
 International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences
Journal homepage: http://www.science-gate.com/IJAAS.html

82

Dependability in fog computing: Challenges and solutions

Sara Alraddady 1, *, Alice Li 1, Ben Soh 1, Mohammed AlZain 2

1La Trobe University, Melbourne, Australia
2College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

A R T I C L E I N F O A B S T R A C T

Article history:
Received 4 October 2020
Received in revised form
20 December 2020
Accepted 23 December 2020

The tremendous increase in IoT devices and the amount of data they
produced is very expensive to be processed at cloud data centers. Therefore,
fog computing was introduced in 2012 by Cisco as a decentralized computing
environment that is considered to be more efficient in handling such a
plethora in the number of requests. Fog computing is a distributed
computing paradigm that focuses on bringing data processing at the network
peripheral to reduce response time and increase the quality of service.
Dependability challenges of such distributed and heterogeneous computing
environments are considered in this paper. Because fog computing is a new
computing paradigm, several studies have been presented to tackle its
challenges and issues. However, dependability in specific did not receive
much attention. In the paper, we explore several solutions to increase
dependability in fog computing such as fault tolerance techniques, placement
policies, middleware, and data management mechanisms aiming to help
system designers choose the most appropriate solution.

Keywords:
Fog computing
Fault tolerance
Availability
Placement policy

© 2021 The Authors. Published by IASE. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

*The exponential increase in Internet of Things
(IoT) technology led to digitizing all aspects of our
lives. The number of connected devices is expected
to reach 50 billion devices. IoT devices range from
household devices to industrial, autonomous
transportation, smart cities, and environmental
monitoring sensors/actuators. All these devices need
to be connected to the internet to meet their
prospective. Cloud computing with its services
(platform, infrastructure, and software) can be a
propitious option for IoT devices.

However, cloud computing cannot handle the
massive growth. Contacting cloud data centers is
considered to be expensive and rises network
bottleneck congestion issues. Furthermore, the delay
tolerance of IoT devices varies depending on how
critical they are. For example, health care and traffic-
controlling IoT devices require lower response times
than household IoT devices. At this level, the need
for a decentralized computing architecture has
emerged. In 2012, Cisco has introduced fog

* Corresponding Author.
Email Address: s.alraddady@latrobe.edu.au (S. Alraddady)

https://doi.org/10.21833/ijaas.2021.04.010
 Corresponding author's ORCID profile:

https://orcid.org/0000-0001-6228-9696
2313-626X/© 2021 The Authors. Published by IASE.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

computing as an extension to cloud computing which
focuses on bringing data processing geographically
closer to the data source (CS, 2015). OpenFog
consortium defines fog computing as “a horizontal
system-level architecture that distributes computing,
storage, control, and networking functions closer to
the user along to a cloud-to-thing continuum” (OFC,
2017). This augmentation allows distributing the
workload over widespread computing resources to
reduce response time and bandwidth consumption
resulting in a higher quality of service. Several
hierarchies of fog computing can be implemented
based on the system requirements, yet the most
common one is illustrated in Fig. 1.

As depicted, the lowest layer of the architecture
consists of IoT sensors/actuators and mobile
devices. The middle layer contains fog devices, which
have relatively limited computing resources like
gateway servers, routers, switches, access points, or
desktop computers. Lastly, the highest level is cloud
data centers, which have supercomputing
capabilities in terms of processing and storage
mediums (OFC, 2017).

Heterogeneity of fog nodes and end devices in fog
computing architecture is a major feature that helps
to utilize already existing computing resources, yet it
complicates the managing process (Bansal and
Kumar, 2020). Such a diversified environment must
be considered when designing fog environments in
terms of computing capabilities, power
consumption, and connectivity. Furthermore, the

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.alraddady@latrobe.edu.au
https://doi.org/10.21833/ijaas.2021.04.010
https://orcid.org/0000-0001-6228-9696
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2021.04.010&domain=pdf&

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

83

decentralized nature of fog computing along with its
heterogeneity rise the importance of questioning its
dependability in order for business holders and

decision-makers to adopt this new computing
paradigm.

Fig. 1: Architecture of fog computing

An example that clarifies the importance of
studying fog applications’ dependability can be
found in the smart city scenario. Fog computing
applications in smart cities can be used to monitor
public security in a form of smart cameras for CCTV
which generate a huge amount of data that makes it
very challenging to be processed and stored. Another
area that can benefit from fog applications in smart
cities specifically is environmental monitoring in
which sensors read and calculate air, lakes, and noise
pollution and detect natural disasters (Mohamed et
al., 2019). Accordingly, dependability measures vary
depending on fog applications.

This paper is structured as follows: Sections 2
discuss relevant research papers. Section 3 discusses
the dependability of fog computing and
differentiates between availability and reliability as
performance metrics, and surveys different
mechanisms to improve the dependability of fog
computing including fault tolerance techniques,
placement policies, middleware, and data
management. Section 4 concludes the paper.

2. Related works

Although fog computing is a relatively new
computing paradigm, studies focusing on the
challenges and issues of fog computing are
numerous. Existing studies fall into two categories.
The first category contains studies that address
general problems that might arise when deploying
fog computing; for example, Arivazhagan and
Natarajan (2020) pointed up several challenges to be
addressed in the fog paradigm including effective
security mechanisms related to authentication and
denial of service. Reliability, context awareness, user
context, deploying fault-tolerant fog nodes,
bandwidth management, energy consumption, and
data dissemination were also brought out as major
issues. Also, Bansal and Kumar (2020) provided a
taxonomy for IoT systems that focuses on system
architecture, communication, middleware, security,
and the relationship between IoT systems and fog

computing, and big data. The second category
includes studies that investigate a specific aspect of
fog computing; for example, Heidari et al. (2020)
focused on offloading mechanisms for IoT devices
since fog computing systems include IoT devices that
have limited computing resources and in need of
more powerful computing capabilities to handle the
immense volume of data generated. Authors survey a
number of offloading mechanisms and offer a
parametric comparison to help practitioners and
system designers choose the most suitable
mechanism. Moreover, Moura et al. (2020)
addressed issues of fog computing in the healthcare
sector by analyzing the most significant published
related work in the past 10 years several challenges
were tackled such as interoperability, security, big
data, and resources management.

Therefore, the importance of our paper relies on
the fact that it focuses on a specific aspect of fog
computing which is dependability unlike the first
category of existing work. Moreover, enhancing the
dependability of fog computing did not receive much
attention. We hope this paper provides better insight
for system designers when it comes to deciding what
is suitable for a fog environment.

3. Dependability in fog computing

Generally, dependability is a broad term that
encapsulates the reliability, availability,
performability, maintainability, and safety of a
system (Johnson, 1989). This paper focuses on the
reliability and availability of fog computing in
precise.

Reliability in distributed computing systems is a
broad term that can be related to system’s proper
functionality without any service disruption,
system’s design in terms of how the requirements
are met, and the system’s ability to tolerate failures
and recover from them without undesired results
(Ahmed and Wu, 2013). Reliability in fog computing
is defined as the continuous functioning of a system
in normal or adverse conditions as stated by

Data Center

Fog nodes layer

IoT devices layer

Cloud layer

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

84

OpenFog Consortium (OFC, 2017). Like any
distributed computing system, if the system’s
components are not well-connected or lack
orchestration, the system’s performance will not
satisfy. Given the fact that fog computing is a highly
heterogeneous environment, the reliability of fog
computing can be considered as a combination of
three aspects: Device reliability, connection
reliability, and software reliability (Popentiu-
Vladicescu and Albeanu, 2017).

Availability is defined as “the probability that the
system can complete a predetermined function
under a predetermined condition'' (Dong et al.,
2013). From a business perspective, according to Liu
et al. (2010), service availability definition differs
from users’ perspective to business or service
provider. Users define service availability as
response time while service provider defines it as
how much the provided service contribute to
business vitals. However, one of the fundamental
service availability measures is Service Level
Agreements SLA. These agreements combine the
interests of users and service providers to determine
and evaluate the provided service. Availability in fog
computing is defined as continuous management
and orchestration, which is usually measured by up
time as stated in OpenFog Consortium (OFC, 2017).
Nguyen et al. (2020) highlighted that availability is a
metric of quality of service (QoS), and service
disruption can lead to undesirable outcomes
including business revenue loss, resource damage, or
even human loss.

The difference between reliability and availability
relies on the time factor. For reliability, the system’s
performance is calculated for an interval of time. On
the other hand, the system’s availability is calculated
for an instance of time (Johnson, 1989). Improving
reliability and availability in fog computing
paradigms is still in the early stages and did not
receive much attention, yet some remarkable studies
have been conducted and will be investigated in this
paper.

Ensuring high dependability in fog computing can
be achieved via different methods. These methods
include fault-tolerant techniques, middleware,
context-aware placement policies, and data refining
mechanisms. Using fault tolerance techniques
mitigates the ramifications of faults in fog nodes and
network connectivity, while middleware helps to
manage the heterogeneous nature of fog computing
to improve QoS. Moreover, context and mobility-
aware placement policies increase the availability of
fog computing by choosing the most suitable
algorithm to process queued requests based on
request priority and number of requests to ensure
load balancing and enhance overall system
performance. Lastly, data refining mechanisms
reduce the amount of data sent to the main cloud by
identifying and sending meaningful data instead of
forwarding raw data which results in higher QoS and
better resource utilization. The next sections
highlight the challenges and solutions for each of the
above methods.

3.1. Fault tolerance techniques

Fault tolerance has emerged since the beginning
of distributed computing. This concept is defined as
a systems’ survival attribute in which it can operate
with the existence of faults in any part of it. Fault
tolerance techniques have been introduced to
minimize fault manifestation in computing systems.
These techniques consist of extra hardware,
software pieces, or extra time slot to replicate a
certain job. This replication is used as a backup in
case of failure (Johnson, 1996). Redundancy,
watchdog, checkpointing, and retry are the most
popular fault tolerance techniques.

Focusing more on enhancing service availability
in fog computing, the authors in Grover and
Garimella (2018) presented a fog computing
architecture that is capable of replicating data at
edge nodes. In the architecture, three types of nodes
are presented. They are (1) Dew Nodes: Located at
the extreme edge of the network and have small
computational power. These nodes are suitable for
real-time processing. (2) Mist Nodes: processing
nodes that can be placed at an institutional level with
higher computation power when compared to dews.
(3) Fog Nodes: these nodes have storage capacity
and are higher in the hierarchy than dew and mist
nodes. They can be accessed by ISP and many mist
nodes can connect to a fog node. (4) Cloud Server:
The highest level of the hierarchy. The novelty of this
work relies on data replication at the edge of the
network. All data sensed by IoT devices are
replicated in a parallel fashion at the same level.
Once a shutdown or a failure occurs, the mobile
agent starts investigating the incident and its effects
and respond accordingly. A mobile agent (MA) is a
piece of software that can travel across a network to
perform certain tasks on behalf of users (Pham and
Karmouch, 1998). Here, MA runs on all dew, mist,
and fog devices to share information that is used to
communicate with other devices in the network and
to fetch priority index in case of failure to be carried
out at a different node from the same level or a
higher one. Simulation results show that using an
intelligent agent as MA enhances the performance of
fog computing when compared to a centralized
computing environment in terms of CPU
consumption and application assignment during
faults.

Addressing hardware failures or lost
communication with cloud layer issues; Javed et al.
(2018) designed three layers of fault-tolerant
architecture for IoT applications. The main focus of
the proposed architecture is to build a highly
available system that can operate even when the
connection to the main cloud is lost or any physical
harm has been done to edge nodes by replication
data at the edge. The authors believe that local data
replication ensures data fault tolerance in scenarios
like harsh environments or criminal activities
occurrence. The three layers in the architecture are
(1) Application Isolation layer which is responsible
for wrapping processes into independent blocks

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

85

using Linux containers, Docker in specific. (2) Data
Transport layer providing a publish/subscribe
messaging framework for data replication within the
cluster, and also support data transport in data
pipeline form. (3) Multi-cluster Management layer to
monitor the above layers and assign requesting to
physical nodes based on fault tolerance requirement
and load balancing. The architecture has been
applied on a surveillance camera scenario to
evaluate the proposed architecture in terms of fault
tolerance, in this case, physical damage. The results
show that the system is able to tolerate a failure of
two nodes out of five nodes. Additionally, data that
was replicated within the cluster or at the cloud was
reachable even after the damage which alleviates the
outcomes of losing two nodes.

Choudhury et al. (2019) presented an event-
based service replication scheme for a fog quasi-
Adhoc environment to increase system availability.
In smart city scenarios, users’ mobility throughout
the day can provide computing resources at a certain
time of the day more than the rest of the day based
on users’ movements. Choudhury et al. (2019)
designed a scheme that can maximize resource
utilization during such times. The scheme consists of
three modules that function correlatively in order to
decide what service needs to be replicated and what
node is most suitable to function as a replication
agent based on context. The first module is the
proactive sensing module designed to sense all
events that might require replication. The sensing
outcome from this module is called an event. Each
event includes a pair of the service that needs
replication and source node. All events are
forwarded to the next module which is the context
computation. This module calculates the logical-
physical context to decide the suitability of server
nodes. The last module in the proposed scheme is
the decentralized computation distribution problem
(DCDP) module which is responsible for mapping the
services to the replicating nodes in a resource
utilizing manner while maintaining the required
quality of service. The performance of the scheme
has been evaluated and compared to recent
algorithms in terms of service availability, response
time, and resource utilization. The simulation results
of the proposed algorithm showed performance
improvement based on the previously mentioned
criteria in comparison to the existing algorithms.

Furthermore, Guerrero-Contreras et al. (2017)
presented a mobile clouds architecture that focuses
on enhancing service availability using dynamic
service replication in that activating and hibernating
service replication module is based on context.
Depending on monitored information, the service
replication module selects the most suitable node to
operate as a replica for the requesting node. The
limitation of the proposed model is its lack of
flexibility. New services are not allowed during run
time. Furtherly, since this model relies on mobile
devices, the mobility nature of the devices degrades
the availability of the system due to battery
constraints and network connectivity.

Another fault tolerance technology used to
enhance reliability, called checkpointing and retry,
has been used by Neto et al. (2018). The checkpoint
technique performs interval checkpoints which the
system can roll back to when a failure occurs. The
retry technique restarts request executing from the
last checkpoint. In their presented work, Neto et al.
(2018) designed an agent-based architecture to
predict price changes for virtual machine services
with transient servers offered by Amazon AWS
supported by machine learning. They used real data
provided by Amazon AWS of price changes in 12
months. Based on the results of their experiments
involving the architecture, the authors reached an
accurate prediction of 94%.

3.2. Placement policies

Placement policies play a major role in improving
fog computing’s dependability since placement
policies are responsible for determining where to
process all requests placed by end-users to reach a
higher quality of service. Given the fact that context,
mobility, and latency are the major factors that affect
fog systems’ dependability, researchers have
proposed several placement policies that are capable
of handling changes in these factors to cope with the
dynamic nature of fog computing to ensure higher
systems’ uptime and reasonable recovery time. Maiti
et al. (2019) evaluated several algorithms to select
the lowest cost fog node which is randomized,
greedy, k-median, k-means, and initial centroid
finding method. MATLAB is used to evaluate the
effectiveness of each method in reducing latency.
Also, the relationship between the number of nodes
and latency has been observed. Results of the study
can be used in designing fog computing
environments in order to reach service level
agreements.

Designing a mobility-aware fog computing
environment for a smart city; Bittencourt et al.
(2017) presented a fog computing model which
includes context-aware placement policies to
enhance the quality of service of fog computing
leading to higher availability. Used placement
policies are first come first served, delay priority,
and concurrent. Users’ mobility (or density in a
certain area) is the major factor in deciding which
policy is more efficient to handle end users’ requests.
For example, when requests density increases at a
certain location during rush hour, fog nodes change
placement policy from FCFS to delay-priority. In
order to evaluate the model, two fog applications
were presented here, viz. the EEG game and VOST
surveillance application. These two applications are
from different classes (delay priority, real-time)
respectively. Simulating the model included running
the two applications with the three different
placement policies, and it showed that the
concurrent strategy resulted in the quality of service
degradation which was avoided by the second
strategy FCFS. Delay priority strategy, on the other
hand, caused the surveillance application higher

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

86

latency than the other two strategies while the game
application performance was more satisfactory. In
conclusion, to achieve the potential of the fog
computing paradigm, selecting placement policies
must take into consideration users’ mobility which
requires deep study of the fog environment.

Lera et al. (2018) presented placement police for
fog services. Here, availability is measured by the
number of services IoT devices received within their
time ratio. The study focuses on examining
community relationships between fog devices to
improve service availability. The proposed strategy
consists of two phases using community structured
fog devices. The first phase maps the application to
fog devices within the same community, and the
second phase is responsible for services placement
by prioritizing interrelated services. Lera et al.
(2018) used transitive closures to partition the
application and combination of complex network
communities for devices partitioning. The result of
the proposed work after testing two scenarios was
that the presented policy outperformed the integer
linear programming approach in terms of response
time.

Additionally, Mahmud et al. (2019) proposed a
placement policy for fog computing environments to
enhance users’ quality of experience (QoE) by
improving resource availability. Fog applications in
this environment have two modules which are the
client module and the main application module. The
used architecture for this specific placement policy
consists of two types of fog nodes which are fog
gateway nodes (FGNS) and fog computational nodes
(FCNS), and they differ in capabilities since each one
of them has a different task to accomplish. FGNS can
be handheld devices or cable modems and is
responsible for mapping the main application
module based on the received user’s expectations
and FCNS’s resources index using fuzzy logic models.
This approach prioritizes users’ expectations while
maintaining better resource utilization to improve
users' QoE. Evaluating the proposed policy, QoE’s
measured metrics were service availability, service
processing time, and resource affordability was
calculated during simulating the policy using
iFogsim. Simulation results showed that 92% of
applications received a higher processing time
reduction ratio in terms of resource gain and
network relaxation ratio.

3.3. Middleware

Middleware is a program that enables the
communication between entities, which can be
software or hardware elements, in distributed
computing environments. It simplifies combining,
developing, and executing applications without
complexity hassles. Since fog computing is not only a
distributed environment but also a very
heterogeneous one, middleware can be very
advantageous in connecting such diversified
components. Mohamed et al. (2017) presented a
service-oriented middleware (SmartCityWare) for

fog computing in smart cities to enhance availability
in fog environments. It is designed as a utilization
tool to support services in smart cities. All functions
in the middleware are treated as services either core
services or environmental ones. Core services can be
broker, security, or location-aware services, which
are services related to management. On the other
hand, environmental services are all the services
provided by any component (Cloud, fog, and IoT).
The main function of the middleware is to facilitate
communication smoothly between all aspects and
provide an interface to support smart city
applications. An example of these applications was
introduced to explain the mechanism of the
middleware and evaluate the middleware
performance in terms of response time and service
lookup time. What makes SmartCityWare different
from other middleware platforms is the fact that it
considers all components as services for smooth
services integration which results in unlimited
opportunities for development.

Furthermore, one of the challenges that need to
be addressed is the amount of data produced by IoT
devices. Clemente et al. (2017) addressed the issue
of raw data and their effect in downgrading the
quality of service in fog computing. They designed a
distributed cooperative data analytics middleware
(DCDA) to mitigate bandwidth limitations and
latency caused by IoT raw data and reach a higher
QoS rate. The main idea of the middleware is to
maintain data processing and analysis at the edge
level to reduce latency. It manages three different
levels of data which are: Operational (low/edge
level), historical (intermediate/fog level), and
filtered data (high/cloud level). Each node in the
proposed scheme has some computing capabilities, a
library manager, and an adapter to select the correct
algorithm from the functions’ library and a
middleware visualizer that handles results
monitoring. Two case studies that require real-time
processing were tested in order to evaluate the
middleware. Simulation results proved that
analyzing data at edge level significantly reduces
latency and increases scalability and robustness
since the proposed middleware reduced bandwidth
cost. Moreover, fault tolerance of the middleware
was investigated by simulating the failure of links
and nodes, and no considerable impact was
witnessed. In conclusion, the proposed middleware
proved that processing and analyzing data at the
edge level significantly reduces latency by
eliminating sending raw data to cloud data centers
and decrease bandwidth cost.

3.4. Data refining mechanisms

Data processing, storing and analyzing in fog
computing play a major role in the overall
performance since IoT devices can produce a
massive amount of data. Refining data before
processing is one technique to increase
dependability in fog computing specially in semi-
critical environment where some requests are non-

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

87

delay tolerant compared to other requests in the
same environment. When data is filtered, higher
availability is ensured since fog nodes are not being
occupied by meaningless data processing.
Accordingly, Wang et al. (2020) presented a
framework that is designed for IoT healthcare
systems for elderly people. Framework’s
functionality consists of three aspects: Fault-tolerant
data transmission, self-adapting filtering, and data
load reduction. Architecturally, fog nodes in the
framework fall into two categories which are storage
nodes and processing nodes. Storage nodes store
data temporarily to be sent later to the cloud data
center and sent to processing nodes upon request.
For reliable data transmission, storage nodes have
more than one connection to processing nodes to
track lost data packets through broadcasting and
flooding mechanisms. Filtering is the next step after
ensuring that data are complete. Predefined requests
have been used to classify requests. Once the request
is received, category checking is executed to identify
health-related requests to be prioritized. Further, the
risk assessor function is used to determine the
danger level of placed requests that will send an
alarm once a threshold has been hit which means an
elderly person is in danger. For allocating requests’
queue, a simplified version of the reduced variable
network search mechanism is implemented. This
mechanism is useful since it provides processers the
capability to prioritize more valuable data. Based on
the results of simulation on the framework, the
authors concluded that using self-adapting and fault-
tolerant mechanisms ameliorate data transmission
in fog computing.

Managing data storage is another technique
presented by Steffenel (2018). Enforcing control on
where to store data and which aspect of a fog
computing environment is more efficient to handle it
can improve reliability, according to the author.
Here, data locality and locality-aware scheduling
mechanisms are presented. Data storage is provided
through modified distributed hash tables to include
location keys to be used in task allocation. This step
contributes to increasing the probability of
processing data at a nearby node that is closer to the
data source or meets resource requirements.
Additionally, the location key is used by the
scheduler in task allocations and prioritizing tasks
that need local data. Also, to reduce the overhead
caused by storing data on fog nodes and to ensure
fault tolerance in the proposed framework, data
storing mapping can be used to store data in nearby
nodes. Reading and writing performances have been
evaluated, and the author concluded that the
proposed mechanisms can be useful for intensive
data fog applications.

4. Conclusion

As IoT devices increase nowadays, a
decentralized computing environment is required to
manage the massive growth of requests. Fog
computing is considered the underpinning for IoT

technology to reach its potential. The heterogeneity
and distributed nature of this new computing
paradigm rises the issue of investigating its
availability. Managing and orchestrating fog
computing aspects are necessities to reach a
satisfactory quality of service. Research on fog
computing availability is surveyed to provide a
better insight into the challenges and solutions with
respect to fog computing dependability. Based on the
current literature, we conclude with four methods to
deal with the challenges discussed in the paper: fault
tolerance techniques, placement policies,
middleware, and data refining mechanisms.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of
interest with respect to the research, authorship,
and/or publication of this article.

References

Ahmed W and Wu YW (2013). A survey on reliability in
distributed systems. Journal of Computer and System
Sciences, 79(8): 1243-1255.
https://doi.org/10.1016/j.jcss.2013.02.006

Arivazhagan C and Natarajan V (2020). A survey on fog computing
paradigms, challenges and opportunities in IoT. In the
International Conference on Communication and Signal
Processing, IEEE, Chennai, India: 0385-0389.
https://doi.org/10.1109/ICCSP48568.2020.9182229

Bansal S and Kumar D (2020). IoT ecosystem: A survey on devices,
gateways, operating systems, middleware and
communication. International Journal of Wireless Information
Networks, 27: 340-364.
https://doi.org/10.1007/s10776-020-00483-7

Bittencourt LF, Diaz-Montes J, Buyya R, Rana OF, and Parashar M
(2017). Mobility-aware application scheduling in fog
computing. IEEE Cloud Computing, 4(2): 26-35.
https://doi.org/10.1109/MCC.2017.27

Choudhury B, Choudhury S, and Dutta A (2019). A proactive
context-aware service replication scheme for Adhoc IoT
scenarios. IEEE Transactions on Network and Service
Management, 16(4): 1797-1811.
https://doi.org/10.1109/TNSM.2019.2928698

Clemente J, Valero M, Mohammadpour J, Li X, and Song W (2017).
Fog computing middleware for distributed cooperative data
analytics. In 2017 IEEE Fog World Congress, IEEE, Santa Clara,
USA: 1-6. https://doi.org/10.1109/FWC.2017.8368520

CS (2015). Fog computing and the internet of things: Extend the
cloud to where the things are. Cisco Systems, San Jose, USA.

Dong WE, Nan W, and Xu L (2013). QoS-oriented monitoring
model of cloud computing resources availability. In the
International Conference on Computational and Information
Sciences, IEEE, Shiyang, China: 1537-1540.
https://doi.org/10.1109/ICCIS.2013.404 PMid:23614461

Grover J and Garimella RM (2018). Reliable and fault-tolerant IoT-
edge architecture. In the IEEE Sensors, IEEE, New Delhi, India:
1-4. https://doi.org/10.1109/ICSENS.2018.8589624

Guerrero-Contreras G, Garrido JL, Balderas-Diaz S, and Rodriguez-
Dominguez C (2017). A context-aware architecture
supporting service availability in mobile cloud computing.
IEEE Transactions on Services Computing, 10(6): 956-968.
https://doi.org/10.1109/TSC.2016.2540629

https://doi.org/10.1016/j.jcss.2013.02.006
https://doi.org/10.1109/ICCSP48568.2020.9182229
https://doi.org/10.1007/s10776-020-00483-7
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1109/TNSM.2019.2928698
https://doi.org/10.1109/FWC.2017.8368520
https://doi.org/10.1109/ICCIS.2013.404
https://doi.org/10.1109/ICSENS.2018.8589624
https://doi.org/10.1109/TSC.2016.2540629

Alraddady et al/International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88

88

Heidari A, Jabraeil JMA, Jafari NN, and Akbarpour S (2020).
Internet of Things offloading: Ongoing issues, opportunities,
and future challenges. International Journal of Communication
Systems, 33(14): e4474. https://doi.org/10.1002/dac.4474

Javed A, Heljanko K, Buda A, and Främling K (2018). Cefiot: A
fault-tolerant IoT architecture for edge and cloud. In the IEEE
4th World Forum on Internet of Things, IEEE, Singapore,
Singapore: 813-818.
https://doi.org/10.1109/WF-IoT.2018.8355149

Johnson BW (1989). Design and analysis of fault-tolerant systems
for industrial applications. In: Görke W and Sörensen H (Eds.),
Fehlertolerierende rechensysteme/fault-tolerant computing
systems: 57-73. Springer, Berlin, Germany.
https://doi.org/10.1007/978-3-642-75002-1_5

Johnson BW (1996). An introduction to the design and analysis of
fault-tolerant systems. In: Pradhan DK (Ed.), Fault-tolerant
computer system design: 1-108. Prentice-Hall, Inc., Upper
Saddle River, USA.

Lera I, Guerrero C, and Juiz C (2018). Availability-aware service
placement policy in fog computing based on graph partitions.
IEEE Internet of Things Journal, 6(2): 3641-3651.
https://doi.org/10.1109/JIOT.2018.2889511

Liu H, Lin Y, Chen P, Jin L, and Ding F (2010). A practical
availability risk assessment framework in ITIL. In the 5th IEEE
International Symposium on Service Oriented System
Engineering, IEEE. Nanjing, China: 286-290.
https://doi.org/10.1109/SOSE.2010.38

Mahmud R, Srirama SN, Ramamohanarao K, and Buyya R (2019).
Quality of Experience (QoE)-aware placement of applications
in Fog computing environments. Journal of Parallel and
Distributed Computing, 132: 190-203.
https://doi.org/10.1016/j.jpdc.2018.03.004

Maiti P, Apat HK, Sahoo B, and Turuk AK (2019). An effective
approach of latency-aware fog smart gateways deployment
for IoT services. Internet of Things, 8: 100091.
https://doi.org/10.1016/j.iot.2019.100091

Mohamed N, Al-Jaroodi J, and Jawhar I (2019). Towards fault
tolerant fog computing for IoT-based smart city applications.
In the IEEE 9th Annual Computing and Communication
Workshop and Conference, IEEE, Las Vegas, USA: 0752-0757.
https://doi.org/10.1109/CCWC.2019.8666447

Mohamed N, Al-Jaroodi J, Lazarova-Molnar S, Jawhar I, and
Mahmoud S (2017). A service-oriented middleware for cloud
of things and fog computing supporting smart city
applications. In the IEEE Smart World, Ubiquitous Intelligence
and Computing, Advanced and Trusted Computed, Scalable
Computing and Communications, Cloud and Big Data
Computing, Internet of People and Smart City Innovation,
IEEE, San Francisco, USA: 1-7.
https://doi.org/10.1109/UIC-ATC.2017.8397564

Moura CHJ, da Costa CA, da Rosa Righi R, and Antunes RS (2020).
Fog computing in health: A systematic literature review.
Health and Technology, 10: 1025–1044.
https://doi.org/10.1007/s12553-020-00431-8

Neto AJP, Pianto DM, and Ralha CG (2018). A fault-tolerant agent-
based architecture for transient servers in fog computing. In
the 30th International Symposium on Computer Architecture
and High Performance Computing, IEEE, Lyon, France, France:
282-289. https://doi.org/10.1109/CAHPC.2018.8645859

Nguyen TA, Min D, and Choi E (2020). A hierarchical modeling and
analysis framework for availability and security quantification
of IoT infrastructures. Electronics, 9(1): 155-184.
https://doi.org/10.3390/electronics9010155

OFC (2017). Openfog reference architecture for fog computing.
OpenFog Consortium, Fremont, USA.

Pham VA and Karmouch A (1998). Mobile software agents: An
overview. IEEE Communications Magazine, 36(7): 26-37.
https://doi.org/10.1109/35.689628

Popentiu-Vladicescu F and Albeanu G (2017). Software reliability
in the fog computing. In the International Conference on
Innovations in Electrical Engineering and Computational
Technologies, IEEE, Karachi, Pakistan: 1-4.
https://doi.org/10.1109/ICIEECT.2017.7916578

Steffenel LA (2018). Improving the performance of fog computing
through the use of data locality. In the 30th International
Symposium on Computer Architecture and High Performance
Computing, IEEE. Lyon, France: 217-224.
https://doi.org/10.1109/CAHPC.2018.8645879

Wang K, Shao Y, Xie L, Wu J, and Guo S (2020). Adaptive and fault-
tolerant data processing in healthcare IoT based on fog
computing. IEEE Transactions on Network Science and
Engineering, 7(1): 263-273.
https://doi.org/10.1109/TNSE.2018.2859307

https://doi.org/10.1002/dac.4474
https://doi.org/10.1109/WF-IoT.2018.8355149
https://doi.org/10.1007/978-3-642-75002-1_5
https://doi.org/10.1109/JIOT.2018.2889511
https://doi.org/10.1109/SOSE.2010.38
https://doi.org/10.1016/j.jpdc.2018.03.004
https://doi.org/10.1016/j.iot.2019.100091
https://doi.org/10.1109/CCWC.2019.8666447
https://doi.org/10.1109/UIC-ATC.2017.8397564
https://doi.org/10.1007/s12553-020-00431-8
https://doi.org/10.1109/CAHPC.2018.8645859
https://doi.org/10.3390/electronics9010155
https://doi.org/10.1109/35.689628
https://doi.org/10.1109/ICIEECT.2017.7916578
https://doi.org/10.1109/CAHPC.2018.8645879
https://doi.org/10.1109/TNSE.2018.2859307

	Dependability in fog computing: Challenges and solutions
	1. Introduction
	2. Related works
	3. Dependability in fog computing
	3.1. Fault tolerance techniques
	3.2. Placement policies
	3.3. Middleware
	3.4. Data refining mechanisms

	4. Conclusion
	Compliance with ethical standards
	Conflict of interest
	References

