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Abstract

This paper presents a comprehensive review on the development of higher-order continuum model

s for capturing size effects in small-scale structures. The review mainly focus on the size-dependent

beam, plate and shell models developed based on the nonlocal elasticity theory, modified couple str

ess theory and strain gradient theory due to their common use in predicting the global behaviour of

small-scale structures. In each higher-order continuum theory, various size-dependent models based

on the classical theory, first-order shear deformation theory and higher-order shear deformation theor

y were reviewed and discussed. In addition, the development of finite element solutions for size-dep

endent analysis of beams and plates was also highlighted. Finally a summary and recommendations

for future research are presented. It is hoped that this review paper will provide current knowledge

on the development of higher-order continuum models and inspire further applications of these mode

ls in predicting the behaviour of micro- and nano-structures.
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1. Introduction

Small-scale structural elements such as beams, plates and shells are commonly used as component

s in micro- and nano-electromechanical systems (MEMS and NEMS), sensors, actuators and atomic

force microscopes. In these applications, size effects were experimentally observed in mechanical pro

perties [1-5]. These size effects can be captured using either molecular dynamics (MD) simulations

or higher-order continuum mechanics. Although the MD method can provide accurate predictions, it

is too computationally expensive. Therefore, higher-order continuum mechanics approach was widely
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used in the modelling of small-scale structures.

The development of higher-order continuum theories can be traced back to the earliest work of Pi

ola on the 19th century as demonstrated in [6-7] and the work of Cosserat and Cosserat [8] in 190

9. However, until 1960s, the Cosserat brothers’ idea was received considerable attention from researc

hers, and a large number of higher-order continuum theories have been developed. In general, these

theories can be categorized into three different classes namely the strain gradient family, microcontin

uum and nonlocal elasticity theories. The strain gradient family is composed of the couple stress the

ory, the first and second strain gradient theory, the modified couple stress theory and the modified s

train gradient theory. In the strain gradient family, both strains and gradient of strains are considered

in the strain energy, and thus the size effect is accounted for using material length scale parameter

s. In the couple stress theory initiated by Toupin [9], Mindlin and Tiersten [10] and Koiter [11], on

ly the gradient of rotation vector is considered in the strain energy, and thus only two material leng

th scale parameters are required. The modified couple stress theory was proposed by Yang et al. [1

2] based on modifying the couple stress theory. By introducing an equilibrium condition of moments

of couples to enforce the couple stress tensor to be symmetric, the number of material length scale

parameters of the modified couple stress theory is reduced from two to one. The first strain gradie

nt theory initiated by Mindlin [13] considers only the first gradient of strains. One year later, Mindl

in [14] derived the second strain gradient theory which is considered as the most general form of s

train gradient theory accounting for both the first and second gradients of strains. Lam et al. [15] pr

oposed the modified strain gradient theory with only three material length scale parameters by modi

fying Mindlin's theory by using a similar approach of Yang et al. [12]. The microcontinuum theory

was developed by Eringen [16-18] consisting of micropolar, microstretch and micromorphic (3M) the

ories. Micropolar theory which is actually initiated by Cosserat brothers [8] is the simplest one amo

ng 3M theories, whilst micromorphic theory is the most general one among 3M theories. In 3M the

ories, each particle can rotate and deform independently regardless of the motion of the centroid of

the particle. More details about the 3M theories as well as their applications can be found in [19-2

5]. The nonlocal elasticity theory was originally proposed by Kroner [26] and improved by Eringen

[27-28] and Eringen and Edelen [29]. In this theory, the stress at a reference point in a continuum

depends on the strains at all points of the body, and thus the size effect is captured by means of c

onstitutive equations using a nonlocal parameter. Nonlocal elasticity theory was initially formulated i

n an integral form and later reformulated by Eringen [30] in a differential form by considering a sp

ecific kernel function. Compared to the integral model, the differential one is widely used for nanos
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tructures due to its simplicity. In addition, another class of higher-order theory which is called nonlo

cal strain gradient theory has been recently proposed based on a combination of the nonlocal elastic

ity theory and the strain gradient theory. The interested reader can refer to [31-33] for more details

on this theory.

Size-dependent models have been widely used for predicting the global behaviour of beam- and p

late-like nanostructures such as carbon nanotubes (CNTs) and graphene sheets. CNTs were discovere

d by Iijima [34] by rolling graphene sheets. Based on synthesis route and reaction parameters, vario

us types of CNTs such as single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotub

es (DWCNTs) and multi-walled carbon nanotubes (MWCNTs) can be obtained (see Fig. 1) by rollin

g single-layered graphene sheets (SLGSs), double-layered graphene sheets (DLGSs) and multi-layered

graphene sheets (MLGSs) (see Fig. 2). Nanotube is a key nanostructure and has a wide range of a

pplications in all areas of nanotechnology. Notable among them is conveying fluid [35-41] and nano

fluidic devices and systems.

A large number of size-dependent models have been proposed based on various beam and plate t

heories. The simplest models were based on Euler-Bernoulli beam theory (EBT) and classical plate t

heory (CPT). These models are only appropriate for modelling of slender beams and thin plates bec

ause they ignore shear deformation effect. To overcome the limitation of the EBT and CPT, a numb

er of shear deformation theories have been proposed. First-order shear deformation models were bas

ed on Timoshenko beam theory (TBT) and first-order shear deformation theory (FSDT). Since the in

-plane displacements vary linearly through the thickness in these models, a shear correction factor is

required. In order to eliminate the use of the shear correction factor and obtain a better prediction

of the responses of thick beams and plates, several higher-order shear deformation theories (HSDTs)

have been proposed, notable among them are Reddy beam theory (RBT) and third-order shear defo

rmation theory (TSDT) of Reddy [42]. A comprehensive review on the plate theories can be found

in the work by Thai and Kim [43].

The governing equations derived from the aforementioned size-dependent models can be solved us

ing either analytical methods or numerical approaches. However, the application of analytical method

s is limited to a particular nanostructure with simple geometry, loading and boundary conditions (B

Cs). For instance, Navier method is only applied for rectangular plates with simply supported BCs,

whilst Levy method is only applied for rectangular plates in which two opposite edges are simply s

upported and the remaining two edges can have any arbitrary BCs. For the practical problems with

general geometry, loading and BCs, seeking their analytical solutions is impossible because of the m
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athematical complexity of the size-dependent models compared to the classical ones. Therefore, num

erical approaches such as finite element method, differential quadrature method, mesh-free method, R

itz method, Galerkin method, etc. become the most suitable ones for solving such problems. Among

different numerical techniques, the finite element method is the most powerful tool and commonly

used for the analysis of structures, and thus the development of finite element solutions for size-dep

endent models will be discussed in this review.

Although extensive research on small-scale beams, plates and shells has been made during the pas

t decade, the development of models for capturing the size effect in these structures has not been r

eviewed. Therefore, this paper aims to provide a comprehensive review on the development of size-

dependent models for predicting the behaviour of small-scale beam- and plate-like structures. The re

view mainly focuses on the beam, plate and shell models which were developed based on the nonlo

cal elasticity theory of Eringen [30], the modified couple stress theory of Yang et al. [12] and the

modified strain gradient theory of Lam et al. [15]. In addition, the development of finite element m

odels of these theories was also highlighted and discussed in details.

2. Nonlocal elasticity theory

2.1. Review of the nonlocal elasticity theory

The nonlocal elasticity theory was initially formulated by Eringen [27-28] and Eringen and Edelen

[29] by means of integral constitutive equation as

 , L
ij ijx

k x x dx    (1)

where ij and L
ij are the components of the nonlocal and local stress tensors, respectively and k i

s the kernel function determined in terms of nonlocal parameter  and neighbourhood distance

x x in which 0e a  and 0e and a are the material constant and the internal characteristic len

gth, respectively, i.e. lattice parameter, granular size or molecular diameter. The value of 0e can be

determined either from experiments or simulations. The value of 0e was calibrated by Huang et al.

[44] for the static bending analysis of SLGSs. Arash and Ansari [45] also evaluated the value of th

e nonlocal parameter for the free vibration of SWCNTs by comparing the predictions from the nonl

ocal FSDT shell model with MD simulations as shown in Fig. 3. Duan et al. [46] proposed a micr

ostructured beam model to calibrate the value of 0e for the free vibration analysis of nonlocal bea

ms. Analytical expressions of 0e were obtained based on geometrical properties and vibration modes.

Zhang et al. [47-49] proposed a microstructured beam-grid model to determine the value of 0e for
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the free vibration of nonlocal beams [47] and buckling and free vibration of nonlocal plates [48]. I

t was found that the value of 0e varies with respect to initial stress, rotary inertia, mode shape and

aspect ratio of rectangular plates. In general, a conservative estimate of the nonlocal parameter for

SWCNTs is 0e a < 2.0 nm [50].

By considering a specific kernel function k, Eringen [30] reformulated the nonlocal constitutive eq

uation in a differential form as

 21 L
ij ij     (2)

where 2  and 2 is the Laplacian operator. The explicit form of Eq. (2) can be written for thr

ee problems with isotropic materials as follows.

For one-dimensional (1D) problems:
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For 3D problems:
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where ij are the components of the strain tensor; and E and  are the Young’s modulus and Poi

sson ratio of materials, respectively.

Compared to the integral model, the differential one is widely used for nanostructures due to its

simplicity. However, the differential model may give paradoxical results for certain cases, e.g. bendi

ng and vibration problems of cantilever beams. More information about paradoxical behaviour of the

differential model can be found in [51-54].

2.2. Beam models

2.2.1. Nonlocal models based on the EBT

The first nonlocal beam models based on the EBT were developed by Peddieson et al. [55] and

Sudak [56]. Peddieson et al. [55] applied their model to explore the size effect on the bending beha

viour of isotropic nanobeams, whilst Sudak [56] applied his model to study the buckling of MWCN

Ts. Since the early works by Peddieson et al. [55] and Sudak [56], there have been a large number

of articles devoted to the modelling of nanobeams and CNTs using the nonlocal EBT model. For

example, Zhang et al. [57] investigated the free vibration of DWCNTs. Closed-form solutions for na

tural frequencies of simply supported DWCNTs were obtained to study the size effect on vibration

characteristics of DWCNTs. Wang et al. [58] derived a general form of closed-form solutions for bu

ckling loads of CNTs with various BCs. Aydogdu [59] examined the size effect on the axial vibrati

on of nanorods under different BCs and obtained explicit expressions for natural frequencies. Murmu

and Pradhan [60] included thermal effects in the free vibration analysis of embedded SWCNTs usi

ng the differential quadrature (DQ) method. This approach was also used by Civalek and Demir [61]

to derive bending moments and deflections of nanobeams with various BCs. The free vibration of

axially loaded non-prismatic embedded SWCNTs was investigated by Mustapha and Zhong [62] usin

g the Bubnov-Galerkin method. Li et al. [63] derived closed-form solutions for natural frequencies o

f axially loaded simply supported nanobeams. Ghannadpour et al. [64] employed the Ritz method so
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lve the governing equations of the nonlocal EBT model for deflections, buckling loads and natural f

requencies of nanobeams with various BCs. Based on von Karman nonlinearity, Ansari et al. [65] d

eveloped a nonlinear nonlocal EBT model for nonlinear vibrations of embedded MWCNTs in therma

l environmental, whilst Fang et al. [66] developed a nonlinear nonlocal EBT model for nonlinear vi

brations of embedded DWCNTs. The nonlinear free and forced vibrations of nanobeams with variou

s BCs were examined by Simsek [67] and Bagdatli [68].

The nonlocal EBT model was also developed for nanobeams made of functionally graded (FG) m

aterials. Simsek [69] investigated the nonlocal effect on the axial vibration of FG nanorods with var

iable cross-sections. The elastic modulus and mass density of nanorods were assumed to vary in the

axial direction according to a power law form. Nguyen et al. [70] presented analytical solutions of

the nonlocal EBT model for the static bending analysis of FG beams with various BCs. The elasti

c modulus of FG nanobeams can vary in either the axial direction or transverse direction. Based on

the Galerkin approach, Niknam and Aghdam [71] derived solutions of the nonlocal EBT model for

natural frequencies and critical buckling loads of FG nanobeams resting on an elastic foundation. E

brahimi and Salari [72-73] studied thermal effect on the free vibration of FG nanobeams under vari

ous BCs using a semi analytical approach. Nejad and Hadi [74] and Nejad et al. [75] examined the

bending [74] and buckling [75] behaviours of FG nanobeams in which the elastic modulus can var

y in both axial and transverse directions of the beam. The DQ method was used to solve the gover

ning equations for critical buckling loads of FG nanobeams with arbitrary BCs.

Nonlinear free vibration of FG nanobeams was investigated by Nazemnezhad and Hosseini-Hashe

mi [76] using a nonlinear nonlocal EBT model with von Karman nonlinear theory. Analytical solutio

ns for nonlinear natural frequencies of simply supported beams were also obtained using a method

of multiple scales. El-Borgi et al. [77] developed a nonlinear nonlocal EBT model for the nonlinear

free and forced vibrations of FG embedded nanobeams. The method of multiple scales was employ

ed to solve for nonlinear frequencies of simply supported beams. Shafiei et al. [78] also developed

a nonlinear nonlocal EBT model to study the nonlinear free vibration of axially FG nanobeams with

variable cross-sections. Nonlinear frequencies of nanobeams under various BCs were obtained using

the generalized DQ technique.

2.2.2. Nonlocal models based on the TBT

The earliest nonlocal TBT model was developed by Wang [79] to study wave propagation in CN

Ts. The model accounts for the shear deformation effect which becomes significant in short and sto

cky CNTs. Wang and Varadan [80] also developed a nonlocal TBT model, but it was applied to inv
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estigate the free vibration of both SWCNTs and DWCNTs. Closed-form solutions for natural frequen

cies of simply supported CNTs were also obtained. Wang et al. [81-84] derived closed-form solution

s for buckling loads [81], natural frequencies [82] and deflections [83-84] of the nonlocal TBT mod

el with four different BCs including simply supported, clamped, cantilever and propped cantilever. In

these models [81-84], the transverse shear stress was based on the local theory and thus they are i

nconsistent. Lu et al. [85] overcame this limitation in their consistent nonlocal TBT model in which

the nonlocal effect was included in both normal and transverse shear stresses. The consistent nonlo

cal model was also developed by Reddy and Pang [86] by reformulating both EBT and TBT using

the nonlocal constitutive relations of Eringen. Closed-form solutions for deflections, buckling loads a

nd natural frequencies were obtained for nanobeams under four different BCs. It should be noted th

at the closed-form solutions derived by Reddy and Pang [86] are different with those given by Wan

g et al. [81-84] since they were based on different TBT models.

The consistent nonlocal TBT model has been widely used to investigate the nonlocal effect in C

NTs. For example, Murmu and Pradhan [87] investigated the influences of nonlocal parameter and tr

ansverse shear deformation on the buckling of SWCNTs surrounded by an elastic medium. This wor

k was extended by Ansari et al. [88] to include the effect of elevated temperature. Pradhan and Mu

rmu [89] examined the nonlocal effect on the vibration of embedded SWCNTs using the consistent

nonlocal TBT model and the DQ approach. Numerical solutions of the consistent TBT model were

presented by Roque et al. [90] based on a meshless method with both global and local collocation t

echniques and radial basis functions. The vibration of embedded SWCNTs was also examined by W

u and Lai [91] using the consistent nonlocal TBT models developed based on both Reissner mixed

variation theory and principle of virtual displacement. Amirian et al. [92] and Zidour et al. [93] incl

uded the thermal effect on the vibration of SWCNTs, whilst Ansari et al. [94] included the thermal

effect on the dynamic stability of embedded MWCNTs. Ansari et al. [95] developed a nonlocal TB

T model for the nonlinear forced vibration of magneto-electro-thermo-elastic nanobeams.

The consistent nonlocal TBT model was also developed for FG nanobeams. Simsek and Yurtcu [9

6] proposed both nonlocal EBT and TBT models for the bending and buckling analyses of FG nano

beams. The consistent nonlocal TBT model was extended by Rahmani and Pedram [97] to the free

vibration analysis of simply supported FG nanobeams. Ebrahimi and Salari [98-99] also developed a

consistent nonlocal TBT model for the buckling and free vibration analyses FG nanobeams in whic

h thermal effects were considered.

2.2.3. Nonlocal models based on the RBT
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Based on the nonlocal constitutive relations of Eringen, Reddy [100] reformulated the EBT, TBT,

RBT and Levinson beam theory to include the nonlocal effect. Variational statements of four models

were also derived to facilitate the development of nonlocal FE models. Closed-form solutions for d

eflections, buckling loads and natural frequencies were obtained for simply supported beams. Ebrahi

mi and Salari [101] included thermal effects in the nonlocal RBT model to examine the influences

of elevated temperature and nonlocal parameter on free vibration characteristics of embedded SWCN

Ts. Emam [102] proposed a unified nonlinear nonlocal model for the buckling and post-buckling an

alyses of isotropic nanobeams. Analytical solutions for buckling load and post-buckling response wer

e also obtained for simply supported and clamped nanobeams.

Rahmani and Jandaghian [103] extended the nonlocal RBT model to FG nanobeams. Analytical so

lutions for critical buckling loads were obtained for FG nanobeams under various BCs using Raylei

gh-Ritz method. Ebrahimi and Barati [104] also developed a nonlocal RBT model for FG nanobeam

s, in which thermal effects and the interaction between the nanobeam and an elastic medium were c

onsidered.

2.2.4. Nonlocal models based on HSDTs

One of the earliest nonlocal HSDT models was developed by Aydogdu [105] for isotropic nanobe

ams based on the general exponential shear deformation theory of Aydogdu [106]. This theory is a

general form of the exponential shear deformation theory of Karama et al. [107] (see Table 1 for th

e displacement field). Thai [108] also proposed a nonlocal HSDT model for isotropic nanobeams, bu

t it was based on the refined plate theory of Shimpi [109]. The displacement field of this theory is

derived based on partitioning the displacements into shear and bending parts. Tounsi et al. [110] an

d Zemri et al. [111] extended the nonlocal HSDT model of Thai [108] to include thermal effects [1

10] and non-homogeneous behaviour of FG materials [111].

Thai and Vo [112] developed a nonlocal HSDT model for isotropic nanobeams based on the sinus

oidal shear deformation theory of Touratier [113], whilst Tounsi et al. [114] proposed a nonlocal qu

asi-3D model for isotropic nanobeams based on the quasi-3D sinusoidal theory of Thai and Kim [11

5] (see Table 2). It is worth noting that unlike the HSDT model, the quasi-3D model is capable of

capturing the thickness stretching effect which is significant in very thick or stocky members. The

extension of the sinusoidal model of Thai and Vo [112] and quasi-3D sinusoidal model of Tounsi et

al. [114] to FG nanobeams was respectively made by Ahouel et al. [116] and Chaht et al. [117].

The model of Thai and Vo [112] was also employed by Pour et al. [118] and Sadatshojaei and Sad

atshojaie [119] to predict nonlinear vibration responses of SWCNTs embedded in an elastic medium.
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Berrabah et al. [120] compared the accuracy of various nonlocal HSDT models in predicting defle

ctions, buckling loads and natural frequencies of isotropic nanobeams. The displacement fields of the

se nonlocal HSDT models were taken from the simple HSDT proposed by Thai and Choi [121] in

which the in-plane and transverse displacements are divided into the bending and shear components

as shown in Table 1. Ebrahimi and Barati [122] developed a unified nonlocal HSDT model for FG

embedded nanobeams based on the simple HSDT of Thai and Choi [121]. The model was used to

study the influences of both moisture and temperature on free vibration characteristics of FG embed

ded nanobeams. Mashat et al. [123] investigated the vibration and thermal buckling of embedded na

nobeams under various BCs using a unified nonlocal HSDT model covering EBT, TBT, RBT and si

nusoidal theory. Recently, Thai et al. [124] presented a simple nonlocal HSDT model for isotropic n

anobeams which involves only one unknown. Closed-form solutions for deflections and natural frequ

encies were also obtained for nanobeams under various BCs. Numerical results indicated that the ac

curacy of the present theory is comparable with the nonlocal TBT model although it has only one

unknown as in the case of the nonlocal EBT model.

2.3. Plate models

2.3.1. Nonlocal models based on the CPT

Zhang et al. [125] developed one of the earliest nonlocal shell model for the buckling analysis of

MWCNTs under axial compression based on the classical shell theory. Closed-form solutions obtain

ed for buckling loads were used to examine the nonlocal effect on the axial buckling of simply sup

ported DWCNTs. Li and Kardomateas [126-127] developed nonlocal classical shell models to exami

ne the thermal buckling [126] and free vibration [127] of MWCNTs. The nonlocal classical shell m

odel was also proposed by Wang and Varadan [128] and Hu et al. [129] to investigate wave propag

ation in CNTs. The accuracy of the nonlocal classical shell model in predicting buckling strains of

axially loaded SWCNTs was also assessed by Zhang et al. [130] by comparing with the MD simula

tion results as shown in Fig. 4. It can be seen that for long SWCNTs with large aspect ratios, the

local EBT model can give results comparable with those obtained by nonlocal EBT model and MD

simulations. However, for short SWCNTs with small aspect ratios, only nonlocal shell model can g

ive comparable predictions by the MD simulations. Rouhi and Ansari [131] also presented a nonloca

l classical shell model for axial buckling of DWCNTs under various BCs. Recently, Sarvestani [132]

proposed a nonlocal classical shell model for the buckling analysis of curved MWCNTs under axia

l compression.

One of the earliest nonlocal plate models was developed by Lu et al. [133] based on the CPT. T
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he model was used to study the size effect on the bending and bucking behaviours of isotropic nan

oplates. Duan and Wang [134] derived exact solutions of the nonlocal CPT model for the axisymme

tric bending analysis of circular nanoplates under general loading. The effects of the nonlocal param

eter on deflection, radial moment, circumferential moment and shear force of graphene circular sheet

s subjected to uniform loads with either clamped or simply supported BCs were examined. Aksencer

and Aydogdu [135] derived Levy solutions of the nonlocal CPT model for buckling loads and natu

ral frequencies of rectangular nanoplates with two opposite edges being simply supported and the re

maining two edges having any arbitrary BCs. Shakouri et al. [136] employed the Galerkin approach

to solve the governing equations of the nonlocal CPT model for natural frequencies of isotropic na

noplates under various BCs.

The nonlocal CPT model was also employed to capture the size-dependent behaviour of SLGSs a

nd MLGSs. For example, Pradhan and Murmu [137] and Pradhan and Kumar [138] investigated the

nonlocal effect on the bucking of SLGSs using the DQ method, while Babaei and Shahidi [139] a

nd Farajpour et al. [140] examined the size effect on the buckling of quadrilateral SLGSs [139] and

variable-thickness SLGSs [140] using Galerkin method. The free vibration behaviour of MLGS emb

edded in a polymer matrix was investigated by Pradhan and Phadikar [141]. It was found that the s

ize effect increases when the number of layers increases. Shen et al. [142] extended the application

of the nonlocal CPT model to examine the free vibration of a simply supported SLGS-based mass s

ensor. Ansari et al. [143] presented analytical expressions for natural frequencies of SLGSs with arb

itrary BCs by considering interatomic potential in deriving material properties of SLGSs. Recently, Z

hang et al. [144-146] employed the element-free kp-Ritz method to solve the governing equations of

the nonlocal CPT model for natural frequencies [144], nonlinear deflections [145] and bucking load

s [146] of SLGSs under various BCs.

The application of the nonlocal CPT in the above-mentioned studies was limited to graphene shee

ts made of isotropic materials. However, the numerical results from MD simulations carried out by

Ni et al. [147] indicated that the mechanical properties of graphene sheets are anisotropic because o

f the hexagonal structure of the unit cells of the graphene [147]. Therefore, nonlocal orthotropic CP

T models were developed to account for the effect of anisotropic mechanical properties of graphene

sheets. Pouresmaeeli et al. [148] developed a nonlocal CPT model for the vibration of orthotropic

DLGSs embedded in an elastic medium. Mohammadi et al. [149-150] developed a nonlocal CPT mo

del for the free vibration analysis of orthotropic embedded SLGSs in thermal environment. Both Na

vier and Levy solutions for natural frequencies of rectangular SLGSs were derived. Sari and Al-Kou
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z [151] also presented a nonlocal CPT model for the free vibration analysis of orthotropic embedde

d SLGSs in which the variable thickness of SLGSs was considered. Anjomshoa [152] and Anjomsho

a et al. [153] proposed nonlocal CPT models to examine the buckling [152] and free vibration [153]

of orthotropic circular and elliptical SLGSs embedded in an elastic medium. The nonlocal CPT mo

del was also developed by Mohammadi et al. [154] to examine the shear buckling of orthotropic e

mbedded SLGSs in thermal environment. Ashoori et al. [155] developed a nonlocal CPT model for

thermal buckling of FG annular embedded nanoplates subjected to various types of thermal loads. E

xact solutions for critical buckling temperature were also obtained for FG annular nanoplates with cl

amped BCs.

2.3.2. Nonlocal models based on the FSDT

The earliest nonlocal FSDT model was developed by Lu et al. [133] for isotropic nanoplates. The

model was then applied to study the size effect on deflections and natural frequencies of simply s

upported isotropic nanoplates. Pradhan and Phadikar [156-157] presented both nonlocal CPT and FS

DT models for the free vibration [156] and buckling analysis [157] of SLGSs and MLGSs. In the

MLGS models, the interaction between two graphene sheets was modelled by Winkler foundation. T

he influences of small-scale, shear deformation, elastic modulus and stiffness of Winkler foundation

on natural frequencies and critical buckling loads of simply supported graphene sheets were also inv

estigated. Kananipour [158] also presented both nonlocal CPT and FSDT models for graphene sheets,

but they were applied to the static bending analysis of DLGSs under various BCs using the DQ

method. Ansari et al. [159-160] examined the vibration of SLGSs [159] and MLGSs [160] with diff

erent BCs using the nonlocal FSDT model and DQ method. The nonlocal FSDT was also employed

by Samaei et al. [161] and Bedroud et al. [162] to examine the buckling of embedded SLGSs [16

1] and circular nanoplates [162]. Arani et al. [163] examined electro-thermal-torsional buckling of si

mply supported embedded double-walled boron nitride nanotubes based on the nonlocal FSDT shell

model. Naderi and Saidi [164] modified the nonlocal FSDT model for buckling of nanoplates by eli

minating the nonlocal effect for the transverse shear stresses. The nonlinear nonlocal CPT and FSDT

models were developed by Reddy [165] for the nonlinear bending analysis of isotropic nanoplates

based on von Karman nonlinearity. The variational statement of these models was also presented for

the development of finite element solutions.

The nonlocal FSDT models were also proposed for nanoplates made of FG and orthotropic materi

als. For example, Hosseini-Hashemi et al. [166] developed a nonlocal FSDT for FG circular nanopla

tes. Closed-form solutions for natural frequencies of circular nanoplates under various BCs were also
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obtained. Anjomshoa and Tahani [167] developed a nonlocal FSDT model for the free vibration an

alysis of orthotropic circular and elliptical SLGSs embedded in an elastic foundation. Golmakani and

Rezatalab [168] presented a nonlinear nonlocal FSDT model for the nonlinear bending analysis of

orthotropic embedded SLGSs using von Karman nonlinear strains. Recently, Dastjerdi et al. [169] an

d Dastjerdi and Jabbarzadeh [170] presented a nonlinear nonlocal FSDT model for the geometric no

nlinear analysis of annular/circular orthotropic embedded SLGSs [169] and MLGSs [170] in which t

he effect of elevated temperature was considered.

2.3.3. Nonlocal models based on the TSDT

The nonlocal TSDT model was first presented by Aghababaei and Reddy [171] for isotropic nano

plates by reformulating the TSDT of Reddy [42] using the nonlocal constitutive relations of Eringen.

Closed-form solutions for deflections and natural frequencies were also presented for simply suppor

ted nanoplates. This model was employed by Pradhan [172] and Pradhan and Sahu [173] to study t

he nonlocal effect on buckling loads [172] and natural frequencies [173] of simply supported SLGSs.

The buckling of SLGSs was also examined by Ansari and Sahmani [174] using a unified nonlocal

model representing three different theories of the CPT, FSDT and TSDT. Hosseini-Hashemi et al.

[175] derived Levy solutions for critical buckling loads and natural frequencies of isotropic nanoplat

es. Daneshmehr et al. [176-177] extended the application of the nonlocal TSDT to the buckling [17

6] and free vibration analysis [177] of FG nanoplates.

2.3.4. Nonlocal models based on HSDTs

Narendar [178] proposed a nonlocal HSDT model for the buckling analysis of isotropic nanoplates

based on the refined plate theory of Shimpi [109]. This model was extended by Malekzadeh and S

hojaee [179] and Narendar and Gopalakrishnan [180] to the free vibration analysis of nanoplates [17

9] and buckling analysis of orthotropic nanoplates [180]. This model was also employed by Sobhy

[181] to examine the free vibration of orthotropic DLGSs under hydrothermal conditions. Sobhy [18

2] presented a general HSDT model for MLGSs based on the simple HSDTs of Thai and Choi [12

1] (see Table 1). Analytical solutions for natural frequencies, buckling loads and buckling temperatur

es were also obtained for MLGSs under various BCs. Levy solutions of the nonlocal HSDT model

of Narendar [178] were derived by Sobhy [183-184] for the bending analysis of isotropic SLGSs in

thermal environment [183] and orthotropic nanoplates in a hygrothermal environment [184]. Zenkou

r and Sobhy [185], Alzahrani et al. [186], Thai et al. [187] and Sobhy [188-189] developed nonloca

l sinusoidal models for thermal buckling of embedded nanoplates [185], hydro-thermal-mechanical be

nding of nanoplates [186], isotropic nanoplates [187], embedded SLGSs [188] and orthotropic embed
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ded nanoplates [189] based on the sinusoidal theory of Touratier [113]. It is noted that the nonlocal

sinusoidal model developed by Sobhy [190] for FG embedded nanoplates was based on the simple

sinusoidal theory of Thai and Vo [191], and thus it is simpler than the nonlocal sinusoidal models

proposed in [185-189]. Belkorissat et al. [192] also developed a simple nonlocal HSDT model for

FG nanoplates which is similar to the work of Sobhy [190], but it was based on the hyperbolic fun

ction of Soldatos [193]. Khorshidi and Fallah [194] reformulated the exponential theory of Karama

et al. [107] for FG nanoplates. Bessaim et al. [195] developed a nonlocal quasi-3D model for the fr

ee vibration analysis of isotropic nanoplates based on the quasi-3D sinusoidal theory of Thai and Ki

m [115] which involves five unknowns as shown in Table 2. Recently, Sobhy and Radwan [196] al

so developed a nonlocal quasi-3D theory for the free vibration and buckling of FG nanoplates. The

theory has five unknowns and is similar with the one proposed in [195], but it is based on a new

hyperbolic function as shown in Table 2.

3. Modified couple stress theory

3.1. Review of the modified couple stress theory

The modified couple stress theory was proposed by Yang et al. [12] by modifying the classical c

ouple stress theory of Toupin [9], Mindlin and Tiersten [10] and Koiter [11]. By introducing an add

itional equilibrium condition of moments of couples to enforce the couple stress tensor to be symm

etric, the number of additional material length scale parameters in the modified couple stress theory

is reduced from two to one. This makes the modified couple stress theory more advantageous beca

use the determination of the material parameters is a challenging task. The strain energy U is a fun

ction of both strain and curvature as [12]
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2 ij ij ij ijV
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where ijm are the components of the deviatoric part of the symmetric couple stress tensor; and ij
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where the rotation vector  is defined in terms of the displacement field ( , ,x y zu u u ) as
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For a linear elastic material, ijm are given as

2

1ij ij
Em 




 (9)

where  is the material length scale parameter. The evaluation and calibration of  can be found i

n Refs. [197-198].

3.2. Beam models

3.2.1. Modified couple stress models based on the EBT

The earliest modified couple stress EBT model was developed by Park and Gao [199] for isotropi

c microbeams. They utilized their model to investigate the effect of the material length scale parame

ter on the deflection and bending rigidity of a cantilever epoxy beam subjected to a concentrated lo

ad at the free end. It was found that the inclusion of the material length scale parameter leads to a

n increase in the bending rigidity of the cantilever microbeam. This effect becomes significant when

the beam thickness is small, but it is negligible with the increase of the beam thickness. This obse

rvation agrees well with the experimental data. The modified couple stress EBT model was extended

by Kong et al. [200-201] to the free vibration [200] and buckling [201] problems of isotropic micr

obeams.

The nonlinear modified couple stress EBT model was first developed by Xia et al. [202] for the

nonlinear bending, post-buckling and nonlinear free vibration analyses of isotropic microbeams based

on von Karman nonlinearity. The results indicated the importance of considering nonlinearity and si

ze effects in the proper design of microscale devices and systems such as biosensors, atomic force

microscopes and MEMS [202]. Simsek [203] also developed a nonlinear EBT model for the nonline



16

ar bending and vibration analyses of isotropic microbeams accounting for the interaction between the

beam and an elastic medium. The nonlinear EBT model was widely used to study the size effect

on the nonlinear bending [204], nonlinear vibration [205-209] and post-buckling [208-209] responses

of isotropic microbeams. It is worth noting that Farokhi et al. [206] considered initial geometric i

mperfections in the nonlinear forced vibration of beams, whilst Togun and Bagdatli [207] included t

he axial pretension in the nonlinear free vibration of microbeams. Meanwhile, Wang et al. [204, 208]

accounted for thermal effect in the nonlinear bending [204], post-buckling and free vibration [208]

of beams. Ansari et al. [209] derived closed-form solutions for the vibration and post-buckling analy

ses of microbeams under various BCs.

The EBT model was also applied to the FG microbeams. For example, it was employed by Asgh

ari et al. [210] to predict the bending and free vibration behaviours of FG microbeams. Free vibrati

on of FG tapered microbeams with material properties varying in the longitudinal direction was exa

mined by Akgoz and Civalek [211] and Shafiei et al. [212]. It should be noted that Akgoz and Civ

alek [211] only considered cantilever beams, whilst Shafiei et al. [212] included the geometric nonli

nearity in beams with different BCs. Simsek [213] also examined the nonlinear free vibration of axi

ally FG microbeams. However, he used the Galerkin and He's variational method to obtain approxi

mate solutions for the beams with simply supported and clamped BCs. Dehrouyeh-Semnani et al. [2

14] included initial geometric imperfections on the free vibration analysis of FG microbeams.

3.2.2. Modified couple stress models based on the TBT

Ma et al. [215] first developed the modified couple stress TBT model by extending the EBT mod

el of Park and Gao [199] to account for the shear deformation effect. The model was employed to

investigate the effects of the material length scale parameter and shear deformation on deflections an

d natural frequencies of simply supported isotropic microbeams. Closed-form solutions of the TBT

model were derived by Asghari et al. [216] for bending response of the beams under various BCs,

whilst approximate solutions of the TBT model were derived by Dos Santos and Reddy [217] for b

uckling loads and natural frequencies of the beams with various BCs using the Ritz method. Dehrou

yeh-Semnani and Nikkhah-Bahrami [218] used both EBT and TBT models to examine the Poisson e

ffect in isotropic microbeams. By comparing the bending rigidities and deflections of epoxy cantilev

er microbeams under concentrated loads predicted by the modified couple stress models and experim

ental tests, it was found that the inclusion of the Poisson effect in the modified couple stress model

s leads to underestimating the deflection of the epoxy cantilever microbeam as shown in Fig. 5. Liu

and Reddy [219] developed a modified couple stress TBT model for isotropic curved microbeams,
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and applied it to bending and free vibration problems of simply supported curved beams. Taati et al.

[220] also developed a TBT model to investigate thermal effects in isotropic microbeams. Asghari

et al. [221] presented a nonlinear TBT model for the bending and free vibration analyses of isotropi

c microbeams. Ghayesh et al. [222-223] also presented a nonlinear TBT model for nonlinear resona

nt problems of isotropic microbeams.

The TBT model was also applied to microbeams made of FG and laminated composite materials.

Reddy [224] developed both EBT and TBT models for FG microbeams considering geometric nonli

nearity. Closed-form expressions for deflections, buckling loads and natural frequencies of simply su

pported microbeams were also given. Ke et al. [225] developed a nonlinear TBT model to examine

the size effect on nonlinear vibration characteristics of FG microbeams. Asghari et al. [226] develo

ped a TBT model to investigate the size effect on the deflections and rotations of cantilever FG be

ams as well as on the natural frequencies of simply supported FG beams. However, the geometric n

onlinearity was ignored in their model. Ke and Wang [227] utilized the TBT model to study the fre

e vibration, static buckling and dynamic stability behaviours of FG microbeams under different BCs

using the DQ method. The buckling and free vibration responses of FG microbeams at elevated te

mperature were investigated by Nateghi and Salamat-talab [228] using the modified couple stress TB

T model. The DQ method was employed to obtain critical buckling loads and natural frequencies of

FG microbeams with various BCs. Numerical results indicated that the effect of temperature becom

es more significant at higher values of the ratio of the beam thickness to material length scale para

meter. Simsek et al. [229] adopted the TBT model to investigate the size effect on deflections of si

mply supported FG microbeams subjected to uniform and concentrated loads. The application of the

TBT model was extended by Chen et al. [230], Chen and Li [231], Roque et al. [232] and Moha

mmad-Abadi and Daneshmehr [233] to the static bending [230, 232], free vibration [231] and buckli

ng [233] of laminated composite microbeams. Thai et al. [234] also extended the application of the

TBT model to static bending, buckling and free vibration problems of FG sandwich microbeams. Re

cently, Krysko et al. [235] developed a TBT model for the static bending and free vibration analyse

s of three layer microbeams based on Grigolyuk-Chulkov theory.

3.2.3. Modified couple stress models based on the RBT

The modified couple stress RBT model was first proposed by Ma et al. [236] for isotropic micro

beams. It was used to examine the size effect on the static bending and free vibration responses of

simply supported microbeams. The application of the RBT model was extended by Mohammad-Aba

di and Daneshmehr [237] to investigate the size effect on buckling behaviour of isotropic microbea
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ms. Both EBT and TBT models were also included in their works. Analytical solutions for simply s

upported beams were also provided for a comparison purpose.

Salamat-talab et al. [238] extended the application of the RBT model to FG microbeams, and deri

ved closed-form solutions for deflections and natural frequencies of simply supported microbeams. N

ateghi et al. [239] and Aghazadeh et al. [240] presented a unified model for buckling [239], bendin

g and free vibration [240] of FG microbeams. The unified model covers three different beam theori

es of the EBT, FBT and TBT. The DQ solution method is used to solve for the buckling loads, de

flections and natural frequencies of FG microbeams under different BCs. Chen et al. [241] develope

d a RBT model for laminated composite microbeams based on a new constitutive relation for anisot

ropic materials. The model was used to examine the size effect on deflections of cross-ply simply s

upported microbeams under uniform loads. Mohammad-Abadi and Daneshmehr [242] and Mohamma

d-Abadi et al. [243] extended their isotropic model in [237] to study the free vibration [242] and th

ermal buckling [243] of laminated composite microbeams under various BCs.

3.2.4. Modified couple stress models based on HSDTs

Darijani and Mohammadabadi [244] proposed a modified couple stress HSDT model for isotropic

microbeams by separating the axial and transverse displacements into the shear and bending parts. T

he shape function of the shear part as shown in Table 1 was determined based on the condition tha

t both transverse shear stress and couple stress vanish on the top and bottom surfaces of the cross-s

ection. Recently, Noori et al. [245] presented a HSDT model for free vibration of isotropic microbe

ams based on a fifth-order variation of the axial displacement across the thickness. The DQ solution

method was employed to solve for natural frequencies of microbeams under various BCs. Simsek a

nd Reddy [246] developed a unified HSDT model for FG microbeams covering seven different bea

m theories including EBT, TBT, RBT, sinusoidal theory of Touratier [113], hyperbolic theory of Sol

datos [193], exponential theory of Karama et al. [107] and general exponential theory of Aydogdu

[106]. The model was applied to the bending and free vibration problems of simply supported FG

microbeams. The model was also extended by Simsek and Reddy [247] and Akbarzadeh Khorshidi e

t al. [248] to buckling problems of FG embedded microbeams [247] and post-buckling problems of

FG microbeams with general BCs [248]. Trinh et al. [249] also presented a unified modified couple

stress model for FG microbeams composed of both HSDT and quasi-3D theories of beams. The di

splacement field of their model was based on that proposed by Thai et al. [250] in which the trans

verse displacements are partitioned into bending, shear and thickness stretching components as show

n in Table 2.
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Based on the sinusoidal theory of Touratier [113], Akgoz and Civalek [251] developed a modified

couple stress sinusoidal model to investigate thermal-mechanical buckling characteristics of simply s

upported FG embedded microbeams. The results indicated that the effect of elevated temperature on

buckling loads of FG microbeams becomes significant when the ratio of the thickness to material le

ngth scale parameter increases [251]. Al-Basyouni et al. [252] also presented a modified couple stres

s sinusoidal model for FG microbeams. However, it was based on the simple sinusoidal theory prop

osed by Thai and Vo [191], and included the physical neutral surface of FG microbeams.

3.3. Plate models

3.3.1. Modified couple stress models based on the CPT

The modified couple stress CPT model was first proposed by Tsiatas [253] for the bending analys

is of isotropic microplates with arbitrary shape. This model was extended by Yin [254] and Jomehz

adeh et al. [255] for the free vibration analysis of simply support microplates [254] and Levy-type

microplates [255]. Akgoz and Civalek [256] proposed a modified couple stress theory CPT model to

investigate the size effect on the free vibration of simply supported SLGSs embedded in an elastic

matrix. It was found that the size effect becomes remarkable for higher modes of vibration. Akgoz

and Civalek [257] also included the elastic medium in CPT model for the static bending, buckling

and free vibration analysis of isotropic microplates. Askari and Tahani [258] derived closed-form so

lutions for natural frequencies of clamped CPT microplates using extended Kantorovich method. Sim

sek et al. [259] adopted the CPT model to examine the size effect on the forced vibration of isotro

pic microplates under a moving load. The dynamic responses of microplates under various BCs wer

e obtained using the implicit time integration method of Newmark. Zhou et al. [260] developed a

modified couple stress shell model for the free vibration analysis of isotropic microshells based on t

he classical shell theory. It was found that the size effect becomes remarkable when the characteristi

c radius size is comparable to the material length scale parameter [260].

Asghari [261] proposed a nonlinear modified couple stress CPT model for the geometrically nonli

near analysis of microplates with arbitrary shapes. Wang et al. [262-263] developed a nonlinear mod

ified couple stress CPT model to investigate the size effect on the nonlinear free vibration [262] an

d nonlinear bending responses [263] of circular microplates. Farokhi and Ghayesh [264] also develo

ped a nonlinear modified couple stress CPT model for the nonlinear dynamic analysis of isotropic

microplates including initial geometric imperfections.

In addition to the application to isotropic microplates, the modified couple stress CPT model was

also applied to FG microplates. Ke et al. [265] studied the size effect on deflections, critical buckl
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ing loads and natural frequencies of FG annular microplates under different BCs. Asghari and Taati

[266] investigated free vibration of FG microplates with arbitrary shapes. Ashoori and Sadough Vani

ni [267] presented a modified couple stress CPT model for the buckling analysis of FG microplates

which included thermal effects and the interaction between the plate and an elastic medium. Recent

ly, Ashoori and Sadough Vanini [268] extended their work [267] to account for geometric nonlineari

ty on thermal buckling of circular FG microplates. Taati [269] derived analytical solutions of the no

nlinear modified couple stress CPT model for buckling and post-buckling loads of FG microplates w

ith various BCs subjected to in-plane shear, biaxial compression and uniformly transverse loads. Bas

ed on the classical shell theory, Beni et al. [270] developed a modified couple stress shell model to

investigate the size effect on natural frequencies of simply supported FG cylindrical microshells. Ts

iatas and Yiotis [271] developed a modified couple stress CPT model to investigate the size effect o

n the static bending, buckling and free vibration responses of skew microplates. By comparing with

the nonlocal CPT mode, it was found that the effect of the material length scale parameter on criti

cal buckling loads and natural frequencies is in contradiction with that of the nonlocal parameter of

the nonlocal model.

3.3.2. Modified couple stress models based on the FSDT

One of the earliest modified couple stress FSDT models was developed by Ma et al. [272] and

Ke et al. [273] for isotropic microplates. It is worth noting that the FSDT model of Ma et al. [272]

considering both stretching and bending deformations, whilst Ke et al. [273] considered only bendi

ng deformation in their model. In addition, Ma et al. [272] derived closed-form solutions for bendin

g and free vibration problems of simply supported plates, whilst Ke et al. [273] derived numerical s

olutions for natural frequencies of plates with simply supported and clamped BCs using the p-versio

n Ritz method. Roque et al. [274] presented numerical solutions of the modified couple stress FSDT

model for the static bending analysis of isotropic microplates using the meshless collocation metho

d with radial basis functions. Zhou and Gao [275] developed a modified couple stress FSDT model

for the axisymmetric bending analysis of isotropic circular microplates. Recently, Alinaghizadeh et a

l. [276] developed a modified couple stress FSDT model for static bending analysis of FG annular

sector microplates. The DQ solution method was used to solve for deflection of microplates under v

arious BCs. He et al. [277] extended the FSDT model to the static bending analysis of laminated c

omposite skew microplates, whilst Simsek and Aydın [278] extended the FSDT model to the static

bending and forced vibration analysis of FG microplates under a moving load.

Reddy and Berry [279] extended the axisymmetric FSDT model of Zhou and Gao [275] to accou
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nt for the influences of geometric nonlinearity, elevated temperature and non-homogeneous behaviour

of FG materials on the axisymmetric nonlinear bending analysis of circular microplates. Ke et al.

[280-281] also developed an axisymmetric FSDT model for the nonlinear free vibration [280] and p

ost-buckling analysis [281] of FG annular microplates. Thai and Choi [282] proposed nonlinear CPT

and FSDT models for FG microplates. Analytical expressions for linear and nonlinear deflections, b

uckling loads and natural frequencies of simply supported microplates were derived to explore the si

ze effect on the bending, buckling and vibration responses of FG microplates. Jung et al. [283-284]

included the interaction between the plate and an elastic medium in the FSDT model in investigati

ng the size effect on the bending, vibration [283] and buckling responses [284] of simply supported

FG microplates. The nonlinear FSDT models were also developed by Ansari et al. [285-286] for th

e nonlinear vibration [285], nonlinear bending and post-buckling analysis [286] of FG microplates. It

is noted that the nonlinear FSDT model developed in [286] considered the physical neutral surface

of FG plates and thus the stretching-bending coupling was eliminated. Ansari et al. [287] adopted t

he nonlinear FSDT model to investigate the size effect on the post-buckling path and frequency of

FG microplates. Lou and He [288] also presented nonlinear CPT and FSDT models for the nonlinea

r bending and free vibration analysis of FG microplates. The interaction between the plate and an e

lastic medium, and the physical neutral surface of FG plates were taken into account in their model

s.

Based on the FSDT, Zeighampour and Beni [289] and Hosseini-Hashemi et al. [290] presented sh

ell models for the free vibration analysis of isotropic cylindrical microshells [289] and spherical mic

roshells [290]. Gholami et al. [291] also developed a FSDT shell model, but it was applied to the

axial buckling and dynamic stability of FG microshells. Tadi Beni et al. [292] presented a FSDT sh

ell model for FG cylindrical microshells, and applied to the free vibration problems. Lou et al. [293]

developed a nonlinear FSDT shell model to examine the influence of the pre-buckling deformation

and material length scale parameter on critical buckling loads of FG cylindrical microshells. The ph

ysical neutral surface of FG shells was considered in their model. It should be noted that the work

in [293] is more advanced than that by Gholami et al. [291] since the von Karman nonlinearity an

d the pre-buckling deformation were taken into consideration.

3.3.3. Modified couple stress models based on the TSDT

The modified couple stress TSDT model was first developed by Gao et al. [294] for isotropic pla

tes. The model was employed to examine the size effect on deflections and natural frequencies of si

mply supported microplates. This model was extended by Thai and Kim [295] and Chen et al. [296]
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to microplates made of FG [295] and laminated composite materials [296]. Jung and Han [297] als

o presented a TSDT model for FG microplates, but they used a different law to compute the equiv

alent mechanical properties of FG microplates. Eshraghi et al. [298] developed a TSDT model for F

G microplates with annular and circular shapes. The displacement field was expressed in a unified f

orm representing three different plate theories of CPT, FSDT and TSDT. The DQ solution method

was employed to solve for static bending and free vibration problems. Eshraghi et al. [299] recently

extended their previous work [298] to include thermal effects. The nonlinear TSDT model was dev

eloped by Ghayesh and Farokhi [300] to examine nonlinear vibration characteristics of isotropic mic

roplates. Based on the TSDT, Sahmani et al. [301] developed a modified couple stress shell model

for the dynamic instability analysis of FG cylindrical microshells. Closed-form solutions were also o

btained for simply supported cylindrical microshells.

3.3.4. Modified couple stress models based on HSDTs

Thai and Vo [302] proposed a modified couple stress HSDT model for FG microplates. The displ

acement field of the model was based on the sinusoidal theory of Touratier [113]. Closed-form solut

ions for deflections and natural frequencies were also derived for simply supported microplates. Dari

jani and Shahdadi [303] proposed a simple HSDT model for isotropic microplates by partitioning th

e displacements into the shear and bending components as shown in Table 1. The shape function of

the shear component of the in-plane displacements was obtained based on the zero traction BCs of

both transverse shear and couple stresses. He et al. [304] reformulated the refined plate theory of

Shimpi [109] to account for size effects in FG microplates using the modified couple stress theory.

The work carried out by Lou et al. [305] is similar to that conducted by He et al. [304]. However,

Lou et al. [305] employed various shape functions of Thai and Choi [121]. Lou et al. [306] recent

ly extended the work by He et al. [304] to include geometric nonlinearity and the interaction betwe

en the plate and an elastic medium. Recently, Trinh et al. [307] also presented a unified modified c

ouple stress model for the buckling analysis FG microplates under mechanical and thermal loads bas

ed on a quasi-3D theory. The displacement field of their model was based on that proposed by Tha

i and Kim [115] in which the transverse displacements are partitioned into bending, shear and thick

ness stretching components as shown in Table 2.

Reddy and Kim [308] developed a nonlinear quasi-3D model for FG microplates accounting for t

hermal effects. It was based on the von Karman nonlinearity and a general quasi-3D theory which

accounts for cubic and quadratic variations of the in-plane and transverse displacements across the t

hickness. The displacement field of the general quasi-3D theory shown in Table 2 contains 11 unkn
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owns. The CPT, FSDT and TSDT can be obtained from this general theory as special cases. Closed

-form solutions of this model were derived by Kim and Reddy [309] for simply supported plates. L

ei et al. [310] proposed a simple quasi-3D theory for the static bending and free vibration analysis

of FG microplates which involves only five unknowns. The displacement field of the model has the

same form of the model proposed by Thai and Kim [115] and Thai et al. [250]. However, Lei et

al. [310] utilized a cubic shape function as shown in Table 2.

4. Modified strain gradient theory

4.1. Review of the modified strain gradient theory

In this theory [15], the strain energy contains two additional gradient parts of the dilatation gradie

nt  and the deviatoric stretch gradient  in addition to the symmetric curvature ij . Therefore, t

he strain energy is written as [15]
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2 ij ij i i ijk ijk ij ijV
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where the symmetric curvature tensor ij is defined in Eq. (6). The dilatation gradient vector i an

d the deviatoric stretch gradient tensor ijk are respectively defined in Eqs. (10) and (11) as
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For a linear elastic material, the higher-order stresses  , ,i ijk ijp m are given as
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where 0 , 1 and 2 are the material length scale parameters associated with dilatation gradient, d

eviatoric stretch gradient and symmetric curvature gradient, respectively.

4.2. Beam models

4.2.1. Strain gradient models based on the EBT

One of the earliest strain gradient EBT models was proposed by Kong et al. [311] to investigate

the size effect on deflections and natural frequencies of isotropic cantilever microbeams. The accurac

y of the strain gradient theory was also compared with that of the modified couple stress theory an

d classical theory as shown in Fig. 6. Comparison results indicated that the strain gradient model pr

edicts the size effect better than the modified couple stress model since it considers additional dilata

tion gradient tensor and deviatoric stretch gradient tensor in addition to rotation gradient tensor. Akg

oz and Civalek [312] extended the strain gradient EBT model to the buckling analysis of isotropic

microbeams with cantilever and simply supported BCs. Akgoz and Civalek [313-316] also employed

the strain gradient EBT model to study the size effects on the buckling of SWCNTs [313], static

bending of SWCNTs [314], buckling of linearly tapered microbeams [315] and longitudinal vibration

of microbeams [316].
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Zhao et al. [317] developed a nonlinear strain gradient EBT model for the nonlinear bending, pos

t-buckling and nonlinear free vibration analysis of isotropic microbeams. They highlighted the import

ance of including geometric nonlinearity and size effects in the proper design of microbeams. Rajabi

and Ramezani [318] also developed a nonlinear strain gradient EBT model for isotropic microbeam

s, but applied it to static bending and free vibration problems. The nonlinear strain gradient EBT m

odel was extended by Mohammadi and Mahzoon [319] to include temperature effects on the post-bu

ckling of isotropic microbeams. Analytical solutions were also obtained for microbeams with various

BCs. Vatankhah et al. [320] utilized the nonlinear strain gradient EBT model to examine the nonli

near forced vibration of isotropic microbeams.

Kahrobaiyan et al. [321] extended the application of the strain gradient EBT model to the bendin

g and free vibration analysis of FG microbeams. The extension of this model to buckling problems

FG microbeams was carried out by Akgoz and Civalek [322]. Closed-form solutions for critical buc

kling loads were also obtained for FG microbeams under various BCs. Akgoz and Civalek [323] ad

opted the strain gradient EBT model to examine the longitudinal free vibration of FG microbeams.

Rayleigh-Ritz solution technique was used to solve for natural frequencies of FG microbeams with c

lamped-clamped and clamped-free BCs. Rahaeifard et al. [324] developed a nonlinear strain gradient

EBT model to study the influences of geometric nonlinearity and material length scale parameters

on deflections and natural frequencies of FG simply supported microbeams.

4.2.2. Strain gradient models based on the TBT

Wang et al. [325] first presented a strain gradient TBT model for the static bending and free vibr

ation analyses of isotropic simply supported microbeams. The nonlinear strain gradient TBT models

were developed by Ansari et al. [326] and Asghari et al. [327] for isotropic microbeams using von

Karman nonlinearity. It is worth noting that Ansari et al. [326] applied their model for nonlinear fre

e vibration problems, whilst Asghari et al. [327] considered both nonlinear bending and nonlinear fr

ee vibration problems in their model.

Ansari et al. [328] extended the strain gradient TBT model to FG microbeams. Closed-form soluti

ons for natural frequencies of simply supported microbeams were derived to investigate the effects o

f material gradient index and small-scale on the free vibration response of FG beams. Ansari et al.

[329] also extended their work [328] to free vibration of curved FG microbeams. Ansari et al. [330]

developed a strain gradient TBT model for thermal buckling of FG microbeams with various BCs.

Recently, Ansari et al. [331] extended the strain gradient TBT model to study linear and nonlinear

vibrations of fractional viscoelastic beams. It should be noted that Gholami et al. [332] did develo
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p a strain gradient TBT model to examine the nonlinear pull-in stability and vibration of FG mircos

witches, but it was based on the most general form of the strain gradient theory of Mindlin [14] w

hich is not covered in this review. The effect of temperature distributions on buckling characteristics

of FG microbeams was also investigated. Xie et al. [333] employed the indirect radial basis functi

on collocation approach to solve the EBT and TBT models for deflections, buckling loads and natur

al frequencies of FG microbeams under various BCs. It is noted that in the previous works dealing

with FG microbeams, the material length scale parameters were assumed to be constant across the

thickness. Therefore, Tajalli et al. [334] improved the previous strain gradient TBT model by accoun

ting for the variation of the material length scale parameter across the beam thickness. Case studies

on static bending and free vibration problems confirmed that the aforementioned assumption of con

stant material length scale parameters seems to be inaccurate [334].

The nonlinear strain gradient TBT model was developed by Ansari et al. [335] to investigate the

influences of material length scale parameters and initial geometric imperfections on the post-bucklin

g response of FG microbeams. Approximate solutions for buckling loads of FG microbeams under v

arious BCs were also presented using the DQ method. Ansari et al. [336] extended their previous w

ork [335] to account for thermal effects.

4.2.3. Strain gradient models based on the RBT and HSDTs

Based on the strain gradient theory of Lam et al. [15], Wang et al. [337] reformulated the RBT

model to account for the size effect on the static bending and free vibration responses of isotropic

microbeams. Sahmani and Ansari [338] improved the strain gradient RBT model to include thermal

effects and non-homogeneous behaviour of FG materials on the buckling of FG microbeams. The str

ain gradient RBT model was employed by Ansari et al. [339] to explore the size effect on the free

vibration of simply supported FG microbeams. Zhang et al. [340] developed a RBT model for FG

embedded microbeams based on the improved RBT of Shi [341]. Sahmani et al. [342] developed a

nonlinear strain gradient RBT model for nonlinear free vibration of FG microbeams.

In addition to the RBT model, the HSDT models were also proposed for strain gradient microbea

ms based on various HSDTs of beams such as sinusoidal theory of Touratier [113], hyperbolic theor

y of Soldatos [193] and n-th order shear deformation theory of Xiang et al. [343] (see Table 1 for

the displacement field of these theories). For example, Akgoz and Civalek [344] and Lei et al. [345]

proposed strain gradient sinusoidal models for the bending and free vibration analyses of the micro

beams made of isotropic materials [344] and FG materials [345] based on the sinusoidal theory of

Touratier [113]. Akgoz and Civalek [346] extended their previous work [344] to buckling problems
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of isotropic microbeams. Akgoz and Civalek [347] also developed a strain gradient sinusoidal model

for FG microbeams as in the work of Lei et al. [345]. They also proposed a new equation for cal

culating the shear correction factor of the TBT model. In their equation, the shear correction factor

is a function of the material length scale parameters. Akgoz and Civalek [348] extended their previo

us work [347] to account for the interaction between the FG microbeam and an elastic medium. Ba

sed on the hyperbolic theory of Soldatos [193], Akgoz and Civalek [349] proposed a strain gradient

hyperbolic model for the bending and buckling analyses of isotropic embedded microbeams. Akgoz

and Civalek [350] presented a unified HSDT model for the bending analysis of simply supported e

mbedded CNTs. The displacement field of the model was based on Simsek and Reddy [246] which

covers seven beam theories including the EBT, TBT, RBT, sinusoidal theory of Touratier [113], hy

perbolic theory of Soldatos [193], exponential theory of Karama et al. [107] and general exponential

theory of Aydogdu [106]. Zhang et al. [351] proposed a HSDT model for the bending and free vi

bration analyses of FG curved microbeams based on the nth-order shear deformation theory of Xian

g et al. [343].

4.3. Plate models

4.3.1. Strain gradient models based on the CPT

The earliest strain gradient CPT model was developed by Wang et al. [352] for predicting size-de

pendent responses of isotropic microplates. A comparison between the strain gradient model and mo

dified couple stress model as shown in Fig. 7 indicated that the first one captures the size effect be

tter than the second one does [352]. Bending solutions of the strain gradient CPT model was solved

by Ashoori Movassagh and Mahmoodi [353] for microplates under various BCs using the extended

Kantorovich method, whilst buckling solutions were analytically derived by Mohammadi and Foolad

i Mahani [354] for Levy-type microplates. Mohammadi et al. [355] improved their previous work [3

54] using exact BCs of microplates. Wang et al. [356] derived the strain gradient CPT model for th

e bending analysis of microplates with various BCs. Zeighampour and Tadi Beni [357], Allahbakhshi

and Allahbakhshi [358], Li et al. [359], Hosseini et al. [360] and Zhang et al. [361] extended the

strain gradient CPT model to SWCNTs [357], MLGSs [358], two-layered isotropic microplates [359],

multi-layered orthotropic microplates [360] and isotropic embedded microplates [361].

4.3.2. Strain gradient models based on the FSDT

One of the earliest strain gradient FSDT models was proposed by Sahmani and Ansari [362] and

Ansari et al. [363] for the free vibration and thermal buckling of FG microplates. Sahmani and Ans

ari [362] only dealt with simply supported plates, whilst Ansari et al. [363] dealt with microplates u
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nder various BCs using the DQ method. Ansari et al. [364] developed a nonlinear strain gradient F

SDT model to examine the post-buckling of FG annular microplates under thermal loading. Ansari e

t al. [365] extended their previous work [363] to study the effect of elevated temperature on the be

nding, buckling and free vibration responses of FG microplates under various BCs. It is noted that

Shenas and Malekzadeh [366] also studied the influence of elevated temperature on the free vibratio

n of FG microplates under various BCs. However, they employed the Chebyshev-Ritz method instea

d of the DQ approach as in the work of Ansari et al. [365]. Ansari et al. [367] developed a FSDT

model for FG circular/annular microplates under various BCs using the DQ method.

Gholami et al. [368] developed a strain gradient FSDT shell model for FG cylindrical microshells.

Closed-form solutions were presented for the critical buckling load of simply supported FG cylindri

cal microshells under axial compression. Zhang et al. [369] also developed a strain gradient FSDT s

hell model for FG cylindrical microshells, but it was based on the four unknown FSDT proposed b

y Thai and Choi [370-372]. Therefore, their model was simpler than the one proposed by Gholami

et al. [368] which involves with five unknowns.

4.3.3. Strain gradient models based on the TSDT and HSDTs

Sahmani and Ansari [362] developed a strain gradient TSDT model for the free vibration analysis

of FG microplates. Closed-form solutions for natural frequencies were also presented for simply su

pported plates. Zhang et al. [373] developed a simple TSDT model for circular/annular FG micropla

tes based on the simple TSDT proposed by Thai and Kim [374] which involves only four unknown

s. The DQ solution method was used to solve for deflections, buckling loads and natural frequencie

s of circular/annular FG microplates with various BCs. Zhang et al. [375] developed a simple strain

gradient HSDT model for FG microplates based on the simple HSDT proposed by Thai and Choi

[376-379] which has only four unknowns. However, they included the interaction between the plate

and elastic medium. Akgoz and Civalek [380] developed a strain gradient sinusoidal model for the

bending, buckling and free vibration analysis of isotropic microplates based on the sinusoidal theory

of Touratier [113].

5. Finite element models

5.1. Beam elements

5.1.1. Nonlocal elasticity elements

Based on a nonlocal EBT model, Eltaher and his colleagues [381-385] have developed nonlocal e

lements for nanobeams made of FG materials [381-383] and isotropic materials [384-385]. The EBT

element has two nodes with six degrees of freedom (4-DOF) in which the axial and transverse dis
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placements are respectively approximated using Lagrange and Hermite cubic interpolation functions. I

t is noted that Eltaher et al. [381] dealt with free vibration problems of FG nanobeams, whilst Elta

her et al. [382] dealt with bending and buckling problems of FG nanobeams. Eltaher et al. [383] al

so dealt with free vibration characteristics of FG nanobeams, but the physical neutral surface of FG

beams was taken into account in their model. Eltaher et al. [384] examined the free vibration char

acteristics of isotropic nanobeams, whilst Alshorbagy et al. [385] studied the static bending of isotro

pic nanobeams. Marotti De Sciarra [386] presented a nonlocal element for the static bending analysi

s of isotropic nanobeams based on the nonlocal EBT model. The element has two nodes with 6-DO

F and is based on higher-order interpolation functions. Therefore, it can accurately predict the bendi

ng behaviour of nanobeams with a coarse mesh. A case study on a cantilever nanobeam under a co

ncentrated load indicated that the nonlocal effect does exist at both left and right sides of the conce

ntrated load. This observation is contrary to that observed from existing finite element and analytical

models indicated that the nonlocal effect only exists from the location of the point load to the free

end. Nguyen et al. [387] developed a nonlocal mixed element for the static bending analysis of is

otropic nanobeams. The element with two nodes is C0 continuity and is based on Lagrange interpol

ation functions for both deflection and bending moment. The mixed element is also capable of capt

uring the nonlocal effect at both sides of the concentrated load applied on a cantilever beam.

In addition to the nonlocal EBT elements reported in the above-mentioned studies, nonlocal TBT

elements were also developed to capture the shear deformation effect in thick nanobeams. Reddy an

d El-Borgi [388] presented a complete theoretical development and finite element formulation of bot

h nonlocal EBT and TBT models for the nonlinear bending analysis of isotropic nanobeams. Their

models were based on the modified von Karman nonlinear theory which accounts for the nonlinear

terms due to the transverse normal strain. The nonlinear EBT element used Lagrange and Hermite c

ubic interpolation functions to respectively approximate the axial and transverse displacements, whilst

the nonlinear TBT element employed Lagrange interpolation functions for both axial and transverse

displacements and rotation. Reddy et al. [389] extended their previous work in [388] to FG nanobe

ams. Eltaher et al. [390] developed a nonlocal TBT element for the static bending and buckling ana

lysis of FG nanobeams. The element which accounts for the effect of the physical neutral surface h

as three nodes and is based on quadratic Lagrange interpolation functions.

5.1.2. Modified couple stress elements

Based on the modified couple stress theory and the von Karman nonlinear strains, Arbind and Re

ddy [391] and Arbind et al. [392] developed two-node EBT and TBT elements [391] and RBT ele
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ment [392] for the nonlinear bending analysis of FG microbeams. The element has 3-DOF at each

node. In the nonlinear EBT element, the axial and transverse displacements were approximated using

Lagrange and Hermite cubic interpolation functions, respectively. Meanwhile, the nonlinear TBT and

RBT elements employed Lagrange interpolation functions for both axial displacement and rotation,

and Hermite cubic interpolation functions for the transverse displacement. These models were used t

o study the effects of material length scale parameter and geometric nonlinearity on deflections of F

G microbeams. Reddy and Srinivasa [393] also developed nonlinear two-node EBT and TBT elemen

ts for microbeams which are capable of capturing moderate rotations since they were based on the

modified von Karman nonlinear theory. Unlike the von Karman nonlinear theory, the modified von

Karman nonlinear theory did include the nonlinear terms due to the transverse normal strain, and th

us requiring 2D constitutive relations of beams. The EBT and TBT elements developed by Arbind a

nd Reddy [391] were employed by Dehrouyeh-Semnani and Nikkhah-Bahrami [394] to examine the

size effect on the bending, buckling and free vibration responses of isotropic microbeams. Kahrobaiy

an et al. [395] also developed a two-node modified couple stress TBT element for the static bendin

g analysis of isotropic microbeams. However, their element has only 2-DOF at each node and was

based on the shape functions derived by directly solving the governing equations of the modified co

uple stress TBT model. Numerical results indicated that the load-deflection response of a cantilever

microbeams predicted by their element agrees well with the experimental result as shown in Fig. 8.

The accuracy and stability of the TBT elements proposed by Kahrobaiyan et al. [395] and Arbind

and Reddy [391] were assessed by Dehrouyeh-Semnani and Bahrami [396]. The results indicated tha

t both two elements give a stable solution. However, the 6-DOF element of Arbind and Reddy [391]

is more accurate than the 4-DOF element of Kahrobaiyan et al. [395] in predicting deflections of i

sotropic microbeams under various BCs. Recently, Karttunen et al. [397] developed an exact modifie

d couple stress TBT element for the static analysis of FG microbeams. The element has two nodes

with 3-DOF at each node. It was based on the exact shape functions derived directly from analytica

l solutions of the modified couple stress TBT model.

5.1.3. Strain gradient elements

Kahrobaiyan et al. [398] developed a strain gradient element for isotropic microbeams based on t

he EBT. The element has two nodes with 3-DOF at each node including the deflection, slope and c

urvature. The mass and stiffness matrices of the element were derived based on the Galerkin metho

d with interpolation functions determined by solving directly the governing equations of the strain g

radient EBT model. The element was applied to the bending analysis of a cantilever microbeam und
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er a concentrated force at its free end. In order to account for the shear deformation effect, Zhang

et al. [399] developed a two-node strain gradient TBT element for isotropic microbeams. The eleme

nt has 6-DOF at each node when considering both bending and stretching deformations, and 4-DOF

at each node when considering only bending deformation. The displacement field of the element is

approximated using exact hyperbolic interpolation functions derived from solving directly the gover

ning equations of the strain gradient TBT model. Numerical results indicated that the element is cap

able of accurately predicting the static bending, buckling and free vibration responses of isotropic m

icrobeams. Zhang et al. [400] also presented a strain gradient TBT element for isotropic microbeams

which is similar to the one developed by Zhang et al. [399]. However, it has 4-DOF per node an

d considers only bending deformation. Kahrobaiyan et al. [401] developed a strain gradient TBT ele

ment for isotropic microbeams. The element has two nodes with 2-DOF at each node including the

deflection and rotation. The shape functions of their element were derived by directly solving the eq

uilibrium equations of the strain gradient TBT model with the proper BCs. By comparing with expe

rimental results, it was concluded that the present element is capable of accurately predicting the lo

ad-deflection response of a cantilever microbeams as shown in Fig. 9. The element was successfully

applied to predict the deflection and natural frequency of MEMS. It should be noted that Eltaher e

t al. [402], Ebrahimi et al. [403] and Ansari et al. [404-406] also developed strain gradient elements

for isotropic microbeams based on EBT [402-404] and TBT [405-406] models, but they were base

d on the nonlocal strain gradient theory and the most general form of the strain gradient theory of

Mindlin [14] which are not covered in this review.

5.2. Plate elements

5.2.1. Nonlocal elasticity elements

One of the earliest nonlocal finite element models for nanoplates was developed by Phadikar and

Pradhan [407] and Ansari et al. [408] using the Galerkin method. Phadikar and Pradhan [407] dev

eloped a nonlocal CPT element for the bending, buckling and free vibration analyses of isotropic na

noplates, whilst Ansari et al. [408] proposed a nonlocal FSDT element for the free vibration analysi

s of MLGSs. The element developed by Phadikar and Pradhan [407] has four nodes with 3-DOF at

each node and was based on Hermite cubic interpolation functions, whilst the element proposed by

Ansari et al. [408] has eight nodes with 5-DOF at each node and was based on quadratic serendip

ity interpolation functions. Natarajan et al. [409] developed a nonlocal FSDT element for the free vi

bration analysis of FG nanoplates using an isogeometric analysis (IGA) in which the field variables

were approximated by non-uniform rational B-splines (NURBS) basic functions as shown in Fig. 10.
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Nguyen et al. [410] also employed the IGA approach to develop a nonlocal element for FG nanop

lates. However, their element was based on a simple quasi-3D theory with four unknowns as shown

in Table 2. Ansari and Norouzzadeh [411] studied the nonlocal and surface effects on the buckling

behaviour of FG nanoplates based on the FSDT and IGA approach. Sarrami-Foroushani and Azhari

[412] presented a nonlocal element for the buckling and free vibration analysis of SLGSs based on

the finite strip method and the refined plate theory of Shimpi [109]. Unlike the finite element met

hod, the plate in the finite strip approach is meshed in one direction, and thus the number of DOF

s is reduced.

5.2.2. Modified couple stress elements

One of the earliest modified couple stress plate elements was developed by Zhang et al. [413] fo

r isotropic microplates based on the FSDT. The element is non-conforming and has four nodes with

15-DOF per node. Unlike the classical FSDT element, the modified couple stress FSDT element is

shear locking free and thus the full integration can still be used. The element was successfully use

d to predict the bending, buckling and free vibration responses of isotropic microplates with various

BCs. Reddy and Srinivasa [393] presented a nonlinear FSDT element for the nonlinear analysis of

modified couple stress plates. Since the element was based on the modified von Karman nonlinear t

heory, it is capable of capturing moderate rotations. Mirsalehi et al. [414] developed a modified cou

ple stress CPT element for FG microplates based on a spline finite strip method. The spline finite s

trip method is a special form of the finite strip method in which the B3-spline functions are used i

n the longitudinal direction and the Hermite cubic functions are used in the transverse direction of t

he strip [414]. The spline finite strip element was applied to predict the critical buckling loads and

buckling temperatures of FG microplates under mechanical and thermal loadings. Kim and Reddy [4

15] developed a nonlinear modified couple stress element for FG microplates based on the general

quasi-3D theory of Reddy and Kim [308] and von Karman nonlinear strains. The element is non-co

nforming and has four nodes with 44-DOF at each node accounting for geometric nonlinearity and r

equires C1 continuity for all variables. Reddy et al. [416] presented nonlinear CPT and FSDT eleme

nts for the axisymmetric bending analysis of circular FG microplates. The axisymmetric CPT elemen

t has two nodes with 3-DOF at each node based on Lagrange interpolation functions for the axial d

isplacement and Hermite interpolation functions for the transverse displacement. Meanwhile, the axis

ymmetric FSDT element which has two nodes with 4-DOF at each node employed Lagrange interpo

lation functions for both axial displacement and rotation, and Hermite interpolation functions for the

transverse displacement. The models were employed to study the influences of geometric nonlineari
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ty and material length scale parameter on bending responses of FG circular plates with various BCs.

Recently, Nguyen et al. [417] proposed an efficient modified couple stress element for the static be

nding, buckling and free vibration analyses of FG microplates based on the IGA approach. The ele

ment was based on a simple quasi-3D theory with four unknowns as shown in Table 2.

5.2.3. Strain gradient elements

For the strain gradient plate element, only two publications were found in the literature involved i

n the development of the finite element model for microplates based on the strain gradient theory o

f Lam et al. [15]. Mirsalehi et al. [418] presented a strain gradient CPT element for FG microplates

using the spline finite strip method. The element was used to investigate the influences of material

length scale parameters, BCs, volume fraction module and geometric dimensions on critical bucklin

g loads and natural frequencies of FG microplates. Recently, Thai et al. [419] developed a strain gr

adient element for the bending, buckling and free vibration analyses of FG microplates based on the

IGA approach. It should be noted that Ansari et al. [420-421] also developed strain gradient eleme

nts for isotropic microplates, but it was based on the most general form of the strain gradient theor

y of Mindlin [14] which is not covered in this review.

6. Concluding remarks and recommendation for future studies

The development of size-dependent models for predicting size effects on the global responses of s

mall-scale beam, plate and shell structures was comprehensively reviewed and discussed in this pape

r. During the past decade, great efforts have been devoted to the development of size-dependent mo

dels based on higher-order continuum mechanics approach. This review mainly focuses on the size-d

ependent beam, plate and shell models developed based on the nonlocal elasticity theory, modified c

ouple stress theory and strain gradient theory due to their common use in predicting the global beh

aviour of small-scale structures. Both analytical and numerical models are included in this review pa

per.

The review indicates that most size-dependent models have been developed in the last five years.

The number of strain gradient models is small compared to the number of models developed based

on the nonlocal elasticity theory and modified couple stress theory. The nonlocal beam and plate

models are widely used for analysing nanostructures such as CNTs and graphene sheets, whilst the

modified couple stress and strain gradient models are applied to microstructures. The review also sh

ows that the number of relevant papers involving in the development of finite element models is rel

atively small compared with the total number of papers published on analytical models.

As reviewed in this paper, most of existing size-dependent models focused on analytical solutions
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which are limited to beam and plate structures subjected to certain loading and boundary condition

s and geometries, whereas the development of finite element solutions for size-dependent beam and

plate models has not been given enough attention. Therefore, further efforts should be devoted to de

veloping finite element models of size-dependent theories, especially the strain gradient-based models.

It is noted that only one publication was found in the literature involved in the development of th

e finite element model for strain gradient CPT plates using the spline finite strip method.
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(a) SWCNT (b) DWCNT (c) MWCNT

Fig. 1 Schematic illustration of different form of CNTs [422]

(a) SLGS (b) DLGS (c) MLGS

Fig. 2 Graphene-based nanomaterials [423]

Fig. 3 Fundamental frequencies of clamped (CC) and cantilever (CF) beams [45]



61

Fig. 4 Comparison of various continuum mechanics models with MD simulations for (5,5) SWCNTs [130]
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(a) Bending stiffness versus thickness

(b) Load-deflection response (h = 38 m)

Fig. 5 Effect of Poisson’s ratio in a cantilever microbeam [218]
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(a) Bending analysis

(b) Free vibration analysis

Fig. 6 Comparison between strain gradient model and couple stress model for microbeams [311]



64

(a) Bending analysis

(b) Free vibration analysis

Fig. 7 Comparison between strain gradient model and couple stress model for microplates [352]
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Fig. 8 Comparison of couple stress model with experimental result for cantilever microbeams [395]

Fig. 9 Comparison of strain gradient model with experimental result for cantilever microbeams [401]

Fig. 10 NURBS basic functions
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Table 1. Displacement field of HSDTs

Reference Displacement field Shape function Unknown
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Xiang et al. [343]
       

       

   

, , , , , , ,

, , , , , , ,

, , , , ,

x x x

y y y

z

wu x y z t u x y t z x y t f z
x

wu x y z t v x y t z x y t f z
y

u x y z t w x y t

 

 

      
 

     


 
11 2 ,

n
nf z z

n h


   
 

with 3,5,7,9...n 
, , , ,x yu v w  

Note: h is the thickness. For the beam model, the displacement uy is equal to zero, and all non-zero generalised displacements are independent of the y coordinate.
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Table 2. Displacement field of quasi-3D theories

References Displacement field Shape function Unknown
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Note: h is the thickness. For the beam model, the displacement uy is equal to zero, and all non-zero generalised displacements are independent of the y coordinate.


