
 International Journal of Advanced and Applied Sciences, 8(4) 2021, Pages: 82-88  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

82 

 

Dependability in fog computing: Challenges and solutions 
  

Sara Alraddady 1, *, Alice Li 1, Ben Soh 1, Mohammed AlZain 2 
 
1La Trobe University, Melbourne, Australia 
2College of Computers and Information Technology, Taif University, Taif, Saudi Arabia 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 4 October 2020 
Received in revised form 
20 December 2020 
Accepted 23 December 2020 

The tremendous increase in IoT devices and the amount of data they 
produced is very expensive to be processed at cloud data centers. Therefore, 
fog computing was introduced in 2012 by Cisco as a decentralized computing 
environment that is considered to be more efficient in handling such a 
plethora in the number of requests. Fog computing is a distributed 
computing paradigm that focuses on bringing data processing at the network 
peripheral to reduce response time and increase the quality of service. 
Dependability challenges of such distributed and heterogeneous computing 
environments are considered in this paper. Because fog computing is a new 
computing paradigm, several studies have been presented to tackle its 
challenges and issues. However, dependability in specific did not receive 
much attention. In the paper, we explore several solutions to increase 
dependability in fog computing such as fault tolerance techniques, placement 
policies, middleware, and data management mechanisms aiming to help 
system designers choose the most appropriate solution. 
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1. Introduction 

*The exponential increase in Internet of Things 
(IoT) technology led to digitizing all aspects of our 
lives. The number of connected devices is expected 
to reach 50 billion devices. IoT devices range from 
household devices to industrial, autonomous 
transportation, smart cities, and environmental 
monitoring sensors/actuators. All these devices need 
to be connected to the internet to meet their 
prospective. Cloud computing with its services 
(platform, infrastructure, and software) can be a 
propitious option for IoT devices.  

However, cloud computing cannot handle the 
massive growth. Contacting cloud data centers is 
considered to be expensive and rises network 
bottleneck congestion issues. Furthermore, the delay 
tolerance of IoT devices varies depending on how 
critical they are. For example, health care and traffic-
controlling IoT devices require lower response times 
than household IoT devices. At this level, the need 
for a decentralized computing architecture has 
emerged. In 2012, Cisco has introduced fog 
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computing as an extension to cloud computing which 
focuses on bringing data processing geographically 
closer to the data source (CS, 2015). OpenFog 
consortium defines fog computing as “a horizontal 
system-level architecture that distributes computing, 
storage, control, and networking functions closer to 
the user along to a cloud-to-thing continuum” (OFC, 
2017). This augmentation allows distributing the 
workload over widespread computing resources to 
reduce response time and bandwidth consumption 
resulting in a higher quality of service. Several 
hierarchies of fog computing can be implemented 
based on the system requirements, yet the most 
common one is illustrated in Fig. 1. 

As depicted, the lowest layer of the architecture 
consists of IoT sensors/actuators and mobile 
devices. The middle layer contains fog devices, which 
have relatively limited computing resources like 
gateway servers, routers, switches, access points, or 
desktop computers. Lastly, the highest level is cloud 
data centers, which have supercomputing 
capabilities in terms of processing and storage 
mediums (OFC, 2017). 

Heterogeneity of fog nodes and end devices in fog 
computing architecture is a major feature that helps 
to utilize already existing computing resources, yet it 
complicates the managing process (Bansal and 
Kumar, 2020). Such a diversified environment must 
be considered when designing fog environments in 
terms of computing capabilities, power 
consumption, and connectivity. Furthermore, the 
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decentralized nature of fog computing along with its 
heterogeneity rise the importance of questioning its 
dependability in order for business holders and 

decision-makers to adopt this new computing 
paradigm. 

 

 
Fig. 1: Architecture of fog computing 

 

An example that clarifies the importance of 
studying fog applications’ dependability can be 
found in the smart city scenario. Fog computing 
applications in smart cities can be used to monitor 
public security in a form of smart cameras for CCTV 
which generate a huge amount of data that makes it 
very challenging to be processed and stored. Another 
area that can benefit from fog applications in smart 
cities specifically is environmental monitoring in 
which sensors read and calculate air, lakes, and noise 
pollution and detect natural disasters (Mohamed et 
al., 2019). Accordingly, dependability measures vary 
depending on fog applications.  

This paper is structured as follows: Sections 2 
discuss relevant research papers. Section 3 discusses 
the dependability of fog computing and 
differentiates between availability and reliability as 
performance metrics, and surveys different 
mechanisms to improve the dependability of fog 
computing including fault tolerance techniques, 
placement policies, middleware, and data 
management. Section 4 concludes the paper.  

2. Related works 

Although fog computing is a relatively new 
computing paradigm, studies focusing on the 
challenges and issues of fog computing are 
numerous. Existing studies fall into two categories. 
The first category contains studies that address 
general problems that might arise when deploying 
fog computing; for example, Arivazhagan and 
Natarajan (2020) pointed up several challenges to be 
addressed in the fog paradigm including effective 
security mechanisms related to authentication and 
denial of service. Reliability, context awareness, user 
context, deploying fault-tolerant fog nodes, 
bandwidth management, energy consumption, and 
data dissemination were also brought out as major 
issues. Also, Bansal and Kumar (2020) provided a 
taxonomy for IoT systems that focuses on system 
architecture, communication, middleware, security, 
and the relationship between IoT systems and fog 

computing, and big data. The second category 
includes studies that investigate a specific aspect of 
fog computing; for example, Heidari et al. (2020) 
focused on offloading mechanisms for IoT devices 
since fog computing systems include IoT devices that 
have limited computing resources and in need of 
more powerful computing capabilities to handle the 
immense volume of data generated. Authors survey a 
number of offloading mechanisms and offer a 
parametric comparison to help practitioners and 
system designers choose the most suitable 
mechanism. Moreover, Moura et al. (2020) 
addressed issues of fog computing in the healthcare 
sector by analyzing the most significant published 
related work in the past 10 years several challenges 
were tackled such as interoperability, security, big 
data, and resources management.  

Therefore, the importance of our paper relies on 
the fact that it focuses on a specific aspect of fog 
computing which is dependability unlike the first 
category of existing work. Moreover, enhancing the 
dependability of fog computing did not receive much 
attention. We hope this paper provides better insight 
for system designers when it comes to deciding what 
is suitable for a fog environment.  

3. Dependability in fog computing  

Generally, dependability is a broad term that 
encapsulates the reliability, availability, 
performability, maintainability, and safety of a 
system (Johnson, 1989). This paper focuses on the 
reliability and availability of fog computing in 
precise. 

Reliability in distributed computing systems is a 
broad term that can be related to system’s proper 
functionality without any service disruption, 
system’s design in terms of how the requirements 
are met, and the system’s ability to tolerate failures 
and recover from them without undesired results 
(Ahmed and Wu, 2013). Reliability in fog computing 
is defined as the continuous functioning of a system 
in normal or adverse conditions as stated by 

Data Center  

Fog nodes layer 

IoT devices layer 
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OpenFog Consortium (OFC, 2017). Like any 
distributed computing system, if the system’s 
components are not well-connected or lack 
orchestration, the system’s performance will not 
satisfy. Given the fact that fog computing is a highly 
heterogeneous environment, the reliability of fog 
computing can be considered as a combination of 
three aspects: Device reliability, connection 
reliability, and software reliability (Popentiu-
Vladicescu and Albeanu, 2017).  

Availability is defined as “the probability that the 
system can complete a predetermined function 
under a predetermined condition'' (Dong et al., 
2013). From a business perspective, according to Liu 
et al. (2010), service availability definition differs 
from users’ perspective to business or service 
provider. Users define service availability as 
response time while service provider defines it as 
how much the provided service contribute to 
business vitals. However, one of the fundamental 
service availability measures is Service Level 
Agreements SLA. These agreements combine the 
interests of users and service providers to determine 
and evaluate the provided service. Availability in fog 
computing is defined as continuous management 
and orchestration, which is usually measured by up 
time as stated in OpenFog Consortium (OFC, 2017). 
Nguyen et al. (2020) highlighted that availability is a 
metric of quality of service (QoS), and service 
disruption can lead to undesirable outcomes 
including business revenue loss, resource damage, or 
even human loss.  

The difference between reliability and availability 
relies on the time factor. For reliability, the system’s 
performance is calculated for an interval of time. On 
the other hand, the system’s availability is calculated 
for an instance of time (Johnson, 1989). Improving 
reliability and availability in fog computing 
paradigms is still in the early stages and did not 
receive much attention, yet some remarkable studies 
have been conducted and will be investigated in this 
paper. 

Ensuring high dependability in fog computing can 
be achieved via different methods. These methods 
include fault-tolerant techniques, middleware, 
context-aware placement policies, and data refining 
mechanisms. Using fault tolerance techniques 
mitigates the ramifications of faults in fog nodes and 
network connectivity, while middleware helps to 
manage the heterogeneous nature of fog computing 
to improve QoS. Moreover, context and mobility-
aware placement policies increase the availability of 
fog computing by choosing the most suitable 
algorithm to process queued requests based on 
request priority and number of requests to ensure 
load balancing and enhance overall system 
performance. Lastly, data refining mechanisms 
reduce the amount of data sent to the main cloud by 
identifying and sending meaningful data instead of 
forwarding raw data which results in higher QoS and 
better resource utilization. The next sections 
highlight the challenges and solutions for each of the 
above methods.  

3.1. Fault tolerance techniques 

Fault tolerance has emerged since the beginning 
of distributed computing. This concept is defined as 
a systems’ survival attribute in which it can operate 
with the existence of faults in any part of it. Fault 
tolerance techniques have been introduced to 
minimize fault manifestation in computing systems. 
These techniques consist of extra hardware, 
software pieces, or extra time slot to replicate a 
certain job. This replication is used as a backup in 
case of failure (Johnson, 1996). Redundancy, 
watchdog, checkpointing, and retry are the most 
popular fault tolerance techniques. 

Focusing more on enhancing service availability 
in fog computing, the authors in Grover and 
Garimella (2018) presented a fog computing 
architecture that is capable of replicating data at 
edge nodes. In the architecture, three types of nodes 
are presented. They are (1) Dew Nodes: Located at 
the extreme edge of the network and have small 
computational power. These nodes are suitable for 
real-time processing. (2) Mist Nodes: processing 
nodes that can be placed at an institutional level with 
higher computation power when compared to dews. 
(3) Fog Nodes: these nodes have storage capacity 
and are higher in the hierarchy than dew and mist 
nodes. They can be accessed by ISP and many mist 
nodes can connect to a fog node. (4) Cloud Server: 
The highest level of the hierarchy. The novelty of this 
work relies on data replication at the edge of the 
network. All data sensed by IoT devices are 
replicated in a parallel fashion at the same level. 
Once a shutdown or a failure occurs, the mobile 
agent starts investigating the incident and its effects 
and respond accordingly. A mobile agent (MA) is a 
piece of software that can travel across a network to 
perform certain tasks on behalf of users (Pham and 
Karmouch, 1998). Here, MA runs on all dew, mist, 
and fog devices to share information that is used to 
communicate with other devices in the network and 
to fetch priority index in case of failure to be carried 
out at a different node from the same level or a 
higher one. Simulation results show that using an 
intelligent agent as MA enhances the performance of 
fog computing when compared to a centralized 
computing environment in terms of CPU 
consumption and application assignment during 
faults. 

Addressing hardware failures or lost 
communication with cloud layer issues; Javed et al. 
(2018) designed three layers of fault-tolerant 
architecture for IoT applications. The main focus of 
the proposed architecture is to build a highly 
available system that can operate even when the 
connection to the main cloud is lost or any physical 
harm has been done to edge nodes by replication 
data at the edge. The authors believe that local data 
replication ensures data fault tolerance in scenarios 
like harsh environments or criminal activities 
occurrence. The three layers in the architecture are 
(1) Application Isolation layer which is responsible 
for wrapping processes into independent blocks 
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using Linux containers, Docker in specific. (2) Data 
Transport layer providing a publish/subscribe 
messaging framework for data replication within the 
cluster, and also support data transport in data 
pipeline form. (3) Multi-cluster Management layer to 
monitor the above layers and assign requesting to 
physical nodes based on fault tolerance requirement 
and load balancing. The architecture has been 
applied on a surveillance camera scenario to 
evaluate the proposed architecture in terms of fault 
tolerance, in this case, physical damage. The results 
show that the system is able to tolerate a failure of 
two nodes out of five nodes. Additionally, data that 
was replicated within the cluster or at the cloud was 
reachable even after the damage which alleviates the 
outcomes of losing two nodes. 

Choudhury et al. (2019) presented an event-
based service replication scheme for a fog quasi-
Adhoc environment to increase system availability. 
In smart city scenarios, users’ mobility throughout 
the day can provide computing resources at a certain 
time of the day more than the rest of the day based 
on users’ movements. Choudhury et al. (2019) 
designed a scheme that can maximize resource 
utilization during such times. The scheme consists of 
three modules that function correlatively in order to 
decide what service needs to be replicated and what 
node is most suitable to function as a replication 
agent based on context. The first module is the 
proactive sensing module designed to sense all 
events that might require replication. The sensing 
outcome from this module is called an event. Each 
event includes a pair of the service that needs 
replication and source node. All events are 
forwarded to the next module which is the context 
computation. This module calculates the logical-
physical context to decide the suitability of server 
nodes. The last module in the proposed scheme is 
the decentralized computation distribution problem 
(DCDP) module which is responsible for mapping the 
services to the replicating nodes in a resource 
utilizing manner while maintaining the required 
quality of service. The performance of the scheme 
has been evaluated and compared to recent 
algorithms in terms of service availability, response 
time, and resource utilization. The simulation results 
of the proposed algorithm showed performance 
improvement based on the previously mentioned 
criteria in comparison to the existing algorithms. 

Furthermore, Guerrero-Contreras et al. (2017) 
presented a mobile clouds architecture that focuses 
on enhancing service availability using dynamic 
service replication in that activating and hibernating 
service replication module is based on context. 
Depending on monitored information, the service 
replication module selects the most suitable node to 
operate as a replica for the requesting node. The 
limitation of the proposed model is its lack of 
flexibility. New services are not allowed during run 
time. Furtherly, since this model relies on mobile 
devices, the mobility nature of the devices degrades 
the availability of the system due to battery 
constraints and network connectivity. 

Another fault tolerance technology used to 
enhance reliability, called checkpointing and retry, 
has been used by Neto et al. (2018). The checkpoint 
technique performs interval checkpoints which the 
system can roll back to when a failure occurs. The 
retry technique restarts request executing from the 
last checkpoint. In their presented work, Neto et al. 
(2018) designed an agent-based architecture to 
predict price changes for virtual machine services 
with transient servers offered by Amazon AWS 
supported by machine learning. They used real data 
provided by Amazon AWS of price changes in 12 
months. Based on the results of their experiments 
involving the architecture, the authors reached an 
accurate prediction of 94%. 

3.2. Placement policies 

Placement policies play a major role in improving 
fog computing’s dependability since placement 
policies are responsible for determining where to 
process all requests placed by end-users to reach a 
higher quality of service. Given the fact that context, 
mobility, and latency are the major factors that affect 
fog systems’ dependability, researchers have 
proposed several placement policies that are capable 
of handling changes in these factors to cope with the 
dynamic nature of fog computing to ensure higher 
systems’ uptime and reasonable recovery time. Maiti 
et al. (2019) evaluated several algorithms to select 
the lowest cost fog node which is randomized, 
greedy, k-median, k-means, and initial centroid 
finding method. MATLAB is used to evaluate the 
effectiveness of each method in reducing latency. 
Also, the relationship between the number of nodes 
and latency has been observed. Results of the study 
can be used in designing fog computing 
environments in order to reach service level 
agreements.  

Designing a mobility-aware fog computing 
environment for a smart city; Bittencourt et al. 
(2017) presented a fog computing model which 
includes context-aware placement policies to 
enhance the quality of service of fog computing 
leading to higher availability. Used placement 
policies are first come first served, delay priority, 
and concurrent. Users’ mobility (or density in a 
certain area) is the major factor in deciding which 
policy is more efficient to handle end users’ requests. 
For example, when requests density increases at a 
certain location during rush hour, fog nodes change 
placement policy from FCFS to delay-priority. In 
order to evaluate the model, two fog applications 
were presented here, viz. the EEG game and VOST 
surveillance application. These two applications are 
from different classes (delay priority, real-time) 
respectively. Simulating the model included running 
the two applications with the three different 
placement policies, and it showed that the 
concurrent strategy resulted in the quality of service 
degradation which was avoided by the second 
strategy FCFS. Delay priority strategy, on the other 
hand, caused the surveillance application higher 
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latency than the other two strategies while the game 
application performance was more satisfactory. In 
conclusion, to achieve the potential of the fog 
computing paradigm, selecting placement policies 
must take into consideration users’ mobility which 
requires deep study of the fog environment.  

Lera et al. (2018) presented placement police for 
fog services. Here, availability is measured by the 
number of services IoT devices received within their 
time ratio. The study focuses on examining 
community relationships between fog devices to 
improve service availability. The proposed strategy 
consists of two phases using community structured 
fog devices. The first phase maps the application to 
fog devices within the same community, and the 
second phase is responsible for services placement 
by prioritizing interrelated services. Lera et al. 
(2018) used transitive closures to partition the 
application and combination of complex network 
communities for devices partitioning. The result of 
the proposed work after testing two scenarios was 
that the presented policy outperformed the integer 
linear programming approach in terms of response 
time. 

Additionally, Mahmud et al. (2019) proposed a 
placement policy for fog computing environments to 
enhance users’ quality of experience (QoE) by 
improving resource availability. Fog applications in 
this environment have two modules which are the 
client module and the main application module. The 
used architecture for this specific placement policy 
consists of two types of fog nodes which are fog 
gateway nodes (FGNS) and fog computational nodes 
(FCNS), and they differ in capabilities since each one 
of them has a different task to accomplish. FGNS can 
be handheld devices or cable modems and is 
responsible for mapping the main application 
module based on the received user’s expectations 
and FCNS’s resources index using fuzzy logic models. 
This approach prioritizes users’ expectations while 
maintaining better resource utilization to improve 
users' QoE. Evaluating the proposed policy, QoE’s 
measured metrics were service availability, service 
processing time, and resource affordability was 
calculated during simulating the policy using 
iFogsim. Simulation results showed that 92% of 
applications received a higher processing time 
reduction ratio in terms of resource gain and 
network relaxation ratio. 

3.3. Middleware  

Middleware is a program that enables the 
communication between entities, which can be 
software or hardware elements, in distributed 
computing environments. It simplifies combining, 
developing, and executing applications without 
complexity hassles. Since fog computing is not only a 
distributed environment but also a very 
heterogeneous one, middleware can be very 
advantageous in connecting such diversified 
components. Mohamed et al. (2017) presented a 
service-oriented middleware (SmartCityWare) for 

fog computing in smart cities to enhance availability 
in fog environments. It is designed as a utilization 
tool to support services in smart cities. All functions 
in the middleware are treated as services either core 
services or environmental ones. Core services can be 
broker, security, or location-aware services, which 
are services related to management. On the other 
hand, environmental services are all the services 
provided by any component (Cloud, fog, and IoT). 
The main function of the middleware is to facilitate 
communication smoothly between all aspects and 
provide an interface to support smart city 
applications. An example of these applications was 
introduced to explain the mechanism of the 
middleware and evaluate the middleware 
performance in terms of response time and service 
lookup time. What makes SmartCityWare different 
from other middleware platforms is the fact that it 
considers all components as services for smooth 
services integration which results in unlimited 
opportunities for development.  

Furthermore, one of the challenges that need to 
be addressed is the amount of data produced by IoT 
devices. Clemente et al. (2017) addressed the issue 
of raw data and their effect in downgrading the 
quality of service in fog computing. They designed a 
distributed cooperative data analytics middleware 
(DCDA) to mitigate bandwidth limitations and 
latency caused by IoT raw data and reach a higher 
QoS rate. The main idea of the middleware is to 
maintain data processing and analysis at the edge 
level to reduce latency. It manages three different 
levels of data which are: Operational (low/edge 
level), historical (intermediate/fog level), and 
filtered data (high/cloud level). Each node in the 
proposed scheme has some computing capabilities, a 
library manager, and an adapter to select the correct 
algorithm from the functions’ library and a 
middleware visualizer that handles results 
monitoring. Two case studies that require real-time 
processing were tested in order to evaluate the 
middleware. Simulation results proved that 
analyzing data at edge level significantly reduces 
latency and increases scalability and robustness 
since the proposed middleware reduced bandwidth 
cost. Moreover, fault tolerance of the middleware 
was investigated by simulating the failure of links 
and nodes, and no considerable impact was 
witnessed. In conclusion, the proposed middleware 
proved that processing and analyzing data at the 
edge level significantly reduces latency by 
eliminating sending raw data to cloud data centers 
and decrease bandwidth cost. 

3.4. Data refining mechanisms  

Data processing, storing and analyzing in fog 
computing play a major role in the overall 
performance since IoT devices can produce a 
massive amount of data. Refining data before 
processing is one technique to increase 
dependability in fog computing specially in semi-
critical environment where some requests are non-
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delay tolerant compared to other requests in the 
same environment. When data is filtered, higher 
availability is ensured since fog nodes are not being 
occupied by meaningless data processing. 
Accordingly, Wang et al. (2020) presented a 
framework that is designed for IoT healthcare 
systems for elderly people. Framework’s 
functionality consists of three aspects: Fault-tolerant 
data transmission, self-adapting filtering, and data 
load reduction. Architecturally, fog nodes in the 
framework fall into two categories which are storage 
nodes and processing nodes. Storage nodes store 
data temporarily to be sent later to the cloud data 
center and sent to processing nodes upon request. 
For reliable data transmission, storage nodes have 
more than one connection to processing nodes to 
track lost data packets through broadcasting and 
flooding mechanisms. Filtering is the next step after 
ensuring that data are complete. Predefined requests 
have been used to classify requests. Once the request 
is received, category checking is executed to identify 
health-related requests to be prioritized. Further, the 
risk assessor function is used to determine the 
danger level of placed requests that will send an 
alarm once a threshold has been hit which means an 
elderly person is in danger. For allocating requests’ 
queue, a simplified version of the reduced variable 
network search mechanism is implemented. This 
mechanism is useful since it provides processers the 
capability to prioritize more valuable data. Based on 
the results of simulation on the framework, the 
authors concluded that using self-adapting and fault-
tolerant mechanisms ameliorate data transmission 
in fog computing.  

Managing data storage is another technique 
presented by Steffenel (2018). Enforcing control on 
where to store data and which aspect of a fog 
computing environment is more efficient to handle it 
can improve reliability, according to the author. 
Here, data locality and locality-aware scheduling 
mechanisms are presented. Data storage is provided 
through modified distributed hash tables to include 
location keys to be used in task allocation. This step 
contributes to increasing the probability of 
processing data at a nearby node that is closer to the 
data source or meets resource requirements. 
Additionally, the location key is used by the 
scheduler in task allocations and prioritizing tasks 
that need local data. Also, to reduce the overhead 
caused by storing data on fog nodes and to ensure 
fault tolerance in the proposed framework, data 
storing mapping can be used to store data in nearby 
nodes. Reading and writing performances have been 
evaluated, and the author concluded that the 
proposed mechanisms can be useful for intensive 
data fog applications. 

4. Conclusion 

As IoT devices increase nowadays, a 
decentralized computing environment is required to 
manage the massive growth of requests. Fog 
computing is considered the underpinning for IoT 

technology to reach its potential. The heterogeneity 
and distributed nature of this new computing 
paradigm rises the issue of investigating its 
availability. Managing and orchestrating fog 
computing aspects are necessities to reach a 
satisfactory quality of service. Research on fog 
computing availability is surveyed to provide a 
better insight into the challenges and solutions with 
respect to fog computing dependability. Based on the 
current literature, we conclude with four methods to 
deal with the challenges discussed in the paper: fault 
tolerance techniques, placement policies, 
middleware, and data refining mechanisms. 
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