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Abstract: Effective cardiovascular disease (CVD) prevention relies on timely identification and
intervention for individuals at risk. Conventional formula-based techniques have been demonstrated
to over- or under-predict the risk of CVD in the Australian population. This study assessed the
ability of machine learning models to predict CVD mortality risk in the Australian population and
compare performance with the well-established Framingham model. Data is drawn from three
Australian cohort studies: the North West Adelaide Health Study (NWAHS), the Australian Diabetes,
Obesity, and Lifestyle study, and the Melbourne Collaborative Cohort Study (MCCS). Four machine
learning models for predicting 15-year CVD mortality risk were developed and compared to the
2008 Framingham model. Machine learning models performed significantly better compared to the
Framingham model when applied to the three Australian cohorts. Machine learning based models
improved prediction by 2.7% to 5.2% across three Australian cohorts. In an aggregated cohort,
machine learning models improved prediction by up to 5.1% (area-under-curve (AUC) 0.852, 95% CI
0.837–0.867). Net reclassification improvement (NRI) was up to 26% with machine learning models.
Machine learning based models also showed improved performance when stratified by sex and
diabetes status. Results suggest a potential for improving CVD risk prediction in the Australian
population using machine learning models.

Keywords: artificial intelligence; machine learning; clinical decision support; cardiovascular disease;
cardiovascular risk factors; risk prediction
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in Australia [1]. Many car-
diovascular disease risk factors are modifiable and, with early diagnosis and intervention of
individuals at higher risk, CVD mortality and morbidities are largely preventable [2]. Risk
prediction models that combine known CVD predictors, such as hypertension, cholesterol,
age, smoking, and diabetes, have traditionally been used to identify those at greatest risk.
The Framingham, Systematic COronary Risk Evaluation (SCORE), and QRISK models are
commonly used in the UK, US, Australia, and New Zealand to inform public policy and
clinical guidelines [3,4].

Two of the most pertinent limitations of established risk prediction models are: (1) tra-
ditional predictive models based on personal health information use simple regression
fitting approaches that cannot assume nonlinear relationships between the predictors and
outcome measures, which oversimplifies the associations between CVD risk factors and
outcomes, thus reducing the accuracy of predictions [5], and (2) there is a limited generaliz-
ability of models to accurately predict the risk of CVD in diverse populations and across
countries [3,4]. For example, the Framingham Risk Score, one of the most commonly used
and widely validated models worldwide, is derived from a largely Caucasian population
of European descent, and may be less accurate for some high-risk groups, such as indi-
viduals with diabetes, socio-economically disadvantaged populations [6], and Australian
females [7].

Machine learning (ML) is a widely accepted computational technique that can address
the nonlinear relationships between the risk factors and outcome measures [8]. It also
presents an opportunity to improve the robustness and generalizability of prediction
models for CVD by constructing phenotypical cohort-based risk models [9]. The poten-
tial of improved accuracy in predicting CVD risk using machine learning approaches,
compared to the Framingham Risk Score, has been investigated in several international
cohorts [5,10–12]. Using large UK cohorts, Weng et al. [5] utilized four machine learning
models (logistic regression, random forest, gradient boosting machines, neural networks) to
predict CVD events, and Alaa et al. [10] tested the potential of an automated machine learn-
ing framework (AutoPrognosis) for predicting CVD events. In the US, Ambale-Venkatesh
et al. [11] and Kakadiaris et al. [12] also used random forest and support vector machine,
respectively, to predict CVD events and mortality in US populations. A 2020 meta-analysis
assessing the predictive ability of machine learning algorithms for cardiovascular dis-
eases found promising potential in ML approaches [13]. The Framingham Risk Score
is recommended for use in Australia to predict CVD risk but has been found to have
limited accuracy for some Australian sub-populations [7,14]. A recent Australian study
based on 5453 participants showed that the widely accepted 2008 Framingham model has
overestimated the CVD risk by 29.7% in men and 7.2% in women [14].

This investigation aims to improve CVD risk prediction for the Australian popula-tion
by applying different ML techniques to the risk factors used by the 2008 Framingham Risk
Score. To our knowledge, these ML based CVD risk prediction models have not previously
been applied to Australian population cohorts.

ML is mainly classified into two categories: supervised and unsupervised. If a set
of training data is available and the classifier is designed based on that prior informa-
tion, then it is known as supervised learning, whilst in unsupervised learning no prior
training information is available. [15]. The performance of four supervised ML tech-
niques used to derive risk prediction models for cardiovascular deaths for three Australian
sub-populations were compared, individually and in combination, in male and female
sub-cohorts, and in a diabetes cohort. This study is an applied public health epidemiologi-
cal research approach using tools of computational modelling (machine learning models).
It will be a novel contribution to public health.
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2. Materials and Methods
2.1. Study Sample

Data from the North West Adelaide Health Study (NWAHS) [16], the Australian Dia-
betes, Obesity, and Lifestyle (AusDiab) study [17], and the Melbourne Collaborative Cohort
Study (MCCS) [18] were used in this analysis. Detailed descriptions of the NWAHS [16],
AusDiab [17], and the MCCS [18] cohorts, recruitment, response rates, and data collection
procedures have been previously published.

2.2. Risk Factors and CVD Mortality

Eight core baseline variables (age, sex, total cholesterol, high-density lipoprotein (HDL)
cholesterol, systolic blood pressure, hypertension medication, diabetes, and smoking status,
Table 1, were used to derive all the CVD risk prediction models. The outcome measure
used was CVD mortality. Non-fatal CVD events were excluded from the outcome measure
as that information was not available in all three datasets. CVD mortality was defined
as deaths that occurred within 15 years of baseline, with CVD listed as the primary or
secondary cause of death based on International Classification of Diseases (ICD) from the
9th (390–459) and 10th (I00–I99) revisions.

Table 1. Data collection methods and measures for the cardiovascular disease (CVD) risk factor
variables used in the analysis.

Risk Factor Data Collection Methods Measures

Age Self-report Years

Sex Self-report Male/Female

Total Cholesterol
Biomedical measure

Fasting blood sample
LipidsHigh-density lipoprotein

(HDL) Cholesterol

Systolic blood pressure Biomedical measure
Dinamap/mercury

sphygmomanometer, average
of two recorded measures

Hypertension medication Self-report No/Yes

Diabetes Self-report or biological
measure

Told by a doctor that they
have diabetesFasting plasma
glucose (FPG) level of at least

7.0 mmol/L

Smoking status Self-report No/Yes

2.3. Participant Numbers and Missing Values

The study population characteristics are reported in Table 2. Out of 4056 NWAHS
participants, we excluded 326 people with a previous CVD history, 6 with missing CVD
history data, and 70 with missing CVD outcome data. This led to a sample of 3654
participants. For the AusDiab study, out of 11,247 participants, 938 with a previous CVD
history, 142 with missing CVD history data, and 17 with missing CVD outcome data were
excluded, leaving 10,150 participants for the analysis. Of the 41,513 MCCS participants,
7035 participants with a previous CVD history and 1867 with missing CVD outcome were
excluded. This resulted in 32,611 participants for the analysis.
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Table 2. Missing numbers and summary data (mean ± standard deviation) for the three-study cohorts and combined cohort.
The values for n, age, male, female, total cholesterol, HDL cholesterol, systolic blood pressure, hypertension medication,
diabetes, and smoker were input after removing CVD history and death, missing data, and imputation of other missing risk
factor variables.

North West Adelaide
Health Study (NWAHS)

Australian Diabetes,
Obesity, and Lifestyle

(AusDiab)

Melbourne
Collaborative Cohort

Study (MCCS)
Combined

Summary Missing Summary Missing Summary Missing Summary Missing

n 3654 10,150 32,611 46,305
Age, y 48.5 ± 15.8 nil 50.0 ± 7.5 nil 54.4 ± 8.6 nil 53.0 ± 10.9 nil

Male, n% 1693 (46.3) nil 4437 (43.7) nil 12,790 (39.3) nil 18,919 (40.8) nil
Female, n% 1961 (53.7) nil 5713 (56.3) nil 19,722 (60.7) nil 27,386 (59.2) nil

Total cholesterol (mg/dL) 94.9 ± 18.8 41 102.1 ± 23.4 2 99.2 ± 19.0 151 99.5 ± 19.1 194
HDL cholesterol (mg/dL) 24.7 ± 6.8 41 25.8 ± 1.6 4 29.4 ± 7.9 10,503 29.7 ± 42.4 10,548

Systolic blood pressure
(mm Hg) 126.6 ± 17.9 0 128.4 ± 7.5 54 135.9 ± 18.7 117 133.5 ± 18.9 171

Hypertension medication, n% 451 (12.3) 0 792 (7.8) 98 4671 (14.4) 94 6452(13.9) 192
Diabetes, n% 233 (6.4) 13 1252 (12.3) 169 1051 (3.2) 9 3791(8.2) 191

Smoker 1957 (53.6) 22 2124 (20.9) 212 13,382 (41.2) 10 19,833(42.8) 244
History of CVD 326 6 938 142 7035 nil 8299 148
CVD death, n% 121 (3.3) 70 341 (3.4) 17 520 (1.6) 1867 982(2.1) 1954

The missing values in the risk factor variables were imputed using the missRanger
algorithm [19]. The missRanger algorithm uses random forest trained imputations on
observed data to predict continuous and categorical missing values. Random forest-based
imputations perform better than the traditional imputation methods for epidemiologic
datasets with missing data [20]. Imputation models that treat continuous variables as linear
may be less able to account for complex interactions and non-linear relationships between
the variables, compared to random forest-based imputations.

2.4. Framingham Risk Prediction Model

For the Framingham model, the CVD risk score was calculated using the eight baseline
variables (mentioned previously) included in the 2008 Framingham model [21]. The Fram-
ingham model assigns a person to the low-risk group if the score is < 20 and to the high-risk
group if the score is ≥ 20. As the Framingham equation was designed to estimate 10-year
CVD risk and in this study the follow up data is for 15 years, we have linearly transformed
the 10-year risk of the Framingham model into 15-year risk [13]. Thus, the Framingham
score risk threshold became 30 instead of 20.

2.5. Machine Learning Risk Prediction Model

Figure 1 shows an overview of the machine learning approach used. The algo-
rithm starts with input of the cohort data (NWAHS, AusDiab, or MCCS). Input variables
(eight baseline variables mentioned previously) were normalized to zero mean and unit
variance within each dataset to ensure each variable had the same influence on the cost
function in designing the machine learning models. This was done separately on training
and testing data.

The three cohort datasets were severely imbalanced. The number of participants who
had died due to CVD on or before 15 years follow-up (minority class) was much smaller
than the number of participants alive at 15 years follow-up (majority class). The minority
class percentage were 3.3, 3.4, and 1.6 for the NWAHS, AusDiab, and the MCCS, respec-
tively (shown in Table 1). As this imbalance affects the decision boundary of the machine
learning models and results in poor performance, the Synthetic Minority Over Sampling
Technique (SMOTE) algorithm was used [22] to oversample the minority class and balance
the data in the training set.
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Figure 1. Flowchart describing the machine learning approach. CVD indicates cardiovascular disease;
Synthetic Minority Over Sampling Technique (SMOTE); Machine Learning (ML); logistic regression
(LR); linear discriminant analysis (LDA); support vector machine with linear kernel (SVM); random
forest (RF).

Four popular machine learning models were applied to each cohort: logistic regression
(LR), linear discriminant analysis (LDA), support vector machine with linear kernel (SVM),
and random forest (RF) [15,23]. The performance of each model was measured using the
testing data. To maximize the models’ robustness and generalizability, two-fold cross
validation was used. For this approach, the original data was randomly split into two
equal sized subsets: a training set to train the models, and a testing set to evaluate them.
Then the sets were swapped and the process was repeated. The two results were averaged.
To ensure stable classification results, the overall process was repeated 10 times for each of
the four models and the results were averaged. In addition, to test the generalizability of
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the machine learning models, another experiment was conducted by taking AusDiab and
the MCCS as the training set and the NWAHS as the external validation set.

2.6. Software

The programming for the Framingham score calculation and preprocessing of the data
(participants exclusion process) was completed in MATLAB R2018b [24]. Missing value
imputation was done in the R 3.6.1 using the Ranger package (R Foundation for Statistical
Computing, Vienna, Austria). Standardization of features and machine learning algorithms
were implemented using the Scikit-learn library in Python (Python Software Foundation,
Wilmington, United States) [25].

2.7. Statistical Analysis

The performance of the Framingham model was evaluated using area-under-curve
(AUC) score, sensitivity (Sen), specificity and precision based on the prediction equation,
and the risk threshold described previously. Then, performance of the machine learning
models was analyzed, compared with those of Framingham, and the categorial net reclassi-
fication improvement (NRI) for the paired models was calculated. The optimal threshold
for classification was found from receiver operating characteristic (ROC) Curve. The opti-
mal threshold was the point where there was the maximum difference between sensitivity
and specificity. Variable importance was assessed using a random forest technique to rank
the features according to their contributions to the predictions. The random forest variable
ranking method has been successfully used for similar studies [12,26]. The dependent
variable for the models was CVD mortality.

2.8. Ethics Approval

The NWAHS was approved by the Human Research Committee of the Queen Eliza-
beth Hospital in South Australia, the AusDiab study was approved by the Alfred Human
Research Ethics Committee, and the MCCS was approved by the Cancer Council Victoria’s
Human Research Ethics Committee.

3. Results

The prediction accuracy of all models, for the individual and combined cohorts, ac-
cording to the AUC performance measure, is shown in Table 3. For the NWAHS and
AusDiab cohorts, all four of the ML models achieved significantly better performance
than the Framingham model for predicting CVD deaths. For the MCCS, except for the
Logistic Regression model, all other ML models achieved slightly better performance than
the Framingham model. When all three study populations were combined (46,315 partici-
pants, 982 CVD deaths) the Logistic Regression and Linear Discriminant Analysis models
performed significantly better than the Framingham model for predicting CVD deaths.

The classification analysis outcomes can be found in Table 4. For the NWAHS,
the Framingham model predicted 50 out of 121 CVD deaths correctly (Sen 41.3%, PPV
14.0%), compared to 98 deaths using the Support Vector Machine model (Sen 80.7%, PPV
13.0%). For AusDiab, the Framingham model correctly predicted 195 out of 341 deaths
(Sen 57.2%, PPV 14.4%) compared to 291 with the ML model, Linear Discriminant Analysis
(Sen 85.2%, PPV 15.7%). For the MCCS, the Framingham model correctly predicted 162 out
of 520 deaths (Sen 31.2%, PPV 5.6%) compared to 425 with the ML model, Random Forest
(Sen 81.6%, PPV 3.5%). Even in the combined cohort, the Framingham model correctly
predicted fewer CVD deaths (408 out of 982 deaths, Sen 41.5%, PPV 8.8%) compared to all
four ML models. The Logistic Regression model performed best (796 out of 982 deaths,
Sen 81.0%, PPV 8.1%). The categorical NRI between the Framingham model and each of
the machine learning models are also shown in Table 4. For the machine learning models,
an NRI up to 29%, 24%, and 22% for the NWAHS, AusDiab, and the MCCS, respectively,
were achieved when compared with the Framingham model. For the aggregated cohort,
the machine models achieved an NRI up to 26%.
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Table 3. Two-fold cross validation: Comparison of the performance of Framingham Score (baseline
model (BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality of
NWAHS, AusDiab and MCCS participants, and combined cohorts.

Models Area-under-curve
(AUC) (95% CI) p Value Difference from

Framingham

NWAHS
BL: Framingham Score 0.837 (0.792–0.882) – –

ML: Logistic Regression 0.874 (0.833–0.915) <0.001 +3.7%
ML: Linear Discriminant Analysis 0.874 (0.833–0.915) <0.001 +3.7%

ML: Support Vector Machine 0.873 (0.832–0.914) <0.001 +3.6%
ML: Random Forest 0.854 (0.811–0.897) 0.0162 +1.7%

AusDiab
BL: Framingham Score 0.850 (0.824–0.876) – –

ML: Logistic Regression 0.900 (0.878–0.922) <0.001 +5.0%
ML: Linear Discriminant Analysis 0.901 (0.879–0.923) <0.001 +5.1%

ML: Support Vector Machine 0.902 (0.880–0.924) <0.001 +5.2%
ML: Random Forest 0.891 (0.868–0.914) <0.001 +4.1%

MCCS
BL: Framingham Score 0.754 (0.730–0.778) – –

ML: Logistic Regression 0.753 (0.729–0.777) 0.230 −0.1%
ML: Linear Discriminant Analysis 0.756 (0.732–0.780) 0.070 +0.2%

ML: Support Vector Machine 0.758 (0.734–0.782) 0.008 +0.4%
ML: Random Forest 0.781 (0.757–0.805) <0.001 +2.7%

Combined
BL: Framingham Score 0.802 (0.783–0.817) –

ML: Logistic Regression 0.852 (0.837–0.867) <0.001 +5.1%
ML: Linear Discriminant Analysis 0.852 (0.837–0.867) <0.001 +5.1%

ML: Support Vector Machine 0.851 (0.836–0.866) <0.001 +5.1%
ML: Random Forest 0.832 (0.814–0.848) 0.001 +3.0%

Table 4. Two-fold cross validation: Comparison of classification (Sensitivity, Specificity, Precision) and net reclassification
improvement (NRI) performance of Framingham Score (baseline model (BL)) and four machine learning (ML) models
predicting 15-year risk of CVD mortality of NWAHS, AusDiab and MCCS participants, and the combined cohort.

Models Sensitivity Specificity Precision NRI % (95%) p Value

NWAHS
BL: Framingham Score 41.3 91.3 14.0 –

ML: Logistic Regression 79.5 81.7 13.2 28.5 (25.9–30.5) <0.001
ML: Linear Discriminant Analysis 77.7 84.1 14.5 29.1 (26.1–30.6) <0.001

ML: Support Vector Machine 80.7 81.0 12.9 29.0 (26.0–31.8) <0.001
ML: Random Forest 79.4 80.8 12.7 27.5 (25.7–29.6) <0.001

AusDiab
BL: Framingham Score 57.1 88.2 14.4 –

ML: Logistic Regression 84.6 84.1 16.1 23.3 (21.1–25.2) <0.001
ML: Linear Discriminant Analysis 85.2 84.0 15.7 23.8 (20.7–26.1) <0.001

ML: Support Vector Machine 84.0 85.4 16.7 24.1 (22.7–27.7) <0.001
ML: Random Forest 84.3 83.6 15.3 22.5 (20.5–24.4) <0.001

MCCS
BL: Framingham Score 31.2 91.4 5.6 –

ML: Logistic Regression 71.1 68.4 3.5 16.9 (13.6–19.9) <0.001
ML: Linear Discriminant Analysis 70.4 69.5 3.6 17.3 (14.1–20.2) <0.001

ML: Support Vector Machine 72.0 68.1 3.6 17.5 (13.6–20.4) <0.001
ML: Random Forest 81.6 63.1 3.5 22.1 (19.1–24.8) <0.001

Combined
BL: Framingham Score 41.5 90.7 8.8 –

ML: Logistic Regression 81.0 77.7 8.1 26.5 (20.1–29.8) <0.001
ML: Linear Discriminant Analysis 80.5 78.2 8.2 26.5 (20.0–29.9) <0.001

ML: Support Vector Machine 80.8 77.8 8.1 26.4 (19.8–29.5) <0.001
ML: Random Forest 77.4 76.9 6.8 22.0 (16.5–27.5) <0.001

A random forest technique [26] was used to predict variable importance. Table 5
lists the variables ranked according to their contribution to prediction for the individual
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datasets and the combined cohort. For all three individual datasets and in the combined
dataset, age appeared to be the most important predictor that was linked to a higher CVD
risk, followed by systolic blood pressure.

Table 5. Variable ranking based on their contribution to the prediction for NWAHS, AusDiab, and
MCCS populations. Variables are listed based on their contribution (Score) to the predictions.

NWAHS AusDiab MCCS Combined

Variable Score Variable Score Variable Score Variable Score
Age 0.412 Age 0.429 Age 0.422 Age 0.563

Systolic blood
pressure 0.251 Systolic blood

pressure 0.301 Systolic blood
pressure 0.222 Systolic blood

pressure 0.201

Hypertension
Medication 0.141 Hypertension

medication 0.116 Hypertension
medication 0.141 Hypertension

medication 0.125

Diabetes status 0.089 Diabetes status 0.077 HDL 0.105 Diabetes status 0.070
Tot. Cholesterol 0.057 HDL 0.036 Tot. Cholesterol 0.066 HDL 0.020

HDL 0.028 Tot. Cholesterol 0.028 Diabetes status 0.032 Sex 0.011
Sex 0.011 Sex 0.008 Sex 0.005 Tot. Cholesterol 0.008

Smoking status 0.010 Smoking status 0.004 Smoking status 0.004 Smoking status 0.005

3.1. Sex Stratification

An analysis of the prediction accuracy of all models when applied to the combined
cohort stratified by sex found that machine learning models returned higher AUC scores
when compared to the Framingham model for male and female populations (Table 6).
The classification performance of the Framingham model was less in females compared
to males, correctly predicting 75 out of 481 CVD deaths for females (Sen 15.6, PPV 15.7),
compared to 333 deaths out of 501 deaths for males (Sen 66.3, PPV 8.0). The ML mod-
els performed significantly better at predicting CVD male and female deaths than the
Framingham model. In the male cohort, the Linear Discriminant Analysis and Support
Vector Machine models were able to predict 382 out of 501 CVD deaths while, in the female
cohort, Logistic Regression and Support Vector Machine models correctly predicted 402
out of 481 CVD deaths. NRI were up to 6.5% and 48.7% for the male and female cohorts,
respectively, compared to the Framingham model. Details of this classification analysis can
be found in Tables 6 and 7.

Table 6. Two-fold cross validation: Comparison of the performance of Framingham Score (baseline
model (BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality using
combined data based on Sex stratification.

Models AUC (95% CI) p Value Difference from
Framingham

Men
BL: Framingham Score 0.799 (0.776–0.823) – –

ML: Logistic Regression 0.816 (0.793–0.839) <0.001 +1.7%
ML: Linear Discriminant Analysis 0.818 (0.795–0.841) <0.001 +1.9%

ML: Support Vector Machine 0.818 (0.795–0.841) <0.001 +1.9%
ML: Random Forest 0.812(0.791–0.837) <0.001 +1.7%

Women
BL: Framingham Score 0.836 (0.814–0.858) – –

ML: Logistic Regression 0.871 (0.851–0.892) <0.001 +3.5%
ML: Linear Discriminant Analysis 0.869 (0.848–0.890) <0.001 +3.4%

ML: Support Vector Machine 0.870 (0.850–0.891) <0.001 +3.4%
ML: Random Forest 0.854 (0.833–0.876) < 0.001 +2.0%
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Table 7. Two-fold cross validation: Comparison of the classification (Sensitivity, Specificity, Precision) and NRI performance
of Framingham Score (baseline model (BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality
using combined data based on Sex stratification.

Models Sensitivity Specificity Precision NRI % (95%) p Value

Men
BL: Framingham Score 66.3 79.3 8.0 –

ML: Logistic Regression 75.9 75.8 8.6 6.1 (5.0–8.4) <0.001
ML: Linear Discriminant Analysis 76.2 75.5 8.8 6.1 (5.0–8.8) <0.001

ML: Support Vector Machine 76.1 76.0 8.6 6.5 (6.1–7.7) <0.001
ML: Random Forest 77.1 74.0 7.6 5.5 (4.0–6.4) <0.001

Women
BL: Framingham Score 15.6 98.5 15.7 –

ML: Logistic Regression 83.4 79.1 7.7 48.4 (46.4–50.1) <0.001
ML: Linear Discriminant Analysis 81.9 80.8 8.6 48.7 (46.0–50.0) <0.001

ML: Support Vector Machine 83.4 79.4 8.1 48.7 (47.3–49.6) <0.001
ML: Random Forest 80.6 77.6 6.1 44.1 (43.6–46.5) <0.001

3.2. Diabetes Stratification

Among 46,315 participants in the combined cohort, a total of 3791 participants reported
a diagnosis of diabetes at baseline. All machine learning models achieved significant
improvement in prediction accuracy compared to the Framingham model for the diabetes
cohort and non-diabetes cohort (Table 8). Additionally, the four ML models performed
significantly better in classification performance than the Framingham model for the
diabetes cohort and non-diabetes cohort (Table 9). The Framingham model correctly
predicted only 163 CVD deaths out of 231 deaths in the diabetes cohort (Sen 70.1%, PPV
11.1) and 245 CVD deaths out of 751 in the non-diabetes cohort (Sen 32.6%, PPV 7.7).
In comparison, the Linear Discriminant Analysis model performed best in both diabetes
and non-diabetes cohorts, correctly predicting 185 out of 231 CVD deaths (Sen 80.0%, PPV
16.1) in the diabetes cohort and 629 out of 751 CVD deaths (Sen 84.0%, PPV 5.6) in the
non-diabetes cohort. For the ML models, NRI were up to 18.7% and 31.2% for the diabetes
and non-diabetes cohorts, respectively, compared to the Framingham model.

Table 8. Two-fold cross validation: Comparison of the performance of Framingham Score (baseline
model (BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality using
combined data based on diabetes stratification.

Models AUC (95% CI) p Value Difference from
Framingham

Diabetes
BL: Framingham Score 0.734 (0.696–0.771) – –

ML: Logistic Regression 0.823 (0.790–0.856) <0.001 +9.0%
ML: Linear Discriminant Analysis 0.824 (0.791–0.857) <0.001 +9.1%

ML: Support Vector Machine 0.824 (0.791–0.857) <0.001 +9.0%
ML: Random Forest 0.800 (0.766–0.835) <0.001 +6.6%

Non-Diabetes
BL: Framingham Score 0.789 (0.770–0.88) – –

ML: Logistic Regression 0.842 (0.824–0.860) <0.001 +5.3%
ML: Linear Discriminant Analysis 0.843 (0.825–0.861) <0.001 +5.4%

ML: Support Vector Machine 0.844 (0.826–0.862) <0.001 +5.5%
ML: Random Forest 0.831 (0.813–0.850) <0.001 +4.2%



Int. J. Environ. Res. Public Health 2021, 18, 3187 10 of 14

Table 9. Two-fold cross validation: Comparison of the classification (Sensitivity, Specificity, Precision) and NRI performance
of Framingham Score (baseline model (BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality
using combined data based on diabetes stratification.

Models Sensitivity Specificity Precision NRI % (95%) p Value

Diabetes
BL: Framingham Score 70.1 63.4 11.1 –

ML: Logistic Regression 78.8 72.7 16.0 17.9 (15.1–19.6) <0.001
ML: Linear Discriminant Analysis 80.0 72.2 16.0 18.7 (16.9–20.0) <0.001

ML: Support Vector Machine 79.6 72.2 15.8 18.2 (15.6–20.0) <0.001
ML: Random Forest 79.7 70.7 15.3 16.8 (14.5–19.2) <0.001

Non-Diabetes
BL: Framingham Score 32.6 93.0 7.7 –

ML: Logistic Regression 81.2 75.3 5.7 30.8 (28.6–34.2) <0.001
ML: Linear Discriminant Analysis 83.7 73.1 5.6 31.2 (27.6–34.4) <0.001

ML: Support Vector Machine 80.2 76.2 6.6 30.8 (28.7–34.0) <0.001
ML: Random Forest 77.4 76.7 5.7 28.5 (26.4–32.5) <0.001

3.3. External Validation

To evaluate the performance of ML models on unseen data, prediction models were
developed using a combined AusDiab and MCCS dataset as the training set and the
NWAHS as an the external validation set. The comparison of AUC score, classification
results (sensitivity, specificity and precision), and NRI are shown in Table 10. All four
machine learning models achieved significant improvement in performance (AUC score,
sensitivity, precision) compared to the Framingham model when the model was trained
using combined AusDiab and MCCS data and tested on NWAHS data. The support vector
machine achieved an AUC score of 0.880 and sensitivity of 72.5, much higher than the
Framingham model (AUC 0.837, Sen 41.3). The highest NRI was achieved by the linear
discriminant analysis model (29.4). Even when data was stratified based on sex and diabetic
diagnosis, the machine learning models performed better than Framingham model.

Table 10. External Validation: Comparison of the classification and NRI performance of Framingham Score (baseline model
(BL)) and four machine learning (ML) models predicting 15-year risk of CVD mortality using combined AusDiab and MCCS
dataset as the training set and NWAHS as the external validation set.

Models AUC Sensitivity Specificity Precision NRI

BL: Framingham Score 0.837 41.3 91.3 14.0 -
ML: Logistic Regression 0.879 76.0 85.7 15.4 29.1

ML: Linear Discriminant Analysis 0.880 75.2 86.8 16.4 29.4
ML: Support Vector Machine 0.880 72.5 89.0 18.5 28.9

ML: Random Forest 0.866 79.4 80.4 12.2 27.2

Men
BL: Framingham Score 0.841 72.1 82.4 13.3 -

ML: Logistic Regression 0.858 73.8 83.8 14.6 3.1
ML: Linear Discriminant Analysis 0.857 73.7 83.5 14.3 2.7

ML: Support Vector Machine 0.856 73.9 84.6 14.8 1.3
ML: Random Forest 0.846 72.13 82.65 13.5 0.28

Women
BL: Framingham Score 0.871 10.5 97.4 22.2 -

ML: Logistic Regression 0.898 87.3 78.8 11.6 58.2
ML: Linear Discriminant Analysis 0.898 88.1 78.6 11.7 58.8

ML: Support Vector Machine 0.900 88.4 78.4 13.5 58.9
ML: Random Forest 0.891 84.5 83.1 11.6 59.7
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Table 10. Cont.

Models AUC Sensitivity Specificity Precision NRI

Diabetes
BL: Framingham Score 0.675 66.7 57.8 15.3 -

ML: Logistic Regression 0.744 74.4 71.4 23.1 21.3
ML: Linear Discriminant Analysis 0.741 75.0 70.5 22.5 21.0

ML: Support Vector Machine 0.738 75.8 65.3 19.8 16.6
ML: Random Forest 0.706 62.5 79.1 25.4 17.1

Non-Diabetes
BL: Framingham Score 0.841 35.1 93.4 13.5 -

ML: Logistic Regression 0.889 80.4 83.6 12.5 35.5
ML: Linear Discriminant Analysis 0.888 83.5 80.4 11.1 35.4

ML: Support Vector Machine 0.890 87.6 76.0 9.7 35.1
ML: Random Forest 0.866 78.4 81.9 11.0 31.8

4. Discussion

This study evaluated the potential of four machine learning CVD risk prediction
models for predicting CVD mortality risk in Australian population cohorts, compared with
the Framingham model, using eight traditional risk factors. We have validated the ML
models both internally (two fold cross validation) and externally (training on combined
AusDiab and MCCS data and tested on unseen NWAHS data). To our knowledge, this is
the first multiple dataset and multiple sub-cohort study applying machine learning to the
Australian population, demonstrating improved performance of predicting CVD risk with
machine learning models.

All four machine learning models performed significantly better than the Framingham
model at identifying individuals at very high risk of CVD in the Australian population in
terms of discrimination, risk classification, and decision curve analysis. Machine learning
models improved prediction (AUC score) by up to 5.1% in the aggregated cohort (NWAHS,
AusDiab, and MCCS combined cohort), 1.9% in the male cohort, 3.5% in the female cohort,
9.1% in the diabetes cohort, and 5.5% in the non-diabetes cohort (See Tables 3, 6 and 8).

Additionally, this study found that machine learning models detected up to 68%
more ‘true positive’ female cases than the Framingham model and identified 49% net
reclassification improvement with the ML models (See Table 7). Recent investigations
have shown disparities in the care received by Australian women with CVD compared to
Australian men [27]. This can in part be attributed to underdiagnosis or delay in diagnosis
of women, resulting from sex differences in CVD pathophysiological mechanisms, clinical
presentation, and course of disease [27], and a higher prevalence of comorbid conditions in
female CVD patients [28]. Framingham models have been found to underestimate CVD
risk for women [27]. Machine learning models to specifically target females may reduce
the risk of sex disparities in CVD care in Australia.

Machine learning models may also improve the accuracy of risk identification for
individuals with Type 2 diabetes, a group with an elevated risk of CVD [29], compared to
the non-diabetic population. The 10% increase in the sensitivity of the risk assessment for
subgroups with diabetes found in this analysis suggests an opportunity to optimize and
individualize cardiovascular risk reduction interventions for individuals with diabetes.

A Synthetic Minority Oversampling Technique (SMOTE) was used to address the
class imbalance. The sample used in the analysis was sufficiently powered for machine
learning modelling approaches, and SMOTE is an accepted method for treating imbalanced
data [22].

With the growing number of electronic health record datasets, there is an opportunity
to use machine learning techniques to improve the accuracy of models by enabling a more
nuanced account of the complex relationships between multiple, correlated, and nonlinear
risk factors and outcomes [10] and supporting an adaptive approach for risk predictor revi-
sions [30]. Incorporated into decision making tools in general practice, machine learning
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models of CVD risk may offer more accurate information to guide clinicians’ recommen-
dations for treatment for high risk individuals. Intensive risk factor management can
potentially lead to a reduction in CVD events and, particularly, of nonfatal myocardial
infarction, stroke, and CVD death [2].

This analysis combined data collected across the studies of three prospective cohorts.
One limitation of this approach is that it is possible there are unknown inaccuracies in this
data, in the recorded cause of death, and self-reported variables (smoking status, diabetes,
and use of medication). There is also known missing data in these datasets (32% of HDL
cholesterol data from the MCCS dataset was missing). Missing HDL cholesterol data was
imputed using a random forest-based imputation method, which can perform well with
even a high amount of missing data [31], but imputing large proportions of missing data
runs the risk of potentially biasing the model. Additionally, although the study cohorts
are broadly representative of the wider Australian population, in all cohorts, non-English
speakers who did not have access to support from an English language speaker were
excluded from the studies and the MCCS participants were more likely to be older, female,
and European-born than other Australians of the same age range [11].

For the purposes of comparison, the analysis approach utilized in this investigation
included only the eight key health parameters identified in the Framingham model, de-
veloped in 2008, as these factors are routinely included in databases. This may limit the
predictive accuracy of our models. Recently established CVD predictors, particularly those
associated with elevated CVD risk in females or individuals with history of diabetes, should
be included in future databases and investigations of machine learning models. In addition,
the Framingham risk model is used to assess cardiovascular disease risk, while in this
study we assessed only CVD mortality risk, not CVD incidence because CVD incidence
information was not available in all of the three included datasets. Lastly, we did not
recalibrate the Framingham model to the Australian dataset as we wanted to compare the
machine learning model with the exact same model as recommended by the Framingham
2008 equation [21].

5. Conclusions

In this study, we developed machine learning risk prediction models for CVD mortality
based on data from three popular Australian cohort studies using the same eight risk
variables used by the Framingham 2008 model. The machine learning risk prediction
models were significantly better than the traditional Framingham risk model for predicting
CVD mortality risk in the Australian population. Machine learning models outperformed
Framingham in each of the individual study cohorts, and in the combined cohort. Machine
learning models also outperformed Framingham when stratified by sex and by diabetic
diagnosis. Our findings suggest that machine learning models should be considered in the
development of standard CVD risk assessment scales in future.
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