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Abstract 

Objective:  Insects are the most evolutionarily successful groups of organisms, and this success is largely due to their 
flight ability. Interestingly, some stick insects have lost their flight ability despite having wings. To elucidate the shift 
from wingless to flying forms during insect evolution, we compared the nutritional metabolism system among flight-
winged, flightless-winged, and flightless-wingless stick insect groups.

Results:  Here, we report RNA sequencing of midgut transcriptome of Entoria okinawaensis, a prominent Japanese 
flightless-wingless stick insect, and the comparative analysis of its transcriptome in publicly available midgut tran-
scriptomes obtained from seven stick insect species. A gene enrichment analysis for differentially expressed genes, 
including those obtained from winged vs wingless and flight vs flightless genes comparisons, revealed that carbo-
hydrate metabolic process-related genes were highly expressed in the winged stick insect group. We also found that 
the expression of the mitochondrial enolase superfamily member 1 transcript was significantly higher in the winged 
stick insect group than in the wingless stick insect group. Our findings could indicate that carbohydrate metabolic 
processes are related to the evolutionary process through which stick insects gain the ability of flight.

Keywords:  Stick insect, RNA sequencing, Transcriptome assembly, Transcriptome database, Enolase, Glycolytic 
pathway
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Introduction
The evolutionary success of insects has been attributed 
to their flight ability and small size. Specifically, insects 
are able to expand to new environmental niches due to 
their flight ability [1–3]. More than 3000 species of stick 

insects exist worldwide, and some females have lost the 
ability of flight [4]. Interestingly, wingless insects tend 
to exhibit higher female fecundity [5]. In addition, some 
stick insects lost their flight ability despite having wings, 
and this feature might play an important role in evolu-
tionary diversification [6]. The loss of flight ability could 
be involved in nutrient metabolism to produce energy, 
but the differences in the nutrient metabolic system 
between flight and flightless insects and between winged 
and wingless insects have not been examined.
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The midgut is a main organ that contributes to food 
digestion and nutrient metabolism [7]. It has been sug-
gested that the insect midgut physiology is strongly 
affected by the presence of unique cell types that confer 
peculiar features to this organ, and these midgut cells 
might support species-specific nutrient metabolism [8].

The stick insect Entoria okinawaensis has the larg-
est body size among Japanese stick insect species and is 
wingless, which resulted in the loss of its flying ability. 
E. okinawaensis is both male and female and undergoes 
sexual reproduction [9]. We are interested in why stick 
insects lost their flight ability during the process of evolu-
tion and the relationship between nutrition metabolism 
and flight ability in stick insects.

In this study, we compared the nutrient metabolic 
systems of flight-winged, flightless-winged and flight-
less-wingless stick insect groups using our midgut tran-
scriptome data and those from public database and found 
the expression of transcripts related to the production 
of energy in carbohydrate metabolic processes in the 
winged stick insect groups.

Main text
Methods
Insects
We obtained Entoria okinawaensis from Amami-
Ohshima in Kagoshima, Japan, in 2011 and Ishigaki 
Island in Okinawa, Japan, in 2013 and maintained the 
insects in an insectary room at Tokyo University of Agri-
culture and Technology prior to collecting their eggs for 
this study. The eggs were maintained at 25 °C under 70% 
humidity and a 16-h light/8-h dark cycle. After hatch-
ing, the first-instar nymphs were maintained on young 
rose leaves, and the insects at the second-instar nymph to 
adult stages were maintained on Quercus myrsinifolia or 
rose (Rosa multiflora) leaves under 70% humidity and a 
16-h light/8-h dark cycle.

Sipyloidea sipylus eggs were gifted by Dr. Takeshi 
Yokoyama at Tokyo University of Agriculture and Tech-
nology. The eggs were maintained at 25 °C under 70% 
humidity and a 16-h light/8-h dark cycle. After hatching, 
the first-instar nymphs were maintained on young rose 
leaves, and the insects from the second-instar nymph to 
the adult stage were maintained on rose (Rosa multiflora) 
leaves under 70% humidity and a 16-h light/8-h dark 
cycle.

Sample collection and purification of total RNA
The midguts (n = 3; samples 1 and 2 were females, and 
sample 3 was male) and fat bodies (n = 3) were dissected 
from adult E. okinawaensis, and the midguts (n = 3) and 
fat bodies (n = 3) from adult S. sipylus were also dis-
sected. These tissues were stored at − 80 °C until use. 

The midguts and fat body were weighed, homogenized 
with lysis buffer from a PureLink® RNA extraction kit 
(Thermo Fisher Scientific Inc., Valencia, CA, USA) and 
then centrifuged at 13,000×g for 10 min. The superna-
tants were then collected and processed for RNA puri-
fication according to the manufacturer’s instructions. 
Purified total RNA (1 μg) samples were processed for 
RNA sequencing or quantitative RT-PCR (qRT-PCR).

RNA sequencing
The RNA quality was assessed using Bioanalyzer 2100 
(Agilent Technologies, Santa Clara, CA, USA). Libraries 
for cDNA sequencing were constructed using the Illu-
mina TruSeq v2 kit (Illumina Inc., San Diego, CA, USA) 
according to the manufacturer’s protocol. RNA sequenc-
ing of three biological replicates of E. okinawaensis mid-
gut samples was performed using HiSeq 2500.

Functional annotation pipeline
Trinity software (v2.5.1) was used to construct de novo 
transcriptomes [10], and TransDecoder (v5.2.0) was used 
to find coding regions within transcripts [11]. The tran-
scriptome sequences were compared through successive 
execution of BLASTP program (v2.7.1 +) [12] against 
protein datasets described below.

Meta‑analysis of public data
We utilized transcriptome assemblies available in Tran-
scriptome Shotgun Assembly (TSA) database. If unavail-
able in TSA, transcriptomes were constructed locally 
using Trinity. A program (align_and_estimate_abun-
dance.pl) in Trinity software with Kallisto (v0.43.1) was 
used to estimate the abundance of reads [13].

Gene enrichment and pathway analyses
Metascape was used for the gene set enrichment analysis 
[14]. Using EC numbers from our functional annotation 
pipeline, those genes related to carbohydrate metabolic 
processes in E. okinawaensis were mapped to refer-
ence pathway maps in Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [15].

Data visualization
A heatmap of the hierarchical clustering and a scatter 
plot with gene IDs were generated using TIBCO Spotfire 
Desktop version 7.6.0 (TIBCO Software Inc., Palo Alto, 
CA, USA) with TIBCO Software’s “Better World” pro-
gram license.

Analysis of enolase‑coding sequences
HMMsearch program (v3.2.1) [16] was used to detect 
enolase candidates using profiles of enolase N-terminal 
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domain (Enolase_N, PF03952) and C-terminal domain 
(Enolase_C, PF00113) in Pfam database (v32.0) [17].

qRT‑PCR
We used 0.5 μg of total RNA purified from the midgut 
of male and female adults of flight (S. sipylus) and flight-
less (E. okinawaensis) stick insects for cDNA synthesis. 
cDNA synthesis was performed using a PrimeScript™ 
First-strand cDNA Synthesis Kit (Takara Co. Ltd., Tokyo, 
Japan) according to the manufacturer’s instructions. qRT-
PCR was performed with a Step One plus Real-Time PCR 
System (Applied Biosystems, Foster City, CA, USA) using 
the delta-delta Ct method. The 20-μL reaction volumes 
consisted of 0.5 μL of the cDNA template and prim-
ers (Additional file  1: Table  S1), and KAPA SYBR Fast 
qRT-PCR Kit (Nippon Genetics Co. Ltd., Tokyo, Japan) 
was used according to the manufacturer’s instructions. 
The S. sipylus and E. okinawaensis Rp49 sequences were 
used as endogenous references to standardize the RNA 

expression levels. All the data were calibrated against 
universal reference data, and relative quantification (RQ) 
values of three biological replicates were used to rep-
resent the relative expression level against a reference 
sample.

Results and discussion
In this study, we developed functional annotation pipe-
line for E. okinawaensis midgut transcriptome (Fig. 1). 
First, we generated more than 100 million 100-bp 
paired-end reads from each of three biological replicate 
RNA libraries of the E. okinawaensis midgut (Addi-
tional file  1: Table  S2). De novo assembly using Trin-
ity [10] produced 201,677 transcripts. After translated 
to 44,872 protein sequences, a systematic sequence 
similarity analysis was performed against protein 
sequence sets of functionally well-annotated organisms 
(1; human → 2; mouse → 3; C. elegans → 4; D. mela-
nogaster) in the public database using BLASTP [12]. 

a b c d e
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Fig. 1  Functional annotation pipeline for E. okinawaensis midgut transcriptome assembly. To analyze the E. okinawaensis midgut transcriptome, we 
annotated the translated peptide sequence set through sequential BLASTP using several model organisms and Manduca sexta protein sequences, 
and we then also annotated the translated peptide sequence set via sequential BLASTP using 71 species of protein sequences obtained from the 
Ensembl Metazoa database. A functional gene annotation pipeline was used for the comparative pathway and gene enrichment analyses of eight 
species of stick insects using KEGG or Metascape. The stick insect species are as follows: a Aretaon asperrimus (male); b Entoria okinawaensis (female); 
c Clitarchus hookeri (female); d Ramulus artemis (female); e Medauroidea extradentata (female); f Peruphasma schultei (female); g Extatosoma tiaratum 
(female); and h Sipyloidea sipylus (female). The sequencer and text image drawings are from TogoTV (©2016 DBCLS TogoTV/CC-BY-4.0). Mr. Satoshi 
Goto from the Tabunoki laboratory gifted all image drawings of stick insects
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The organisms used were limited to ensure the use of 
computationally tractable annotations (Gene Ontol-
ogy (GO) annotation and others) in Ensembl database 
(v.93) [18]. In this process, 27,139 proteins were func-
tionally annotated (60.5% of the total predicted pep-
tides). Furthermore, 71 protein sequence sets from 
Ensembl Metazoa (v40) and of Manduca sexta (taken 
from FTP site at Kansas State University) were added to 
the reference database for BLASTP search. Ultimately, 
35,186 proteins in the transcriptome (78.4%) could be 
assigned to some gene in the reference dataset. Because 
most transcripts can be functionally annotated from 
the human genome, we surmised that most stick insect 
genes can be annotated from functional information 
from the human genome.

To explore stick insect-specific genes and perform 
a meta-analysis, we collected seven stick insect mid-
gut transcriptome reads and assemblies from public 

databases. Including our data (E. okinawaensis), a total of 
eight stick insect midgut transcriptomes were analyzed 
(Additional file  1: Table  S3). A comparative gene table 
with expression abundance information was generated 
for use in the functional annotation of possible genes, and 
the hierarchical clustering of eight stick insect midgut 
transcriptomes was performed (Fig. 2a). E. okinawaensis 
was located in the flightless-wingless cluster, whereas M. 
extradentata was distributed in a different cluster that 
contained flightless-winged stick insects (Fig.  2a). The 
corresponding dendrogram indicates that the use of gene 
expression profiles mainly clustered stick insects with 
similar characteristics. The availability of RNA-seq reads 
from the midgut enabled us to perform a whole tran-
scriptome comparison of the eight stick insects selected 
in this study.

We extracted genes with transcript per million (TPM) 
values higher than 2-fold for the subsequent gene set 

a b

c

Fig. 2  Hierarchical clustering and Gene set enrichment analysis using Metascape of eight stick insect midgut transcriptomes. a Hierarchical 
clustering was performed using TIBCO Spotfire Desktop version 7.6.0. The heatmap is colored based on quartiles. In other words, the gene 
expression value was sorted in ascending order for each stick insect transcriptome. The first quartile was assigned the middle number between 
the smallest number and the median of the dataset (blue), and the third quartile was assigned the middle value between the median and the 
highest value of the dataset (yellow). Genes that did not correspond to E. okinawaensis are shown in gray as missing values. The pink-colored 
solid rectangles show the flightless-wingless species, the green-colored solid rectangles show the flight-winged species, and blue-colored dotted 
rectangles show the flightless-winged stick insect species. b Comparison between flight and flightless insects. c Comparison between winged and 
wingless insects. A bar graph of the enriched terms across genes with high expression in the flight or winged group is shown. The different color 
intensities indicate significance for the corresponding GO term
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enrichment analyses. The examination of the differ-
entially expressed genes in the flight and winged stick 
insects showed that the expression of 427 unique genes 
was elevated in the flight group, whereas the expression 
of 2636 unique genes was downregulated in the flight 
group. Enrichment analysis by Metascape [14] resulted 
in the generation of two genetic functional groups 
between flight and flightless, and revealed that carbohy-
drate metabolic process (GO:0005975) and metabolism 
of lipids (R-HSA-556833) were significantly upregulated 
in the flight group (Fig.  2b). Enrichment analysis of the 
upregulated genes in winged stick insects also showed 
significant functional enrichment of genes annotated 
with carbohydrate metabolic processes (Fig.  2c). These 
findings indicate that carbohydrate metabolic processes 
are shared between flight and winged stick insect groups.

The pathway diagram visualization of carbohydrate 
metabolic processes in which enzyme-coding genes in 
the E. okinawaensis midgut transcriptome were marked 
indicated that the transcripts for enzymatic genes 
involved in glycolysis were fully reconstructed from the 

midgut transcriptome sequencing data using KEGG 
database [15] (Additional file 3: Fig. S1). Additionally, we 
compared the conservation of carbohydrate metabolic 
processes among the eight stick insect species and found 
that carbohydrate metabolic processes were well con-
served among these species (Additional file  2: Table  S4, 
excel file). We estimate that different host plants would 
affect the expression profile of transcripts involved in 
the carbohydrate metabolic process in the insect mid-
gut because the amount of nutrients depends on the 
condition and development of their host plants [19, 
20]. Although the eight stick insects have different host 
plants, they can also eat a wide range of plants [9, 21–25].

Among the highly expressed genes in carbohydrate 
metabolic processes, we found enolases in the winged 
and wingless stick insect groups (Fig. 3a). After a care-
ful investigation of domain structures, this group of 
transcripts corresponded with a stick insect homolog 
of enolase superfamily 1 (ENOSF1), which plays a role 
in the catabolism of L-fucose (UniProt: Q7L5Y1). Thus, 
the gene expression levels of enolase and ENOSF1 were 

a

b
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Fig. 3  Comparison of the winged and wingless groups. a Differentially expressed transcripts are plotted based on the logarithm-transformed 
TPM (log TPM) values on the graph. The X-axis shows the wingless group, and the Y-axis shows the winged group. The gray-colored dots indicate 
transcripts with more than 2-fold differential expression in the comparison of the winged and wingless stick insects. The blue dots indicate 
significantly differentially expressed transcripts related to carbohydrate metabolic processes identified from the comparison of the winged 
and wingless groups. b Enolase and ENOSF1 mRNA expression in S. sipylus (flight-winged stick insect). c Enolase and ENOSF1 mRNA expression 
in E. okinawaensis (flightless-wingless stick insect). The relative mRNA expression levels in the fat body and midgut are presented as relative 
quantification (RQ) values. The RQ values show the relative expression levels calculated based on an expression value in the fat body equal to 1. The 
error bars represent the relative minimum/maximum expression levels of the mean RQ values. Rp49 was used as the endogenous control. Triplicate 
technical replicates were included in the study. eno enolase, sf1 ENOSF1, fb fat body, mg midgut
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compared among the eight stick insect species based 
on TPM value, and we found that the expression of the 
ENOSF1 gene in the winged stick insects was relatively 
higher than that in the wingless stick insects (Addi-
tional file 1: Table S5). We then compared the expres-
sion of the ENOSF1 gene between the midgut and fat 
body by qRT-PCR, and in winged and wingless stick 
insects, the expression of the ENOSF1 transcript in the 
midgut was higher than that in the fat body (Fig. 3b, c). 
Enolase is an important glycolytic enzyme in organ-
isms, and ENOSF1 is related to the production of 
energy from L-fucose in mitochondria. Thus, enolase 
and ENOSF1 play a role in the production of energy 
in the stick insect midgut, similar to the findings from 
other organisms, and ENOSF1 may be related to the 
evolutionary process between wingless and flying stick 
insects.

It is known that the flight fuel differs depending on the 
type of insect. The transition from rest to flight in many 
insects is accompanied by a 100-fold increase in the met-
abolic rate [26]. Therefore, sufficient enzymatic activity is 
needed for the production of energy in flight [27]. Short-
distance-travel insects use carbohydrates as their main 
energy source [26]. The preferred energy source of long-
distance-travel insects is carbohydrates, and these insects 
then change their energy source from carbohydrates to 
lipids [28]. In most insects, carbohydrates are used as the 
main energy source because carbohydrates are hydro-
philic substances and move faster than lipids into insect 
bodies. Therefore, our findings might point to some gene 
expression bias in stick insects with evolutionary flight 
ability.

Limitations

•	 The functional annotation pipeline cannot detect 
stick insect-specific genes. Hence, further compara-
tive sequence analyses are needed to investigate stick 
insect-specific genes.

•	 The environmental conditions in their habitat also 
affect the metabolic system of insects [29], but we did 
not find this environmental condition-related effect.
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