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Abstract

This paper proposes a new simple shear deformation theory for isotropic plates. The

present theory involves one unknown and one governing equation as in the classical

plate theory, but it is capable of accurately capturing shear deformation effects. The

displacement field of the present theory was based on a two variable refined plate theory

in which the transverse displacement is partitioned into the bending and shear parts.

Based on the equilibrium equations of three-dimensional (3D) elasticity theory, the

relationship between the bending and shear parts was established. Therefore, the

number of unknowns of the present theory was reduced from two to one. Closed-form

solutions were presented for both Navier- and Levy-type plates. Numerical results

indicate that the obtained predictions are comparable with those generated by ABAQUS

and available results predicted by 3D elasticity theory, first-order and third-order shear

deformation theories.
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1. Introduction

Plates and shells are common structural elements in civil engineering structures such

as buildings, bridges, tunnels, retaining walls and other infrastructure. In general, the

behaviour of plate and shell structures can be predicted using either 2D plate theories or

3D elasticity theory. The classical plate theory (CPT) is the simplest plate theory

developed by Love [1] based on the assumptions proposed by Kirchhoff [2]. However,

this theory is only applicable for thin plates in which the shear deformation effects are

negligibly small. For thick plates, the CPT underestimates deflections and overestimates

buckling loads as well as natural frequencies because of neglecting these effects.

A large number of shear deformation theories have been proposed to take into

account the shear deformation effects. One of the earliest shear deformation theories

was proposed by Reissner [3] and Mindlin [4]. It should be noted that Mindlin’s theory

was based on an assumption of a linear displacement variation across the plate thickness.

It was therefore referred to as the first-order shear deformation theory (FSDT). This

assumption leads to constant transverse shear strains and transverse shear stresses across

the thickness. A shear correction factor is therefore needed to account for the

discrepancy between the constant shear stresses and the parabolic distribution of shear

stresses in the 3D elasticity theory. On the other hand, Reissner's theory was based on

the assumptions of a linear variation of bending stresses and a parabolic distribution of

transverse shear stresses across the thickness. These assumptions lead to a displacement

field which is not necessarily linear across the thickness, and the shear correction factor

is not required as in the case of Mindlin's theory. Higher-order shear deformation

theories (HSDTs) were proposed to eliminate the use of the shear correction factor in
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the FSDT, and to obtain a better prediction of the responses of very thick plates. The

HSDT is developed based on a higher-order displacement variation across the plate

thickness using either polynomial functions (e.g. the third-order shear deformation

theory (TSDT) of Reddy [5]) or non-polynomial functions (e.g. the sinusoidal theory of

Touratier [6], hyperbolic theory of Soldatos [7], exponential theory of Karama et al. [8]

and among others). Several typical shear deformation theories developed from 2010 for

composite structures can be found in Refs. [9-24]. A comprehensive review of plate

theories was reported by Ghugal and Shimpi [25] for isotropic and laminated plates and

Thai and Kim [26] for functionally graded plates.

Although the existing HSDTs provide a better prediction compared with the CPT,

they are much more complicated and computationally expensive than the CPT because

of introducing additional dependent unknowns into the theory. Therefore, this paper

aims to propose a simple HSDT which contains the same number of unknowns and

governing equations of motion as in the case of the CPT. The present theory was based

on the refined plate theory (RPT) of Shimpi [27] and 3D elasticity theory. Analytical

solutions of the present theory were also presented. The obtained predictions were then

compared with the available results predicted by the FSDT, TSDT and 3D elasticity

theory as well as those generated by ABAQUS for validation.

2. Kinematics

The displacement field of the present theory was derived based on the displacement

field of the RPT [27] and the equilibrium equations of 3D elasticity theory. According to

Shimpi [27], the displacement field of the RPT is given as follows:

 
25 1, , ,

3 4
b sw wzu x y z t z z
x h x

            
(1a)
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 
25 1, , ,

3 4
b sw wzv x y z t z z
y h y

            
(1b)

     , , , , , , ,b sw x y z t w x y t w x y t  (1c)

where ( , ,u v w ) are the total displacement along the coordinates ( , ,x y z ); bw and sw

are the bending and shear components of transverse displacement w, respectively; and

h is the plate thickness. The equilibrium equations of 3D elasticity theory in the

absence of body forces are written as:

xyx xz u
x y z

 


 
  

  
 (2a)

xy y yz v
x y z
  


  

  
  

 (2b)

yzxz z w
x y z

  
 

  
  

 (2c)

where the dot-superscript convention indicates differentiation with respect to time t ;

i are the stress components of the stress tensor; and  is the density. Substituting

Eq. (1) into Eq. (2), the equilibrium equations are rewritten as:

25 1
3 4

xyx xz b sw wzz z
x y z x h x

 
 

                   

 
(3a)

25 1
3 4

xy y yz b sw wzz z
x y z y h y
  

 
                    

 
(3b)

 yzxz z
b sw w

x y z
  
 

   
  

  (3c)

The equilibrium equations in Eq. (3) can be rewritten in terms of stress resultants for a

plate under a transversely distributed load q as shown in Fig. 1 by multiplying the first

two equations by z and then integrating all three equations with respect to z, and
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applying several boundary conditions, i.e. the transverse shear stresses xz and yz

equal to zero at / 2z h  and the normal stress through the thickness 0z  at

/ 2z h  and z q   at / 2z h . The resulting equations are:

2
xyx b

x

MM wQ I
x y x

 
   

  


(4a)

2
xy y b

y

M M wQ I
x y y

  
   

  


(4b)

 0
yx

b s

QQ q I w w
x y


   

 
  (4c)

where the moments M, shear forces Q and mass inertias I are defined as

/ 2

/ 2

h

x x
h

M z dz


  (5a)

/ 2

/ 2

h

y y
h

M z dz


  (5b)

/ 2

/ 2

h

xy xy
h

M z dz


  (5c)

/ 2

/ 2

h

x xz
h

Q dz


  (6a)

/ 2

/ 2

h

y yz
h

Q dz


  (6b)

/ 2

0
/ 2

h

h

I dz


  (7a)

/ 2
2

2
/ 2

h

h

I z dz


  (7b)

According to Shimpi [27], the moments and shear forces can be expressed in terms of
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the dependent unknowns  ,b sw w as

2 2

2 2
b b

x
w wM D
x y


  

     
(8a)

2 2

2 2
b b

y
w wM D
y x


  

     
(8b)

 
2

1 b
xy

wM D
x y




  
 

(8c)

s
x s

wQ A
x





(9a)

s
y s

wQ A
y





(9b)

where
3

212(1 )
EhD





and

 
5

12 1s
EhA





(10)

where E and  are the Young’s modulus and Poisson’s ratio of isotropic materials,

respectively. Substituting Eqs. (8) and (9) into Eq. (4a) or Eq. (4b), the relationship

between the bending component bw and shear component sw is obtained as:

22
s b b

s s

I Dw w w
A A

   (11)

where 2
2 2

2 2x y

 
  

 
. The displacement field of the present theory can be obtained

by substituting Eq. (11) into Eq. (1):

 
2

225 1, , ,
3 4

b b b

s s

w w wIz Du x y z t z z
x h A x A x

                           


(12a)

 
2

225 1, , ,
3 4

b b b

s s

w w wIz Dv x y z t z z
y h A y A y

                          


(12b)
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  2 2, , , b b b
s s

IDw x y z t w w w
A A

     (12c)

It can be seen from Eq. (12) that the displacement field of the present theory involves

only one unknown bw . If the underlined terms in Eq. (12) are neglected, the present

theory becomes the CPT.

3. Governing equations of motion

Substituting Eqs. (4a) and (4b) into Eq. (4c), the equations of motion of the present

theory is obtained from the equilibrium equations of 3D elasticity theory as:

 
2 22

2
0 22 22 xy yx

b s b

M MM q I w w I w
x x y y

 
      

   
   (13)

Eq. (13) can be expressed in terms of the displacement bw by substituting Eqs. (8) and

(11) into Eq. (13):

4 20 0 2
0 2b b b b

s s

I D I ID w q I w I w w
A A

 
        

 
   (14)

where 4
4 4 4

24 2 2 4x x y y

  
   

   
. For a static analysis, Eq. (14) was simplified as:

4
bD w q  (15)

Eq. (15) is similar to the governing equation of the CPT. The only difference is that the

governing equation of the present theory involves the bending component bw of the

transverse displacement instead of the total transverse displacement w as in the case of

the CPT. The boundary conditions of the present theory are in a similar form as the CPT

as [27]:

For free edges:
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0xM  and 0xy
x x

M
V Q

y


  


on the edges 0,x a (16a)

0yM  and 0xy
y y

M
V Q

x


  


on the edges 0,y b (16b)

For simply supported edges:

0w  and 0xM  on the edges 0,x a (17a)

0w  and 0yM  on the edges 0,y b (17b)

For clamped edges, there are two possible types of clamped boundary conditions as

mentioned in [27]:

0w  and 0w
x





on the edges 0,x a (18a)

0w  and 0w
y





on the edges 0,y b (18b)

or

0w  and
0

0
z

u
z 





on the edges 0,x a (19a)

0w  and
0

0
z

v
z 





on the edges 0,y b (19b)

4. Analytical solutions

4.1. Navier-type plates

Consider a Navier-type plate subjected to a transverse load q as shown in Fig. 1. The

expansion of bw which satisfies the simply supported boundary conditions of the

Navier-type plate was selected as follows:

 
1 1

, , sin sini t
b bmn

m n
w x y t W e x y  

 

 

 (20)
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where /m a  ; /n b  ;  is the natural frequency; and bmnW are coefficie

nts. The transversely distributed load q can be also expressed as:

 
1 1

, sin sinmn
m n

q x y Q x y 
 

 

 (21)

where

 
0

0
0 0 2

for sinusoidally distributed load 
4 , sin sin 16 for uniformly distributed load

a b

mn

q
Q q x y x ydxdy qab

mn
 




  


  (22)

Substituting Eqs. (20) and (21) into Eq. (14), the following equation is obtained

   22 2 2 2 2 40 0 2
0 2 bmn mn

s s

I D I ID I I W Q
A A

     
             

    
(23)

For a static analysis ( 0  ), the analytical solution of the bending component bw is

obtained as:

 22 21 1
sin sinmn

b
m n

Qw x y
D

 
 

 

 




 (24)

The closed-form solutions for the deflections w, stresses  , bending moments M and

shear forces Q are subsequently obtained based on bw as follows:

 
 

2 2
22 21 1

1 sin sinmn

m n s

QDw x y
A D

   
 

 

 

 
   

   
 (25)

   
 

2 22
2 2

22 2 2 21 1

5 11 sin sin
1 3 4

mn
x

m n s

QEz D z x y
A h D

 
    

  

 

 

   
          

 (26a)

   
 

2 22
2 2

22 2 2 21 1

5 11 sin sin
1 3 4

mn
y

m n s

QEz D z x y
A h D

 
    

  

 

 

   
          

 (26b)
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 
 

2
2 2

22 2 21 1

5 11 cos cos
1 3 4

mn
xy

m n s

QEz D z x y
A h D


    

  

 

 

  
          

 (26c)

2

2 2 2
1 1

6 1 cos sin
4

mn
xz

m n

Qz x y
h h


  

 

 

 

 
    

 (26d)

2

2 2 2
1 1

6 1 sin cos
4

mn
yz

m n

Qz x y
h h


  

 

 

 

 
    

 (26e)

 
 

2 2

22 21 1
sin sinmn

x
m n

Q
M x y

 
 

 

 

 





 (27a)

 
 

2 2

22 21 1
sin sinmn

y
m n

Q
M x y

 
 

 

 

 





 (27b)

 
 22 21 1

1 cos cosmn
xy

m n

QM x y
  

 

 

 

  


 (27c)

2 2
1 1

cos sinmn
x

m n

QQ x y
 

 

 

 


 (28a)

2 2
1 1

sin cosmn
y

m n

QQ x y
 

 

 

 


 (28b)

It should be noted that the CPT does not account for the underlined terms in Eqs. (25)

and (26). For a free vibration analysis ( 0q  ), the analytical solution for the natural

frequency  is obtained from in Eq. (23) as:

2
2 2 2 2 2 2 20 0 0 2

0 2 0 2
2

0 2

( )( ) ( )( ) 4 ( )

2 /
s s s

s

I D I D I I DI I I I
A A A

I I A

     


 
         

  (29)

If the time derivative term in Eq. (11) is neglected, the natural frequency of a simply

supported plate is simplified as:
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 
   

22 2
2

2 2 2 20
0 2

s

D
I DI I
A

 


   




   
(30)

If the underlined shear deformation term in Eq. (30) is neglected, the natural frequency

of the present theory yields the frequency obtained from the CPT. Fig. 2 illustrates the

comparison between the nondimensional fundamental frequencies 2 /a h D  

predicted by CPT (using Eq. (30) without the underline term), FSDT given by Thai et al.

[28] and the present theory with the exact and simplified formulations. It can be

observed that the difference in the frequencies predicted by the exact and simplified

formulations in Eqs. (29) and (30) is negligible, and the predictions of the present theory

are close to those predicted by the FSDT [28].

4.2. Levy-type plates

Consider a rectangular plate with simply supported boundary conditions at the edges

0,x a and arbitrary boundary conditions at the remaining edges 0,y b . The

following expansion of bw was chosen to satisfy the boundary conditions of the Levy-

type plate as follows:

   
1

, , sini t
b bm

m
w x y t W y e x 





 (31)

The applied load q can be expressed as:

   
1

, sinm
m

q x y Q y x




 (32)

where

   
0

0
0

for sinusoidally distributed load 
2 , sin 4 for uniformly distributed load

a

m

q
Q y q x y xdx qa

m





  


 (33)

Substituting Eqs. (31) and (32) into the governing equations of motion Eq. (14), the



12

following equation is obtained:

''''
1 2 /bm bm bm mW CW C W Q D   (34)

where the prime notations denote the derivatives with respect to y and the coefficients

iC are define by:

2 2 2 4 4 2 20 0 0 2 02 2
1 2, 2

s s s

I I I I II IC C
D D A DA D A
      

   
          

   
(35)

For a static analysis  0  , the governing equations of the present theory are similar

to those of the CPT as in Eq. (15). Therefore, the analytical solution of Eq. (34) is

obtained as:

      4cosh sinh m
bm m m m m

QW y A B y y C D y y
D

 


     (36)

where the constants ( , , ,m m m mA B C D ) can be obtained using boundary conditions at the

edges 0,y b . Substituting the stress resultants (M and Q) and deflection w into Eqs.

(16)-(19), the boundary conditions at the edges 0,y b can be rewritten in terms of

bmW as

Free (F):

 2 0bm bmD W W   (37a)

  2 2
22 0bm bmD I W DW          (37b)

Simply supported (S):

2 221 0bm bm
s s s

ID DW W
A A A
 

 
    

 
(38a)

 2 0bm bmD W W   (38b)

Clamped (C):
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2 221 0bm bm
s s s

ID DW W
A A A
 

 
    

 
(39a)

2 221 0bm bm
s s s

ID DW W
A A A
 

 
     

 
(39b)

or

2 221 0bm bm
s s s

ID DW W
A A A
 

 
    

 
(40a)

2 221 0
4 4 4bm bm

s s s

ID DW W
A A A
 

 
      

 
(40b)

For a free vibration analysis  0q  , the state-space approach can be used to solve Eq.

(34) for the natural frequency. More details on the application of this approach can be

found in Refs. [29-32].

5. Numerical examples

A number of examples were presented in this section to illustrate the accuracy and

efficiency of the present theory and its analytical solutions. The bending response and

natural frequency predicted by the present one unknown shear deformation theory were

compared with available results predicted by 3D elasticity theory and well-known plate

theories such as the CPT, FSDT and TSDT. It should be noted that the CPT has only a

single unknown as in the case of the present theory, whilst the FSDT and TSDT involve

three unknowns. In addition, the numerical solutions generated in this study using the

shell element S4R of the commercial finite element software ABAQUS [33] were also

used for validation. S4R is a robust quadrilateral 4-node element with reduced

integration which is applicable for both thin and thick plate/shell structures. Based on a

convergence study, the mesh sizes of 40×40 and 40×80 were respectively selected for
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the number of element along the edges of square plates and rectangular plates with

aspect ratios of 2.0.

5.1. Bending analysis

The first bending example aims to validate the present theory for Navier-type plates.

Three values for the length-to-thickness ratio a/h of 5, 10 (corresponding to thick and

moderately thick plates) and 100 (corresponding to thin plates) were taken into account.

The obtained predictions were compared with available results reported by Reddy [34]

using the CPT, FSDT, and TSDT in Table 1 in which the normalized quantities were

defined as follows:

2

2

2

2

3

4

, , , ( , )
2 2 2

0,0,
2

,0,0
2

0, ,0
2

,
2 2

i i

xy xy

yz yz

xz xz

h a b h i x y
qa
h h
qa
h a
qa
h b
qa
Eh a bw w
qa

 

 

 

 

   
 

   
 

   
 

   
 

   
 

(41)

The obtained predictions were calculated using up to 19 terms in the series as

performed by Reddy [34]. It should be noted that the values of the transverse shear

stresses given by Reddy [34] were based on integrating the equilibrium equations of 3D

elasticity theory with respect to the thickness coordinate as

/ 2

z xyx
xz h

dz
x y






 
     
 (42a)

/ 2

z xy y
yz h

dz
x y
 




  
     
 (42b)

It can be observed from Table 1 that the deflections and in-plane stresses obtained by
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the present theory agree well with those predicted by the FSDT and TSDT. Since the

shear deformation effects were included in the present theory, FSDT and TSDT, their

predictions are similar each other and agree well with the finite element solutions of

ABAQUS. On the contrary, the CPT underestimates deflections of thick plates because

of ignoring shear deformation effects. For example, for thick plates with a/h = 5, the

CPT underestimates the deflections by 17.10% and 11.38% for square and rectangular

plates, respectively. It is also seen from Table 1 that the transverse shear stresses

obtained from the present theory are identical with those predicted by the CPT and

FSDT. As stated by Reddy [34], both CPT and FSDT give more accurate predictions of

the transverse shear stresses than the TSDT when the stress equilibrium equations of 3D

elasticity theory are used. It is also noted that the present theory has only one unknown

as in the CPT, whilst both FSDT and TSDT involves three unknowns. Although the CPT

can give the same accuracy in predicting the transverse shear stress as in the case of the

present theory, it was based on an indirect and lengthy process through the use of

equilibrium equations in Eq. (42). In contrast to the CPT, the present theory predicts the

transverse shear stresses in a direct manner through the use of constitutive relations in

Eqs. (26d) and (26e). It should be noted that the transverse shear stresses predicted by

the CPT using constitutive relations are always equal to zero. A comparison of the

variation of w with respect to a/h was also plotted in Fig. 3 for square plates. Again,

an excellent agreement between the results generated by the present theory, TSDT and

ABAQUS was observed.

To further illustrate the accuracy of the present theory in predicting the transverse

shear stresses, Fig. 4 compared the distribution of the transverse shear stress predicted

by the present theory with that given by Auricchio and Sacco [35] based on the exact 3D
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elasticity solutions derived by Pagano [36]. For the plate strip under a sinusoidal load,

the transverse shear stress given in Eq. (26d) was simplified as
2

2

6 1
4xz

qa z
h h




 
  

 
. It

can be seen from Fig. 4 that the obtained prediction agrees well with the exact 3D

solutions. This is expected since the present theory was based on equilibrium

considerations.

The next bending example aims to verify the present theory for Levy-type plates.

Table 2 compared the nondimensional deflection at the centre of Levy-type plates under

uniformly distributed loads. The aspect ratio is taken as 2.0, whilst the nondimensional

deflection is defined as 4

100ˆ Dw w
qa

 with
 

3

212 1
EhD





. Four values of a/h of 5, 10

(corresponding to thick and moderately thick plates), 25 and 1000 (corresponding to

thin plates) were considered. For the plates involving the clamped boundary conditions

(CC, SC and FC plates), two types of the clamped boundary conditions described in Eqs

(39) and (40) were used. The obtained solutions were compared with the available

solutions of the FSDT reported by Zenkour [37] and the FE solutions of ABAQUS. The

plate deformations generated by ABAQUS were also illustrated in Fig. 5 for the case of

moderately thick plates with a/h = 10. In general, the deflections predicted by the

present theory are in good agreement with those predicted by the FSDT and ABAQUS,

except for the case of the thick CC plate with a/h = 5 where a slightly difference of

6.43% between the results was found if the clamped boundary conditions in Eq. (39)

were used. However, this difference becomes negligible when the clamped boundary

conditions in Eq. (40) were used. This indicated that for the plate involving the clamped

boundary conditions, the boundary conditions described in Eq. (40) should be used to

give a better prediction.
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5.2. Free vibration analysis

The first verification for free vibration analysis was carried out for SS square plates.

This example aims to verify the present theory for a wide range of Navier-type plates

with a thickness-to-length ratio h/a covering from 0.001 (very thin plates) to 0.4 (very

thick plates). Table 3 showed a comparison of the first eight nondimensional frequencies

 obtained in this study with available results predicted by the CPT [38], FSDT [39],

TSDT [40-41] and 3D elasticity theory [42-43]. The obtained results were also

compared with the FE results computed independently in this study using ABAQUS.

The first eight mode shapes generated by ABAQUS were also plotted in Fig. 6 for very

thick plates with h/a = 0.4. It is noted that the 3D results given by Liew et al. [42] were

based on the Ritz method, whilst Malik and Bert [43] used the differential quadrature

(DQ) method to solve for the frequencies. The TSDT results reported by Shufrin and

Eisenberger [40] were based on the extended Kantorovich numerical method, whilst

Hosseini-Hashemi et al. [41] employed the Levy method to derive exact TSDT solutions.

Both CPT and FSDT results given by Leissa [38] and Hosseini-Hashemi and Arsanjani

[39], respectively, were based on an analytical approach. Good agreement between the

results was found in Table 3 for all models of very thin to very thick plates.

The next verification for free vibration analysis aims to verify the present theory for a

wide range of square and rectangular plates with various boundary conditions. Table 4

contains the nondimensional frequencies  of plates for various values of the

thickness-to-length ratio h/a. It is noted that the frequencies of the CC, SC and FC

plates were obtained based on the clamped boundary conditions described in Eq. (40)

due to its accuracy. The results obtained in this study were compared with available

results reported by Malik and Bert [43], Hosseini-Hashemi and Arsanjani [39] and
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Hosseini-Hashemi et al. [41] based on 3D elasticity theory, FSDT and TSDT,

respectively. Good agreement between the results is observed in Table 4 confirming the

accuracy of the present theory.

6. Conclusions

A simple and accurate shear deformation theory has been proposed for thick isotropic

plates. The governing equations of motion of the present theory were derived based on

3D elasticity theory and RPT. The accuracy of the present theory in predicting the

bending behaviour and natural frequencies was verified for a wide range of Navier- and

Lery-type plates. Numerical results indicated that the present theory is not only much

more accurate than the CPT but also comparable with the FSDT and TSDT when

compared with 3D elasticity theory and ABAQUS. Although the present theory has only

one unknown and one governing equations of motion as in the CPT, its predictions are

comparable with those generated by the FSDT and TSDT which have three unknowns

and three governing equations.
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Table Captions

Table 1. Deflections and stresses of SS plates under uniformly distributed loads

Table 2. Deflections ŵ of rectangular plates with various boundary conditions under

uniformly distributed loads ( 2b a )

Table 3. The first eight frequencies  of square SS plates

Table 4. Fundamental frequencies  of square and rectangular Levy-type plates
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Table 1. Deflections and stresses of SS plates under uniformly distributed loads

b/a a/h Methods w x y xy yz xz

1 5 ABAQUS 0.0536 0.2872 0.2872 0.1945

CPT [34] 0.0444 0.2873 0.2873 0.1946 0.4909
0.4909

FSDT [34] 0.0536 0.2873 0.2873 0.1946 0.4909
0.4909

TSDT [34] 0.0535 0.2944 0.2944 0.2112 0.3703
0.3703

Present 0.0536 0.2942 0.2942 0.2125 0.4909
0.4909

10 ABAQUS 0.0467 0.2872 0.2872 0.1945

CPT [34] 0.0444 0.2873 0.2873 0.1946 0.4909
0.4909

FSDT [34] 0.0467 0.2873 0.2873 0.1946 0.4909
0.4909

TSDT [34] 0.0467 0.2890 0.2890 0.1990 0.4543
0.4543

Present 0.0467 0.2890 0.2890 0.1991 0.4909
0.4909

100 ABAQUS 0.0444 0.2872 0.2872 0.1945

CPT [34] 0.0444 0.2873 0.2873 0.1946 0.4909
0.4909

FSDT [34] 0.0444 0.2873 0.2873 0.1946 0.4909
0.4909

TSDT [34] 0.0444 0.2873 0.2873 0.1947 0.4905
0.4905

Present 0.0444 0.2873 0.2873 0.1947 0.4909
0.4909

2 5 ABAQUS 0.1248 0.6100 0.2794 0.2772

CPT [34] 0.1106 0.6100 0.2779 0.2769 0.5240
0.6813

FSDT [34] 0.1248 0.6100 0.2779 0.2769 0.5240
0.6813

TSDT [34] 0.1248 0.6202 0.2818 0.2927 0.4569
0.5615

Present 0.1248 0.6201 0.2817 0.2934 0.5240
0.6813

10 ABAQUS 0.1141 0.6100 0.2794 0.2772

CPT [34] 0.1106 0.6100 0.2779 0.2769 0.5240
0.6813

FSDT [34] 0.1142 0.6100 0.2779 0.2769 0.5240
0.6813

TSDT [34] 0.1142 0.6125 0.2789 0.2809 0.5051
0.6448

Present 0.1142 0.6125 0.2789 0.2810 0.5240
0.6813
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100 ABAQUS 0.1106 0.6100 0.2794 0.2772

CPT [34] 0.1106 0.6100 0.2779 0.2769 0.5240
0.6813

FSDT [34] 0.1106 0.6100 0.2779 0.2769 0.5240
0.6813

TSDT [34] 0.1106 0.6100 0.2779 0.2769 0.5238
0.6809

Present 0.1106 0.6100 0.2779 0.2769 0.5240
0.6813
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Table 2. Deflections ŵ of rectangular plates with various boundary conditions under

uniformly distributed loads ( 2b a )

a/h Methods Boundary conditions
CC SC SS FC FS FF

5 ABAQUS 1.0000 1.0703 1.1429 1.2089 1.2842
1.4280

FSDT [37] 1.0000 1.0704 1.1430 1.2090 1.2844
1.4283

Present 0.9357 1.0373 1.1430 1.1757 1.2849
1.4293

(1.0186)* (1.0799) (1.2193)

10 ABAQUS 0.8850 0.9637 1.0453 1.0980 1.1827
1.3225

FSDT [37] 0.8850 0.9637 1.0454 1.0981 1.1829
1.3228

Present 0.8673 0.9546 1.0454 1.0893 1.1834
1.3239

(0.8902) (0.9664) 1.0454 (1.1014)

25 ABAQUS 0.8511 0.9329 1.0180 1.0663 1.1545
1.2935

FSDT [37] 0.8511 0.9330 1.0181 1.0664 1.1547
1.2938

Present 0.8481 0.9314 1.0181 1.0651 1.1550
1.2944

(0.8519) (0.9334) (1.0671)

1000 ABAQUS 0.8445 0.9270 1.0128 1.0604 1.1494
1.2884

FSDT [37] 0.8445 0.9270 1.0129 1.0605 1.1496
1.2887

Present 0.8445 0.9270 1.0129 1.0605 1.1496
1.2887

(0.8445) (0.9270) (1.0605)

* Deflection values obtained using Eq. (40) for the clamped boundary conditions.
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Table 3. The first eight frequencies  of square SS plates

h/a Methods Modes
1 2 3 4 5 8 7 8

0.4 ABAQUS 13.7882 26.4265 26.4265 35.7317 40.9814
40.9814

47.9095 47.9095
3D-Ritz [42] 13.9467 26.8986 26.8986 35.9915 - - - -

TSDT [40] 13.8135 26.5907 26.5907 36.1316 41.5668
41.5668

48.8368 48.8368

Present 13.7875 26.4215 26.4215 35.7266 40.9638
40.9638

47.8888 47.8888

0.3 ABAQUS 15.5628 31.5525 31.5525 43.7850 50.7798
50.7798

60.0619 60.0619

3D-Ritz [42] 15.6877 31.9834 31.9834 44.5346 50.4850
50.4850

- -

TSDT [40] 15.5742 31.6410 31.6410 44.0234 51.1315
51.1315

60.6546 60.6546

Present 15.5619 31.5457 31.5457 43.7780 50.7550
50.7550

60.0430 60.0430

0.2 ABAQUS 17.4498 38.1621 38.1621 55.1615 65.1844
65.1844

78.7284 78.7284

3D-Ritz [42] 17.5264 38.4826 38.4826 55.7870 65.9961
65.9961

- -

3D-DQ [43] 17.5260 38.4827 38.4827 55.7871 65.9961
65.9961

- -

FSDT [39] 17.5055 38.3847 38.3847 55.5860 65.7193
65.7193

79.4758 79.4758

TSDT [40] 17.4524 38.1885 38.1885 55.2540 65.3131
65.3131

78.9864 78.9864

Present 17.4486 38.1522 38.1522 55.1501 65.1453
65.1453

78.6970 78.6970

0.1 ABAQUS 19.0665 45.4972 45.4972 69.8139 85.1044
85.1044106.7419106.7419

3D-Ritz [42] 19.0898 45.6193 45.6193 70.1038 85.4876
85.4876107.3710107.3710

3D-DQ [43] 19.0901 45.6193 45.6193 70.1040 85.4878
85.4878107.3695107.3695

FSDT [39] 19.0840 45.5845 45.5845 70.0219 85.3654
85.3654107.1775107.1775

TSDT [40] 19.0651 45.4870 45.4870 69.8097 85.0641
85.0641106.7350106.7350

Present 19.0650 45.4827 45.4827 69.7944 85.0380
85.0380106.6836106.6836

0.01 ABAQUS 19.7337 49.3208 49.3208 78.8686 98.6094 98.6094 128.0921 128.0921

TSDT [41] 19.7320 49.3032 49.3032 78.8421 98.5169
98.5169128.0024128.0024

Present 19.7320 49.3032 49.3032 78.8421 98.5169
98.5169128.0024128.0024

0.001 ABAQUS 19.7408 49.3651 49.3651 78.9823 98.7871 98.7871 128.3921 128.3921
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CPT [38] 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3049 128.3049
FSDT [39] 19.7391 49.3475 49.3475 78.9557 98.6943 98.6943 128.3019 128.3019
TSDT [41] 19.7391 49.3475 49.3475 78.9556 98.6943 98.6943 128.3019 128.3019
Present 19.7392 49.3476 49.3476 78.9557 98.6942 98.6942 128.3018 128.3018
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Table 4. Fundamental frequencies  of square and rectangular Levy-type plates

b/a h/a Methods Boundary conditions
CC SC SS FC FS FF

1 0.4 ABAQUS 15.5633 14.6388 13.7882 9.3287 8.9910 7.7355
TSDT [41] 15.9616 14.8301 13.8136 9.3654 8.9998 7.7394
Present 14.7563 14.2636 13.7875 9.6589 9.4076 7.9366

0.3 ABAQUS 18.5122 16.9610 15.5628 10.3291 9.8552 8.3807
TSDT [41] 18.8246 17.0923 15.5745 10.3523 9.8591 8.3820
Present 17.6212 16.5627 15.5619 10.6064 10.1868 8.5346

0.2 ABAQUS 22.3632 19.7060 17.4498 11.3633 10.6996 8.9847
3D-DQ [43] 22.6088 19.8505 17.5260 11.3982 10.7216 9.0011
FSDT [39] 22.5099 19.7988 17.5055 11.3931 10.7218 8.9997
TSDT [41] 22.5355 19.7695 17.4523 11.3736 10.7002 8.9840
Present 21.5843 19.3878 17.4486 11.5726 10.9211 9.0817

0.1 ABAQUS 26.6750 22.3924 19.0665 12.2509 11.3749 9.4424
3D-DQ [43] 26.8089 22.4535 19.0901 12.2623 11.3953 9.4460
FSDT [39] 26.7369 22.4260 19.0840 12.2606 11.3810 9.4458
TSDT [41] 26.7084 22.4018 19.0651 12.2519 11.3737 9.4417
Present 26.3327 22.2699 19.0650 12.3662 11.4742 9.4820

0.01 ABAQUS 28.9324 23.6367 19.7337 12.6755 11.6771 9.6291
FSDT [39] 28.9250 23.6327 19.7322 12.6728 11.6746 9.6270
TSDT [41] 28.9241 23.6321 19.7320 12.6725 11.6740 9.6265
Present 28.9202 23.6310 19.7320 12.6840 11.6824 9.6298

2 0.4 ABAQUS 9.9641 9.7377 9.5390 8.2246 8.1801 7.8188
TSDT [41] 10.0164 9.7644 9.5472 8.2333 8.1855 7.8232
Present 9.8068 9.6671 9.5380 8.3736 8.3349 7.9391

0.3 ABAQUS 11.0996 10.7585 10.4705 8.9594 8.8964 8.4767
TSDT [41] 11.1328 10.7736 10.4733 8.9634 8.8982 8.4779
Present 10.9519 10.6952 10.4693 9.0791 9.0185 8.5698

0.2 ABAQUS 12.2796 11.7774 11.3721 9.6601 9.5731 9.0909
FSDT [39] 12.3152 11.8061 11.3961 9.6782 9.5902 9.1061
TSDT [41] 12.2939 11.7827 11.3717 9.6606 9.5726 9.0899
Present 12.1770 11.7357 11.3707 9.7407 9.6524 9.1499

0.1 ABAQUS 13.2735 12.5941 12.0690 10.2010 10.0889 9.5527
FSDT [39] 13.2843 12.6022 12.0752 10.2054 10.0929 9.5560
TSDT [41] 13.2747 12.5937 12.0675 10.1997 10.0874 9.5554
Present 13.2389 12.5802 12.0674 10.2371 10.1223 9.5765

0.01 ABAQUS 13.6830 12.9168 12.3359 10.4227 10.2969 9.7349
FSDT [39] 13.6815 12.9152 12.3343 10.4206 10.2948 9.7328
TSDT [41] 13.6813 12.9151 12.3342 10.4206 10.2938 9.7322
Present 13.6810 12.9150 12.3342 10.4235 10.2973 9.7346
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Figure Captions

Fig. 1. Geometry and coordinates of a rectangular plate

Fig. 2. Comparison of fundamental frequencies  of SS square plates

Fig. 3. Comparison of deflections w of SS square plates

Fig. 4. Transverse shear stresses for SS plate strips under sinusoidal loads

Fig. 5. Deflections of Levy-type plates with a/h = 0.1 and b = 2a

Fig. 6. Mode shapes of SS square thick plates with a/h = 0.4
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Fig. 1. Geometry and coordinates of a rectangular plate

Fig. 2. Comparison of fundamental frequencies  of SS square plates
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Fig. 3. Comparison of deflections w of SS square plates

Fig. 4. Transverse shear stresses for SS plate strips under sinusoidal loads
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CC SC SS FC FS FF

Fig. 5. Deflections of Levy-type plates with a/h = 0.1 and b = 2a

1  13.7882 2  26.4265 3 26.4265 4  35.7317

5  40.9814 6  40.9814 7  47.9095 8  47.9095

Fig. 6. Mode shapes of SS square thick plates with a/h = 0.4


