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Land-use legacies limit the effectiveness of switches in
disturbance type to restore endangered grasslands
Jodi N. Price1,2 , Nick L. Schultz3, Joshua A. Hodges1, Michael A. Cleland1, John W. Morgan4

Temperate native grasslands in Australia have been decimated across their range since European colonization (>200 years
ago), and the few remaining remnants are mostly fragmented and degraded. Changes in disturbance type, particularly the
removal of Indigenous fire and the introduction of livestock grazing, resulted in the local extinction of fire-dependent and
grazing-sensitive native species, and led to an increase in exotic species. Recently, native grasslands have been acquired to
improve the reservation status of the threatened community and management strategies have been implemented that involve
the removal of livestock grazing and the reintroduction of fire or other biomass reduction methods. Here, we examine if the
change in disturbance type—a disturbance switch—improves the native composition of grasslands. We review literature that
reports instances where there has been a change in disturbance type to examine how grasslands respond to disturbance switch-
ing. We found mostly no change in native and exotic species richness when management changed from stock grazing to fire (at
least in the short term, ≤10 years). Positive outcomes for other disturbance shifts (grazing!mowing, or cultivation! grazing)
occurred when the disturbance type was accompanied by seed addition, or in landscapes where dispersal from nearby remnant
sites was possible. This suggests that seed- and/or dispersal-limitation may limit passive restoration outcomes in fragmented
landscapes. It is necessary to determine the longer-term impacts of switches in disturbance regimes, and whether recovery
thresholds have already been crossed.

Key words: Australian temperate grasslands, conservation management, fire, passive restoration, regeneration, seed
limitation, species richness

Implications for Practice

• Temperate grasslands have a disturbance requirement
(specifically fire) for the maintenance of species richness.
The removal of an exogenous disturbance (introduced
stock grazing) had varied impacts on species richness
and the outcomes partly depended on productivity.

• Passive recovery of native species is uncommon with the
removal of introduced stock grazing and the reintroduc-
tion of fire, suggesting recovery is limited by agricultural
land-use legacies in the grassland sites and surrounding
landscape (seed and/or dispersal limitation).

• Active restoration in the form of seed addition will likely
improve restoration outcomes for these endangered com-
munities, but the longer-term prognosis is largely
unknown (including determining optimal ongoing distur-
bance management).

Introduction

Disturbance promotes species diversity in temperate grasslands
globally by constraining biomass, and hence the competitive
effects of dominant species on subordinate species (Collins
1992; Grace 1999; Lunt & Morgan 2002; Prober et al. 2013;
Koerner & Collins 2014). Much of the focus in grassland con-
servation management and restoration has therefore centered
on identifying appropriate disturbance regimes to maintain and

recover diversity (e.g. Olff & Ritchie 1998; Morgan &
Lunt 1999; Price et al. 2019). However, different disturbance
types (e.g. fire vs. grazing) can have fundamentally different
impacts on native biodiversity, and hence they are not necessar-
ily interchangeable (Price et al. 2019). Exposure to an endoge-
nous (historic) disturbance regime likely fosters ecosystem
resilience, whereas exogenous disturbances can have substantial
(negative) impacts on plant communities (Hobbs & Huen-
neke 1992; Yates et al. 2000).

Many grassland studies have compared the effects of different
disturbance types on native diversity and composition
(e.g. Collins et al. 1998; MacDougall & Turkington 2007;
Tardella et al. 2020; Vermeire et al. 2020). While often the his-
torical management regime is seen as desirable, there may be
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practical limitations to implementation and/or the ecosystem
may have shifted significantly such that historical management
is no longer optimal (MacDougall & Turkington 2007; Valkó
et al. 2014). In some cases, different disturbances are substitut-
able as they affect diversity through the same mechanisms, i.e.
alleviating light limitation (Collins et al. 1998; MacDougall &
Turkington 2007; Tardella et al. 2020), whereas in other studies
this has been not the case (Catorci et al. 2014; Vermeire
et al. 2020). In many cases, the reintroduction of traditional
management that has been abandoned is compared with other
practical alternatives. For example, many studies have consid-
ered the reintroduction of fire in ecosystems that have a history
of regular fire, and compared fire with other management
options (especially where there are practical limitations with
implementing fire disturbance) (MacDougall & Turking-
ton 2007). In Europe, fire has been explored as a substitute for
the traditional management of grazing and mowing because it
may be more practical (Valkó et al. 2014). Hence, there is an
understanding that historical disturbance types may not be the
best, or the most practical, management for improving native
composition; hence other disturbances are explored as
substitutes.

The first step in restoration is often the removal of the degrad-
ing force (which may be an exogenous disturbance) and re-
instating historical disturbances (Aronson et al. 1993; Hobbs &
Norton 1996; Gann et al. 2019). In the absence of other interven-
tions, community recovery after the removal of an exogenous
disturbance might be expected if successional processes dictate
the recovery of communities (Aronson et al. 1993; Suding
et al. 2004). Indeed, passive restoration has been successful in
many regions in Europe (e.g. Fagan et al. 2008; Řehounková &
Prach 2008; Öster et al. 2009). However, land-use legacies asso-
ciated with introduced stock grazing, and other agricultural
practices such as cultivation, can make some degraded systems
resistant to passive recovery (McIver & Starr 2001; Suding
et al. 2004). Additionally, fragmentation creates dispersal bar-
riers further limiting passive restoration (Johanidesová
et al. 2015; Prach et al. 2015). Models of alternative ecosystem
states that incorporate system thresholds and feedbacks are more
relevant in these cases (Westoby et al. 1989; Suding et al. 2004;
Cramer et al. 2008). Whether grasslands recover with passive
restoration, such as the removal of an exogenous disturbance
and its replacement with historical disturbance regimes, will
depend on thresholds such as abiotic changes, exotic species
invasions, loss of native species pools, shifts in species domi-
nance, and propagule availability (Suding et al. 2004).

Prior to European colonization, Australian temperate native
grasslands were burnt by Indigenous peoples for hunting and
to promote food plants (Morgan&Williams 2015). Jones (1969)
coined the phrase “fire-stick farming,” arguing that Aboriginal
burning widely reported at the time of European arrival was part
of a continuum going back to the earliest inhabitants. The soil
disturbance created from Indigenous people collecting roots of
food plants is likely to have also influenced the local dynamics
of grasslands (Gott 1982; Gott 1983; Gott 2005). Bioturbation
by digging mammals (such as bettongs and bandicoots), now
largely extinct in much of their previous range, also provided

regular, small disturbances (Fleming et al. 2014; Valentine
et al. 2017). While temperate grassland distributions in
Australia are mostly driven by “bottom up” processes (Morgan
et al. 2017), it is likely that regular disturbance maintained alpha
diversity, particularly in high productivity grasslands (Price
et al. 2019).

Changes to disturbance regimes following European coloni-
zation had dramatic and rapid effects on grassy ecosystems—
removal of fire and the introduction of livestock grazing resulted
in the local extinction of grazing-sensitive and fire-dependent
native species (Stuwe & Parsons 1977; Lunt 1997; Lunt
et al. 2007). Introduced livestock negatively affected native spe-
cies which did not have an evolutionary history to grazing by
large herds of ungulates, and favored many exotic species
(which were commonly from regions with a long evolutionary
history of ungulate grazing) (McDougall & Kirkpatrick 1993).
As grazing intensity increased, grasslands shifted from domi-
nance of tall, C4 native perennial grasses to short, C3 native
perennial grasses; at even higher grazing intensities, the flora
shifted to dominance by exotic C3 annual grasses
(Moore 1970). Additionally, grasslands have been heavily
cleared for agriculture and urban development (McDougall &
Kirkpatrick 1993; Williams et al. 2005), and all temperate grass-
lands in southern Australia are endangered or critically endan-
gered (Morgan et al. 2017).

In many new grassland conservation reserves that have been
acquired to improve the reservation of this endangered ecosys-
tem, stock have been removed and (sometimes) burning reintro-
duced to favor native species over exotic species (Williams
et al. 2006; Williams 2007; Wong & Morgan 2012; Zeeman
et al. 2017). Substituting one disturbance regime with another
has obvious appeal—native grassland species did not evolve
with grazing by ungulates, but did evolve with fire. But rarely
has the success of such a strategy been assessed. If there is a leg-
acy of the past management, grazing may have eliminated
grazing-sensitive native species and there may be very few
native species that can then take advantage of a new regime; they
have been lost from the species pool. Further, it is unclear if
grassland species rely on fire to maximize germination through
effects of heat and smoke, or if fire promotes recruitment by
reducing light limitation, and hence whether fire is substitutable
(Hodges et al. 2019; Price et al. 2019). It remains unclear if
changes in disturbance type can enhance conservation out-
comes, by promoting native species that are currently sup-
pressed or disadvantaged, while simultaneously reducing
exotic plant cover and richness.

Study Aims and Questions

The aim of the review was to examine the response of native
plant diversity and species composition in temperate native
grasslands of southeastern Australia to shifts in disturbance
type. We first explore the importance of disturbance per se for
maintaining alpha native diversity in native grasslands
(i.e. outcomes of abandonment). We then ask if species compo-
sition improves (i.e. increases in native species richness and
reductions in exotic species richness) with a switch in
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disturbance type. Disturbance types can have fundamentally dif-
ferent impacts on vegetation; grazing is a “press” disturbance
(sensu Lake 2000) and is selective, fire is a “pulse” disturbance
which consumes all biomass and has direct effects on seed ger-
mination for some species, and slashing generally leaves some
litter on the ground. In addition to these differences in distur-
bance type, the status quomanagement may have legacy effects
that restrict recovery after removal; hence ecosystems may be in
a stable, but degraded, state.

Literature Review

We reviewed peer-reviewed studies reporting plant responses to
a shift in disturbance type (abandonment or from one distur-
bance to another) in lowland temperate grassy ecosystems
(grasslands and grassy woodlands) in southeastern Australia.
Two criteria determined study eligibility: (1) the paper studied
a native grassy ecosystem (grassland or grassy woodland); and
(2) it reported on plant responses to a shift in disturbance type,
including one disturbance to another, or no disturbance to a dis-
turbance (and vice versa).

We used ISI Web of Science and Scopus to search for papers
that explored a switch in disturbance type. We used the follow-
ing search terms: (grass* OR woodland*) AND (disturbance*
OR fire OR graz* or mow*OR slash*OR cultivat*) AND (tem-
perate OR semiarid) AND Australia*. The search produced
778 unique references that were initially screened for inclusion
based on the titles to determine if they met the scope for inclu-
sion. From this list, 73 papers were retained for abstract screen-
ing to determine suitability. The main reasons for exclusion
were that studies were outside the geographic scope, or agricul-
tural studies (crops and pastures), or detailing fauna impacts, or
focused on impacts of disturbance rather than a switch. From
this, 50 papers were retained that required further investigation
of the full paper to determine suitability. A further 20 papers
were excluded at this stage, mostly because they were outside
of the geographic scope or did not report on a disturbance
switch. The final number of papers suitable for data extraction
were 30 (resulting from systematic review) and 14 which were
found through additional searches or through authors’ knowl-
edge (somewere unpublished theses or reports). In total, 44 stud-
ies met our criteria.

Results and Discussion

We found 45 switches in disturbance type in grassy ecosystems
reported from 44 studies (Table 1). We grouped shifts into four
main classes: (1) abandonment of disturbance (18 cases); (2) the
introduction of disturbance where there was no disturbance in
recent history (fire or mowing; eight cases); (3) switches from
one disturbance to another (14 cases); and (4) old field succes-
sion (a switch from cultivation to grazing; five cases). “No dis-
turbance” refers to no active disturbance management, but can
include grazing from native macropods and lagomorphs. The
grazing exclusion studies vary in the type of herbivores
excluded; for our purposes we are interested in stock grazing,
but exclosure studies likely also excluded native vertebrate

herbivores, whereas space-for-time chronosequences only
exclude stock.

Studies were conducted at a range of spatial and temporal
scales. The longest temporal sequences included the space-for-
time-substitution studies (all of the old fields, and many of the
fire abandonment studies, Table 1). Several studies used revisi-
tation surveys to compare richness with shifts in management
through time and space (e.g. Williams et al. 2006). Most of the
grazing abandonment studies used experimental exclosures for
various lengths of time (3–16 years, Table 1). Most of the
switches from one disturbance type to another were experimen-
tal studies, in which a new disturbance type was imposed on a
site with an existing legacy—commonly a legacy of stock graz-
ing to fire or mowing. Most experimental studies report short-
term responses to a change in disturbance type (typically within
1–3 years of the change), and often involve the reintroduction of
a single fire (Lunt 1990; Prober et al. 2004; Sinclair et al. 2014;
Bryant et al. 2017).

Abandonment

The relaxation of fire from grasslands historically exposed to
regular fire (“abandonment” sensu Grime 1979) tends to
decrease diversity in productive temperate grasslands, with
localized (i.e. site-level) extinctions reported (Williams
et al. 2006; Moxham et al. 2016) (Table 1). All of the studies
addressing this outcome were conducted in C4 Themeda-
dominated grasslands; hence, we cannot determine if the same
pattern occurs in other less productive C3 grasslands (i.e. if it
is dependent on annual net primary productivity, ANPP). Most
of the studies were also space-for-time substitutions which tend
to report on longer time frames, and all studies reported
responses >10 years after abandonment.

The effects of herbivore exclusion differed from fire abandon-
ment, indicating the disturbance requirement depends on distur-
bance type, among other factors (Table 1). The majority of cases
found no change in native or exotic richness (seven studies) with
grazing exclusion, suggesting limits to passive recovery after
removal (Table 1). Most of the studies report on short-term
responses (approximately 3 years, Table 1). Three studies found
reductions in richness with grazing exclusion; these were high
productivity sites and studies were mostly long term (>10 years)
(Tremont 1994; Schultz et al. 2011; Mavromihalis et al. 2013).
Productivity is likely to be an explanatory factor; one study con-
ducted at multiple sites (across a mean annual precipitation gra-
dient of 272–960 mm/year in Victoria) found species richness
decreased with herbivore exclusion at sites with higher phyto-
mass accumulation, but had neutral or positive responses at sites
with lower phytomass accumulation (Schultz et al. 2011). Fur-
ther supporting this notion, most of the studies that found
increases in native richness were conducted at lower rainfall or
low biomass sites (Foreman 1996; Price et al. 2010). Reductions
in exotic richness were only found in one study (Price
et al. 2010), with most reporting no change in richness. We
found no evidence that grazing exclusion increases exotic spe-
cies richness (although some exotic species increased in cover,
Table 1).

April 2021 Restoration Ecology 3 of 15

Switches in grassland disturbance type



T
ab

le
1.

S
hi
ft
s
in

di
st
ur
ba
nc
e
ty
pe

di
vi
de
d
in
to

fo
ur

gr
ou
ps

of
tr
an
si
tio

ns
:t
ho
se

th
at
re
pr
es
en
t(
1)

ab
an
do
nm

en
to

f
di
st
ur
ba
nc
e;
(2
)
in
tr
od
uc
tio

n
of

di
st
ur
ba
nc
e
w
he
re

th
er
e
w
as

no
ne
;(
3)

a
sw

itc
h
fr
om

on
e

di
st
ur
ba
nc
e
ty
pe

to
an
ot
he
r;
an
d
(4
)o

ld
fi
el
d
su
cc
es
si
on
.T

he
m
et
ho
d
de
sc
ri
be
d
in
th
e
ta
bl
e
re
fe
rs
to
th
e
sp
ec
ifi
c
as
pe
ct
of

th
e
or
ig
in
al
st
ud
y
th
at
re
ve
al
ed

th
e
ou
tc
om

e
of

th
e
ch
an
ge

in
di
st
ur
ba
nc
e
ty
pe
,a
nd

do
es

no
tn
ec
es
sa
ri
ly
su
m
m
ar
iz
e
th
e
ov
er
al
lm

et
ho
ds

us
ed

in
th
e
or
ig
in
al
st
ud
y.
F
or

ex
am

pl
e,
pl
ot
s
de
sc
ri
be
d
as

co
nt
ro
lp
lo
ts
in
th
e
ta
bl
e
m
ay

no
th
av
e
be
en

co
ns
id
er
ed

co
nt
ro
lp
lo
ts
in
th
e
or
ig
in
al
st
ud
y,
bu
tt
he
y
se
rv
e

as
co
nt
ro
ls
fo
r
th
e
co
m
pa
ri
so
n
be
in
g
m
ad
e
in

th
e
ta
bl
e.
R
ow

s
ha
ve

m
ul
tip

le
re
fe
re
nc
es

w
he
n
m
ul
tip

le
st
ud
ie
s
re
po
rt
ed

on
di
ff
er
en
ta
sp
ec
ts
of

th
e
sa
m
e
ex
pe
ri
m
en
t.
S
tu
di
es

th
at
te
st
ed

m
or
e
th
an

on
e
sh
if
ta
re

pr
es
en
te
d
on

di
ff
er
en
tr
ow

s.
P
ro
be
re
ta
l.
(2
00
4)

an
d
L
ew

is
et
al
.(
20
10
)h

ad
gr
az
in
g
re
m
ov
ed

5
an
d
6
ye
ar
s,
re
sp
ec
tiv

el
y,
pr
io
rt
o
in
tr
od
uc
tio

n
of

ot
he
r
di
st
ur
ba
nc
es

(fi
re
an
d
m
ow

in
g)
,b
ut
w
e
ha
ve

co
ns
id
er
ed

th
es
e
as

tr
an
si
tio

ns
fr
om

gr
az
in
g
du
e
to
th
e
le
ga
cy

ef
fe
ct
s
of

a
lo
ng

hi
st
or
y
of

st
oc
k
gr
az
in
g.
W
e
ha
ve

in
cl
ud
ed

th
e
“
In
fr
eq
ue
nt
fi
re
!

F
re
qu
en
tfi

re
”
tr
an
si
tio

n
w
ith

th
e
st
ud
ie
s
th
at
in
tr
od
uc
e
a
di
st
ur
ba
nc
e
w
he
re

th
er
e
w
as

no
ne

be
fo
re
;w

e
de
em

ed
th
is
th
e
m
os
ts
ui
ta
bl
e
cl
as
si
fi
ca
tio

n
of

th
es
e
st
ud
ie
s.

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

T
ra
ns
iti
on
s
th
at
re
pr
es
en
ta
ba
nd
on
m
en
to

f
di
st
ur
ba
nc
e

F
ir
e
!

N
o
di
st
ur
ba
nc
e

T
he
m
ed
a
(C
4)

R
ev
is
ita
tio

n
(1
6
ye
ar
s)

D
ec
re
as
ed

N
A

U
nb
ur
nt

si
te
s
ha
d
up

to
tw
ic
e
th
e

lo
ca
le
xt
in
ct
io
n
ra
te
of

an
nu
al
ly

bu
rn
tr
em

na
nt
s

50
0–
75
0

4.
5
×
10

5
W
ill
ia
m
s

et
al
.2

00
5;

W
ill
ia
m
s

et
al
.2

00
6

T
he
m
ed
a
(C
4)

S
pa
ce
-f
or
-t
im

e:
tim

e-
si
nc
e-

fi
re

(u
p
to

11
ye
ar
s)

N
A

N
A

T
he
m
ed
a
gr
as
sl
an
ds

re
ac
he
d
a

“
tip

pi
ng

po
in
t”
w
ith

ou
tfi

re
;

do
m
in
an
tt
us
so
ck
s
di
e
an
d

sy
st
em

is
tr
an
sf
or
m
ed

to
ex
ot
ic
-

do
m
in
an
ts
ta
te

56
8

0.
25

M
or
ga
n
&

L
un
t1

99
9

T
he
m
ed
a
(C
4)

P
lo
ts
le
ft
un
di
st
ur
be
d
fo
r

12
ye
ar
s
in

si
te
pr
ev
io
us
ly

bu
rn
te
ve
ry

4–
8
ye
ar
s;

bu
rn
tc
on
tr
ol

pl
ot
s

(d
if
fe
re
nt

fr
eq
ue
nc
ie
s)

D
ec
re
as
ed

N
A

P
oa

ab
un
da
nc
e
in
cr
ea
se
d
w
ith

ou
t

bu
rn
in
g.

T
ot
al
cr
yp
to
ga
m

co
ve
r,
ab
un
da
nc
e
an
d
ri
ch
ne
ss

w
er
e
lo
w
er
in
un
di
st
ur
be
d
pl
ot
s

th
an

in
al
lt
hr
ee

bu
rn

fr
eq
ue
nc
ie
s

60
0

25
P
ro
be
r

et
al
.2

00
7;

O
’B
ry
an

et
al
.2

00
9;

P
ro
be
r

et
al
.2

01
3

T
he
m
ed
a
(C
4)

S
pa
ce
-f
or
-t
im

e:
tim

e-
si
nc
e-

fi
re

(u
p
to

10
ye
ar
s)

D
ec
re
as
ed

In
cr
ea
se
d

D
ec
re
as
ed

na
tiv

e
ri
ch
ne
ss

w
ith

tim
e-
si
nc
e-
fi
re

at
bo
th

sp
at
ia
l

sc
al
es
.I
nc
re
as
ed

ex
ot
ic

ri
ch
ne
ss

on
ly

at
la
rg
er

sp
at
ia
l

sc
al
e,
th
ou
gh

so
m
e
ex
ot
ic

sp
ec
ie
s
de
cl
in
ed

w
ith

tim
e-

si
nc
e-
fi
re

64
1

0.
25

an
d

10
0

M
ox
ha
m

et
al
.2

01
6

G
ra
zi
ng

!
N
o
di
st
ur
ba
nc
e

V
ar
io
us

pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n

(5
–
16

ye
ar
s)

V
ar
io
us

N
A

D
ec
re
as
ed

sp
ec
ie
s
ri
ch
ne
ss

w
ith

gr
az
in
g
ex
cl
us
io
n
at
hi
gh
es
t

pr
od
uc
tiv

ity
si
te
s.
N
o
ch
an
ge

in
sp
ec
ie
s
ri
ch
ne
ss

at
lo
w
er

pr
od
uc
tiv

ity
si
te
s,
ex
ce
pt

at
th
e

lo
w
es
tp

ro
du
ct
iv
ity

si
te
,w

he
re

sp
ec
ie
s
ri
ch
ne
ss

in
cr
ea
se
d

27
2–
96
0

1
S
ch
ul
tz

et
al
.2

01
1

V
ar
io
us

na
tiv

e
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

an
d

ex
ot
ic
gr
as
se
s

(C
3)

S
pa
ce
-f
or
-t
im

e:
tim

e-
si
nc
e-
gr
az
in
g

re
m
ov
al
(1
–
10

ye
ar
s)

In
cr
ea
se
d

N
A

O
ve
ra
ll
sp
ec
ie
s
ri
ch
ne
ss
in
cr
ea
se
d

w
ith

gr
az
in
g
ex
cl
us
io
n,

an
d

po
si
tiv

e
co
rr
el
at
io
n
be
tw
ee
n

na
tiv

e
sp
ec
ie
s
ri
ch
ne
ss

an
d

tim
e-
si
nc
e-
ex
cl
us
io
n

55
0–
80
0

40
0

B
ri
gg
s

et
al
.2

00
8

Restoration Ecology April 20214 of 15

Switches in grassland disturbance type



T
ab

le
1.

C
on
tin

ue
d

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

G
ra
zi
ng

!
N
o
di
st
ur
ba
nc
e
(c
on
tin

ue
d)

H
er
b-
ri
ch

w
oo
dl
an
d

(C
3)

S
pa
ce
-f
or
-t
im

e:
tim

e-
si
nc
e-

gr
az
in
g
re
m
ov
al

(u
p
to

24
ye
ar
s)

In
cr
ea
se
d

D
ec
re
as
ed

In
cr
ea
se
d
ex
ot
ic
ri
ch
ne
ss

in
co
nt
in
uo
us
ly

gr
az
ed

si
te
s

co
m
pa
re
d
w
ith

in
te
rm

ed
ia
te

an
d
re
ce
nt
ly

un
gr
az
ed

si
te
s.

C
om

po
si
tio

na
ls
hi
ft
in

ab
se
nc
e

of
gr
az
in
g

68
7

16
P
ri
ce

et
al
.2

01
0

T
he
m
ed
a
(C
4)

an
d

R
yt
id
os
pe
rm

a
(C
3)

G
ra
zi
ng

ex
cl
us
io
n
(4

ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

N
o
ch
an
ge

in
to
ta
ls
pe
ci
es

ri
ch
ne
ss
,b

ut
na
tiv

e
fo
rb

di
ve
rs
ity

an
d
ab
un
da
nc
e

in
cr
ea
se
d

56
8–

73
2

22
5

Z
im

m
er

et
al
.2

01
0

D
ic
ha
nt
hi
um

(C
3)

an
d

A
st
re
bl
a
(C
4)

G
ra
zi
ng

ex
cl
us
io
n
(8

ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

N
o
di
ff
er
en
ce

in
to
ta
ls
pe
ci
es

ri
ch
ne
ss

be
tw
ee
n
ex
cl
us
io
n

pl
ot
s
an
d
gr
az
ed

co
nt
ro
ls

55
0

2
L
ew

is
et
al
.2
00
8

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(1
6
ye
ar
s)

D
ec
re
as
ed

N
o
ch
an
ge

M
an
y
sp
ec
ie
s
un
iq
ue

to
bo
th

gr
az
ed

an
d
un
gr
az
ed

tr
ea
tm

en
ts
,b

ut
sp
ec
ie
s
ri
ch
ne
ss

si
gn
ifi
ca
nt
ly

lo
w
er

in
un
gr
az
ed

pl
ot
s

78
8

0.
25

T
re
m
on
t1

99
4

R
yt
id
os
pe
rm

a
(C
3)

G
ra
zi
ng

ex
cl
us
io
n
(3

ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

G
ra
zi
ng

ex
cl
us
io
n
fa
vo
re
d
so
m
e

ex
ot
ic
sp
ec
ie
s,
ab
un
da
nc
e
of

so
m
e
na
tiv

es
de
cl
in
ed

as
ba
re

gr
ou
nd

de
cr
ea
se
d

37
0–

43
7

4
F
or
em

an
19
96

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(2
.5

ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

N
o
ev
id
en
ce

of
sp
ec
ie
s

es
ta
bl
is
hi
ng

in
th
e
ex
cl
us
io
n

pl
ot
s
th
at
w
er
e
no
ti
n
gr
az
ed

co
nt
ro
ls

60
4–

81
9

40
0

S
ch
ul
tz

et
al
.2

01
4

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(4

ye
ar
s)

N
o
ch
an
ge

N
A

N
o
ch
an
ge

in
to
ta
ls
pe
ci
es

ri
ch
ne
ss

at
ei
th
er

sp
at
ia
ls
ca
le

66
6

1
an
d
62
5

A
llc
oc
k
&

H
ik

20
03

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(u
p
to
17

ye
ar
s)

N
A

N
A

S
om

e
ch
an
ge
s
in

sp
ec
ie
s

co
m
po
si
tio

n
w
ith

gr
az
in
g

ex
cl
us
io
n,

bu
tv

er
y
lim

ite
d

co
nv
er
ge
nc
e
w
ith

re
fe
re
nc
e

co
nd
iti
on
,a
nd

un
re
la
te
d
to

tim
e-
si
nc
e-
ex
cl
us
io
n

59
4–

80
5

40
0

S
im

s
et
al
.2

01
9

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(4

ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

E
xc
lu
si
on

of
hi
gh
-d
en
si
ty

ka
ng
ar
oo

gr
az
in
g
ha
d
no

ef
fe
ct
s

on
sp
ec
ie
s
ri
ch
ne
ss
or

liv
e-
pl
an
t

ba
sa
la
re
a

62
9

0.
25

M
cI
nt
yr
e

et
al
.2

01
7

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

G
ra
zi
ng

ex
cl
us
io
n
(3

ye
ar
s)

D
ec
re
as
ed

N
A

R
at
e
of

de
cr
ea
se

in
sp
ec
ie
s

ri
ch
ne
ss

co
rr
el
at
ed

w
ith

ra
te
of

ph
yt
om

as
s
ac
cu
m
ul
at
io
n

62
0–

73
0

0.
25

M
av
ro
m
ih
al
is

et
al
.2

01
3

April 2021 Restoration Ecology 5 of 15

Switches in grassland disturbance type



T
ab

le
1.

C
on
tin

ue
d

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

G
ra
zi
ng

!
N
o
di
st
ur
ba
nc
e
(c
on
tin

ue
d)

A
us
tr
os
tip

a
(C
3)

G
ra
zi
ng

ex
cl
us
io
n

(4
ye
ar
s)

N
o
ch
an
ge

N
o
ch
an
ge

C
ov
er
of

na
tiv

e
an
d
ex
ot
ic
sp
ec
ie
s

in
cr
ea
se
d

43
9

1
S
ou
te
r
&

M
iln

e
20
09

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

S
pa
ce
-f
or
-t
im

e:
tim

e-
si
nc
e-
gr
az
in
g
re
m
ov
al

(u
p
to

50
ye
ar
s)

N
A

N
A

C
ov
er

of
bi
ol
og
ic
al
so
il
cr
us
t

in
cr
ea
se
s
w
ith

tim
e-
si
nc
e-

ex
cl
us
io
n,

pl
at
ea
ui
ng

af
te
r

20
ye
ar
s

37
0–
41
0

0.
25

R
ea
d
et
al
.2

01
1

T
ra
ns
iti
on
s
th
at
in
tr
od
uc
e
di
st
ur
ba
nc
e
w
he
re

th
er
e
w
as

no
di
st
ur
ba
nc
e
be
fo
re

N
o
di
st
ur
ba
nc
e
!

F
ir
e

T
he
m
ed
a
(C
4)

an
d
P
oa

(C
3)

B
ur
nt

pl
ot
s
(d
if
fe
re
nt

fr
eq
ue
nc
ie
s
in

au
tu
m
n)

in
lo
ng
-u
nb
ur
nt

ar
ea
;

un
bu
rn
tc
on
tr
ol

pl
ot
s

ov
er

12
ye
ar
s

D
ec
re
as
ed

N
A

N
at
iv
e
fo
rb

co
ve
r
de
cl
in
ed

af
te
r

fi
re
an
d
re
qu
ir
ed

ap
pr
ox

im
at
el
y

3
ye
ar
s
to

re
co
ve
r
to

le
ve
ls
of

un
bu
rn
tp

lo
ts
.N

at
iv
e
sp
ec
ie
s

ge
ne
ra
lly

fa
vo
re
d
by

ni
lt
o
lit
tle

di
st
ur
ba
nc
e

60
0

25
P
ro
be
r

et
al
.2

01
3

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

B
ur
nt

(s
in
gl
e
bu
rn

on
ly
)

an
d
un
bu
rn
tp

lo
ts

m
on
ito

re
d
ov
er

4
ye
ar
s

N
A

N
A

N
o
ch
an
ge

in
to
ta
ls
pe
ci
es

ri
ch
ne
ss
,a
nd

no
di
ff
er
en
ce

in
co
m
po
si
tio

n
of

do
m
in
an
t

sp
ec
ie
s
be
tw
ee
n
bu
rn
ta
nd

un
bu
rn
tp

lo
ts

62
9

0.
25

M
cI
nt
yr
e

et
al
.2

01
4;

M
cI
nt
yr
e

et
al
.2

01
7

R
yt
id
os
pe
rm

a
(C
3)
,e
xo
tic

gr
as
se
s
(C
3

an
d
C
4)

S
pr
in
g
bu
rn

an
d
au
tu
m
n

bu
rn

pl
ot
s
(b
ur
nt

an
nu
al
ly
),

an
d
un
bu
rn
tp

lo
ts
,

m
on
ito

re
d
ov
er

4
ye
ar
s

N
o
ch
an
ge

N
A

N
at
iv
e
pe
re
nn
ia
lR

yt
id
os
pe
rm

a
co
ve
r
in
cr
ea
se
d
w
ith

bo
th

bu
rn

re
gi
m
es
,a
nd

ex
ot
ic
gr
as
s
co
ve
r

de
cr
ea
se
d

67
0

N
A

P
ro
be
r

et
al
.2

00
9

B
ot
hr
io
ch
lo
a

(C
4)
,e
xo
tic

an
nu
al
gr
as
se
s

(C
3)

B
ur
nt

si
te
s
(s
pr
in
g
bu
rn
s
in

tw
o
co
ns
ec
ut
iv
e
ye
ar
s)

an
d
un
bu
rn
tp

lo
ts

m
on
ito

re
d
ov
er

3
ye
ar
s

N
A

N
A

C
ov
er

of
pe
re
nn
ia
lg

ra
ss
es

ge
ne
ra
lly

in
cr
ea
se
d
an
d
co
ve
r

of
ex
ot
ic
gr
as
se
s
de
cr
ea
se
d
in

bu
rn
tp

lo
ts
co
m
pa
re
d
to

un
bu
rn
tc
on
tr
ol

65
0

N
A

P
ro
be
r

et
al
.2

00
5

In
fr
eq
ue
nt

fi
re

!
F
re
qu
en
tfi

re
T
he
m
ed
a
(C
4)

C
om

pa
ri
so
n
of

gr
as
sl
an
ds

af
te
r
se
ve
ra
ly

ea
rs
of

di
ve
rg
en
tm

an
ag
em

en
t

(1
–
7
ye
ar
s
si
nc
e
fi
re
)

N
A

N
A

H
ig
h
co
-e
xi
st
en
ce

of
pe
re
nn
ia
l

sp
ec
ie
s
at
sm

al
ls
pa
tia
ls
ca
le
in

fr
eq
ue
nt
ly

bu
rn
tg

ra
ss
la
nd

52
0–
70
0

0.
25

M
or
ga
n
19
99

T
he
m
ed
a
(C
4)

an
d

R
yt
id
os
pe
rm

a
(C
3)

R
es
ur
ve
y
pl
ot
s
af
te
r

10
ye
ar
s
an
d
an

in
cr
ea
se

in
fi
re

fr
eq
ue
nc
y

In
cr
ea
se
d

In
cr
ea
se
d

In
cr
ea
se

in
ab
un
da
nc
e
an
d

fr
eq
ue
nc
y
of

ra
re

na
tiv

e
fo
rb
s

59
2

15
K
ir
kp
at
ri
ck

19
86

N
o
di
st
ur
ba
nc
e
!

M
ow

in
g

M
ix

of
pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

C
om

pa
ri
so
ns

of
m
ow

n
pl
ot
s

(c
ut

to
10

cm
an
nu
al
ly

fo
r

10
ye
ar
s;
sl
as
h
re
m
ov
ed
)
to

un
di
st
ur
be
d
co
nt
ro
ls

In
cr
ea
se
d

In
cr
ea
se
d

In
cr
ea
se

in
ri
ch
ne
ss
of

m
os
tn
at
iv
e

fu
nc
tio

na
lg

ro
up
s.
R
ic
hn

es
s
of

na
tiv

e
gr
as
se
s
in
cr
ea
se
d
w
ith

m
ow

in
g
in

C
3
gr
as
sl
an
ds

bu
t

no
tT

he
m
ed
a
gr
as
sl
an
ds
.C

ov
er

of
ex
ot
ic
pe
re
nn
ia
lg

ra
ss
es

de
cr
ea
se
d

62
9

4
S
m
ith

et
al
.2

01
8

Restoration Ecology April 20216 of 15

Switches in grassland disturbance type



T
ab

le
1.

C
on
tin

ue
d

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

N
o
di
st
ur
ba
nc
e
!

M
ow

in
g
(c
on
tin

ue
d)

T
he
m
ed
a
(C
4)

C
om

pa
ri
so
n
of

m
ow

n
pl
ot
s
(c
ut

an
nu
al
ly
,s
la
sh

re
m
ov
ed
)

w
ith

un
di
st
ur
be
d
pl
ot
s
ov
er

2
ye
ar
s.
R
ar
e
(d
ec
re
as
er
)
or

w
id
es
pr
ea
d
(i
nc
re
as
er
)

sp
ec
ie
s
ad
de
d
to

pl
ot
s

In
cr
ea
se
d

N
A

N
o
di
ff
er
en
ce
s
in

su
rv
iv
al
of

de
cr
ea
se
r
or

in
cr
ea
se
r
sp
ec
ie
s

be
tw
ee
n
m
ow

n
an
d
un
di
st
ur
be
d

pl
ot
s;
de
cr
ea
se
r
sp
ec
ie
s

in
cr
ea
se
d
in

gr
ow

th
in

an
nu
al
ly

di
st
ur
be
d
pl
ot
s

54
0

1
Z
ee
m
an

&
M
or
ga
n
20
18

T
ra
ns
iti
on
s
fr
om

on
e
di
st
ur
ba
nc
e
to

an
ot
he
r

G
ra
zi
ng

!
F
ir
e

R
yt
id
os
pe
rm

a
(C
3)

C
om

pa
ri
so
n
of

tw
o
bu
rn

tr
ea
tm

en
ts
to

un
bu
rn
t

co
nt
ro
ls
(±

sh
ee
p
gr
az
in
g)

N
o
ch
an
ge

D
ec
re
as
ed

S
om

e
na
tiv

e
an
nu
al
s
de
cr
ea
se
d
in

ab
un
da
nc
e
w
ith

fi
re

(a
nn
ua
l

bu
rn
in
g
te
nd
ed

to
be

ne
ga
tiv

e)

37
0–

43
7

4
F
or
em

an
19
96

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

O
pp
or
tu
ni
st
ic
co
m
pa
ri
so
n
of

bu
rn
ta
nd

un
bu
rn
tp

lo
ts

(>
1
ye
ar

po
st
fi
re
)

N
A

N
A

H
ig
h
m
or
ta
lit
y
of

na
tiv

e
gr
as
se
s

af
te
r
fi
re

(b
et
w
ee
n
90
–
95
%
),

bu
tw

ith
ev
id
en
ce

of
re
cr
ui
tm

en
t

53
2

1
S
in
cl
ai
r

et
al
.2

01
4

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

O
pp
or
tu
ni
st
ic
co
m
pa
ri
so
n
of

th
re
e
bu
rn

re
gi
m
es

an
d

un
bu
rn
tc
on
tr
ol

(1
an
d

2
ye
ar
s
po
st
fi
re
)

In
cr
ea
se
/N
o
ch
an
ge

N
A

F
or
b
ri
ch
ne
ss

w
as

gr
ea
te
r
th
an

un
bu
rn
tc
on
tr
ol

fo
r
su
m
m
er

bu
rn
,b

ut
no
ta
ut
um

n
bu

rn
.

B
ur
ni
ng

in
cr
ea
se
d
na
tiv

e
tu
ss
oc
k
gr
as
s
co
ve
r
an
d

ab
un
da
nc
e.
G
en
er
al
ly
,e
xo
tic

ab
un
da
nc
e
re
du
ce
d
by

su
m
m
er

bu
rn

bu
ti
nc
re
as
ed

by
au
tu
m
n

bu
rn

48
1

10
0

B
ry
an
t

et
al
.2

01
7

A
us
tr
os
tip

a
(C
3)

C
om

pa
ri
so
n
bu
rn
tp

lo
ts
w
ith

gr
az
ed

co
nt
ro
l(
up

to
3
ye
ar
s

po
st
fi
re
)

N
o
ch
an
ge

N
o
ch
an
ge

N
at
iv
e
sp
ec
ie
s
ab
un
da
nc
e
hi
gh
er

in
bu
rn
tp

lo
ts
th
an

in
co
nt
ro
l.

T
ra
ns
ie
nt

de
cr
ea
se

in
ex
ot
ic

ab
un
da
nc
e
af
te
r
fi
re

32
5–

41
0

0.
25

W
on
g
&

M
or
ga
n
20
12

T
he
m
ed
a
(C
4)

G
ra
zi
ng

re
m
ov
ed

an
d
fi
re

re
-

in
tr
od
uc
ed

(n
o
co
nt
ro
ls
);

S
ur
ve
ye
d
10

ye
ar
s
af
te
r

gr
az
in
g
re
m
ov
ed
,w

ith
va
ri
ab
le
fi
re

hi
st
or
y
(m

ax
.

in
te
rv
al
s
of

4–
11

ye
ar
s

w
ith

in
th
e
si
te
)

N
o
ch
an
ge

N
o
ch
an
ge

W
hi
ls
tn

o
si
gn
ifi
ca
nt

ch
an
ge

in
na
tiv

e
or

ex
ot
ic
ri
ch
ne
ss
,t
ot
al

sp
ec
ie
s
ri
ch
ne
ss

in
cr
ea
se
d
ov
er

10
ye
ar
s.
In
cr
ea
se

at
tr
ib
ut
ed

to
ru
de
ra
ls
th
at
ea
si
ly

di
sp
er
se

by
w
in
d.

C
om

po
si
tio

n
w
as

no
to

n
a
tr
aj
ec
to
ry

to
w
ar
ds

hi
gh

qu
al
ity

re
m
na
nt
s

56
8

15
L
un
t&

M
or
ga
n
19
99

T
he
m
ed
a
(C
4)

C
om

pa
ri
so
ns

of
bu
rn
tp

lo
ts

(a
nn
ua
ls
pr
in
g
bu
rn
s
fo
r

3
ye
ar
s)
co
m
pa
re
d
w
ith

un
bu
rn
tc
on
tr
ol
s
w
ith

gr
az
in
g
hi
st
or
y

N
o
ch
an
ge

N
o
ch
an
ge

L
ar
ge

re
du
ct
io
n
of

ex
ot
ic
an
nu
al

gr
as
s
ri
ch
ne
ss

an
d
ab
un
da
nc
e,

bu
tn
ot
ot
he
r
ex
ot
ic
sp
ec
ie
s.
N
o

ef
fe
ct
s
of

fi
re
on

na
tiv

e
fo
rb

an
d

gr
as
s
ab
un
da
nc
e

59
0

N
A

P
ro
be
r

et
al
.2

00
4

April 2021 Restoration Ecology 7 of 15

Switches in grassland disturbance type



T
ab

le
1.

C
on
tin

ue
d

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

G
ra
zi
ng

!
F
ir
e
(c
on
tin

ue
d)

T
he
m
ed
a
(C
4)

C
om

pa
ri
so
n
of

pl
ot
s
be
fo
re
an
d

af
te
r
fi
re
,a
nd

to
un
bu
rn
t

co
nt
ro
lp

lo
ts
(>
1
ye
ar

po
st

fi
re
)

N
o
ch
an
ge

N
o
ch
an
ge

N
o
co
m
po
si
tio

n
di
ff
er
en
ce

pr
e-

an
d
po
st
-fi
re
.N

o
ch
an
ge

in
na
tiv

e
fo
rb

an
d
pe
re
nn
ia
lg

ra
ss

sp
ec
ie
s
ri
ch
ne
ss
.S

om
e
ex
ot
ic

sp
ec
ie
s
in
cr
ea
se
d
in

ab
un
da
nc
e

56
8

15
L
un
t1

99
0

A
st
re
bl
a
(C
4)

an
d

D
ic
ha
nt
hi
um

(C
3)

C
om

pa
ri
so
n
of

bu
rn
tp
lo
ts
(t
w
o

bu
rn

tr
ea
tm

en
ts
)
to

un
bu
rn
t

co
nt
ro
ls
in

ar
ea

w
ith

no
di
st
ur
ba
nc
e
(b
ut

a
hi
st
or
y
of

st
oc
k
gr
az
in
g)
,m

on
ito

re
d

fo
r
2
ye
ar
s

N
o
ch
an
ge

N
o
ch
an
ge

S
om

e
sh
or
t-
te
rm

de
cl
in
es

in
sp
ec
ie
s
ri
ch
ne
ss

in
re
sp
on
se

to
fi
re
,b

ut
ef
fe
ct
di
d
no
tp

er
si
st
;

no
ef
fe
ct
of

ei
th
er

bu
rn

tr
ea
tm

en
to

n
na
tiv

e
or

ex
ot
ic

sp
ec
ie
s
ri
ch
ne
ss

55
0

32
L
ew

is
et
al
.2
01
0

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

C
om

pa
ri
so
n
of

bu
rn
ta
nd

un
bu
rn
tp

lo
ts
in

si
te
s
w
ith

le
ga
cy

of
st
oc
k
gr
az
in
g

(<
1
ye
ar

po
st
-fi
re
)

N
o
ch
an
ge

N
o
ch
an
ge

F
ir
e
ch
an
ge
d
st
ru
ct
ur
al
an
d

en
vi
ro
nm

en
ta
lv

ar
ia
bl
es

(i
nc
re
as
ed

lig
ht

an
d
re
du

ce
d

bi
om

as
s)
bu
th

ad
no

im
pa
ct
on

an
y
ri
ch
ne
ss

va
lu
es

42
5

1
C
le
la
nd

20
19

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

B
ur
n
in

lo
ng
-u
nb
ur
nt

gr
as
sl
an
d;

su
rv
ey

tu
ss
oc
k

su
rv
iv
al
an
d
re
sp
ro
ut
in
g

af
te
r
7
w
ee
ks

N
A

N
A

C
3
gr
as
se
s
ha
d
lo
w
m
or
ta
lit
y,
an
d

re
sp
ro
ut
ed
.T

ill
er

re
gr
ow

th
w
as

si
m
ila
r
to

re
gu
la
rl
y
bu
rn
t

T
he
m
ed
a
gr
as
sl
an
d.

S
m
al
le
r

tu
ss
oc
ks

ha
d
hi
gh
er

ra
te
of

m
or
ta
lit
y

55
0–
61
5

N
A

M
or
ga
n
&

S
al
m
on

20
20

G
ra
zi
ng

!
M
ow

in
g

P
oa

an
d

R
yt
id
os
pe
rm

a
(C
3)

F
re
qu
en
tm

ow
in
g
(s
la
sh

re
m
ov
ed
),
co
m
pa
re
d
to

gr
az
ed

pl
ot
s.
G
ra
zi
ng

re
m
ov
ed

an
d
m
ow

in
g

co
m
m
en
ce
d
12

ye
ar
s
be
fo
re

sa
m
pl
in
g

In
cr
ea
se
d

In
cr
ea
se
d

P
er
en
ni
al
sp
ec
ie
s
(n
at
iv
e
an
d

ex
ot
ic
)
fa
vo
re
d
in

m
ow

n
pl
ot
s,

bu
tl
es
s
to
ta
le
xo
tic

co
ve
r
in

m
ow

n
pl
ot
s;
an
nu
al
sp
ec
ie
s

fa
vo
re
d
in

gr
az
ed

pl
ot
s

61
0

25
V
er
ri
er

&
K
ir
kp
at
ri
ck

20
05

T
he
m
ed
a
(C
4)

T
hi
nn
in
g
of

gr
as
s
tu
ss
oc
ks

w
ith

gl
yp
ho
sa
te
an
d
se
ed

ad
di
tio

n
(s
am

pl
in
g
>
1
ye
ar

af
te
r

tr
ea
tm

en
ta
pp
lic
at
io
ns
)

N
o
ch
an
ge

N
A

In
cr
ea
se

in
sp
ec
ie
s
ri
ch
ne
ss

w
ith

th
in
ni
ng

an
d
lit
te
r
re
m
ov
al
,b

ut
on
ly

w
he
n
se
ed

ad
de
d.

E
xo
tic

fo
rb

ab
un
da
nc
e
in
cr
ea
se
d
w
ith

tu
ss
oc
k
th
in
ni
ng

65
0

0.
56

Jo
hn
so
n

et
al
.2

01
8

A
st
re
bl
a
(C
4)

an
d

D
ic
ha
nt
hi
um

(C
3)

C
om

pa
ri
so
n
of

m
ow

ed
pl
ot
s

(f
ou
r
m
ow

in
g
tr
ea
tm

en
ts
)
to

un
di
st
ur
be
d
co
nt
ro
ls
,i
n
an

ar
ea

pr
ev
io
us
ly

un
di
st
ur
be
d

w
ith

a
le
ga
cy

of
st
oc
k

gr
az
in
g

N
o
ch
an
ge

N
o
ch
an
ge

S
om

e
sh
or
t-
te
rm

ef
fe
ct
s
of

m
ow

in
g,

bu
tn

o
di
ff
er
en
ce

in
sp
ec
ie
s
ri
ch
ne
ss

be
tw
ee
n

un
di
st
ur
be
d
pl
ot
s
an
d
an
y
m
ow

tr
ea
tm

en
ts
at
fi
na
lm

on
ito

ri
ng

55
0

32
L
ew

is
et
al
.2
01
0

Restoration Ecology April 20218 of 15

Switches in grassland disturbance type



T
ab

le
1.

C
on
tin

ue
d

D
om

in
an
tG

en
er
a
(a
nd

P
ho
to
sy
nt
he
tic

P
at
hw

ay
)

M
et
ho
d

N
at
iv
e
SR

R
es
po
ns
e

E
xo
tic

SR
R
es
po
ns
e

D
es
cr
ib
e
R
es
po
ns
e
to

Sh
ift

in
D
is
tu
rb
an
ce

M
ea
n
A
nn
ua
l

P
re
ci
pi
ta
tio

n
(m

m
)

Sc
al
e
of

O
bs
er
va
tio

n
(m

2
)

R
ef
er
en
ce

F
ir
e
!

M
ow

in
g

T
he
m
ed
a
(C
4)

an
d
P
oa

(C
3)

B
ie
nn
ia
lm

ow
in
g
(s
la
sh

re
ta
in
ed
)
at
si
te
pr
ev
io
us
ly

bu
rn
te
ve
ry

4–
8
ye
ar
s.

M
on
ito

re
d
fo
r
12

ye
ar
s,

co
m
pa
ri
so
n
w
ith

bu
rn
t

co
nt
ro
l.

N
o
ch
an
ge

N
A

N
at
iv
e
sp
ec
ie
s
ri
ch
ne
ss

w
as

si
m
ila
r
in

m
ow

ed
pl
ot
s
an
d

bu
rn
tc
on
tr
ol
s.
T
ot
al
cr
yp
to
ga
m

co
ve
r,
ab
un
da
nc
e
an
d
ri
ch
ne
ss

w
er
e
lo
w
er
in
m
ow

ed
pl
ot
s
th
an

in
al
lt
hr
ee

di
ff
er
en
tb

ur
n

fr
eq
ue
nc
ie
s

60
0

25
O
’B
ry
an

et
al
.2

00
9;

P
ro
be
r

et
al
.2

01
3

T
ra
ns
iti
on

fr
om

cu
lti
va
tio

n
to

gr
az
in
g
(o
ld

fi
el
d
su
cc
es
si
on
)

C
ul
tiv

at
io
n
!

G
ra
zi
ng

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

S
pa
ce
-f
or
-t
im

e:
m
an
ag
em

en
t

un
its

w
ith

di
ff
er
en
tt
im

e-
si
nc
e-
cu
lti
va
tio

n
(u
p
to

>
10
0
ye
ar
s
si
nc
e

cu
lti
va
tio

n)

In
cr
ea
se
d

In
cr
ea
se
d

S
lo
w
re
co
ve
ry

of
na
tiv

e
sp
ec
ie
s

ri
ch
ne
ss

w
ith

tim
e
si
nc
e

cu
lti
va
tio

n.
In
cr
ea
se

in
ex
ot
ic

sp
ec
ie
s
ri
ch
ne
ss
w
ith

tim
e
si
nc
e

cu
lti
va
tio

n,
bu
td

ec
lin

e
in

ex
ot
ic
sp
ec
ie
s
do
m
in
an
ce

39
5

10
0

W
on
g
et
al
.2
01
0

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

A
s
ab
ov
e
(u
p
to

ap
pr
ox
im

at
el
y

10
0
ye
ar
s
si
nc
e
cu
lti
va
tio

n)
In
cr
ea
se
d

N
o
ch
an
ge

S
lo
w
re
co
ve
ry

of
sp
ec
ie
s
ri
ch
ne
ss

an
d
de
cr
ea
se

in
ex
ot
ic
an
nu
al

gr
as
s
ri
ch
ne
ss

w
ith

tim
e
si
nc
e

cu
lti
va
tio

n

39
5

0.
25

S
co
tt
&

M
or
ga
n

20
12
b

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

A
s
ab
ov
e
(u
p
to

ap
pr
ox
im

at
el
y

60
ye
ar
s
si
nc
e
cu
lti
va
tio

n)
In
cr
ea
se
d

D
ec
re
as
ed

R
ec
ov
er
y
of

na
tiv

e
sp
ec
ie
s

ri
ch
ne
ss

an
d
de
cr
ea
se

in
ex
ot
ic

sp
ec
ie
s
ri
ch
ne
ss
w
ith

tim
e
si
nc
e

cu
lti
va
tio

n

40
0

0.
02

F
la
im

20
14

V
ar
io
us

pe
re
nn
ia
l

gr
as
se
s
(C
3

an
d
C
4)

A
s
ab
ov
e
(u
p
to

ap
pr
ox
im

at
el
y

55
ye
ar
s
si
nc
e
cu
lti
va
tio

n)
In
cr
ea
se
d

N
o
ch
an
ge

R
ec
ov
er
y
of

sp
ec
ie
s
ri
ch
ne
ss

w
ith

tim
e
si
nc
e
cu
lti
va
tio

n
co
ns
id
er
ab
ly

fa
st
er

th
an

in
th
e

ot
he
r
st
ud
ie
s

59
5–
87
4

40
0

S
ch
ul
tz
20
11

A
us
tr
os
tip

a
an
d

R
yt
id
os
pe
rm

a
(C
3)

S
pa
ce
-f
or
-t
im

e:
m
an
ag
em

en
t

un
its

w
ith

di
ff
er
en
tt
im

e-
si
nc
e-
cu
lti
va
tio

n
(u
p
to

ap
pr
ox
im

at
el
y
90

ye
ar
s)

N
A

N
A

C
ov
er

of
bi
ol
og
ic
al
so
il
cr
us
t

va
ri
ab
le
ac
ro
ss

cu
lti
va
tio

n
hi
st
or
y,

bu
ts
ig
ni
fi
ca
nt
ly

lo
w
er

in
re
ce
nt
ly

cu
lti
va
te
d
si
te
s.

C
ya
no
ba
ct
er
ia
re
co
ve
re
d

qu
ic
kl
y

39
5

0.
25

B
ri
gg
s
&

M
or
ga
n
20
12

April 2021 Restoration Ecology 9 of 15

Switches in grassland disturbance type



Switches From “No Disturbance” to Disturbance Management

When status quo management changed from “no disturbance”
(or infrequent fire) to fire or mowing, we found mostly positive
responses (either increases in native richness or cover, Table 1).
Increases in native richness were found in Themeda-dominated
grasslands (Kirkpatrick 1986; Smith et al. 2018; Zeeman &
Morgan 2018), and also in C3-dominated grasslands (Smith
et al. 2018). Decreases in native species richness were found
with the introduction of fire in a long-unburnt grassy woodland
where competition from trees limits understory biomass (Prober
et al. 2013). Hence, the disturbance requirement for maintaining
alpha diversity might not be ubiquitous across the range of
grasslands. Indeed, in subtropical grasslands, no change in
native richness was found when mowing and fire were intro-
duced in previously undisturbed sites, likely due to lower rates
of biomass accumulation compared to temperate grasslands
(Fensham et al. 2017). Introducing disturbance into undisturbed
sites also increased exotic richness (Kirkpatrick 1986; Smith
et al. 2018), but most studies did not explore this (Table 1).

Transitions From Stock Grazing to Fire

The removal of stock grazing and reintroduction of fire had
mostly no effect on native species richness (Table 1; Lunt 1990;
Foreman 1996; Lunt & Morgan 1999; Prober et al. 2004;
Wong & Morgan 2012; Bryant et al. 2017). Such muted
responses may be because both grazing and fire maintain species
richness via the effects of biomass removal. Shifting from one
disturbance to another may have comparable impacts on light
availability (Lunt 1990; Prober et al. 2004; Wong & Mor-
gan 2012), and hence opportunities for species coexistence of
the incipient community (Schultz et al. 2011). Exotic species
richness was also largely unaffected by the switch from grazing
to fire. No negative effects on native species richness were found
(Table 1).

The negligible effect of disturbance switching on alpha diver-
sity in grasslands (grazing ! fire) is likely because stock graz-
ing has removed many (palatable) native species, and
vegetation responses to fire were seed-bank and/or dispersal-
limited. Increased species richness might be expected where col-
onization is by ruderals with long-distance dispersal ability
(Lunt &Morgan 1999). Many of the disturbance switching stud-
ies here occur in the landscape context of remnants being small,
isolated, and embedded in an agricultural or urban matrix, where
native species typically have small persistent or transient soil
seed banks (Lunt 1995; Williams et al. 2006; Scott & Mor-
gan 2012a). Despite the lack of native richness response, posi-
tive compositional changes were commonly reported, with
increased cover and abundance of native species (Table 1). All
of the studies reported on short-term responses (≤10 years),
and hence richness improvements may take longer than the
study duration. The grazing exclusion studies which tended to
report on longer-term changes support the idea that passive
recovery from stock grazing takes longer than the approximately
3 years of most studies.

There were few negative effects found when switching from
livestock grazing to fire. However, some caution is needed for

employing this management across all grasslands. Some native
species may be susceptible to fire (e.g. C3 grasses, Moore
et al. 2019), with responses depending on the location of regen-
erating buds (Pausas & Paula 2020). Resprouting capacity, par-
ticularly for C3 species, may also be negatively impacted by
drought (Prober et al. 2004; Moore et al. 2019). Some exotic
plants benefit in the short term from the shift (Wong & Mor-
gan 2012). The timing of fire also determined the response of
exotics—summer fires reduced exotic abundance, but autumn
fires increased exotic abundance (Bryant et al. 2017) and, in a
grassy woodland, spring burns controlled few exotic plants
(Prober et al. 2004). Hence, the best fire regime for promoting
natives and minimizing exotics under different contexts needs
further understanding.

Transitions From Grazing or Fire to Slashing

Few studies explored switches from either grazing or fire to
some mechanical means of biomass removal (mowing, slashing,
or tussock thinning); most reported no change in native species
richness (Table 1). Positive richness responses occurred when
biomass (slash) was removed after cutting or when seed was
added (Verrier & Kirkpatrick 2005; Johnson et al. 2018). If litter
is left on the ground, it can smother small-statured species,
including cryptograms (O’Bryan et al. 2009). The height of
slash affects the outcomes; if the grass tussocks are mown too
low, mortality occurs due to loss of the regenerative parts of
plants (Morgan 2015). A mowing height of 10–15 cm was
found to be necessary to minimize mortality of perennial grass
tussocks (Prober et al. 2013; Smith et al. 2018). Only one study
found increases in exotic species with mowing (Verrier & Kirk-
patrick 2005), but exotic responses were not reported consis-
tently (Table 1).

Old Field Succession

Five studies observed grassland recovery with old field succes-
sion (cultivation ! grazing), and all found increases in native
species richness (Table 1). The rate at which species reestab-
lished in old fields varied among the studies; on the north-west
slopes of New South Wales, Schultz et al. (2011) observed rapid
recovery of species richness, with similar richness to that
observed in uncultivated paddocks after 10–25 years. Other
studies have found comparatively slower recovery. For exam-
ple, in Victoria’s northern riverine plains, Wong et al. (2010)
found that species richness recovered along a linear trajectory
with time-since-cultivation, but estimated that it may take
>100 years to reach the species richness of nearby uncultivated
native pastures. Rapid reestablishment of plant diversity was
observed by Schultz et al. (2011) in relatively productive sites
that were surrounded by species-rich native pastures (>70% of
the agricultural area; Lodge et al. 1991). Slow recovery occurred
in regions with low total cover of grasslands in the landscape,
poor connectivity, and lower productivity (Wong et al. 2010;
Scott & Morgan 2012b).

Restoration Ecology April 202110 of 15

Switches in grassland disturbance type



Spatial Scale

One consequence of disturbance switches not addressed is the
impact of different disturbances on ecological processes acting
at larger spatial scales than those observed by the studies
reviewed here. The primary response to a disturbance shift
recorded is the change in native species richness at local scales
(Table 1). Grazing has been shown to reduce native species rich-
ness at landscape scales through removal of species from the
local species pool despite increasing native richness at local
scales (Dorrough et al. 2007; Schultz et al. 2016), but it is still
unclear if removal of grazing, or a switch from grazing to fire
could reverse such a trend. For example, will species that are
grazing-sensitive and/or spatially restricted in the landscape find
additional recruitment opportunities as a result of disturbance
switches? If so, there might be conservation benefits regardless
of the impact on local native species richness. Testing this will
require studies conducted at both longer temporal scales and
larger spatial scales. Nevertheless, the potential for the impacts
of disturbance switches on larger-scale processes is acknowl-
edged, and should be considered by future studies.

Switches in Disturbance Type Indicate Passive Recovery Occurs
but Is Limited by Land-Use Legacies

Temperate native grasslands do appear to have a disturbance
requirement, as evidenced by a reduction in species richness
with abandonment; this is particularly true for grasslands where
the removal of fire occurs in areas that have been historically
burnt. This outcome likely depends on site productivity—all
the fire abandonment studies have been conducted in productive
Themeda-dominated grasslands where ANPP is high
(Groves 1965; McDougall 1987). Studies that introduced a
new disturbance (fire or mowing) into sites lacking disturbance
management reported a range of native richness responses.
The grazing exclusion studies support the contention that site
productivity governs the response to disturbance, with reduc-
tions in richness with grazing exclusion only occurring at higher
productivity. However, many studies report no change in rich-
ness with grazing exclusion indicating that grasslands may be
in a stable, but degraded state.

The main switch in disturbance type involved the removal of
stock grazing and the introduction of fire or mowing. In these
cases, the common response was no change in native richness,
supporting the idea that grazing legacies are persistent. How-
ever, improvements in species composition were commonly
reported, such as increases in native species cover or abundance.
Most of the studies, however, were short term and it is unclear if
passive recovery will occur with longer time-since-grazing
removal, or if more fire events are needed. Recovery could
potentially be expedited with seed addition (Johnson
et al. 2018).

The most modified temperate grasslands in this study were
the old fields where cultivation has been part of their recent his-
tory; in all cases, passive restoration improved native richness.
As these are the most degraded sites considered here, increased
richness compared to the recently cultivated state is likely to
occur; but what is more important here is the trajectory to a

reference site. These studies were all space-for-time chronose-
quences; hence longer-term recovery was reported and, for most
studies, recovery towards a reference state took a long time, and
was faster for sites that had native propagules available in the
surrounding landscape. Typically, studies on old field recovery
support the “grazing to fire” outcomes—when missing species
are dispersal-limited, seed addition will be necessary to take
advantage of new establishment opportunities associated with
changes in disturbance type, and may help expedite recovery.
These studies accord with the global literature on old field suc-
cession (e.g. Török et al. 2011).

Seed and Dispersal Limitation: A Key Barrier to Restoration
Under Shifting Disturbances

Reintroduction of locally extinct species is a key goal of restora-
tion, but achieving this passively is often limited by propagule
availability (Seabloom et al. 2003; Pinto et al. 2014). This is
clearly illustrated by seed addition experiments that increase
alpha diversity, regardless of disturbance regime, suggesting
native grasslands are inherently recruitment-limited (Johnson
et al. 2018; Zamin et al. 2018). Grassland species may be poor
dispersers; hence, species may fail to recolonize recently dis-
turbed sites because the distances between remnant grasslands
exceeds their natural dispersal ability (in many cases it is
<1 m, Scott &Morgan 2012a). Additionally, even when species
are present in the site, seed may be absent from the seed bank
and unable to take advantage of reduced competition for light
and resources post-disturbance (i.e. seed-limitation, Münzber-
gová & Herben 2005). This may occur because of short seed
longevity (Long et al. 2015) and/or heavy seed predation which
is often symptomatic of grassland species (Lunt 1995; Duden-
höffer et al. 2016).

The type of matrix in fragmented landscapes appears to be
important for determining if passive restoration is a viable
option for recovery of degraded grassland. For example, old
field recovery was rapid in regions of Australia where the matrix
consisted of native pastures (Lewis et al. 2010; Schultz 2011),
whereas in urbanized regions, local extinction of grassland
plants was related to fire suppression and urbanization in the sur-
rounding matrix (Williams et al. 2006). As such, the amount of
natural vegetation in the surrounding matrix is likely to be a
strong determinant of whether seed addition is required for suc-
cessful restoration (Řehounková & Prach 2008; Török
et al. 2011; Shackelford et al. 2017; Zirbel et al. 2019).

The common disturbances reviewed in this study are likely
to have similar (albeit not synonymous) effects on microsite
conditions via the removal of biomass. For many grassland
species, fire-related germination cues (such as smoke and
heat) promote germination (Vening et al. 2017; Carthey
et al. 2018; Hodges et al. 2019). For such species, substitut-
ing grazing and mowing for fire is unlikely to promote germi-
nation. For other species, where germination is linked to gap-
detection and rainfall, any biomass-reducing disturbance that
provides sufficient gaps in the canopy is likely to be suffi-
cient to stimulate recruitment. Hence, consideration of the
germination requirements of species is necessary when
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considering if disturbance switches will improve native spe-
cies richness.

Climate Change Impacts on Disturbance Transitions

Temperate grasslands in Australia are sensitive to changes in the
dominant processes that regulate distributions and productivity
(e.g. rainfall, temperature; Morgan et al. 2016) and, in the future,
climate change is likely to drive significant changes to those pro-
cesses. Regional climate projections suggest that grasslands in
southeastern Australia likely face warmer temperatures, reduced
water availability (especially in winter), higher evaporation and
increases in heavy precipitation events such as storms and peri-
odic flooding. In particular, predicted increases in the frequency
and severity of droughts and heatwaves are likely to have a sig-
nificant impact on the productivity and composition of native
grasslands (Hodgkinson & Müller 2005; Godfree et al. 2011).
With climate change, drier conditions are likely to slow biomass
accumulation rates in many types of grassland, potentially
reducing the need for disturbance—and disturbance
switching—to maintain diversity. The greatest effects would
most likely be evident in marginal environments where species
exist at their physiological limits, and where recruitment proba-
bility after disturbance may be compromised. Such predictions
need to be robustly assessed in the field, as it will likely create
opportunities in some landscapes for grassland enhancement,
while challenge ongoing persistence in others.

Final Remarks and Further Research

Passive restoration, after disturbance switching, in Australian
temperate native grasslands is likely limited by seed availability
because of agricultural land-use legacies. Hence, active restora-
tion is necessary to restore the full suite of species that occurred
in the predisturbed state. The evidence suggests temperate grass-
lands are in a stable but degraded state, and that switching
disturbances—from exogenous (e.g. stock grazing) to endoge-
nous (e.g. fire)—has little capacity to recover native species
(at least in the short term). Seed addition, however, is unlikely
to be a panacea for restoration as seedling emergence and sur-
vival are not always reliable (Lodge 1981; Cole & Lunt 2005;
Gibson-Roy et al. 2010b). Sourcing seed required for large-scale
restoration will be challenging given remnants are typically
small; seed production areas are necessary to scale up the avail-
ability of seed (Gibson-Roy et al. 2010b). Sites that are heavily
degraded (dominated by exotic species and fertilized) may not
be suitable for restoration, without much greater inputs
(e.g. scalping or topsoil removal, Gibson-Roy et al. 2010a).

Increased knowledge around seed dormancy and germination
requirements are necessary, as are improvements to restoration
practice (e.g. through seed technologies to maximize establish-
ment, Perring et al. 2015). Diverse seed mixtures increase the
costs of restoration (Palma& Laurance 2015), and cost-effective
approaches are needed. One approach can be to use species-poor
seed mixtures at the site scale, and patchily apply more diverse
mixtures that enable natural dispersal around the site (Török
et al. 2011; Kiss et al. 2020). Experiments are needed to test

these approaches under different disturbance types and regimes.
In some cases, pretreatment of seed with smoke may reduce the
necessity to burn, but this requires further investigation, and
may only be suitable for low productivity sites that do not
require biomass removal.
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