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Although millions of cells in the human body will undergo programmed cell death each
day, dying cells are rarely detected under homeostatic settings in vivo. The swift removal
of dying cells is due to the rapid recruitment of phagocytes to the site of cell death which
then recognise and engulf the dying cell. Apoptotic cell clearance — the engulfment of
apoptotic cells by phagocytes — is a well-defined process governed by a series of
molecular factors including ‘find-me’, ‘eat-me’, ‘don’t eat-me’ and ‘good-bye’ signals.
However, in recent years with the rapid expansion of the cell death field, the removal of
other necrotic-like cell types has drawn much attention. Depending on the type of death,
dying cells employ different mechanisms to facilitate engulfment and elicit varying func-
tional impacts on the phagocyte, from wound healing responses to inflammatory cytokine
secretion. Nevertheless, despite the mechanism of death, the clearance of dying cells is
a fundamental process required to prevent the uncontrolled release of pro-inflammatory
mediators and inflammatory disease. This mini-review summarises the current under-
standings of: (i) apoptotic, necrotic, necroptotic and pyroptotic cell clearance; (ii) the
functional consequences of dying cell engulfment and; (iii) the outstanding questions in
the field.

Introduction
For over 50 years apoptosis has dominated basic and translational research in the cell death field,
representing the most well-characterised type of cell death. However, this traditionally immuno-silent
form of programmed cell death represents just one of many pathways in which a cell can program
itself to die. In 2018, twelve different regulated forms of cell death were described, highlighting the sig-
nificant expansion of the cell death field [1]. In particular, the discovery of necroptosis and pyroptosis
provides a significant contrast with the anti-inflammatory properties of apoptosis, and the stochastic
nature of primary necrosis (Figure 1). Regardless of the mechanism of death, the swift removal of
dying cells by professional (i.e. macrophages) and non-professional (i.e. epithelial cells) phagocytes
remains paramount to maintain physiological homeostasis. For example, the induction of cell death
and removal of dying cells has a fundamental role in embryonic development [2], tissue repair [3,4]
and resolution of inflammation [5,6]. However, the persistence of dead cells and rupture of the
plasma membrane allows the release of intracellular contents including damage-associated molecular
patterns (DAMPs) which can trigger a robust inflammatory response [7–10]. Defective clearance of
dying cells is closely associated with the onset and pathogenesis of inflammatory disease such as ath-
erosclerosis [11,12], autoimmune disorders such as systemic lupus erythematosus and rheumatoid
arthritis [9,13–16], and asthma [17]. Thus, dying cells employ a variety of mechanisms to recruit, be
recognised and be engulfed by phagocytes. Here, this mini-review highlights the mechanisms under-
pinning dying cell clearance, and discusses the functional impact of phagocytosis on the surrounding
environment.
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Molecular mechanisms of dying cell clearance
Apoptosis
Apoptosis is largely driven by one of two pathways: the intrinsic/mitochondrial pathway and the extrinsic/
receptor-mediated pathway. Both rely on the activation of the executioner caspases 3 and 7 to regulate the dis-
mantling of the dying cell (Figure 1) [18]. Notably, cytotoxic lymphocyte killing also induces apoptosis via a
Granzyme B-mediated mechanism. Similar to the induction of apoptosis, the clearance of apoptotic cells is a
tightly controlled and well-studied process, and can be separated into three steps: recruitment, engagement and
engulfment. Phagocytes are initially recruited to the site of apoptotic death by sensing ‘find-me’ signals actively
released by apoptotic cells. These include soluble nucleotides such as ATP and UTP [19,20], sphinosine-1-
phosphate (S1P) [21], lysophosphatidylcholine (LCP) [22] and MCP-1 [23]. Recruited phagocytes then engage
with the apoptotic cell by binding either directly or via bridging molecules to an array of ‘eat-me’ signals
exposed on the apoptotic cells outer-membrane. This includes calreticulin (CRT, both endogenous [24] and
exogenous CRT secreted by phagocytes [25,26]), thrombospondin [27], ICAM3 [28], pentraxin 3 [29] and
most notably, the phospholipid phosphatidylserine (PtdSer) [30]. Although normally located on the inner
plasma membrane leaflet, PtdSer translocates to the outer leaflet during apoptosis through caspase 3/7 activa-
tion of the key scramblase Xrk8, and inactivation of flippases ATP11A and ATP11C which prevent PtdSer
exposure on healthy cells [31–33].
Phagocytes are equipped with a diverse repertoire of engulfment receptors which engage directly with

‘eat-me’ signals, including TIM1/3/4 [34–36], BAI1 [37], RAGE [38], TLT2 [39], CD300b [40] and Stablin-2
[41]. Moreover, MFG-E8 and Gas6/Protein S can act as bridging molecules between PtdSer on the apoptotic
cell and phagocytic intregrins and TAM receptors (Tyro, Axl, MerTK) to facilitate phagocytic-apoptotic cell
engagement, respectively [42–45]. Similarly, the complement protein C1q and mannose-binding lectin can
bind to exposed PtdSer and bridge with phagocytic receptors such as Megf10 and CRT/CD19 [46–49].
Apoptosis is also associated with dramatic DNA fragmentation, and a recent study identified that clusterin
binding to histones exposed on the apoptotic cell surface exhibit opsoninic behaviour to aid cell clearance [50].
The efficiency of apoptotic cell clearance is also dependent on the apoptotic particle size. Recent studies have
demonstrated that the fragmentation of apoptotic cells into extracellular vesicles known as apoptotic bodies

Figure 1. Schematic summary of the molecular mechanisms driving cell death.

Intrinsic and extrinsic apoptotic signals are received and converge at the activation of caspase 3/7. Caspase 3-cleaved

GSMDE and NINJ1 may facilitate the progression to secondary necrosis. Primary necrosis is traditionally stochastic in nature

resulting in uncontrolled membrane rupture. In the presence of caspase inhibition, TNF-α can induce necroptosis through

binding the TNF-R which results in the activation of RIPK1/3 and formation MLKL pores at the membrane. Pyroptosis is

mediated via either the canonical (caspase 1) or non-canonical (caspase 4/5/11) pathway which converge with the formation of

GSDMD membrane pores.
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(∼1–5 μm in diameter) is a tightly controlled process regulated by ROCK1 [51], PANX1 [52] and Plexin B2
[53]. As apoptotic bodies also expose the ‘eat-me’ signal PtdSer, the disassembly of apoptotic cells into apop-
totic bodies generates numerous ‘bite-sized’ pieces that aid efficient engulfment by surrounding phagocytes
[51,53,54]. Whether apoptotic bodies release ‘find-me’ signals to aid phagocytic recruitment to the initial site of
cell death is unclear. Together, interactions between the phagocyte and the apoptotic fragments through these
various mechanisms trigger an array of downstream signalling steps such as cytoskeletal reorganisation required
to mediate phagocytosis [55].
It is important to note that ‘eat-me’ signal recognition can be attenuated if outcompeted by enhanced or

clustered ‘don’t eat-me’ signals such as CD47 [56,57], CD31 [58], and more recently CD24 [59] (Figure 2). The
recognition of ‘don’t eat-me’ signals negatively regulate engulfment, preventing the unnecessary clearance of
healthy cells. However, cancer cells often exploit these mechanisms and up-regulate ‘don’t eat-me’ signals to
evade phagocytosis [60].

Primary and secondary necrosis
Necrosis, either primary or secondary (occurring after the completion of apoptosis), is traditionally an unregu-
lated form of cell death largely characterised by stochastic membrane lysis (Figure 1) [61]. It was recently sug-
gested that caspase cleavage of Gasdermin E (GSDME) may mediate the progression of apoptosis to secondary
necrosis through inducing membrane lysis [62] however, results are conflicting [10,63]. Alternatively, NINJ1
may regulate necrotic-cell membrane permeabilization [10]. In contrast with apoptotic cells which tightly regu-
late the activation of PANX1 channels and release of ‘find-me’ signals such as ATP, necrotic cells may stochas-
tically release ATP as a by-product of uncontrolled membrane permeabilization [61]. Consequently, primary
necrotic cells can release significantly higher levels of ATP (compared with apoptotic cells) and may be more
efficient at inducing phagocyte recruitment [64]. Thus, ATP is a necrotic ‘find-me’ signal [64,65] which may
function in concert or independently of other necrotic ‘find-me’ signals including formyl-peptides [66] and
chemokines [67].

Figure 2. Molecular signals of dying cell clearance.

Schematic summary of the molecular mechanisms which facilitate apoptotic, necrotic, necroptotic and pyroptotic cell

clearance. This includes the exposure of ‘eat-me’ (green) and ‘don’t eat-me’ (red) signals, secretion of ‘find-me’ signals (blue)

and release of ‘good-bye’ signals (purple).
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Once recruited to the site of cell death, phagocytes may internalised apoptotic and necrotic cells via different
mechanisms (Figure 2) [68,69]. In comparison with the series of flippases and scramblases which regulate
PtdSer exposure during apoptosis [31–33], the stochastic loss of phospholipid asymmetry by necrotic cells may
result in limited or varying PtdSer exposure upon membrane lysis [64]. Although necrotic cells characteristic-
ally possess substantial Annexin V (AV) staining in flow cytometry-based assays [70], this should not be used
to measure ‘eat-me’ signal exposure as AV will also bind PtdSer on the inner plasma membrane leaflet of nec-
rotic cells. In fact, key phagocytic receptors such as TIM4 which mediate apoptotic cell engulfment through
binding PtdSer poorly recognise necrotic cells [64]. Although necrotic cells can be cleared through
PtdSer-mediated pathways [71–74], other mechanisms exist and contribute to their removal. This includes the
exposure and binding of adhesion molecules such as E-cadherin [71], keratin [75], plasmin [76], as well as
complement molecules including IgM, C1q and properdin [77–81] and HRG [82]. In a model of acute kidney
injury, the protein AIM was also shown to label necrotic debris, interact with phagocytic KIM-1 and aid nec-
rotic cell clearance, whereas the addition of AV to attenuate PtdSer recognition did not influence engulfment
[83]. The phagocytic receptors CD14, CD36 and integrins αvβ3 may also contribute to the recognition of nec-
rotic cell ‘eat-me’ signals and their timely removal [79].

Necroptosis
In comparison with the clearance of apoptotic and necrotic cells, the removal of cells dying via other cell death
mechanisms such as necroptosis is only beginning to be defined. Necroptosis can be activated by the TNF
pathway and is driven by the executioners RIPK1/3 and MLKL in the presence of caspase inhibition, such as
during viral infections (Figure 1) [84]. Thus, many of the key regulators activated by caspase 3/7 (e.g PANX1
and Xrk8) required to facilitate clearance mechanisms (e.g. ATP release and PtdSer exposure) are not typically
active during necroptosis. Although ATP release by necroptotic cells has been reported, whether this occurs
prior to or as a consequence of membrane permeabilization has not been confirmed [85]. Recent findings have
identified that necroptotic cells can expose PtdSer prior to membrane permeabilization, and this is dependent
on the key necroptotic regulators RIPK3 and MLKL [86–88]. Therefore, the PtdSer-binding molecule MFG-E8
can recognise necroptotic cells and overexpression of the phagocytic receptor TIM4 can boost necroptotic cell
clearance [88,89]. Similarly, supplementation of AV can attenuate necroptotic cell uptake [85]. In addition to
PtdSer, the lipid mediator Resolvin D1 may also mediate necroptotic cell clearance by inducing phagocytic
CRT secretion which can label and aid the recognition of necroptotic bone marrow-derived macrophages
(BMDM) [90]. In contrasting findings, knock down or supplementation of soluble CRT was unable to alter the
clearance of necroptotic fibroblasts [89] and may highlight potential cell-type specific clearance mechanisms. In
line with this, as necroptotic BMDMs possess substantial expression of the ‘don’t eat-me’ signal CD47, such
cells may require additional factors, such as CRT, to mediate their efficient clearance [90]. Necroptotic cells
also release small PtdSer positive extracellular vesicles akin to apoptotic bodies, termed necroptotic bodies
[86,88]. Whether these necroptotic bodies also contribute to the efficiency of necroptotic cell clearance remains
an unanswered question of interest.

Pyroptosis
Pyroptosis is an inflammatory form of programmed cell death triggered by the recognition of pathogen-
associated molecular patterns such as bacterial LPS and DAMPs such as ATP [91]. It is initiated by either the
canonical (caspase 1) or non-canonical pathway (caspase 4/5/11) which converge with activation of Gasdermin
D (GSDMD) [91] (Figure 1). Similar to necroptotic cell clearance, the molecular mechanisms underpinning the
removal of pyroptotic cells are still being defined (Figure 2). The clearance of pyroptotic cells is of significant
interest as pyroptosis is widely implicated in inflammatory pathologies including Alzheimer’s disease [92–94],
liver fibrosis [95,96] and Salmonella infection [97,98]. Similar to the cleavage of PANX1 by caspase 3/7 during
apoptosis, PANX1 is also activated by caspase 1/11 during pyroptosis and aids the release of ATP ‘find-me’
signals to mediate phagocytic recruitment [64,99–101]. Pyroptotic cells also secrete IL-1β and IL-18 in a cell-
lysis independent manner through GSDMD pores to recruit phagocytes [102,103].
Once recruited to the site of cell death, phagocytes can engage with exposed PtdSer on the pyroptotic cell

surface via bridging molecules (MFG-E8) or directly by scavenger receptors (TIM4) [64,89]. The mechanism of
PtdSer exposure during pyroptosis is not dependent on caspase 1 [64] and whether it is an active or passive
event remains elusive. Given that the phospholipid scramblase TMEM16F can be activated via Ca2+ signalling
[104,105], whether such scramblases contribute to PtdSer exposure during cell death modalities without
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caspase 3/7 activity, such as pyroptosis, would be of interest to determine. Nevertheless, supplementation of AV
has also been shown ineffective in blocking pyroptotic cell uptake, suggesting that other factors contribute to
pyroptotic cell clearance [89,99]. In line with this, complement proteins can contribute to the rapid removal of
pyroptotic cells, as mice deficient in the complement protein C3 are unable to recruit phagocytes to the site of
death nor clear pyroptotic cells efficiently [99]. Clearance could further be impaired by broad inhibition of
scavenger receptors, suggesting that C3 may act as a bridging molecule between pyroptotic cells and phagocytic
scavenger receptors to mediate clearance [99].

Functional impact of dying cell removal
The engulfment hierarchy
As the persistence of dying cells can trigger a breadth of inflammatory disease, swaying the mechanism of cell
death to ensure swift, immunoprotective clearance is an exciting therapeutic potential. Moreover, understanding
the engulfment hierarchy, i.e. which type of dying cells are cleared more efficiently, is of significant interest.
Overall, the literature suggests that apoptotic cell clearance trumps the removal of necrotic-like cells
[64,68,73,86,89,106]. As necrotic cells possess varying levels of the notable ‘eat-me’ signal PtdSer, phagocytic
receptors may poorly recognise necrotic cells [64]. Consequently, phagocytes may require more time to engulf
necrotic cells compared with their apoptotic counterparts [73]. Additionally, in comparison with apoptotic cells
which rapidly bleb and fragment into apoptotic bodies, necrotic cells typically generate a single large bleb and
remain as one cellular entity [107]. Given the role of dying cell fragmentation in aiding cell clearance [51,53], this
may also provide a possible explanation for the inefficiency of necrotic cell clearance and the different mechan-
isms that contribute to their removal, compared with apoptotic cell uptake [68,73]. The clearance of apoptotic
cells was also shown to be more efficient than necroptotic cell engulfment in both in vitro and in vivo settings,
and also than pyroptotic cells in vitro [64,86,106]. However, contrasting findings have also been reported [89].
It is difficult to directly compare kinetics and phagocytic efficiencies between studies as the time post-

induction of target cell death, phagocyte-to-target cell ratio and engulfment time often vary greatly. Moreover,
kinetic comparison within studies must ensure equal levels of cell death to accurately compare phagocytic effi-
ciencies. In vitro engulfment assays are also not representative of physiological conditions where various types
of phagocytic cells (i.e. macrophages and epithelial cells) are present, and neighbouring cells may undergo dif-
ferent forms of cell death simultaneously (i.e. apoptosis or necrosis). Notably, competition phagocytosis assays
have investigated whether apoptotic and necrotic cells could out-compete one another but results are conflict-
ing [69,74]. Nevertheless, at a simplistic level, cells that expose ‘eat-me’ signals during the early stages of death
(i.e. apoptosis), are expected to be cleared more rapidly [73]. Additionally, the secretion of multiple ‘find-me’
signals, vast number of ‘eat-me’ signals and significant redundancies in the phagocytic receptors which regulate
apoptotic cell engulfment all strengthen the case for apoptotic cell clearance as the most efficient. However,
increased interest in cell death and clearance pathways, and new findings such as the identification of PtdSer
exposure prior to membrane permeabilization during necroptosis [86–88] may change our understanding of
the engulfment hierarchy.

The consequence of death and dinner
Like the induction of cell death, the clearance of cells dying via different mechanisms can elicit distinct inflam-
matory signatures and impact the downstream immune response such as wound healing. Apoptosis is a trad-
itionally immune-silent process which results in the direct or indirect release of anti-inflammatory mediators.
For example, apoptotic cells secrete an array of anti-inflammatory factors such as IL-10, [108], TGF-β [109],
and MFG-E8 [110]. Moreover, sensing of apoptotic ‘find-me’ signals such as S1P can both enhance cell clear-
ance and induce phagocytic secretion of TGF-β, whilst decreasing pro-inflammatory factors like TNF-α and
IL-6 [111]. Akin to ‘eat-me’ and ‘find-me’ signals, a new engulfment signal was recently described coined
‘good-bye’ signals. Apoptotic cells can release ‘good-bye’ signals in form of metabolites such as spermidine
which induce anti-inflammatory gene expression in surrounding phagocytes, as well as wound healing, cyto-
skeletal organisation and anti-apoptotic responses [5]. The engulfment of apoptotic cells further contributes to
inflammation control whereby upon uptake, phagocytes secrete anti-inflammatory factors including TGF-β
[112,113] and IL-10 [114] and angiogenic factors to mediate wound healing such as VEGF [115], whilst limit-
ing pro-inflammatory cytokine secretion [113]. Thus, not only do apoptotic cells prepare themselves for effi-
cient clearance, but they also modulate the surrounding environment to prime phagocytes for engulfment and
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maintain anti-inflammatory conditions. As such, many studies have harnessed the anti-inflammatory properties
of apoptotic cells and their clearance to combat robust inflammatory disease such as rheumatoid arthritis
[5,16,116,117].
In contrast with the anti-inflammatory properties of apoptotic cells and their engulfment, necrosis is largely

associated with robust inflammation. Necrotic cells undergo rapid membrane lysis and release a wide variety of
intracellular contents including the pro-inflammatory cytokines IL-1α [118] and MIF [119], and DAMPs
including HMGB1 [120,121], HSP70/90 [122,123] and DNA [121]. Although some studies have proposed nec-
rotic cells to be more effective in recruiting phagocytes to the site of death through these signals [118], the
pro-inflammatory consequence of necrosis likely outcompetes the benefit of rapid phagocytic recruitment.
Moreover, once recruited to the site of necrosis, phagocytosis and sensing of necrotic debris can further exacer-
bate inflammation whereby phagocytes release pro-inflammatory cytokines such as IL-8 and TNF-α [82,124].
Necroptosis and pyroptosis are also associated with robust inflammation. Necroptotic cells release an array

of pro-inflammatory mediators such as IL-8, IL-1, CXCL2 and cyclophilin A [125–127], and engulfment of
necroptotic cells further exacerbates inflammation by triggering phagocytic TNF-α and MCP-1 secretion [86].
Similarly, pyroptotic cells secrete IL-1β, IL-18, TNF-α and IL-6 which can drive inflammatory disease such as
liver fibrosis and arthritis [95,128]. Although the inflammatory consequence of pyroptotic cell clearance on the
phagocytosing cell is unclear, engulfment of ‘NLRP3 inflammasome particles’ or the inflammasome-associated
adaptor protein complexes ‘ASC specks’ can elicit phagocytic inflammatory cytokine secretion [96,129].
Altogether, as a single stimuli can elicit multiple forms of cell death, such as the induction of necrosis, apop-
tosis, necroptosis and potentially pyroptosis by influenza A virus [130], the functional impact of dead cell clear-
ance in physiological settings and disease is complex and requires comprehensive investigations.

Future directions of dying cell clearance
The swift removal of dying cells is paramount to prevent disease onset and understanding the molecular
mechanisms underpinning their clearance is vital. Moreover, harnessing this knowledge to develop novel thera-
peutics and boost dead cell clearance in inflammatory disease settings where clearance is aberrant possesses
exciting clinical potential. Although many of the major molecular components contributing to efficient cell
clearance have been described, there still remains a significant knowledge gap.

Exploring the mechanistic differences between targets and phagocytes
Although recent literature has shed light on how necroptotic and pyroptotic cells are recognised and phagocy-
tosed, this literature merely represents the tip of the iceberg. Given the vast number of machineries that
mediate the removal of apoptotic and necrotic cells, other factors in addition to ones currently described likely
contribute to necroptotic and pyroptotic cell clearance. Moreover, the clearance of cells undergoing alternative
cell death pathways such as ferroptosis, parthanatos and NETosis is poorly understood but also of significant
interest. For example, the defective clearance of NETs has been observed in inflammatory disease such as
respiratory distress syndrome whereby soluble components in the bronchioalveolar lavage fluid of patients
could impair phagocytic NET uptake [131]. Therefore, whether known or novel engulfment receptors contrib-
ute to NET removal would be of great interest. Understanding the different mechanisms of dead cell clearance
is especially important for disease settings which elicit multiple cell death pathways simultaneously and poten-
tially require a multifaceted therapeutic strategy. Moreover, whether professional and non-professional phago-
cytes can recognise their targets via different modalities or receptors, or whether uptake elicits a different
response is yet to be determined. The interplay between professional and non-professional phagocytes is espe-
cially interesting as upon apoptotic cell engulfment, macrophages can secrete IGF-1 and enhance the phago-
cytic efficiency of surrounding non-professional phagocytes [6]. Whether professional phagocytes have a
superior role in the clearance of inflammatory cells (i.e. pyroptotic cells), or differences within immune cell
subsets exist (i.e. M1 vs M2 macrophages), are also outstanding questions. Notably, it was reported that
‘large’-DCs were more efficient in phagocytosing necrotic cells than ‘small’-DCs [132]. However, whether this
was due to mechanistic differences rather than restricted size and phagocytic capacity is unclear.

Clinical potential of harnessing dead cell clearance
It is well established that aberrant clearance of dying cells can trigger inflammatory disease. For example,
impairment of cell clearance by clusterin or MFG-E8 deficiency results in autoimmune disease-like symptoms
[14,50]. Moreover, inflammation and atherosclerotic plaque formation may in part be due to the accumulation
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of apoptotic cells from impaired phagocytosis during atherosclerosis [11,12]. Therefore, boosting cell clearance
represents an exciting therapeutic potential and may be achieved by exploiting various clearance mechanisms.
Blocking the ‘don’t eat-me’ signal CD47 with monoclonal antibodies during atherosclerosis has shown promise
in boosting apoptotic cell clearance and reducing disease burden in mice [133]. Notably, targeting the expres-
sion of ‘eat-me’ signals is yet to be explored but may also represent a suitable approach. Up-regulating engulf-
ment receptors or ‘priming’ macrophages to enhance engulfment likely represents the most efficient therapeutic
strategy. Genetically overexpressing the phagocytic receptor BAI1 has already been shown to boost apoptotic
cell engulfment in vivo and attenuate disease-associated inflammation in mice [134]. However, the translation
of these therapeutic strategies to the clinic still remains a challenge.
Recent advances have revealed the tight molecular control underpinning the disassembly of apoptotic cells

into apoptotic bodies and demonstrated the importance of this process in aiding rapid cell clearance [51,53].
Therefore, simultaneously inducing apoptosis and boosting the disassembly of apoptotic cells may provide an
effective approach to enhance cell clearance in disease settings such as solid tumours where cell death and their
swift removal is crucial. The antibiotic Trovafloxacin was identified as the first pharmaceutical enhancer of
apoptotic body formation [52,135] and thus, Trovafloxacin or similar PANX1 inhibitors may be suitable candi-
dates to investigate such therapeutic strategies. Furthermore, as mentioned above, whether necroptotic or pyr-
optotic cells also fragment into smaller vesicles (i.e. necroptotic bodies and pyroptotic bodies) which aid
phagocytosis remains an unanswered question of clinical relevance.
The efficient removal of dying cells is regulated by a complex and redundant series of machineries which can

elicit both pro- and anti-inflammatory effects on the phagocyte and surrounding environment. Although how
phagocytes are recruited to, recognise and engulf other dying cells beyond apoptosis is still being defined, the
ability to translate these findings clinically and treat inflammatory disease is an exciting prospect for the cell
clearance field.

Perspectives
• Cell death and the removal of dying cells is tightly linked to a variety of inflammatory disease.

Thus, understanding the molecular mechanisms responsible for phagocytic clearance and the
functional impact of engulfment on the phagocyte is essential for the development of novel
disease therapeutics.

• Efficient dead cell clearance can be split into three individual steps including recruitment, rec-
ognition and engulfment which are mediated by the release and exposure of ‘find-me’,
‘eat-me’, ‘don’t eat-me’ and ‘good-bye’ signals.

• With the rapid expansion of the cell death field, further research is needed to understand how
different cell types, and cells dying via different mechanisms are cleared, the impact this has
on the phagocytosing cell and how this can be targeted therapeutically.
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coiled-coil containing protein kinase 1; TNF, Tumour necrosis factor; TNFR, Tumour necrosis factor receptor;
Ub, Ubiquitination; UTP, Uridine triphosphate.
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