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Abstract: Biomedical implants are the need of this era due to the increase in number of accidents
and follow-up surgeries. Different types of bone diseases such as osteoarthritis, osteomalacia, bone
cancer, etc., are increasing globally. Mesoporous bioactive glass nanoparticles (MBGNs) are used in
biomedical devices due to their osteointegration and bioactive properties. In this study, silver (Ag)-
and strontium (Sr)-doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were prepared
by a modified Stöber process. In this method, Ag+ and Sr2+ were co-substituted in pure MBGNs
to harvest the antibacterial properties of Ag ions, as well as pro-osteogenic potential of Sr2 ions.
The effect of the two-ion concentration on morphology, surface charge, composition, antibacterial
ability, and in-vitro bioactivity was studied. Scanning electron microscopy (SEM), X-Ray diffraction
(XRD), and Fourier transform infrared spectroscopy (FTIR) confirmed the doping of Sr and Ag in
MBGNs. SEM and EDX analysis confirmed the spherical morphology and typical composition of
MBGNs, respectively. The Ag-Sr MBGNs showed a strong antibacterial effect against Staphylococcus
carnosus and Escherichia coli bacteria determined via turbidity and disc diffusion method. Moreover,
the synthesized Ag-Sr MBGNs develop apatite-like crystals upon immersion in simulated body fluid
(SBF), which suggested that the addition of Sr improved in vitro bioactivity. The Ag-Sr MBGNs
synthesized in this study can be used for the preparation of scaffolds or as a filler material in the
composite coatings for bone tissue engineering.

Keywords: mesoporous bioactive glass nanoparticles; sol-gel; antibacterial activity; silver; bioactivity

1. Introduction

Millions of medical devices are being implanted nowadays in patients related to bone
diseases and accidental surgeries, thanks to the advancement of biomaterials. During the
last few decades, biomaterials have focused on the following issues: (a) establish a material
with a suitable mechanical strength, and (b) improve in-vitro activity by increasing the
surface area of the bio-ceramics [1,2]. The number of accidents worldwide are increasing
periodically. Moreover, the percentage of people over 50 years that are suffering from
diseases like osteoporosis, osteoarthritis, osteomalacia, bone cancer, and other muscu-
loskeletal diseases has increased [3]. It is stated that only in the USA, annually, more than
500,000 primary arthroplasties including total joint replacement, total hip arthroplasty
(THA), and total knee arthroplasty (TKA) are done, and more than 1.3 million people live
with artificial joints [4].

Bioactive glasses (BGs), new generation of bio-ceramics, are preferred biomaterials in
a wide range of biomedical applications such as the regeneration of hard tissues (bones
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and drug delivery), owing to their bioactivity (in vitro and in vivo), osteoconductivity,
osteoinductivity, high degradation rate, tailorable morphology (e.g., miniature size, high
specific surface area, pore structure), and favorable physicochemical properties (e.g., bone
bonding potential, biodegradability) [5–7]. BGs can resorb in physiological fluids and
their degradation products stimulate the osteogenesis through increasing cell proliferation
and expression of osteogenic marker genes. Composition, pore size, particle size, and the
specific surface area are the main factors on which the bioactivity and degradation rate
strongly depends. These required characteristics can be obtained by employing mesoporous
bioactive glass nanoparticles (MBGNs).

MBGNs are produced commonly either via the conventional melt quench method or
by using the sol-gel method [8]. The melt quench method facilitates scalability in MBGNs
production. However, it produces inhomogeneous particles in size and shape. Moreover,
sophisticated equipment is required for the melt quench approach. These issues discourage
the wide adoption of this technique for MBGNs production. On the other hand, the sol-gel
method enables to produce MBGNs at relatively low temperature with controlled shape
and size without using any complicated equipment [9].

The physicochemical properties (such as mechanical properties, apatite-forming capa-
bility) of MBGNs can be improved by incorporating peculiar metallic elements [10–12]. In
the last decades, inclusion of metallic ions like aluminum (Al), zirconium (Zr), magnesium
(Mg), strontium (Sr), lithium (Li), zinc (Zn), and silver (Ag), are being used as a substitution
of Ca in MBGNs at low dosage, and can cause promoted functionalities [13,14]. For instance,
the addition of Ag improves the antibacterial properties of bioactive glass nanoparticles
(BGNs), whilst the existence of Li improves the osteogenic activities. Numerous metallic
ions like copper, gallium, strontium, cobalt, cerium, and zinc assimilated in bioactive
glasses to boost bone formation because of their effect on osteogenesis and angiogenesis.

Strontium is an essential trace element in the body, which accumulates frequently in
bones, with a fraction of about 0.035% of the whole calcium. Strontium showed a twofold
job in the bone remodeling process by ever-increasing bone formation and lessening bone
resorption [15,16].

Ag is incorporated in BGs to prepare implants and scaffolds for tissue engineering
owing to its exceptional antibacterial property. Ag ions can stick with the cell wall and
cytoplasmic membranes due to strong affinity with sulfur proteins. These stick Ag ions
may enhance the permeability of cytoplasmic membranes, which in turn causes disruption
of bacterial envelope [17]. Monodispersed BG microspheres tailored with silver nitrate
(AgNO3) are synthesized by a modified Stöber’s method, which shows antibacterial per-
formance [18]. MBGNs assimilated with Ag are supportive for ion release and enhanced
bacterial inhibition. Ag-doped BG is a promising dental material as dental implants are
frequently exposed to bacteria [19–21]. MBGNs combined with Ag nanoparticles indicate
a bactericidal effect against Enterococcus faecalis, which exists in the root canal system
without inducing cytotoxicity on mesenchymal stem cells (MSCs). Therefore, Ag-doped
MBGNs are potential building blocks for preparing orthopedic implants. Bari et al. studied
MBGNs with admirable textural properties, in vitro bioactivity, and excellent antibacterial
properties against different bacteria [20,22–26].

The research work presented in this study involves the synthesis and characterization
of novel Ag- and Sr-containing mesoporous bioactive glass nanoparticles (Ag-Sr-MBGNs)
via a modified Stöber process [27]. MBGNs were initially doped with various concentra-
tions of Sr-Ag (5:1) mole%. Preliminary in vitro bioactivity studies confirmed the suitability
of Ag-Sr-MBGNs for bone tissue engineering applications, through formation of hydrox-
yapatite crystals upon immersion in simulated body fluid (SBF). The controlled release of
Ag-Sr ions also induced the antibacterial characteristics without affecting the bioactivity
of MBGNs. The antibacterial effect correlates with the release of metallic ions in a criti-
cal concentration of ions (Ag), which works against the relevant pathogen or bacteria in
physiological conditions. Therefore, the results presented in this article are anticipated
to be used for a way forward in development of third-generation biomaterials with the
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application of Ag-Sr-based MBGNs for scaffold fabrication as well as antibacterial coatings
on metallic substrates. Osteogenic properties of other ions like Cu, Mn, and Zn, as well
as their antibacterial studies, have also been studied and their cytotoxic effects are also
highlighted in the literature [20].

2. Results and Discussion
2.1. Morphological Characterization

The morphology of the synthesized MBGNs was investigated by SEM analysis. Figure 1
shows that all types of MBGNs have spherical morphology regardless of the addition of
metallic precursor. Figure 1 depicts that average particle size of synthesized MBGNs was
130 ± 15 nm. The microemulsion-assisted sol-gel method favors the dispersion of nanopar-
ticles, which explains the homogeneous size and shape of the obtained nanoparticles [28].
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Figure 1. Scanning electron microscopy (SEM) images showing the morphology of the produced
nanoparticles: (A) pure MBGNs, (B) Ag-MBGNs, (C) Sr-MBGNs, (D) Ag-Sr MBGNs.

Figure 2 (left) confirms the mesoporous nature of the synthesized MBGNs (with
different concentrations). Figure 2 (right) depicts the nitrogen adsorption and desorption
isotherm of Sr-MBGNs, Ag MBGNs, and Ag-Sr MBGNs. Textural properties of Ag, Sr, and
Ag-Sr MBGNs derived from nitrogen adsorption-desorption isotherm analysis depicts a
type IV isotherm according to IUPAC (International Union of Pure and Applied Chemistry)
which confirms the mesoporous structure [26]. Uptake of a high amount of nitrogen at
relative pressure (P/Po) ≈ 0.99 indicates the nano-sized particles. It was deduced from
Figure 2 that all the particles exhibit wide pore size range with the average pore size of
~2.8 nm. Relatively high porosity in the synthesized MBGNs may lead to the high surface
area [29]. This porous nature opens up other biomedical applications such as drug delivery
and microbial cell encapsulation [25].
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Figure 2. BET (Brunauer-Emmett-Teller) results showing the pore size distribution (left) and nitrogen
adsorption-desorption isotherms of synthesized bioactive glass nanoparticles (right).

2.2. Compositional Analysis

The EDX analysis was conducted to confirm the addition of Ag and Sr in MBGNs. For
EDX analysis, powder samples were used. MBGNs powder was dispersed in ethanol and
then ultra-sonicated for half an hour in order to avoid agglomerates. After drying, EDX
analysis was conducted.

Figure 3A represents the peaks of Ag and Sr, which confirmed the substitution of
Ag and Sr in MBGNs. Figure 3B represents the qualitative elemental EDX analysis of the
synthesized MBGNs prior to the substitution of Ag and Sr ions. It was observed that the
Ca and Si peaks are present in MBGNs, which indicated the formation MBGNs [30]. The
results of EDX analysis are in good qualitative agreement with the nominal composition of
the synthesized MBGNs.
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Figure 3. Energy dispersive X-ray (EDX) analysis of the synthesized particles: (A) Ag-Sr MBGNs and (B) MBGNs.

The molecular structure of as-synthesized Ag-Sr MBGNs and the effect of doping
on a network of glass were studied by FTIR spectroscopy, as shown in Figure 4. The
results depicted that no major difference occurs upon doping metallic precursors [30].
The bands around 455 and 1067 cm−1 can be assigned to Si–O–Si rocking and Si–O–Si
stretching modes, respectively [31]. The broad band at 1200 to 1000 cm−1 depicts Si–O–Si
vibrations [32]. The peak around 800 cm−1 is assigned to the Si–O–Si bridging bonds in the
SiO4 tetrahedrons [33].

The XRD diffraction pattern of as-synthesized MBGNs, Ag MBGNs, Sr MBGNs, and
Ag-Sr MBGNs confirmed the amorphous nature (broad peak at 2θ = 20◦–32◦) for all types
of MBGNs, as shown in Figure 5 [34]. Furthermore, the diffraction pattern of Ag-Sr MBGNs
shows no peaks ascribed to the silver and strontium, which suggests the incorporation of
Ag and Sr into MBGNs as well as the chemical homogeneity of Ag-Sr-containing MBGNs. It
was concluded that Ag-Sr MBGNs were successfully synthesized using the microemulsion-
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assisted sol-gel approach presented here, with silver nitrate and strontium nitrate being
effective precursors for incorporating Ag and Sr into the silica network of MBGNs.
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2.3. Zeta Potential

The zeta potential measurements of MBGNs, Ag MBGNs, Sr MBGNs, and Ag-Sr
MBGNs were performed in ethanol, and the results are given in Table 1. It was deduced that
silver and strontium ions changed the surface charge of MBGNs. Strontium substitution
resulted in an increase in positive surface charge, while Ag substitution led to a decrease
in surface charge. The variation in zeta potential by the incorporation of Sr and Ag in
MBGNs may be associated with the pH change (zeta potential is a function of pH). It is
also reported that the addition of Sr in bioactive glass (Sr substitution with Ca) may lead
to the pH change and eventually increase the zeta potential compared to the MBGNs [35].
Positive zeta potential (of Sr-MBGNs) increases the solubility of the nanoparticles and
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may lead to aggregation. However, it also promotes the adsorption of negatively charged
proteins on the surface and improves the efficacy of imaging, gene transfer, and drug
delivery [36]. Ag ion reduces the surface charge of MBGNs due to its relatively high
electronegativity (1.93) compared to calcium (1.0), which facilitates the deposition of Ca2+

ions on the surface and enhances the bioactivity [37].

Table 1. Zeta potential measurements for MBGNs, Ag MBGNs, Sr MBGNs, and Ag-Sr MBGNs
nanoparticles in pure ethanol.

Particles Zeta Potential ± SD (Standard Deviation) (mV)

MBGNs 22 ± 3
Ag MBGNs 15 ± 2
Sr MBGNs 34 ± 3

Ag-Sr MBGNs 17 ± 2

2.4. Ion-Release Profile

The synthesized MBGNs were tracked for ion-release study in order to understand
the effect of ion release on the biological properties, for example, antibacterial activity,
in vitro bioactivity, and cell biology. Figure 6A represents the release of Si and Ca ions from
MBGNs. It was observed that Si showed a rapid release in all samples in the first 7 days,
followed by a relatively slow release up to 21 days. Ca2+ ions were released at a rapid rate
from all types of MBGNs. However, the absolute release of Ca ions decreases with the
increase in the incubation time. The release of Ca ions is beneficial for the osteoconductive
properties of the bioactive glasses.
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(C) Ag MBGNs, and (D) Sr MBGNs samples immersed in SBF (Simulated Body Fluid) measured by
using ICP (Inductively Coupled Plasma) shown in A to D (each experiment was repeated 5 times
and the mean values were reported with the standard deviation represented by the error bars in
the figure).
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Figure 6B shows the release profile of Ag and Sr ions from co-substituted MBGNs
under dynamic condition in SBF solution at 37 ◦C over a period of 21 days. A burst release
of Ag ions was observed in the first 24 h in Ag-Sr MBGNs and Ag MBGNs samples followed
by a steady-state release, indicating long-term sustained release, which will be beneficial
for long-term antibacterial effect. Figure 6C shows the release profile of Si, Ca, and Ag
ions from the Ag MBGNs. We observed a burst release of Ag ions during the first week.
Afterwards, the sustained release of Ag ions was observed. The ion release profile of Si, Ca,
and Ag from Ag MBGNs was similar to the Ag-Sr MBGNs. Furthermore, the release of Sr,
Si, and Ca from Sr MBGNs was similar to that of Ag-Sr MBGNs. Thus, it was concluded
that the co-substitution of Ag and Sr did not affect the release of Si and Ca ions, which will
be helpful in obtaining bioactive properties while keeping the antibacterial effect associated
with the release of Ag ions.

The burst release of both ions (Ag, Sr) was observed from Ag-Sr MBGNs, which might
be due to the concentration gradient between the particles and physiological solution.
Ag ions released in the physiological medium play an important role in the antibacterial
activity. The antibacterial properties (discussed in Section 2.5) of the synthesized MBGNs
were in good agreement with the ion-release data. Ag ions released from Ag-Sr MBGNs
samples were within the concentration range of 2–48 ppm, which has been proven to induce
significant antibacterial properties against Gram-positive and Gram-negative bacterial
strains [38]. The sustained release of Sr ions will be beneficial for in vitro bioactivity [39].
Furthermore, the initial burst release of silver will be useful in preventing the formation
of biofilm and the sustained release of Ag will be effective in providing a long-term
antibacterial effect. It was observed that after 21 days of incubation, the silver release was
in the range of minimum inhibitory concentration level [10]. Furthermore, in the future, it
would be interesting to analyze the release of P ions because the consumption of phosphate
ions from SBF confirms the Hydroxyapatite (HA) formation.

2.5. Antibacterial Study (Turbidity Test)

To investigate the antimicrobial effect of synthesized nanoparticles of different com-
positions, a turbidity test was done. The change in OD600 after 1, 2, 3, 4, 6, and 24 h of
incubation is presented in Table 2. It was observed that the measured OD600 value for the
Ag-Sr MBGNs and Ag MBGNs showed a strong decrease after 6 h of incubation compared
to the control samples (MBGNs and Sr MBGNs). Since Ag ions released a substantial
amount after 6 h of incubation, which resists the growth of E. Coli and S. carnosus, after
24 h of incubation, the cumulative release of Ag ions from Ag MBGNs and Ag-Sr MBGNs
was sufficient to completely hinder the growth of E. Coli and S. carnosus. Moreover, it was
observed that the control samples allowed the growth of E. Coli and S. carnsus after 24 h
of incubation. Thus, it can be concluded that the Ag-Sr MBGNs and Ag MBGNs strongly
retarded the growth of E. Coli cells [40].

Table 2. Results of the turbidity test at optical density of 600 nm (OD600) carried out on MBGNs,
Ag-Sr MBGNs, Ag MBGNs, and Sr MBGNs after 1, 2, 3, 4, 6, and 24 h of incubation (each experiment
is repeated thrice, and the mean value is reported along with the standard deviation).

Time (h) MBGNs Ag-Sr MBGNs Ag MBGNs Sr MBGNs

1 0.010 ± 0.002 0.020 ± 0.003 0.025 ± 0.004 0.010 ± 0.005

2 0.010 ± 0.003 0.030 ± 0.005 0.025 ± 0.008 0.020 ± 0.007

3 0.040 ± 0.005 0.040 ± 0.005 0.030 ± 0.007 0.055 ± 0.009

4 0.050 ± 0.007 0.010 ± 0.002 0.008 ± 0.003 0.065 ± 0.012
6 0.070 ± 0.008 0.005 ± 0.001 0.003 ± 0.001 0.090 ± 0.032
24 0.190 ± 0.010 0 ± 0 0 ± 0 0.205 ± 0.12
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2.6. Disc Diffusion Test (Inhibition Halo Method)

The antibacterial properties of the Ag-Sr MBGNs and MBGNs were also investigated
by the disc diffusion method (Figure 7) to further validate the antibacterial results. The
antibacterial effect was tracked against Gram-negative (E. coli) and Gram-positive (S.
carnosus) bacteria. The growth of E. coli and S. carnosus was prominent on the reference
and pure MBGNs sample after 24 h of incubation. The growth for both types of bacteria
was strongly inhibited by the Ag-Sr MBGNs samples. Figure 7 shows that the zone of
inhibition developed across the MBGNs sample against S. carnosus and E. coli. The strong
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In the current study, Ag was successfully doped in the network of MBGNs (Figure 6)
and the Ag was released in an ionic form rather than the particulate form. Ag in the form
of particles is toxic to the osteoblast cells. However, the controlled release of silver ions
<100 ppm (as the case in the present study, see Figure 6) provided a potent antibacterial
effect against a wide spectrum of bacteria. The release of silver ions was <100 ppm, which
is below the cytotoxic limit of Ag [10,35].

The cytotoxicity of Ag-doped MBGNs depends on the concentration of Ag in MBGNs
and the release profile of Ag [33,41]. However, the cytotoxic effect associated with the
release of Ag ions can be co-doped by the addition of Sr ions. In our previous study, we
have shown that the toxic effect of Ag can be minimized by the co-substitution of Sr and
Mn along with the Ag [1,6,21]. Therefore, this study presents a new frontier in the field of
biomedical materials by the use of co-substituted Ag and Sr ions. The co-substitution of Ag
and Sr is a challenging task because Ag tends to oxidize readily and form AgO. However,
in this study, we developed MBGNs doped with Ag in its pure form (XRD results indicate
no crystalline peak of silver oxide), due to which it was possible to release silver in an ionic
form rather than particulate form [10].
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2.7. In Vitro Bioactivity Analysis

Bioactivity is one of the most desired attributes for bone tissue engineering (BTE). The
ability of the coating to form a bond with the bone is crucial for an implant [42]. Figure 8
represents the EDX analysis of the Ag-Sr MBGNs after immersion in SBF (simulated body
fluid, by Kokobu et al. [42]). The decrease in the intensity of Si peak over the immersion
time in SBF may indicate the degradation of Ag-Sr MBGNs or the formation of a thick layer
of hydroxyapatite (HA) [5]. Moreover, it was observed that the intensity of calcium and
phosphate peaks increased over the incubation time, which indicates the formation of HA
crystals on the surface of the Ag-Sr MBGNs [43]. In vitro bioactivity of pure MBGNs is
illustrated in our previous studies [26]. Furthermore, the toxic effect of Ag MBGNs on the
bioactivity was also illustrated in our previous studies [1,6].
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Figure 9 shows the SEM images of the synthesized Ag-Sr MBGNs after immersion
in SBF. Figure 9 depicts the change in the morphology of nanoparticles. After 7 days of
immersion in SBF, nanostructure and porous HA crystals formed on the surface of the
particles. It was further observed that the plate-like HA crystals form on the surface of
incubated HA. The plate-like structure indicated the calcium-enriched apatite crystals [12].
The FTIR analysis of Ag-Sr MBGNs after immersion in SBF was not investigated in the
current study. However, in our recent study, we presented the FTIR analysis of Ag-
Sr MBGNs incorporated in the chitosan/gelatin matrix after immersion in SBF. It was
observed that the carbonate- and phosphate-related peaks appear after immersion in
SBF [1].
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Studies show that bone reformation is pH-sensitive. During bone remodeling around
the border of osteoclast, pH is 4.0 and the pH of surrounding body fluid is 7.4 [44,45].
Moreover, it is known that the physiological environment of initial fracture hematoma is
acidic, and during healing, it becomes alkaline, which aids bone differentiation [46]. To
study the pH changes, Ag-Sr MBGNs samples were immersed in SBF and then incubated.
SBF solution was changed after every 3 h. Initially, pH of the SBF was set at 7.40 ± 0.02,
and later, the pH was checked at the 3rd, 7th, 14th, and 21st days. Figure 10 shows
that the pH became slightly basic as the immersion time increased, which aids bone
differentiation, as mentioned earlier. The overall curve progression is stable except for a
few midterm fluctuations.
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On the basis of in vitro bioactivity and antibacterial studies, it was inferred that
the Ag-Sr MBGNs provided a potent antibacterial effect while maintaining the typical
bioactivity associated with the MBGNs. According to Reference [41], Ag may affect the
in vitro bioactivity of the MBGNs. Thus, the addition of Sr improved the in vitro bioactivity
and provided an antibacterial effect due to the Ag doping.

3. Conclusions

In this study, we synthesized Ag-doped, Sr-doped, and Ag-Sr-doped MBGNs via mod-
ified Stöber method and sol-gel process. SEM images confirmed the spherical morphology
of all the synthesized particles. BET results confirmed the mesoporous nature of all the
synthesized MBGNs. It was deduced that the addition of metallic ions did not affect the
morphology of MBGNs. Furthermore, XRD results confirmed the doping of Ag and Sr
in the silica network of MBGNs. The XRD patterns confirmed the amorphous nature of
the synthesized MBGNs with all the different concentrations. The release of Ag and Sr
ions was tracked by the ICP studies. The results confirmed that during the first day of
incubation, Ag and Sr showed a burst release. However, with the increase in incubation
time, Ag and Sr were released in a sustained manner, thus providing a long-term thera-
peutic effect. The controlled release of Ag provided a potent antibacterial effect, while the
release of Sr ions improved the in vitro bioactivity. The peculiar morphological features of
the synthesized Ag-Sr MBGNs and the feasibility of functionalizing these MBGNs with
active ions or biomolecules suggest that the synthesized MBGNs based on SiO2-CaO in this
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study are a promising material for biomedical applications, including bone regeneration
and wound cure.

4. Materials and Methods
4.1. Materials

Tetraethyl orthosilicate (TEOS) 99% (Sigma Aldrich, Steinheim, Germany), calcium
nitrate (Ca (NO3)2.4H2O) 98% (Sigma Aldrich, Steinheim, Germany), silver nitrate (Ag
(NO3)2) 99% (Sigma Aldrich, Steinheim, Germany), and strontium nitrate (Sr (NO3)2) 99%
(Sigma Aldrich, Steinheim, Germany), were used as silicon, calcium, silver, and stron-
tium sources, respectively. Furthermore, ethyl acetate 99.8% (Sigma Aldrich, Steinheim
Germany), cetyltrimethylammonium bromide (CTAB) 98% (Merck, Billerica, MA, USA),
ammonium hydroxide 35% (VWR, Shanghai, China), distilled water, and absolute ethanol
99.8% were used. All chemicals used were of analytical grade.

4.2. Synthesis of Ag-Sr-Containing MBGNs (Stöber Process)

Ag-Sr MBGNs were prepared by a modified Stöber process [33,47]. Firstly, 0.56 g
CTAB was dissolved in 26 mL of distilled water under continuous stirring for 30 min at
40 ◦C. Then, 8 mL ethyl acetate was added dropwise into the solution. Thirdly, 26 mL
of diluted solution of ammonium hydroxide (32 vol.%) was added to maintain pH at
9.5 and 6 mL of TEOS and was added dropwise into the above solution under continuous
stirring. Then, 2.24 g calcium nitrate, 0.0834 g silver nitrate, and 0.42 g strontium nitrate
was added depending upon the required composition and followed by magnetic stirring
for 30 min. Afterwards, the solution was allowed to pursue reaction between the reactants.
Subsequently, the suspension was centrifuged at 7830 rpm for 10 min to separate particles
from the parent solution, followed by washing the sedimented particles with ethanol. This
step was repeated three times. Finally, the precipitates were dried in an oven at 75 ◦C
for 12 h, followed by calcination at 700 ◦C for 5 h. Figure 11 illustrates the synthesis of
Ag-Sr-doped MBGNs.
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Stöber method.

In this study, MBGNs with three different compositions were synthesized, i.e., MBGNs
doped with 5 mol% Sr (5Sr-MBGNs), 1 mol.% Ag (1Ag-MBGNs), and 5 mol.% Sr and



Gels 2021, 7, 34 12 of 15

1 mol.% Ag (5Sr-1Ag MBGNs). Table 3 illustrates the nominal composition of the synthe-
sized MBGNs.

Table 3. Nominal composition of as-synthesized MBGNs.

Mesoporous Bioactive Glass Nanoparticles Type
Composition (mol.%)

SiO2 CaO SrO AgO

MBGNs 70 30 0 0
5Sr-MBGNs 70 25 5 0
1Ag-MBGNs 70 29 0 1

5Sr-1Ag MBGNs 70 24 5 1

4.3. Characterization of Ag-Sr-Doped MBGNs
4.3.1. Morphological Characterization

The surface morphology of the as-prepared nanoparticles as well as those obtained
after bioactivity tests was investigated using scanning electron microscopy (SEM; LEO
435VP, Carl Zeiss™ AG, Jena, Germany). First, to make the samples conductive and reduce
the effect of charging, the samples were coated with a thin layer (around 10 nm) of gold via
the sputtering technique (Q150/S, Quorum Technologies™, Lewes, UK). The SEM images
were taken at different magnifications.

To further investigate the morphology of MBGNs, the BET (Brunauer−Emmett−Teller)
analysis was carried out. Nitrogen adsorption/desorption was used to measure the pore
volume (porosity).

4.3.2. Compositional Analysis

Energy-dispersive X-ray spectroscopy (EDX; X-MaxN Oxford Instruments, Abingdon,
UK) was used to determine the composition of the as-synthesized particles. Furthermore,
the ratio of the different elements in the hybrid nanoparticles was evaluated. In order to
conduct EDX analysis, the synthesized Ag-Sr MBGNs (10 mg) were pressed into the pellets
and then EDX analysis was conducted by using the working distance of 6 mm and energy
of 25 KV. In order to conduct the EDX analysis after immersion in SBF, the samples were
coated with a thin layer (around 10 nm) of gold via the sputtering technique (Q150/S,
Quorum Technologies™, Lewes, UK).

Fourier transform infrared spectroscopy (FTIR) measurements were carried out on
pellets of Ag-Sr-, Ag-, and Sr-doped MBGNs using the potassium bromide (KBr) disk
method on a Shimadzu IRAffinity-1S (Shimadzu Corp, Kyoto, Japan), equipped with Lab
Solution IR software and a Quest ATR GS10801-B single-bounce diamond accessory (Specac
Ltd. London, UK) at room temperature. In order to prepare samples for FTIR studies, the
MBGNs were grounded to a fine powder, followed by mixing with KBr powder in the
MBGNs:KBr ratio of 1:100. The mixture was subjected to further grinding to achieve a
homogeneous mixture, followed by pressing using a hydraulic pressure of 5 tons/cm2

to form the disk samples. The IR transmission spectra were recorded immediately after
preparing the discs. For optimal results, the device was cleaned with ethanol before the
sample was applied. Furthermore, a background scan was conducted with 128 runs. Every
sample was measured with 128 transmittance scans with a resolution of 4 cm−1 in Happ-
Genzel apodization using wavelengths from 400 to 4000 cm−1. To reduce the signal noise,
the spectra were smoothed by 15 points.

In addition to FTIR, the samples of Ag-Sr-doped MBGNs were tested with X-ray
diffraction (XRD) (MiniFlex 600, Rigaku Corporation, Tokyo, Japan) to characterize the
doped MBGNs and pure MBGNs. The diffraction pattern was recorded using Ni-filtered
Cu Kα radiation (λ = 1.54 Å) operated at 40 kV and 40 mA over the 2θ angular range of
20–80◦ (with 0.02◦ step and a speed of 2◦ per minute).
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4.3.3. Zeta Potential

To measure the zeta potential, the Zetasizer Nano zsp (Malvern Panalytical, London,
UK) was used. The analyzed suspensions (powder samples in absolute ethanol) were
diluted to the ratio of 0.1 g.L−1 in particles. Three measurements per suspension at standard
pH were taken at a maximum of 100 runs each and averaged. After each measurement, the
cell was flushed out with ethanol again.

4.3.4. Ion-Release Profile

To investigate the Ag and Sr ion release from prepared Ag-Sr MBGNs, 75 mg of powder
sample was dispersed in SBF solution (50 mL) for different time intervals (day 1, day 3,
day 7, day 14, and day 21) in an orbital shaking incubator at 37 ◦C. Ag and Sr ions released
in the medium under dynamic conditions were measured, using ICP-OES (inductively
coupled plasma/optical emission spectrometry) from IRIS Advantage, Thermo Jarrell
Ash. Approximately 1 g of the sample was dissolved in a 5% HNO3 solution and heated
gently to ensure complete dissolution. The solution was made up to 50 mL volumetrically
and analyzed by ICP-OES (IRIS Advantage, Thermo Jarrell Ash, Waltham, US) against a
calibration traceable under ISO: 17,025 guidance.

4.3.5. Antibacterial Studies

To test the antimicrobial properties of synthesized particles, an antibacterial test (called
turbidity test) was conducted [48,49]. To grow E. coli and S. Carnasous bacteria in test tubes,
a sterile wooden tip was used to scratch bacteria from a frozen sample and dropped
into Lysogeny broth (LB-medium). After an incubation of 24 h, the medium had a high
concentration of bacteria and was ready to use. Ag-Sr MBGNs, Ag MBGNs, Sr MBGNs,
and Ag-Sr MBGNs were added in the test tubes and incubated for 24 h. Then, an optical
density (OD) measurement was performed with absorbance at 600 nm (OD600). For each
measurement, OD600 medium was taken as a reference.

4.3.6. Disc Diffusion Test

Petri dishes were spread homogenously with heated agar inoculated with bacteria
(E. coli and S. Carnasous). Afterwards, the prepared pellets of different concentrations of
MBGNs were placed and then incubated at 37 ◦C for 24 h. After 24 h of incubation, the
petri dishes were taken out and digital images were taken to track the zone of incubation.

4.3.7. In Vitro Bioactivity Test

In vitro bioactivity of the synthesized Ag-Sr MBGNs was investigated following
Kokubo et al. [50]. The composition of SBF was adopted from Reference [33] and the pH
was set at 7.4. The synthesized Ag-Sr MBGNs were pressed into the pellets by using an
electrohydraulic pressing device (Mauthe Maschinenbau, Salem, Germany). The prepared
pellets were immersed in SBF, and the volume of SBF was set to 1 mg/mL. The SBF solution
was changed every three days to simulate a refreshing system. The different sets of samples
were taken after 1, 7, and 30 days. The samples were gently washed with (De-ionized)
DI-water to prevent salt crystals on the surface and put into the heating stove at 60 ◦C
for drying. After drying, the samples were weighed for the degradation studies and
characterized using SEM and EDX analyses.
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