6973 

(CAMEL), 0.6966 (CT47.11v), 0.6785 (NY-ESO-1), 0.7128 (ROPN1A), 0.6813 (CALM1), 0.6759 

(CEP290), 0.6884 (MART-1), and 0.7022 (PRKCZ). Corresponding antigen violin plots are shown 

(on right), with included Mann-Whitney U test (CI of 95%) p-values of 0.0017 (ACVR2B), 0.0013 

(CAMEL), 0.0014 (CT47.11v), 0.0038 (NY-ESO-1), 0.0005 (ROPN1A), 0.0032 (CALM1), 0.0043 

(CEP290), 0.0022 (MART-1), and 0.0010 (PRKCZ). 

Top univariate antigens able to distinguish prostate cancer patients from healthy and benign 

individuals were plotted as multivariate antigen ROC curves (Figure 25). Of the 511 

potential combinations created using these univariate antigens, Combo CDLVIII generated 

the highest AUC of 0.769, with a sensitivity and specificity of 78% and 73%, respectively. 

Combo CCLXXXII (AUC 0.742) and Combo CCCXL (AUC 0.754) were also plotted as 

they displayed the highest sensitivity and specificity, following that of the combination with 

the top AUC (Combo CDLVIII).  
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Figure 25. Top multivariate antigen ROC curves discriminating prostate cancer patients 

(discovery cohort) from healthy and benign individuals (healthy and benign cohorts). Top AUC 

combination – Combo CDLVIII (green) consisting of ACVR2B, CALM1, CAMEL, CEP290, 

CT47.11, MART-1 and PRKCZ generating an AUC of 0.769, sensitivity of 78%, and specificity of 

73%. Highest sensitivity combination – Combo CCLXXXII (blue) consisting of ACVR2B, CAMEL, 

CEP290, CT47.11 and MART-1 generating an AUC of 0.742, sensitivity of 96%, and specificity of 

47%. Highest specificity combination – Combo CCCXL (dark grey) consisting of CALM1, CEP290, 

CT47.11, NY-ESO-1 and PRKCZ generating an AUC of 0.754, sensitivity of 63%, and specificity 

of 82%. 

Following multivariate ROC analysis to distinguish discovery cohort prostate cancer 

patients from healthy and benign individuals, mRNA expression of genes associated with 

the resultant antigens involved was assessed using the PanCancer Atlas cohort. Of these 

genes displayed in the heat map below (see Figure 26), CALM1 (100%), CEP290 (100%), 

MLANA (MART-1; 82%), PRKCZ (100%), ACVR2B (100%) and KLK3 (PSA; 100%) 

displayed relatively higher levels of mRNA transcripts in the majority of the cohort, with 
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conversely lower transcript levels seen in fewer patients for CTAG2 (CAMEL; 17%) and 

CTAG1B (30%). Moreover, mRNA of all genes was expressed in levels that sufficiently 

correlated with antigen prevalence found using the CT100+ arrays.  

 
Figure 26. mRNA expression heat map of available antigens from CBIO included in the top 

multivariate combinations that discriminate prostate cancer patients (discovery cohort) from 

healthy and benign individuals (healthy and benign cohorts). The heat map represents the 

hierarchical clustering by Pearson correlation of CTAG2, CALM1, CEP290, MLANA (MART-1), 

CTAG1B, PRKCZ, ACVR2B, and KLK3 (PSA) mRNA expression in 460 prostate adenocarcinoma 

cancer patients (PanCancer Atlas– TCGA Database). mRNA expression is displayed as z-scores 

(RNA Seq V2 RSEM). 

3.2.3.2.3 Prognostic Efficacy of Autoantibodies in Prostate Cancer (Discovery Cohort) 

The following Section details the results pertaining to the assessment of cancer-associated 

autoantibodies as prognostic biomarkers, generated using the discovery cohort. 

To assess the ability of autoantibody profiles at distinguishing relapse and non-relapse 

prostate cancer patients, univariate ROC curves were generated using average antigen 

fluorescence values from both groups in the discovery cohort and plotted accordingly. Top 

univariate antigens (i.e., BAGE5, CAMEL, MART-1 and RAF) were selected based on 

their corresponding ROC curve AUC scores displayed values above >0.6000. ROC curves 

with AUC values and associated violin plots with Mann-Whitney U test results can be seen 

in Figure 27 below.  
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Figure 27. Top univariate antigen ROC curves capable of distinguishing relapse and non-relapse 

prostate cancer patients (discovery cohort). ROC curves for the top univariate antigens observed 

when comparing relapse and non-relapse cancer patients within the discovery cohort using array 

data (on left) with AUC values of 0.6162 (BAGE5), 0.6239 (CAMEL), 0.6021 (MART-1), and 0.6200 

(RAF). Corresponding antigen violin plots are shown (on right), with included Mann-Whitney U 

test (CI of 95%) p-values of 0.1445 (BAGE5), 0.1195 (CAMEL), and RAF (0.1316). 
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Top univariate antigens able to distinguish relapse and non-relapse prostate cancer patients 

were plotted as multivariate antigen ROC curves without PSA (Figure 28) and with PSA 

(Figures 29). Without PSA included, of the 14 possible combinations, Combo XI generated 

the highest AUC of 0.682, with a sensitivity and specificity of 50% and 82%, respectively. 

Combo VI (AUC 0.644) and Combo X (AUC 0.675) were also plotted as they displayed 

the highest sensitivity and specificity, following that of the combination with the top AUC 

(Combo XI). With PSA, of the 31 possible combinations, Combo XXV generated the 

highest AUC of 0.707, with a sensitivity and specificity of 94% and 48%, respectively. 

Combo XXVI (AUC 0.704) and Combo XX (AUC 0.675) were also plotted as they 

displayed the highest sensitivity and specificity, following that of the combination with the 

top AUC (Combo XXV). 

 
Figure 28. Top multivariate antigen ROC curves discriminating relapse and non-relapse prostate 

cancer patients (discovery cohort). Top AUC combination – Combo XI (green) consisting of 

BAGE5, CAMEL, MART-1 and RAF generating an AUC of 0.682, sensitivity of 50%, and specificity 
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of 82%. Highest sensitivity combination – Combo VI (blue) consisting of MART-1 and RAF 

generating an AUC of 0.644, sensitivity of 100%, and specificity of 26%. Highest specificity 

combination – Combo X (green) consisting of CAMEL, MART-1 and RAF generating an AUC of 

0.675, sensitivity of 44%, and specificity of 87%. 

 
Figure 29. Top multivariate antigen/PSA ROC curves discriminating relapse and non-relapse 

prostate cancer patients (discovery cohort). Top AUC combination – Combo XXV (dark grey) 

consisting of CAMEL, MART-1, RAF and PSA generating an AUC of 0.707, sensitivity of 94%, and 

specificity of 48%. Highest sensitivity combination – Combo XXVI (green) consisting of BAGE5, 

CAMEL, MART-1, RAF and PSA generating an AUC of 0.704, sensitivity of 94%, and specificity 

of 45%. Highest specificity combination – Combo XX (blue) consisting of MART-1, RAF and PSA 

generating an AUC of 0.675, sensitivity of 88%, and specificity of 45%. 

Following multivariate ROC analysis to distinguish relapse and non-relapse prostate cancer 

patients (discovery cohort), mRNA expression of genes associated with the antigens 

involved was assessed using the PanCancer Atlas cohort. Of these genes displayed in the 

heat map below (see Figure 30), MLANA (MART-1; 82%), RAF1 (RAF; 100%) and 
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KLK3 (PSA; 100%) displayed relatively high levels of mRNA transcripts in the majority 

of prostate adenocarcinoma patients, with conversely low levels expressed for CTAG2 

(CAMEL; 17%) in negligible patient numbers. Moreover, mRNA of all genes was 

expressed in levels that sufficiently correlate with antigen prevalence found using the 

CT100+ arrays. 

Figure 30. mRNA expression heat map of available antigens from CBIO included in the top 

multivariate combinations that discriminate relapse and non-relapse prostate cancer patients 

(discovery cohort). The heat map represents the hierarchical clustering by Pearson correlation of 

CTAG2 (CAMEL), MLANA (MART-1), RAF1 (RAF) and KLK3 (PSA) mRNA expression in 460 

prostate adenocarcinoma cancer patients (PanCancer Atlas– TCGA Database). mRNA expression 

is displayed as z-scores (RNA Seq V2 RSEM). 

To assess the ability of autoantibody profiles at distinguishing survivability of prostate 

cancer patients, univariate ROC curves were generated using average antigen fluorescence 

values from two distinct patient groups (deceased and alive, discovery cohort). Top 

univariate antigens (i.e., ACVR2B, BAGE5, COX6B2, MAP9, XAGE-2) were selected 

based on their corresponding ROC curve AUC scores displayed values above >0.6500. 

ROC curves with AUC values and associated violin plots with Mann-Whitney U test results 

can be seen in Figure 31 below.  
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Figure 31. Top univariate antigen ROC curves capable of distinguishing survivability in prostate 

cancer patients (discovery cohort). ROC curves for the top univariate antigens observed when 

comparing alive and dead grade prostate cancer patients within the discovery cohort using array 

data (on left) with AUC values of 0.6581 (ACVR2B), 0.6538 (BAGE2), 0.6703 (COX6B2), 0.7279 

(MAP9), and 0.6667 (XAGE-2). Corresponding antigen violin plots are shown (on right), with 

included Mann-Whitney U test (CI of 95%) p-values of 0.1404 (ACVR2B), 0.1519 (BAGE2), 0.1113 

(COX6B2), 0.0306 (MAP9), and 0.1195 (XAGE-2). 
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Top univariate antigens able to distinguish alive and deceased prostate cancer patients were 

plotted as multivariate antigen ROC curves without PSA (Figure 32) and with PSA (Figure 

33). Without PSA included, of the 31 possible combinations, Combo XII generated the 

highest AUC of 0.848, with a sensitivity and specificity of 86% and 76%, respectively. 

Combo XXIII (AUC 0.835) and Combo IV (AUC 0.588) were also plotted as they 

displayed the highest sensitivity and specificity, following that of the combination with the 

top AUC (Combo 0.848). With PSA, of the 126 possible combinations, Combo LIV 

generated the highest AUC of 0.863, with a sensitivity and specificity of 88% and 83%, 

respectively. Combo XL (AUC 0.827) and Combo XXV (AUC 0.777) were also plotted as 

they displayed the highest sensitivity and specificity, following that of the combination with 

the top AUC (Combo LIV). 

 
Figure 32. Top multivariate antigen ROC curves discriminating survivability in prostate cancer 

patients (discovery cohort). Top AUC combination – Combo XII (blue) consisting of ACVR2B, 

BAGE5, and MAP9 generating an AUC of 0.848, sensitivity of 86%, and specificity of 76%. Highest 
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sensitivity combination – Combo XXIII (dark grey) consisting of ACVR2B, BAGE5, MAP9 and 

XAGE2 generating an AUC of 0.835, sensitivity of 100%, and specificity of 67%. Highest specificity 

combination – Combo IV (green) consisting of ACVR2B and XAGE2 generating an AUC of 0.588, 

sensitivity of 25%, and specificity of 100%. 

 
Figure 33. Top multivariate antigen/PSA ROC curves discriminating survivability in prostate 

cancer patients (discovery cohort). Top AUC combination – Combo LIV (dark grey) consisting of 

ACVR2B, BAGE5, MAP9, XAGE2 and PSA generating an AUC of 0.863, sensitivity of 88%, and 

specificity of 83%. Highest sensitivity combination – Combo XL (blue) consisting of ACVR2B, 

BAGE5, MAP9 and PSA generating an AUC of 0.827, sensitivity of 88%, and specificity of 75%. 

Highest specificity combination – Combo XXV (green) consisting of ACVR2B, XAGE2 and PSA 

generating an AUC of 0.777, sensitivity of 63%, and specificity of 98%. 

Following multivariate ROC analysis to distinguish alive and deceased prostate cancer 

patients (discovery cohort), mRNA expression of genes associated with the antigens 

involved was assessed using the PanCancer Atlas cohort. Of these genes displayed in the 

heat map below (see Figure 34), ACVR2B (100%), MAP9 (100%) and KLK3 (PSA; 
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100%) displayed relatively high levels of mRNA transcripts in prostate adenocarcinoma 

patients, with conversely low transcript levels seen for XAGE2 (XAGE-2; 1%). 

 
Figure 34. mRNA expression heat map of available antigens from CBIO included in the top 

multivariate combinations that discriminate survivability in prostate cancer patients (discovery 

cohort). The heat map represents the hierarchical clustering by Pearson correlation of ACVR2B, 

MAP9, XAGE2 and KLK3 (PSA) mRNA expression in 460 prostate adenocarcinoma cancer 

patients (PanCancer Atlas– TCGA Database). mRNA expression is displayed as z-scores (RNA Seq 

V2 RSEM). 

3.2.3.2.4 Disease Stratification of Autoantibodies in Prostate Cancer (Discovery 

Cohort) 

The following Section details the results pertaining to the assessment of cancer-associated 

autoantibodies as prognostic biomarkers, generated using the discovery cohort. 

To assess the ability of autoantibody profiles at distinguishing low- and high-grade prostate 

cancer patients, univariate ROC curves were generated using average antigen fluorescence 

values from both groups in the discovery cohort and plotted accordingly. Top univariate 

antigens (i.e., GAGE5, MICA and SSX4) were selected based on their corresponding ROC 

curve AUC scores displayed values above >0.7000. ROC curves with AUC values and 

associated violin plots with Mann-Whitney U test results can be seen in Figure 35 below.  
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Figure 35. Top univariate antigen ROC curves capable of distinguishing low- and high-grade 

prostate cancer patients (discovery cohort). ROC curves for the top univariate antigens observed 

when comparing high- and low-grade prostate cancer patients within the discovery cohort using 

array data (on left) with AUC values of 0.7662 (GAGE5), 0.7303 (MICA), and 0.7207 (SSX4). 

Corresponding antigen violin plots are shown (on right), with included Mann-Whitney U test (CI 

of 95%) p-values of >0.0001 (GAGE5), >0.0001 (MICA), and >0.0001 (SSX4). 

Top univariate antigens able to distinguish low- from high-grade prostate cancer patients 

were plotted as multivariate antigen ROC curves without PSA (Figure 36) and with PSA 

(Figure 37). Without PSA included, of the 7 possible combinations, Combo IV generated 

the highest AUC of 0.937, with a sensitivity and specificity of 93% and 80%, respectively. 

Combo I (AUC 0.930) and Combo II (AUC 0.928) were also plotted as they displayed the 
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highest sensitivity and specificity, following that of the combination with the top AUC 

(Combo IV). With PSA, of the 14 possible combinations, Combo XI generated the highest 

AUC of 0.953, with a sensitivity and specificity of 93% and 89%, respectively. Combo IX 

(AUC 0.949) and Combo VIII (AUC 0.945) were also plotted as they displayed the highest 

sensitivity and specificity, following that of the combination with the top AUC (Combo 

IX). 

 
Figure 36. Top multivariate antigen ROC curves discriminating low- and high-grade prostate 

cancer patients (discovery cohort). Top AUC combination – Combo IV (green) consisting of 

GAGE5, MICA and SSX4 generating an AUC of 0.937, sensitivity of 96%, and specificity of 79%. 

Highest sensitivity combination – Combo I (blue) consisting of GAGE5 and MICA generating an 

AUC of 0.930, sensitivity of 93%, and specificity of 80%. Highest specificity combination – Combo 

II (dark grey) consisting of GAGE5 and SSX4 generating an AUC of 0.928, sensitivity of 90%, and 

specificity of 84%. 
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Figure 37. Top multivariate antigen/PSA ROC curves discriminating low- and high-grade 

prostate cancer patients (discovery cohort). Top AUC combination – Combo XI (green) consisting 

of GAGE5, MICA, SSX4 and PSA generating an AUC of 0.953, sensitivity of 93%, and specificity 

of 89%. Highest sensitivity combination – Combo IX (dark grey) consisting of GAGE5, SSX4 and 

PSA generating an AUC of 0.949, sensitivity of 91%, and specificity of 86%. Highest specificity 

combination – Combo VIII (blue) consisting of GAGE5, MICA and PSA generating an AUC of 

0.945, sensitivity of 91%, and specificity of 89%. 

Following multivariate ROC analysis to distinguish low- and high-grade prostate cancer 

patients (discovery cohort), mRNA expression of genes associated with the antigens 

involved was assessed using the PanCancer Atlas cohort. Of these genes displayed in the 

heat map below (see Figure 38), MICA (100%) and KLK3 (PSA; 100%) displayed 

relatively high levels of mRNA transcripts in the majority of the cohort, with conversely 

low transcript levels seen in patients for SSX4 (6%). 
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Figure 38. mRNA expression heat map of available antigens from CBIO included in the top 

multivariate combinations that discriminate low- and high-grade prostate cancer patients 

(discovery cohort). The heat map represents the hierarchical clustering by Pearson correlation of 

MICA, SSX4 and KLK3 (PSA) mRNA expression in 460 prostate adenocarcinoma cancer patients 

(PanCancer Atlas– TCGA Database). mRNA expression is displayed as z-scores (RNA Seq V2 

RSEM). 

3.2.3.3 Validation Cohort 

3.2.3.3.1 Validation of Prevalence of Autoantibodies in Prostate Cancer (Validation 

Cohort) 

The following Section details the prevalence of autoantibodies in all validation cohort 

prostate cancer patients (n=99). 

The prevalence of autoantibodies towards specific tumour antigens was determined by 

quantifying autoantibody signals above the determined threshold for all 99 patients. 

Throughout the entire cohort, autoantibody signals were detected in 59 of 99 patients 

(60%).  

Prevalent autoantibodies were detected against 16 leading antigens, displayed below in 

Figure 39. These included MAGEB1 (n=37/99; 37%), CTNNB1 (n=34/99, 34%), GAGE1 

(n=33/99, 33%), MAGEB6 (n=33/99, 33%), MAGEA1 (n=32/99, 32%), MAGEA5 

(n=30/99, 30%), MAGEA2 (n=29/99, 29%), CT47.11 (n=28/99, 28%), GRWD1 (n=28/99, 

28%), MAGEA4v4 (n=25/99, 25%), MAPK3 (n=25/99, 25%), SPANXC (n=24/99, 24%), 

GAGE4 (n=23/99, 23%), NY-ESO-1 (n=22/99, 22%), GAGE5 (n=22/99, 22%) and OIP5 

(n=22/99, 22%). The number of patients exhibiting autoantibody titres towards the top 16 
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antigens varied from 22 – 37, with the top antigen MAGEB1, detected in 37 out of 99 

patients (37% of the cohort).  

 
Figure 39. Top antigens detected among the prostate cancer validation patient cohort. A 

graphical breakdown of all antigens detected among the patient cohort determined by prevalence, 

with the top 16 highlighted in red. Antigens (in red) from left to right: MAGEB1 CTNNB1, GAGE1, 

MAGEB6, MAGEA1, MAGEA5, MAGEA2, CT47.11, GRWD1, MAGEA4v4, MAPK3, SPANXC, 

GAGE4, NY-ESO-1, GAGE5 and OIP5. 

When compared with the discovery cohort, 14 of the top 16 antigens previously determined 

as most prevalent were once again identified as predominant antigens in the validation 

cohort (Figure 40). Significantly larger numbers of MAGE family antigens were seen for 

patients in the discovery cohort as opposed to the validation cohort. Furthermore, two top 

antigens were unique to either the discovery cohort (MAGEB5, LEMD1), or the validation 

cohort (MAGEA5, NY-ESO-1). 
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Figure 40. Breakdown and comparison of the top prevalent antigens determined among the 

discovery and validation prostate cancer patient cohorts. Shared top antigens and their 

corresponding prevalence’s (as a percentage of the total number of patients in each respective 

cohort) can be seen highlighted in blue (discovery cohort) and red (validation cohort).  Unique top 

antigens and their corresponding prevalence’s can be seen highlighted in green (MAGEB5, 

LEMD1) discovery cohort, and black (MAGEA5, NY-ESO-1) validation cohort.  

STRING analysis was also performed, and the resulting network derived from our top 

antigens shown below (Figure 41) had a PPI enrichment p-value of 2.22e-16 (discovery 

cohort PPI enrichment p-value: <1.0e-16), indicating that the identified top proteins were 

not co-occurring randomly and hence, are at least in part biologically connected as a group. 

The STRING analysis again revealed a high association between 8 of our identified proteins 

(CTAG1B unique to the validation cohort and MAGEB5 unique to the discovery cohort) 

with those identified in the Adeola et al. study with a false discovery rate of 3.56e-12 (red 

nodes in Figure 41), and the 7 proteins identified in the Heninger et al. study with a false 

discovery rate of 1.47e-10 (blue nodes in Figure 41).  
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Figure 41. STRING network of the top antigens detected among the validation patient cohort. 

Coloured nodes are indicative of proteins found to be significant among prostate cancer patients 

in alternate prostate cancer related studies conducted by Adeola et al. (red nodes) and Heninger et 

al. (blue nodes).  Protein aliases include GAGE5 = GAGE12F. Legend corresponding to the 

network features is displayed below the network.  

As seen in Figure 42 below, mRNA expression was observed in relatively high levels 

among the majority of patients for MAPK3 (100%), GRWD1 (100%), CTNNB1 (100%), 

and OIP5 (100%). Varying levels of mRNA expression were seen across negligible to 

several prostate adenocarcinoma patients including MAGEB1 (2%), MAGEB6 (1%), 

GAGE4 (2%), GAGE1 (1%), MAGEA2 (15%), MAGEA4 (6%), MAGEA5 (22%), 

MAGEA1 (20%), CTAG1B (30%) and SPANXC (1%). Noteworthy inconsistencies 
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between prevalence of validation cohort antigens and external mRNA expression of related 

genes include MAGEB1, MAGEB6, GAGE4, GAGE1 and SPANXC.  

 

Figure 42. mRNA expression heat map of available antigens from CBIO for the most prominent 

antigens in the validation cohort. The heat map represents the hierarchical clustering by Pearson 

correlation of MAGEB1, MAGEB6, GAGE4, GAGE1, MAPK3, GRWD1, MAGEA2, MAGEA4, 

MAGEA5, CTNNB1, SPANXC, MAGEA1, OIP5 and CTAG1B mRNA expression in 460 prostate 

adenocarcinoma cancer patients (PanCancer Atlas– TCGA Database). mRNA expression is 

displayed as z-scores (RNA Seq V2 RSEM). 

3.2.3.3.2 Validation of Diagnostic Autoantibodies in Prostate Cancer (Validation 

Cohort) 

The following Section details the validation of results pertaining to the assessment of 

cancer-associated autoantibodies as diagnostic biomarkers. This data was generated by 

assessing the robustness of discovery cohort findings (i.e., same univariate and multivariate 

antigens) on a validation cohort. 

In order to validate the diagnostic potential of the multivariate antigen signatures generated 

during the discovery phase (APCB), the same univariate antigens were assessed on a 

validation cohort (VCB). Univariate antigen ROC curves and violin plots are outlined 

below for the 4 highly prominent antigens (CTNNB1, MAGEA1, OIP5 and SPANXC, see 

Figure 43), and 3 of the best univariate antigens (CAMEL, LAGE1b/CTAG2 and 

ROPN1A, see Figure 44). Validation of the prominent univariate antigens (MAGEA1, 
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SPANXC, OIP5, CTNNB1) revealed a presence of at least 22% per antigen from the 

discovery cohort (MAGEA1 32.3%, SPANXC 24.2%, OIP5 22.2% and CTNNB1 34.3%). 

The best univariate antigens (CAMEL, LAGE1b, ROPN1A) using the validation cohort 

revealed ROC curves with corresponding AUC values >0.5500. Mann-Whitney U tests for 

all univariate antigens ranged from 0.62 – 0.04. 

 
Figure 43. Top univariate ROC curves for 4 prevalent antigens found in the discovery cohort 

tested on the validation cohort. ROC curves for the top 4 most prevalent antigens determined by 

counts above threshold (≥307 RFU), generated by comparing all prostate cancer patient (discovery 

cohort) and healthy individual (healthy cohort) array data for each antigen (on left), on the 

validation cohort, with AUC values of 0.5451 (CTNNB1), 0.6154 (MAGEA1), 0.6674 (OIP5), and 

0.5411 (SPANXC). Corresponding antigen violin plots are shown (on right), with included Mann-
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Whitney U test (CI of 95%) p-values of 0.5912 (CTNNB1), 0.1654 (MAGEA1), 0.0425 (OIP5), and 

0.6244 (SPANXC). 

 
Figure 44. Top univariate antigen ROC curves capable of distinguishing prostate cancer patients 

(discovery cohort) from healthy individuals (healthy cohort) tested on the validation cohort 

(validation cohort). ROC curves for the top univariate antigens observed when comparing 

validation cohort prostate cancer patients from healthy individuals by validating initial top 

univariate antigens from the discovery cohort (on left) with AUC values of 0.6288 (CAMEL), 0.5671 

(LAGE-1b), and 0.6118 (ROPN1A). Corresponding antigen violin plots are shown (on right), with 

included Mann-Whitney U test (CI of 95%) p-values of 0.1211 (CAMEL), 0.4229 (LAGE-1b), and 

0.1794 (ROPN1A). 

In order to validate the diagnostic signature obtained in the discovery cohort, a CombiROC 

analysis was conducted with the same markers using the validation cohort. Of the top prior 

combinations of markers, Combo LXXI, had an AUC of 0.752 (original AUC for 

comparability: 0.847), with a 50% sensitivity a 100% specificity; Combo XCVI had an 
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AUC of 0.753 (original AUC: 0.847), a 49% sensitivity and a 100% specificity; and Combo 

C had an AUC of 0.784 (original AUC: 0.802), a 69% sensitivity and a 93% specificity. 

These 3 combinations were plotted below in Figure 45. 

 
Figure 45. Validation of multivariate antigen ROC curves and their ability to discriminate 

prostate cancer patients (validation cohort) from healthy individuals (healthy cohort). Combo 

LXXI (blue) consisting of CAMEL, ROPN1A, CTNNB1 and SPANXC generating an AUC of 0.752, 

sensitivity of 50%, and specificity of 100%. Combo XCVI (dark grey) consisting of CAMEL, 

CTAG2, ROPN1A, CTNNB1 and SPANXC generating an AUC of 0.753, sensitivity of 49%, and 

specificity of 100%. Combo C (green) consisting of CAMEL, CTAG2, MAGEA1, OIP5 and 

SPANXC generating an AUC of 0.784, sensitivity of 69%, and specificity of 93%.  

To test whether the addition of patient PSA levels (univariate AUC 0.9408) also bolstered 

the 3 best marker combinations in the validation cohort, a second CombiROC analysis was 

performed. Combo CLXXXIII (above Combo LXXI +PSA) generated an AUC of 0.968, 

with 97% sensitivity and 88% specificity; Combo CCXIX (above Combo XCVI +PSA) 
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generated an AUC of 0.969, with 97% sensitivity and 88% specificity; Combo CCXXIV 

(above Combo C +PSA) generated an AUC of 0.963, with 96% sensitivity and 85% 

specificity. These 3 combinations were plotted below in Figure 46.  

 
Figure 46. Validation of multivariate antigen/PSA ROC curves and their ability to discriminate 

prostate cancer patients (validation cohort) from healthy individuals (healthy cohort). Combo 

CLXXXIII (blue) consisting of CAMEL, ROPN1A, CTNNB1, SPANXC, and PSA generating an AUC 

of 0.968, sensitivity of 97%, and specificity of 88%. Combo CCXIX (dark grey) consisting of 

CAMEL, CTAG2, ROPN1A, CTNNB1, SPANXC and PSA, generating an AUC of 0.969, sensitivity 

of 97%, and specificity of 88%. Combo CCXXIV (green) consisting of CAMEL, CTAG2, MAGEA1, 

OIP5, SPANXC, and PSA generating an AUC of 0.963, sensitivity of 96%, and specificity of 85%. 

In order to validate the diagnostic potential of the multivariate antigen signatures able to 

distinguish prostate cancer patients from healthy and benign individuals that were 

generated during the discovery phase, the same univariate antigens were assessed on the 

validation cohort. The univariate antigen ROC curves with AUC values (ACVR2B; 0.5857, 
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CAMEL; 0.6105, CT47.11v; 0.6467, NY-ESO-1; 0.6416, ROPN1A; 0.6126, CALM1; 

0.5507, CEP290; 0.5475, MART-1; 0.5120, PRKCZ; 0.6564) and associated violin plots 

with Mann-Whitney U test results (ACVR2B; 0.1747, CAMEL; 0.0791, CT47.11v; 0.0192, 

NY-ESO-1; 0.0239, ROPN1A; 0.0731, CALM1; 0.4234, CEP290; 0.4533, MART-1; 

0.8511, PRKCZ; 0.0124) are displayed in Figure 47 below. 
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Figure 47. Validation of top univariate antigen ROC curves capable of distinguishing prostate 

cancer patients (validation cohort) from healthy and benign individuals (healthy and benign 

cohorts). ROC curves for the top univariate antigens observed when comparing prostate cancer 

patients from healthy individuals using array data (on left) with AUC values of 0.5857 (ACVR2B), 
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0.6105 (CAMEL), 0.6467 (CT47.11v), 0.6416 (NY-ESO-1), 0.6128 (ROPN1A), 0.5507 (CALM1), 

0.5475 (CEP290), 0.5120 (MART-1), and 0.6564 (PRKCZ). Corresponding antigen violin plots are 

shown (on right), with included Mann-Whitney U test (CI of 95%) p-values of 0.1747 (ACVR2B), 

0.0791 (CAMEL), 0.0192 (CT47.11v), 0.0239 (NY-ESO-1), 0.0731 (ROPN1A), 0.4234 (CALM1), 

0.4533 (CEP290), 0.8511 (MART-1), and 0.0124 (PRKCZ). 

Validation of the top univariate antigens able to distinguish prostate cancer patients from 

healthy and benign individuals were plotted as multivariate antigen ROC curves without 

PSA (Figure 48). In reiteration, this signature could not be tested with PSA as we were 

unable to obtain PSA values for benign individuals. Combo CDLVIII generated the highest 

AUC of 0.788, with a sensitivity and specificity of 67% and 79%, respectively. Combo 

CCLXXXII (AUC 0.736) and Combo CCCXL (AUC 0.777) were also plotted as they 

displayed the highest sensitivity and specificity, following that Combo CDLVIII. Original 

AUC (discovery cohort) values for these combinations were as follows: Combo CDLVIII 

(0.769), CCLXXXII (0.742), and Combo CCCXL (0.754). 
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Figure 48. Validation of multivariate antigen ROC curves discriminating prostate cancer patients 

(validation cohort) from healthy and benign individuals (healthy and benign cohorts). Combo 

CCLXXXII (blue) consisting of ACVR2B, CAMEL, CEP290, CT47.11, and MART-1 generating an 

AUC of 0.736, sensitivity of 89%, and specificity of 55%. Combo CCCXL (dark grey) consisting of 

CALM1, CEP290, CT47.11, NY-ESO-1 and PRKCZ generating an AUC of 0.777, sensitivity of 

85%, and specificity of 62%. Combo CDLVIII (green) consisting of ACVR2B, CALM1, CAMEL, 

CEP290, CT47.11, MART-1 and PRKCZ generating an AUC of 0.788, sensitivity of 67%, and 

specificity of 79%. 

3.2.3.3.3 Validation of Disease Stratifying Autoantibodies in Prostate Cancer 

(Discovery Cohort) 

The following Section details the validation of results pertaining to the assessment of 

cancer-associated autoantibodies as disease stratifying biomarkers. This data was generated 

by assessing the robustness of discovery cohort findings (i.e., same univariate and 

multivariate antigens) on a validation cohort. 

In order to validate the multivariate antigen signatures capable of distinguishing low- and 

high-grade disease generated during the discovery phase, the same univariate antigens were 

assessed using the validation cohort. The univariate antigen ROC curves with AUC values 

(GAGE5; 0.6841, MICA; 0.7080, SSX4; 0.7355) and associated violin plots with Mann-

Whitney U test results (p-values: GAGE5; 0.0014, MICA; 0.0003, SSX4; >0.0001) are 

displayed in Figure 49 below. 
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Figure 49. Validation of top univariate antigen ROC curves capable of distinguishing low- and 

high-grade prostate cancer patients (validation cohort). ROC curves for the univariate antigens 

discovered using the discovery cohort when comparing high- and low-grade prostate cancer 

patients within the validation cohort using array data (on left) with AUC values of 0.6841 (GAGE5), 

0.7080 (MICA), and 0.7355 (SSX4). Corresponding antigen violin plots are shown (on right), with 

included Mann-Whitney U test (CI of 95%) p-values of 0.0014 (GAGE5), 0.0003 (MICA), and 

>0.0001 (SSX4). 

Top univariate antigens able to distinguish low- from high-grade prostate cancer patients 

were plotted as multivariate antigen ROC curves without PSA and with PSA. Without PSA 

(see Figure 50), Combo IV generated an AUC of 0.731, with a sensitivity and specificity 
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of 80% and 53%, respectively. Combo I generated an AUC of 0.723, with a sensitivity and 

specificity of 92% and 44%, respectively. Combo II generated an AUC of 0.736, with a 

sensitivity and specificity of 82% and 55%, respectively. With PSA (see Figure 51), of the 

14 possible combinations, Combo XI generated an AUC of 0.871, with a sensitivity and 

specificity of 72% and 88%, respectively. Combo IX generated an AUC of 0.869, with a 

sensitivity and specificity of 72% and 86%, respectively. Combo VIII generated an AUC 

of 0.865, with a sensitivity and specificity of 68% and 88%, respectively. 

 

Figure 50. Validation of top multivariate antigen ROC curves discriminating low- and high-

grade prostate cancer patients (validation cohort). Combo I (blue) consisting of GAGE5 and MICA 

generating an AUC of 0.723, sensitivity of 92%, and specificity of 44%. Combo II (dark grey) 

consisting of GAGE5 and SSX generating an AUC of 0.736, sensitivity of 82%, and specificity of 

55%. Combo IV (green) consisting of GAGE5, MICA and SSX4 generating an AUC of 0.731, 

sensitivity of 80%, and specificity of 55%. 
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Figure 51. Validation of top multivariate antigen/PSA ROC curves discriminating low- and high-

grade prostate cancer patients (validation cohort). Combo VIII (blue) consisting of GAGE5, MICA 

and PSA generating an AUC of 0.865, sensitivity of 68%, and specificity of 88%. Combo IX (dark 

grey) consisting of GAGE5, SSX4 and PSA generating an AUC of 0.869, sensitivity of 72%, and 

specificity of 86%. Combo XI (green) consisting of GAGE5, MICA, SSX4 and PSA generating an 

AUC of 0.871, sensitivity of 72%, and specificity of 88%. 

In addition to the above comparisons made between mRNA expression data generated 

using an external prostate cancer cohort (TCGA) with all of our available identified 

diagnostic, prognostic and disease stratification biomarkers, we further investigated their 

protein expression in prostate cancer tissues using the Human Protein Atlas database. Table 

6 details protein expression (ProteinAtlas) and/or known prognostic implications in cancer 

(TCGA) 6 

reported for all potential biomarkers. Notably, protein expression observed for non-CT 

antigens in prostate cancer was as follows: ACVR2B (1/11), CEP290 (11/12), CTNNB1 
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(9/9), GRWD1 (2/10), KLK3 (PSA, 10/10), MAPK3 (40/47), and RAF1 (RAF, 12/12). 

Protein expression observed for CT antigens was as follows: CTAG1B (1/10), CTAG2 

(CAMEL/LAGE1b, 3/11), MAGEA4 (MAGEA4v4, 10/11), MAGEB5, and XAGE2 

(XAGE-2, 2/10). Of these proteins, twelve were of prognostic value (favourable / 

unfavourable) in one or more cancer types, although none were found to be prognostic in 

prostate cancer.  
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Table 6. Protein expression summary. 

Protein Protein Expression 
(no. of tissues) 

Known Prognostic 
Implications in Cancer 

ACVR2B 1 of 11 None 
BAGE5 N/a N/a 
CALM1 0 of 11 Urothelial cancer 

(unfavourable) 
Pancreatic cancer (favourable) 
Renal cancer (favourable) 

CEP290 11 of 12 Renal cancer (unfavourable) 
COL6A1 N/a Renal cancer (unfavourable) 

Urothelial cancer 
(unfavourable) 

COX6B2 0 of 11 None 
CT47A11 0 of 11 None 
CTAG1B (NY-ESO-1) 1 of 10 None 
CTAG2 (CAMEL, LAGE1b) 3 of 11 Liver cancer (unfavourable) 
CTNNB1 9 of 9 Colorectal cancer (favourable) 
GAGE1 0 of 12 None 
GAGE4 N/a N/a 
GAGE5 N/a N/a 
GRWD1 2 of 10 Liver cancer (unfavourable) 
KLK3 (PSA) 10 of 10 None 
LEMD1 N/a Ovarian cancer (favourable) 

Pancreatic cancer 
(unfavourable) 

MAGEA1 0 of 12 None 
MAGEA2 N/a None 
MAGEA4 10 of 11 None 
MAGEA5 N/a N/a 
MAGEB1 0 of 23 None 
MAGEB5 6 of 11 None 
MAGEB6 0 of 21 None 
MAP9 N/a None 
MAPK3 40 of 47 Liver cancer (unfavourable) 
MICA N/a Cervical cancer (unfavourable) 
MLANA (MART-1) 0 of 11 None 
OIP5 0 of 11 Pancreatic cancer 

(unfavourable) Liver cancer 
(unfavourable) 
Lung cancer (unfavourable) 

PRKCZ 8 of 12 Renal cancer (favourable) 
RAF1 (RAF) 12 of 12 None 
ROPN1 0 of 12 None 
SPANXC 0 of 12 None 
SSX4 0 of 11 None 
XAGE-2 2 of 10 None 

‘N/a’ protein expression – staining yet to be performed or reported. ‘N/a’ known prognostic        
implication – data yet to be acquired or reported. 
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3.2.4 Array Data vs. Clinical Cohort Characteristics 

To assess whether the detected autoantibody profiles correlated with clinical features, a 

summary table was generated outlining the correspondence between relevant sets of cohort 

characteristics and autoantibody signals (Table 7). The defined threshold of ≥307 average 

RFU was used to define true autoantibody signals. The average number of detectable 

antigen specificities and average RFU intensities did not vary significantly across age 

brackets (Kruskal-Wallis p-value=0.9919, p-value=0.8834, respectively), disease grade 

(Mann-Whitney p-value=0.2696, p-value=0.3688, respectively), PSA levels (Kruskal-

Wallis p-value=0.3991, p-value=0.1740, respectively), or biochemical PSA recurrence 

(Mann-Whitney p-value=0.8424, p-value=0.9261, respectively). 

Of note, true autoantibody signals were commonly seen amongst patients with a PSA below 

4ng/mL indicating ability to detect cancer in patients with PSA levels below the ‘level of 

clinical concern’. 
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Table 7. Correlation of antigen specificities with relevant patient cohort characteristics (discovery 
cohort). 

Characteristic Average 
Antigen counts Average RFU 

Percentage of 
patients with 
autoantibody 
signals (%) 

Age Category*    
     <60 yr (n=38) 10 164 76.32 
     ≥60 to <70 yr (n=57) 10 170 77.19 
     ≥70 yr (n=15) 10 151 86.67 
Gleason Score    
     6-7 (n=54) 13 174 83.33 
     8-10 (n=56) 7 157 73.21 
PSA Range†    
     <4 ng/mL (n=16) 10 178 81.25 
     ≥4 to ≤12 ng/mL (n=80) 11 162 75.00 
     >12 ng/mL (n=14) 9 171 92.86 
Biochemical Recurrence‡    
     Yes (n=16) 8 160 81.25 
     No (n=82) 11 169 79.27 

* Patient ages used for calculations were at diagnosis of disease. † PSA samples used for 
calculations were those provided at informed patient consent. ‡ Biochemical recurrence was 
determined as an observed PSA increase of more than 0.4ng/mL at any available follow-up time 
point after radical prostatectomy. Patients that did not receive a radical prostatectomy or lacked 
adequate follow-up information (more than 2 follow-up time points), were excluded from 
biochemical recurrence data. Average antigen specificity counts were rounded to the nearest whole 
number. Abbreviations: PSA, prostate-specific antigen. 

To assess whether the detected autoantibody profiles of patients from the validation cohort 

correlated with clinical features, a summary table was generated outlining the 

correspondence between relevant sets of cohort characteristics and autoantibody signals 

(Table 8). The defined threshold of ≥307 average RFU was used to define true autoantibody 

signals. The average number of detectable antigen specificities and average RFU intensities 

did not vary significantly across age brackets (Kruskal-Wallis p-value=0.3939, p-

value=0.9217, respectively), or PSA levels (Kruskal-Wallis p-value=0.0764, p-

value=0.2758, respectively). In regard to Gleason score, significantly higher average 

antigen specificities (Mann-Whitney p-value=0.0111) and RFU (Mann-Whitney p-

value=0.0533) were seen in high-grade vs low-grade patients.  
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Table 8. Correlation of antigen specificities with relevant patient cohort characteristics 
(validation cohort). 

Characteristic Average 
Antigen counts Average RFU 

Percentage of patients 
with autoantibody 

signals (%) 
Age Category*    
     <60 yr (n=39) 10 188 74.4 
     ≥60 to <70 yr (n=48) 15 184 75.0 
     ≥70 yr (n=12) 19 275 83.3 
Gleason Score    
     6-7 (n=49) 7 184 72.0 
     8-10 (n=50) 20 209 79.6 
PSA Range†    
     <4 ng/mL (n=14) 12 165 83.3 
     ≥4 to ≤12 ng/mL (n=64) 11 194 71.2 
     >12 ng/mL (n=21) 22 225 90.5 

* Patient ages used for calculations were at diagnosis of disease. † PSA samples used for 
calculations were those provided at informed patient consent. Average antigen specificity counts 
were rounded to the nearest whole number. Abbreviations: PSA, prostate-specific antigen. 

To assess whether the detected autoantibody profiles of patients from both the discovery 

and the validation cohort correlated with clinical features, a summary table was generated 

outlining the correspondence between relevant sets of cohort characteristics and 

autoantibody signals (Table 9). The defined threshold of ≥307 average RFU was used to 

define true autoantibody signals. The average number of detectable antigen specificities 

and average RFU intensities did not vary significantly across age brackets (Kruskal-Wallis 

p-value=0.5718, p-value=0.9935, respectively), disease grade (Mann-Whitney p-

value=0.3161, p-value=0.5078, respectively). Of note, statistically significant differences 

in average antigen specificities (Kruskal-Wallis p-value=0.0340) and average RFU 

intensities (Kruskal-Wallis p-value=0.0526) were apparent across PSA ranges.  
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Table 9. Correlation of antigen specificities with relevant patient cohort characteristics 
(combined discovery and validation cohorts). 

Characteristic 
Average 
Antigen 
counts 

Average RFU 
Percentage of patients 

with autoantibody 
signals (%) 

Age Category*    
     <60 yr (n=77) 10 179 74.0 
     ≥60 to <70 yr (n=105) 12 179 76.2 
     ≥70 yr (n=27) 14 211 85.2 
Gleason Score    
     6-7 (n=104) 7 182 72.0 
     8-10 (n=105) 20 184 79.6 
PSA Range†    
     <4 ng/mL (n=30) 11 175 76.7 
     ≥4 to ≤12 ng/mL (n=144) 11 179 72.9 
     >12 ng/mL (n=35) 17 206 91.4 

* Patient ages used for calculations were at diagnosis of disease. † PSA samples used for 
calculations were those provided at informed patient consent. ‡ Biochemical recurrence was 
determined as an observed PSA increase of more than 0.4ng/mL at any available follow-up time 
point after radical prostatectomy. Patients that did not receive a radical prostatectomy or lacked 
adequate follow-up information (more than 2 follow-up time points), were excluded from 
biochemical recurrence data. Average antigen specificity counts were rounded to the nearest whole 
number. Abbreviations: PSA, prostate-specific antigen. 
 

The observed differences in the above correlations between the array data and clinical 

features of the discovery, validation and combined cohorts may be explained by differences 

in the spread of PSA levels and/or the presence of comorbidities between disease grades. 

 

3.3 Multispectral IHC Staining, Vectra Imaging and Cell Analysis  

This Section includes results obtained from optimisation, staining, imaging and analysis of 

mIHC-based assays. All staining was undertaken using the Bond® RX fully automated 

research stainer. Multispectral imaging, cell phenotyping and quantitation was completed 

using the Vectra® 3.0 automated quantitative pathology imaging system, together with the 

complimentary inForm® cell analysis software. 
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3.3.1 Spectral Library  

Prior to accurate interpretation of any staining performed, a spectral library was required 

and hence built containing the distinct emission wavelength of each fluorophore (see 

Figure 52) using the inForm® v2.4 software. As each OPAL™ fluorophore contains a 

distinct spectral wavelength, these wavelengths must be saved (as a library) and used to 

effectively unmix any multiplex images that contain these fluorophores. It is vital that these 

are defined prior to the unmixing of any stains performed using Opal™ fluorophores to 

achieve maximum signal resolution while mitigating any potential spectral bleed-through 

or cross- talk between fluorophores. The following spectral library seen below (Figure 52) 

was used to accurately unmix signals for all stains conducted throughout this study.  

 
Figure 52. Spectral library depicting emission spectra for 6 Opal fluorophores (Opal 520, Opal, 

540, Opal 570, Opal 620, Opal 650, Opal 690) and DAPI built using inForm®. Each fluorophore 

displays its unique spectral curve defined as a function of unmix units and wavelength (nm). Filter 

cubes encompassing all Opal fluorophores are shown on the right (DAPI, FITC, Cy3, Texas Red 

and Cy5).  
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3.3.2 Primary Antibody Optimisation 

3.3.2.1 ASC Panel 

Following optimisation of primary ASC panel antibodies using the aforementioned method 

in Section 2.5.2, six individual control slides (three for each concentration at epitope 

retrieval pH 6 - ER 6, and three for each concentration at pH 9 - ER 9) were spectrally 

unmixed using inForm v2.4 and visually assessed for signal intensity and background. 

Those that displayed the clearest signals concomitantly with the least background were 

selected for use in multiplex stain order optimisation. Optimal primary antibody conditions 

are detailed in Table 10.  

Table 10. Optimal concentrations and conditions of primary antibodies for the ASC panel. 

Primary Antibody Optimal Dilution Epitope Retrieval (pH) 

CD19 1:100  ER 9 

CD38 1:300 ER 9 

CD45 1:300 ER 9 

CD138 1:100 ER 9 

Refer to Appendix Table A1 for more details on reagents used for staining.  

Single positive control staining was performed for each ASC panel primary (positivity of 

cells found within tissue confirmed via the Human Protein Atlas). Figure 53 displays 

positive and morphologically-sound staining of all four antibodies used for downstream 

ASC multiplex staining. Specifically, a1 – a3 show clear, cytoplasmic/membranous 

staining of CD19+ B cells located within a germinal centre (B cell zone) in tonsil tissue; 

b1 – b3 show clear, cytoplasmic/membranous staining of epithelial gland cells in prostate 

tissue; c1 – c3 show clear, cytoplasmic/membranous staining of lymphocytes in tonsil 

tissue; and d1 – d3 show clear, cytoplasmic/membranous staining of trophoblastic cells in 

placental tissue. 
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Figure 53. Fluorescence IHC positive controls – ASC panel. a1) Unmixed MSI of tonsil tissue 

displaying CD19+ B cells stained with anti-CD19 antibody (CD19 – green, DAPI - blue). a2) 

Unmixed MSI of tonsil tissue displaying DAPI nuclear counterstain. a3) Unmixed MSI of tonsil 

tissue displaying CD19+ B cells stained with anti-CD19 antibody (CD19 – green). b1) Unmixed 

MSI of prostate tissue displaying CD38+ glandular epithelial cells stained with anti-CD38 antibody 

(CD38 – orange, DAPI - blue). b2) Unmixed MSI of prostate tissue displaying DAPI nuclear 

counterstain. b3) Unmixed MSI of prostate tissue displaying CD38+ glandular epithelial cells 

stained with anti-CD38 antibody (CD38 – orange). c1) Unmixed MSI of tonsil tissue displaying 

CD45+ lymphocytes stained with anti-CD45 antibody (CD45 – magenta, DAPI - blue). c2) 

Unmixed MSI of tonsil tissue displaying DAPI nuclear counterstain. c3) Unmixed MSI of tonsil 

tissue displaying CD45+ lymphocytes stained with anti-CD45 antibody (CD45 – magenta). d1) 

Unmixed MSI of placental tissue displaying CD138+ syncytiotrophoblast cells stained with anti-
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CD138 antibody (CD138 – red, DAPI - blue). d2) Unmixed MSI of tonsil tissue displaying DAPI 

nuclear counterstain. d3) Unmixed MSI of placental tissue displaying CD138+ syncytiotrophoblast 

cells stained with anti-CD138 antibody (CD138 – red). 

Single negative control stains were performed for each ASC panel primary antibody (see 

Figure 54) using tissue or cell lines that lacked each corresponding protein (confirmed 

using the Human Protein Atlas, https://www.proteinatlas.org). Specifically, a1 – a3 show 

no cytoplasmic/membranous staining of anti-CD19 antibody in placental tissue; b1 – b3 

show no cytoplasmic/membranous staining of anti-CD38 antibody in a purified melanoma 

cell line; c1 – c3 show no cytoplasmic/membranous staining of anti-CD45 antibody in a 

purified melanoma cell line; and d1 – d3 show no cytoplasmic/membranous staining of 

anti-CD138 antibody in a purified gamma-delta T cell line. 

 



 110 

 

Figure 54. Fluorescence IHC negative controls – ASC panel. a1) Unmixed MSI of CD19 and 

DAPI in placental tissue. a2) Unmixed MSI of CD19 (Opal 570) in placental tissue. a3) Unmixed 

MSI of DAPI in placental tissue. b1) Unmixed MSI of CD38 and DAPI in a melanoma cell line 

(LM-MEL64) b2) Unmixed MSI of CD38 (Opal 620) in a melanoma cell line (LM-MEL64). b3) 

Unmixed MSI of DAPI in a melanoma cell line (LM-MEL64). c1) Unmixed MSI of CD45 and DAPI 

in a melanoma cell line (LM-MEL64). c2) Unmixed MSI of CD45 (Opal 690) in a melanoma cell 

line (LM-MEL64). c3) Unmixed MSI of DAPI in a melanoma cell line (LM-MEL64). d1) Unmixed 

MSI of CD138 and DAPI in a Gamma-Delta T cell line. d2) Unmixed MSI of CD138 (Opal 520) in 

a Gamma-Delta T cell line. d3) Unmixed MSI of DAPI in a Gamma-Delta T cell line. 

3.3.2.2 TLS Panel 

Following optimisation of primary TLS panel antibodies using the aforementioned method 

in Section 2.5.2, six individual control slides (three for each concentration at epitope 
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retrieval pH 6 - ER 6, and three for each concentration at pH 9 - ER 9) were spectrally 

unmixed using inForm v2.4 and visually assessed for signal intensity and background. 

Those that displayed the clearest signals concomitantly with the least background were 

selected for use in multiplex stain order optimisation. Optimal primary antibody conditions 

for the TLS multiplex panel are detailed in Table 11.  

Table 11. Optimal concentrations and conditions of primary antibodies for ASC panel 

Primary Antibody Optimal Dilution Epitope Retrieval (pH) 

CD4 1:1000 9 

CD8 1:50 9 

CD19 1:300 9 

CD21 1:50 9 

DC-LAMP 1:100 6 

PNAd 1:100 9 

Refer to Appendix Table A1 for more details on reagents used for staining.  

Single positive control staining was performed for each TLS panel primary antibody 

(positivity of cells found within tissue confirmed via the Human Protein Atlas). Figure 55 

displays positive and morphologically-sound staining of all six antibodies used for 

downstream TLS multiplex staining. Specifically, a1 – a3 show clear, 

cytoplasmic/membranous staining of CD4+ T cells within a germinal centre (T cell zone) 

in tonsil tissue; b1 – b3 show clear, cytoplasmic/membranous staining of CD8+ T cells 

within and surrounding a germinal centre in tonsil tissue;  c1 – c3 show clear, 

cytoplasmic/membranous staining of CD19+ B cells within two germinal centres (B cell 

zone) in tonsil tissue; d1 – d3 show clear, cytoplasmic/membranous staining of CD21+ 

follicular dendritic cells (network) within two germinal centres in tonsil tissue; e1 – e3 

show clear, cytoplasmic/membranous staining of DC-LAMP+ mature dendritic cells in 



 112 

tonsil tissue; and, f1 – f3 show clear, staining of PNAd+ high endothelial venules in tonsil 

tissue. 

 
Figure 55. Fluorescence IHC positive controls – TLS panel. a1) Unmixed MSI of tonsil tissue 

displaying CD4+ T cells stained with anti-CD4 antibody (CD4 – magenta, DAPI - blue). a2) 

Unmixed MSI of tonsil tissue with DAPI counterstain. a3) Unmixed MSI of tonsil tissue displaying 
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CD4+ T cells stained with anti-CD4 antibody (CD4 – magenta). b1) Unmixed MSI of tonsil tissue 

displaying CD8+ T cells stained with anti-CD8 antibody (CD8 – red, DAPI - blue). b2) Unmixed 

MSI of tonsil tissue with DAPI counterstain. b3) Unmixed MSI of tonsil tissue displaying CD8+ T 

cells stained with anti-CD8 antibody (CD8 – red). c1) Unmixed MSI of tonsil tissue displaying 

CD19+ B cells stained with anti-CD19 antibody (CD19 – green, DAPI - blue). c2) Unmixed MSI 

of tonsil tissue with DAPI counterstain. c3) Unmixed MSI of tonsil tissue displaying CD19+ B cells 

stained with anti-CD19 antibody (CD19 – green). d1) Unmixed MSI of tonsil tissue displaying 

CD21+ follicular dendritic cells stained with anti-CD21 antibody (CD21 – brown, DAPI - blue). 

d2) Unmixed MSI of tonsil tissue with DAPI counterstain. d3) Unmixed MSI of tonsil tissue 

displaying CD21+ follicular dendritic cells stained with anti-CD21 antibody (CD21 – brown). e1) 

Unmixed MSI of lymph node tissue displaying DC-LAMP+ mature dendritic cells stained with anti-

LAMP3 antibody (LAMP3 – orange, DAPI - blue). e2) Unmixed MSI of lymph node tissue with 

DAPI counterstain. e3) Unmixed MSI of lymph node tissue displaying DC-LAMP+ mature dendritic 

cells stained with anti-LAMP3 antibody (LAMP3 – orange). f1) Unmixed MSI of tonsil tissue 

displaying PNAd+ endothelial venules stained with anti-PNAd antibody (PNAd – cyan, DAPI - 

blue). f2) Unmixed MSI of tonsil tissue with DAPI counterstain. f3) Unmixed MSI of tonsil tissue 

displaying PNAd+ endothelial venules stained with anti-PNAd antibody (DAPI omitted). Scale bar 

= 100µm. Taken at 20x magnification. 

Single negative control stains were performed for each ASC panel primary antibody (see 

Figure 56) using tissue or cell lines that lacked each corresponding protein (confirmed via 

the Human Protein Atlas). Specifically, a1 – a3 show no cytoplasmic/membranous staining 

of anti-CD4 antibody in a purified melanoma cell line; b1 – b3 show no 

cytoplasmic/membranous staining of anti-CD8 antibody in a purified melanoma cell line;  

c1 – c3 show no cytoplasmic/membranous staining of anti-CD19 antibody in a purified 

melanoma cell line; d1 – d3 show no cytoplasmic/membranous staining of anti-CD21 

antibody in a purified melanoma cell line; e1 – e3 show no cytoplasmic/membranous 

staining of anti-DC-LAMP antibody in a purified melanoma cell line; and, f1 – f3 show no 
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cytoplasmic/membranous staining of anti-PNAd antibody in a purified gamma-delta T cell 

line. 

 
Figure 56. Fluorescence IHC negative controls – TLS panel. a1) Unmixed MSI of CD4 and DAPI 

in a melanoma cell line (LM-MEL64). a2) Unmixed MSI of CD4 (Opal 570) in a melanoma cell 

line (LM-MEL64). a3) Unmixed MSI of DAPI in a melanoma cell line (LM-MEL64). b1) Unmixed 
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MSI of CD8 and DAPI in a melanoma cell line (LM-MEL64) b2) Unmixed MSI of CD8 (Opal 650) 

in a melanoma cell line (LM-MEL64). b3) Unmixed MSI of DAPI in a melanoma cell line (LM-

MEL64). c1) Unmixed MSI of CD19 and DAPI in a melanoma cell line (LM-MEL64). c2) Unmixed 

MSI of CD19 (Opal 690) in a melanoma cell line (LM-MEL64). c3) Unmixed MSI of DAPI in a 

melanoma cell line (LM-MEL64). d1) Unmixed MSI of CD21 and DAPI in a melanoma cell line 

(LM-MEL64). d2) Unmixed MSI of CD21 (Opal 520) in a melanoma cell line (LM-MEL64). d3) 

Unmixed MSI of DAPI in a melanoma cell line (LM-MEL64). e1) Unmixed MSI of DC-LAMP and 

DAPI in a melanoma cell line (LM-MEL64). e2) Unmixed MSI of DC-LAMP (Opal 540) in a 

melanoma cell line (LM-MEL64). e3) MSI of DAPI in a melanoma cell line (LM-MEL64). f1) 

Unmixed MSI of PNAd and DAPI in a Gamma-Delta T cell line. f2) Unmixed MSI of PNAd (Opal 

620) in a Gamma-Delta T cell line. f3) Unmixed MSI of DAPI in a Gamma-Delta T cell line. 

3.3.3 Multiplex Optimisation 

3.3.3.1 ASC Panel 

Effective multiplex staining is not only dependent on antibody concentration, epitope 

retrieval pH, and incubation times for each primary antibody, but also requires optimisation 

of the order in which each primary antibody is added, as well as the order of each 

corresponding Opal fluorophore. Though optimising primary antibodies and unmixing 

them at defined spectral wavelengths can provide a strong, clear signal while removing 

crosstalk between varying spectral wavelengths, introducing multiple different antibodies 

with corresponding fluorophores onto a single specimen will, in many cases, affect staining 

quality and downstream unmixing capabilities. Ineffective stain orders may lead to absent 

or excessive signal intensities or higher background intensities that may ultimately affect 

the accurateness of cell-based analyses. To circumvent these issues, three multiplex stain 

orders (see Appendix Table A2) were conducted (see Section 2.5.3), where the variability 

in corresponding fluorophores, their order, and the order of primary antibodies for each 

stain order was determined based on factors such as antigen prevalence (i.e. more antigens 

present on cell surface, the more cross-talk that can be removed if placed at end of the stain 
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order), cell prevalence (i.e. more cells stained with antibody/fluorophore, more likelihood 

that using an Opal fluorophore near that wavelength for the next antibody can result in 

bleed through of signal through channels), number of epitope retrievals for a given antigen 

(e.g. some antigens require multiple successive retrievals for better binding of antibody-

antigen) and the most effective variant was selected as shown in Table 12 below.  

Table 12. Multiplex stain order variant used for optimisation of ASC panel. 

Refer to the Appendix Table A1 for more details on reagents used for staining.  

Multiplex stain order 1 was selected, as it was determined to be most effective based on a 

visual comparison of MSIs obtained from tissues specimens that underwent each stain 

order. The representative image below (Figure 57) indicates how an effective stain order 

can be visually determined based on the presence of clear, morphologically-sound staining 

and effective unmixing of spectral wavelengths for corresponding Opal fluorophores from 

composite images. When unmixed, a clear fluorophore signal for CD45 (c1 – c2), CD19 

(d1 – d2), CD38 (e1 – e2), and CD138 (f1 – f2) can be seen for distinct and similar cells in 

prostate cancer tissue. Note the distinct overlap in staining between e1 – e2 (CD38) and f1 

– f2 (CD138), here we see how multiplex staining can be used to co-stain cells to define 

cell phenotypes, in this case, plasma cells.  

Primary Antibody Epitope Retrieval 
(pH) 

Optimised 
Dilution 

Opal Fluorophore 

Multiplex Stain Order 1: 

CD138 ER 9 1:100 Opal 520 

CD38 ER 9 1:300 Opal 620 

CD19 ER 9 1:300 Opal 570 

CD45 ER 9 1:100 Opal 690 

DAPI - 2 drops / mL - 
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Figure 57. An unmixed multispectral image from a specimen that underwent ASC panel stain 

order 1. This MSI was taken from a prostate cancer specimen and depicts an aggregate of immune 

cells that was unmixed, showing effective staining of all markers. a) Merged MSI containing signals 

of all markers. b) Unmixed MSI displaying DAPI (blue). c1) Unmixed MSI displaying DAPI and 

CD45 (magenta). c2) Unmixed MSI displaying CD45. d1) Unmixed MSI displaying CD19 (green) 

and DAPI. d2) Unmixed MSI displaying CD19. e1) Unmixed MSI displaying CD38 (orange) and 

DAPI. e2) CD38. f1) Unmixed MSI displaying CD138 (red) and DAPI. f2) Unmixed MSI displaying 

CD138. Scale bar = 100µm.  Taken at 20x magnification. 

3.3.3.2 TLS Panel 

Table 13 below outlines the most effective variant of stain orders (see Appendix Table 

A2) used for all TLS-based downstream patient staining following multiplex stain order 

optimisation (see Section 2.5.3 for method of optimisation).  

Table 13. Multiplex stain order variant used for optimisation of TLS panel. 

Refer to the Appendix Table A1 for more details on reagents used for staining.  

Multiplex stain order 2 was selected, as it was determined to be most effective based on a 

visual comparison of MSIs obtained from tissues specimens that underwent each stain 

order. The representative image below (Figure 58) displays the clear, morphologically-

sound staining and effective unmixing of spectral wavelengths from composite images with 

Primary Antibody Epitope Retrieval 
(pH) 

Optimised 
Dilution 

Opal Fluorophore 

 

Multiplex Stain Order 2: 

CD21 ER 9 1:50 Opal 520 

DC-LAMP ER 6 1:100 Opal 540 

CD4 ER 9 1:1000 Opal 570 

PNAd ER 9 1:100 Opal 620 

CD8 ER 9 1:50 Opal 650 

CD19 ER 9 1:300 Opal 690 

DAPI - 2 drops / mL dH2O - 
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minimal background for each TLS panel primary antibody in lymph node tissue. Following 

the merge image (a) and DAPI image (b), effective spectral unmixing of cell types can be 

seen for CD4 (c1 – c2), CD8 (d1 – d2), CD19 (e1 – e2), CD21 (f1 – f2), DC-LAMP (g1 – 

g2) positive cell types, and PNAd (h1 – h2) positive endothelial venules.  
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Figure 58. An unmixed multispectral image from a specimen that underwent TLS panel stain 

order 2. This MSI was taken from a lymph node specimen and depicts a TLS that was unmixed, 

showing effective staining of all markers. a) Merged MSI containing signals of all markers. b) 

Unmixed MSI displaying DAPI (blue). c1) Unmixed MSI displaying DAPI and CD4 (magenta). c2) 

Unmixed MSI displaying CD4. d1) Unmixed MSI displaying CD8 (red) and DAPI. d2) Unmixed 

MSI displaying CD8. e1) Unmixed MSI displaying CD19 (green) and DAPI. e2) Unmixed MSI 

displaying CD19. f1) Unmixed MSI displaying CD21 (brown) and DAPI. f2) Unmixed MSI 

displaying CD21. g1) Unmixed MSI displaying DC-LAMP (orange) and DAPI. g2) Unmixed MSI 

displaying DC-LAMP. h1) Unmixed MSI displaying PNAd (cyan) and DAPI. h2) Unmixed MSI 

displaying PNAd. Scale bar = 100µm.  Taken at 20x magnification. 

3.3.4 Multiplex Staining, Vectra Imaging and inForm Analysis of Patient Tissue 

Using the aforementioned optimal stain orders, primary antibody concentrations and 

conditions for the ASC and TLS panels, all 64 Prostate cancer patient FFPE tissues were 

stained.  

3.3.4.1 ASC Panel 

Abundance of IT and PT ASCs and BCAs was determined based on a minimum of ten 

MSIs covering both the IT and PT areas of each specimen. Figure 59 below displays the 

percentage of patient prostatectomy FFPE specimens that contained absent (n=20), scarce 

(n=23) or abundant (n=21) IT ASCs and absent (n=6), scarce (n=22) or abundant (n=35) 

PT ASCs; as well as specimens containing absent (n=24), scarce (n=28) or abundant (n=12) 

IT BCAs and absent (n=13), scarce (n=27) or abundant (n=23) PT BCAs (refer to 

Appendix Table A3 for more details). A single patient was removed from the PT portion 

of the analysis as the corresponding prostatectomy section did not contain PT tissue. 
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Figure 59. Abundance of IT and PT ASCs and BCAs in patient prostatectomy tissue. Each 

category (i.e., absent, scarce, and abundant) are shown as a percentage of the total prostatectomy 

specimens stained. IT ASCs: Absent, 31%; Scarce, 36%; Abundant, 33%. PT ASCs: Absent, 10%; 

Scarce, 35%; Abundant, 56%; N/a, 2%. IT BCAs: Absent, 38%; Scarce, 44%; Abundant, 19%. PT 

BCAs: Absent, 21%; Scarce, 43%; Abundant, 37%. Abbreviations. IT, intratumoural; PT, 

peritumoural; ASC, antibody-secreting cell; BCA, B cell aggregate. 

ASCs were often scarcely or abundantly detected in the assessed prostate cancer tumours 

and were more commonly seen surrounding tumour areas (n=57/64 detected in the PT 

regions vs. n=44/63 detected in the IT regions, chi-square p-value=0.0024).  The presence 

of BCAs was also common, with a similar distribution (n=50/63 detected in the PT regions 

vs. n=40/64 detected in the IT regions, chi-square p-value=0365). Selected MSIs displaying 
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abundant and absent ASCs, and the presence of BCAs in IT and PT areas are of 

prostatectomy tissue are shown in Figure 60, below. 

 

Figure 60. Representative multispectral images of abundant and absent ASCs and presence of 

BCA in prostate cancer tissue. a1) Abundant IT ASCs. a2) Absent ACSs. b1) Abundant PT ASCs. 

B2) Absent PT ASCs. C1) IT BCA among cancerous prostate glands. C2) PT BCA situated in 

stromal tissue. ASCs are indicated using white arrows, BCAs indicated using white circles. Scale 

bar = 100µm. Taken at 20x magnification. Abbreviations. IT, intratumoural; PT, peritumoural; 

ASC, antibody-secreting cell; BCA, B cell aggregate. 
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To investigate if disease grade was correlated with the abundance of IT and PT ASCs, a 

brief analysis was performed comparing each factor (Figure 61). ASCs were more scarcely 

or abundantly detected in patients with high-grade disease when located in both IT (64% 

low-grade vs. 79% high-grade, chi-square p-value=0.0188) and PT (87% low-grade vs. 

100% high-grade, chi-square p-value=0.0001) regions. 

 

Figure 61. Abundance of IT and PT ASCs among low- and high-grade patients. Each category 

(i.e., absent, scarce, and abundant) are shown as a percentage of the total prostatectomy specimens 

stained. Low-grade patients: IT ASCs (Absent, 36%; Scarce, 33%; Abundant 31%) and high-grade 

patients: IT ASCs (Absent, 21%; Scarce, 42%; Abundant, 37%) shown on left. Low-grade patients: 

PT ASCs (Absent, 14%; Scarce, 32%; Abundant 55%) and high-grade patients: PT ASCs (Absent, 

0%; Scarce, 42%; Abundant, 48%) shown on right. Abbreviations. IT, intratumoural; PT 

peritumoural; ASC, antibody-secreting cell. 
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Similarly, to investigate if disease grade was correlated with the abundance of IT and PT 

BCAs, a brief analysis was performed comparing each factor (Figure 62). BCAs were also 

more scarcely or abundantly detected in patients with high-grade disease when located in 

both IT (55% low-grade vs. 79% high-grade, chi-square p-value=0.0004) and PT (71% 

low-grade vs. 100% high-grade, chi-square p-value<0.0001) regions. 

 

Figure 62. Abundance of IT and PT BCAs among low- and high-grade patients. Each category 

(i.e., absent, scarce, abundant, and N/a) are shown as a percentage of the total prostatectomy 

specimens stained. Low-grade patients: IT BCAs (Absent, 44%; Scarce, 33%; Abundant 22%) and 

high-grade patients: IT BCAs (Absent, 21%; Scarce, 68%; Abundant, 11%) shown on left. Low-

grade patients: PT BCAs (Absent, 29%; Scarce, 33%; Abundant 38%) and high-grade patients: PT 

BCAs (Absent, 0%; Scarce, 67%; Abundant, 33%) shown on right. Abbreviations. IT, 

intratumoural; PT peritumoural; BCA, B cell aggregate. 
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To see whether biochemical relapse (PSA) was in any way correlated with the abundance 

of IT ASCs or BCAs, a brief analysis was performed comparing each factor (see Table 14 

below and refer to Appendix Table A4 for more details).  

Table 14. Correlation between abundance of IT/PT ASCs and BCAs with biochemical relapse.  

  Absent Scarce Abundant 

Intratumoural Antibody-Secreting Cells     
     

Total (N=60)  19 21 20 
Relapse (n=10)  1  2  7  

Non-Relapse (n=50)  18 19 13 

Peritumoural Antibody-Secreting Cells     
     

Total (N=59*)  6 21 32 

Relapse (n=9)  1 3 5 

Non-Relapse (n=50)  5 18 27 

Intratumoural B Cell Aggregates     
     

Total (N=60)  21 27 12 
Relapse (n=10)  1 4 5 

Non-Relapse (n=50)  20 23 7 

Peritumoural B Cell Aggregates     
     

Total (N=59*)  13 24 22 

Relapse (n=9)  3 2 4 

Non-Relapse (n=50)  10 22 18 
* Patient with FFPE sample containing only tumour tissue excluded from peritumoural-related    
analyses. Four patients were removed due to lack of biochemical relapse data. Abbreviations: IT, 
intratumoural; PT, peritumoural. 
 

It was evident that the majority of relapse patients contained abundant IT ASCs (70% of 

relapse vs. 26% of non-relapse patients, chi-square p-value=0.0248) and BCAs (50% of 

relapse vs. 14% of non-relapse patients, chi-square p-value=0.0239). However, no 

significant difference was observed for relapse in ASCs (56% of relapse vs. 54% of non-

relapse patients, chi-square p-value=0.9861) or BCAs (44% of relapse vs. 36% of non-
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relapse patients, chi-square p-value=0.4381) located in PT regions. These statistics can be 

further visualised in Figure 63 and Figure 64 below.  

 
Figure 63. Abundance of IT and PT ASCs among relapse and non-relapse patients. Relapse 

patients: IT ASCs (Absent, 10%; Scarce, 20%; Abundant 70%) and non-relapse patients: IT ASCs 

(Absent, 36%; Scarce, 38%; Abundant, 26%) shown on left. Relapse patients: PT ASCs (Absent, 

11%; Scarce, 33%; Abundant 56%) and non-relapse patients: PT ASCs (Absent, 10%; Scarce, 

36%; Abundant, 54%) shown on right. Abbreviations: IT, intratumoural; PT peritumoural; ASC, 

antibody-secreting cell. 
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Figure 64. Abundance of IT and PT BCAs among relapse and non-relapse patients. Relapse 

patients: IT BCAs (Absent, 10%; Scarce, 40%; Abundant 50%) and non-relapse patients: IT BCAs 

(Absent, 40%; Scarce, 46%; Abundant, 14%) shown on left. Relapse patients: PT BCAs (Absent, 

33%; Scarce, 22%; Abundant 44%) and non-relapse patients: PT BCAs (Absent, 20%; Scarce, 

44%; Abundant, 36%) shown on right. Abbreviations: IT, intratumoural; PT peritumoural; BCA, 

B cell aggregate. 

Once discovered, BCAs were of particular interest due to their often-concurrent appearance 

with high quantities of bordering ASCs. Figure 65 below highlights this phenomenon and 

displays the process of taking whole-slide scan images and unmixing multispectral regions 

of interest. ASCs can be seen exiting the aggregate in either the merge image (a; orange 

and red cells), or in the two unmixed images displayed at the bottom (b5; CD38+, orange; 

and b6; CD138+, red). 
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Figure 65. Prostatectomy specimen whole slide scan and corresponding unmixed multispectral 

image of a portion of a BCA in prostate cancer. a) Stained whole slide scan of a quarter section 

of patient prostatectomy tissue (taken at 10x magnification). Unmixed multispectral image of one 

region of interest (white box) from the whole slide scan can be seen on the right. b1) Merged image; 

b2) DAPI (blue); b3) CD45 (magenta); b4) CD19 (green); b5) CD38 (orange); b6) CD138 (red). 
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Both CD38 and CD138 single colour images are indicative of ASC presence surrounding the 

aggregate (taken at 20x magnification). Scale bar = 2mm (right), 100µm.  

Due to the abundance of BCAs seen in prostate cancer specimens, it was important to 

determine whether these were restricted to prostate cancer, or also present in benign and 

healthy prostate tissue. Investigation of 16 benign and 5 healthy H&E specimens revealed 

negligible number of immune cell aggregates, though many of these specimens were 

limited in size (core biopsies) compared with the quarter-size prostatectomy sections 

obtained for cancer patients. Additionally, lymphoid aggregation is a common phenomenon 

observed in benign conditions of the prostate.  

3.3.4.2 TLS Panel 

TLSs were detected in 73.4% of the assessed prostate cancer tumours (n=47/64), in both 

proximal and distal tumour areas (Figure 66 above). These were often mature (91.5%, 

n=43/47, contained scarce or abundant ASCs) (Figure 66 below), and commonly contained 

abundant CD8+ T cells (93.6%, n=44/47) (Figure 66 middle).  
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Figure 66. Graphical representations of the abundance, location and content of TLSs identified 

in Prostate cancer patients. (Above) The graph depicts the total TLS numbers per patient, 

separated by proximal and distal location. (Middle) The graph depicts the total TLS numbers per 

patient, separated by CD8 rich and CD8 poor. (Below) The graph depicts the total TLS numbers 

per patient, separated by TLS mature and TLS immature. 

Tertiary lymphoid structures were similarly distributed in patients with high- and low-grade 

disease (71% low-grade vs. 79% high-grade, chi-square p-value=0.1914), and in relapse 

and non-relapse patients (67% relapse vs. 75% non-relapse; chi-square p-value=0.2125), 2 

patients lacked relapse data). In addition, mature TLSs were more abundantly seen in 

relapse patients (100% relapse vs. 90% non-relapse; chi-square p-value=0.0012, 2 patients 

lacked relapse data), while no significant differences were seen between disease grade (92% 

low-grade vs. 93% high-grade, chi-square p-value=0.7883) (Figure 67).  
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Figure 67. Graphical representations of TLS distribution by disease grade and recurrence in 

prostate cancer patients. (Above) The graph depicts the TLS abundance distribution in low- and 

high-grade patients, and in relapse and non-relapse patients. (Below) The graph depicts the TLS 

maturity distribution in low- and high-grade patients, and in relapse and non-relapse patients. 

Upon multiplexed immunohistochemical investigation of TLSs, it became apparent that 

unlike the typical germinal centers seen in the tonsil and lymph nodes (Figure 58 above), 

differences in shape, organization, size and location were commonly seen among patients. 

Figure 68 below depicts several of the various tertiary lymphoid structures that were 

observed in patients. Note that although differences in shape and size are observed, distinct 

B (outer side) and T (inner side) cell zones, follicular dendritic networks and high 

endothelial venules can be easily identified.   
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Figure 68. Representative multispectral images of the variety of tertiary lymphoid structures seen 

in prostate cancer tissue. TLS panel (7-plex):  CD4 (CD4+ T cells, magenta), CD8 (CD8+ T cells, 

red), CD19 (CD19+ B cells, green), CD21 (follicular dendritic cells, brown), DC-LAMP (mature 

dendritic cells, orange), PNAd (high endothelial venules, cyan), DAPI (nucleus, blue). Scale bar = 

100µm. Taken at 20x magnification.  

An example of how a patient specimen was stained using the multiple TLS panel of 

antibodies and detection fluorophores, scanned, regions of interest captured and unmixed 

using inform software can be seen below in Figure 69. The whole slide scan image can be 

seen on the left (a), with a white box surrounding the captured region of interest. The 

captured region of interest depicts a functional TLS and unmixing of individual 

fluorophores and markers can be seen on the right (b1 – b8). In this particular case, no 

mature dendritic cells were observed (b7). 
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Figure 69. Prostatectomy specimen whole slide scan and corresponding unmixed multispectral 

images of a functional TLS in prostate cancer. a) Stained whole slide scan of a quarter section of 
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a selected patient’s prostatectomy tissue taken at 10x magnification. Unmixed multispectral images 

of one region of interest from the whole slide scan can be seen on the right. b1) Merged image; b2) 

DAPI (blue); CD4 (CD4+ T cells, magenta); b4) CD8 (CD8+ T cells, red); b5) CD19 (CD19+ B 

cells, green); b6) CD21 (follicular dendritic cells, brown); b7) DC-LAMP (mature dendritic cells, 

orange); b8) PNAd (high endothelial venules, cyan). Taken at 20x magnification. Scale bar = 2mm 

(right), 100µm.  

Figure 70 below depicts how our assumptions were correct regarding the cell phenotypes 

and functionality of these structures. The first stain (above) was the initial ASC panel, 

where we saw a large aggregation of b cells (green) surrounded by unknown lymphocytes 

(magenta). ASCs can also be seen (orange and red) exiting the structure around the 

periphery of the BCA. Moreover, morphologically resemblant venous-like structures could 

be seen inside the aggregate. The second stain (below) highlights that these other 

lymphocytes were in fact CD4+ (magenta) and CD8+ (red) T cells, and that high 

endothelial venules (cyan) were situated inside and surrounding the lymphoid structure as 

anticipated.  
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Figure 70. Representative multispectral images of a mature tertiary lymphoid structure in 

prostate cancer tissue. (Above) ASC panel (5-plex): CD45 (lymphocytes, magenta), CD19 (CD19+ 

B cells, green), CD38 (plasmablasts, orange), CD138 (plasma cells, red), DAPI (nucleus, blue). 

(Below) TLS panel (7-plex): CD4 (CD4+ T cells, magenta), CD8 (CD8+ T cells, red), CD19 

(CD19+ B cells, green), CD21 (follicular dendritic cells, brown), DC-LAMP (mature dendritic 

cells, orange), PNAd (high endothelial venules, cyan), DAPI (nucleus, blue). Scale bar = 100µm. 

Taken at 20x magnification. 

 

3.4 Correlations between CT100+ Array and mIHC Data   

To test whether detectable autoantibodies found in patient serum correlated to the 

abundance of IT and PT ASCs in matched patient FFPE tissue, array and mIHC data were 

compared (see Table 15 and refer to Appendix Table A5 for more details).  
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Table 15. Correlation between abundance of patient IT/PT ASCs with corresponding 
autoantibody profiles (patient serum). 

  Absent Scarce Abundant 

Intratumoural Antibody-Secreting Cells     
     

Total (n=62)  20 21 21 

Avg. Antigen Specificities  10 11 17 

Avg. RFU  171 163 181 

Peritumoural Antibody-Secreting Cells     
     

Total (n=61)  6 21 34 

Avg. Antigen Specificities  2 15 14 
Avg. RFU  112 197 171 

Two patients were excluded from analysis due to lack of array data (ONJ 211 / 212), and one due 
to lack of a PT region (ONJ 096). Abbreviations:  IT, intratumoural; PT, peritumoural; ASC, 
antibody-secreting cell; Avg., average; RFU, relative   fluorescent units. 

Average antigen specificities and intensity of detected autoantibodies was similar in 

patients with absent IT ASCs (average antigen specificities: 10; average RFU 171) and 

abundant IT ASCs (average antigen specificities: 11; average RFU 181) (Kruskal-Wallis 

adjusted p-value=0.9100; p-value>0.9999, respectively). Similarly, when considering the 

PT ASCs, no significant difference in average antigen specificities and intensities was seen 

between patients with absent PT ASCs (average antigen specificities: 2; average RFU 112) 

and those with abundant PT ASCs (average antigen specificities: 14; average RFU 171) 

(Kruskal-Wallis adjusted p-value=0.2199; p-value=0.4177, respectively).  

To test whether detectable autoantibodies found in patient serum correlated to the 

abundance of IT and PT BCAs in matched patient FFPE tissue, array and mIHC data were 

also compared (see Table 16 and refer to Appendix Table A6 for more details).  
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Table 16. Correlation between abundance of patient IT/PT BCAs with corresponding 
autoantibody profiles (patient serum). 

  Absent Scarce Abundant 

Intratumoural B Cell Aggregates     
     

Total (n=62)  22 28 12 

Avg. Antigen Specificities  10 14 16 

Avg. RFU  164 181 167 

Peritumoural B Cell Aggregates     
     

Total (n=61)  13 26 22 

Avg. Antigen Specificities  10 12 17 
Avg. RFU  145 185 179 

Two patients were excluded from analysis due to lack of array data (ONJ 211 / 212), and one due 
to lack of a PT region (ONJ 096). Abbreviations:  
IT, intratumoural; PT, peritumoural; BCA, B cell aggregate; Avg., average; RFU, relative 
fluorescent units. 

Average antigen specificities and intensity of detected autoantibodies was not significantly 

different in patients with absent IT BCAs (average antigen specificities: 10; average RFU 

164) and abundant IT BCAs (average antigen specificities: 16; average RFU 167) (Kruskal-

Wallis adjusted p-value>0.9999; p-value>0.9999, respectively). Similarly, when 

considering the PT BCAs, no significant difference in average antigen specificities and 

intensities was seen between patients with absent PT BCAs (average antigen specificities: 

10; average RFU 145) and those with abundant PT BCAs (average antigen specificities: 

17; average RFU 179) (Kruskal-Wallis adjusted p-value=0.4079; p-value=0.5761, 

respectively). 
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CHAPTER 4  

DISCUSSION 

 

4.1 Tumour Antigens, B Cells and Autoantibodies 

Prostate cancer screening relies heavily on the routine measurement of PSA levels in the 

blood, which lack the desired sensitivity and specificity of a reliable diagnostic biomarker. 

This is attributed to the PSA being expressed in a healthy prostate and overexpressed in a 

cancerous prostate Hoffman (2011). As a result, circulating PSA levels can increase 

abnormally with both benign prostate conditions (e.g., benign prostatic hyperplasia) and 

tumourigenesis. In addition, prostate cancer patients may also present with normal PSA 

levels below the threshold of concern (4ng/mL) Hoffman (2011).  

CT antigens have been proposed as promising tumour antigens for the detection of cancer, 

due to their restricted normal expression and tumour-specific overexpression across 

different cancer types Scanlan et al. (2002). Furthermore, several of these antigens have been 

reported to be expressed in prostate cancer Zaenker & Ziman (2013). These immunogenic 

tumour antigens can trigger an adaptive immune response, including the production of 

cognate autoantibodies by ASCs. Autoantibodies are detectable in the blood and have been 

proposed as ideal cancer biomarkers due to their ease of detection and stability Zaenker & 

Ziman (2013). Hence, we hypothesised that circulating autoantibodies against CT antigens 

could accurately detect the presence of prostate cancer and distinguish these from healthy 

individuals and those with benign conditions of the prostate.   

 

4.2  Efficacy of Autoantibodies as Diagnostic Biomarkers 

Autoantibodies can be detected in the blood using standard ELISAs or protein microarrays 

depending on the required level of sensitivity and multiplexing, with protein microarrays 
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being highly recommended for high-throughput, sensitive and reproducible screening 

Duarte & Blackburn (2017).  A wide range of protein microarray platforms are commercially 

available, but these include both self and tumour antigens, proving problematic in the 

search for diagnostic cancer biomarkers Chandra et al (2011). In this study, we used a novel 

cancer-specific protein microarray platform (CT100+ array) containing over 100 CT 

antigens and other tumour-associated antigens that was developed in-house Beeton-Kempen 

et al. (2014). The unique antigen cloning method and streptavidin-biotin surface chemistry 

of the array ensures that only full-length correctly folded antigens devoid of post-

translational modifications or unfolding are bound to the array. This provides a platform 

that not only eliminates non-specific binding of other proteins present in the blood, but also 

ensures that circulating autoantibodies are binding to mainly discontinuous epitopes 

normally accessible in vivo with high sensitivity (pg/mL range) Beeton-Kempen et al. (2014).  

Patient sera from 110 prostate cancer patients (discovery cohort) were retrospectively 

screened using the CT100+ array. Autoantibody signals were detected above threshold in 

78.2% of patients. Of note, detectable autoantibodies were seen in patients with normal 

PSA levels, overcoming one of the current issues with prostate cancer diagnostics. When 

considering disease grade, patients with low-grade disease had on average a higher number 

of antigen specificities (n=13), when compared to high-grade of disease (n=7). The most 

prevalent antigen specificities included mainly CT antigens: MAGEB1 (63.6%), MAGEB6 

(56.4%), MAGEB5 (51.8%), GAGE4 (28.2%), GAGE1 (27.3%), GAGE5 (24.5%), OIP5 

(23.6%), SPANXC (22.7%), CT47.11 (2.10%), LEMD1 (20.1%), MAGEA2 (20.0%), 

MAGEA4v4 (20.0%) and MAGEA1 (19.1%); as well as other tumour associated antigens: 

CTNNB1 (25.5%), MAPK3 (20.1%) and GRWD1 (20.0%). Further validation was 

conducted by screening patient sera from an additional 99 prostate cancer patients 

(validation cohort) using the CT100+ array. Autoantibody signals were detected above 

threshold in 59.6% of patients, where a noticeable decrease could be explained by 
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differences in ethnic distributions among cohorts (cannot be more specifically alluded to 

due to lack of ethnic clinical data for the validation cohort). The most prevalent antigen 

specificities included mainly CT antigens: MAGEB1 (37.4%), GAGE1 (33.3%), MAGEB6 

(33.3%), MAGEA1 (32.3%), MAGEA5 (30.3%), MAGEA2 (29.3%), CT47.11 (28.3%), 

MAGEA4v4 (25.3%), SPANXC (24.2%), GAGE4 (23.2%), NY-ESO-1 (22.2%), GAGE5 

(22.2%), and OIP5 (22.2%); as well as other tumour associated antigens: CTNNB1 

(34.3%), MAPK3 (25.3%) and GRWD1 (28.3%). Significant overlap was observed 

between prevalent antigens from both cohorts (14/16 of antigens), strengthening the initial 

data produced during discovery.  

The preliminary study conducted by Adeola et al. using an earlier version of the CT100+ 

array determined a total of 41 potential antigen biomarkers for prostate cancer. In particular, 

four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ displayed higher autoantibody 

titres in prostate cancer patient serum when compared to benign prostate hyperplasia and 

healthy controls Adeola et al. (2016). When comparing these two studies, although unique 

antigens were identified, GAGE and SPANX CT antigen families were consistently 

detected in both cohorts. Observed differences in results may speculatively relate to 

differences in ethnicity and the corresponding associated genomic drivers of prostate 

cancer. Adeola et al.’s cohort consisted largely of patients with black ancestry (Indigenous 

African/Mixed-Ancestry, 70.0%), in contrast to our discovery cohort comprising largely of 

patients of European decent (82.7%), where the remaining patients (17.3%) were either 

unknown or undefined.  

A study performed by Xie et al. used ELISA and novel seroMAP-based microspheres to 

detect autoantibodies in prostate cancer serum against specific CT antigens (NY-ESO-1, 

XAGE-1b, SSX-2, 4), as well as other tumour-associated (TA) antigens (AMACR, p90 

autoantigen, and LEDGF), while simultaneously quantifying total PSA (‘A+PSA assay’) 

Xie et al. (2011). This assay led to a significant increase in diagnostic sensitivity and 
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specificity, with AUC values increasing from 0.66 with PSA alone to 0.91 (sensitivity 79%, 

specificity 84%) for the ‘A+PSA assay’ Xie et al. (2011).  

Similarly, we investigated the diagnostic capability of combinations of our most prevalent 

or best discriminatory CT and TA antigen specificities identified in the discovery cohort 

when compared to healthy individuals (MAGEA1, OIP5, CTNNB1, SPANXC, CAMEL, 

LAGE1b and ROPN1A). We were able to confirm that combining CT antigens with 

matching patient PSA levels does increase the sensitivity and specificity of prostate cancer 

detection.  An antigen signature including CAMEL, ROPN1A, CTNNB1, and SPANXC 

resulted in an AUC of 0.847 (sensitivity 90%, specificity 64%). When combining these 

antigens with PSA levels, the AUC value was improved to 0.959 (sensitivity 89%, 

specificity 93%). Evaluation of this antigen signature in the validation cohort yielded 

comparable results, with an AUC of 0.752 (sensitivity 50%, specificity 100%) without 

PSA, and 0.968 (sensitivity 97%, specificity 88%) with PSA. Although we see an inversion 

in sensitivity and specificity between the discovery and validation cohorts without PSA 

inclusion, this is overcome with the addition of PSA. Furthermore, in both instances, our 

data outperforms the maximum ‘A+PSA’ AUC achieved in the Xie et al. study.   

Following acquisition of benign samples during the validation phase, we further 

investigated the diagnostic capability of combinations of our most prevalent or best 

discriminatory CT and TA antigen specificities identified in the discovery cohort when 

compared to healthy individuals and benign controls. An antigen signature including 

ACVR2B, CALM1, CAMEL, CEP290, CT47.11, MART-1 and PRKCZ yielded an AUC 

of 0.769 (sensitivity 78%, specificity 73%). Evaluation of this antigen signature in the 

validation cohort yielded similar results, with AUC of 0.788 (sensitivity 67%, specificity 

79%), verifying its robustness at distinguishing these patient groups. Unfortunately, we 

were unable to complement this combination with PSA levels, as these were not accessible 

for benign samples.  
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Our findings for PSA levels at a cut-off of 4ng/mL resulted in a sensitivity and specificity 

of 85% and 79%, respectively, for the discovery cohort and 85% and 79%, respectively, 

for the validation cohort. It is necessary to disclose that PSA levels for all prostate cancer 

patients were determined at or near time of prostate resection, after the presence of prostate 

cancer had been histologically confirmed. This factor, in conjunction with our small-sized 

healthy donor cohort, abnormally bolsters the diagnostic capability of PSA levels alone in 

our cohorts in such a way that would not reflect the clinical reality. Unfortunately, age- and 

gender-matched healthy donor samples were difficult to obtain, but it would be critical for 

any subsequent external validation study based upon this research to include more of these 

samples. The clinical reality of PSA levels as a diagnostic biomarker at a cut-off of 4ng/ml 

has been detailed in a well-known meta-study conducted by Wolf et al. where its sensitivity 

and specificity were reported as 21% and 91%, respectively. In addition, its sensitivity was 

purported to be 51% for high-grade cancer (i.e., GS ≥8) Wolf et al (2010). Though our 

corresponding patient PSA values were inadvertently biased in nature, the clinical reality 

of PSA as a diagnostic marker (ROC AUC ~0.7000) still suggests that unbiased PSA results 

would, in theory, improve upon any antigen combinations determined in this study.  

Although it is known that gene or mRNA expression does not necessarily always translate 

to protein expression, our most promising diagnostic antigen specificities able to 

distinguish prostate cancer from healthy individuals or healthy and benign individuals were 

investigated for mRNA expression using an external prostate cancer patient cohort 

accessible via the TCGA (n=460). In all instances, mRNA expression of the identified CT 

antigens (MAGEA1 (20%), OIP5 (100%), CAMEL/LAGE1b (i.e., CTAG2, 30%), 

ROPN1A (i.e., ROPN1, 99%), MART-1 (i.e., MLANA 82%) and non-CT (CTNNB1 

(100%), ACVR2B (100%), CALM1 (100%), CEP290 (100%) and PRKCZ (100%)) was 

confirmed in an independent prostate cancer cohort, and fairly consistent with the 

autoantibody predominance seen. Heninger et al. further reported MAGEA1(n=3/4)) and 
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CAMEL/LAGE1b (n=1/4) inducible mRNA expression in prostate cancer cell lines 

Heninger et al. (2016).  

Protein expression of our identified, potentially diagnostic antigens was investigated in a 

further external prostate cancer cohort accessible via the Human Protein Atlas database and 

confirmed for ACVR2B (n=1/11), CAMEL/LAGE1b (CTAG2, n=3/11), CEP290 

(n=11/12), CTNNB1 (n=9/9), and PRKCZ (n=8/12).  

To assess whether clinical cohort characteristics may impact patient autoantibody profiles, 

categories such as age, PSA levels, Gleason scores, and PSA relapse were correlated with 

antigen specificities. Similar average antigen counts were observed for all age groups in the 

discovery, validation and combined cohort data. Similar average antigen counts were 

observed when evaluating Gleason score categories in the discovery and combined cohort 

data. However, significantly higher average antigen counts were seen in high-grade patients 

in the validation cohort. Moreover, although no differences were observed when correlating 

PSA ranges with average antigen counts in the discovery or validation cohort data, a 

significant increase in average antigen counts was seen for patients exhibiting PSA levels 

>12ng/mL for the combined cohort. No significant differences in average antigen counts 

were observed between relapse and non-relapse patients in the discovery, validation and 

combined cohort data.  

 

4.3  Efficacy of Autoantibodies as Prognostic Biomarkers 

Acquisition of comprehensive clinical cohort characteristics and follow-up for all patients 

screened from the discovery cohort allowed us to assess the prognostic potential of CT100+ 

array antigens. In particular, we assessed the presence or absence of autoantibodies towards 

cognate antigens in relation to biochemical relapse and survival data.  We investigated the 

prognostic capability of combinations of our most prevalent or best discriminatory antigen 
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specificities identified in the discovery cohort when comparing relapse and non-relapse 

patients. An antigen signature including BAGE5, CAMEL (CTAG2), MART-1 and RAF 

yielded an AUC of 0.682 (sensitivity 50%, specificity 82%) without PSA, and an AUC of 

0.704 (sensitivity 94%, specificity 45%) with PSA.  

When considering overall survival with long-term follow-up, an antigen signature 

containing ACVR2B, BAGE5, and MAP9 generated an AUC of 0.848 (sensitivity 86%, 

specificity 76%) without PSA, and an AUC of 0.827 (sensitivity 88%, specificity 75%) 

with PSA. Interestingly, BAGE5 was identified as a prognostic biomarker with regards to 

both disease relapse and overall survival. 

Although the addition of PSA provided incremental increases to most of the above AUC 

values and antigen combinations, this is not the case for the survivability panel. Although 

PSA levels are known to correlate with more aggressive disease and poorer outcomes 

Lojanapiwat et al (2014), the majority of patients in our cohort have undergone therapeutic 

intervention(s), including radical prostatectomy and/or systemic therapy at diagnosis or 

relapse which may alter the natural course of the disease and thereby affect these data.   

Publicly available (TCGA) mRNA data from 460 prostate cancer patients showed common 

expression of the identified prognostic genes, where non-CT antigens; RAF (RAF1, 100%), 

ACVR2B (100%), and MAP9 (100%), and CT antigens; CAMEL/LAGE1b (CTAG2, 

17%), and MART-1 (MLANA, 82%) exhibited low to high mRNA expression across the 

majority of the cohort. Heninger et al. consistently reported high mRNA expression of 

LAGE1 (CAMEL/LAGE1b) in 1 of 4 prostate cancer cell lines Heninger et al. (2016).   

Protein expression data was collated from the Human Protein Atlas database, where 

immunohistochemical staining revealed positive expression of CAMEL (CTAG2, n=3/11), 

RAF (RAF1, n=12/12), and ACVR2B (n=1/11) in prostate cancer tissue specimens. 

Conversely, no protein expression was seen for MART-1 (MLANA, n=0/12). Notably, of 



 146 

our prognostic biomarkers determined, CAMEL (i.e., CTAG2) was found to be an 

unfavourable prognostic biomarker in renal cancer.  Moreover, it may hold potential value 

as a novel unfavourable prognostic biomarker in prostate cancer, as expression of CTAG2 

was more commonly detected in prostate cancer patients that relapsed in contrast to those 

that didn’t. Furthermore, studies have suggested that protein expression of RAF was 

associated with biochemical relapse in prostate cancers  Mukherjee et al (2005); Mukherjee 

et al (2011). Similarly, elevated serum levels of Activin A (related to ACVR2B) have been 

implicated in the pathogenesis of bone metastasis in prostate cancer, and may serve as a 

marker of relapse Leto et al (2006).  

 

4.4  Efficacy of Autoantibodies as Biomarkers for Disease Stratification 

Biomarkers of disease stratification enable the ability to determine at diagnosis if patients 

have low-grade (Gleason Score 6-7) or high-grade (Gleason Score 8-10) disease. This may 

enable informed patient management and therapeutic planning for patients with aggressive 

disease. We investigated the disease stratification capability of the antigen specificities 

identified in the discovery cohort when comparing low- and high-grade prostate cancer 

patients. An antigen signature including GAGE5, MICA, SSX4 generated an AUC of 0.937 

(sensitivity 96%, specificity 79%) without PSA, and an AUC of 0.953 (sensitivity 93%, 

specificity 89%) with PSA. These findings were verified using the validation cohort, with 

the antigen signature resulting in an AUC of 0.731 (sensitivity 80%, specificity 55%) 

without PSA, and an AUC of 0.871 (sensitivity 72%, specificity 88%) with PSA.  

Publicly available mRNA data from 460 prostate cancer patients (TCGA) confirmed 

expression of MICA (100%) and SSX4 (6%) in prostate cancer. In regard to protein 

expression (The Human Protein Atlas), no protein expression was seen for SSX4 (n=0/11) 

in prostate cancer tissue, while MICA was reported as an unfavourable prognostic marker 
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in cervical cancer. Similarly, soluble levels of MICA have been previously reported as 

prognostic in prostate cancer Liu et al (2018).  

 

4.5 B Cell Infiltrate, ASCs and TLSs in Prostate Cancer  

We investigated the immune landscape of prostate cancer using prostatectomy tissue from 

64 of the above patients (discovery cohort), with a specific focus on the abundance of IT 

and PT ASCs (CD19+CD38+CD138- plasmablasts and CD19low/-CD38highCD138+ plasma 

cells). A novel customised mIHC ASC panel was specifically optimised and utilised to 

achieve this.  A lymphocyte marker (CD45+) was also included to determine the presence 

of other immune cells that may be present. Although B cell infiltrates using the pan-B cell 

CD20 marker have been identified in the TME of prostate cancer Flammiger et al. (2012); 

Fujii et al. (2013); Woo et al. (2014), to date studies are yet to adequately characterise ASCs 

in these tumours. The use of pan-B cell markers (CD19 or CD20) do not enable the 

distinction between B cell subsets, and fail to identify ASCs that lose CD19/CD20 upon 

terminal differentiation Da Gama Duarte et al. (2018a). As such, this study is one of the first 

of its kind investigating ASC infiltrates in prostate cancer.  

ASCs and other immune cells were commonly detected in the investigated prostate cancer 

tumours. Notably, CD19+ BCAs were also commonly seen, and therefore included in 

subsequent analyses.  

ASCs and BCAs were more commonly detected in PT regions, when compared to IT 

regions. With regards to disease grade, IT and PT ASCs and BCAs were more abundant in 

high-grade disease, when compared to low-grade disease. Moreover, the majority of relapse 

patients contained abundant IT ASCs and BCAs, when compared to those that did not 

relapse, while no difference was seen in PT regions.  
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Following investigation of ASCs in prostate cancer specimens, abundantly detected BCAs 

with surrounding ASCs and adjacent zones of unspecified lymphocytes that resembled 

TLSs led us to explore these tissue specimens further. A novel customised mIHC TLS panel 

was specifically optimised and utilised to achieve this. The panel consisted of core (CD4, 

CD8, CD19, and PNAd) and additional antibody markers (CD21 and DC-LAMP) defined 

in the literature to define ‘functional / mature’ TLSs (i.e., able to produce plasmablasts and 

plasma cells). By staining serial sections (i.e., cuts/slices that are sequential to those 

previously stained with the ASC panel) of each patient prostatectomy section, we were able 

to compare both panels to identify functional TLSs.  

Regarding TLS abundance, the majority of patient samples had at least one TLS, with no 

significant difference observed between proximal and distal tumour locations. Nearly all 

TLSs were mature and contained abundant CD8+ T cells. Additionally, mature TLSs were 

more abundantly seen in relapse patients, while no significant differences were seen 

between disease grades. 

Together, these findings argue for a pro-tumoural B cell role in prostate cancer. The anti- 

or -pro-tumoural role of ASCs depends on the antibodies being produced, with IgG1 and 

IgG3 being anti-tumoural, and IgG2 and IgG4 being pro-tumoural Saul et al (2016). These 

IgG ratios are heavily influenced by the TME, with regulatory immune cells promoting 

pro-tumoural ASC functions Da Gama Duarte et al. (2018b). Functional characterisation of 

the IgG repertoire and the regulatory immune cell subsets in the TME is required to further 

determine what roles the B cell subsets may have in prostate cancer.  

 

4.6 Autoantibodies in Circulation and B cells in the TME 

We further hypothesised that the non-invasive autoantibody profiling of cognate tumour 

antigens using blood may reflect the immune landscape of the prostate cancer TME. Hence, 
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the presence of detectable autoantibodies towards tumour antigens was correlated with IT 

ASCs, where applicable. However, we found no significant differences when comparing 

IT or PT ASCs or BCAs with corresponding autoantibody profiles. However, less antigen 

specificities were observed in patients without PT ASCs, when compared to those with PT 

ASCs, albeit not statistically significant.  

The absence of expected IT ASCs in the TME despite the presence of detectable antigen 

specificities in circulation may be explained by 1) ASCs actively producing autoantibodies 

in circulation, without the need to be physically located in the TME; or 2) sectioned tissue 

slides not being representative of the complete prostate specimens which may have 

detectable ASCs. On the other hand, the absence of expected abundant autoantibodies 

against tumour antigens in circulation despite the presence of abundant IT ASCs in the 

TME may be explained by 1) abundant non-tumoural ASCs located in the TME associated 

with inflammatory disease, such as BPH; or 2) missing tumour antigens on the CT100+ 

array that are of relevance to prostate cancer.  

In summary, trends deduced from the preliminary findings suggest that detectable 

autoantibody profiles may be indicative of PT ASCs in the TME of prostate cancer patients, 

warranting further studies. A more comprehensive characterisation of the TME is necessary 

to fully investigate this hypothesis, including other stimulatory and regulatory immune cells 

which may be of correlative value.  

 

 

 

 

 

 

 

 



 150 

APPENDIX 

Table A1. List of primary antibodies and reagents used for mIHC.  

Primary Antibodies (ASC Panel) 

Target Company Cat# 

CD19 Abcam ab134114 

CD38 Abcam ab108403 

CD45 Dako M0701 

CD138 Novus NB100-64980 

Primary Antibodies (TLS Panel) 

CD4   Abcam   ab133616 

CD8   Invitrogen 
  MA5-13473 

 

CD19   Abcam   ab134114 

CD21   Agilent   M0784 

DC-LAMP   Dako   ab111090 

PNAd   Novus   NB100-77673 

Secondary Antibodies 

Fluorophore Company Cat# 

Opal 520 Perkin Elmer FP1487A 

Opal 570 Perkin Elmer FP1488A 

Opal 620 Perkin Elmer FP1495A 

Opal 690 Perkin Elmer FP1497A 

Spectral DAPI Perkin Elmer FP1490 

Other Reagents 

Antibody Diluent / 
Block Perkin Elmer ARD1001EA 

Opal Polymer HRP Ms 
+Rb Perkin Elmer ARH1001EA 

1xPlus Automation 
Amplification Diluent Perkin Elmer FP1609 
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Table A2. Table of all multiplex stain orders that were trialled during optimisation 

Dimethyl Sulfoxide Perkin Elmer DMSO0500UL 

IHC Kits 

Opal 7-Colour 
Automation IHC Kit 50 
Slides 

Perkin Elmer NEL821001KT 

Primary Antibody Epitope 
Retrieval 
(pH) 

Optimised 
Concentration 

Opal 
Fluorophore 

 

ASC Multiplex Stain Order 1: 

CD138 ER 9 1:100 520 

CD38 ER 9 1:300 620 

CD19 ER 9 1:300 570 

CD45 ER 9 1:100 690 

DAPI - 2 drops per mL - 

 

ASC Multiplex Stain Order 2: 

CD19 ER 9 1:300 570 

CD138 ER 9 1:100 520 

CD38 ER 9 1:300 620 

CD45 ER 9 1:100 690 

DAPI - 2 drops per mL  - 

 

ASC Multiplex Stain Order 3: 

CD45 ER 9 1:100 690 

CD138 ER 9 1:100 520 

CD38 ER 9 1:300 620 

CD19 ER 9 1:300 570 

DAPI - 2 drops per mL - 
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TLS Multiplex Stain Order 
1: 

   

CD4 ER 9 1:1000 520 

CD21 ER 9 1:20 540 

CD8 ER 9 1:50 570 

DC-LAMP ER 6 1:100 620 

PNAd ER 9 1:100 650 

CD19 ER 9 1:300 690 

DAPI - 2 drops per mL - 

 

ASC Multiplex Stain 
Order 2: 

   

CD21 ER 9 1:20 520 

DC-LAMP ER 6 1:100 540 

CD4 ER 9 1:1000 570 

PNAd ER 9 1:100 620 

CD8 ER 9 1:50 650 

CD19 ER 9 1:300 690 

DAPI - 2 drops per mL  - 
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Figure A1. ASC spectral library (Unmixed MSIs). a) DAPI – HLA1+ HeLa cell line (blue). b) 

Opal 620 – HLA1+ HeLa cell line (orange). c) Opal 520 – HLA1+ HeLa cell line (red). d) Opal 

570 – HLA1+ HeLa cell line (green). e) Opal 690 – HLA1+ HeLa cell line (magenta). Scale bar = 

100µm. Taken at 20x magnification.  



 154 

 

Figure A2. TLS spectral library (unmixed MSIs). a) DAPI – HLA+ HeLa cell line (blue). b) Opal 

520 – HLA1+ HeLa cell line (brown). c) Opal 540 – HLA1+ HeLa cell line (orange). d) Opal 570 

– HLA1+ HeLa cell line (magenta). e) Opal 620 – HLA1+ HeLa cell line (cyan). f) Opal 650 – 

HLA1+ HeLa cell line (red). g) Opal 690 – HLA1+ HeLa cell line (green). Scale bar = 100µm. 

Taken at 20x magnification.  
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Table A3. Abundance of ASCs and BCAs detected in prostate cancer tissue using mIHC. 

Patient ID Abundance 
of IT ASCs 

Abundance of 
PT ASCs 

Abundance of 
IT BCAs 

Abundance of 
PT BCAs 

ONJ 002 Scarce Abundant Scarce Abundant 
ONJ 003 Scarce Abundant Absent Scarce 
ONJ 004 Absent  Absent Scarce Absent 
ONJ 009 Absent Abundant Absent Abundant 
ONJ 010 Absent Abundant Absent Scarce 
ONJ 011 Scarce Abundant Absent Scarce 
ONJ 012 Abundant Abundant Scarce Scarce 
ONJ 013 Scarce Scarce Absent Scarce 
ONJ 014 Abundant Abundant Absent Abundant 
ONJ 015 Absent Scarce Scarce Scarce 
ONJ 016 Abundant Abundant Absent Abundant 
ONJ 018 Absent Abundant Absent Abundant 
ONJ 019 Abundant Absent Scarce Absent 
ONJ 020 Absent Abundant Scarce Scarce 
ONJ 021 Abundant Abundant Scarce Scarce 
ONJ 022 Scarce Scarce Absent Absent 
ONJ 024 Abundant Scarce Scarce Absent 
ONJ 025 Scarce Abundant Scarce Abundant 
ONJ 026 Scarce Scarce Scarce Scarce 
ONJ 027 Abundant Abundant Scarce Abundant 
ONJ 028 Absent Scarce Scarce Scarce 
ONJ 029 Absent Scarce Absent Scarce 
ONJ 030 Abundant Abundant Scarce Scarce 
ONJ 031 Absent Absent Absent Absent 
ONJ 032 Scarce Abundant Absent Abundant 
ONJ 033 Absent Absent Scarce Scarce 
ONJ 034 Abundant Scarce Scarce Absent 
ONJ 035 Abundant Abundant Abundant Scarce 
ONJ 036 Abundant Scarce Scarce Absent 
ONJ 037 Scarce Absent Abundant Scarce 
ONJ 040 Scarce Abundant Scarce Abundant 
ONJ 041 Absent Scarce Absent Scarce 
ONJ 043 Absent Abundant Absent Abundant 
ONJ 044 Scarce Scarce Scarce Scarce 
ONJ 045 Abundant Scarce Abundant Absent 
ONJ 046 Scarce Scarce Absent Scarce 
ONJ 047 Abundant Abundant Abundant Scarce 
ONJ 048 Absent Scarce Scarce Scarce 
ONJ 049 Absent Scarce Absent Abundant 
ONJ 050 Absent Abundant Absent Abundant 
ONJ 051 Scarce Abundant Absent Absent 
ONJ 052 Scarce Abundant Scarce Abundant 
ONJ 053 Abundant Abundant Scarce Scarce 
ONJ 054 Absent  Abundant Absent Scarce 
ONJ 055 Absent Scarce Scarce Scarce 
ONJ 057 Absent Abundant Absent Absent 
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ONJ 058 Abundant Scarce Abundant Absent 
ONJ 060 Abundant Scarce Scarce Abundant 
ONJ 067 Scarce Abundant Scarce Abundant 
ONJ 069 Absent Abundant Absent Abundant 
ONJ 080 Scarce Abundant Scarce Abundant 
ONJ 081 Abundant Abundant Abundant Abundant 
ONJ 084 Abundant Absent Scarce Absent 
ONJ 086 Abundant Abundant Scarce Abundant 
ONJ 091 Scarce Abundant Scarce Abundant 
ONJ 093 Scarce Abundant Abundant Scarce 
ONJ 094 Abundant Abundant Abundant Absent 
ONJ 095 Absent Scarce Absent Abundant 
ONJ 096* Abundant n/a Abundant Absent 
ONJ 097 Scarce Scarce Abundant Scarce 
ONJ 099 Scarce Abundant Abundant Abundant 
ONJ 101 Scarce Scarce Abundant Scarce 
ONJ 211 Scarce Scarce Absent Scarce 
ONJ 212 Scarce Abundant Absent Abundant 

* Patient with FFPE tissue sample containing only tumour tissue. Abbreviations: IT, intratumoural; 
PT, peritumoural; ASCs, antigen-secreting cells; BCA, B cell aggregate.  

 

 

Table A4. Correlation between abundance of IT/PT ASCs and BCAs with biochemical relapse.  

Patient ID Abundance 
of IT ASCs 

Abundance 
of PT ASCs 

Abundance 
of IT BCAs 

Abundance 
of PT BCAs 

Biochemical 
Relapse 

ONJ 002 Scarce Abundant Scarce Abundant N 
ONJ 003 Scarce Abundant Absent Scarce N 
ONJ 004 Absent  Absent Scarce Absent N 
ONJ 009 Absent Abundant Absent Abundant N 
ONJ 010 Absent Abundant Absent Scarce n/a 
ONJ 011 Scarce Abundant Absent Scarce N 
ONJ 012 Abundant Abundant Scarce Scarce N 
ONJ 013 Scarce Scarce Absent Scarce N 
ONJ 014 Abundant Abundant Absent Abundant N 
ONJ 015 Absent Scarce Scarce Scarce N 
ONJ 016 Abundant Abundant Absent Abundant N 
ONJ 018 Absent Abundant Absent Abundant N 
ONJ 019 Abundant Absent Scarce Absent N 
ONJ 020 Absent Abundant Scarce Scarce N 
ONJ 021 Abundant Abundant Scarce Scarce N 
ONJ 022 Scarce Scarce Absent Absent N 
ONJ 024 Abundant Scarce Scarce Absent N 
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ONJ 025 Scarce Abundant Scarce Abundant N 
ONJ 026 Scarce Scarce Scarce Scarce N 
ONJ 027 Abundant Abundant Scarce Abundant N 
ONJ 028 Absent Scarce Scarce Scarce N 
ONJ 029 Absent Scarce Absent Scarce N 
ONJ 030 Abundant Abundant Scarce Scarce n/a 
ONJ 031 Absent Absent Absent Absent N 
ONJ 032 Scarce Abundant Absent Abundant N 
ONJ 033 Absent Absent Scarce Scarce N 
ONJ 034 Abundant Scarce Scarce Absent Y 
ONJ 035 Abundant Abundant Abundant Scarce N 
ONJ 036 Abundant Scarce Scarce Absent N 
ONJ 037 Scarce Absent Abundant Scarce N 
ONJ 040 Scarce Abundant Scarce Abundant N 
ONJ 041 Absent Scarce Absent Scarce N 
ONJ 043 Absent Abundant Absent Abundant N 
ONJ 044 Scarce Scarce Scarce Scarce N 
ONJ 045 Abundant Scarce Abundant Absent Y 
ONJ 046 Scarce Scarce Absent Scarce N 
ONJ 047 Abundant Abundant Abundant Scarce N 
ONJ 048 Absent Scarce Scarce Scarce N 
ONJ 049 Absent Scarce Absent Abundant N 
ONJ 050 Absent Abundant Absent Abundant N 
ONJ 051 Scarce Abundant Absent Absent N 
ONJ 052 Scarce Abundant Scarce Abundant N 
ONJ 053 Abundant Abundant Scarce Scarce N 
ONJ 054 Absent  Abundant Absent Scarce Y 
ONJ 055 Absent Scarce Scarce Scarce N 
ONJ 057 Absent Abundant Absent Absent N 
ONJ 058 Abundant Scarce Abundant Absent N 
ONJ 060 Abundant Scarce Scarce Abundant Y 
ONJ 067 Scarce Abundant Scarce Abundant N 
ONJ 069 Absent Abundant Absent Abundant N 
ONJ 080 Scarce Abundant Scarce Abundant N 
ONJ 081 Abundant Abundant Abundant Abundant Y 
ONJ 084 Abundant Absent Scarce Absent Y 
ONJ 086 Abundant Abundant Scarce Abundant Y 
ONJ 091 Scarce Abundant Scarce Abundant N 
ONJ 093 Scarce Abundant Abundant Scarce Y 
ONJ 094 Abundant Abundant Abundant Absent N 
ONJ 095 Absent Scarce Absent Abundant N 
ONJ 096* Abundant n/a Abundant n/a Y 
ONJ 097 Scarce Scarce Abundant Scarce N 
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ONJ 099 Scarce Abundant Abundant Abundant Y 
ONJ 101 Scarce Scarce Abundant Scarce N 
ONJ 211 Scarce Scarce Absent Scarce n/a 
ONJ 212 Scarce Abundant Absent Abundant n/a 

* Patient with FFPE sample containing only tumour tissue. Four patients were removed due to lack 
of biochemical relapse data (ONJ 010, ONJ 030, ONJ 211 and ONJ 212). Abbreviations: IT, 
intratumoural; PT, peritumoural; ASCs, antigen-secreting cells; BCA, B cell aggregate; Y, yes; N, 
no. 
 

 

Table A5. Correlation between abundance of patient IT/PT ASCs with corresponding 
autoantibody profiles (blood). 

Patient ID Abundance 
of IT ASCs 

Abundance 
of PT ASCs 

Antigen 
Counts 

Average 
RFU 

ONJ 002 Scarce Abundant 2 80 
ONJ 003 Scarce Abundant 37 298 
ONJ 004 Absent  Absent 3 128 
ONJ 009 Absent Abundant 3 166 
ONJ 010 Absent Abundant 12 159 
ONJ 011 Scarce Abundant 7 208 
ONJ 012 Abundant Abundant 20 219 
ONJ 013 Scarce Scarce 5 168 
ONJ 014 Abundant Abundant 43 313 
ONJ 015 Absent Scarce 0 84 
ONJ 016 Abundant Abundant 0 70 
ONJ 018 Absent Abundant 1 96 
ONJ 019 Abundant Absent 2 101 
ONJ 020 Absent Abundant 4 87 
ONJ 021 Abundant Abundant 3 145 
ONJ 022 Scarce Scarce 0 104 
ONJ 024 Abundant Scarce 9 166 
ONJ 025 Scarce Abundant 17 159 
ONJ 026 Scarce Scarce 3 143 
ONJ 027 Abundant Abundant 34 279 
ONJ 028 Absent Scarce 9 182 
ONJ 029 Absent Scarce 1 131 
ONJ 030 Abundant Abundant 33 342 
ONJ 031 Absent Absent 0 134 
ONJ 032 Scarce Abundant 7 142 
ONJ 033 Absent Absent 3 141 
ONJ 034 Abundant Scarce 6 141 
ONJ 035 Abundant Abundant 0 74 
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ONJ 036 Abundant Scarce 0 68 
ONJ 037 Scarce Absent 2 101 
ONJ 040 Scarce Abundant 6 181 
ONJ 041 Absent Scarce 26 311 
ONJ 043 Absent Abundant 0 55 
ONJ 044 Scarce Scarce 7 156 
ONJ 045 Abundant Scarce 5 141 
ONJ 046 Scarce Scarce 0 132 
ONJ 047 Abundant Abundant 11 192 
ONJ 048 Absent Scarce 60 595 
ONJ 049 Absent Scarce 26 247 
ONJ 050 Absent Abundant 1 87 
ONJ 051 Scarce Abundant 31 267 
ONJ 052 Scarce Abundant 3 99 
ONJ 053 Abundant Abundant 3 103 
ONJ 054 Absent  Abundant 0 99 
ONJ 055 Absent Scarce 37 298 
ONJ 057 Absent Abundant 3 124 
ONJ 058 Abundant Scarce 69 351 
ONJ 060 Abundant Scarce 26 268 
ONJ 067 Scarce Abundant 7 160 
ONJ 069 Absent Abundant 13 199 
ONJ 080 Scarce Abundant 77 400 
ONJ 081 Abundant Abundant 85 453 
ONJ 084 Abundant Absent 1 67 
ONJ 086 Abundant Abundant 10 154 
ONJ 091 Scarce Abundant 4 112 
ONJ 093 Scarce Abundant 0 86 
ONJ 094 Abundant Abundant 1 92 
ONJ 095 Absent Scarce 0 106 
ONJ 096* Abundant n/a 0 71 
ONJ 097 Scarce Scarce 2 102 
ONJ 099 Scarce Abundant 1 104 
ONJ 101 Scarce Scarce 21 241 

* Patient with FFPE sample containing only tumour tissue. Two patients were removed from 
analysis due to lack of array data (ONJ 211 / 212). Abbreviations: IT, intratumoural; PT, 
peritumoural; ASCs, antigen-secreting cells; RFU, relative fluorescent units. 
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Table A6. Correlation between abundance of patient IT/PT BCAs with corresponding antigen 
specificities and average RFU. 

Patient 
ID 

Abundance 
of IT BCAs 

Abundance 
of PT BCAs 

Antigen 
Specificities 

Average 
RFU 

ONJ 002 Scarce Abundant 2 80 
ONJ 003 Absent Scarce 37 298 
ONJ 004 Scarce Absent 3 128 
ONJ 009 Absent Abundant 3 166 
ONJ 010 Absent Scarce 12 159 
ONJ 011 Absent Scarce 7 208 
ONJ 012 Scarce Scarce 20 219 
ONJ 013 Absent Scarce 5 168 
ONJ 014 Absent Abundant 43 313 
ONJ 015 Scarce Scarce 0 84 
ONJ 016 Absent Abundant 0 70 
ONJ 018 Absent Abundant 1 96 
ONJ 019 Scarce Absent 2 101 
ONJ 020 Scarce Scarce 4 87 
ONJ 021 Scarce Scarce 3 145 
ONJ 022 Absent Absent 0 104 
ONJ 024 Scarce Absent 9 166 
ONJ 025 Scarce Abundant 17 159 
ONJ 026 Scarce Scarce 3 143 
ONJ 027 Scarce Abundant 34 279 
ONJ 028 Scarce Scarce 9 182 
ONJ 029 Absent Scarce 1 131 
ONJ 030 Scarce Scarce 33 342 
ONJ 031 Absent Absent 0 134 
ONJ 032 Absent Abundant 7 142 
ONJ 033 Scarce Scarce 3 141 
ONJ 034 Scarce Absent 6 141 
ONJ 035 Abundant Scarce 0 74 
ONJ 036 Scarce Absent 0 68 
ONJ 037 Abundant Scarce 2 101 
ONJ 040 Scarce Abundant 6 181 
ONJ 041 Absent Scarce 26 311 
ONJ 043 Absent Abundant 0 55 
ONJ 044 Scarce Scarce 7 156 
ONJ 045 Abundant Absent 5 141 
ONJ 046 Absent Scarce 0 132 
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ONJ 047 Abundant Scarce 11 192 
ONJ 048 Scarce Scarce 60 595 
ONJ 049 Absent Abundant 26 247 
ONJ 050 Absent Abundant 1 87 
ONJ 051 Absent Absent 31 267 
ONJ 052 Scarce Abundant 3 99 
ONJ 053 Scarce Scarce 3 103 
ONJ 054 Absent Scarce 0 99 
ONJ 055 Scarce Scarce 37 298 
ONJ 057 Absent Absent 3 124 
ONJ 058 Abundant Absent 69 351 
ONJ 060 Scarce Abundant 26 268 
ONJ 067 Scarce Abundant 7 160 
ONJ 069 Absent Abundant 13 199 
ONJ 080 Scarce Abundant 77 400 
ONJ 081 Abundant Abundant 85 453 
ONJ 084 Scarce Absent 1 67 
ONJ 086 Scarce Abundant 10 154 
ONJ 091 Scarce Abundant 4 112 
ONJ 093 Abundant Scarce 0 86 
ONJ 094 Abundant Absent 1 92 
ONJ 095 Absent Abundant 0 106 

ONJ 
096* Abundant n/a 0 71 

ONJ 097 Abundant Scarce 2 102 
ONJ 099 Abundant Abundant 1 104 
ONJ 101 Abundant Scarce 21 241 

* Patient with FFPE sample containing only tumour tissue. Two patients were removed from 
analysis due to lack of array data (ONJ 211 / 212). Abbreviations: IT, intratumoural; PT, 
peritumoural; BCA, B cell aggregate; RFU, relative fluorescent units. 
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