
Diversity Measures as New Concept
Drift Detection Methods in Data Stream

Mining

Osamah Abdulsattar Mahdi

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical Sciences Department
of Computer Science and Information Technology College of

Science, Health and Engineering

 La Trobe University
Melbourne, Australia

9 September 2020

Dedication

This thesis is dedicated to my dearest, precious and first teachers,

my father and mother

I will always be grateful for your endless love, unlimited support and deep faith in me

&

my brother and sisters, Nawfal, Aseel and Zina, who are like candles that burn to provide

others with light,

&

I would like to dedicate this thesis to my wife Rand, for all her love and support.

Thanks to Allah for sending these angels into my world.

2

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis accepted for the award

of any other degree or diploma. No other person’s work has been used without due

acknowledgment in the main text of the thesis. This thesis has not been submitted for the

award of any degree or diploma in any other tertiary institution.

Osamah A. Mahdi

09/09/2020

Acknowledgements

I would like to express my deepest gratitude and appreciation for the supervision, patience,

and the kindness of Dr Eric Pardede over the past four years, which made this work possible.

I extend my sincere thanks to Dr Jinli Cao for her more than generous guidance and support.

It has been an honour to work with both of you.

Publications

We list our research accomplishments and deliverables, each of which made this thesis

possible, as follows:

• Journal Paper: Mahdi, Osama A., Eric Pardede, Nawfal Ali, and Jinli

Cao. “Diversity measure as a new drift detection method in data streaming.”

Knowledge-Based Systems 191 (2020): 105227.

• Journal Paper: Mahdi, Osama A., Eric Pardede, Nawfal Ali, and Jinli Cao. “Fast

Reaction to Sudden Concept Drift in the Absence of Class Labels.” Applied Sciences

10, no. 2 (2020): 606.

• Journal Paper: “A Hybrid Block-Based Ensemble Framework for the Multi-Class

Problem to React to Different Types of Drifts”, Paper submitted to Journal Cluster

Computing on July 30 2020.

• Conference Proceeding: Mahdi, Osama A., Eric Pardede, and Jinli Cao.

“Combination of information entropy and ensemble classification for detecting

concept drift in data stream.” In the Proceedings of theAustralasian Computer Science

Week Multiconference, pp. 1-5. 2018.

• Conference Proceeding: “KAPPA as Drift Detector in Data Stream Mining”, Paper

under preparation.

Abstract

Continuous change / evolve is a vital issue in evolving environments and applications, which

include aviation, self-driving cars, nuclear reactors, medicine, the military, smart cities, and

aerospace. That is, the essential features of these kinds of environments could possibly

change (evolve), resulting in harmful outcomes, e.g., placing people’s lives at risk if no

response is followed. Thus, learning methods have to use intelligent algorithms to keep

track of the evolution in environments and update themselves effectively. Additionally,

we might experience fluctuations in the functionality of learning algorithms as a result of

the dynamics of incoming information as it constantly evolves. That is, today’s efficient

learning approach can be deprecated after a change in the environment or data. Hence, the

question as to how to develop an effective learning algorithm as time passes in the presence

of changing (evolving) data needs to be tackled.

In this thesis, we make three contributions to address the aforementioned issues.

According to the existing data stream learning literature, the event of (class distribution)

change / evolve in data streams is known as concept drift. The appearance of concept

drift in data streams may shift decision boundaries and also result in a drop in accuracy.

Learning algorithms are therefore required to identify concept drift in evolving data streams

and update / replace their predictive models appropriately. In order to tackle this task,

adaptive learners are devised which utilize drift detection techniques to track down the

drift points in evolving environments. In this thesis, we introduce five algorithms in three

chapters (Chapter 5 - Chapter 7), namely the diversity measure as a new drift detection

method in data streaming (DMDDM), fast reaction to sudden concept drift in the absence

of class labels (DMDDM-S), a hybrid block-based ensemble (HBBE) framework for the

multi-class problem to react to different types of drifts, combination of information entropy

and ensemble classification for detecting concept drift in data streams and KAPPA as a

drift detector in data streams, to effectively handle/detect concept drift in a rapid and also

6

minimal computational resource environment. First, in a novel way, DMDDM is a drift

detector which combines a diversity measure called the disagreement measure with the PH

test and an algorithm is developed to detect drift. Rather than checking the error estimates,

DMDDM monitors the diversity of a pair of classifiers using the fading factor. In this way,

the PH test is triggered whenever the predictions of components (hu and hv) start to disagree

in an unusual way.

Second, DMDDM-S extends the DMDDM algorithm to detect concept drift in

a semi-supervised environment. The primary benefit of calculating diversity is that for

binary classification, the genuine label of an example is not essential to determine whether

components disagree. Thus, we implement the suggested drift detector to identify sudden

drifts when the class labels of incoming data are not available. To the best of our knowledge,

this is the first work to utilize such a technique to detect concept drift. We adopt k prototype

clustering as a strategy to label the unlabeled data and utilize the newly labelled data along

with the labelled data to retrain the model in line with the current concept. Third, the HBBE

brings together the best of the online drift detectors and block-based weighting with a view

to enhancing the reaction to sudden drifts and to respond to other types of concept drift. For

online drift detectors, we propose a new way of calculating the diversity which has been

designed for a K-class problem.

Lastly, information entropy and KAPPA are considered to be effective ways of

measuring uncertainty and the level of agreement, respectively, and they may be suitable

to detect concept drift in a reliable, fast, and computationally efficient way. Hence, the

entropy-based ensemble (EBE) does not build a new classifier for every new block of data,

but instead, builds a new classifier only when there is a drift. The new classifier will be

trained on more recent instances and added to the ensemble. Therefore, this mechanism

will result in a low computational cost. On the other hand, contrary to the disagreement

measure that has been proposed, we define this problem by posing the following question:

is measuring the level of agreement using KAPPA when different classifiers access data

items suitable for detecting concept drift? Therefore, the task is to signal concept drift

in less time and with less memory consumption, keeping the accuracy of the data stream

models constant.

Contents

Dedication 2

Statement of Authorship 3

Acknowledgements 4

Publications 5

Abstract 6

List of Figures 13

List of Tables 16

1 Introduction 1

1.1 Introduction . 1

1.2 Main Contributions . 3

1.3 Thesis Organization . 4

2 Research Problems and Motivations 7

2.1 Research Problems . 7

2.1.1 Problem I: Concept Drift Detection for Adaptive Learning 9

8

2.1.2 Problem II: Ensemble for Adaptive Learning 10

2.1.3 Problem III: Adapting Related Knowledge for Detecting Concept

Drift. 11

2.2 Motivations . 13

3 Research Methodology 15

3.1 Introduction . 15

3.2 Methodology of the Research . 15

3.2.1 Literature Review . 15

3.2.2 Data Collection and /or Generation Task 16

3.2.3 Design and Development . 17

3.2.4 Implementation . 17

3.2.5 Adjustment of Parameters, Experiments, and Discussion 18

3.2.6 Analysis . 18

3.3 Research Scope . 18

4 Data Stream Classification:

Background and Related Works 19

4.1 Background: Machine Learning . 20

4.1.1 Batch Setting . 20

4.1.2 Stream Setting . 20

4.1.3 Learning Modes . 21

4.2 Online Classification . 23

4.2.1 Data Stream Classification . 23

9

4.2.2 Assumptions . 23

4.2.3 Requirements . 24

4.2.4 The Cycle of Online Classification 25

4.2.5 Online Classification Algorithms 27

4.3 Adaptive Classification . 33

4.3.1 Concept Drift Phenomenon . 33

4.3.2 Concept Drift Adaptation Approaches 38

4.4 Related Work: Concept Drift Detection Techniques 39

4.4.1 Fully Supervised Concept Drift Detection Techniques 39

4.4.2 Semi-Supervised Learning Methods 48

4.5 Experimental Evaluation . 49

4.5.1 Evaluation Procedures for Data Streams 50

4.5.2 Data Stream Datasets . 52

4.6 Experimental Setup and Evaluation . 55

4.7 Applications . 57

4.7.1 Observing and Management . 57

4.7.2 Personal Assistance and Information Management 59

4.7.3 Decision Making . 60

4.7.4 Artificial Intelligence (AI) . 61

4.8 Summary . 61

5 Diversity Measure as a New Drift Detection Method in Data Streaming for the

Binary Classification Problem 64

10

5.1 Problem Statement . 64

5.2 Diversity Measure as a New Drift Detection Method (DMDDM) 66

5.2.1 Experimental Evaluation . 72

5.3 Fast Reaction to Sudden Concept Drift in the Absence of Class Labels

(DMDDM-S) . 81

5.3.1 Experimental Evaluation . 84

5.4 Summary . 87

6 A Hybrid Block-Based Ensemble Framework 90

6.1 Problem Statement . 90

6.2 Framework for the Multi-Class Classification Problem to react to different

types of drifts . 92

6.2.1 Online Drift Detector for the K-Class Problem (ODDK) 92

6.2.2 Hybrid Block-Based Ensemble (HBBE) 95

6.2.3 Experimental Evaluation . 98

6.3 Summary . 103

7 Adapting Related Knowledge for Detecting Concept Drift 105

7.1 Problem Statement . 105

7.2 Entropy in Data Streams . 107

7.2.1 Experimental Evaluation . 108

7.3 Inter-rater Agreement, k, in Data Streams 110

7.3.1 Experimental Evaluation . 114

7.4 Summary . 115

11

8 Conclusion and Future Work 117

8.1 Conclusions . 117

8.2 Future Work . 120

A Appendix: Pseudocodes of Online Learning Algorithms 122

A.1 Naive Bayes . 123

A.2 Decision Stump . 124

A.3 Hoeffding Tree . 125

A.4 Perceptron . 126

A.5 K-Nearest Neighbours . 126

B Appendix: Samples of Generated Datasets 127

B.1 SEA Generator (SEA) . 128

B.2 AGRAWAL Generator (AGR) . 129

B.3 Mixed . 130

B.4 Sine1 . 131

B.5 Sine2 . 132

B.6 Wave . 133

B.7 RBF GR . 134

B.8 Tree R . 135

B.9 Electricity (Elec) . 136

B.10 Airline . 137

References 138

12

List of Figures

1.1 Thesis Structure and Relationship Between Chapters. 6

2.1 A General Framework of Concept Drift Handling. 8

3.1 Thesis structure and relationship between chapters. 16

4.1 The Taxonomy of Learning Modes. 22

4.2 The Cycle of Online Classification. 26

4.3 Decision Stump Example. 28

4.4 Perceptron Structure. 31

4.5 Two types of drift: where instances are represented by circles and different

classes are represented by different colors. 36

4.6 Concept Drift Patterns . 37

4.7 Sliding window· The borders identify two different windows 42

4.8 Block workflow . 44

4.9 Illustration of the Evaluation . 56

5.1 Framework of DMDDM . 71

5.2 Delay Detection Rate . 78

5.3 False Alarm Rate . 79

13

5.4 Accuracy Rate . 79

5.5 Effect of Noise Rate . 79

5.6 Effect of Noise Rate . 80

5.7 Framework of DMDDM-S. 84

5.8 Changing DMDDM-S threshold (a,c,e) and the stability of each detector’s

accuracy (b,d,f). 88

6.1 The Framework of Hybrid Block-Based Ensemble 97

6.2 Memory Consumption . 99

6.3 Average Accuracy and Delay Detection (Wave dataset) 100

6.4 Average Accuracy and Delay Detection (SEA Dataset) 101

7.1 Changing DMDDM-S threshold (a,c,e) and the stability of each detector’s

accuracy (b,d,f). 115

A.1 Pseudocode of Naive Bayes . 123

A.2 Pseudocode of Decision Stump . 124

A.3 Pseudocode of Hoeffding Tree . 125

A.4 Pseudocode of Perceptron . 126

A.5 Pseudocode of K-Nearest Neighbours . 126

B.1 Sample of SEA Generator . 128

B.2 Sample of AGRAWAL Generator . 129

B.3 Sample of Mixed . 130

B.4 Sample of Sine1 . 131

B.5 Sample of Sine2 . 132

14

B.6 Sample of Wave . 133

B.7 Sample of RBF GR . 134

B.8 Sample of Tree R . 135

B.9 Sample of Electricity (Elec) . 136

B.10 Sample of Airlines . 137

15

List of Tables

4.1 Batch data versus streaming data . 21

4.2 Sample from the airlines dataset/ where Airline=A, Flight=F, Day of week=

DOW, Time=T, Length=L, Delayed=D. 36

4.3 Concept Drift Terminology . 38

4.4 Characteristics of Each Dataset. 54

5.1 The Correlation of a Pair of Classifiers (2 × 2) 67

5.2 Abbreviations of the Names of the Measures. 72

5.3 Results of Mixed dataset with 10% noise 74

5.4 Results of Sine1 dataset with 10% noise 75

5.5 Results of AGR dataset with 10% noise 76

5.6 Results of SEA dataset with 10% noise . 77

5.7 The results of the Electricity dataset . 78

5.8 Results of Sine1 dataset with 10% noise. 85

5.9 Results of Sine2 dataset with 10% noise 86

5.10 Results of Mixed dataset with 10% noise. 87

6.1 Output of a Pair of Classifiers (2 × 2) for the Binary Classification Problem. 93

16

6.2 Output of a Pair of Classifiers for the Multi-class Classification Problem . . 94

6.3 Results of Wave Dataset . 100

6.4 Results of SEA Dataset . 102

6.5 Classification accuracy of the different algorithms 103

6.6 Runtime of the different algorithms. 103

6.7 Memory usage of the different algorithms. 104

7.1 Comparison of EBE and prequential evaluation with and without concept

drift. 110

7.2 The Correlation of a Pair of Classifiers (2 × 2) 111

17

Chapter 1

Introduction

1.1 Introduction

As a result of the increasing number of uses of computer systems, huge volumes of digital

data associated with almost all aspects of living are collected either for storage or processing

reasons. From traffic management to stock indexes, from microblog articles to grocery

store checkouts, contemporary societies recordmassive datasets whichmight contain hidden

knowledge. However, as a result of the amount of the gathered information, this knowledge

can’t be extracted manually. This is why data mining techniques are recommended to

routinely discover interesting, non- trivial patterns from huge datasets [1–4]. Typical data

mining tasks are clustering, classification, and association mining, almost all of which have

been mastered for more than two decades.

A data stream may be considered an unbounded sequence of instances (e.g., phone

call records, site trips, sensor readings) that arrive continuously with time varying intensity.

Because of the speed and size of data streams, it is frequently impossible to store instances

or even process them a few times [5–8]. Examples of application domains where such

data needs to be prepared in streams include: network monitoring [9], banking [10],

traffic management [10], sensor networks [11, 12], disaster management [13], ecology

[14], sentiment analysis [15], object tracking [5], and robot vision [16]. The existence

of streaming information in this new category of uses has opened a fascinating line of

investigation issues, which includes novel techniques for data mining, known as data stream

mining.

There are three major obstacles to learning from data streams [7, 8, 17, 18]:

1

Chapter 1 Introduction

variability, size, and speed. The size and speed of data force algorithms to process them

despite a restricted amount of memory and time, while examining each incoming instance

only once [19–21]. Variability, on another hand, includes learning in environments that are

dynamic with changing patterns. The most commonly studied explanation of variability

in data streams is concept drift, i.e., changes in definitions and distributions of learned

concepts over time [1]. Such unforeseen changes are mirrored in new learning instances

which diminishes the accuracy of the algorithms trained from previous instances. For

instance, take the example of examining a stream of microblog content regarding a movie

in production. Upon changing the actor accountable for the key role, the stream of views

regarding the film can rapidly be unfavorable. This problem is usually viewed as being

concept drift in the sentiment of numerous groups of people. An algorithm trained on all

the available content will recommend an overly optimistic regular opinion about the film

[22, 23]. Thus, the data mining strategies which cope with concept drift are designed to

execute forgetting, adaptation, or drift detection mechanisms to be able to adjust to changing

environments. Additionally, based on the rate of these changes, concept drifts are generally

split into sudden, gradual, incremental, and recurring, almost all of which need different

responses [24, 25].

Generally speaking, supervised learning, unsupervised learning, and reinforcement

learning are the three common machine learning problems [26, 27]. Supervised learning

algorithms produce a predictive model working with labelled data which is widely known

as training data [28]. Next, the predictive model is used for labelling new instances.

Classification and regression are good examples of supervised learning where output labels

are discrete and continuous, respectively [29, 30]. Unsupervised learning finds hidden

patterns in unlabelled data. Clustering is a type of unsupervised learning that discloses

hidden patterns in data by grouping equivalent data points into distinct clusters [27]. The

discovered clusters might later be applied to identify labels for any classification task

[29]. Reinforcement learning produces smart agents which are able to get in touch with

their environments and consequently capture optimal actions. An agent learns to select

the optimal action by obtaining feedback, i.e., penalty or reward, from its surroundings

[31]. Although classification has been studied for many years in the fields of statistics,

pattern recognition, machine learning, and data mining [27, 32–35], streaming apps require

completely new, dedicated, learning strategies. This is due to the aforementioned speed,

size, and variability of data streams, with variability needing special steps in the context

2

Chapter 1 Introduction

of classification. To handle these difficulties, classifiers for evolving data streams can

make use of sliding windows, sampling techniques, drift detection strategies, and adaptive

ensembles [1]. In this thesis, our focus is on the classification task, especially in relation to

data streams in which instances continuously turn up over time. More information on the

extent of the effort is provided in Section 3.1.

Detection techniques and adaptive ensembles are typical methods for dealing with

concept drift in data streams and they also improve prediction accuracy. Ensemble

algorithms are sets of individual classifiers whose predictions are aggregated to generate

an ultimate decision [7, 36], while detection algorithms are individual classifiers in

which its accuracy predictions are maintained for examination in case there is a drift.

The characteristics, overall performance, and variations involving methods of ensemble

detection are the primary subject of this thesis.

1.2 Main Contributions

The main contributions of the thesis in advancing the state-of-the-art in the classification of

data stream mining are as follows:

1. The thesis advances novel methods for adaptive learning in concept drift detection. As

a result, two algorithms, named Diversity Measure As a New Drift Detection Method

(DMDDM) and Fast Reaction to Sudden Concept Drift in the Absence of Class Labels

(DMDDM-S)were developed and experimentally validated. The proposed algorithms

achieve higher than average predictive performance under sudden drift, the binary

class problem, and fully and semi-supervised classification compared to competitive

adaptive learning algorithms.

2. Based on the analysis of block-based ensembles and drift detections strategies,

the thesis contributes to the understanding of adaptive block-based ensembles and

online drift detection in general and the relations between their concept drift reaction

mechanisms in particular. As a result, A Hybrid Block-Based Ensemble Framework

for the Multi-Class Problem to React to Different Types of Drifts (HBBE) is developed

and experimentally validated. The proposed algorithm achieves higher than average

predictive performance under sudden, gradual, recurring, and multi-class problems

3

Chapter 1 Introduction

compared to competitive adaptive learning algorithms.

3. This thesis contributes to the understanding of adapting related knowledge through

using information entropy and KAPPA in concept drift detection. As a result,

Combination of Information Entropy and Ensemble Classification for Detecting

Concept Drift in Data Streams and KAPPA as a Drift Detector in Data Streams were

developed and experimentally validated.

Additionally, this thesis conducted large-scale comparisons of both concept drift

detection techniques and ensembles for mining data streams impacted by concept drift.

Particularly, 19 different configurations of concept drift detectors and ensemble approaches

are compared in regard to their ultimate accuracy and the accuracy of their concept drift

detection. Furthermore, each of these comparisons was conducted using a relatively large

number of synthetic datasets, with different types of concept drift versions of numerous

sizes, using two base classifiers, and each was run in the MOA framework.

1.3 Thesis Organization

The layout of this thesis (the chapters and also the corresponding research contributions)

and the connections between the chapters are shown in Fig 1.1. The primary content of

each chapter is summarised as follows:

• Chapter 2 The primary problems which are tackled in relation to this thesis are

presented in this chapter in addition to the general framework of concept drift. This

chapter also details the background to this research area and the research objectives.

• Chapter 3 This chapter discusses the seven steps in the research design and

methodology and highlights the methodical research approach followed in carrying

out this study. This includes the design and development of each approach proposed

in this thesis, in addition to a brief discussion of the solution.

• Chapter 4 This chapter 4 introduces the basic definitions and terminology. We

define the notion of classification, data streams, online processing, concept drift and

block-based ensemble. Moreover, we discuss the related work in the field of drift

reaction strategies and data stream classification, in particular drift detection and

ensemble classifiers for concept-drifting data streams.

4

Chapter 1 Introduction

• Chapter 5 This chapter focuses on the drift detection processing of data streams

and discusses the limitations of existing drift detection algorithms. We propose a

new drift detection technique for fully supervised classification, called the diversity

measure as a new drift detection method in data streaming (DMDDM), which aims at

reacting to sudden drifts in binary classification. In addition, we propose a new drift

detection for semi-supervised classification, called fast reaction to sudden concept

drift in the absence of class labels (DMDDM-S), which aims at reacting to sudden

drifts in binary classification. The proposed algorithms are experimentally compared

with state-of-the-art streaming methods in different drift scenarios.

• Chapter 6 This chapter focuses on the block-based processing of data streams and

discusses the limitations of existing ensemble classification algorithms. We propose

a new data stream classifier, called a hybrid block-based ensemble framework for

the multi-class problem, which aims at reacting equally well to several types of drift.

The proposed algorithm is experimentally compared with state-of-the-art streaming

methods in different drift scenarios.

• Chapter 7 This chapter focuses on understanding and adapting the related knowledge

using information entropy and KAPPA in concept drift detection. As a result, first

we propose an ensemble titled, combination of information entropy and ensemble

classification for detecting concept drift in data streams (EBE), which aims at reacting

to sudden and gradual drifts in labelled data. Second, by measuring the inter-rater

agreement between the successful predictions and the statistical distribution of the

data classes, a simple and efficient drift detector called KAPPA as a drift detector in

data streams is developed and experimentally validated.

• Chapter 8 This chapter summarizes the contributions of this thesis and concludes

with a discussion on lines of future research in the field of data stream classification.

5

Chapter 1 Introduction

CHAPTER 1.

Introduction

CHAPTER 2.

Research Problems and

Motivations

CHAPTER 5.1.

Supervised Drift

Detection (DMDDM)

CHAPTER 5.2.

Semi-Supervised Drift

Detection (DMDDM-S)

CHAPTER 6.1

Online Drift Detector

(ODDK)

CHAPTER 6.2

Hybrid Block-Based

(HBBE)

CHAPTER 7.1

Entropy Based

Ensemble (EBE)

CHAPTER 7.2

KAPPA for Drift

Detection

CHAPTER 8.

Conclusion and Future

Research

RC1. Binary

Drift

Detection

RC2. Multi-

Class Drift

Detection

RC3. Using

Entropy and

KAPPA as Drift

Detection

CHAPTER 3.

Research Methodology

CHAPTER 4.

Data Stream

Classification:

Background and

Related Works

Figure 1.1: Thesis Structure and Relationship Between Chapters.

6

Chapter 2

Research Problems and Motivations

2.1 Research Problems

Conventional machine learning has two primary components: training/learning and

prediction. Research on machine learning under concept drift comprises three innovative

components: concept drift detection (whether or not drift happens), drift understanding

(when, in which, and how) and drift adaptation (reaction to the presence of drift). The most

commonly used techniques for learning from streaming data in the presence of concept drift

are illustrated in Fig 2.1.

Numerous scientific studies in the area of concept drift have been conducted over

the last ten years. Recent research targets more difficult problems, i.e., how to accurately

detect concept drift [37–39]; how to efficiently understand concept drift in ways that may

be detected [40, 41], and also how to efficiently respond to concept drift by adapting

related knowledge [8, 42], thereby endowing prediction and decision making with the

essential adaptability in a concept drift environment. Moreover, stream learning poses

more challenges due to time and storage limitations. The trade-off between computational

costs and learning accuracy is also an essential requirement which must be dealt with for

real-world applications [43–45]. Since learning accuracy is not the sole evaluation metric

to determine the efficiency of learning models, how to efficiently tackle concept drift in a

rapid and low computational resource environment is vital.

These innovative results greatly enhance research in artificial intelligence and

data science overall, and in pattern recognition and data stream mining particularly.

Additionally, in a current technical report from Berkeley [46], acting in continual learning

7

Chapter 2 Research Problems and Motivations

and dynamic environments continues to be viewed as one of nine research opportunities

which will help address the current AI research challenges.

Training and
learning Prediction Yes

No

Drift Detection
Drift

Understanding
Drift

Adaptation
Stream	Data

Learner	Based

Distribution	Based	

Multi-hypotheses	
test

When

Where

How

Instance	Selection	and
Weighting

Incremental
Learning

Ensemble	learning

Single
model

updatingThe	most	commonly	used
combinations

	for	handling	concept	drift	in	the
literature

The	difference	between		conventional	data	stream
	learning	and	learning		with	the	presence	of	concept	drift

Figure 2.1: A General Framework of Concept Drift Handling.

Hence, this thesis focuses on handling the main research problems related to

detection techniques and adaptive ensembles for evolving data streams. Firstly, to boost

the quality of concept drift detection, we present novel drift detection methods for binary

classification (fully supervised and semi-supervised) which reacts quickly and accurately to

concept drift, consuming little time and memory compared to various other drift detectors.

Second, to properly understand the different ways to detect concept drift, we present an

adaptive ensemble learning algorithm for the multi- class problem which is able to respond

to various kinds of concept drift. Thirdly, to successfully respond to drift by adapting

related knowledge, we apply information entropy and KAPPA which is a highly effective

method of computing uncertainty in data streams and is also able to discover concept drift

in a reliable, fast and computationally effective way. The solutions to these three research

problemswill enable concept drift to be handled effectively in a rapidmanner, usingminimal

computational resources.

We -discuss each research problem in the following subsections.

8

Chapter 2 Research Problems and Motivations

2.1.1 Problem I: Concept Drift Detection for Adaptive Learning

Learning from evolving data streams is difficult due to distributional changes, i.e., the

concept drift event. Learning algorithms have to adjust to the latest distributions to try

to keep the classification error rate low. Drift detection methods, as the key part of adaptive

learning algorithms, are accountable for detecting concept drift with the least delay the

minute they appear in data streams. According to [8], a predictive model in a non-stationary

environment should be able to achieve the following four requirements: (i) diagnose concept

drift in a short time, (ii) differentiate interference from drift and be adaptive to change but

robust to noise, (iii) operate in less time than new data appears and (iv) make use of no more

than a constant amount of memory. An excellent data stream model/classifier should have

these four abilities.

An adaptive learning algorithm must obtain better accuracy compared to a non-

adaptive algorithm to be seen as good for a learning undertaking from an evolving data

stream. We provide the research problem and its objective as follows:

Research Problem 1.1: Will the classification accuracy of data stream models

reduce due to the concept drift phenomenon in evolving data ? Therefore, the task is to signal

for concept drift in less time and with less memory consumption, keeping the accuracy of

the data stream models constant.

Research Objective 1.1: To propose a novel concept drift detection method which

detects concept drift more accurately andwith less time andmemory consumption compared

to the other drift detectors. To do this, we empirically compare our proposed drift detection

method with the existing ones using synthetic and real-world data streams considering

different performance measures, e.g., detection delay, true detection, memory and accuracy.

According to the authors of [47], most of the existing drift detection methods are

based on fully supervised learning and assume that the entire incoming data stream is

completely labelled and these labels can be used instantly. These methods have proven

their effectiveness in their application/domain. However, in real-world scenarios, labelled

data are not always available or are costly to obtain and time consuming. Therefore, in an

environment where incoming data streams appear at high speed, it is not always possible to

manually label all the data as soon as they arrive. Semi-supervised learning could solve this

9

Chapter 2 Research Problems and Motivations

problem by using labelled and unlabelled data together for the learning process.Detecting

concept drift in a semi-supervised environment has received little attention from the research

community [47]; thus, the main contributions of this part of the thesis can be summarized

as follows:

Research Problem 1.2: Can a lack of class labels aggravate the problem of concept

drift detection in data streams? Therefore, in the absence of class labels, the task is to signal

concept drifts in less time and with less memory consumption, keeping the accuracy of the

data stream models constant.

Research Objective 1.2: To propose a semi-supervised drift detection method

which detects concept drift in the absence of class labels more accurately, compared to

other fully supervised drift detectors.

We introduce our diversity measure as a new drift detectionmethod in data streaming

(DMDDM), and fast reaction to sudden concept drift in the absence of class labels

(DMDDM-S) to address the aforesaid research problems in Chapters 5.

2.1.2 Problem II: Ensemble for Adaptive Learning

The problem with changing the definitions of classes over time is that it decreases the

performance (accuracy) of a predictive model which has been trained using old instances

[7, 48]. Also, processing the multi-class problem is computationally more expensive,

particularly in the presence of concept drift in data streams where the data is changing over

time, and this aggravates the problem of a loss of performance during the process of drift

detection in data streams [49]. A solution for these problems is a mechanism which uses

continuous diagnostics of concept drift. Then, upon detection of concept drift, a process of

updating the model to maintain the classification performance is required.

Research Problem 2.1: How can DMDDM detect concept drift in multi-class

classification? The task is to signal concept drifts in less time and with less memory

consumption, keeping the accuracy of the data stream models constant.

Research Objective 2.1: To devise a new formalism that facilitates a way to

detect concept drifts in the multi-class problem with more accuracy and less time memory

consumption compared to other drift detectors. To do this, we empirically compare our

10

Chapter 2 Research Problems and Motivations

proposed drift detection method with the existing ones using synthetic and real-world data

streams, considering different performance measures, e.g., detection delay, true detection,

memory, and accuracy.

Research Problem 2.2: Can we use the block-based ensemble approach to enhance

the reaction to sudden drifts and respond to different types of concept drift? Therefore, the

task is to keep the accuracy of the data stream models constant.

Research Objective 2.2: To devise a hybrid block-based ensemble which is a

framework for multi-class classification in evolving data streams. To do this, we empirically

compare our proposed framework with the existing ones using synthetic and real-world data

streams, considering different performance measures, e.g., memory, time and accuracy.

We introduce the proposed hybrid block-based ensemble framework for the

multi-class problem to react to different types of drifts (HBBE) to address the aforesaid

research problem in Chapter 6.

2.1.3 Problem III: Adapting Related Knowledge for Detecting

Concept Drift.

In the ensemble environment, it is well known that the performance of each component

classifier is evaluated by estimating its expected prediction error on the examples from the

most recent data chunk. After substituting the poorest performing component, the remaining

ensemble members are updated, i.e. incrementally trained, and their weights are adjusted

according to their accuracy. Dynamic weighted majority (DWM) [50] is a method that is

based on an ensemble classifier. In DWM, a set of incremental classifiers are weighted

according to their accuracy after each incoming example. This method can add and remove

classifiers according to the algorithm’s global and local performance. For example, if the

ensemble commits an error, classifiers are added. If one classifier commits an error, its

weight is reduced. If after many examples, a classifier continues to achieve low accuracy,

it is removed from the ensemble. Furthermore, after a period of predictions p the entire

ensemble is evaluated and, if needed, a new classifier is added to the ensemble.

However, with its mechanism of creating a new classifier and training it for every

new block of data, the approach has a high computational cost. In addition, one of the main

11

Chapter 2 Research Problems and Motivations

disadvantages of evolving the ensemble of classifiers is that it builds a new classifier for

every batch of new data. This results in the high usage of memory.

• Research Problem 3.1: Is measuring uncertainty in data streams instead of the

classifier’s error rate suitable for detecting concept drift in a reliable, fast, and

computationally efficient way? Therefore, the task is to keep the accuracy of the

data stream models constant.

• Research Objective 3.1: To propose a model called entropy-based ensemble (EBE)

which is based on incorporating entropy as a drift detector into the ensemble in a

reliable, fast, and computationally efficient way. To do this, we empirically compare

our proposed framework with the existing ones using synthetic and real-world

data streams, considering different performance measures, e.g., memory, time and

accuracy.

Additionally, since data class distributions may change through the progress of the

stream, KAPPA provides better insight to detect any data class distribution changes. This is

because KAPPA is a strict measure that quickly drops in the case of incorrect predictions,

making it much more useful rather than using accuracy/ error-rate which only introduce

small changes. Second, the main reason to address concept drift is due to changes/drifting in

data class distribution as the stream progresses. Therefore, KAPPA is capable of capturing

the competence of the components, reflecting the possibly varying data class distribution

with time [51, 52]. In other words, different to the disagreement measure that is used in

Problem I, measuring the level of agreement when different classifiers access data items is

suitable to detect concept drifts.

• Research Problem 3.2: Contrary to the disagreement measure that was used in

Chapter 5, is measuring the level of agreement usingKAPPA suitable to detect concept

drift when different classifiers access data items? The task is to signal concept drift in

less time and with less memory consumption, keeping the accuracy of the data stream

models constant.

• Research Objective 3.2: To propose a drift detector based on KAPPA calculations.

To do this, we empirically compare our proposed drift detector with our proposed

drift detector from Problem I using synthetic data streams, considering different

performance measures, e.g., delay detection, true positives and the mean accuracy.

12

Chapter 2 Research Problems and Motivations

We introduce our combination of information entropy and ensemble classification

for detecting concept drift in data streams (EBE) and KAPPA as the drift detector in data

streams to address the aforesaid research problems in Chapters 7.

2.2 Motivations

After detailing the research problems and the analysis objectives, we now address our

motivations for each research problem as follows:

• The Need for Accurate Drift Detection Methods (Problem I) - Learning adaption

is essential in evolving uses, such as, but not limited to, medication, nuclear reactors,

self-driving automobiles and smart cities, otherwise it will be unavoidable that a high

price will be paid in regard to individual lives, horrific accidents and green threats.

Hence, blindly retraining certain time factors isn’t a suitable option because it doesn’t

ensure the accurate and immediate detection of concept drift, and subsequently, an

essential reaction. Therefore, detection methods which are capable of responding

promptly to concept drift are needed together with the minimal computational

resource. The existing techniques show poor overall performance in our preliminary

assessments and earlier research studies, and this observation motivated us to develop

new drift detection techniques to detect concept drift successfully.

• Ensemble approaches that process instances in blocks might not respond to

abrupt changes sufficiently quickly (Problem II) - To do this, we propose a hybrid

block-based ensemble paradigm which is designed to put together the finest online

drift detector and also block-basedweighting in an effort to respond to various kinds of

drift. Hence, we were motivated to propose a hybrid block-based ensemble (HBBE),

which is a supervised multi-class classification framework for classifying evolving

data streams. Moreover, the issue of changing the definitions of classes after a while

reduces the performance (accuracy) associated with a predictive model which has

been trained utilizing old instances. Likewise, processing the multi-class problem

is computationally more costly, especially in the presence of concept drift in data

streams in which the data is changing as time passes, which aggravates the issue of

a loss in performance throughout the process of drift detection. This motivated us

to suggest a drift detection method for the multi-class issue which satisfies the four

13

Chapter 2 Research Problems and Motivations

requirements.

• The classifier’s error rate and the ensemble are utilized in the majority of the

prior works to deal with classification accuracy as a criterion to judge whether

concept drift is occurring or not. (Problem III) - Information entropy is an

excellent method of computing anxiety and it is well suited to discover concept drift

in a reliable, fast and computationally effective way. Therefore, this motivates us to

propose the model known as the entropy-based ensemble (EBE) which is based on

including the entropy as a drift detector in the evolving ensemble.

14

Chapter 3

Research Methodology

3.1 Introduction

We follow an incremental methodology in this thesis comprising seven tasks as depicted

in Fig. 3.1. We begin with the literature review and the data collection and generation

task. We then design our drift detection methods for adaptive learning and the ensemble

combined with an online drift detection method. The next tasks were parameter tuning,

conducting the experiments and presenting the discussion. The analysis task plays an

influential role because we discuss the pros and cons of the existing methods which guides

our developments. Finally, the process is not like a queue where tasks are completed

one after the other, but rather, they are like a lattice where all the tasks are completed

interactively.

3.2 Methodology of the Research

The methodology of this research work is outlined as follows:

3.2.1 Literature Review

In this stage, we review the background to this work and present a review of the literature

related to this research. The review covers the following:

1. The fundamental concepts and background of machine learning and how this differs

15

Chapter 3 Research Methodology

Figure 3.1: Thesis structure and relationship between chapters.

from data stream mining are thoroughly reviewed. The literature review includes the

different learning approaches and learning modes which are available for each setting.

Furthermore, since the main focus of this thesis is classifying evolving data streams,

we review the fundamental concepts regarding online classification with a focus

on data stream classification which includes commonly used online classification

algorithms such as naive Bayes, decision stump, Hoeffding trees, perceptron, and

K-nearest neighbours.

2. Adaptive classification in terms of the concept drift challenge, the formal definition

and patterns are thoroughly reviewed. This includes several approaches emphasizing

handling the problem of concept drift in data streams by categorising drift detection

methods as either statistical-based, window-based or ensemble-based.

3. The final step of the literature review is devising the research questions and objectives

that will address the gap in the literature.

3.2.2 Data Collection and /or Generation Task

In this stage, we collect and generate synthetic and real-world data stream datasets that

are widely used to evaluate the performance of the online and adaptive learners. For the

synthetic dataset, we use the SEA Generator (SEA), AGRAWAL Generator (AGR), Mixed,

Sine1, Wave, RBFGR and TreeR, while for the real-world datasets we use the Electricity

16

Chapter 3 Research Methodology

and Airlines datasets. We describe the characteristics of the synthetic and real-world data

streams in Section 3.5.2.

3.2.3 Design and Development

After reviewing the literature and collecting/generating the required datasets, in this stagewe

start designing and developing approaches to handle concept drift based on the predefined

research questions:

1. Based on the literature analysis of drift detections strategies, we design a novel

drift detection method that reacts accurately and quickly to concept drift. As a

solution for fully and semi-supervised environments, the disagreement measure as

a diversity measure of a pair of classifiers is designed to detect concept drift in a

binary classification problem and under sudden drift, as detailed in Chapter 5.

2. Based on the analysis of block-based ensembles and drift detections strategies, we

design a hybrid framework of adaptive ensemble learning which brings together the

best of the online drift detectors and block-based weighting with a view to enhancing

the reaction to sudden drifts and responding to other types of concept drift, as detailed

in Chapter 6.

3. We design an ensemble that adapts information entropy to detect concept drift. In

addition, we also propose an approach using KAPPA as a drift detector, as detailed in

Chapter 7.

To address the main challenges associated with processing a data stream, we ensure that in

achieving the above aims, we devise effective methods to handle concept drift in a fast and

low-computational resource environment which are better than the state-of-the-art.

3.2.4 Implementation

In this stage, the proposed drift detection methods and the ones used for comparison are

implemented. MOA, a framework for data stream mining developed in Java, is used for

implementation.

17

3.2.5 Adjustment of Parameters, Experiments, and Discussion

In this section, we discuss the adjustment of the parameters and the experimentation. The

parameter adjustments and the experimental setup are discussed in Section 4.6.

3.2.6 Analysis

In this section, we analyse the existing methods in the literature and discuss their advantages

and disadvantages.

3.3 Research Scope

• Thesis focus – The primary focus of this thesis is on classification and adaptation in

evolving streaming data.

• Data characteristics – The data streams used in our experiment are essentially

cross-sectional data. That is, we performed our experiments on data streams.

Furthermore, the data streams are assumed to be fully labelled and partially labelled

(50%). We suggest the challenges imposed by delayed labels, unlabelled instances,

and time-series data are future work.

• Experiments – Our experiments are conducted on synthetic and real-world data

streams which are frequently used in the literature [48, 53–57]. The data streams

contain numerical or categorical attributes. Concept drift may appear abruptly or

gradually in the synthetic data streams. We added noise to the synthetic data streams to

confirm that our methods are robust against noisy data. Please note that drift detectors

are beneficial if they distinguish concept drift from noise [8, 17, 58]. Finally, we

process only one single stream per task.

• Evaluation – We consider drift detection delay, false positive and false negative

rates, runtime, memory usage and classification accuracy to assess the drift detection

methods for adaptive learning. As for ensemble learning, we study classification

accuracy, memory usage and runtime.

Chapter 4

Data Stream Classification:

Background and Related Works

Recently, a lot of research has focused on data streams and the problem of concept drift.

Researchers have classified concept drift changes according to their frequency, speed, and

severity, and many drift detection mechanisms have been proposed. Moreover, research

on concept drift combined with effective stream processing methods has resulted in the

improvement of numerous classification algorithms designed to deal with evolving data,

for example: sliding window, online algorithms, drift detection strategies, and adaptive

ensembles.

This chapter provides basic definitions and reviews the existing works related to

the field of data stream classification. The subsequent sections are organized as follows.

Section 4.1 introduces the background of machine learning in terms of batch settings and

learning modes. The basic terminology concerning classification, data streams, and online

processing is given in section 4.2. In Section 4.3, we formally define the problem of concept

drift and discuss several concept drift adaptation approaches. In Section 4.4, we discuss

state-of-the-art works in the field of drift reaction strategies and data stream classifiers.

Section 4.5 details the experimental evaluation in terms of the classification measures, the

drift detection measures, the resource consumption measures, and the datasets. Finally, the

experimental setup and applications are presented in Sections 4.6 and 4.7, respectively.

19

Chapter 4
Data Stream Classification:

Background and Related Works

4.1 Background: Machine Learning

In the field of artificial intelligence, machine learning involves research and the

advancement of computational models to enhance their performance with the ability to

acquire knowledge on their own [59]. Examples of activities that can be performed

by machine learning techniques are prediction, classification and recognition to name a

few. Machine learning may occur in either a batch environment or a stream environment.

Conventional machine learning algorithms and strategies were developed depending on the

batch environment in the late 1990s. when action in relation to online learning, which

includes data stream mining, started as the outcome of rapidly growing data. Various

learning techniques have been devised for every environment. We explain each setting in

the next subsections.

4.1.1 Batch Setting

The batch setting assumes data need to be gathered and preprocessed which means data are

stored, static, and reside within the memory. The actual size of data could be in the order

of hundreds or perhaps much less. Therefore, to determine the most effective utilization

of a dataset, it can be processed several times for the learning task. The user will often

find there is no memory or runtime restrictions in relation to batch learning [60]. The

concept of learning is stationary, i.e., the distribution of data doesn’t change/transform.

Ultimately, the learning process runs in an offlinemode. In other words, the learning process

is implemented after data collection. No process is conducted throughout the learning phase

and also, once the learning phase is finished, the system cannot be enhanced or altered.

4.1.2 Stream Setting

Streaming data is a sequence of data samples which arrive very rapidly in large volumes.

Every sample is handled only once and is then discarded. Learning algorithms might deal

with this restriction by buffering samples for a short term for potential training or testing

[8]. Accommodating all of the data in the primary memory isn’t feasible, so the learning

process must be undertaken quickly in a near real-time fashion [61, 62]. Furthermore, the

20

Chapter 4
Data Stream Classification:

Background and Related Works

Table 4.1: Batch data versus streaming data

Batch data Stream data
Offline Real time

Slow data generation Rapid data generation
Persistent data Transient data

Process entire data Process samples of data
Constant availability Limited availability

Complex techniques used if
required Linear techniques widely used

Fixed size Unbound in size
Random access Sequential access

Known data characteristics Unpredictable data characteristics

concept of learning could change as time passes because of the evolving character of the

environment. In this setting, learning occurs in an online or incremental way. We summarize

the aforementioned settings in Table 4.1. Recall that the size of data is in the order of

hundreds in the batch environment, whereas it is in the order of over a million in the data

stream environment. Regarding the number of scans, data might be handled many times

in the batch environment. On the other hand, data are usually handled in one round in the

data stream environment because of the restricted memory bottleneck. Memory, time, and

the concept of learning are the three essential dimensions of stream mining which a learning

algorithm needs to address or else it might not be appropriate for the learning process. Lastly,

the mode of learning is incremental for data stream mining.

In the following subsection, we compare in detail the offline and online learning

modes.

4.1.3 Learning Modes

We detail the taxonomy of machine learning modes in Fig. 4.1. Machine learning has two

common modes, namely batch and online learning, as follows:

• Batch Learning / Offline Learning: Batch learning algorithms are utilized for the

batch setting, in which the data are finite, static, and already preprocessed for the

data mining process [31]. A batch learning process comprises two phases, namely (1)

learning, in which a classification model is constructed, and (2) classification, where

the classification model is evaluated and utilized for labelling new instances. The

learning stage is commonly known as the training stage in the literature. There is no

21

Chapter 4
Data Stream Classification:

Background and Related Works

Learning	
Modes

Batch	/	Offline Online	/	
Incremental

StationaryEvolving

Figure 4.1: The Taxonomy of Learning Modes.

more learning, once a model has been trained [63].

• Online/Incremental learning: Online/incremental learning algorithms are applied

in the data stream setting in which a large volume of data arrive quickly

instance-by-instance. An incremental algorithm revises its classification model by

processing instances one at a time. Instances may be buffered later. Because

incremental learners should act in real-time as opposed to batch learning, the training

and tests phases occur together continually [19, 48, 64]. Even though incremental

learning and online learning are usually applied interchangeably in the literature,

online learning is a type of incremental learning in which every instance is handled

only once and is then thrown away [8]. Learning may take place in either stationary

or evolving environments. In the former case, the classification models are kept

up to date through completion, whereas in the latter case, they are updated by both

completion and adaptation. Completion demonstrates the new instances, followed

by the identical distribution of earlier ones into the model, while adaptation handles

concept drift, generally, by retraining the model from zero. The reader must be

aware that the online learning terminology is interchangeably employed for stationary

learning in the literature when both concept drift and adaptation are missing.

Recall that the primary emphasis of this thesis is on the classification and adaptation

of evolving data streams, as discussed with Section 1.3. We detail the basic concepts relating

to online classification and adaption in Sections 4.2 and 4.3, respectively.

22

Chapter 4
Data Stream Classification:

Background and Related Works

4.2 Online Classification

As previously discussed, we classify the learning tasks into two groups of batch/offline

learning and incremental/online learning and then describe each in detail. We then compare

two modes of learning, i.e., adaptive learning and stationary learning. Adaptive learning

intrinsically shares essential concepts with (stationary) online learning, so we review the

required notions for online classification in this section and describe adaptive learning in

Section 4.3.

4.2.1 Data Stream Classification

Data stream classification is the process of constructing a model and utilizing the readily

available data (i.e., the training data) to predict the labels of unseen examples. We provide

the formal definition of data stream classification as follows:

Let stream S be a sequence of instances as (x1, y1), (x2, y2), ..., (xt, yt), arriving one

after another over time. The pair (xt, yt) belongs to an instance at time t, in which xt is a

vector which has the values of k attributes as x = (x1, x2, ..., xk), and yt is a class label

coming from a limited set ofm class labels as yt ∈ {c1, c2, ..., cm}. Suppose there is a target

function yt = f(Xt) that maps an input vector to a class label. The learning process is

usually to incrementally build a model f̃ which approximates function f while instances are

dealt with. An approximation whichmaximizes the classification accuracy is necessary.

For data stream classification, several assumptions are made about the dynamics of

data streams. We discuss these assumptions in Section 4.2.2. Incremental learners must

also comply with four fundamental requirements for all data stream classification tasks

as discussed in Section 4.2.3. Finally, we detail the cycle of data stream classification in

Section 4.2.4.

4.2.2 Assumptions

In general, there are six essential assumptions which are presently held for the task of data

stream classification in the literature [61, 62]. These assumptions are as follows:

23

Chapter 4
Data Stream Classification:

Background and Related Works

• A data stream possesses a fixed range of attributes. A large number of attributes might

impede the learning process as well as increase memory utilization.

• The total number of instances or records is considerable compared to the number of

attributes. In reality, learning algorithms claim to have the ability to deal with an

infinite amount of data while not consuming memory resources.

• The number of class labels should be small. More class labels bring in additional

statistics for inducing a classification model [61]. As a consequence, considering that

the values of the statistics are continually updated over time, mining a data stream

with a lot of classes is computationally costly, which grows linearly in computational

complexity with the number of classes.

• The size of the data is usually bigger than the accessible memory. Thus, loading all

of the data into memory is not doable

• The learning algorithms have to undergo both training and testing phases in close to

real-time since instances of data streams arrive extremely quickly.

• The concept of learning is always assumed to be fixed or evolving. Concept drift

occurs if the underlying distribution of data changes.

The first three assumptions focus on the dynamics of data streams, whereas the last

three assumptions refer to what learning algorithms must look in relation to classification

against data streams.

4.2.3 Requirements

The primary challenges for data stream classification are enforced through the restricted

amount of computational resources and also the concept drift event. Classification

algorithms have to meet the following four fundamental requirements to make the learning

task from data streams feasible [61, 62, 65]:

• Requirement One (R1): handle an instance at a time and examine it only once –

Recall which instances of a data stream arrive one after another and they are handled

only once in the order of appearance. In other words, random access to the instances is

24

Chapter 4
Data Stream Classification:

Background and Related Works

not doable. An instance is thrown away once it has been handled. While this is a vital

necessity for data stream mining, a learning algorithm can internally store instances

for a short time for additional usage without violating Requirement 2.

• Requirement Two (R2): use a restricted amount of memory – The reason

for training classification models incrementally is because the size of the data is

considerably bigger than the size of the available memory. That is, a large amount

of data cannot be stored in a limited memory. Thus, an upper bound needs to be

determined over the memory utilization to avoid potential memory exhaustion. A

learning algorithm might use the primary memory to maintain the current model.

• Requirement Three (R3): handle an instance in a restricted amount of time –

Learning algorithms must approach instances as quickly as they arrive. That is, the

learners have to process instances more quickly than the speed of the arriving data.

Any kind of breakdown unavoidably results in a loss in information. Hence, a top

bound needs to be set in relation to how much time is allotted for processing an

instance.

• Requirement Four (R4): be prepared to predict at any point – A recommended

learning algorithm establishes a classification model which is in a position to predict

the label of unseen instances in a short amount of time. Therefore, prediction at any

point means a class label is accessible at any point of time, which is essential for data

stream classification.

4.2.4 The Cycle of Online Classification

We present the data stream classification cycle in Fig. 4.2. It incorporates three stages,

namely processing, learning, and utilizing [61], detailed as follows:

• Processing: This stage is fully compliant with Requirement 1 where instances of

streaming data are prepared, after which, they are transferred to the learning stage.

• Learning: The learning algorithm updates its predictive model by training each new

instance. It is additionally guaranteed that Requirements 2 and 3 are not violated by

not exceeding the memory or runtime bounds.

25

Chapter 4
Data Stream Classification:

Background and Related Works

• Utilizing: The model is utilized to predict the class labels of unseen instances.

Requirement 4 can be met by ensuring the model is ready for prediction

1.	Processing	
R1

2.	Learning
R2	and	R3

3.	Utilizing
R4

Figure 4.2: The Cycle of Online Classification.

26

Chapter 4
Data Stream Classification:

Background and Related Works

4.2.5 Online Classification Algorithms

This section presents several of the widely used classifiers recommended for stationary

data which fulfil standard stream mining requirements, i.e., they have the characteristics

of an online learner as well as some kind of forgetting mechanism. Additionally, a few

algorithms which are able to process data sequentially but don’t adapt can be improved

to respond to changes and are regularly applied as benchmarks in the data stream mining

literature [48, 57, 66–68]. We address Naive, Bayes, Decision, Stump, Hoeffding, Trees,

Perceptron and K-Nearest Neighbours algorithms. We explain these algorithms in the

following subsections.

Naive Bayes

The Naive Bayes algorithm is based on Bayes’ theorem and computes class-conditional

probabilities for every new example [29]. Bayesian procedures are able to learn

incrementally and also need constant memory. Nevertheless, Naive Bayes is a lossless

classifier, which means it ”produces a classifier functionally equivalent to the corresponding

classifier trained on the batch data”. To incorporate a forgetting mechanism, sliding

windows are generally used to ”unlearn” the earliest examples. An individual Naive Bayes

model will usually not be as accurate as more complex models [29]. Nevertheless, Bayesian

networks, which are usually much more advanced and offer much better outcomes, are

usually suitable for the data stream setting; it is only necessary to dynamically learn their

framework. Lastly, the Naive Bayes algorithm is sometimes a subcomponent of more

complex strategies like decision trees for data streams. The pseudocode of the incremental

Naive Bayes algorithm is presented in Algorithm A.1

Decision Stump

A decision stump models a single level decision tree [69], i.e., a decision stump is a decision

tree together with the root node. A decision stump constitutes a prediction working with the

values of an attribute which is given as the root. For instance, Fig. 4.3 presents a decision

stump for predicting whether an individual plays a game outside according to the humidity

level. Decision stumps are also called 1-rules algorithms [70].

27

Chapter 4
Data Stream Classification:

Background and Related Works

Humidity

NO Yes

High Normal

Figure 4.3: Decision Stump Example.

Taking into account the kind of the attribute given as the root, some cases are

feasible: (1) for nominal attributes, one could create a stump that has a leaf for every likely

value [71] or maybe a stump with two leaves, one which corresponds to a selected group,

and the other which corresponds to each additional group. The missing value might also

be handled as an additional group (2). For a continuous attribute, typically, a threshold

is determined and also two leaves are held by the stump for values below and above the

threshold. It is also possible to have multiple thresholds, and also as an outcome, the stump

could contain 3 or more leaves. Fig. 4.3 presents a decision stump where the attribute

‘Humidity’ is selected as the stump.

Attribute selection procedures are used to discover an attribute as the stump.

Attribute selection procedures are employed to rank the attributes depending on their

informativeness to construct a decision tree in a top-down manner. That is, the most helpful

attribute is selected as the root. Other attributes comprise the other levels of the tree [29].

In the same way, in a decision stump, the attribute with the highest ranking is selected as

the stump.

In relation to an incremental learning scenario, when instances are handled, we have

to upgrade the data necessary for the attribute choice methods. Assuming information gain

as the attribute selection measure, complete entropy and the entropies of all attributes are

kept up to date while instances are processed one-by-one. Lastly, the attribute together with

the highest gain is considered as the stump, which is utilized to predict the label of a new

example. We demonstrate this approach in Algorithm A.2.

28

Chapter 4
Data Stream Classification:

Background and Related Works

Hoeffding Trees

The work in [19] introduced the Hoeffding tree for learning from extremely large,

and possibly infinite, data streams. The Hoeffding Tree algorithm mines data streams

incrementally without keeping instances in the main memory and builds potentially very

complex decision tree models with an affordable computational cost.

The Hoeffding tree algorithm is founded on the observation made in [72], which

states that a small subset of available instances, as a training set, may be sufficient to find

the best attribute as a test node in a decision tree. That is, the Hoeffding tree considers the

early instances for choosing the root test and once the root attribute is chosen, the succeeding

instances are passed down and used for choosing the appropriate attributes as the test nodes

in the next levels. The Hoeffding tree guarantees with a high probability that the attribute

chosen as a node after processing n examples is the same as the one which would have been

chosen after processing infinite examples. In this case, [19] applied the Hoeffding inequality

[73] to find the best attribute as a test node.

Let function G(Xi) be an attribute selection measure, e.g., information gain, which

is used to select test attributes, i.e., the nodes of the tree. AssumeG is to be maximized, and

let Xa be the attribute with the highest observed G after seeing n examples, and Xb be the

second-best attribute. Let∆Ḡ = Ḡ(Xa)− Ḡ(Xb) be the difference between their observed

values. Given a desired confidence level δ, the Hoeffding bound guarantees that Xa is the

correct choice if ∆Ḡ > ε, where ε is calculated by:

ε =

√
R2

2n
ln 1

δ
(4.1)

The range R is equal to 1 for probability, and equal to log(|C|) for information gain

where |C| is the number of classes. [19] proved that the Hoeffding tree algorithm generates

trees that are asymptotically close to the ones produced by a batch learner. Note that when

two or more attributes have very close G’s, many examples are potentially needed to decide

between the attributes to find the best split. This is wasteful because it makes little difference

to the quality of the tree. Hence, the Hoeffding tree determines that there is a tie between

attributes, and they are split on the current best attribute if ∆Ḡ < ε < τ , where τ is a

user-specified threshold. The pseudocode of the Hoeffding Tree is available in Algorithm

29

Chapter 4
Data Stream Classification:

Background and Related Works

A.3.

Perceptron

The classic perceptron algorithm is used for binary classification [74]. The algorithm

compares a weighted sum of inputs with a threshold to determine the output. The output

is 1 when the summation is greater than or equal to the threshold, and 0 otherwise. Fig.

4.4 presents the general structure of a Perceptron network, where an instance x with k

attributes, i.e.,X = (x1, x2, x3, ..., xk), is fed to the perceptron. Each attribute is associated

with a weight. The weighted sum of inputs, i.e.,
∑k

n=1Wixi, is computed by the input

function, and the result is sent to the activation function as input. The weighted sum

may also be calculated in a vectorized way as W TX where W is a weight vector as

W = (w1, w2, w3, ..., wk). Following [67], we use the Sigmoid function as the activation

function in our perceptron algorithm. It is worth mentioning that perceptron can be used to

model linearly separable functions [75]. The pseudocode of the perceptron is available in

Algorithm A.4.

30

Chapter 4
Data Stream Classification:

Background and Related Works

Figure 4.4: Perceptron Structure.

In perceptron, the weights should be randomly initialized first. In the training phase,

the weights are updated to minimize the number of misclassified instances. That is, the

weights are continuously updated to decrease the cost of misclassification until perceptron

converges. In most studies, the mean squared error (MSE) is considered as a cost function

and calculated by Equation (4.7), where n is the number of instances in the training set, yj

is the real class and f̃w(Xj) is the activation function that outputs the prediction.

J(W) =
1

2

n∑
j

(yi − fw(Xj))
2 (4.2)

To minimize the cost function J(w), the gradient descent optimizer may be used to

update the weights as instances and are processed until it converges to a minimum point.

The update rule is defined as follows:

W = W − η∇j(W) (4.3)

where w is the weight vector and ∆J(W) is the gradient of the cost function. The

gradient is used to define the direction of the update. That is, if the gradient is positive, the

weight should decrease to get closer to the minimum point. Otherwise, the weight should

increase to get closer to the minimum point. Finally, η is the learning rate which controls

the size of each update. The gradient of the cost function, i.e., ∆J(W), is measured by

Equation (4.9).

∇j = −
n∑
j

(yi − f̃w(Xj))∇f̃w(Xj) (4.4)

31

Chapter 4
Data Stream Classification:

Background and Related Works

Assuming the Sigmoid function as the activation function, the gradient of the

hypothesis function, i.e.,∇f̃w(Xj), is calculated by Equation (4.10).

∇f̃w(Xj) = −f̃w(Xj)(1− f̃w(Xj))Xj (4.5)

Using Equations (4.3) to (2.5), the final weight update rule is:

W = W + η
n∑
j

(yi − f̃w(Xj))f̃w(Xi)(1− f̃w(Xj))Xj (4.6)

Equation (4.11) is used to update the weights in a batch learning mode, where there

is a training set with n instances. In a data stream scenario, this update rule is would not

practical. As an alternative, the stochastic gradient descent optimizer is used for updating

the weight vector for every instance of the data stream [67]. Using the stochastic gradient

descent optimizer, the weights are updated as follows:

W = W + η · (y − f̃w(X))f̃w(X)(1− f̃w(X))X (4.7)

K-Nearest Neighbours

Nearest neighbor classifiers, also named lazy learners or instance-based learners [76],

present a natural way of learning data incrementally. Every processed example is kept and

can serve as a reference for new data. Classification is based on the labels of the closest

historical examples. In this particular lossless version of the closest neighbor algorithm

named IB1, the reference set grows with every example, increasing memory requirements

and also classification time. Another technique from this family named IB3, restricts

the number of stored historical data points only to only those that were useful for the

classification procedure. Apart from decreasing the time period and also memory needs, the

size limitation of the reference set offers a forgetting mechanism as it eliminates outdated

examples from the model. A more recent example of utilizing the closest neighbor strategy

to classify streaming data is theANNCADalgorithm [77]. InANNCAD, the authors suggest

dividing the feature space many times to generate a multi-resolution data representation,

where finer levels contain more training points than coarser levels. Predictions are designed

32

Chapter 4
Data Stream Classification:

Background and Related Works

according to the majority of closest neighbors starting at finer levels. Once the finer levels

present an inconclusive prediction, coarser levels are used. Concept drift is addressed

by using a fading factor, which decreases the weight of older training examples. The

pseudocode of a K-NN with a sliding window is presented in Algorithm A.5.

Discussion

We summarize the advantages and disadvantages of the learning algorithms. Naive Bayes

and perceptron are effective in terms of runtime and memory usage when compared with

other algorithms. Despite the class conditional independence presumption, naive Bayes

demonstrates similar accuracy to other algorithms in the literature [29]. A decision stump

might be prone to underfitting. Perceptron can’t adequately model nonlinear problems.

Models produced by decision stump and also Hoeffding trees can easily be interpreted.

Hoeffding trees generally consume more memory compared to naïve Bayes and perceptron.

Although the K- nearest neighbours algorithm is not difficult to execute and understand, it

is costly in terms of memory usage and execution runtime. In addition, based on [78], the

Hoeffding and perceptron are definitely more appropriate in our work.

4.3 Adaptive Classification

Once a drift is experienced, adaptive learning addresses concept drift by retraining the

predictive model. In Section 4.3.1, we provide a formal definition for concept drift, and the

adaptation approaches for handling concept drift are explained in Section 4.3.2, followed

by the state-of-the-art methods for drift detection in Section 4.4.

4.3.1 Concept Drift Phenomenon

When it comes to non-stationary environments, the underlying distribution might change

Di ̸= Dj , for any two time points i and j. Accordingly, the concept of the two points

becomes unstable and the model will not be able to approximate the recent incoming data

distribution [79]. Consequently, the essential task of streaming data analytics is finding any

significant changes in incoming data [80]. Furthermore, the problem of changing definitions

33

Chapter 4
Data Stream Classification:

Background and Related Works

and distributions of a learner of incoming data will influence the classification accuracy of

a model that is trained on data used previously [81, 82].

We discuss the formal definition of concept drift in the following subsections.

Formal Definition

One of the most important properties of data streams is that they can change over time.

Therefore, classifiers for data streams need to be capable of predicting, detecting, and

adapting to concept changes. In order to do so, the nature of changes needs to be studied,

including their rate, cause, predictability and severity [8].

According to Bayesian decision theory [83], a classification model can be described

by the prior probabilities of classes p(y) and class conditional probabilities p(y|x), for all

classes y ∈ K1, ..., Kc, where c is the number of predefined classes. The dynamic nature

of data streams is reflected by changes in these probability distributions in an event called

concept drift. In practical terms, concept drift means that the concept about which data is

being collected may shift from time to time after a minimal stability period [1]. Depending

on the research area, concept drift can sometimes be referred to as temporal evolution,

population drift, covariate shift, or non-stationarity. Most studies assume that concept

drift occurs unexpectedly and is unpredictable, in contrast to seasonal changes. However,

concept drift adaptation mechanisms often entail solutions for cases where changes can be

anticipated in correlation with environmental events. Formally, concept drift can be defined

as follows [8]:

Definition 1. For a given data stream S, concept drift may occur between two points

in time, t and t + ∆, iff ∃ x: pt(x, y) ̸= pt+∆(x, y) where pt refers to the joint distribution

at time t between the set of input attributes and the class label.

By considering this, any changes in incoming data can be characterized by changes

in the components of Bayesian decision theory [84] [85] [86]:

• Prior probabilities p(y) are prone to changes.

• Probabilities p(X|y) of class conditional are also prone to changes.

• Consequently, posterior probabilities p(y|X) may/may not change.

34

Chapter 4
Data Stream Classification:

Background and Related Works

Based on the cause and effect of these changes, two types of drift are identified: real

drift and virtual drift [8].

Real drift is defined as changes in p(y|x). It is worth noting that such changes can

occur with or without changes in p(x), therefore, they may or may not be visible from the

data distribution without knowing the true class labels. Such a distinction is crucial, as some

methods attempt to detect concept drifts solely using attribute values [87]. Real drift has

also been referred to as concept shift [88] and conditional change [89].

Virtual drift is usually defined as changes in the attribute-value p(x) or class p(y)

distributions that do not affect p(y|x) [24, 90, 91]. However, the source and therefore the

interpretation of such changes differs among authors. Widmer and Kubat [91] attributed

virtual drift to incomplete data representation rather than true changes in concepts. Tsymbal

[24] on the other hand defined virtual drift as changes in the data distribution that change

the decision boundary, while Delany [90] described it as a drift that does not affect the target

concept. Furthermore, virtual drifts have also been called temporary drifts [92], sampling

shifts [88], and feature changes [89].

To simplify the difference between real and virtual drift, let us take the example of

the classification problem presented in Table 4.2. The task in the example is to determine

whether a given flight will be delayed or not. If an airline company changes the flight time,

but this does not result in a delay, this is regarded as virtual drift. Similarly, if due to a crisis,

a company changes the frequency of certain flights but again, the flights leave without any

delay, this is also regarded as virtual drift. However, if some flights are regularly delayed,

even though they used to be on time, real drift is occurring. The difference between real

and virtual drift is also illustrated in Fig.4.5. The plot shows that only real concept drifts

change the class boundary making any previously created model obsolete. The illustrated

real drift occurs without any changes in the attribute space, however, in practice, changes

in prior probabilities may appear in combination with real drift.

One of the challenges in concept drift detection is recognizing real concept drift from

outliers or noise in data. No adaptation is required if an outlier or noise is experienced in a

data stream [8]. This is a critical observation since a decision model is discarded because

of a wrong alarm for concept drift. Outlier detection methods might be used alongside drift

detection methods to avoid false alarms for concept drift. [93] conducted a survey on outlier

and anomaly detection in data.

35

Chapter 4
Data Stream Classification:

Background and Related Works

Finally, from a predictive perspective, adaptation is required once a real concept

drift occurs since the current decision boundary is outdated for the new incoming data [8].

Adaptation means updating the classification model for the new distribution to keep the

classification accuracy high. We discuss adaptive learning methods in Section 2.3.2.

Figure 4.5: Two types of drift: where instances are represented by circles and different
classes are represented by different colors.

Table 4.2: Sample from the airlines dataset/ where Airline=A, Flight=F, Day of week=
DOW, Time=T, Length=L, Delayed=D.

A F From To DOW T L D?

CO 269 SFO IAH Wed 15 205 yes
US 1558 PHX CLT Wed 15 222 yes
AA 2400 LAX DFW Wed 20 165 yes
AA 2466 SFO DFW Wed 20 195 yes
AS 108 ANC SEA Wed 30 202 no
CO 1094 LAX IAH Wed 30 181 yes

36

Chapter 4
Data Stream Classification:

Background and Related Works

Concept Drift Patterns

In addition to differences in the cause and effect of concept changes, researchers have

identified several ways in which such changes occur. In this regard, drifts can be further

characterized, for example, by their permanence, severity, predictability, and frequency

[92, 94, 95]. However, the most analyzed aspect of drifts is the way they manifest

themselves over time [1, 21, 24, 82]. Fig 4.6 shows three basic structural types of changes

that may occur over time.

A sudden/abrupt drift happens when suddenly the source distribution in St at a

moment in time t is substituted by another distribution St+1. Once the new distribution has

been used to train a generated classifier, a sudden drift reduces the classification abilities

of a classifier, whereas gradual drift is connected with a slower rate of change and refers

to a transition stage where examples of two different distributions P j and P j+1 are mixed.

With the passage of time, the likelihood of monitoring P j examples decreases whereas the

likelihood of monitoring P j+1 examples increases. Another kind of drift refers to recurrent

concepts, i.e., after a period of time, previous concepts may reappear. The most recent

approaches to address the three types of drifts are: abrupt drift [96] gradual drift [97]

[98] and recurring drift [99–101]. We emphasize that the proposed concept drift detection

method has been designed mainly for sudden/abrupt drift.

Figure 4.6: Concept Drift Patterns

37

Chapter 4
Data Stream Classification:

Background and Related Works

Concept Drift Terminology

The concept drift phenomenon has been studied by various research communities

including data mining, machine learning, statistics, and information retrieval [86]. This

phenomenon, however, may be known by different terms in each community. Table 4.3

lists the terms that correspond with the concept drift phenomenon in different research areas.

Table 4.3: Concept Drift Terminology

Domain Term
Data Mining Concept Drift
Machine Learning Concept Drift, Covariate Shift
Evolutionary Computation Changing Environment
AI and Robotics Dynamic Environment
Statistics, Time Series Non-Stationary
Databases Concept Drift, Load Shedding
Information Retrieval Temporal Evolution

4.3.2 Concept Drift Adaptation Approaches

Data streammining with the existence of concept drift is mainly formed on the trigger/active

or evolving/passive approaches [98, 102]. Trigger/active approaches are designed to update

the model after detecting the drifts. Evolving/passive approaches continuously update the

model whenever new data become available, regardless as to whether drift is occurring or

not.

The two approaches share the same goal, which is to update the model according

to the recent concept of incoming data. However, the mechanism of each is different. For

example, the trigger/active approach observes the error rate of the algorithm; that is, when

the incoming data distribution is constant, there is a decreasing error rate, otherwise, it rises.

This happens by placing two levels of drifting and warning. Whenever there is an increase in

the actual classifier error, this means there will be a drift in the current concept of incoming

data, whereas when the error rate keeps increasing and then reaches the level of error, this

means that a drift has been detected [48]. Conversely, the evolving/passive approach does

not detect changes or drifts, rather it provides an updated model at all times [103–105]. The

next section discusses approaches belonging to the aforementioned two categories and are

related to this work.

38

Chapter 4
Data Stream Classification:

Background and Related Works

4.4 Related Work: Concept Drift Detection Techniques

4.4.1 Fully Supervised Concept Drift Detection Techniques

This section critically reviews existing concept drift detection techniques by categorising

drift detection methods as either statistical based, window based or ensemble based. Table

2 provides a full illustration of the categorisation and techniques covered by this paper.

Statistical Methods

Statistical parameters such as the mean and standard deviation associated with the predicted

results are analysed in order to detect concept drifts. Various statistical methods are detailed

as follows:

• DDM: Drift Detection Method Gama et al. [48] monitor the error rate of the

classifier to detect concept drift. On the basis of the probably approximately correct

(PAC) learning model (Mitchell, 1997), the classification error rate decreases or stays

constant as the number of instances increases. Otherwise, it suggests the occurrence

of a drift. Let pt be the error-rate of the classifier with a standard deviation as shown

by Equation 4.8, at time t.

si =

√
pi(1− pi)

i
(4.8)

As instances are processed, DDM updates two variables pmin and smin when pt+st <

pmin + smin. DDM warns of a drift when pt + st ≥ pmin + 2 ∗ smin, and alarms of a

drift when pt + st ≥ pmin + 3 ∗ smin. The variables pmin and smin are reset when a

drift occurs.

• EDDM: Early Drift Detection Method Baena-Garcia et al. [54] proposed a

modification of DDM called EDDM. The authors use the same warning-alarm

mechanism that was proposed by Gama, but instead of using the classifier’s error

rate, they propose the distanceerrorrate. They denote p′i as the average distance

between two consecutive misclassifications and s′i as its standard deviation. Using

39

Chapter 4
Data Stream Classification:

Background and Related Works

these values the new warning and alarm conditions are given by Equations 4.9 and

4.10.

p′i + 2 · s′i
p′max + 2 · s′max

≤ α (4.9)

p′i + 3 · s′i
p′max + 3 · s′max

≤ β (4.10)

EDDM is designed to work better than DDM for slow gradual drift but is more

sensitive to noise. Another drawback of this method is that it searches for concept

drift when a minimum of 30 errors have occurred (as opposed to a minimum of 30

examples). This is necessary to approximate the binomial distribution by a normal

distribution but this can cause a significant delay in change detection.

• Page-Hinkley test (PH) This allows the efficient detection of changes in the normal

behavior of a process established by a model. The test variable mt used in PH is

defined as the cumulative difference between the observed values ei and their mean

up until the current moment in time:

mt =
t∑

t=1

(ei − e′t − δ) (4.11)

where e′t = 1/
∑t

i=1 e
i and α corresponds to the magnitude of changes that are

allowed [69]. For drift detection, Gama et al. propose to treat the classifier’s error rate

as the observed value. Additionally, the minimalmt is defined asM t = min(mi; i =

1...t). The PH test calculates the difference between M t and mt (PH t = mt−M t),

and if this difference is higher than a user-specified threshold (λ), a change is flagged.

As an alternative to tracking the classifier’s mean error over time, Gama et al. propose

to perform the PH test with the ratio between two error estimates: a long-term error

estimate (using a large window of examples or a weak fading factor) and a short-term

error estimate (using a short window or a strong fading factor). If the short-term error

estimator is significantly greater than the long-term error estimator, a drift is signaled.

For sliding windows, the procedure involves two windows of different sizes

W1 = ei|i ∈ (t− d1, t) and W2 = ei|i ∈ (t− d2, t) (withd2 < d1) and computing

the moving average w.r.t. both: Mw1(t) = 1/d1
∑t

i=t−d1 e
i and Mw2(t) =

40

Chapter 4
Data Stream Classification:

Background and Related Works

1/d1
∑t

i=t−d2 e
i. The PH test monitors the ratio R(t) between both moving averages.

It is worth noting that this test is designed to detect mainly abrupt drifts, with higher

α entailing fewer false alarms, but possibly causing some changes to be missed [8].

• STEPD : STEPD is a method proposed by [55] over two windows, namely, recent and

older, which calculates statistical tests with continuity correction. Within a concept,

the accuracy of the learner using the two windows is expected to be stable. When

there is a significant difference in the accuracy of the recent window, warning and

drift are signalled.

• MDDM-A, MDDM-G and MDDM-E The work in [96] introduces the three

McDiarmid Drift Detection Methods (MDDMs) which utilize the idea of

McDiarmid’s inequality [106] for detecting drifts. MDDMs use a window of size

n over the prediction results. The idea is when the prediction results are correct, a 1

will be inserted into the window; and 0 otherwise. Inside the window, each element

is associated with a weight, where wi < wi1. When the inputs are treated, inside

the window, the weighted average of the elements are calculated, i.e. µtw, and the

average of the maximum weighted is monitored so far, i.e. µmw. Consequently,

between the two weighted means, if a considerable variation has been observed, this

indicates concept drift. Different weighting schemes are considered for the arithmetic

(MDDM-A) and the geometric (MDDM-G) schemes. The arithmetic scheme is given

by wi = 1(i − 1) × d , where d ≥ 0 is the difference between two consecutive

weights. The geometric scheme is given by wi = r(i−1), where r ≥1 is the ratio

of two consecutive weights and the Euler scheme (MDDM-E) is defined by r = eλ

where λ ≥ 0.

• SeqDrift2 This method [107] uses two repositories to store incoming data, the first

holds a combination of new and older entries while the second contains new entries

only. This is done through the application of the reservoir sampling strategy [108].

SegDrift2 measures the means of entries within both repositories i.e. µ1 and µr

and using the Bernstein inequality [109] the difference in the mean is measured. A

difference between two means beyond an upper bound will indicate that concept drift

has occurred.

• RDDM: RDDM: This method, developed in [110], solves the problem of a

performance loss of DDM, which is caused by decreasing sensitivity which requires

41

Chapter 4
Data Stream Classification:

Background and Related Works

many examples for drift detection. This method uses a mechanism to abandon older

examples, regularly recalculating the statistics of RDDM which are responsible for

detecting drifts. The authors found that RDDM delivers higher accuracy than DDM

in most cases, by detecting drifts earlier, despite an increase in false positives and

memory consumption.

Window-Based Methods

Usually, a fixed reference window is utilized to summarise past information and a sliding

window is utilized to summarise the most recent information. A significant difference

between the distributions of these two windows implies the occurrence of concept drift.

Fig 4.7 illustrates the workflow of the window-based processing scheme. Various

window-based methods are detailed as follows:

Figure 4.7: Sliding window· The borders identify two different windows

• ADWIN: Adaptive Sliding Window This method was developed in [66]. For drift

detection, ADWIN examines two sub-windows by sliding a window w on the results

of the predictions i.e. w0 size n0 and w1 size n1, of w where w0 · w1 = w. Thus,

ADWIN indicates a concept drift when there is a considerable variation among the

means of the two sub-windows. i.e. µw0 − µw1 ≥ ξ where ξ =
√

1
2m

ln(4
δ′
),m is

the harmonic mean of n0 and n1, δ′ = δ
n
, is the confidence level and n is the size of

window w. After a drift has been detected, elements are dropped from the tail of the

window until no significant difference is seen.

• FHDDM This method proposed in [111] implements a method for detecting drifts

using Hoeffding’s inequality through a window of size n. This window detects a

drift if a considerable variation is observed between the current probabilities and the

42

Chapter 4
Data Stream Classification:

Background and Related Works

maximum of correct predictions. By using the error’s probability (δ, default 10-7),

FHDDM finds the variations among the probabilities (∆P) and the threshold (∈).

Consequently, FHDDM will signal a drift if ∆P ≥∈.

• SEED: This method, proposed in [112], within a window W , compares two

sub-windows. The older part of this window is dropped when there is a

distinct average exhibited by the two sub-windows. Hoeffding Inequality with

Bonferroni correction is used by SEED to calculate its test statistic, performing

block compression to remove unnecessary cut points and then the blocks that are

homogeneous in nature are merged.

• HDDM_A test and HDDM_W test: These two methods are proposed in [113]

and use Hoeffding’s bounds for drift detection. The HDDM_A test compares

moving averages to detect drifts, whereas HDDM_W compares the weight of moving

averages for drift detection, where the EMWA forgetting scheme [114] is used for

weighting. The authors of this work noted that the HDDM_A test is more suitable for

sudden drifts while HDDMW is best suited to gradual drift.

Algorithm 1: Generic Scheme of Drift Detector
Require: S: data stream of examples
Drift Test (DT): using statistical tests or mathematical inequalities.
C: classifier
Result: Drift ∈ {TRUE, FALSE}

1 Initialize (Parameters)
2 for each example xt ∈ S do
3 Measure DT;
4 if drift detected then
5 ReturnTRUE
6 else
7 Return FALSE
8 end
9 end

43

Chapter 4
Data Stream Classification:

Background and Related Works

Finally, regarding the existing drift detection methods, for instance, the Page-Hinkle

(PH Test) measures the difference in incoming data using the mean and identifies a drift

when the difference is larger than a user predefined threshold. Other methods determine

sets of variables to monitor concept drift in data streams. DDM only maintains a few

variables and hence requires less execution runtime. HDDM utilizes Hoeffding′s inequality

for drift detection. On the other hand, ADWIN requires more memory when detecting drift

because these methods the store prediction results within the sliding windows and utilize a

sub-window compressor or reservoir sampling procedures. Seqdrift2 employs the Bernstein

inequality to detect concept drift. It also uses sample variance and assumes that the sampled

data will follow a normal distribution, which can be unrealistic in real situations. The

use of parameter variance instead of a real instance also leads to delay in drift detection.

FHDDM employs the Hoeffding′s inequality. FHDDM differs from HDDMs by sliding a

window on the prediction results to detect concept drift, which results in less runtime and

memory consumption. Consequently, we believe there is still a need for a drift detector

which is able to detect concept drift in less time and consumes less memory compared to

the aforementioned methods.

Block - Based Ensemble Methods

In block-based approaches, instances arrive in portions, called blocks. Most block-based

ensembles evaluate their components periodically and replace the weakest ensemble

member with a new classifier. This approach reacts very well to gradual concept drift rather

than sudden drift and ensures accuracy. Fig 4.8 presents the workflow of the block- based

processing scheme. Various block-based ensemble methods are detailed as follows:

Figure 4.8: Block workflow

• AccuracyWeighted Ensemble (AWE) [115] For each new incoming data block, the

authors train a new classifier using a typical static learning algorithm, such as naıve

44

Chapter 4
Data Stream Classification:

Background and Related Works

Bayes, C4.5, or RIPPER. After the new classifier is trained, all the existing trained

classifiers in the ensemble are evaluated using the most recent block. Then, after each

evaluation using mean square error, the algorithm selects the n best classifiers in order

to update the ensemble.

• Accuracy Updated Ensemble (AUE2) [116] This uses an online classifier to allow

individual learning models to be updated directly rather than only adjusting the

weights as per AWE. If no drift is expected to occur, the classifiers improve as if

they were trained on one large chunk. In other words, the size of the block can be

lowered without affecting the performance accuracy of the ensemble.

• Dynamic Weighted Majority (DWM) Another popular online ensemble is an

algorithm called Dynamic Weighted Majority (DWM) [50]. In DWM a set of

incremental classifiers is weighted according to their accuracy after each incoming

example. With each mistake made by one of DWM’s component classifiers, its

weight is decreased by a user-specified factor β. Furthermore, after a period of

predictions p the entire ensemble is evaluated and, if needed, a new classifier is added

to the ensemble. If learned on a large stream, DWM can potentially generate an

extensive number of components, therefore, ensemble pruning is often considered

as an extension [1]. DWM is an extension of the weighted majority algorithm [117]

known from the field of online learning. However, DWM takes into account the

dynamic nature of data streams and is designed to track concept drift. In contrast

to its predecessor, DWM adds and removes component classifiers in response to the

global performance of the entire ensemble and the local performance of individual

components.

• Adaptive Classifier Ensemble (ACE) Both SEA and AWE are highly dependent on

data block size. Larger blocks promote more accurate ensemble members but extend

the period in which these algorithms cannot respond to sudden concept drifts. Small

blocks, however, worsen the performance of each component classifier and as a result,

the entire ensemble. To overcome these drawbacks, Nishida et al. proposed an online

learning system, called the Adaptive Classifier Ensemble (ACE) [118], which uses an

online learner alongside an ensemble of batch classifiers.

ACE consists of one online classifier, many batch classifiers, and a drift detector. With

each incoming example, the online classifier is incrementally trained and the block is

extended. Furthermore, the drift detector checks the average accuracy of each batch

45

Chapter 4
Data Stream Classification:

Background and Related Works

classifier (calculated on the current block), and if the best performing component falls

outside a 100(1−α)% confidence interval, where α is a user-specified parameter, a

change is signaled. When concept drift is detected or the number of buffered examples

exceeds the block size, a new batch classifier is created and the online learner is reset.

ACE forms its final hypothesis by aggregating the predictions of the online learner

and batch learners using a weighted majority vote, with each classifier Ci receiving

at time t a weightW t
i defined as:

wt
i = (

1

1− At
i

)µ (4.12)

where At
i is the accuracy of the i-th classifier calculated on the current block of

examples and µ is a normalization factor. One of the characteristic features of

ACE is that it does not limit the number of ensemble members. This property

allows the algorithm to accurately react to recurring concepts by reusing previously

trained classifiers. Furthermore, the addition of an online learner and drift detector

offer quicker reactions to sudden concept changes compared to most block-based

ensembles. Finally, it is worth noting that ACE detects changes based on the

performance of a single batch classifier instead of the entire ensemble and uses a

custom drift detection method. It is worth noting that the problem of quicker drift

detection in block-based ensembles was also tackled in the BatchWeighted Ensemble

algorithm, proposed by Deckert [119].

• Learn++.NSE (.NSE) Learn++.NSE [120] is a block-based ensemble inspired by

human learning theory. Several components of this algorithm relate to schema theory

[59], which is a psychological model that describes the process of human knowledge

acquisition andmemory organization. For example, Learn++.NSE retains, constructs,

or temporarily discards knowledge depending on the nature of changes in the stream.

Furthermore, the algorithm weights examples depending on their difficulty measured

in terms of ensemble performance.

The training of Learn++.NSE starts with evaluating the ensemble on a block of new

examples. Next, the algorithm identifies which examples are correctly predicted by

the existing ensemble and gives lower weights to these examples, as they are less

difficult. Using the block of examples with updated weights, a new classifier is

created and added to the ensemble. Later, all of the ensemble members are evaluated

46

Chapter 4
Data Stream Classification:

Background and Related Works

and their weights are calculated as log-normalized multiplicative inverses of their

weighted errors. The weighting function is designed to temporarily block votes from

component classifiers that do not match the current environment. Learn++.NSE has

an interesting psychological inspiration, which is apparent mainly in the training

and weighting of component classifiers. First of all, the algorithm tries to detect

new concepts by analyzing the performance of the ensemble on new data, which

can be connected to the process of problematizing known from tutoring theory

[120]. Furthermore, the algorithm weights ensemble members using a sigmoid-based

function which takes into account the recent performance of a given component

classifier and draws inspiration from the human process of memory tuning. Finally, it

is worth mentioning that Learn++.NSE does not permanently discard any component

classifiers and is therefore particularly suitable for streams with recurring drifts.

Algorithm 2: Generic Scheme of Block-Based Ensemble
Require: S: Examples of Data stream split into blocks;
d: size of block;
k: number of the components in an ensemble;
(Q): measure of classifier quality
Result: E: k weighted classifiers (ensemble)

1 for each blocks Bi ∈ S do
2 using Bi and Q() to build and weight each nominee classifier C ′;
3 weight Ci using Bi and Q();
4 if |E| < k then
5 E ←− E ∪ {C ′}
6 else
7 substitute the weakest component in ensemble with C;
8 end
9 end

47

Chapter 4
Data Stream Classification:

Background and Related Works

4.4.2 Semi-Supervised Learning Methods

To elaborate on the work presented in Section 5.3, under the assumption of limited access to

class labels due to the high labelling cost and time consumption, it is worth mentioning

some semi-supervised learning methods. Some of these are appropriate for processing

data streams incrementally, namely co-training, tri-training, self-training and K-prototype

clustering.

Co-Training The work in [121] assumes that features can be divided into two

groups and each sub-group is sufficient to train a classifier. Firstly, two separate classifiers

are trained on the two sub- group sets respectively. Each classifier is re-trained with the

additional training samples confidently labelled by the other classifier. Unfortunately, the

requirements can hardly be met.

Tri-Training The work in [122] extends the idea of co-training, which does not

require sufficient and redundant views. This method generates three classifiers from the

original labelled instance set using bootstrap sampling. These classifiers are then refined

using unlabelled instances in the tri-training process. In each round of tri-training, an

unlabelled instance is labelled for a classifier if the other two classifiers agree on the

labelling. For tri-training, though it does not require sufficient and redundant views, it also

does not use the attribute values of one sample sufficiently as it uses bootstrap sampling

from the original sample.

Self-Training The work in [123] only trains one initial classifier. Then the classifier

is used to classify the unlabeled samples in the data stream. The most confidently unlabeled

points are used to re-train the classifier. It avoids the aforementioned shortcomings of

co-training and tri-training, but it is difficult to measure the confidence of labeling.

K-prototype clustering The work in [124] proposes an algorithm based on the

k-means paradigm but removes the numeric data limitation whilst preserving its efficiency.

The K-prototype algorithm integrates the k-means and k-mode algorithms to deal with

mixed data types. Therefore, the k-prototype algorithm is more useful practically because

data collected in the real world are a mixed data type. Assume a set of n objects, X =

{X1, X2,…, Xn}. Xi = {Xi1, Xi2,…, Xim} consists ofm attributes. The goal of clustering

is to partition n objects into k disjoint clusters C = {C1, C2,…, Ck}, where Ci is an i− th

48

Chapter 4
Data Stream Classification:

Background and Related Works

cluster center. The distance d(Xi, Cj) between Xi and Cj can be calculated as follows …

d(Xi, Cj) = dr(Xi, Cj) + γdc(Xi, Cj) (4.13)

where dr(Xi, Cj) is the distance between numerical attributes, dc(Xi, Cj) is the

distance between categorical attributes, γ is a weight for categorical attributes.

dr(Xi, Cj) =

p∑
i=1

|xil − Cjl|2 (4.14)

dc(Xi, Cj) =
m∑

i=p+1

δ(xil−Cjl
) (4.15)

In Equation 4.14, dr(Xi, Cj) is the squared Euclidean distance measure between

cluster centers and an object on the numerical attributes. dc(Xi, Cj) is the simple matching

dissimilarity measure on the categorical attributes, where δ(xil −Cjl) = 0 for xil = Cjl and

δ(xil − Cjl) = 1 for xil ̸= Cjl.

Finally, in the case of mining an incremental data stream, clustering on a small

sample set is rather efficient. In addition, clustering can also identify the classification

boundary and the distributions. Therefore, it is valuable to perform clustering on unlabelled

samples of incoming data stream. More importantly, considering that the incoming sample

attributes have both numeric and categorical values, we propose to use K-prototype as a

solution to our semi-supervised drift detection in data streams.

4.5 Experimental Evaluation

We study the analysis procedures, the classification methods, the drift detection methods,

and also the resource consumption measures in the subsequent subsections.

49

Chapter 4
Data Stream Classification:

Background and Related Works

4.5.1 Evaluation Procedures for Data Streams

In experimental configurations, evaluation methods determine which instances are

employed for training and testing a learning algorithm [61].

In relation to the batch learning scenario, the size of data plays an important part

in developing an evaluation process. Learning algorithms are frequently assessed by a

(ten-fold) cross-validation procedure when datasets are tiny, e.g., with under a thousand

instances, since it tends to make the highest use of data by several sub-evaluations. A

four-fold cross-validation partitions the data into four subsets or even folds of the same

size. Subsequently, there are four iterations for both training and testing. The fold which is

employed for testing is defined as a validation set. In each iteration, a model is trained and

its accuracy also is calculated, making use of the validation fold. The ultimate accuracy is

the average of the accuracies of most iterations. The k-fold cross-validation process has the

possibility of being extremely slow against large datasets. Thus, it is essential to decrease

the statistics of repetitions or even folds to complete the process within a reasonable time.

As a substitute, the holdout procedure might be regarded as a solution for decreasing

the computation effort. This particular procedure randomly selects, for instance, one third of

instances as an exam set, also called a holdout set, in addition to making use of the remainder

of instances as a training set. The model built using the training set is tested on the test set.

Bootstrapping is a method which samples the training instances uniformly with replacement

originating from a dataset. In sampling with a substitute, as soon as one example is selected

for training, it is still a nominee for selection, and it also might be selected all over again.

Finally, examples which were not selected for training are regarded as candidates for testing.

Although cross-validation is commonly employed for batch setting, it is impractical

for data streams due to its computational expense (in relation to either memory or run time).

Both the holdout and bootstrapping procedures need all the data to be readily available

for partitioning which contradicts the nature of a data stream. In addition, in data stream

mining, ensuring the accuracy of classification models over time without violating the four

requirements discussed in Section 2.2.3 is a crucial issue.

To deal with these difficulties, the Incremental Holdout and Predictive Sequential

(Prequential) methods are devised for the assessment of learning algorithms against data

50

Chapter 4
Data Stream Classification:

Background and Related Works

streams [8, 61]. We explain and compare these methods as follows:

Holdout

When conventional batch learning gets to a scale in which cross-validation is overly

time-consuming, it is a common approach to measure overall performance during a single

holdout set. This is very helpful if the division between training and test sets has been

pre-defined, hence the outcomes from various studies can be directly compared.

Interleaved Test-Then-Train or Prequential

Every individual example can be utilized to test the model just before it is utilized for

training, and also as a result of this, the accuracy can be incrementally kept up to date.

When intentionally carried out within this order, the model is definitely being tested on

examples it has not observed. This scheme provides the advantage which absolutely no

holdout set is required for testing, making maximum usage of available data. Additionally,

it guarantees a smooth plot of accuracy over time, as every individual example is going to

become increasingly much less significant to the overall average.

Comparison

Holdout evaluation provides a far more accurate estimation of the accuracy of the classifier

on newer data. Nevertheless, it takes the latest test data that it is hard to obtain for real

datasets. The work in [65] suggest to using a forgetting mechanism for estimating holdout

accuracy using prequential accuracy: a sliding window of size w with the most recent

observations, or fading factors which weigh observations using a decay factor alpha. The

result of the two mechanisms is extremely comparable (every window of size w0 might be

approximated by some decay factor alpha0). As data stream classification is a relatively

new area, such evaluation practices are not nearly as well researched and established as

they are in the conventional batch setting.

51

Chapter 4
Data Stream Classification:

Background and Related Works

4.5.2 Data Stream Datasets

Synthetic and real-world data streams are widely used to evaluate the performance of online

and adaptive learners. Synthetic data streams are also known as artificial data streams in the

literature.

As for the real-world data streams, it is not recorded nor identified when concept

drift occurs [68, 125]. That is, we do not have the ground truth regarding the drift points

for the evaluation of the drift detectors. Alternatively, we use real-world static datasets to

create data streams experiencing concept drift at specific points for our experiments. We

describe the synthetic and real-world data streams as follows:

Synthetic Data Streams

SEA Generator (SEA), AGRAWAL Generator (AGR), Mixed, Sine1, Sine2, Wave,

RBFGR: RBFGradual, and TreeR: TreeRecurrent are synthetic data streams that are

frequently applied in the literature [53, 55, 57, 66, 126–128]. We describe these as follows:

• SEA Generator (SEA) This generator has been used to generate 100,000 instances

of incoming data, where it generates 3 numerical attributes, that vary from 0 to 10.

To simulate a single abrupt concept drift, SEA uses ConceptDriftStream as the

main class, with the following parameters: (i) SEAGenerator -f 3 refers to the current

concept of the incoming data, (ii) SEAGenerator -f 2 refers to the new concept of the

incoming data, (iii) position of the drift within the incoming data, (iv) the width of

the drift. Finally, the generated drift will be located at location 10k, 20k and 50k.

• AGRAWAL Generator (AGR) We use the AGR generator to generate 100,000

instances with multiple sudden drifts. We use the AGR generator to generate three

drifts every 25,000 instances. Agarwal contains the hypothetical data of people

applying for a loan, where class A representing the approval of loan and class B

representing rejection of loan. AGR generator produces a stream, each instance of

which consists of nine attributes: six numeric and three categorical.

• Mixed This dataset contains sudden drift and two types of data attributes. The first is

a numeric data type and it has two attributes (x and y) which are uniformly distributed

52

Chapter 4
Data Stream Classification:

Background and Related Works

in [0, 1]. The second is a Boolean data type and it has two attributes (v and w). From

the three following cases, if two of them are placed: v, w, y < 0.5 + 0.3× sin(2πx),

the instances are classified as positive. After a drift has occurred, the classification is

reversed. At every 20,000 instances, a drift will occur.

• Sine1 We generate the Sine1 dataset with sudden drift. It has with two attributes (x

and y) which are uniformly distributed in [0, 1]. In addition, this dataset uses the

following function y = sin(x) for classification. Therefore, any instances below the

curve are classified as positive while the others are negative till the first drift occurs.

At every 20,000 instances, a drift will occur and then the classification is reversed.

• Sine2: This dataset has two attributes (x and y) which are uniformly distributed in

[0, 1]. Following a function 0.5 + 0.3 × sin(3 × π × x), instances under the curve

are classified as positive while the other instances are classified as negative. At every

20,000 instances, a drift will occur and then the classification is reversed.

• Wave: This dataset uses the random tree generator to create a dataset with a single

sudden concept drift evenly distributed over 100K examples of incoming data and

sudden drift is located at 50K. The wave data set is defined by 21 numerical attributes.

• RBFGR: RBFGradual uses the radial basis function generator to create a dataset with

four gradual recurring drifts over 1,000,000 examples. Each concept of the generated

drifts contains four decision classes.

• TreeR: TreeRecurrent uses the random tree generator to create a dataset containing

four sudden recurring drifts and these four drifts are evenly distributed over 1, 000,

000 examples. This dataset is defined by five nominal and five numerical attributes.

Real-World Data Streams

We select synthetic datasets to evaluate all the works in different scenarios. On the other

hand, we share the common claim that when using real datasets, it is not clear if there is any

drift or when drifts occur. Therefore, the real dataset serves to evaluate and compare the

methods in a real-life scenario rather than in a concrete drift situation.

In addition, there is no ground truth available regarding concept drift in real-world

data streams. That is, we do not know whether concept drift occurs or where it occurs in

53

Chapter 4
Data Stream Classification:

Background and Related Works

these data streams [56, 68]. Consequently, we cannot measure the detection delay, true

positives, false positives, and false negatives of the drift detectors. We can only evaluate

the average of detection runtime, detection memory usage, and classification accuracy.

• Electricity (Elec): In data stream classification, the electricity dataset is the most

widely used in this field. This dataset comprises energy prices gained from the

electricity market where the data are influenced by season, supply, weather, demand

and time of usage. The electricity dataset comprises 45,312 examples defined by

seven features.

• Airlines: This is a real-world dataset which is widely used in data stream

classification. This dataset involves predicting whether a given flight will be delayed

using the data of the scheduled departure. The airlines dataset comprises 539,383

examples defined by seven attributes.

Table 4.4: Characteristics of Each Dataset.

Dataset No.Inst No.Attrs No.Cls Noise No.Drifts Drift Type Drift Points

SEABinary 10K 100K 3 2 10% 1 sudden 10K
SEABinary 20K 100K 3 2 10% 1 sudden 20K
SEABinary 50K 100K 3 2 10% 1 sudden 50K
SEAMulti 10K 100K 3 4 10% 1 sudden 10K
AGR 100K 9 2 10% 3 sudden 25K
Mixed 100K 4 2 10% 4 sudden 20K
Sine1 100K 2 2 10% 4 sudden 20K
Sine2 100K 2 2 10 4 sudden 20K
Wave 100K 21 - 10 1 sudden 50K
RBFGR 1M 20 4 0 4 gradual not required
TreeR 1M 10 4 0 4 recurring not required
Airlines 539,383 7 2 - - unknown -
Elec 45,312 8 2 - - unknown -

54

Chapter 4
Data Stream Classification:

Background and Related Works

4.6 Experimental Setup and Evaluation

The proposed algorithm and the ones used for comparison were implemented in Java as part

of the MOA framework [129]. The experiments were conducted on a machine equipped

with Intel Core i7 @ 3.4 GHz with 16GB of RAM running Windows 10. To make the

comparison more meaningful, we set the same parameter values for all the algorithms. For

DMDDM, we use the Hoeffding tree (HT), also known as VFDT and perceptron (PER) as

our incremental classifiers. In addition, we use the PH test parameters (λ = 100, δ = 0:1)

as proposed in [130] and the forgetting factor (α = 0.9996). To make a fair comparison, all

the compared drift detectors are run using the Hoeffding tree (HT) and perceptron with the

default parameters as set in MOA (or as in the original papers).

The main objective of this work is to propose a concept drift detector that meets the

predictive model’s four requirements of delay detection, true detection, detection runtime,

memory usage in addition to false alarm, false negative and accuracy which are used to

evaluate the performance of the proposed concept drift detector and the other detectors.

Therefore, as we use synthetic datasets, we are able to determine the location of drifts.

Fig.4.9 illustrates the DMDDM evaluation. The straight arrow represents the main

stream of incoming data and the crosses show the real position of drifts. We calculate the

delay of drift detection by defining a value ∆ that represents the length of the acceptable

drift delay. This value works as a threshold to locate the distance of the detected drift from

the real position of the drift. Therefore, by considering value ∆, we describe the following

measures.

• Detection Delay : The number of examples between the actual position of the drift

and the detected drift.

• True Detection : A detector detects a drift occurring at time t and within [t+∆].

• False Alarm : A detector falsely signals a drift outside [t+∆].

• False Negative : The number of drifts which are missed by a detector from the total

drifts in the incoming data.

The length of an acceptable drift delay ∆ has been set to 250 on the four synthetic

55

Chapter 4
Data Stream Classification:

Background and Related Works

datasets used in [111]. In addition to the abovemeasures, detection runtime (inmilliseconds)

and memory usage (in bytes) are also considered as detailed below. Finally, the accuracy of

the classifiers used by the compared drift detection methods is also considered.

• Detection Runtime : The time that is required to detect drift.

• Memory :Memory requirement.

• Accuracy : Accuracy of classifiers after drift is detected (calculated by counting the

number of correct predictions). This value is displayed by MOA.

Acceptable
Detection

Space

?

Stable
Distribution

of A New
Distribution

of B

Stable
Distribution

of B

New
Distribution

of C

Stable
Distribution

of C

Acceptable
Detection

Space

?

Figure 4.9: Illustration of the Evaluation

Finally, in all the experiments, incoming data are processed prequentially, which

means testing the instances first and then using them to train the model. To do this, we

run each detector 100 times and then average the delay detection, true drift detection, false

alarm detection, and false negatives.

Intuitively, the drift detector with the lowest delay detection, runtime detection and

memory usage and which is robust to noise is preferred.

56

Chapter 4
Data Stream Classification:

Background and Related Works

4.7 Applications

The work in [86] undertook an extensive survey on real-world applications/uses where

concept drift is a crucial challenge in each supervised and unsupervised learning task. In

[86], the applications/uses are divided into the following four groups:

• Observing and Management - Observing and management frequently make use

of both supervised and unsupervised learning approaches to identify irregular and

adversarial behaviours on the net, in telecommunications, computer networks, and

monetary transactions.

• Private assistance and information management - Private assistance and managing the

information of applications / software include recommendation systems, organization

and the categorization of textual information, and client profiling for marketing and

advertising.

• Decision Making - Decision making contains financial as well as bio-medical

software applications. The ground truth is frequently postponed, i.e., the correct

answer as to whether the decision was right becomes available only after a particular

time.

• Artificial Intelligence (AI) - AI covers a wide spectrum of systems capable of working

together in dynamic environments to accomplish a job. The AI algorithms are widely

used in robots, smart houses and mobile vehicles.

Its good to mentioned here that the aim of this thesis is not to solve all different

practical applications but instead we are proposing techniques, so these techniques can be

applicable to these applications, as long the data meet the requirement of data structure used

by the proposed techniques.

4.7.1 Observing and Management

Monitoring and control applications fall into two groups, namely monitoring against

adversarial actions and monitoring for management purposes.

57

Chapter 4
Data Stream Classification:

Background and Related Works

Monitoring against Adversarial Actions

Computer Security – Intrusion detection is one of the common monitoring problems, in

which undesirable entry to computer systems has to be halted. Adversarial actions are the

key source of concept drift identified by intrusion detection systems. The problems and

directions for intrusion detection are discussed in [131]. [132] offers ensemble methods

to diagnose adversarial activities. Artificial immune systems are commonly viewed as

intrusion detection [133].

Telecommunications – Adversarial behaviours also occur in the

telecommunications marketplace in the form of fraud and intrusion. The mobile

masquerade detection issue, from the study perspective, is very closely related to intrusion

detection. The work in [134] aims to prevent adversaries from gaining unauthorized access

to personal details. The sources of concept drift are adversarial behaviour attempting to get

over the control and change the behaviour of respectable end users.

Finance - Financial businesses employ data mining methods to keep track of

streams of transactions (e.g., credit cards, in addition to online banking) to alert for

potential frauds. Both supervised and unsupervised learning methods are employed for

the detection of fraudulent transactions [135]. The primary challenges might arise from

incorrect information labelling, misinterpretation of reputable transactions, and extremely

tall imbalanced classes (i.e., few frauds vs. legitimate actions), along with users’

behavioural changes.

Monitoring for Management

Monitoring for management usually makes use of streaming data from detectors. It is

characterized by very high volumes of data in addition to real-time decision making.

Transportation – Traffic management systems use data mining to identify website

traffic states, e.g., automobile density in a specific place or accidents [136]. Transportation

systems are dynamic due to distinct movement patterns. Website traffic patterns change

seasonally and also permanently, therefore the methods need to be capable of managing

concept drift.

58

Chapter 4
Data Stream Classification:

Background and Related Works

Positioning – Concept drift could possibly be encountered in the remote sensing

of fixed geographic places. Interactive road monitoring techniques help cartographers to

annotate road sections in aerial photographs [137]. For this particular method, modification

detection is necessary to sequentially identify and extract road segments which is non-trivial

as road features vary over time. When it comes to position recognition [138] or exercise

recognition [139], the powerful dynamics of environments may be the cause of concept

drift.

Industrial monitoring – In industrial monitoring programs, e.g., production or

service monitoring, various practices of users or changes in their behaviours may be

regarded as concept drift.

4.7.2 Personal Assistance and Information Management

These apps manage and personalize the flow of information and are classified into personal

assistance, customer profiling, and information management.

Personal Assistance: Personal assistance uses deal with the end-user modelling

process aiming to personalize the flow of a user ’s information, which is described as

information filtering. Operator modelling uses are document categorization [140], net

customization [141], and spam filtering [142] with regard on the present interests of a user.

Changes in the user ’s interests might also bring about concept drift.

Customer Profiling: The objective of client profiling is usually to sector clients

based on their interests, even though the reason for concept drift might be due to changes

in their interests and preferences. Advertising and marketing, social community analysis

and professional recommendation methods are uses of client profiling. Adaptive learning

strategies are utilized around customer segmentation , social networking sites evaluation

[143], shopping bin studies, and film suggestions.

Information Management: Information management applications are used in

document organization and economics.

Document Organization: The process of document organization is to extract

substantial components from document streams, e.g., e-mails or news to link them with

other things. Because the subjects of documents and associated vocabulary might change

59

Chapter 4
Data Stream Classification:

Background and Related Works

over time, temporal ordering is essential. The Latent Dirichlet Allocation (LDA) model

[144] for probabilistic subject modelling was built recently with a period dimension [145]

assessed the dynamics of subjects for posts in the Science magazine from 1881 to 1999.

The emergence, peak, and decline of subjects were detailed and the subject vocabulary

representation was created. Intuitively, this is akin to including the time within the initial

observation.

Economics: Concept drift appears in macroeconomic forecasts [146] and in

forecasting the phases of a business cycle [147]. The data are drifting primarily as a result

of a huge number of influencing factors, which makes it infeasible for the models to take

these factors into account.

4.7.3 Decision Making

Financial and biomedical systems apply adaptive learning to decision-making problems.

Finance: Bankruptcy prediction or credit scoring are generally assumed to be a

stationary problem [148].The occurrence of concept drift is triggered by latent aspects, e.g.,

community demands and movements, which are not considered while a decision model

is trained. As an initial effort, the work in [149] applied decision models for bankruptcy

prediction in light of various financial factors.

Biomedicine: Biomedical systems are subject to concept drift for the adaptive

dynamics of microorganisms [150]. The impact of antibiotics on a patient typically reduces

as time passes since microorganisms mutate and produce resistance to antibiotics. If a

patient is given an antibiotic when it is not required, resistance may develop and antibiotics

may no longer be beneficial when they are essential. Changes in disease progression could

be caused by changes in the drug being utilized [151]. Adaptive learning can be utilized

to explore antimicrobial or antibiotic resistance in nosocomial infection, i.e., an infection

which results from therapy in clinics. Resistance changes as time passes.

60

Chapter 4
Data Stream Classification:

Background and Related Works

4.7.4 Artificial Intelligence (AI)

In artificial intelligence uses, automata communicate with the surroundings to follow

the most effective actions for the following techniques. The automata can adjust their

knowledge over time because they usually act in environments which are dynamic. The

issue of concept drift also is known as a dynamic environment in the artificial intelligence

group.

Mobile systems and robotics: Ubiquitous Knowledge Discovery (UKD) handles

distributed and movable methods, functioning inside a complicated, dynamic, and unstable

environment. [152] created the NextLocation framework to predict other places associated

with a movable user. Adaptivity to an evolving environment was addressed in the field of

robotics [153], e.g., developing a robot player for soccer.

Intelligent systems: Smart solutions learn by using streams of data in real time and

adapt their models depending on the present scenario. Smart houses should be adaptive to

meet users’ requirements [154].

Virtual reality: Virtual reality should be empowered with mechanisms to deal with

concept drift. In game design, the adversarial actions of players who are cheating might

be one of the concept drift sources [155]. In games simulating fights, strategies and skills

differ across different users.

4.8 Summary

The fundamental concepts of data streammining were discussed in this chapter. We detailed

the main differences between batch settings and data stream settings in Section 2.1. A

batch is a finite and static dataset whereas a data stream is an infinite sequence of rapidly

arriving instances. Furthermore, the concept of learning may change in the data stream

setting. Section 2.1.3 explained the batch/offline and incremental/online learning modes.

The offline learning mode is appropriate for a batch problem where the distribution of data

is static. The online learning mode, on the other hand, processes instances one-by-one from

a data stream continuously and updates the predictive model accordingly.

61

Chapter 4
Data Stream Classification:

Background and Related Works

We formalized the data stream classification problem in Section 2.2.1 by describing

the assumptions, the requirements and the life cycle of data streammining. The assumptions

are concerned with the nature of data streams and the sufficiency of the learning algorithms.

Online classification algorithms have to process an example at a time and only once, using

a limited amount of memory and a limited amount of time, and need to be ready to predict at

any point. As presented in 2.2.4, the life cycle of data stream mining consists of three stages

of processing instances, learning from instances, and utilizing the model. We described the

(base) incremental learners, e.g., naive Bayes, Hoeffding trees and perceptron in Section

2.2.5.

We differentiated evolving data streams from stationary data streams by describing

the concept drift phenomenon in Section 2.3.1. We applied the Bayesian decision theory to

define real concept drift and virtual concept drift notions in Section 2.3.1.1. The underlying

data distribution and the target concept change when real concept drift occurs. Further,

we illustrated the patterns of concept drift, namely, abrupt, gradual, incremental, and

re-occurring in Section 2.3.1.2.

In Section 2.3.2, we explained adaptive learning as an incremental learning solution

which is able to detect concept drift and to adapt its model to the new distribution. We

then compared the blind and informed adaptive algorithms. A blind solution adapts its

classification model without any explicit concept drift detection, whereas an informed

algorithm initially detects concept drift prior to updating its model. The adaptation may

appear as either complete or partial replacement. As to the complete replacement, the

outdated model is discarded and a new model is trained from scratch. We further discussed

in Section 2.3.3 that adaptive learners must fulfill three requirements, namely minimum

false positive and false negative rates, short detection delay, and robustness to noise.

We presented three groups of drift detection methods, namely, sequential analysis-based

approaches, statistical-based methods and window-based methods in Section 2.3.4.

We provided definitions of synthetic, real-world and semi-real-world data streams

in Section 2.4. Then, we discussed the evaluation settings for adaptive learning. The

incremental holdout and prequential evaluation procedures were described in Section 2.5.1.

The holdout procedure assesses the model periodically, whereas the prequential procedure

evaluates the model once a new instance arrives. We then studied classification, drift

detection and resource consumption measures. Finally, we covered applications of adaptive

62

learning and concept drift detection in Section 2.6.

In the next chapter, we introduce the diversity measure as a new drift detection

method in data streaming (DMDDM), fast reaction to sudden concept drift in the absence

of class labels (DMDDM-S), and a combination of information entropy and ensemble

classification to detect concept drift in data streams (EDE) for the accurate detection of

concept drift with a shorter delay compared to the state-of-the-art.

Chapter 5

Diversity Measure as a New Drift

Detection Method in Data Streaming for

the Binary Classification Problem

This chapter comprises two of our research papers:

• “Diversity measure as a new drift detection method in data streaming”, published in

the Knowledge-Based Systems Journal, Elsevier (Mahdi, Osama A et al., 2020). This

paper introduced a novel method, the disagreement measure as a fully supervised drift

detection method (DMDDM) which reacts rapidly to sudden concept drift in less time

and with less memory consumption compared to state-of-the-art drift detectors. We

present DMDDM in Section 5.2.

• “Fast Reaction to Sudden Concept Drift in the Absence of Class Labels”, published

in Applied Sciences Journal, MDPI (Mahdi, Osama A et al., 2020). This paper

introduced DMDDM-S as an extension of DMDDM, which reacts rapidly to sudden

concept drift in the absence of class labels (semi-supervised). We present DMDDM-S

in Section 5.3.

5.1 Problem Statement

As discussed in Section 4.3.1, the classification accuracy of data streams may decline due to

the existence of concept drift. To keep accuracy constant, an adaptive learning mechanism

which employs drift detection methods to discover these concept drifts and update their

64

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

models accordingly is needed [8]. Recall that most of the existing drift detectors, including

all the aforementioned methods, evaluate the prediction results by analysing the error rate

(accuracy) and its corresponding standard deviation and find the difference between the

means of the sub-windows or compare the accuracy of a model with different time windows,

etc., [42]. However, such methods either suffer from a high cost in terms of memory or run

time or they are not fast enough in terms of detection speed. Furthermore, according to the

authors of [7], the existing works make an optimistic assumption that all incoming data are

labelled and the class labels are available immediately. However, such an assumption is

not always valid. Therefore, a lack of class labels aggravates the problem of concept drift

detection.

Consequently, having a concept drift detection method which reacts rapidly to

concept drift in less time and with less memory consumption is needed to enhance the

condition of adaptive learning. In addition, reacting to concept drift in the absence of class

labels, where the true label of an example is not necessary, is required. Recall that we

formalized these problems and their corresponding research objectives in Section 2.1.1 as

follows:

• Research Problem 1.1: Will the classification accuracy of data streammodels reduce

due to the concept drift phenomenon in evolving data ?. Therefore, the task is to signal

for concept drift in less time andwith less memory consumption, keeping the accuracy

of the data stream models constant.

• Research Objective 1.1: To propose a novel concept drift detection method which

detects concept drift more accurately and with less time and memory consumption

compared to the other drift detectors. To do this, we empirically compare our

proposed drift detection method with the existing ones using synthetic and real-world

data streams considering different performance measures, e.g., detection delay, true

detection, memory and accuracy.

• Research Problem 1.2: Can a lack of class labels aggravate the problem of concept

drift detection in data streams?. Therefore, in the absence of class labels, the task is

to signal concept drifts in less time and with less memory consumption, keeping the

accuracy of the data stream models constant.

• Research Objective 1.2: To propose a semi-supervised drift detection method which

detects concept drift in the absence of class labels more accurately, compared to other

65

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

fully supervised drift detectors.

To address these research problems, we introduce a method called diversity measure

as a new drift detection method (DMDDM). The proposed method combines one of

the diversity measures, disagreement measure, known from static learning in streaming

scenarios with the Page-Hinkley test and uses these calculations to detect drifts. We present

DMDDM in Section 5.2. Then, we describe the fast reaction to sudden concept drift in

the absence of class labels (DMDDM-S), as an extension of DMDDM in Section 5.3.

We separately evaluate the proposed methods against the state-of-the-art in each section

to discuss the main idea underpinning each. We experimentally show our methods react

rapidly to concept drift in less time, with less memory consumption even in the absence of

class labels compared to the existing ones.

5.2 Diversity Measure as a New Drift Detection Method

(DMDDM)

Diversity is an important characteristic of ensembles in the standard, static data context.

Measuring diversity can be useful to analyse the effectiveness of a diversity-inducing

method. Therefore, many researchers consider diversity to prune a number of component

classifiers [43–45]. In addition, there have been scant attempts at promoting diversity, for

example, the work in [46] investigates the effect of using diversity in online ensemble

learning and amends the Poisson distribution that has been used in online bagging for

reactions to drift. However, the researchers used the adjusted ensemble to measure accuracy

not diversity. Therefore, to the best of our knowledge, this work is the first supervised drift

detection method to measure the diversity of component classifiers directly and use it as a

base for drift detection. In contrast, the previous approaches used classification accuracy to

detect drifts.

The diversity of component classifiers can be calculated in pairs, for example, let

X = x1, ..., xn be a labelled data set and y′v = [y′v (x1), . . . , y′v (xn)] an n-dimensional

binary vector that represents the output of a classifier hv, such that y′v (xj) = 1, if hv correctly

predicts the class label and 0 otherwise. Table 5.1 presents (as it calls oracle outputs) all the

possible outcomes for a pair of classifiers hu and hv, such that hu = hv, where Nab is the

66

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

number of instances xj ∈ X for which y′u (xj) = a and y′v (xj) = b. Therefore, all the

probabilities of Nab are as follows:

• N10 indicates number of examples where Ci predicts class 1 and Cj predicts class 0.

• N01 indicates number of examples where Cj predicts class 1 and Ci predicts class 0.

• N11 indicates number of examples where Ci predicts class 1 and Cj predicts class 1.

• N00 indicates number of examples where Ci predicts class 0 and Cj predicts class 0.

Table 5.1: The Correlation of a Pair of Classifiers (2 × 2)

hu = hv hucorrect(1) huincorrect(0)

hvcorrect(1) N11 N10

hvincorrect(0) N01 N00

We now focus on the disagreement measure which was used in [156] to characterize

the diversity between a base classifier and a complementary classifier, and then in [157]

to measure diversity in decision forests. Formally speaking, the disagreement measure

is defined as the ratio of the number of inconsistent decisions over the total number of

observations. In other words, this measure is defined based on the intuition that two diverse

classifiers perform differently on the same training data. Also, we can say it is the ratio

between the number of observations for which one classifier is correct and the other is

incorrect. Consequently, the diversity measure reflects the variety of reactions of classifiers

to stream changes. The disagreement measure is probably the most intuitive measure of

diversity between a pair of classifiers [51]. Consequently, the diversity between two base

classifiers (hu and hv) using the disagreement measure is calculated by Equation.5.1:

Du:v = N10 +N01 (5.1)

According to [130] and as mentioned earlier, the PH test considers a variable mT

which measures the accumulated differences between observed values e (error estimates).

Two basic approaches to calculate these values prequentially (incrementally with forgetting)

are fading factors and sliding windows.

The fading factors approach is used in this work. Over time, the fading factors

remove outdated information by multiplying the former summary by a factor and then

67

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

adding a new value calculated using the incoming data. Other approaches use the sliding

windows to hold at each time point a set of d most current examples in order to limit the

number of analyzed examples. Therefore, we calculate the fading sum Sx,α and fading

increment Nα at time t from a stream of objects x, as follows:

Sx:α(t) = xt + α× Sx:α(t− 1) (5.2)

Nα(t) = 1 + α×Nα(t− 1) (5.3)

Then, the fading average is computed at observation i:

Mα(t) =
Sx:α(t)

Nα(t)
(5.4)

According to [130], the fading factors approach uses less time and memory

compared with the sliding windows approach. Therefore, in this work, the observed value

with the fading factor is the studied diversity measure instead of error rate. By applying the

value of diversity from Equation.5.5 in Equation.5.6, we have the following equations.

Su:v:α(t) = Du:v + α× Su:v:α(t− 1) (5.5)

Mα(t) =
Su:v,α(t)

Nα(t)
(5.6)

Equation.5.6 can be used with the PH test to monitor the diversity of a pair of

classifiers. the PH test signals a drift whenever the predictions of components (hu and hv)

start to disagree in an unusual way. In other words, the PH test detects a significant increase

in diversity.

Equation.5.7 is used to calculate the cumulative differencemT between the observed

values from Equation.5.7 and their mean till the current moment t:

68

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

mT =
T∑
t=1

(xt − x
′

T − δ) (5.7)

where x
′
T = 1

T

∑t
t=1 xt and δ correspond to the magnitude of changes that are

allowed. The minimum value of this variable is also computed via Equation.5.8:

MT = min(mt, t = 1...T). (5.8)

As a final step, the test monitors the difference betweenMT andmT as follows:

PHT = mT −MT (5.9)

When this difference is greater than a given threshold (λ), a drift is signaled.

69

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Algorithm 3: Pseudocode of the Diversity Measure As a New Drift Detection
Method (DMDDM)
Require: S: data stream of examples (labelled),
Forgetting factor α : 0 <<α <-1
Admissible change: δ = 0.1,
Drift threshold: λ = 100
MT : 1.0D
Result: Drift ∈ {TRUE, FALSE}

1 for each example xt ∈ S do
2 Cvprediction = get prediction using xt;
3 Cuprediction = get prediction using xt;
4 if Cvprediction = 0.0 and Cuprediction= 1.0 then
5 b++;
6 end
7 if Cuprediction = 0.0 and Cvprediction= 1.0 then
8 c++;
9 end
10 Disagreement,Du,v = b+ c/L;
11 Su:v,α(t) = Du:v + α× Su:v,α(t− 1);
12 Nα(t) = 1 + α×Nα(t− 1);
13 Mα(t) =

Su:v,α(t)

Nα(t)
;

14 SumDiversity = SumDiversity +Mα(t);
15 mT = (mT +Mα(t)− (SumDiversity/instancesSeen)− δ);
16 MT = Min(MT ,mT);
17 PHtest = mT −MT ;
18 if PHtest > λ then
19 Return TRUE
20 else
21 Return FALSE
22 end
23 incrementally train Cv and Cu with xt;
24 end

The DMDDM approach is presented in Algorithm 3 and its framework is shown in

Fig.5.1. First, the algorithm processes each example from the data stream and obtains the

predictions for a pair of classifiers on each example line (lines 1-3). Then the algorithm

builds the oracle output table, as mentioned in Table 5.1. From Table 5.1, we need to

find the two cases (N10 and N01) where the pair of classifiers performs differently on

the same training data xt. Once we observe this disagreement, we count the number

of observations on which the classifier is correct and incorrect, shown in lines 4 to 9,

respectively. These steps represent the first phase of the DMDDM framework (prediction

phase). Phase two (concept drift detection phase) uses these observed predictions using a

disagreement measure with the PH test to detect drifts.

70

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

In line 10, we apply the disagreement measure (Equation.5.1) by aggregating these

observations and dividing it by the number of component classifiers. Then, the fading factor

approach is applied from lines 11 to 13 (Equation.5.5, Equation.5.3 and Equation.5.6). In

lines 11 and 12, the fading sum and fading increment are calculated, respectively.

Stream Data

Prediction

Concept Drift
Detection

Drift
Understanding

YES

Incremental
learning

Drift Adaptation

NO

When & Where
{Detection Delay,
True Detection,

False Alarm, False
Negative}

Disagreement
Measure with

PH Test

Diversity of
Predictions of a Pair

of Classifiers

Prequential Evaluation (Test Then Train)

Figure 5.1: Framework of DMDDM

With the fading sum and fading increment, we use the value of diversity from line

10 as the observed value instead of the error estimates that were used in the original PH test.

In line 13, the fading average is calculated. To monitor the diversity of a pair of classifiers,

from lines 14 to 22, the PH test considers a variable mT , which measures the accumulated

difference between the observed value of diversity and their mean up to the current moment.

After each monitoring, there is a step for checking and signaling for a drift, if the value of

variation between the current mT and the smallest value up to this moment MT is larger

than a predefined threshold. If there is a drift, phase three (drift understanding phase) starts,

which evaluates the detected drift in terms of delay detection, true detection, false alarm and

false negative. The evaluation method is explained in Section 4.6. Finally, whether there is

a drift or not, phase four (incremental learning phase) / line 23 is used to incrementally train

71

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

the model and keep it up-to-date.

5.2.1 Experimental Evaluation

This section details the results of the experiments and the analyses of each drift detector. The

experiments show the detection delay, true detection, false alarm, false negative, detection

runtime, memory usage and accuracy in the presence of 10% noise over the five tested

datasets. We highlight our and the best results in bold. In addition, Table 5.2 shows the

abbreviations of the measures that are used in Tables 5.3-5.6.

Table 5.2: Abbreviations of the Names of the Measures.

Name of Measure Abbreviation
Average Delay Detection ADD
Average True Detection ATD
Average False Alarm AFA
Average False Negative AFN
Average Detection Runtime (MS) DRMS
Average Memory Usage (Byte) MUB
Average Accuracy ACC

Tables 5.3 (a) and (b) show the results of the experiments using the Mixed dataset.

Note that DMDDM is able to detect drift in the shortest time compared with the other

detectors. In addition, the results show that the method which detected drift the fastest

was DMDDM, followed by Wtest, MDDMs, FHDDM, ADWIN, Atest and SeqDrift2 in

ascending order of delay detection. Other methods such as PHtest and DDM are only able

to detect some drifts. In relation to the computational time and memory usage, it is clearly

seen that SeqDrift2 and ADWIN have the highest memory usage and the longest runtime

was recorded by ADWIN, as shown in Table 5.3 (b). In addition to having the lowest delay

detection, DMDDM has the lowest computational time and memory usage.

Table 5.4, Table 5.5 and Table 5.6 (a) and (b) show the results of the experiments

using the Sine1, Agrawal and SEA datasets, respectively. The results of the Agrawal and

the SEA datasets are similar. For example, for both datasets, DMDDM has the lowest

average delay detection followed by MDDMs, Wtest, FHDDM and Atest, respectively. In

addition, these successfully detect all three drifts in the Agrawal dataset, while DMDDM

was the only one able to detect the single drift in the SEA dataset. On the other hand,

for the Sine1 dataset, the four top performing methods for delay detection and average

72

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

real drift are Wtest, DMDDM, MDDMs and FHDDM. Regarding computational time and

memory usage, SeqDrift2 and ADWIN require more memory than the other detectors,

while the longest runtime belongs to ADWIN. The reason for this is that SeqDrift2 and

ADWIN consume more memory for storing the prediction results in the sliding windows or

repositories. Furthermore, SeqDrift2 and ADWIN also use more computational time due to

sub-window compression or reservoir sampling procedures.

Regarding false alarms and accuracy, DMDDM has better accuracy on the Mixed,

Sine1 and SEA datasets, and was among the best on the Agrawal dataset. In terms of false

alarms, DMDDM has the highest readings due to the sensitivity of the parameter values

of DMDDM. For example, as shown in Fig.5.2 and Fig.5.3, increasing λ (100-200-300)

entails fewer false alarms, but might delay change or miss detection, resulting in a trade-off

between false alarms and delay change detection. Even with this increase, DMDDM is

still among the best in terms of delay detection and lowest in terms of time and memory

consumption. Furthermore, despite this trade-off, the accuracy of DMDDM is still constant

over the sensitivity of parameters, as shown in Fig.5.4. As mentioned in [130], the trade-off

exists due to the use of the PH test; one possible solution to overcome this trade-off is to

control the diversity of the disagreement method using two fading factors instead of one, as

used in this work. Such a solution is left for future consideration.

In the third experiment, we use a real-world dataset. As mentioned earlier, in

real-world datasets, the ground truth for drifts is not available, thus, we are not able to

measure the average delay detection and the real drift in this section. Consequently, we only

evaluate memory usage and classification accuracy. Table 5.7 summarizes the results of the

experiments on the aforementioned dataset. For the Electricity dataset, the classification

accuracy of DMDDM is among the highest. On the other hand, in terms of memory usage,

DMDDM is the lowest compared to the other methods.

73

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.3: Results of Mixed dataset with 10% noise

(a)
Classifier Detectors ADD ATD AFA AFN
HT&PER DMDDM 35.81 4 7.62 0

FHDDM 48.52 4 0 0.01
DDM 214.65 1.85 0.18 2.16
ADWIN 64.56 4 0.84 0
Wtest 36.2 3.99 0 0.01

HT PH Test 240.97 1.04 0 2.96
SeqDrift 200 4 0 0
Atest 71.54 4 0 0
MDDM-A 43.81 3.99 0 0.01
MDDM-E 41.45 3.99 0 0.01
MDDM-G 41.86 3.99 0 0.01
FHDDM 49.01 4 0 0
DDM 232.51 1.57 0.04 2.43
ADWIN 66.48 4 1.61 0
Wtest 36.16 4 0.01 0

PER PH Test 247.36 0.22 0 3.78
SeqDrift 200 4 0 0
Atest 92.13 3.84 0 0.16
MDDM-A 43.9 4 0 0
MDDM-E 42.13 3.5 0 0.009
MDDM-G 42.14 3.5 0 0.009

(b)
Classifier Detectors DRMS MUB ACC
HT&PER DMDDM 0.68 168 84.16

FHDDM 7.4 1048 84.06
DDM 1.95 472 81.58
ADWIN 50.91 2280.48 82.31
Wtest 6.77 1624 84.00

HT PH Test 1.17 1240 80.44
SeqDrift 4.2 80824.24 83.46
Atest 12 1176 84.04
MDDM-A 40.55 1336 84.06
MDDM-E 28.49 1288 84.05
MDDM-G 21.25 1344 84.05
FHDDM 6.43 1048 82.25
DDM 1.45 472 82.60
ADWIN 53.38 2321.44 82.59
Wtest 6.99 1624 82.54

PER PH Test 0.99 1240 82.61
SeqDrift 3.9 81549.36 82.63
Atest 11.71 1176 82.58
MDDM-A 41.54 1336 82.61
MDDM-E 27.88 1288 82.38
MDDM-G 20.72 1344 82.61

74

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.4: Results of Sine1 dataset with 10% noise

(a)
Classifier Detectors ADD ATD AFA AFN
HT&PER DMDDM 39.05 4 9.01 0

FHDDM 48.14 4 0 0
DDM 175.28 2.88 0.35 1.12
ADWIN 63.84 4 0.26 0
Wtest 35.69 4 0 0

HT PH Test 238.37 1.31 0 2.69
SeqDrift 200 4 0 0
Atest 57.04 4 0.01 0
MDDM-A 43.03 4 0 0
MDDM-E 41.02 4 0 0
MDDM-G 40.99 4 0 0
FHDDM 47.54 4 0 0
DDM 156.43 3.98 0.13 0.02
ADWIN 63.84 4 1.17 0
Wtest 35.66 4 0 0

PER PH Test 249.76 0.06 0 3.94
SeqDrift 200 4 0 0
Atest 61.59 4 0 0
MDDM-A 42.80 4 0 0
MDDM-E 40.82 4 0 0
MDDM-G 40.84 4 0 0

(b)
Classifier Detectors DRMS MUB ACC
HT&PER DMDDM 0.58 168 87.99

FHDDM 8.26 1048 87.92
DDM 2.5 472 86.348
ADWIN 50.24 2316.80 87.89
Wtest 6.93 1624 87.92

HT PH Test 1.19 1240 83.64
SeqDrift 3.71 82746.85 87.89
Atest 11.59 1176 87.92
MDDM-A 38.49 1336 87.90
MDDM-E 28.65 1288 87.87
MDDM-G 20.31 1344 87.86
FHDDM 7.07 1048 88.15
DDM 1.47 472 88.15
ADWIN 52.87 2313.51 88.15
Wtest 6.70 1624 88.16

PER PH Test 1.13 1240 85.8
SeqDrift 3.46 83244.00 88.14
Atest 11.29 1176 88.15
MDDM-A 41.07 1336 88.15
MDDM-E 28.33 1288 88.15
MDDM-G 20.77 1344 87.7

75

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.5: Results of AGR dataset with 10% noise

(a)
Classifier Detectors ADD ATD AFA AFN
HT&PER DMDDM 27.12 3 8.54 0

FHDDM 67.79 3 0 0
DDM 233.99 1 0 2
ADWIN 91.09 3 5 0
Wtest 63.34 2.79 0 0.21

HT PH Test 250 0 0 3
SeqDrift 200 3 0 0
Atest 70.80 3 0 0
MDDM-A 57.82 3 0 0
MDDM-E 56.81 3 0 0
MDDM-G 56.81 3 0 0
FHDDM 129.66 2 0 1
DDM 250 0 0 3
ADWIN 112.10 3 9.45 0
Wtest 105.24 1.97 1.92 1.03

PER PH Test 250 0 0 3
SeqDrift 200 3 0 0
Atest 250 0 0 3
MDDM-A 121.32 2 0 1
MDDM-E 112.32 2 0 1
MDDM-G 112.32 2 0 1

(b)
Classifier Detectors DRMS MUB ACC
HT&PER DMDDM 1.8 168 87

FHDDM 8.06 1048 87.09
DDM 2.39 472 76.35
ADWIN 52.12 2288.16 88.99
Wtest 6.67 1624 83.75

HT PH Test 1.61 1240 71.4
SeqDrift 4.13 97567.76 89.3
Atest 12.38 1176 89.2
MDDM-A 40.63 1336 87.1
MDDM-E 27.50 1288 87.1
MDDM-G 21.80 1344 87.1
FHDDM 8.46 1048 38.8
DDM 2.83 472 38.80
ADWIN 51.63 2392.40 38.80
Wtest 7.7 1624 38.80

PER PH Test 1.99 1240 38.80
SeqDrift 4.44 106543.28 38.80
Atest 12.80 1176 38.80
MDDM-A 43.97 1336 38.80
MDDM-E 26.27 1288 38.80
MDDM-G 21.20 1344 38.80

76

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.6: Results of SEA dataset with 10% noise

(a)
Classifier Detectors ADD ATD AFA AFN
HT&PER DMDDM 81.38 1 1.92 0

FHDDM 219.28 0.26 0 0.73
DDM 248.05 0.01 0 0.98
ADWIN 244.82 0.16 0.07 0.83
Wtest 235.03 0.11 0 0.88

HT PH Test 250 0 0 1
SeqDrift 229.29 0.41 0 0.58
Atest 241.56 0.12 0 0.87
MDDM-A 209.29 0.33 0 0.66
MDDM-E 209.76 0.32 0 0.67
MDDM-G 209.76 0.32 0 0.67
FHDDM 207.32 0.37 0 0.62
DDM 250 0 0 1
ADWIN 248.18 0.02 0.05 0.97
Wtest 198.43 0.40 0 0.59

PER PH Test 250 0 0 1
SeqDrift 245.45 0.09 0 0.90
Atest 242.17 0.07 0 0.93
MDDM-A 200.26 0.40 0 0.59
MDDM-E 193.95 0.43 0 0.56
MDDM-G 194.89 0.42 0 0.57

(b)
Classifier Detectors DRMS MUB ACC
HT&PER DMDDM 0.48 168 89.20

FHDDM 8.93 1048 89.13
DDM 2.46 472 89.11
ADWIN 58.55 2576.44 89.08
Wtest 7.18 1624 89.12

HT PH Test 1.40 1240 89.08
SeqDrift 4.12 341247.5 89.09
Atest 12.53 1176 89.14
MDDM-A 34.49 1336 88.34
MDDM-E 28.05 1288 89.13
MDDM-G 21.26 1344 89.13
FHDDM 7.32 1048 82.96
DDM 1.23 472 82.12
ADWIN 55.54 2466.48 82.11
Wtest 6.16 1624 81.85

PER PH Test 0.88 1240 82.07
SeqDrift 3.10 183948.84 82.45
Atest 11.12 1176 82.55
MDDM-A 37.82 1336 83.48
MDDM-E 28.34 1288 83.6
MDDM-G 21.16 1344 83.41

77

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.7: The results of the Electricity dataset

Classifier Detects Accuracy Memory
HT&PRE DMDDM 84.12 168

FHDDM 84.03 1048
DDM 85.39 472
ADWIN 83.15 1821.93
Wtest 85.08 1624

HT PH Test 82.01 1240
SeqDrift 82.76 10484.15
Atest 85.76 1176
MDDM-A 84.16 1336
MDDM-E 84.74 1288
MDDM-G 84.65 1344
FHDDM 77.4 1048
DDM 78.96 472
ADWIN 78.12 2336.68
Wtest 76.47 1624

PRE PH Test 79.2 1240
SeqDrift 78.26 41475.58
Atest 77.05 1176
MDDM-A 77.05 1336
MDDM-E 77.25 1288
MDDM-G 77.25 1344

100 125 150 175 200 225 250 275 300
Threshold Rate (100-200-300)

40

60

80

100

120

140

De
lay

 D
ete

cti
on

 Ra
te

Sine1
Mixed
Sea

Figure 5.2: Delay Detection Rate

78

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

100 125 150 175 200 225 250 275 300
Threshold Rate (100-200-300)

2

4

6

8

Fa
lse

 A
lar

m
Ra

te

Sine1
Mixed
Sea

Figure 5.3: False Alarm Rate

100 125 150 175 200 225 250 275 300
Threshold Rate (100-200-300)

84

85

86

87

88

89

Ac
cu
ra
cy
 R
at
e

Sine1
Mixed
Sea

Figure 5.4: Accuracy Rate

10 15 20 25 30 35 40 45 50
Noise Rate

50

60

70

80

90

Ac
cu

rac
y R

ate

DMDDM
FHDDM
DDM
ADWIN

Figure 5.5: Effect of Noise Rate

79

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

10 15 20 25 30 35 40 45 50
Noise Rate

50

60

70

80

90

Ac
cu

rac
y R

ate

DMDDM
FHDDM
DDM
ADWIN

Figure 5.6: Effect of Noise Rate

In addition to having the lowest delay detection, it is clearly seen from Tables 5.2-5.5

that DMDDM has the lowest computational time and memory usage. The main reason

for this is because DMDDM maintains a lower number of variables than the others which

results in less memory usage and less execution runtime to update these variables compared

to the others which use sliding windows which means more memory and time is used to

detect drifts. In relation to time complexity, most of the drift detectors including ours have

constant time complexity. The exceptions are ADWIN and SeqDrift which have logarithmic

complexity.

On the other hand, the noise ratio in the literature and also in this work is always 10%.

We believe this ratio represents the normal or acceptable ratio for any dataset. Without

doubt, increasing the noise ratio affects the performance of any model, as demonstrated

in the experiments. Fig.5.5 shows the performance of DMDDM and several others. It is

clearly seen that the performance of each detector dropped significantly when the noise

ratio increased from 10% to 50%.

Furthermore, the certainty of data is one of the assumptions that is used in this field,

however detecting drifts is the main concern because of its impact on performance. Due to

privacy protection, data loss, network errors and so on, it is very common to have uncertainty

during data streaming. However, all the works in the literature including this work applied

the assumption of the certainty of data.

Consequently, considering these assumptions in addition to the size of the data, being

the era of big data, opens the door for further research questions.

80

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

5.3 Fast Reaction to Sudden Concept Drift in the Absence

of Class Labels (DMDDM-S)

We introduced an extension of DMDDM in (Mahdi , Osama et al., 2020), called the

Fast Reaction to Sudden Concept Drift in the Absence of Class Labels (DMDDM-S).

DMDDM-S extends the idea of DMDDMwhen the class labels of the incoming data stream

are not available with the concept drift problem.

Informally, for a pair of classifiers in a binary classification problem, each

component gives one of two possible predictions for each example, either 0 (negative class)

or 1 (positive class). If we take the predictions of each component, we can calculate the

disagreement between these predictions. Therefore, it is about the disagreement between

the predictions of pairs of component classifiers, regardless of the true labels.

First, we propose DMDDM to detect concept drift in a semi-supervised environment

(DMDDM-S). The main advantage of calculating diversity is that for binary classification,

the true label of an example is not necessary to determine whether components disagree.

Second, we apply the proposed drift detector to detect sudden drifts when the class labels

of incoming data are not available. To the best of our knowledge, this is the first work

that uses such a method to detect concept drift. Third, we adopt k-prototype clustering as a

solution to label the unlabelled data and use the newly labelled data along with the labelled

ones to retrain the model to be consistent with the current concept. We show that when only

50% of data is labelled, the proposed drift detector can detect drifts faster and with minimal

consumption in terms of memory and run time than the existing methods which use 100%

of labelled data.

The DMDDM-S approach is presented in Algorithm 4 and its framework is shown

in Fig5.7. First, the algorithm processes each example from the data stream and obtains the

predictions for a pair of classifiers on each example line (lines 1–3). Then, the algorithm

builds the outputs, as shown Table 5.1. As shown Table 5.1, we need to find the two cases

(N10 and N01) where the pair of classifiers performs differently. Once we observe this

disagreement, we count the number of observations on which one classifier is correct and

the other is incorrect, shown in lines 4 to 9, respectively. These steps represent the first

phase of the DMDDM-S framework (prediction phase).

81

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Phase two (concept drift detection phase) uses these observed predictions using a

disagreement measure with the PH test to detect drifts. In line 10, we apply the disagreement

measure (Equation. 5.1) by aggregating these observations and dividing it by the number

of component classifiers. Then, the fading factor approach is applied from lines 11 to 13

(Equation. 5.5, Equation. 5.3 and Equation. 5.6). In lines 11 and 12, the fading sum and

fading increment are calculated, respectively. With the fading sum and fading increment,

we use the value of diversity from line 10 as the observed value instead of the error estimates

that were used in the original PH test. In line 13, the fading average is calculated. Tomonitor

the diversity of a pair of classifiers from lines 14 to 19, the modified PH test considers a

variable mT , , which measures the accumulated difference between the observed value of

diversity and their mean up to the current moment (Equation. 5.7). After each observation,

the PH test checks whether the difference between the current mT and the smallest value

up to this moment MT is greater than a given threshold (Equation. 5.9). If the difference

exceeds the predefined threshold, a drift is signalled. When there is a drift, we need to label

the current unlabelled data to use them to retrain the model and keep it consistent.

Therefore, line 20 combines the two windows of the labelled (Wld) and unlabelled

data (Wuld) and sends the result to K-prototype clustering in order to label the unlabelled data

in line 21, the third phase of the DMDDM-S framework. When there is a drift, phase four

(drift understanding) starts, which evaluates the detected drift in terms of delay detection,

true detection, false alarm and false negative. The evaluation method is explained in Figure

4.10.

Then, lines (22–24) incrementally train the current model and keep it up-to-date with

the newly labelled data (Nld). Lines (26–39) check and handle the availability of each class,

phase five (class is missing?). With each observation of xt and whether there is a drift or

not, we need to check if xt is labelled or not. If the class of xt is missing, first line 27 checks

if (Wuld) reached the pre-defined probability, removes the oldest instance in (Wuld) and adds

the newest one to (Wuld); otherwise, xt is added to (Wuld) directly in line 30. On the other

hand, if the class is not missing, line 33 will incrementally train the current model with the

current labelled instance. Finally, lines (35–39) check the dynamic window of labelled data

(Wld), and If the size of this window reaches the pre-defined probability, we start removing

the oldest one and add the newest labelled data; otherwise, xt is added to (Wld).

82

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Algorithm 4: Pseudocode of Diversity Measure as a Drift Detection Method in a

Semi- Supervised Environment (DMDDM-S)
Require: S: data stream of examples (50% labelled),

Forgetting factor α : 0 <<α <−1

Admissible change: δ = 0.1,

Drift threshold: λ = 100

Base Classifiers (Hoeffding Tree, Perceptron): L = 2

MT : 1.0D

|Wld|=100

|Wuld|=100

b, c = 0

Result: Drift ∈ {TRUE, FALSE}

1 for each example xt ∈ S do

2 Cv prediction = get prediction using xt;

3 Cu prediction = get prediction using xt;

4 if Cv prediction = 0.0 and Cu prediction = 1.0 then

5 b++;

6 end

7 if Cu prediction = 0.0 and Cv prediction = 1.0 then

8 c++;

9 end

10 Disagreement,Du,v = b+ c/L;

11 Su:v,α(t) = Du:v + α× Su:v,α(t− 1);

12 Nα(t) = 1 + α×Nα(t− 1);

13 Mα(t) =
Su:v,α(t)

Nα(t)
;

14 SumDiversity = SumDiversity +Mα(t);

15 mT = (mT +Mα(t)− (SumDiversity/instancesSeen)− δ);

16 MT = min(MT ,mT);

17 PHtest = mT −MT ;

18 if PHtest > λ then

19 Return TRUE ;

20 Wld←−Wld ∪Wuld ;

21 Nld =K − PrototypeClustering(Wld) ;

22 for each example xt ∈Nld do

23 train classifier Cv and Cu using xt

24 end

25 end

26 if class is missing then

27 if |Wuld| = |uld| then

28 remove oldest instance inWuld and add xt toWuld

29 else

30 Wuld←−Wuld ∪ xt

31 end

32 else

33 Incrementally train classifier Cv and Cu using xt

34 end

35 if |Wld| = |ld| then

36 remove oldest instance inWld and add xt toWld

37 else

38 Wld←−Wld ∪ xt

39 end

40 end

83

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

5.3.1 Experimental Evaluation

The performance of DMDDM-S is evaluated against various drift detectors, namely, DDM,

EDDM, FHDDM, PH Test, SEED, STEPD and RDDM. The main reasons for choosing

these supervised methods over semi-supervised methods are: (i) the limited access to the

source code of someworks, and (ii) wewant to show the strengths of DMDDM-S, which can

detect drifts faster when only 50% of the data is labelled with minimal consumption in terms

of memory and run time than the existing methods that use 100% of labelled data.

Stream Data

Prediction

Concept Drift
Detection

Class Is
Missing ? NO

Diversity of
Predictions of a

Pair of Classifiers

Drift
Understanding

When & Where
{Detection Delay,
True Detection,

False Alarm, False
Negative}

Disagreement
Measure with

PH TestIncremental
learning

NO

Drift Adaptation

Prequential Evaluation (Test Then Train)

YES

YES

Figure 5.7: Framework of DMDDM-S.

This section presents the results of the experiments and the analyses of each drift

detector, with Tables 5.8 – 5.10 showing the results of the experiments using Sine1, Sine2

and the Mixed datasets. The results of the Sine1 and Mixed datasets are similar. For

example, the method that detects drift the fastest is STEPD, followed by our proposed

method, DMDDM-S, and then FHDDM, SEED and RDDM in ascending order of delay

detection. In addition, all the methods detect all the drifts correctly. In relation to Sine2,

DMDDM-S has the lowest average delay detection followed by STEPD, FHDDM, and

SEED, respectively. In relation to computational time and memory usage, it is clearly seen

that SEED, RDDM and FHDDM have the highest memory usage compared to the others.

This is because these methods require more memory for storing the prediction results in the

84

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

sliding windows or repositories and they use more computational time due to sub-window

compression or reservoir sampling procedures. In addition to being the fastest and second

fastest in delay detection, DMDDM-S has the lowest computational time andmemory usage.

The main reason for this is because DMDDM-S maintains a small number of variables

compared with the others, which results in less memory usage and less execution runtime

to update these variables.

Table 5.8: Results of Sine1 dataset with 10% noise.

Sine1 (A) Sine1 (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT and Pre DMDDM-S 36.375 4 1.6 168 86.631

HT

FHDDM 47.375 4 7.7 1048 85.242
DDM 196.225 2 3.3 472 66.633

PHTest 238.275 1.2 2.1 1240 66.211

STEPD 27.05 4 6.4 936 87.047

SEED 58.4 4 12 3572.588 86.969

RDDM 93 4 2.6 8656 86.894

EDDM 244.525 0.1 1.6 144 83.34

Pre

FHDDM 46.562 4 7.75 1048 87.177
DDM 154.636 4 2.545 472 86.870

PHTest 249.568 0.090 1.363 1240 72.199

STEPD 27.35 4 5.2 936 87.199

SEED 56.8 4 11.5 3593.608 87.098

RDDM 99.875 4 2.6 8656 87.075

EDDM 250 0 1.6 144 72.181

Regarding false alarm, DMDDM-S has relatively high readings, due to the

parameter sensitivity of DMDDM-S. For example, as shown in Fig 5.8 a,c, increasing λ

(100–200–300) will entail fewer false positives (as shown in Fig 5.8 a) but might delay

change or miss detection (as shown in Fig 5.8 c), resulting in a trade-off between false

positives and delay change detection. Even with this increase, DMDDM-S is one of the

highest in terms of delay detection and incurs the lowest time and memory consumption.

Furthermore, despite this trade-off, the accuracy of DMDDM-S is constant over

the sensitivity of parameters, as shown in Fig 5.8 e. As mentioned in [130], the trade-off

exists with the use of the PH test; consequently, one possible solution to overcome this

trade-off is to control the diversity of the disagreement method using two fading factors

85

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.9: Results of Sine2 dataset with 10% noise

Sine2 (A) Sine2 (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT & Pre DMDDM-S 23.75 4 1.7 168 78.294

HT

FHDDM 52.125 4 9.2 1048 79.834
DDM 209.2 3.6 1.5 472 77.399

PHTest 230 0 1.9 1240 57.738

STEPD 33.1 4 6.4 936 79.855

SEED 62.4 4 11.4 3638.354 79.729

RDDM 134.575 4 3.8 8656 79.55

EDDM 250 0 2 144 57.738

Pre

FHDDM 56.675 4 10.5 1048 74.843
DDM 246.25 0.3 2.1 472 74.269

PHTest 250 0 1 1240 49.882

STEPD 41.725 4 6.5 936 74.851

SEED 70.4 4 10.6 3688.576 74.813

RDDM 189.625 3.4 2 8656 74.623

EDDM 250 0 1.4 144 74.256

instead of one as used in this work. Such a solution is left for future work. Moreover, Fig

5.8 b,d,f shows the stability of each detector in terms of accuracy and mean accuracy over

the data stream, where DMDDM-S is among the best andmost stable compared to the others.

86

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

Table 5.10: Results of Mixed dataset with 10% noise.

Mixed (A) Mixed (B)

Classifier Detector Delay TP Time Memory MeanAccuracy

HT & Pre DMDDM-S 36.45 4 1.2 168 83.171

HT

FHDDM 48.1 4 9 1048 72.767
DDM 214.575 1.8 1.9 427 69.828

PHTest 236.025 1.3 1.6 1240 67.876

STEPD 28.7 4 7.6 936 83.373

SEED 60 4 11.1 3609.606 83.294

RDDM 100.125 4 3.4 8656 83.265

EDDM 250 0 2.1 144 57.858

Pre

FHDDM 47.45 4 7.6 1048 82.125
DDM 220.925 2.1 1.9 427 79.316

PHTest 246.55 0.2 1.4 1240 76.743

STEPD 30.725 4 7 936 82.143

SEED 60 4 11 3641.589 82.065

RDDM 117.575 4 2.5 8656 82.006

EDDM 244.65 0.1 1.5 144 76.483

5.4 Summary

In this chapter, we introduced the diversity measure as a new drift detection method in data

streaming for binary classification problem (DMDDM) and fast reaction to sudden concept

drift in the absence of class labels (DMDDM-S).

In Section 5.2, we presented DMDDM which was designed to react to sudden

concept drift in the binary classification problem. The key novelty of the proposed

algorithm is that it is the first supervised drift detection method to measure the diversity

of component classifiers directly and use it as a base for drift detection. In contrast, the

previous approaches used classification accuracy to detect drifts. Such a novel approach

allows DMDDM to react effectively to sudden concept drift in the binary classification

problem in a rapid manner, using minimal computational resources. We carried out an

experimental analysis to evaluate and compare DMDDM with ten state-of-the-art data

stream drift detector methods.

87

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

100 125 150 175 200 225 250 275 300

3

4

5

6

7

8

Fa
lse

 P
os

iti
ve

 R
at

e

Sine1
Sine2
Mixed

(a)

Accuracy Mean Accuracy

60

65

70

75

80

85

Ac
cu

ra
cy

 R
at

e
- S

in
e1

DMDDM-S
FHDDM
DDM
PHTest
STEPD
SEED
RDDM
EDDM

(b)

100 125 150 175 200 225 250 275 300

25

30

35

40

45

50

55

60

De
la

y
De

te
ct

io
n

Ra
te

Sine1
Sine2
Mixed

(c)

Accuracy Mean Accuracy

60

65

70

75

80

Ac
cu

ra
cy

 R
at

e
- S

in
e2

DMDDM-S
FHDDM
DDM
PHTest
STEPD
SEED
RDDM
EDDM

(d)

100 125 150 175 200 225 250 275 300
78

80

82

84

86

M
ea

n
Ac

cu
ra

cy
 R

at
e

Sine
Sine2
Mixed

(e)

Accuracy Mean Accuracy

60

65

70

75

80

85

Ac
cu

ra
cy

 R
at

e
- M

ix
ed

DMDDM-S
FHDDM
DDM
PHTest
STEPD
SEED
RDDM
EDDM

(f)

Figure 5.8: Changing DMDDM-S threshold (a,c,e) and the stability of each detector’s
accuracy (b,d,f).

The final results confirm that DMDDM efficiently handled concept drift in a rapid

manner and used minimal computational resources compared to the state-of-the-art.

In Section 5.3, we presented DMDDM-S, which was designed to react to sudden

concept drift in the absence of class labels. Most existing works make an optimistic

assumption that all incoming data are labelled and the class labels are available immediately.

88

Chapter 5
Diversity Measure as a New Drift Detection Method in Data Streaming for the Binary

Classification Problem

However, such an assumption is not always valid. Therefore, a lack of class labels

aggravates the problem of concept drift detection. With this motivation, we propose a drift

detector that reacts naturally to sudden drifts in the absence of class labels. In a novel way,

the proposed detector reacts to concept drift in the absence of class labels, where the true

label of an example is not necessary. Instead of monitoring the error estimates, the proposed

detector, DMDDM-S, monitors the diversity of a pair of classifiers, where the true label of

an example is not necessary to determine whether components disagree.

We also conducted an experimental analysis evaluating and comparing DMDDM-S

with seven state-of-the-art data stream drift detector methods. The proposed algorithm and

the ones used for comparison are implemented in Java as part of the

Massive Online Analysis. (We had to remove the label from some training instances

(50%) to simulate a semi-supervised environment and where a semi-supervised setting

assumes some input (training), the instances will not be labelled). The performance of

DMDDM-S is evaluated against seven supervised drift detectors. The main reasons for

choosing the supervised methods over semi-supervised methods are: (i) limited access to

the source

code of some works, and (ii) we want to show the strengths of DMDDM-S, which

can detect drifts faster when only 50% of the data is labelled with minimal consumption in

terms of memory and run time than the existing methods that use 100% of labelled data.

The results of the experiments on the synthetic data sets indicate that with a lack

of class labels, DMDDM-S detects drifts with shorter delay and with minimal detection

run-time and memory usage compared to the existing methods that use 100% of labelled

data.

89

Chapter 6

A Hybrid Block-Based Ensemble

Framework

This chapter presents one of our research papers, which is:

• “A Hybrid Block-Based Ensemble Framework for the Multi-Class Problem to React

to Different Types of Drifts”, paper submitted to Journal Cluster Computing on 30

July 2020. This paper introduced a novel method, the disagreement measure as a fully

supervised drift detection method (DMDDM), which reacts rapidly to sudden concept

drift in less time and with less memory consumption compared to the start-of-the-art

drift detectors. We present DMDDM in Section 4.2.

6.1 Problem Statement

As previously mentioned, the problem of changing the definitions of classes over time

decreases the performance (accuracy) of a predictive model which has been trained using

old instances [7, 126]. Also, processing the multi-class problem is computationally more

expensive, particularly in the presence of concept drift in data streams where the data

is changing over time, and this aggravates the problem of a loss of performance during

the process of drift detection in data streams [49]. In addition, ensemble approaches

which process instances in blocks may not react to sudden changes sufficiently quickly.

Consequently, developing a concept drift detection method that processes the multi-class

problemwhich reacts rapidly to concept drift in less time andwith lessmemory consumption

is needed to enhance the condition of adaptive learning. Recall that we formalized these

90

Chapter 6 A Hybrid Block-Based Ensemble Framework

problems and its corresponding research objective in Section 2.1 as follows:

• Research Problem 2.1: How can DMDDM detect concept drift in multi-class

classification?. The task is to signal concept drifts in less time and with less memory

consumption, keeping the accuracy of the data stream models constant.

• Research Objective 2.1: To devise a new formalism that facilitates a way to detect

concept drifts in the multi-class problem with more accuracy and less time memory

consumption compared to other drift detectors. To do this, we empirically compare

our proposed drift detection method with the existing ones using synthetic and

real-world data streams, considering different performance measures, e.g., detection

delay, true detection, memory, and accuracy.

• Research Problem 2.2: Can we use the block-based ensemble approach to enhance

the reaction to sudden drifts and respond to different types of concept drift?.

Therefore, the task is to keep the accuracy of the data stream models constant.

• Research Objective 2.2: To devise a hybrid block-based ensemble which is a

framework for multi-class classification in evolving data streams. To do this, we

empirically compare our proposed framework with the existing ones using synthetic

and real-world data streams, considering different performance measures, e.g.,

memory, time and accuracy.

To address these research problems, we introduce a hybrid block-based ensemble

(HBBE) which is a fully supervised multi-class classification framework for classification

in evolving data streams. HBBE maintains an ensemble of classifiers and builds a new

model using a new block of samples in data streams when it detects concept drift via an

online drift director. To do this, we put forward an online drift detector for a multi- class

problem (ODDK) which reacts rapidly to concept drift in less time and with less memory

consumption, and works in parallel with HBBE. We present the details of HBBE in Section

4.2.

91

Chapter 6 A Hybrid Block-Based Ensemble Framework

6.2 Framework for theMulti-Class Classification Problem

to react to different types of drifts

The proposed HBBE approach combines an online drift detector which processes instances

online (instance by instance) and block- based weighting to deal with different types of

drifts. Figure 6.1 shows the proposed block-based ensemble framework combined with a

drift detector. The framework comprises the following:

• Online drift detector (instance by instance) enhances the reaction of the ensemble to

sudden drift.

• Block-based ensemble: After d examples – evaluate and updates component

classifiers of the ensemble incrementally and add a new member if necessary, which

should improve the ensemble’s reactions to gradual drift.

• If a drift is detected, a nominee classifier is built using the most recent examples, it is

weighted and then the nominee classifier is added to the ensemble according to θ().

The existing ensemble components are also re-weighted after each drift.

• When the concept is stable and no drifts occur, the framework works similarly to the

normal block-based ensemble.

• The outputs of the hypotheses from the online drift detector and the batch learners are

integrated by a weighted majority vote using a suitability measure.

The next sub-section details the proposed HBBE. First, we discuss the proposed

online drift detector as a drift detector for the K-class problem, followed by a discussion of

the details of the HBBE which combines the best of the proposed online drift detectors and

block-based weighting to react to different types of drifts.

6.2.1 Online Drift Detector for the K-Class Problem (ODDK)

The online drift detector for the K-class problem (ODDK) uses a pair of base

learners/classifiers to detect drifts in evolving data streams. We have already considered

92

Chapter 6 A Hybrid Block-Based Ensemble Framework

a preliminary version of a pair of base learners/classifiers as a drift detector (DMDDM,

DMDDM-S), where a disagreement measure has been used with a PH test to detect sudden

drifts in the binary classification problem. In this current work, we incorporate a number

of modifications, resulting in new contributions. First, it comes with a new formalism that

facilitates the way to detect concept drifts in the multi-class problem. Second, it is combined

with a block-based ensemble in amechanism that enhances its ability to react to sudden drifts

and other types of drifts. As a result, the analysis of ODDK has led to interesting findings

compared to the state-of-the-art.

Let X = x1, ..., xn be data set labels and y′v = [y′v (x1), . . . , y′v (xn)] which

represents the n-dimensional binary vector of the classifier hv output, such that y′v (xj) = 1,

if hv predicts the class label successfully, and 0 otherwise. Therefore, for a pair of classifiers

hu and hv, Table 6.1 shows all the possible outcomes for the binary classification problem,

where Nab is the number of instances xj ∈ X for which y′u (xj) = a and y′v (xj) = b.

Table 6.1: Output of a Pair of Classifiers (2 × 2) for the Binary Classification Problem.

hu = hv hucorrect(1) huincorrect(0)

hvcorrect(1) N11 N10

hvincorrect(0) N01 N00

In preliminary versions of this work (DMDDM, DMDDM-S) and for the binary

classification problem, the disagreement measure Dv,u Equation 6.1 has been used.

However, for multi-class classification problems, using the output of Table 6.1 would be

unsuccessful to measure the differences between a pair of classifiers that incorrectly predict

the same instance using different labels. Consequently, as the first contribution of this

work, we propose a new way of tracking the classifiers’ exact predictions instead of only

the dichotomy correct/incorrect, as has been done in preliminary versions of this work.

Therefore, to capture the variation of a pair of classifiers precisely, we construct a tableCi,j ,

where each value at the intersection of row i and column j holds the number of instances x

∈ X , where hv(x) = i and hu(x) = j. Table 6.2 shows an example of contingency table Ci,j

for the k-class problem.

Du:v = N10 +N01 (6.1)

From Table 6.2, the concomitant decisions of the pair of classifiers are stored in the

93

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 6.2: Output of a Pair of Classifiers for the Multi-class Classification Problem

hu(x) = 0 hu(x) = 1 ... hu(x) = (k − 1)
hv(x) = 0 C00 C01 ... C0(k−1)
hv(x) = 1 C10 C11 ... C1(k−1)
...
hv(x) = (k − 1) C(k−1)0 C(k−1)1 ... C(k−1)(k−1)

diagonal in matrixCi,j . Thus, in order to weight their similarity, Equation 6.2 is used to find

the summation of its values and divide it by the total number of instances n.

Θ = 1/n
K∑
i=0

(Ci,j) (6.2)

In addition, in order to signal if there is a drift, we use the PH test from our

preliminary work, as shown in Equation 6.3 and Equation 6.4

mT =
T∑
t=1

(xt − x
′

T − δ) (6.3)

PHT = mT −MT (6.4)

The ODDK approach is presented in Algorithm 5. As a first step, the algorithm

starts processing each example and finds the predictions for the pair of classifiers (lines

1–3). Then, the algorithm starts constructing a contingency table Ci,j , as shown in Table

6.2, such that the value at the intersection of row i and a column j stores the number of

instances x ∈X , where hv(x) = i and hu(x) = j. Then, the concomitant decisions of the pair

from the diagonal in matrix Ci,j , are used to weight their similarity sum of its values and

divide it by the number of instances n (Line 4-5).

Lines (6-7) calculate the fading sum and fading increment to find the fading average

(line 8). Then, the diversity of Cv and Cu is monitored (9-14), where the PH test looks at

the variable mT which is used to measure the accumulated variation of the observed value

of the diversity ofCv andCu and their mean, up to the current moment. After each iteration,

there is a step that checks if there is a drift, if the value between mT andMT is larger than

a predefined threshold. If a drift is detected, phase three (drift understanding phase) takes

action by evaluating the drift that has been detected by calculating the following metrics,

94

Chapter 6 A Hybrid Block-Based Ensemble Framework

Algorithm 5: Pseudocode of the Online Drift Detector for K-Class Problem
(ODDKP)
Require: S: data stream of examples (labelled),
Forgetting factor α : 0 <<α <-1
Admissible change: δ = 0.1,
Drift threshold: λ = 100
MT : 1.0D
Result: Drift ∈ {TRUE, FALSE}

1 for each example xt ∈ S do
2 Cvprediction = get prediction using xt;
3 Cuprediction = get prediction using xt;
4 P [Cvprediction][Cuprediction] + +
5 Sum+ = P [i][i]
6 Su:v,α(t) = Sum+ α× Sum(t− 1);
7 Nα(t) = 1 + α×Nα(t− 1);
8 Mα(t) =

Su:v,α(t)

Nα(t)
;

9 SumDiversity = SumDiversity +Mα(t);
10 mT = (mT +Mα(t)− (SumDiversity/instancesSeen)− δ);
11 MT = Min(MT ,mT);
12 PHtest = mT −MT ;
13 if PHtest > λ then
14 Return TRUE
15 else
16 Return FALSE
17 end
18 incrementally train Cv and Cu with xt;
19 end

namely: delay detection, true detection, false alarm and false negative. The process of

evaluating the detected drift is explained in Equation. 4. Phase four (incremental learning

phase) keeps the model up-to-date by incrementally training the model (line18).

6.2.2 Hybrid Block-Based Ensemble (HBBE)

Block-based ensembles are a collection of component classifiers that work together to

achieve greater predictive performance, in which data is processed in blocks of a pre-defined

size. In such a scenario, when a new block of data arrives, all the existing component

classifiers of the ensemble are evaluated and their combination weights are updated. At the

same time, a new learner/ classifier is trained on the new block of data and added to the

ensemble and replaces the weakest one based on the evaluation results of the ensemble. In

addition, the accuracy weighted ensemble (AWE) [115] can be considered as the first work

using such ensembles. However, as they rely on the existence of concept drifts within a

95

Chapter 6 A Hybrid Block-Based Ensemble Framework

pre-defined size of blocks, block-based ensembles may not act quickly enough to changes

in the concepts of incoming data. In the case of sudden drifts, block-based ensemble

approaches may respond slowly due to using outdated blocks to train classifiers. On the

other hand, relying on data blocks of a small size can help to some extent in responding to

sudden concept drift, however doing so may harm the ensemble performance and increase

computational costs in the interval of stability.

As a result, we investigate the notion that combining an online drift detector and

a block-based ensemble in one framework enhances the ensemble’s response to sudden

concept drift with a reasonable balance with computational costs. Consequently, the

proposed framework can be considered a HBBE which reacts to sudden drift via the online

drift detector and reacts to gradual drift by updating the components of the ensemble after

every block of data.

Let S denote a data stream in chunks S1, S2,…, Sn where each chunk is of equal

size and Ci represents some classifier for Si. The weight of classifier Ci is the estimated

prediction error using the most recent data Sn. Since Sn is a data stream and produces

examples in the form (x, c) where x is the feature vector and c is the class label, the

classification error of Ci is 1 − f I
c (x) where f I

c (x) is the probability that x is an example

of class c. As such, the mean square error of Ci is given by

MSEi = 1/(sn

T∑
(x,c)∈sn

∫ i

c

(x))2) (6.5)

Should a classifier predict randomly, then the mean square error can be given as:

MSEr =
∑
c

p(c)(1− p(c))2 (6.6)

A random classifier contains no meaningful knowledge of the data, rather, it makes

predictions simply at random. Therefore, MSEr is used as a threshold for weighting and

classifiers whose error rate is at least equal to MSEr are discarded. The weight of a

classifier Ci is given as:

wi = MSEr −MSEi (6.7)

96

Chapter 6 A Hybrid Block-Based Ensemble Framework

(

I

I

I

I

I

I

I

I

l

Data Streams

---..

combines the output
by using a weighted

majority vote.

Online Drift

Detector

- ..
.. ..
......

0

If there is a drift - Update the ensemble

Block-Based

' '
'
'

'

'

'

'

Ensemble: Cl
wi,w2,w3 ... Wn

,c2, C3 ... en

\

\

\

\

\

\

'

I

I

I

I

\ I

_ ..
./1

I

I

J

Figure 6.1: The Framework of Hybrid Block-Based Ensemble

Algorithm 6 uses the block-based ensemble and the online drift detector as a hybrid

block-based ensemble. The algorithm starts by processing examples of the data stream

online (instance by instance) (line 1) and then holds each incoming example in a buffer of

predefined size d (line2). Line 3 uses the online drift detector (Algorithm 1). In addition,

if Algorithm 1 detects a drift or the block size reaches its predefined size, then a nominated

classifier is built and weighted using the buffer (line 4) which should hold the most recent

examples of the data stream. After this, all the ensemble components are weighted using

the buffer line (5). Lines 7 and 8 add the nominated classifier to the ensemble if the size of

the ensemble is less than the predefined k, otherwise, the weakest component is substituted

in the ensemble lines 9 and 10. In such a scenario, a faster online reaction to sudden drift

and gradual changes is sought.

97

Chapter 6 A Hybrid Block-Based Ensemble Framework

Algorithm 6: Pseudocode of the Block-Based Ensemble and Drift detector
(HBBE)
Require: S: data stream of examples (labelled),
D: drift detector
k: number of ensemble members
B: example buffer of size d
(Q): classifier quality measure
t: example number
MT : 1.0D
Result: E: ensemble of k weighted classifiers and 1 classifier with a drift detector

1 for each example xt ∈ S do
2 B ←− B ∪ {xt}
3 if drift detected (Algorithm 1) OR |B| = d then
4 build and weight candidate classifier C ′ using B and Q(6);
5 weight all classifiers Ci in ensemble E using B and Q(8);
6 end
7 if |E| < k then
8 E ←− E ∪ {C ′}
9 else
10 if Q()’ > Q() then
11 replace weakest ensemble member with C ′;
12 end
13 end
14 end

6.2.3 Experimental Evaluation

This section details the results and the analysis of both the online drift detector and the

HBBE. Tables 6.3 (a) and 6.4 (a) present the results of using the online drift detector in

terms of detection delay, true positives, false positives, and false negatives. Tables 6.3 (b)

and 6.4 (b) show the detection runtime, memory usage and accuracy.

Tables 6.3 (a, b) show the results and the analysis using the wave dataset. It can

be clearly seen that the proposed online drift detector (ODDKP) detected the single drift

faster than the other detectors with 0 false positives/false alarms and false negatives. In

addition, the results show that the methods using HT which detected drift the fastest were

MDDMA, STEPD (H) and STEPD (H). However, MDDMA and STEPD (H) recorded

a high rate of false positives/ false alarms and false negatives compared to ODDKP. On

the other hand, the methods using PER which detected drift the fastest were FHDDM (P)

followed by ODDKP. Again, FHDDM recordedmore false positives/ false alarms compared

to ODDKP. Furthermore, Tables 6.4 (a ,b) show the results and the analysis using the SEA

98

Chapter 6 A Hybrid Block-Based Ensemble Framework

dataset, where our online drift detector was much faster to detect drift compared to the

others. In addition, our drift detector is able to detect all the drifts compared to the other

drift detectors which fail to detect all the drifts. Figs 5 and 6 show the average detection

delay for each detector using both classifiers.

In relation to the time and memory use of each drift detector using both the Wave

and SEA dataset, SEED, ADWIN and RDDM have the highest memory use and the longest

runtime was recorded by ADWIN, as shown in Fig 6.2. This is because these detectors

require extra memory for storing the prediction results of the classifiers in sliding windows

or repositories and this results in using extra computational time due to sub-window

compression or reservoir sampling procedures. In addition, compared to the other detectors,

our online drift detector has the lowest cost in terms of computational time and memory use.

The main reason for these good results is because our online drift detector retains a small

number of variables which results in less memory use and less runtime to update these

variables.

Finally, with respect to the classification accuracy of each drift detector, Figs 6.3 and

6.4 show the accuracy of the proposed online drift detector compared to the others. ODDKP

achieved higher accuracy compared to the average of each drift detector.

Figure 6.2: Memory Consumption

99

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 6.3: Results of Wave Dataset

Table 3 (a)
Classifier Detectors ADD ATD AFA AFN
HT&PER ODDKP 34 1 0 0

FHDDM 77 1 7 0
ADWIN 144 1 6 0
DDM 250 0 0 1
ATes 250 0 2 1

HT Wtest 36 1 10 0
MDDM-A 16 1 9 0
MDDM-E 73 1 9 0
MDDM-G 66 1 9 0
SEED 80 1 5 0
STEPD 26 1 33 0
RDDM 250 0 11 1
FHDDM 20 1 2 0
ADWIN 250 0 93 1
DDM 250 0 0 1
ATest 85 1 1 0

PER Wtest 92 1 59 0
MDDM-A 104 1 16 0
MDDM-E 47 1 17 0
MDDM-G 47 1 13 0
SEED 250 0 107 1
STEPD 250 0 73 1
RDDM 169 1 3 0

Figure 6.3: Average Accuracy and Delay Detection (Wave dataset)

One the other hand, Tables 6.5 - 6.7 show the results of the proposed HBBE

framework in terms of classification accuracy, time and memory usage, respectively. As

Table 6.5 shows, for the datasets with sudden drift (Wave and SEA) our method outperforms

all the other algorithms followed by AUE2. In addition, we note that the accuracy of the

100

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 3 (b)
Classifier Detectors DRMS MUB ACC
HT&PER ODDKP 3 168 82.50

FHDDM 12 1048 79.20
ADWIN 75 2530.84 78.80
DDM 2 472 79.80
ATest 20 1176 79.40

HT Wtest 8 1624 79.20
MDDM-A 47 1336 79.00
MDDM-E 24 1288 79.20
MDDM-G 22 1344 79.10
SEED 12 3704.032 77.90
STEPD 13 936 79.60
RDDM 2 8656 79.20
FHDDM 10 1048 61.50
ADWIN 55 2023.144 59.30
DDM 2 2472 83.40
ATest 8 1176 83.50

PER Wtest 12 1624 57.70
MDDM-A 25 1336 82.60
MDDM-E 23 1288 81.70
MDDM-G 23 1344 54.00
SEED 6 2900.752 57.10
STEPD 14 936 61.00
RDDM 4 8656 83.40

Figure 6.4: Average Accuracy and Delay Detection (SEA Dataset)

ensemble has improved compared to using the drift detector alone. This is due to adopting

an online drift detector with the block-based ensemble. For the RBFGR and TreeR, AUE2

had the best performance followed by the proposed hybrid framework. However, our

hybrid framework appears to be more precise in the case of sudden drift (Wave and SEA

datasets). This is due to adopting the online drift detector which has a faster response to

101

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 6.4: Results of SEA Dataset

Table 4 (a)
Classifier Detectors ADD ATD AFA AFN
HT&PER ODDKP 10.667 3 4 0

FHDDM 222 2 3 1
ADWIN 225.333 1 112 2
DDM 250 0 4 3
ATest 224.667 1 6 2

HT Wtest 250 0 11 3
MDDM-A 222 2 7 1
MDDM-E 196.667 2 9 1
MDDM-G 196.667 2 9 1
SEED 204 1 150 2
STEPD 121 3 353 0
RDDM 241 1 166 2
FHDDM 244.667 1 133 2
ADWIN 250 0 308 3
DDM 250 0 0 3
ATest 250 0 13 3

PER Wtest 250 0 408 3
MDDM-A 225 1 146 2
MDDM-E 250 0 182 3
MDDM-G 250 0 176 3
SEED 250 0 374 3
STEPD 250 0 445 3
RDDM 250 0 35 3

sudden concept drift compared to most block-based ensemble approaches. In addition, our

framework clearly outperforms all the other algorithms, especially on the Electricity dataset

where ours is the most accurate followed by WMA, DWM, AUE2 and AWE, however all

the algorithms perform almost identically on the Airline dataset. Second, with respect to

time, DWM consumes the least amount of time followed by AWE, whereas .NSE consumes

the most time. Furthermore, it is clear that processing an ensemble online is the best in

respect to classification accuracy, however it results in a weak performance in respect to

runtime. Third, as shown in Table 6.7, in most cases, DWM achieved minimal memory

use, while NSE consumed the most memory. The memory usage of DWM is lower than

the others because DWM adds and removes component classifiers in response to the global

performance of the entire ensemble and the local performance of individual components. In

addition, it is clear that our proposed algorithms are not the best of all the other methods,

because our methods combine an online drift detector with the block-based ensemble.

102

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 4 (b)
Classifier Detectors DRMS MUB ACC
HT&PER ODDKP 4 168 89.50

FHDDM 93 1048 89.00
ADWIN 563 2575.158 88.40
DDM 29 472 89.80
ATest 120 1176 89.70

HT Wtest 89 1624 88.90
MDDM-A 435 1336 89.90
MDDM-E 306 1288 89.60
MDDM-G 247 1344 89.60
SEED 102 3598.547 89.00
STEPD 55 936 88.80
RDDM 41 8656 89.20
FHDDM 96 1048 68.00
ADWIN 513 2360.202 69.70
DDM 19 472 87.90
ATest 99 1176 77.90

PER Wtest 72 1624 64.60
MDDM-A 374 1336 59.40
MDDM-E 275 1288 62.60
MDDM-G 221 1344 67.90
SEED 98 3507.966 54.50
STEPD 68 936 61.00
RDDM 21 8656 84.20

Table 6.5: Classification accuracy of the different algorithms

HBBE AUE2 AWE DWM .NSE
Wave 84.30 83.30 79.80 79.40 77.90
Sea 90.20 90.10 88.40 88.90 85.60
RBFGR 90.70 91.50 88.60 90.10 87.30
TreeR 82.40 82.80 55.10 50.90 42.00
Electricity 85.02 77.54 71.01 79.60 71.50
Airline 64.70 64.10 57.40 64.00 61.10

Table 6.6: Runtime of the different algorithms.

HBBE AUE2 AWE DWM .NSE
Wave 10.45 10.20 16.75 14.41 33.25
Sea 47.11 41.16 26.80 28.69 2210.42
RBFGR 32.21 28.94 27.87 43.18 2139.36
TreeR 159.71 157.06 89.24 62.44 2977.83
Electricity 3.23 2.19 1.80 0.63 2.01
Airline 454.57 453.71 161.48 145.97 609.35

6.3 Summary

In this chapter, we introduced a hybrid block-based ensemble framework. We furthermore

compared it with the state-of-the-art methods. In section 6.2, we have presented the

103

Chapter 6 A Hybrid Block-Based Ensemble Framework

Table 6.7: Memory usage of the different algorithms.

HBBE AUE2 AWE DWM .NSE
Wave 2.31 0.85 0.51 0.30 0.32
Sea 2.14 1.94 0.24 0.08 1.02
RBFGR 1.20 0.85 0.51 0.30 147.71
TreeR 8.15 7.66 0.63 0.15 6.29
Electricity 0.89 0.85 0.39 0.04 0.28
Airline 65.65 65.47 7.50 7.19 33.88

framework for the multi-class classification problem to react to different types of drifts.

This chapter presented a HBBE framework which brings together the best of the online drift

detectors and block-based weighting with a view to enhancing reaction to sudden drifts and

to respond to other types of concept drift. Additionally, this chapter proposed an online

drift detector to detect concept drift in a timely manner with less memory consumption. We

proposed a newway of calculating diversity which has been designed for a K-class problem,

while the preliminary version of our work (DMDDM and DMDDM-S) addressed the binary

classification problem. The final results of the experimental evaluations on well-known

synthetic and real-world datasets through a comprehensive comparison of eleven drift

detectors and five ensemble approaches indicated that our proposed algorithms perform

significantly better than other drift detectors and ensemble approaches.

104

Chapter 7

Adapting Related Knowledge for

Detecting Concept Drift

This chapter presents two of our research papers, which are:

• “Combination of Information Entropy and Ensemble Classification for Detecting

Concept Drift in Data Stream”, published in Proceedings of the Australasian

Computer Science, (Mahdi, Osama A et al., 2018). This paper presents the entropy

-based ensemble (EBE) for dealing with two main kinds of concept drifts: sudden and

gradual drifts in labelled data. The learning procedures of the model are processed in

blocks of the same size. We present EBE in Section 5.2.

• “KAPPA as Drift Detector in Data Stream”, Paper under preparation to be submitted

to Conference Proceeding. This paper introduces KAPPA as drift detector, which

reacts rapidly to sudden concept drift. We present KAPPA in Section 5.3.

7.1 Problem Statement

The classifier’s error rate and the ensemble are used in most of the previous works to

manage classification accuracy as a criterion for judging whether concept drift is occurring

or not. Information entropy and KAPPA are effective ways of measuring uncertainty and

level of agreement, respectively, and they are suitable to detect concept drift in a reliable,

fast, and computationally efficient way.

105

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

Consequently, in this chapter, first we introduce the proposed model called

entropy-based ensemble (EBE) which is based on incorporating entropy as a drift detector

into an ensemble. The combination is based on the following assumption:

• Research Assumption: In data streaming, if the distribution of block point i is

similar to the distribution of block point i+1, this means that the stream is stable and

there is no drift and vice versa.

In addition, the proposed EBE does not build a new classifier for every new block

of data, instead it builds a new classifier only when there is a drift. The new classifier will

be trained on more recent instances and added to the ensemble. Therefore, this mechanism

results in a low computational cost.

• Research Problem 3.1: Is measuring uncertainty in data streams instead of the

classifier’s error rate suitable for detecting concept drift in a reliable, fast, and

computationally efficient way?. Therefore, the task is to keep the accuracy of the

data stream models constant.

• Research Objective 3.1: To propose a model called entropy-based ensemble

(EBE) which is based on incorporating entropy as a drift detector into the evolving

ensemble in a reliable, fast, and computationally efficient way. To do this, we

empirically compare our proposed framework with the existing ones using synthetic

and real-world data streams, considering different performance measures, e.g.,

memory, time and accuracy.

• Research Problem 3.2: Contrary to the disagreement measure that was used in

Chapter 4, is measuring the level of agreement usingKAPPA suitable to detect concept

drift when different classifiers access data items? The task is to signal concept drift in

less time and with less memory consumption, keeping the accuracy of the data stream

models constant.

• Research Objective 3.2: To propose a drift detector based on KAPPA calculations.

To do this, we empirically compare our proposed drift detector with our proposed

drift detector from Problem I using synthetic data streams, considering different

performance measures, e.g., delay detection, true positives and the mean accuracy.

106

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

7.2 Entropy in Data Streams

A data stream can be defined as a sequence consisting of sequentially ordered tuples di in

time ti where i ∈ (1, 2, 3, .). Each tuple di consists of S feature streams s and one label

stream l, formally di := (si, li), where si is the vector of all feature stream instances at

time ti. In this direction, we make use of entropy in the context of data streams. Entropy

is well-known from information theory [158] as a measure for information content and its

application, thus, it is self-evident that wemake use of it, mainly because of its symmetry and

additive properties. It is defined in Equation.7.1. To compare the distribution dissimilarity

using entropy (by counting and comparing all instances with respect to their features and

class membership), we compare the old and new blocks of instances of data streams. If

it results in a value of 1, this indicates the two distributions are equal, otherwise they are

different. Entropy in the context of data streams is calculated using Equation.7.2:

H(x) =
i∑

t=i

Pi log2 Pi (7.1)

H(x) =
i∑

t=i

P (x) log2 P (x) (7.2)

Where x is a discrete random variable, pi is the probability of occurrence of xi and

P (x) is the probability mass function of x.

To illustrate the related notions of data streams and entropy, we provide the following

definitions.

Definition 1. A certain number of instances n are organized as a data set according

to the time sequence, so we call the data set a data block, which is denoted by b1, b2, b3,…bn,

where n is the size of the data block.

Definition 2. For any two-time points i and j, if the distribution of block pint i is

not similar to the distribution of block point j Di ̸= Dj , this means the stream is not stable

and there is a drift, otherwise, the distribution is stable.

107

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

In order to use entropy in the context of detecting concept changes in data streams,

two blocks over the data stream are tracked; one is the earlier block of data, and the other

is current instances of stream. An algorithm for detecting concept changes compares the

entropies of the earlier and current blocks. If the entropies differ by more than a defined

amount, then a change is deemed to have occurred. The proposed entropy-based ensemble

(EBE) is a drift detection method operating on blocks of data. The combination of entropy

and an ensemble is presented in Algorithm 7. First, the algorithm builds a classifier which is

added to the ensemble (line 2 and 3). Then the entropy for blocki and blocki+1 is calculated

(line 4 to7). After calculating the entropy of blocki , we combine the instances of blocki

and blocki+1 in one block called JointEntropy. Line 8 checks if the result is less than the

predefined threshold (predefined threshold = 95), meaning drift has occurred. The algorithm

checks if the ensemble size is below themaximumnumber of classifiers (which is predefined

as 10) and if so, it creates a new classifier based on the current block of data and is added to

the ensemble (line 9 to 12). Otherwise, it removes the poorest classifier from the ensemble

and creates a new one that is added to the ensemble (line 13 to 16). It trains the ensemble

component incrementally on the current block in line 18. Lastly, if the result matches the

predefined threshold, there is no need to create a new classifier, rather it trains the ensemble

component incrementally to keep the model updated with the current blocks of data (line

22).

7.2.1 Experimental Evaluation

The main aim of this experiment is to evaluate the efficiency of proposed algorithm in terms

of processing time, memory used and accuracy of classification and compares it with the

prequential evaluation after adding concept drift.

From Table 7.1, we can see that using prequential evaluation, accuracy has dropped

from 88.232% to 83.831% and 83.754% for gradual and sudden drifts, respectively. This

drop in accuracy is clearly due to the presence of concept drift. In the other hand, EBE

achieved an accuracy of 81.4%, however, in the presence of concept drift, the percentage of

accuracy increased to 85.5% for gradual drift and 83.0% for sudden drift. The difference in

accuracy between gradual and sudden drift reflects the behavior of the two types of drifts.

For example, a smaller block size is more suitable for sudden drift because it allows a faster

response to the changes, whereas a larger block size is more suitable for gradual drift. In

108

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

Algorithm 7: Pseudocode of the Entropy-Based Ensemble (EBE)
Require: S: Data stream of examples partitioned into blocks B,
k: number of ensemble members,
Result: E:Ensemble of k incremental classifiers

1 E ← Θ
2 Cbi ← NewcomponentclassifierbuiltonBi4
3 E ← E ∪ Cbi
4 for all data Blocks Bi ∪S do
5 Calculate Entropy 1 on Bi

6 Calculate Entropy 2 on Bi+1 // JointEntropy
7 Result of Entropy Entropy1 // Entropy2
8 if Result < Threshold then
9 if Ensemble size < K then
10 Create new classifier Ci on the current block Bi;
11 E ← E ∪ Cbi
12 else
13 Remove the poorest classifier Ci from the Ensemble
14 Create new classifier on the current block
15 E ← E ∪ Cbi
16 end
17 for each example in block Bi do
18 Incrementally train classifiers Ci in the ensemble with Bi

19 end
20 else
21 for each example in block Bi do
22 Incrementally train classifiers Ci in the ensemble with Bi

23 end
24 end
25 end

addition, we believe that the time and memory usage of EBE are relatively high compared to

pprequential evaluation due to the different ways the EBE algorithm handles concept drift.

109

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

Table 7.1: Comparison of EBE and prequential evaluation with and without concept drift.

Method Accuracy Time Memory Usage
Prequential
Without CD 88.232% 0.109375 S

Prequential With Gradual CD 83.831% 0.140625 S 33.555 MB
With Sudden
CD 83.754% 0.125 S

EBE without
CD 81.4% 2.328125 S

EBE with Gradual CD 85.5% 2.328125 S 74.784 MB
With Sudden
CD 83.0 % 2.171875 S

7.3 Inter-rater Agreement, k, in Data Streams

Recall that learning from data streams in the presence of concept drift is one of the biggest

challenges in contemporary machine learning. Since data class distributions may change

through the progress of the stream, KAPPA provides better insight than the other metrics to

detect concept drift in data class distribution. First, as KAPPA is a strict measure that quickly

drops in case of incorrect predictions, this makes it much more useful than using accuracy/

error-rate which only introduces small changes. Second, the main reason concept drift

occurs is due to changes/drifts in data class distribution as the stream progresses. KAPPA

is capable of capturing the competence of the components reflecting the possibly varying

data class distribution with time [51, 52]

In addition, KAPPA is a statistic that is commonly used for handling the problem

of imbalanced classification [159–161]. It evaluates the competence of a classifier by

measuring the inter-rater agreement between successful predictions and the statistical

distribution of data classes, correcting agreements that occur by mere statistical chance

[162].

Formally, a statistic developed as a measure of inter-rater reliability, called k, can

be used when different raters (here classifiers) assess data items to measure the level of

agreement while correcting for chance [51].

Recall that in Table 5.1 for c class labels, k is defined on the C x C coincidence

matrix M of the two classifiers. The entry of M is the proportion of the data set, which Di

labels as wk and Dj labels as ws. The agreement between Di and Dj is given by

110

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

ki,j =

∑
k mkk − ABC

1− ABC
(7.3)

where
∑

t=1mkk is the observed agreement between the classifiers and ABC is

agreement-by-chance.

ABC =
∑
k

(
∑
s

mk,s)(
∑
s

ms,k) (7.4)

Low values of k signify higher disagreement and hence higher diversity. If calculated

on the 2X2 joined oracle output space using probabilities,

ki,j =
2(ac− bd)

(a+ b)(c+ d)(a+ c)(b+ d)
(7.5)

For the purpose of this work, we divide 5.5 by 2 as we are using a pair of classifier.

ki,j = (
2(ac− bd)

(a+ b)(c+ d)(a+ c)(b+ d)
)/2 (7.6)

Table 7.2: The Correlation of a Pair of Classifiers (2 × 2)

hu = hv hucorrect(1) huincorrect(0)

hvcorrect(1) N11 N10

hvincorrect(0) N01 N00

111

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

Algorithm 8: Pseudocode of the KAPPA as Drift Detector in Data Stream
Require: S: data stream of examples (labelled),
Forgetting factor α : 0 <<α <-1
Admissible change: δ = 0.1,
Drift threshold: λ = 100
MT : 1.0D
Result: Drift ∈ {TRUE, FALSE}

1 for each example xt ∈ S do
2 Cvprediction = get prediction using xt;
3 Cuprediction = get prediction using xt;
4 if Cvprediction = 0.0 and Cuprediction= 1.0 then
5 b++;
6 end
7 if Cvprediction = 1.0 and Cuprediction= 0.0 then
8 c++;
9 end
10 if Cvprediction = 0.0 and Cuprediction= 0.0 then
11 a++;
12 end
13 if Cvprediction = 1.0 and Cuprediction= 1.0 then
14 d++;
15 end
16 ki,j = (2(ac− bd)/(a+ b)(c+ d)(a+ c)(b+ d))/2;
17 Su:v,α(t) = ki,j + α× Su:v,α(t− 1);
18 Nα(t) = 1 + α×Nα(t− 1);
19 Mα(t) =

Su:v,α(t)

Nα(t)
;

20 SumDiversity = SumDiversity +Mα(t);
21 mT = (mT +Mα(t)− (SumDiversity/instancesSeen)− δ);
22 MT = Min(MT ,mT);
23 PHtest = mT −MT ;
24 if PHtest > λ then
25 Return TRUE
26 else
27 Return FALSE
28 end
29 incrementally train Cv and Cu with xt;
30 end

The KAPPA approach is presented in Algorithm 8. First, the algorithm processes

each example from the data stream and obtains the predictions for a pair of classifiers on

each example line (lines 1-15). As the main idea behind these 15 steps, KAPPA tries to find

all the possibilities which could exist using a pair of classifiers, as shown in Table 3.1.

Then, the algorithm builds the oracle output table, as shown in Table 3.1. FromTable

3.1, it can be seen that we need to find all cases (N10,N01,N00 andN11). Once we observe

all the cases, we count the number of observations on which the classifier is correct and

112

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

incorrect for each case. Line (15) in our updated equation of KAPPA finds the agreement

between the pair of classifiers. Then, the fading factor approach is applied from lines 17 to

19 (Equation.3.5, Equation.3.3 and Equation.3.6). In lines 17 and 16, the fading sum and

fading increment are calculated, respectively.

With the fading sum and fading increment, we use the value of KAPPA from line 16

as the observed value instead of the error estimates that were used in the original PH test.

In line 19, the fading average is calculated. To monitor the diversity of a pair of classifiers,

from lines 20 to 28, the PH test considers a variable mT , which measures the accumulated

difference between the observed value of diversity and their mean up to the current moment.

After each monitoring, there is a step for checking and signaling for a drift, if the value of

variation between the current mT and the smallest value up to this moment MT is larger

than a predefined threshold. If there is a drift, phase three (drift understanding phase) starts,

which evaluates the detected drift in terms of delay detection, true detection, false alarm and

false negative. The evaluation method is explained in Section 4.6 . Finally, whether there

is a drift or not, phase four (incremental learning phase) / line 29 is used to incrementally

train the model and keep it up-to-date.

113

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

7.3.1 Experimental Evaluation

This subsection presents the outcomes of the analyses and the experiments of the proposed

drift detector using the KAPPA measure. - Fig 7.1 (a - e) compares the outcomes of

the experiments using delay detection, true positives and mean accuracy based on five

well-known datasets, namely: Mixed, Sine1, SEA 10K, SEA 20K and SEA 50K.

First, in relation to the experiments using the Mixed and Sine1 datasets, for the

Mixed dataset, DMDDM was able to detect four drifts successfully and slightly faster

than KAPPA, 4 and 3.9 in terms of true positive (TP) and 35.11 and 4 in terms of delay

detection, respectively. In addition, similar to the Mixed dataset, the results for Sine1 show

that DMDDM is still slightly better than KAPPA in terms of delay detection, true positive

and mean accuracy.

On the other hand, the last three datasets, SEA 10K, SEA 20K and SEA 50K, showed

very promising results, with KAPPA achieving significant results compared to DMDDM.

From Fig 7.1 (c - e) and in terms of delay detection, KAPPAwasmuch faster than DMDDM,

whereas in terms of detecting drift, both KAPPA and DMDDM were successfully able to

detect a single drift in all datasets. Finally, in terms of mean accuracy, both drift detectors

achieve almost identical results.

114

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

(a) (b)

(c) (d)

(e)

Figure 7.1: Changing DMDDM-S threshold (a,c,e) and the stability of each detector’s
accuracy (b,d,f).

7.4 Summary

In this chapter, we introduced the combination of information entropy and ensemble

classification in addition to KAPPA as drift detector.

115

Chapter 7 Adapting Related Knowledge for Detecting Concept Drift

First, in Section 7.2, we presented the combination of information entropy and

ensemble classification for detecting concept drift in data streams which deals with two

kinds of concept drift: sudden and gradual in labelled data. The proposed algorithm is

called entropy-based ensemble (EBE) for classifying data streaming. EBE is based on

incorporating information entropy as a drift detector into the evolving ensemble. The main

objective of the proposed algorithm is to detect two types of concepts drifts, namely: sudden

and gradual drifts and handling them in an incremental way. Two experiments scenarios

were conducted using synthetic data sets which were compared to prequential evaluation.

The first is to generate data sets without concept drift and the second with concept drift.

The results show that EBE improves accuracy in the presence of concept drift (sudden and

gradual drift).

Additionally, in Section 7.3, we presented KAPPA as a drift detector in data stream

mining, which was designed to react to sudden concept drift. Since data class distributions

may change through the progress of the stream, KAPPA provides better insight than other

metrics to detect concept drift. First, this is because KAPPA is a strict measure which

quickly drop in the event of incorrect predictions, making it much more useful than using

accuracy/ error-rate that only introduces small changes. Second, the main reason for

concept drift is due to changes/drifts in data class distribution as the stream progresses.

Therefore, Kappa is capable of capturing the competence of the components reflecting the

possibly varying data class distribution with time. The final results confirm that KAPPA

efficiently handles and detects concept drifts, where the results showed it has a comparable

performance with DMDDM.

116

Chapter 8

Conclusion and Future Work

This chapter concludes the thesis and provides further research directions for this topic.

8.1 Conclusions

This thesis concerns drift detectors and learning ensemble classifiers from concept-drifting

data streams. As mentioned in Section 2.1, our main aim was to propose efficient novel drift

detectors and a hybrid block-based ensemble which are capable of reacting to sudden and

various types of concept drift. This involved analyzing the properties of both drift detection

strategies and block-based ensembles in the context of real concept drift. We believe the

main goal as well as the aforementioned sub-tasks have been accomplished. To support

this claim, this thesis contributes to the state-of-the-art in the area of data stream mining in

relation to concept drift. Specifically, five new concept drift detection methods and a new

ensemble approach were proposed in Chapters 5, 6, and 7, respectively namely DMDDM

and DMDDM-S, ODDK and HBBE, and EBE and KAPPA.

We summarise the findings of this study as follows:

Research Objective 1.1: To propose a novel concept drift detection method which

detects concept drift more accurately andwith less time andmemory consumption compared

to other drift detectors. To do this, we empirically compare our proposed drift detection

with the existing ones using synthetic and real-world data streams considering different

performance measures, e.g., detection delay, true detection, memory, and accuracy.

To achieve Research Objective 1.1: we introduced a new drift detector, called

117

Chapter 8 Conclusion and Future Work

DMDDM, which adapts the disagreement measure and uses its calculations with the

Page-Hinkley test to detect concept drift. DMDDM is proposed to calculate the diversity

of a classifier′s response according to the evolving incoming data. Hence, according to the

statistical PH test, instead of monitoring the error estimates, we monitor the diversity of a

pair of classifiers using the fading factor. In this way, the PH test is triggered whenever the

predictions of components (hu and hv) start to disagree in an unusual way. We evaluated

the proposed method on synthetic and real-world datasets using three sets of experiments.

The results of the experiments on the synthetic datasets indicate that DMDDM achieved the

main requirements of a model operating in a changing environment. The proposed method

detects drifts with shorter delay and with minimal detection runtime and memory usage

compared to the existing methods.

Research Objective 1.2: To propose a semi-supervised drift detection method

which detects concept drift in the absence of class labels more accurately compared to other

fully supervised drift detectors.

To achieve Research Objective 1.2: we introduced a new drift detector, called

DMDDM-S, which adapts the disagreement measure and uses its calculations with the PH

test to detect concept drift. DMDDM-S is proposed to calculate the diversity of classifier

responses according to the evolving incoming data. Therefore, instead of monitoring the

error estimates, DMDDM-S monitors the diversity of a pair of classifiers using the fading

factor. In this way, the PH test is triggered whenever the predictions of components (hu

and hv) start to disagree in an unusual way. The results of the experiments on the synthetic

datasets indicate that with a lack of class labels, DMDDM-S detects drifts with shorter delay

and with minimal detection runtime and memory usage compared to the existing methods.

Research Objective 2.1: To devise a new formalism that facilitates a way to

detect concept drifts in the multi-class problem with more accuracy, in less time and with

less memory consumption compared to other drift detectors. To do this, we empirically

compare our proposed drift detection method with the existing ones using synthetic and

real-world data streams, considering different performance measures, e.g., detection delay,

true detection, memory, and accuracy.

Research Objective 2.2: To devise a hybrid block-based ensemble which is a

framework for multi-class classification in evolving data streams. To do this, we empirically

compare our proposed framework with the existing ones using synthetic and real-world data

118

Chapter 8 Conclusion and Future Work

streams, considering different performance measures, e.g., memory, time and accuracy.

To achieve Research Objectives 2.1 and 2.2: By studying and analyzing the

problem of concept drift in data streams, we propose a hybrid block-based ensemble

paradigm (HBBE) which aims to combine the best of online drift detector (ODDK) and

block-based weighting in order to enhance the reaction to sudden drifts and to respond

to other types of concept drift. This paper proposed an online drift detector to capture

concept drifts in a timely manner with less memory consumption. We proposed a new way

of calculating diversity which was designed for a K-Class Problem, while the preliminary

version of our works (DMDDM and DMDDM-S) was to address the binary classification

problem. Furthermore, two experiments were conducted, the first to evaluate the online

drift detector against eleven well-known concept drift detectors and the second to evaluate

the hybrid block-based ensemble against existing ensemble approaches. The analysis of

the experimental results show that our proposed algorithms perform better than other drift

detectors and ensemble approaches.

Research Objective 3.1: To propose a model called entropy-based ensemble (EBE)

which incorporates entropy as a drift detector into the evolving ensemble in a reliable,

fast, and computationally efficient way. To do this, we empirically compare our proposed

framework with the existing ones using synthetic and real-world data streams considering

different performance measures, e.g., memory, time and accuracy.

To achieve Research Objective 3.1: We presented an algorithm, called

entropy-based ensemble (EBE) to classify data streams. EBE is based on incorporating

information entropy as a drift detector into the evolving ensemble. The objective of the

proposed algorithm is to detect two types of concepts drifts, namely: sudden and gradual

drifts and to handle them in an incremental way. Two experiments were conducted using

synthetic data sets and a comparison was made with prequential evaluation. The first

generated data sets without concept drift and the second generated data sets with concept

drift. The results show that EBE improves accuracy in the presence of both sudden and

gradual concept drift.

119

Chapter 8 Conclusion and Future Work

8.2 Future Work

Regarding future research, an abundance of fascinating avenues are available we explain as

follow.

• Semi-supervised or unsupervised drift detection and adaptation. The current drift

detection adaptation techniques assume that accurate labels of data instances are

obtainable immediately after prediction, which means both detection and adaptation

procedures are supervised. Nevertheless, in real world scenarios true labels, might not

be readily available. Hence, learning ways to enhance drift detection and adaptation

algorithms for semi-unsupervised conditions is crucial.

• Concept-oriented data filtering. Concept drift issues not only occur in data stream

learning, they can also be ubiquitous in training and testing batch-based learning, if

the training and testing data is gathered within a particular time interval instead of

at a time point. For instance, in the training and testing data collected in 2017 for

client churn prediction, the readily available data included a number of concepts. The

knowledge patterns might differ in different months or perhaps over several days, and

also the most useful information for client churn prediction in 2018 might simply be

found in December of 2017. Even though the cross-validation strategy can reduce the

overfitting issues of the model built based on the whole dataset of 2017, it might not

be the right answer. Concept drift concerns the current challenges of overfitting and

underfitting problems. One possible solution is concept-oriented data filtering.

• Video stream concept drift analysis. Since videos are a type of streaming data, it could

be easy to utilize several of the newly suggested techniques for video examination

associated uses. Additionally, the research studies are associated with the connections

and the differences involving concept drift adaptation and visible domain adaptation

strategies. Finally, handling concept drift is an urgent and important issue. It is a

key technique in achieving adaptive systems. Future research on the adaptivity of

machine learning techniques and systems to address concept drift has great prospects

• Class Imbalance issue. Class imbalance is an established issue in machine learning in

which the minority class contains a small prior probability compared to the majority

class. To address this concern, detecting any drift with regard to the minority class

could be difficult.

120

Chapter 8 Conclusion and Future Work

• Data streams in big data. Detecting different types of concept drift in a big data stream

is very challenging, where improving the accuracy, and minimizing the processing

time and memory usage are desirable.

Finally, handling concept drift is an urgent and important issue. It is a key technique in

achieving adaptive systems. The future research on the adaptivity of machine learning

techniques and systems to concept drift has great prospects.

121

Chapter A

Appendix: Pseudocodes of Online

Learning Algorithms

122

Chapter A Appendix: Pseudocodes of Online Learning Algorithms

A.1 Naive Bayes

Figure A.1: Pseudocode of Naive Bayes

123

Chapter A Appendix: Pseudocodes of Online Learning Algorithms

A.2 Decision Stump

Figure A.2: Pseudocode of Decision Stump

124

Chapter A Appendix: Pseudocodes of Online Learning Algorithms

A.3 Hoeffding Tree

Figure A.3: Pseudocode of Hoeffding Tree

125

Chapter A Appendix: Pseudocodes of Online Learning Algorithms

A.4 Perceptron

Figure A.4: Pseudocode of Perceptron

A.5 K-Nearest Neighbours

Figure A.5: Pseudocode of K-Nearest Neighbours

126

Chapter B

Appendix: Samples of Generated

Datasets

127

Chapter B Appendix: Samples of Generated Datasets

B.1 SEA Generator (SEA)

Figure B.1: Sample of SEA Generator

128

Chapter B Appendix: Samples of Generated Datasets

B.2 AGRAWAL Generator (AGR)

Figure B.2: Sample of AGRAWAL Generator

129

Chapter B Appendix: Samples of Generated Datasets

B.3 Mixed

Figure B.3: Sample of Mixed

130

Chapter B Appendix: Samples of Generated Datasets

B.4 Sine1

Figure B.4: Sample of Sine1

131

Chapter B Appendix: Samples of Generated Datasets

B.5 Sine2

Figure B.5: Sample of Sine2

132

Chapter B Appendix: Samples of Generated Datasets

B.6 Wave

Figure B.6: Sample of Wave

133

Chapter B Appendix: Samples of Generated Datasets

B.7 RBF GR

Figure B.7: Sample of RBF GR

134

Chapter B Appendix: Samples of Generated Datasets

B.8 Tree R

Figure B.8: Sample of Tree R

135

Chapter B Appendix: Samples of Generated Datasets

B.9 Electricity (Elec)

Figure B.9: Sample of Electricity (Elec)

136

B.10 Airline

Figure B.10: Sample of Airlines

References

[1] J. Gama, Knowledge discovery from data streams (Chapman and Hall/ CRC Press,1st
ed, 2010).

[2] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, “Advances
in knowledge discovery and data mining,” (American Association for Artificial
Intelligence, 1996).

[3] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining (Pearson
Education India, 2016).

[4] M. Bramer, Principles of data mining, vol. 180 (Springer, 2007).

[5] C. C. Aggarwal, Data streams: models and algorithms, vol. 31 (Springer Science &
Business Media, 2007).

[6] R. S. M. de Barros, “Advances in data stream mining with concept drift,” (2017).

[7] S. Wares, J. Isaacs, and E. Elyan, “Data stream mining: methods and challenges for
handling concept drift,” SN Applied Sciences 1(11), 1412 (2019).

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on
concept drift adaptation,” ACM computing surveys (CSUR) 46(4), 1–37 (2014).

[9] A. Chakrabarti, G. Cormode, and A. McGregor, “A near-optimal algorithm for
computing the entropy of a stream,” in SODA, vol. 7, pp. 328–335 (Citeseer, 2007).

[10] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data streams
using ensemble classifiers,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 226–235 (2003).

[11] J. Gama and M. M. Gaber, Learning from data streams: processing techniques in
sensor networks (Springer, 2007).

[12] N. Trigoni, A. Guitton, and A. Skordylis, “Learning from Data Streams: Processing
Techniques in Sensor Networks. Chapter 6: Querying of Sensor Data,” (2007).

138

References

[13] K. Lorincz, D. J. Malan, T. R. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder,
G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for emergency response:
challenges and opportunities,” IEEE pervasive Computing 3(4), 16–23 (2004).

[14] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,
“Habitat monitoring with sensor networks,” Communications of the ACM 47(6),
34–40 (2004).

[15] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based active learning
for sentiment analysis in the financial domain,” Information sciences 285, 181–203
(2014).

[16] M. J. Procopio, J. Mulligan, and G. Grudic, “Learning terrain segmentation
with classifier ensembles for autonomous robot navigation in unstructured
environments,” Journal of Field Robotics 26(2), 145–175 (2009). https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/rob.20279, URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/rob.20279.

[17] G. Krempl, I. Žliobaite, D. Brzeziundefinedski, E. Hüllermeier, M. Last, V. Lemaire,
T. Noack, A. Shaker, S. Sievi, M. Spiliopoulou, and J. Stefanowski, “Open
Challenges for Data StreamMining Research,” SIGKDD Explor. Newsl. 16(1), 1–10
(2014). URL https://doi.org/10.1145/2674026.2674028.

[18] A. S. Iwashita and J. P. Papa, “An Overview on Concept Drift Learning,” IEEE
Access 7, 1532–1547 (2019).

[19] P. Domingos and G. Hulten, “Mining High-Speed Data Streams,” in Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
DataMining, KDD ’00, p. 71–80 (Association for ComputingMachinery, NewYork,
NY, USA, 2000). URL https://doi.org/10.1145/347090.347107.

[20] W. N. Street and Y. Kim, “A Streaming Ensemble Algorithm (SEA) for Large-Scale
Classification,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’01, p. 377–382
(Association for Computing Machinery, New York, NY, USA, 2001). URL https:
//doi.org/10.1145/502512.502568.

[21] L. I. Kuncheva, “Classifier Ensembles for Changing Environments,” in Multiple
Classifier Systems, F. Roli, J. Kittler, and T. Windeatt, eds., pp. 1–15 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004).

[22] Y. Koren, “Collaborative Filtering with Temporal Dynamics,” in Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’09, p. 447–456 (Association for Computing Machinery, New York,
NY, USA, 2009). URL https://doi.org/10.1145/1557019.1557072.

139

References

[23] Y. Ding and X. Li, “TimeWeight Collaborative Filtering,” in Proceedings of the 14th
ACM International Conference on Information and Knowledge Management, CIKM
’05, p. 485–492 (Association for ComputingMachinery, NewYork, NY, USA, 2005).
URL https://doi.org/10.1145/1099554.1099689.

[24] A. Tsymbal, “The problem of concept drift: definitions and related work,” (2004).

[25] Janardan and S. Mehta, “Concept drift in Streaming Data Classification: Algorithms,
Platforms and Issues,” Procedia Computer Science 122, 804 – 811 (2017). 5th
International Conference on Information Technology and Quantitative Management,
ITQM 2017, URL http://www.sciencedirect.com/science/article/pii/
S1877050917326881.

[26] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
(Prentice Hall Press, USA, 2009).

[27] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics) (Springer-Verlag, Berlin, Heidelberg, 2006).

[28] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning
(The MIT Press, 2012).

[29] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed.
(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011).

[30] P. Flach, Machine Learning: The art and science of algorithms that make sense of
data (Cambridge University Press, United Kingdom, 2012).

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction (A Bradford
Book, Cambridge, MA, USA, 2018).

[32] M. Bramer, Principles of Data Mining, 2nd ed. (Springer Publishing Company,
Incorporated, 2013).

[33] J. Han, Data Mining: Concepts and Techniques (Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005).

[34] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classification
Perspective (Cambridge University Press, USA, 2011).

[35] T. M. Mitchell, Machine Learning, 1st ed. (McGraw-Hill, Inc., USA, 1997).

[36] M. Sayed-Mouchaweh, Learning from Data Streams in Dynamic Environments, 1st
ed. (Springer Publishing Company, Incorporated, 2015).

[37] A. Liu, J. Lu, F. Liu, and G. Zhang, “Accumulating Regional Density Dissimilarity
for Concept Drift Detection in Data Streams,” Pattern Recogn. 76(C), 256–272
(2018). URL https://doi.org/10.1016/j.patcog.2017.11.009.

140

References

[38] N. Lu, J. Lu, G. Zhang, and R. Lopez de Mantaras, “A Concept Drift-Tolerant
Case-Base Editing Technique,” Artif. Intell. 230(C), 108–133 (2016). URL https:
//doi.org/10.1016/j.artint.2015.09.009.

[39] N. Lu, G. Zhang, and J. Lu, “Concept Drift Detection via CompetenceModels,” Artif.
Intell. 209, 11–28 (2014). URL https://doi.org/10.1016/j.artint.2014.01.
001.

[40] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional Concept Drift Detection and
Density Synchronized Drift Adaptation,” in Proceedings of the 26th International
Joint Conference on Artificial Intelligence, IJCAI’17, p. 2280–2286 (AAAI Press,
2017).

[41] A. Liu, G. Zhang, and J. Lu, “Fuzzy time windowing for gradual concept drift
adaptation,” in 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 1–6 (2017).

[42] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A Survey on Ensemble
Learning for Data Stream Classification,” ACM Comput. Surv. 50(2) (2017). URL
https://doi.org/10.1145/3054925.

[43] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, and B. Pfahringer, “Efficient
Online Evaluation of Big Data Stream Classifiers,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and DataMining, KDD
’15, p. 59–68 (Association for Computing Machinery, New York, NY, USA, 2015).
URL https://doi.org/10.1145/2783258.2783372.

[44] J. a. Gama, R. Sebastião, and P. P. Rodrigues, “On Evaluating Stream Learning
Algorithms,” Mach. Learn. 90(3), 317–346 (2013). URL https://doi.org/10.
1007/s10994-012-5320-9.

[45] I. Žliobaitė, A. Bifet, J. Read, B. Pfahringer, and G. Holmes, “Evaluation methods
and decision theory for classification of streaming data with temporal dependence,”
Machine Learning 98, 455–482 (2014).

[46] I. Stoica, D. Song, R. A. Popa, D. A. Patterson, M. W. Mahoney, R. H. Katz, A. D.
Joseph, M. I. Jordan, J. M. Hellerstein, J. E. Gonzalez, K. Goldberg, A. Ghodsi,
D. E. Culler, and P. Abbeel, “A Berkeley View of Systems Challenges for AI,”
CoRR abs/1712.05855 (2017). 1712.05855, URL http://arxiv.org/abs/1712.
05855.

[47] R. S. M. Barros and S. G. T. C. Santos, “A large-scale comparison of concept drift
detectors,” Information Sciences 451-452, 348 – 370 (2018). URL http://www.
sciencedirect.com/science/article/pii/S0020025518302743.

141

References

[48] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with Drift Detection,”
in Advances in Artificial Intelligence – SBIA 2004, A. L. C. Bazzan and S. Labidi,
eds., pp. 286–295 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).

[49] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Classification Using Streaming
Random Forests,” IEEE Transactions on Knowledge and Data Engineering 23(1),
22–36 (2011).

[50] J. Z. Kolter andM. A.Maloof, “Dynamic weightedmajority: a new ensemblemethod
for tracking concept drift,” in Third IEEE International Conference on Data Mining,
pp. 123–130 (2003).

[51] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms
(Wiley-Interscience, New York, NY, USA, 2004).

[52] A. Cano and B. Krawczyk, “Kappa Updated Ensemble for drifting data stream
mining,” Machine Learning 109(1), 175–218 (2020).

[53] M. Kubat and G. Widmer, “Adapting to Drift in Continuous Domains (Extended
Abstract),” in Proceedings of the 8th European Conference on Machine Learning,
ECML’95, p. 307–310 (Springer-Verlag, Berlin, Heidelberg, 1995). URL https:
//doi.org/10.1007/3-540-59286-5_74.

[54] M. Baena-Garc, J. del Campo Ávila, A. Bifet, R. Gavald, and R. Morales-Bueno,
“Early Drift Detection Method,” (2005).

[55] K. Nishida and K. Yamauchi, “Detecting Concept Drift Using Statistical Testing,”
in Discovery Science, V. Corruble, M. Takeda, and E. Suzuki, eds., pp. 264–269
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2007).

[56] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New Ensemble
Methods for Evolving Data Streams,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’09, p.
139–148 (Association for Computing Machinery, New York, NY, USA, 2009). URL
https://doi.org/10.1145/1557019.1557041.

[57] I. Frías-Blanco, J. d. Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno,
A. Ortiz-Díaz, and Y. Caballero-Mota, “Online and Non-Parametric Drift Detection
Methods Based on Hoeffding’s Bounds,” IEEE Transactions on Knowledge and Data
Engineering 27(3), 810–823 (2015).

[58] M. M. Black and R. J. Hickey, “Classification of Customer Call Data in the Presence
of Concept Drift and Noise,” in Proceedings of the First International Conference
on Computing in an Imperfect World, Soft-Ware 2002, p. 74–87 (Springer-Verlag,
Berlin, Heidelberg, 2002).

142

References

[59] T. M. Mitchell, J. G. Carbonell, and R. S. Michalski, eds., Machine Learning: A
Guide to Current Research (Kluwer Academic Publishers, USA, 1986).

[60] H.-L. Nguyen, Y.-K.Woon, andW.-K. Ng, “A Survey on Data Stream Clustering and
Classification,” Knowl. Inf. Syst. 45(3), 535–569 (2015). URL https://doi.org/
10.1007/s10115-014-0808-1.

[61] A. Bifet and R. Kirkby, “Data stream mining a practical approach,” (2009).

[62] P. M. Domingos and G. Hulten, “Catching up with the Data: Research Issues in
Mining Data Streams,” in DMKD (2001).

[63] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning, 1st ed. (Springer
Publishing Company, Incorporated, 2011).

[64] A. Bifet, “Adaptive Learning and Mining for Data Streams and Frequent Patterns,”
SIGKDD Explor. Newsl. 11(1), 55–56 (2009). URL https://doi.org/10.1145/
1656274.1656287.

[65] J. a. Gama, R. Sebastião, and P. P. Rodrigues, “Issues in Evaluation of Stream
Learning Algorithms,” in Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’09, p. 329–338
(Association for Computing Machinery, New York, NY, USA, 2009). URL https:
//doi.org/10.1145/1557019.1557060.

[66] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive
windowing,” in Proceedings of the 2007 SIAM international conference on data
mining, pp. 443–448 (SIAM, 2007).

[67] A. Bifet, G. Holmes, B. Pfahringer, and E. Frank, “Fast Perceptron Decision Tree
Learning from Evolving Data Streams,” in Proceedings of the 14th Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining - Volume Part II,
PAKDD’10, p. 299–310 (Springer-Verlag, Berlin, Heidelberg, 2010). URL https:
//doi.org/10.1007/978-3-642-13672-6_30.

[68] D. T. J. Huang, Y. S. Koh, G. Dobbie, and A. Bifet, “Drift Detection Using Stream
Volatility,” inMachine Learning and Knowledge Discovery in Databases, A. Appice,
P. P. Rodrigues, V. Santos Costa, C. Soares, J. Gama, and A. Jorge, eds., pp. 417–432
(Springer International Publishing, Cham, 2015).

[69] W. Iba and P. Langley, “Induction of One-Level Decision Trees,” in Proceedings
of the Ninth International Workshop on Machine Learning, ML ’92, p. 233–240
(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992).

[70] R. C. Holte, “Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets,” Mach. Learn. 11(1), 63–90 (1993). URL https://doi.org/10.
1023/A:1022631118932.

143

References

[71] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, 1st ed.
(O’Reilly Media, Inc., 2009).

[72] J. Cattlet, “Megainduction: machine learning on very large databases,” (1991).

[73] W. Hoeffding, Probability Inequalities for sums of Bounded Random Variables, pp.
409–426 (Springer New York, New York, NY, 1994). URL https://doi.org/10.
1007/978-1-4612-0865-5_26.

[74] Y. Freund and R. E. Schapire, “Large Margin Classification Using the Perceptron
Algorithm,” in Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, COLT’ 98, p. 209–217 (Association for Computing Machinery,
New York, NY, USA, 1998). URL https://doi.org/10.1145/279943.279985.

[75] D. Shen, G. Wu, and H.-I. Suk, “Deep Learning in Medical Image Analysis,” Annual
Review of Biomedical Engineering 19(1), 221–248 (2017). PMID: 28301734,
https://doi.org/10.1146/annurev-bioeng-071516-044442, URL https:
//doi.org/10.1146/annurev-bioeng-071516-044442.

[76] B. W. Silverman and M. C. Jones, “E. Fix and J.L. Hodges (1951): An Important
Contribution to Nonparametric Discriminant Analysis and Density Estimation:
Commentary on Fix and Hodges (1951),” (1989).

[77] K. Mouratidis and D. Papadias, “Continuous Nearest Neighbor Queries over Sliding
Windows,” IEEE Transactions on Knowledge and Data Engineering 19(6), 789–803
(2007).

[78] D. Brzezinski and J. Stefanowski, “Ensemble Diversity in EvolvingData Streams,” in
Discovery Science, T. Calders, M. Ceci, and D. Malerba, eds., pp. 229–244 (Springer
International Publishing, Cham, 2016).

[79] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, and K. Ghédira, “Discussion and
review on evolving data streams and concept drift adapting,” Evolving Systems 9(1),
1–23 (2018).

[80] S. J. Morshed, J. Rana, and M. Milrad, “Real-Time Data Analytics: An Algorithmic
Perspective,” in International Conference onDataMining and BigData, pp. 311–320
(Springer, 2016).

[81] J. C. Schlimmer and R. H. Granger, “Incremental Learning from Noisy
Data,” Mach. Learn. 1(3), 317–354 (1986). URL https://doi.org/10.1023/A:
1022810614389.

[82] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift and Hidden
Contexts,” Mach. Learn. 23(1), 69–101 (1996). URL https://doi.org/10.1023/
A:1018046501280.

144

References

[83] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd Edition)
(Wiley-Interscience, USA, 2000).

[84] J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework for mining
concept-drifting data streams with skewed distributions,” in Proceedings of the 2007
SIAM International Conference on Data Mining, pp. 3–14 (SIAM, 2007).

[85] M. G. Kelly, D. J. Hand, and N. M. Adams, “The impact of changing populations
on classifier performance,” in Proceedings of the Fifth ACM SIGKDD International
conference on Knowledge Discovery and Data Mining, pp. 367–371 (ACM, 1999).

[86] I. Žliobaitė, “Learning under concept drift: an overview,” ArXiv Preprint
ArXiv:1010.4784 (2010).

[87] W. Fan, Y. an Huang, H. Wang, and P. S. Yu, “Active Mining of Data Streams,” in
SDM (2004).

[88] M. Salganicoff, “Tolerating Concept and Sampling Shift in Lazy Learning
UsingPrediction Error Context Switching,” Artif. Intell. Rev. 11(1–5), 133–155
(1997). URL https://doi.org/10.1023/A:1006515405170.

[89] J. Gao, W. Fan, J. Han, and P. S. Yu, “A General Framework for Mining
Concept-Drifting Data Streams with Skewed Distributions,” in SDM (2007).

[90] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A Case-Based Technique
for Tracking Concept Drift in Spam Filtering,” Know.-Based Syst. 18(4–5), 187–195
(2005). URL https://doi.org/10.1016/j.knosys.2004.10.002.

[91] G. Widmer and M. Kubat, “Effective Learning in Dynamic Environments by
Explicit Context Tracking,” in Proceedings of the European Conference on Machine
Learning, ECML ’93, p. 227–243 (Springer-Verlag, Berlin, Heidelberg, 1993).

[92] M. M. Lazarescu, S. Venkatesh, and H. H. Bui, “Using Multiple Windows to Track
Concept Drift,” Intell. Data Anal. 8(1), 29–59 (2004).

[93] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”
ACM Comput. Surv. 41(3) (2009). URL https://doi.org/10.1145/1541880.
1541882.

[94] L. L. Minku, A. P. White, and X. Yao, “The Impact of Diversity on Online Ensemble
Learning in the Presence of Concept Drift,” IEEE Trans. on Knowl. and Data Eng.
22(5), 730–742 (2010). URL http://dx.doi.org/10.1109/TKDE.2009.156.

[95] P. Kosina, J. a. Gama, and R. Sebastião, “Drift Severity Metric,” in Proceedings
of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, p. 1119–1120 (IOS Press, NLD, 2010).

145

References

[96] A. Pesaranghader, H. Viktor, and E. Paquet, “McDiarmid Drift Detection Methods
for EvolvingData Streams,” 2018 International Joint Conference onNeural Networks
(IJCNN) pp. 1–9 (2018).

[97] A. Liu, G. Zhang, and J. Lu, “Fuzzy time windowing for gradual concept drift
adaptation,” in Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Conference
on, pp. 1–6 (IEEE, 2017).

[98] C. Alippi, W. Qi, and M. Roveri, “Learning in Nonstationary Environments: A
Hybrid Approach,” in International Conference on Artificial Intelligence and Soft
Computing, pp. 703–714 (Springer, 2017).

[99] Z. Ahmadi and S. Kramer, “Modeling recurring concepts in data streams: a
graph-based framework,” Knowledge and Information Systems 55(1), 15–44 (2018).

[100] P. Dhaliwal and M. Bhatia, “Effective Handling of Recurring Concept Drifts in Data
Streams,” Indian Journal of Science and Technology 10(30) (2017).

[101] S. Sakthithasan and R. Pears, “Capturing recurring concepts using discrete Fourier
transform,” Concurrency and Computation: Practice and Experience 28(15),
4013–4035 (2016).

[102] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonstationary
environments: A survey,” IEEE Computational Intelligence Magazine 10(4), 12–25
(2015).

[103] P. Sidhu and M. Bhatia, “A novel online ensemble approach to handle concept
drifting data streams: diversified dynamic weighted majority,” International Journal
of Machine Learning and Cybernetics 9(1), 37–61 (2018).

[104] Y. Geng and J. Zhang, “An Ensemble Classifier Algorithm for Mining Data Streams
Based on Concept Drift,” in Computational Intelligence and Design (ISCID), 2017
10th International Symposium on, vol. 2, pp. 227–230 (IEEE, 2017).

[105] P.-X. Loeffel, A. Bifet, C. Marsala, and M. Detyniecki, “Droplet Ensemble Learning
on Drifting Data Streams,” in International Symposium on Intelligent Data Analysis,
pp. 210–222 (Springer, 2017).

[106] C. McDiarmid, On the method of bounded differences, p. 148–188, London
Mathematical Society Lecture Note Series (Cambridge University Press, 1989).

[107] R. Pears, S. Sakthithasan, and Y. S. Koh, “Detecting Concept Change in Dynamic
Data Streams,” Mach. Learn. 97(3), 259–293 (2014). URL https://doi.org/10.
1007/s10994-013-5433-9.

[108] J. S. Vitter, “Random Sampling with a Reservoir,” ACM Trans. Math. Softw. 11(1),
37–57 (1985). URL http://doi.acm.org/10.1145/3147.3165.

146

References

[109] S. Bernstein, “The theory of probabilities,” (1946).

[110] R. S. M. de Barros, D. R. de Lima Cabral, P. Gonçalves, and S. G. T.
de Carvalho Santos, “RDDM: Reactive drift detection method,” Expert Syst. Appl.
90, 344–355 (2017).

[111] A. Pesaranghader and H. L. Viktor, “Fast hoeffding drift detection method for
evolving data streams,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 96–111 (Springer, 2016).

[112] D. T. J. Huang, Y. S. Koh, G. Dobbie, and R. Pears, “Detecting Volatility Shift in
Data Streams,” in 2014 IEEE International Conference on DataMining, pp. 863–868
(2014).

[113] I. Frías-Blanco, J. del Campo-Ávila, G. Ramos-Jiménez, R. Morales-Bueno,
A. Ortiz-Díaz, and Y. Caballero-Mota, “Online and non-parametric drift detection
methods based on Hoeffding’s bounds,” IEEE Transactions on Knowledge and Data
Engineering 27(3), 810–823 (2015).

[114] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially weighted
moving average charts for detecting concept drift,” Pattern Recognition Letters 33(2),
191 – 198 (2012). URL http://www.sciencedirect.com/science/article/
pii/S0167865511002704.

[115] H.Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-drifting Data Streams Using
Ensemble Classifiers,” in Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 226–235
(ACM, New York, NY, USA, 2003). URL http://doi.acm.org/10.1145/
956750.956778.

[116] B. Krawczyk and M. Woźniak, “Reacting to different types of concept drift with
adaptive and incremental one-class classifiers,” in 2015 IEEE 2nd International
Conference on Cybernetics (CYBCONF), pp. 30–35 (IEEE, 2015).

[117] N. Littlestone and M. K. Warmuth, “The Weighted Majority Algorithm,” Inf.
Comput. 108, 212–261 (1994).

[118] K. Nishida, K. Yamauchi, and T. Omori, “ACE: Adaptive Classifiers-Ensemble
System for Concept-Drifting Environments,” in Proceedings of the 6th International
Conference on Multiple Classifier Systems, MCS’05, p. 176–185 (Springer-Verlag,
Berlin, Heidelberg, 2005). URL https://doi.org/10.1007/11494683_18.

[119] M. Deckert, “Batch Weighted Ensemble for Mining Data Streams with Concept
Drift,” in Proceedings of the 19th International Conference on Foundations of
Intelligent Systems, ISMIS’11, p. 290–299 (Springer-Verlag, Berlin, Heidelberg,
2011).

147

References

[120] R. Elwell and R. Polikar, “Incremental Learning of Concept Drift in Nonstationary
Environments,” IEEE Transactions on Neural Networks 22(10), 1517–1531 (2011).

[121] A. Blum and T. Mitchell, “Combining Labeled and Unlabeled Data with
Co-training,” in Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, COLT’ 98, pp. 92–100 (ACM, New York, NY, USA, 1998). URL
http://doi.acm.org/10.1145/279943.279962.

[122] and, “Tri-training: exploiting unlabeled data using three classifiers,” IEEE
Transactions on Knowledge and Data Engineering 17(11), 1529–1541 (2005).

[123] X. Zhu, “Semi-Supervised Learning Literature Survey,” (2006).

[124] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,” in
In The First Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.
21–34 (1997).

[125] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New Ensemble
Methods for Evolving Data Streams,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’09,
pp. 139–148 (ACM, New York, NY, USA, 2009). URL http://doi.acm.org/10.
1145/1557019.1557041.

[126] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,” in
Brazilian Symposium on Artificial Intelligence, pp. 286–295 (Springer, 2004).

[127] M. K. Olorunnimbe, H. L. Viktor, and E. Paquet, “Intelligent Adaptive Ensembles
for Data Stream Mining: A High Return on Investment Approach,” in Proceedings
of the 4th International Conference on New Frontiers in Mining Complex Patterns,
NFMCP’15, p. 61–75 (Springer, Gewerbestrasse 11 CH-6330, Cham (ZG), CHE,
2015).

[128] M. K. Olorunnimbe, H. L. Viktor, and E. Paquet, “Dynamic adaptation of online
ensembles for drifting data streams,” Journal of Intelligent Information Systems
50(2), 291–313 (2018).

[129] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive Online
Analysis,” Journal of Machine Learning Research 11, 1601–1604 (2010). URL
http://portal.acm.org/citation.cfm?id=1859903.

[130] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating stream learning
algorithms,” Machine Learning 90(3), 317–346 (2013). URL https://doi.org/
10.1007/s10994-012-5320-9.

[131] A. Patcha and J.-M. Park, “AnOverview of Anomaly Detection Techniques: Existing
Solutions and Latest Technological Trends,” Comput. Netw. 51(12), 3448–3470
(2007). URL https://doi.org/10.1016/j.comnet.2007.02.001.

148

References

[132] M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “A Multi-partition
Multi-chunk Ensemble Technique to Classify Concept-Drifting Data Streams,”
in Advances in Knowledge Discovery and Data Mining, T. Theeramunkong,
B. Kijsirikul, N. Cercone, and T.-B. Ho, eds., pp. 363–375 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009).

[133] J. Kim, P. J. Bentley, U. Aickelin, J. Greensmith, G. Tedesco, and J. Twycross,
“Immune System Approaches to Intrusion Detection — a Review,” Natural
Computing: An International Journal 6(4), 413–466 (2007). URL https://doi.
org/10.1007/s11047-006-9026-4.

[134] O. Mazhelis and S. Puuronen, “Comparing Classifier Combining Techniques
for Mobile-Masquerader Detection,” in The Second International Conference on
Availability, Reliability and Security (ARES’07), pp. 465–472 (2007).

[135] R. J. Bolton and D. J. H, “Statistical fraud detection: A review,” Statistical Science
17, 2002 (2002).

[136] F. A. Crespo and R. Weber, “A methodology for dynamic data mining based on fuzzy
clustering,” Fuzzy Sets Syst. 150, 267–284 (2005).

[137] J. Zhou, L. Cheng, and W. Bischof, “Prediction and Change Detection In Sequential
Data for Interactive Applications,” in National Conference on Artificial Intelligence
(AAAI), pp. 805–810 (AAAI, 2008).

[138] J. Luo, A. Pronobis, B. Caputo, and P. Jensfelt, “Incremental learning for place
recognition in dynamic environments,” in 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 721–728 (2007).

[139] L. Liao, D. J. Patterson, D. Fox, andH. Kautz, “Learning and Inferring Transportation
Routines,” Artif. Intell. 171(5–6), 311–331 (2007). URL https://doi.org/10.
1016/j.artint.2007.01.006.

[140] F. Mourão, L. Rocha, R. Araújo, T. Couto, M. Gonçalves, and W. Meira,
“Understanding Temporal Aspects in Document Classification,” in Proceedings of
the 2008 International Conference on Web Search and Data Mining, WSDM ’08, p.
159–170 (Association for Computing Machinery, New York, NY, USA, 2008). URL
https://doi.org/10.1145/1341531.1341554.

[141] P. De Bra, A. Aerts, B. Berden, B. de Lange, B. Rousseau, T. Santic, D. Smits, and
N. Stash, “AHA! The Adaptive Hypermedia Architecture,” in Proceedings of the
Fourteenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT ’03, p.
81–84 (Association for Computing Machinery, New York, NY, USA, 2003). URL
https://doi.org/10.1145/900051.900068.

149

References

[142] F. Fdez-Riverola, E. L. Iglesias, F. Díaz, J. R. Méndez, and J. M. Corchado,
“Applying Lazy Learning Algorithms to Tackle Concept Drift in Spam Filtering,”
Expert Syst. Appl. 33(1), 36–48 (2007). URL https://doi.org/10.1016/j.
eswa.2006.04.011.

[143] N. Lathia, S. Hailes, and L. Capra, “KNN CF: A Temporal Social Network,” in
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys ’08,
p. 227–234 (Association for Computing Machinery, New York, NY, USA, 2008).
URL https://doi.org/10.1145/1454008.1454044.

[144] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of
machine Learning research 3(Jan), 993–1022 (2003).

[145] C. Wang, D. Blei, and D. Heckerman, “Continuous time dynamic topic models,”
arXiv preprint arXiv:1206.3298 (2012).

[146] R. Giacomini and B. Rossi, “Detecting and predicting forecast breakdowns,” The
Review of Economic Studies 76(2), 669–705 (2009).

[147] R. Klinkenberg, “Meta-Learning, Model Selection, and Example Selection in
Machine Learning Domains with Concept Drift.” in LWA, vol. 2005, pp. 164–171
(2005).

[148] P. R. Kumar andV. Ravi, “Bankruptcy prediction in banks and firms via statistical and
intelligent techniques–A review,” European journal of operational research 180(1),
1–28 (2007).

[149] T. K. Sung, N. Chang, and G. Lee, “Dynamics of modeling in data mining:
interpretive approach to bankruptcy prediction,” Journal of management information
systems 16(1), 63–85 (1999).

[150] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, “Dynamic integration
of classifiers for handling concept drift,” Information fusion 9(1), 56–68 (2008).

[151] M. Black and R. Hickey, “Detecting and adapting to concept drift in bioinformatics,”
in International Symposium on Knowledge Exploration in Life Science Informatics,
pp. 161–168 (Springer, 2004).

[152] J. B. Gomes, C. Phua, and S. Krishnaswamy, “Where will you go? mobile data
mining for next place prediction,” in International Conference on Data Warehousing
and Knowledge Discovery, pp. 146–158 (Springer, 2013).

[153] M. J. Procopio, J. Mulligan, and G. Grudic, “Learning terrain segmentation with
classifier ensembles for autonomous robot navigation in unstructured environments,”
Journal of Field Robotics 26(2), 145–175 (2009).

150

References

[154] P. Rashidi andD. J. Cook, “Keeping the resident in the loop: Adapting the smart home
to the user,” IEEETransactions on systems, man, and cybernetics-part A: systems and
humans 39(5), 949–959 (2009).

[155] D. Charles, M. Mcneill, M. McAlister, M. Black, A. Moore, K. Stringer, J. Kücklich,
and A. Kerr, “Player-centred game design: Player modelling and adaptive digital
games,” (2005).

[156] D. B. Skalak, “The Sources of Increased Accuracy for Two Proposed Boosting
Algorithms,” in In Proc. American Association for Arti Intelligence, AAAI-96,
Integrating Multiple Learned Models Workshop, pp. 120–125 (1996).

[157] T. K. Ho, “The Random Subspace Method for Constructing Decision Forests,” IEEE
Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998). URL http://dx.doi.
org/10.1109/34.709601.

[158] C. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mob.
Comput. Commun. Rev. 5, 3–55 (2001).

[159] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of
performance measures for classification,” Pattern Recognition Letters 30(1), 27–38
(2009).

[160] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–recommendations
for the use of performance metrics,” in 2013 Humaine association conference on
affective computing and intelligent interaction, pp. 245–251 (IEEE, 2013).

[161] D. Brzezinski, J. Stefanowski, R. Susmaga, and I. Szcz�ch, “Visual-based analysis
of classification measures and their properties for class imbalanced problems,”
Information Sciences 462, 242–261 (2018).

[162] A. Cano, A. Zafra, and S. Ventura, “Weighted data gravitation classification for
standard and imbalanced data,” IEEE transactions on cybernetics 43(6), 1672–1687
(2013).

151

