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ABSTRACT Secondary structures have been proved to relate with the great functional diversity of RNA.
There have been many studies to predict and compare the RNA secondary structures. However, fast and
accurate comparison of RNA secondary structures with arbitrary pseudoknots is a challenging issue due
to the hidden but important structural properties, such as the distribution of stems and branches. In this
paper, we construct a novel RNA secondary structure model called modified adjoining grammars binary tree
(BTMGCSP). It can not only represent the complex RNA secondary structure including arbitrary pseudoknots
intuitively, but also reserve RNA secondary structure properties. Further, we propose vector-edit distance
to measure the structure similarity between BTMGCSP trees converted from RNA sequences and their
secondary structures for classifying conserved stem pattern. The experimental results show that our method
substantially reduces thememory and time consumption in contrast to previous algorithms, such asO((n/k)2)
andO(n/k) for time and space complexity, respectively. In particular, the AUC value of our method achieves
0.949 in PseudoBase.

INDEX TERMS Secondary structures, pseudoknots, binary tree, adjoining grammar, edit distance.

I. INTRODUCTION
In the early 1990s, non-coding RNAs (ncRNAs) were
revealed to perform non-coding function like catalysis and
regulation in biological systems. These findings help to
understand how cellular functions evolved from RNA-based
origins. Thus, there have been considerable efforts to
study regulatory characteristics of ncRNAs, such as riboso-
mal RNA modification [1]–[3], gene expression regulation
[4]–[7] and muscle differentiation control [8], [9]. Especially,
researches unveil that ncRNAs are involved in abroad range
of human diseases recently [10]–[13]. The functions of ncR-
NAs have been proved to be primarily determined by their
3D structure. In other words, ncRNAs with high structure
similarity are likely to exhibit similar functions. The 3D
structure of ncRNA can be inferred from its tertiary structure,
which is formed by folding its secondary structure. Compared
with the complex RNA tertiary structures, it is easier to infer
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their potential functions by measuring secondary structure
similarity [14], [15]. Therefore, the study of RNA secondary
structure is crucial to understand the function and regulation
of RNA transcripts [16], [17].

Studies have shown that the structure of ncRNA is
more conservative than sequence in biological evolution
[18]–[20]. Most researches in this field focus on structural
prediction and comparison. The former relying on ther-
modynamic parameters [21], [22] mainly includes exper-
imental analysis [23] and computational prediction [24].
Many methods of RNA secondary structure comparison have
been proposed, and new ones are still emerging [25]. These
methods can be classified into alignment problem and edit
problem [26]. Given two structures R1 and R2, the alignment
problem aims to identify a consensus structure Rc, which
minimizes the total edit cost from them to Rc. For example,
Sakakibara defined Hidden Markov Models on tree struc-
tures (PHMMTSs) based on a random context-free grammar
and applied it to the alignment of RNA secondary structures
[27]. In contrast, the edit problem uses a series of predefined
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edit operations to calculate the minimum cost (distance) of
transferring R1 to R2. There have been many researches on
this issue, such as constructing RNA secondary structure
models with ordered trees to calculate the edit distance or
similarity score between them [28]. The heuristic method
was used to compute the edit distance between two RNA
structures [29]. Obviously, unlike alignment problem, edit
problem only needs to calculate the minimum cost of the
modification from R1 to R2, neither to find the consistent
structure Rc, nor to calculate the total edit cost from R1 and
R2 to Rc.

Most aforementioned methods do not take into account
highly conserved pseudoknots that actually perform varied
functions [30]. Further, the alignment of RNA structure
containing arbitrary pseudoknots is NP-hard [31]. There-
fore, the study of pseudoknots has received more attention.
Uemura et al. [32] proposed two special subclasses of lin-
ear tree adjoining grammars (TAGs), simple linear TAGs
(SL-TAGs) and extended simple linear TAGs (ESL-TAGs),
and applied them to model and predict RNA secondary struc-
ture with pseudoknots. It is effective for some simple short
pseudoknots. Based on these two special TAGs subclasses,
PSTAGswas proposed for comparison and prediction of RNA
secondary structures [33]. It can handle most simple type
pseudoknots, but fails to handle the secondary structures with
asymmetrical structures.

The stem graph, which is a directed complete graph,
was used to model the stem pattern [34]. The conserved
stem pattern was found by calculating the minimum cost of
error-correcting graph matching (ECGM) between graphs,
and the alignment of the base pairs in RNA secondary
structures with pseudoknots was achieved. Nevertheless, this
method only considered three structural relationships (nested,
parallel and pseudoknotted) between stems. The structural
properties within stems and branches are overlooked. This
impacts on finding conserved stem patterns. For exam-
ple, the sequence and secondary structure of potato leafroll
virus (PKB43) and foot-and-mouth disease virus (PKB284)
are UUUAAAUGGGCAAGCGGCACCGUCCGCCAAAA-
CAAACGG and:::::::::::::((((::[[[[))))::::::::]]]], and ACCGC-
CUACCCCGGCGUUAACGGGGAACAA and::((((::[[[[))))
:::::]]]]:::::, respectively. Their transformed stem graphs are
exactly the same. The minimum cost of ECGM between two
graphs is zero. They actually belong to the Viral ribosomal
frameshifting signals class and Other Viral 5’-UTR class,
respectively. Chen et al. proposed nested stack, parallel stack
and intersected stack to represent the nested, parallel and
pseudoknotted relationships in RNA secondary structures
[35]. They considered the branched structure, and used the
occurrence frequency of base pairs in the database as weight
to calculate the vector distance between structures. To some
extent, this method improves the accuracy of the classifi-
cation of RNA secondary structures, but it only calculates
the distance of their similar substructures and assumes that
the number of branches between the structures is the same.
Recently, to handle structures with arbitrary pseudoknots,

ASPRAlign used special representations of secondary struc-
tures, called Algebraic RNATrees and Structural RNATrees,
based on algebraic operators, to compare RNA secondary
structures [36]. And time complexity is quadratic, while all
the other alignment methods have a worst-case time complex-
ity more than quadratic as shown in Table 1 of [37]. However,
neither could the complex RNA secondary structure with
more than two intersected relationships be represented, nor
did the structural properties of the branches be considered in
the above RNA Trees. These two shortcomings impact the
usefulness and efficiency of this approach.

To overcome the above limitations, we construct a mod-
ified adjoining grammars binary tree for the complex
RNA secondary structure with arbitrary pseudoknots called
BTMGCSP tree, based on the ideas of TAGs. And we propose
a novel vector-edit distance based on BTMGCSP tree to mea-
sure the similarity between RNA secondary structures. The
experimental results demonstrate that ourmethod is useful for
querying, aligning or classifying pseudo-knotted conserved
RNA structures. The main contributions of this paper are as
follows:
• The model of the complex RNA secondary structure

with arbitrary pseudoknots. A novel RNA secondary struc-
ture model called modified adjoining grammars binary tree
for conserved stem pattern (BTMGCSP) is proposed. It can
not only represent the complex RNA secondary structure
including arbitrary pseudoknots intuitively, but also reserve
RNA secondary structure properties. It allows an effective
comparison of secondary structures because we can compute
the similarity of secondary structures based on their most
informative structural features.
• New structural similarity strategy. We proposed

vector-edit distance to measure the structure similarity
between BTMGCSP trees. Because our algorithm considers
the node properties of RNA conserved stem pattern, but
also takes the distribution of the nodes and branches into
account, the correctness of classification and comparison
of RNA secondary structures is improved as shown in our
experiments.
• Space and time efficiency. Our method substantially

reduces the memory and time requirements w.r.t. previous
strategy computation algorithms since BTMGCSP tree is an
ordered binary tree. The worst-case time and space complex-
ity reduce to O((n/k)2) and O(n/k), respectively, where n is
the number of nucleotides of the longer structure, k is the
average of the numbers of the base pairs in the conserved stem
patterns. Although our strategy algorithm considers more
structural features, it is as efficient as the strategy algorithm
in ASPRAlign (quadratic in the input size).

The remaining paper is organized as follows. Section II
and Section III describe the construction of RNA com-
plex secondary structure model and the similarity measure
based vector-edit distance for (BTMGCSP) trees, respec-
tively. Experimental results are presented and discussed in
Section IV. The conclusions and future work are stated in
Section V.
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II. PRELIMINARIES
Many folding methods have been developed for predict-
ing RNA secondary structure. Although the accuracy of
non-pseudoknot RNA secondary structure prediction method
has been significantly improved, there are some shortcomings
in the identification of conserved stem pattern owing to over-
looking the structural properties within stems and branches.
Moreover, the conserved structural motifs with arbitrary
pseudoknots can further assist in detecting similar regulatory
functions of non-coding RNAs. This section explores the
construction of RNA complex secondary structure model.

A. TAGs FOR RNA SECONDARY STRUCTURE
The definition and operation of the adjacency tree method are
briefly introduced below.
Definition 1 (Tree Adjoining Grammars (TAG)): Given a

five-tuple G = (VN ,VT , I ,A, S), where VN is a finite set of
nonterminal symbols, VT is a finite set of terminal symbols,
I is a finite set of initial trees, and A is a finite set of auxiliary
trees. S is an initial symbol, and also a special non-terminal
term, namely S ∈ VN .
The basics of TAG formalism is as follows.

- Elementary trees are all the trees without any operations
in I ∪ A.

- Derivation tree is a tree composed of any two trees in
I ∪ A.

- Adjoining (∗) labelled for the non-terminal symbol of
the leaf node in auxiliary tree A, and the node with (∗) is
called the foot node.

- Substitution(↓) labelled for the non-terminal symbol of
the leaf node in initial tree I .

- Derivation is a process to yield the derivation tree by
using the two operations, Adjoining and Substitution.

Adjoining is the process of creating a new tree by inserting
the auxiliary tree β into an arbitrary tree α (initial tree,
auxiliary tree, or derivation tree), which is usually used in
modelling RNA structures. The definition is as follows.

Let α be a tree including node n, where node n represents
the nth node that traverses α tree by preorder traversal. The
root of the tree is the first node, and the label on n is X . That
is, α(n) = X ∈ VN .
Definition 2 (Adjoining): Let β be an auxiliary tree whose

root node and foot node p on the boundary are also labelled
as X , that is, β(1) = β(p) = X . By adjoining β and tree α at
node n, a tree γ can be obtained, as shown in Fig. 1. Here, γ
is called a derivation tree of α. The node n labelled X ∈ VN
on the tree α is active, and if and only if β ∈ VN , the tree β
can be adjoined at the node n of tree α.
Two special subclasses of linear TAGs (SL-TAGs and ESL-

TAGs) were proposed by Uemura et al. [32]. Let β be a
simple linear auxiliary tree with active node n at p, where
β(0) = X , and Y (β) = α1 · · ·αiXαi+1 · · ·αj. Therefore,
Y (β) can be divided into two major parts, L(β) = α1 · · ·αi
and R(β) = αi+1 · · ·αj. Obviously, there must exist i′

and j′ such that αi′ · · ·αiXαi+1 · · ·αj′ = Y (β/p), where

FIGURE 1. An adjoining operation in TAGs.

FIGURE 2. Decomposition of Y (β).

1 ≤ i′ ≤ i, i + 1 ≤ j′ ≤ j, β/p is a subtree of β at
p. Then, the left and right parts are further divided by i′

and j′, respectively. And we have LU(β) = α1 · · ·αi′−1,
LD(β) = αi′ · · ·αi, RD(β) = αi+1 · · ·αj′−1, RU(β) =
αj′ · · ·αj, as shown in Fig. 2.
On the basis of the ESL-TAGs, pair stochastic TAGs

(PSTAGs) was proposed byMatsui et al. [33]. It is better than
ESL-TAGs in representing secondary structures including
pseudoknots. However, both ESL-TAGs and PSTAGs repre-
sented RNA secondary structure models from the sequence.
The sequence numbers on the right must be greater than the
left. If a subsequence is nested inside a pseudoknot, they
cannot be expressed. As in [32], [33], they can represent
the secondary structure of RNA sequence (A(G[AC)U)U],
but fail to describe the secondary structure of the sequence
(A(G[AC)U]U). The reason is that the base U (sequence
number is 5) of the pseudoknot pair [AU] should be on the
right side of the backbone tree, and the base U (sequence
number 6) of (AU) will be on the left side of its back-
bone tree. This contradicts the decomposition idea of Y (β).
Furthermore, they cannot represent complex RNA sec-
ondary structure with more than two intersected relation-
ships. For example, the sequence and secondary structure
of coli alpha operon mRNA are UGUGCGUUUCCAUUU-
GAGUAUCCUGAAAACGGGCUUUUCAGCAUGGAAC
GUACAUAUUAAAUAGUAGGAGUGCAUAGUGGCCCG
UAUAGC AGGCAUUAACAUUCCUGA and (((((((.(((((. . .
. . . ..[[[[. . . .[[[[. . . .{{ {{.)))))))))))). . . . . . . . . . . . . . . . . . . . . . . . ..]]]]
. . . ..]]]]. . . . . . . . . ..}} }}, respectively. To illustrate this further,
the first pair of RNA stem used to simplify the conserved
structure, (U1 (U9 [C22 [C30 {U38 A48) A54) G84] G93]
A108}, where the number on the right side of the base indi-
cates its position in the RNA sequence. If such a structure is
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represented by ESL-TAGs or PSTAGs, the base {U38 would
be located below [C30 on the left side, and the base A108}
would be located above the base G93] on the right side.
However, [C30 should be on the left side of the auxiliary tree
T2u ([C30 G84]), and G93] should be on the right side of the
auxiliary tree T2d ([C22 G93]). Therefore, the base pair of
the second intersected relationship {U38 and A108} cannot
be described on the backbone tree, and make it impossible to
be represented by ESL-TAGs or PSTAGs.

B. BTMGRNA FOR PSEUDOKNOT STRUCTURES
To intuitively represent the complex RNA secondary struc-
tures containing arbitrary pseudoknots, a novel model is
developed for RNA secondary structures with arbitrary pseu-
doknots by adapting and extending tree adjoining grammars.
And modified tree adjoining grammars for RNA secondary
structures (MGRNA) is defined as follow.
Definition 3 (MGRNA): MGRNA = (VN ,VT , I ,E, S),

where VT = (A,C,G,U ) is the four bases of RNA, and
VN = S, that is the only non-terminal symbol. The initial
tree I is composed of an active non-terminal S∗ and an
empty string ε. The auxiliary tree of E = { T2uN, T2dN,
T3d, T4d, T4u, T5d, T5u}, where the letter u and d mean
the upper adjacent and the lower adjacent of a given node,
respectively. T2uN denotes the first base pair of the Nth
intersected relationship. T2dN denotes the nested base pair of
the Nth intersected relationship. T3d denotes a general paired
base, namely stem. T4d and T4u represent the adjacency of
unpaired bases, and T5d and T5u represent parallel and nested
branch structures, respectively.

Since MGRNA is not decomposed from the RNA sequence,
there is no left and right part, and each of the auxiliary trees
only represents a way of adjacency in RNA secondary struc-
ture. Therefore, the auxiliary tree of MGRNA is different from
ESL-TAGs or PSTAGs. The initial tree I and auxiliary tree E
in MGRNA are shown in Fig. 3. If the auxiliary tree inMGRNA
is viewed as a node of a tree, a RNA secondary structure
can be represented as a binary tree of MGRNA (BTMGRNA
for short). An instance graph of BTMGRNA for RNA
secondary structure (A(G[AC)U]U)(U[C[A{UU]G]A}A) is
shown in Fig. 4. As explained in Section II-A, this structure
cannot be described by ESL-TAGs and PSTAGs. In addition,
PSMAlign, which used the directed complete graph to rep-
resent the stem pattern, only simply shows the relationship
between two stem patterns, but fails to describe the multiple
intersected relationships [34].

C. BTMGRNA FOR CONSERVED STEM PATTERN
Since the secondary structures of ncRNAs is more conserved
than their sequences, similar secondary structures would
share a common conserved stem patterns. In this paper,
we focus on conserved secondary structure of ncRNAs. Based
onMGRNA in Section II-B, a novel BTMGRNA tree is defined
for Conserved Stem Pattern (BTMGCSP for short).
Definition 4 (BTMGCSP): Let BTMGCSP = (VN ,VT ,

I , 6,S), where VN , VT , S and I are the same as MGRNA,

FIGURE 3. Forms of elementary trees in MGRNA for representing RNA
pseudoknot.

FIGURE 4. BTMGRNA for (A(G[AC)U]U)(U[C[A{UU]G]A}A).

6 = {stem loop, pseudoknot, multi loop}, namely
6 ={T2uN, T2dN, T3d, T5d, T5u}.
Algorithm 1 provides a detailed description for converting

RNA sequence and its secondary structure into BTMGCSP
tree. In this algorithm, two intersected relationships are con-
sidered. Three stacks Sparen, Sbracket and Sbrace are initial-
ized for storing the three structure types of base pairs in
RNA dot-bracket secondary structures, respectively(line 1).
The properties of Q(i) and S(i) are pushed into stack Sparen,
Sbracket or Sbrace according to the type of brackets. If S(i)
is left paren/bracket/brace or S(i) is the dot on the right
side of the left paren/bracket/brace or S(i) is the dot on the
left side of the right paren/bracket/brace(lines 4-6). Pushing
the dot into the stacks is to distinguish two successive stem
patterns, and extract their properties, such as their lengths.
While matching the right paren, right bracket or right brace,
the corresponding stack is popped out and the node properties
are added into the node list Nparen, Nbracket or Nbrace(lines
7-13). And then, binary tree T is constructed from the list
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FIGURE 5. The sequence of RNA bases is indicated by dot-bracket (A), the structure diagram drawn by PseudoViewer (B), and its BTMGCSP (C).

Nparen. The nodes in Nbracket and Nbrace are inserted into
the first tree branch that has intersected relationship with
them in order(lines 16-18). Therefore, the binary tree T
for RNA conserved stem pattern, that is BTMGCSP tree,
is obtained.

Fig. 5 shows the dot-bracket representation of an RNAbase
sequence (A), the structure diagram drawn by PseudoViewer
3.0 [38] (B), and its BTMGCSP grammars tree (C).

BTMGCSP tree presents the RNA conserved stem pattern.
In order to improve the validity and accuracy of the structure
alignment/classification, the node properties are saved on
the tree node as needed, including the important structural
properties of base pair (stem and pseudoknot), such as the
adjacency type, terminal position and length of base pair,
as shown in Fig. 6.

III. SIMILARITY MEASURE FOR BTMGCSP
After transforming RNAs into BTMGCSP trees, the distance
of RNAs is transferred to compute the distances between
their BTMGCSP trees. A common effective way of calcu-
lating tree similarity is to calculate the distance of their
most similar subtrees and the cost for finding the similar
subtrees.

BTMGCSP tree is obtained by parsing the annotated RNA
sequence, called an RNA conserved tree.In the study of the
conserved structure of RNA secondary structure, the sim-
ilarity based on interval distance has been proved to be
an effective way for identifying the conserved structure
of RNA [35]. Edit distances have also been proved to be
an effective method for calculating edit costs in conserved
stem pattern without pseudoknots [39]. Based on these two

FIGURE 6. The node properties of BTMGCSP in Fig. 5.

distance strategies, vector distance and edit distance are
defined in this section, and the vector-edit distance method is
proposed to calculate the similarity between RNA secondary
structures with arbitrary pseudoknots. This finds the most
similar subtrees by calculating the minimal vector distance
between BTMGCSP trees, and the cost for finding the most
similar subtrees is the edit distance during the process. The
distance between BTMGCSP trees is regarded as a function
of the vector distance and the edit distance.

A. VECTOR DISTANCE
The similarity (distance) between BTMGCSP trees is used to
determine whether two RNA secondary structures are similar.
Thus, the most similar subtree needs finding by the minimal
vector distance between them. According to [35], the distance
between the vectors a = [a1, a2] and b = [b1, b2] is
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Algorithm 1 Construct BTMGCSP Tree
Input: RNA sequence(Q) and its dot-bracket secondary

structure(S)
Output: BTMGCSP tree T
1: /∗Take two intersected relationships for instance here,

there are three types of brackets parentheses, brackets,
and braces */

2: Initial stacks Sparen, Sbracket and Sbrace
3: for i = 1; i ≤ length(Q); i++ do
4: if Si = ‘ ( ’ / ‘ [ ’ / ‘ { ’ or
5: Si = ‘. ’ and Si−1 = ‘ ( ’ / ‘ [ ’ / ‘ { ’ or
6: Si = ‘. ’ and Si+1 = ‘ ) ’ / ‘ ] ’ / ‘ } ’ then
7: // pi denotes the properties of Qi and Si
8: push (Sparen / Sbracket / Sbrace, pi)
9: else if S(i) =‘ ) ’ / ‘ ] ’ / ‘ } ’ then
10: P = pop (Sparen / Sbracket / Sbrace),
11: if P =‘. ’ then
12: Calculate the length of base pair len,
13: P = pop (Sparen / Sbracket / Sbrace)
14: end if
15: Insert P and len into the node list Nparen, Nbracket

or Nbrace
16: end if
17: end for
18: Build binary tree BTMGCSP T from Nparen
19: The nodes in Nbracket and Nbrace are inserted into the

branch of tree T in order
20: Return BTMGCSP tree T

defined as in (1):
d(a, b)

=



0 a = b
max(|a1 − b1|, |a2 − b2|) a ⊂ b or b ⊂ a

H (a, b)×
(
1− O(a,b)

|ca−cb|

)
a1 < b1 ≤ a2 < b2 or

b1 < a1 ≤ b2 < a2
H (a, b)×

(
1− O(a,b)

|ca+cb+1|

)
otherwise

(1)

where ra = (a2−a1)/2, rb = (b2−b1)/2, ca = a1+ra, cb =
b1 + rb and

O(a, b) =


2ra a ⊂ b
2rb b ⊂ a
|ca − cb| + ra + rb else

(2)

H (A,B) = max {h(A,B), h(B,A)} is the Hausdorff dis-
tance. h(A,B) = max{min d(a, b)} denotes the maximum
distance from the nearest point of setA to setB, and h(B,A) =
max{min d(b, a)} denotes the maximum distance from the
nearest point of set B to set A. In this paper, H (a, b) means
h(a, b) instead of max {h(A,B), h(B,A)}, and the vector is
the terminal position of base pair. For example, in Fig. 6,
the terminal position (8, 17) of the leftmost leaf node t3 is the
vector [8, 17].

B. EDIT DISTANCE
Inmany cases, neither the number of branches nor the number
of nodes within the branch is equal between RNA secondary
structures. While comparing RNA secondary structures or
predicting their function, it is obviously insufficient to cal-
culate only the vector distances for finding their most similar
substructures. It is necessary to compute the cost of finding
the similar substructures. In [39], conserved edit distances
without pseudoknots have been given. In this subsection,
an edit distance of RNA secondary conserved structure with
arbitrary pseudoknots is proposed.

BTMGRNA tree is a linear ordered tree. Suppose linear
trees T1 and T2 represent two RNA secondary structure trees,
respectively. t1 and t2 are the nodes within T1 and T2, respec-
tively. The node edit operation (t1, t2) between T1 and T2
is defined as an evolutionary event on the RNA secondary
structure. The concept of (t1, t2) is described in Tabel 1. If t1
and t2 are base pair nodes or unpaired base nodes, and t1 6= t2,
such as, the label of t1 is base A, and the label of t2 is base G,
then relabeling (t1, t2) denotes the evolutionary event for rela-
beling A to G. (t1,∅) called deletion, (∅, t2) called insertion.
If t1 is a base pair node, and t2 is an unpaired base node, then
(t1, t2) denotes altering. If t1 is an unpaired base node, and t2
is a base pair node, then (t1, t2) denotes completion. If t1 is a
base pair node, and t2 is a pair of unpaired base nodes, then
(t1, t2) denotes the arc-breaking. If t1 is a pair of unpaired base
nodes, while t2 is base pair node, then (t1, t2) represents the
arc-creation. In the seven edit operations, insertion, altering,
and arc-breaking are the symmetric operations of deletion,
completion, and arc-creation, respectively. The cost of the
symmetric operation is the same. Therefore, the cost of these
edit operations (t1, t2) is defined by (3). If (t1, t2) is relabeling,
and the nodes t1 and t2 have the same label, that is t1 = t2,
then δrb(t1, t2) = 0. Otherwise, the cost of (t1, t2) depends
on the label of the nodes in t1 and t2. Hence, the cost of
an operation depends on its nature and the labels of the

TABLE 1. The description of the seven edit operations.
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involved nodes.

δ(t1, t2) =

0, (t1, t2) is relabeling, and t1 = t2
δrb(t1, t2), (t1, t2) is relabeling of base, and t1 6= t2
δrbp(t1, t2), (t1, t2) is relabeling of base pair, and t16= t2
δidb(t1, t2), (t1, t2) is insertion or deletion of base
δids(t1, t2), (t1, t2) is insertion or deletion of stem
δidp(t1,t2), (t1,t2) is insertion or deletion of pseudoknot
δaco(t1, t2), (t1, t2) is altering or completion
δacb(t1, t2), (t1, t2) is arc-creation or arc-breaking

(3)

C. SIMILARITY MEASURE BASED VECTOR-EDIT DISTANCE
It is observed that RNA conserved trees are not ordinary trees,
but ordered binary trees. Therefore, they can be compared in
order. Calculating the similarity between two trees is gener-
ally done in two steps. One is to calculate the similarity of the
branched structure of BTMGCSP tree, that is, the minimum
vector distance and the edit cost. The second is to calculate
the similarity of the BTMGCSP tree, that is the total minimum
vector distances of the branches, and the total edit cost for
obtaining the total minimum vector distances.

For RNA conserved tree BTMGCSP, there are three edit
operations: insert a node, delete a node and merge two nodes.
However, merging is arc-breaking or arc-creation for base
pairs (i.e. stem or pseudoknots). And the edit cost of deleting
or inserting the nodes within the branches is the same. Thus,
the cost of arc-breaking or arc-creation of nodes and the cost
of deleting redundant nodes are considered in the branches.
Let two BTMGCSP trees be T1 and T2, and the ith branch of
T1 is B1i, and the jth branch of T2 is B2j. The computation of
the minimum vector distance and edit cost of B1i and B2j can
be seen in (4) and (5), respectively.

d(B1i,B2j) =

nB1i∑
1≤i′

min
1≤j′≤nB2j

{
d
(
tB1iii′ , t

B2j
jj′

)}
(4)

where nB1i = |B1i| denotes the node number of branch B1i,
nB2j = |B2j| denotes the node number of branch B2j, and

nB1i ≤ nB2j . t
B1i
ii′ and t

B2j
jj′ are the ith node of B1i and the jth

node of B2j, respectively.

c
(
B1i,B2j

)
=

∑
δ
(
tDjj′ ,∅

)
+

∑
δ
(
tUjj′ , t

U
j(j′+1)

)
(5)

where tDjj′ denotes the node in branch B2j that need to be

deleted, and δ
(
tDjj′ ,∅

)
is the cost of deleting node tDjj′ . If t

D
jj′

is stem, δ
(
tDjj′ ,∅

)
= δids

(
tDjj′ ,∅

)
× lentD

jj′
, and if tDjj′ is

pseudoknot, δ
(
tDjj′ ,∅

)
= δidp

(
tDjj′ ,∅

)
× lentD

jj′
. tUjj′ and t

U
j(j′+1)

are the two nodes that need to be merged in the branch B2j.

δ
(
tUjj′ , t

U
j(j′+1)

)
denotes the arc-creation/arc-breaking cost of

merging two nodes, and δ
(
tUjj′ , t

U
j(j′+1)

)
= δacb

(
tUjj′ , t

U
j(j′+1)

)
×∣∣∣∣lentUjj′ − lentUj(j′+1)

∣∣∣∣.
Note that the branches of the BTMGCSP tree are

ordered subtrees. Therefore, min
1≤j′≤nB2j

{
d
(
tB1iii′ , t

B2j
jj′

)}
can

be computed just by traversing BTMGCSP tree in order.
Namely, if min

1≤j′≤nB2j

{
d
(
tB1ii1 , t

B2j
jj′

)}
= d

(
tB1ii1 , t

B2j
j2

)
, then

min
1≤j′≤nB2j

{
d
(
tB1ii2 , t

B2j
jj′

)}
can be computed from the next node

t
B2j
j3 in the B2j branch. In this way, there is no backtracking
during traversal or comparison of BTMGCSP trees. Thereby,
it can improve the efficiency.

According to the vector distance of the branches, we can
easily find out the most similar subtrees of two BTMGCSP
trees, and compute the edit cost for finding the similar sub-
trees. Thus, the minimum vector distance and the total edit
cost between them are obtained, as shown in (6) and (7),
respectively.

d (T1,T2) =
∑

1≤i≤n1

min
1≤j≤n2

{d(B1i,B2j)} (6)

where n1 ≤ n2, and n1 and n2 are the branch numbers of T1
and T2, respectively.

Cost (T1,T2) =
∑

δ
(
BD2j,∅

)
+

∑
c
(
B1i,Bmin2j

)
(7)

where BD2j denotes the branch in T2 that need to be deleted.
Bmin2j denotes the branch that has the minimum vector distance
with T2.

The distance of two BTMGCSP trees includes the dis-
tance(vector distance) of the most similar subtree structure
and the cost(edit distance) of finding this similar substructure.
Therefore, the distance between the two BTMGCSP trees is
defined in (8).

D (T1,T2) = (d (T1,T2)+ Cost (T1,T2))/2 (8)

The pseudocode describes how to calculate the similarity
strategy for BTMGCSP trees in Algorithm 2. There are three
distances to be calculated: i) the distance of nodes; ii) the
distance of branches; and iii) the distance of trees. Because
BTMGCSP trees are ordered binary trees, so both the calcula-
tion and comparison are in order. Firstly, given the BTMGCSP
trees Ti and Tj, for the branches Bik in Ti and Bjl in Tj, the vec-

tor distance between the nodes tBikkk ′ and t
Bjl
ll′ , d

(
tBikkk ′ , t

Bjl
ll′

)
can

be obtained by (1) (lines 2-5). Then the similar nodes with
smaller distance can be found by comparing the vector dis-
tances of the adjacent nodes. The sum of the vector distances
of the similar nodes, that is the minimum vector distance
d(Bik , Bjl) of the branches Bik and Bjl , can be calculated
by (4) (line 6). While comparing the vector distances of the
adjacent nodes, the nodes with lager vector distance would
be merged or deleted, according their lengths. And the cost
of these edit operations c(Bik , Bjl) is obtained by (5) (line 7).
Further, themost similar subtree of Ti and Tj can be identified,
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Algorithm 2 Calculate the Distances Between RNAs
Input: RNAs sequences(QS) and their dot-bracket sec-

ondary structure(SS)
Output: The distances between RNAs D(i, j)
1: Convert RNAs to BTMGCSP trees by Algorithm 1
2: for BTMGCSP trees Ti and Tj do
3: //Calculate the branch distance between Ti and Tj
4: for the branches Bik in Ti and Bjl in Tj do
5: Calculate the vector distance d

(
tBikkk ′ , t

Bjl
ll′

)
between the nodes tBikkk ′ and t

Bjl
ll′ in order by Equation (1)

6: Calculate the vector distance d(Bik , Bjl) between
the branches Bik and Bjl by Equation (4)

7: Calculate the edit cost c(Bik , Bjl) by Equation (5)
8: end for
9: //Calculate the distance between Ti and Tj
10: Calculate the vector distance between d(Ti,Tj) in

order by Equation (6)
11: Calculate the edit cost Cost(Ti,Tj) between Ti and Tj

by Equation (7)
12: Calculate the trees distance D(Ti,Tj) by Equation (8)
13: end for
14: Return the distances D(i, j) of RNAs

according to the branches with the smaller vector distance.
So the vector distance d(Ti,Tj) of Ti and Tj is the sum of
the vector distance of these branches calculated by (6) (line
10). And the cost of finding the similar subtree Cost(Ti,Tj)
includes two parts as (7): i) the cost of deleting the redundant
branches, ii) the cost of the edit operations of the branches
in the similar tree (line 11). Finally, the vector-edit distance
D(Ti,Tj) of the BTMGCSP trees Ti and Tj can be obtained by
(8) (line 12). The vector-edit distances of BTMGCSP trees,
that is the distances of RNAs, are used to classify or compare
the RNAs.

IV. EXPERIMENTAL RESULTS
To verify the performance of the BTMGCSP tree similarity
strategy, the classical ncRNAs dataset with non-pseudoknots
and the pseudoknots database PseudoBase are used in exper-
iments. Firstly, ncRNAs sequences and their dot-bracket
secondary structures are converted to BTMGCSP trees by
Algorithm 1. Secondly, the distances of BTMGCSP trees are
calculated by Algorithm 2. Then, ncRNAs are classified and
compared according to the distances of BTMGCSP trees.

A. EXPERIMENT USING THE CLUSTER DATA OF ncRNA
The experiment is conducted by using a subset of the selected
high scoring structures (https://www.tbi.univie.ac.at/papers/
SUPPLEMENTS/ncRNA/lists/selection.html) in a typical
ncRNAs dataset with non-pseudoknots [40]. Since the con-
sensus secondary structure of the dataset is computed by
RNAalifold. It computes the most likely structure and base
pair probabilities for each base pairs. This structure is the
results of the multiple sequence alignment, and there will
be a certain deviation. Therefore, only the original RNA

FIGURE 7. The distances from RNA mm5 in structure 156271 to each
structure in Cluster 86486.

sequences and their secondary structures in the data set are
selected for experiment.

The experiment aims to determine the class of the known
structure clusters in ncRNAs dataset that the query specie
secondary structure may belong to, according to the distance
from the query RNA secondary structure to each known
structure, namely classifying them into the smallest distance
structure. However, each structure contains several species
of RNA sequences and their secondary structures. If one
specie RNA secondary structure in a known structure is very
similar to the query specie secondary structure, and their
distance is 0, it means that the distance from the query specie
secondary structure to the known structure is 0. Therefore,
to ensure the validity of similarity, a geometric mean method
is applied to compute the distance from the query specie RNA
secondary structure to the known structure.

Firstly, Cluster 86486 containing 8 structures is selected for
analysis. If the mouse RNA sequence in Structure #156271 is
used as the query species secondary structure, the distances
from this mouse RNA to all the structures of Cluster 86486 is
obtained by the proposed similarity strategy. In Fig. 7, the dis-
tances are 19.58, 26.64, 16.07, 17.45, 16.4, 15.51, 14.56,
0. It is observed that the distance from this mouse RNA to
structure #156271 is 0, because the distance between two
BTMGCSP trees converted by the mouse RNA secondary
structure and rat RNA secondary structure in structure #
156271 is D (Tmouse,T156271−rn3) = 0. Therefore, the query
mouse RNA should belong to Structure #156271. This is
consistent with the database. Further, the average geometric
distances from each species secondary structures in a specific
structure to the structure within a cluster are almost the same,
as shown in Fig. 8. This not only verified that the RNA
secondary structures of the species in the same structure are
very similar, but also demonstrated the distances of species in
the same structure to other structures are also similar, which
is one of the important features in the ncRNAs dataset.

In addition, RNAz Cluster 16165, 25547, 58284, 61845,
80001, 86486 and 113047 from Cluster A-F, which includes
sequences of up to eight species: human (hg17), chimp
(panTro1), mouse (mm5), rat (rn3), dog (canFam1), chicken
(galGal2), zebrafish (danRer1) and fugu (fr1), are selected for
experimental validation. The correction rate of classification
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TABLE 2. The representation model and structural alignment for BTMGCSP and other methods.

FIGURE 8. The geometric average distance from each species secondary
structure in structure 156267 to each structure in Clsuter 86486.

according to our similarity strategy is up to 92.5%. For the
438 Structures and 1545 RNAs included in the selection of
high scoring structures, the classification accuracy rate can
reach up to 86.6%.

B. EXPERIMENT USING PseudoBase
PseudoBase is a typical database of sequences, structures and
functions related to RNA pseudoknots (http://www.ekevanba
tenburg.nl/PKBASE/PKB.HTML) [41]. So far, the database
contains 393 RNA sequences with pseudoknots, and their
secondary structures with dot-bracket notation. PseudoBase
is different from the previous ncRNAs dataset. To query the
classification of an RNA, it is necessary to calculate the dis-
tance from the query RNA to all classes in the database. And
the query RNA belongs to the class which has the minimum
distance.

To avoid the dependence of the classification results on the
dataset, the cross-validation is performed by calculating the
average of the results in all cases to verify the validity and
feasibility of the proposed model and similarity strategy. The
RNA in PseudoBase was randomly divided into 10 subsets.
One of them was used as the query RNA sequence structure
set S, and the rest as the reference sequence structure set R,
S ∩ R = ∅. For each RNA in S, we need to calculate the
distance to the RNA in the reference set R and find out the
RNA with the smallest distance from the query RNA in each
class of the reference set. If there are several reference RNAs
with the smallest distance from the query RNA in the same
class, the reciprocal of the number of these reference RNAs
is used as the weight of the query RNA for computing the
distance from the query RNA to the class. The calculated
distance is the score of the RNA, and then the reference
RNA is classified according to the threshold. By continu-

FIGURE 9. ROC curves of PseudoBase of PSMAlign, ASPRAlign and
BTMGCSP.

ously changing the threshold, a series of the true positive
rate (TPR) and the false positive rate (FPR) are calculated.
The receiver operating characteristic (ROC) curve is plotted
by all the TPR and FPR, in which TPR is plotted on the
Y axis, and FPR is plotted on the X axis. An important
performance indicator of the classifier is the area under the
ROC curve (AUC). The larger the AUC value is, the better
the classifier is. From Fig. 9, we could see that the AUC of
BTMGCSP was 0.949, Its performance better than PSMA-
lign (0.891) and ASPRAlign (0.902) in PseudoBase. Thus,
the accuracy of BTMGCSP in classification and compari-
son of RNA secondary structures with arbitrary pseudoknots
was verified.

In addition, since both ESL-TAGs [32] and PSTAGs [33]
are modeled based on RNA sequences, their time complexity
is O(N 5), where N is the length of the RNA sequence.
PSMAlign only focused on the alignment of the base pairs in
RNA secondary structures [34], thus its algorithm complexity
is less than ESL-TAGs and PSTAGs. However, it uses the
directed complete graph with n nodes to represent the stem
pattern, where n is the number of RNA base pairs. The num-
ber of the edges is n(n−1), and the time complexity of travers-
ing the directed complete graph is O(n2). Thus, the time
complexity of the alignment algorithm based on the base
pair of RNA secondary structure using PSMAlign is O(n4).
Recently, ASPRAlign reduces the time complexity to O(n2)
[36]. Because the ordered binary tree BTMGCSP proposed
in this paper, The computational complexity of executing
BTMGCSP for structural alignment is the same order as that
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of parsing an input sequence with ASPRAlign theoretically.
More precisely, the range of the depth of the ordered binary
tree BTMGCSP is log2(n/k) to (n/k), where k is the average of
the numbers of the base pairs in the conserved stem patterns.
The time complexity of comparing two BTMGCSP trees
is O((log2(n/k))2) to O((n/k)2). Therefore, the worst-case
time complexity is O((n/k)2) and space complexity
is O(n/k).

Summarizing, the representation model and structural
alignment of RNA secondary structure for BTMGCSP and
other methods are shown as in Table 2

V. CONCLUSION AND DISCUSSION
The function of a particular RNA molecule in an organic
system is primarily determined by its structure. However,
the existing methods for understanding RNA function by
comparing the complex RNA secondary structure including
arbitrary pseudoknots are time consuming and expensive.
The secondary structures of RNA containing arbitrary pseu-
doknots are more complicated, which is not conducive to
model the RNA structure. Further, thousands of RNA sec-
ondary structures are generated by high-throughput detection
techniques. So it is necessary to design an efficient similar-
ity strategy to compare complex RNA secondary structures.
In this paper, an improved RNA secondary structure gram-
mar tree MGRNA was proposed to model the complex RNA
secondary structures. Since the similar secondary structures
will share a common conserved stem pattern, BTMGCSP
tree represented a conserved stem pattern of RNA is pro-
posed based on MGRNA, which is an ordered binary tree.
A high-efficiency similarity strategy based on vector-edit
distance is offered to calculate the distance between two
BTMGCSP trees. Finally, the effectiveness and feasibility of
our method are proved in the comparison of RNA secondary
structures.

Our model not only visually and succinctly represents the
complex RNA secondary structure containing any type of
pseudoknots, but also preserves RNA secondary structural
properties. The vector-edit distance method based on can effi-
ciently and accurately compare the complex RNA secondary
structures, and naturally tend to classify the corresponding
cluster structures in a way that reflects the known secondary
structure families. Thus, it is easy to classify the members of
RNA secondary structure family that are expected to perform
related functions into the same cluster. This is useful for RNA
annotation, structure-based phylogeny, homology searches
in databases, and identification of new families in RNA
populations.

In our future work, this can be extended to compare
RNA based on sequence and secondary or tertiary structures.
In fact, in addition to pseudoknots, our framework can be
adapted to deal with other motifs, such as G4 motifs, sarcin-
ricin, kink twist, and so on. Thus, a rich global RNA view can
be produced by combining sequence and structural features.
It can also be used as a heuristic to help biologists understand
their functional roles and biological implications.
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