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Abstract. We study the dynamical Borel–Cantelli lemma for recurrence sets in a mea-

sure preserving dynamical system (X,µ, T ) with a compatible metric d. We prove that,

under some regularity conditions, the µ-measure of the following set

R(ψ) = {x ∈ X : d(Tnx, x) < ψ(n) for infinitely many n ∈ N}
obeys a zero–full law according to the convergence or divergence of a certain series, where

ψ : N → R+. Some of the applications of our main theorem include the Gauss map,

β-transformation, and the homogeneous self-similar sets.

1. Introduction

Poincaré’s recurrence theorem is one of the most fundamental results for a dynami-
cal system and concerns the properties of the distribution of orbits. More precisely, let
(X,B, µ, T ) be a measure preserving system with a compatible metric d, that is, (X, d) is
a metric space, B is a Borel σ-algebra of X, and µ is a T -invariant probability measure. If
(X, d) has a countable base then Poincaré’s recurrence theorem states that µ-almost every
x ∈ X is recurrent in the sense that

lim inf
n→∞

d(T nx, x) = 0.

However, this result gives no information about the speed at which a generic orbit
{T nx}n≥0 comes back to the starting point or the shrinking neighbourhood. A question
of great importance is to determine conditions under which the rate of recurrence can be
quantified for general dynamical systems. In particular, the focus is on the size of the
following set:

R(ψ) :=
{
x ∈ X : d(T nx, x) < ψ(n) for i.m. n ∈ N

}
where ψ : N → R+ is a positive function and i.m. denotes infinitely many.

The most significant and one of the first quantitative recurrence results is due to Bosher-
nitzan [3].

Theorem 1.1 ([3]). Let (X,B, µ, T ) be a measure preserving system with a compatible
metric d. Assume that the α-dimensional Hausdorff measure of X is σ-finite for some
α > 0. Then for µ-almost all x ∈ X,

lim inf
n→∞

n1/αd(T nx, x) <∞. (1.1)

In the same paper, in the concluding remarks, Boshernitzan stated another theorem
which deals with a situation when no apriori size of (X, d) was known.

Theorem 1.2 ([3]). Let (X,B, µ, T ) be a measure preserving system with a compatible
metric d such that (X, d) is σ-compact. Then there exists a sequence {an}n≥1 with an → ∞
as n→ ∞ depending on (X, d), such that for almost all x ∈ X,

lim inf
n→∞

an d(T
nx, x) = 0.
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Theorem 1.1 was improved by Barreira–Saussol [2] who showed that the exponent α can
be replaced by the lower local dimension of a measure at x. For piecewise C2 expanding
maps with the ergodic measure equivalent to Lebsgue measure, Kirsebom–Kunde–Persson
[6] improved the speed in (1.1) from n to n(log n)θ with θ < 1/2.

As far as a general error function ψ is concerned, hardly anything is known. The only
known results for µ-measure of R(ψ) are recently proven by Chang–Wu–Wu [4], Baker–
Farmer [1], and Kirsebom–Kunde–Persson [6]. Chang–Wu–Wu [4] considered homogeneous
self similar set satisfying the strong separation condition. Baker–Farmer [1] generalised
Chang–Wu–Wu’s result to the finite conformal iterated function systems with open set
condition. Among other interesting results, Kirsebom–Kunde–Persson [6] presented the
recurrence and shrinking target theory when T is an integer matrix action. However, all
of these results are not applicable to some well known dynamical systems, for example,
β-transformation or Gauss map. We remedy this shortfall in this paper by providing a
criterion on the size of R(ψ) applicable to general dynamical systems satisfying certain
conditions.

Throughout we take X to be a compact subset of Rd. Let {Xi}i∈I be a countable family
of non-empty pairwise disjoint subsets of X such that each Xi is open in X. Suppose that
T : X → X is Borel measurable and for all i ∈ I, T |Xi is a C1 map. Furthermore,
we assume that T is expanding meaning that ∥(DxT )

−1∥−1 > 1 for any x ∈ X. By the

notation DxT we mean the derivative of T at a point x ∈ X and ∥DxT∥ = sup
v∈X

∥DxT (v)∥2
∥v∥2 .

Let µ be a T -invariant probability measure and

µ (X \ ∪i∈IXi) = 0.

We will make use of the following conditions.

Condition I (Ahlfors Regular): the measure µ is Ahlfors regular of dimension δ > 0,
that is, there exist positive constants η1, η2 such that for any ball B(x, r) ⊂ X with x ∈ X,

η1r
δ ≤ µ(B(x, r)) ≤ η2r

δ.

Condition II (Exponentially Mixing): there exist constants C > 0 and 0 < γ < 1
such that for any ball E ⊂ X and measurable set F ⊂ X,

|µ(E ∩ T−nF )− µ(E)µ(F )| ≤ Cγnµ(F ), for all n ≥ 1.

Condition III (Bounded Distortion): there exists K > 0 such that

K−1 ≤ ∥Dx(T
n)∥

∥Dy(T n)∥
≤ K

for any n ∈ N and x, y in a same cylinder Jn ∈ Fn. Here Fn denotes the collection of
cylinders of order n, that is,

Fn := {Xi0 ∩ T−1Xi1 ∩ · · · ∩ T−(n−1)Xin−1 : i0, i1, . . . , in−1 ∈ I}.

Condition IV: Denote KJn := inf
x∈Jn

∥Dx(T
n)∥. Assume that there exists a universal con-

stant K > 0 such that ∑
Jn∈Fn

(
KJn

)−δ

≤ K, for all n ∈ N.
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Condition V (Conformality): There exists a constant C > 0 such that for any Jn ∈ Fn

and ball B(x0, r) ⊂ Jn,

B
(
T n(x0), C

−1KJnr
)
⊂ T nB(x0, r) ⊂ B

(
T n(x0), CKJnr

)
.

Our main result is the following.

Theorem 1.3. Let µ be a probability measure and ψ be a positive function on N. Suppose
that µ satisfies the conditions (I–V). Then

µ(R(ψ)) =

{
0 if

∑∞
n=1 ψ

δ(n) <∞,

1 if
∑∞

n=1 ψ
δ(n) = ∞.

An immediate consequence of this theorem is the following strengthening of Bosher-
nitzan’s results.

Corollary 1.4. Under the setting above, for µ-a.e. x ∈ X,

lim inf
n→∞

ψ(n)−1d(T nx, x) = 0, or ∞,

if
∑∞

n=1 ψ
δ(n) <∞, or = ∞, respectively.

We give some remarks in comparing our result with the results of Boshernitzan, Chang–
Wu–Wu and Baker–Farmer. Recall the recurrence set

R(ψ) =
{
x ∈ X : d(T nx, x) < ψ(n) for i.m. n ∈ N

}
.

Remark 1.5 (Boshernitzan [3]).

• Theorems 1.1 and 1.2 provide a convergence speed ψ such that d(T nx, x) → 0, but
we do not know whether the convergence speed is optimal.

• The general convergence speed in Theorem 1.2 depends on the underlying dynamical
system (X,T ).

• Boshernitzan also remarked, in the concluding remarks, that there is no ‘universal’
convergence speed suitable for all dynamical system. So this indicates, more or
less, that if a universal function is wanted, the system must satisfy some additional
conditions.

Remark 1.6 (Chang–Wu–Wu [4], Baker–Farmer [1]). The results of Chang–Wu–Wu [4]
and Baker–Farmer [1] are applicable to finite conformal iterated function systems with
open set condition and the map T : X → X induced by the left shift. Generally speaking
the set

An :=
{
x ∈ X : d(T nx, x) < ψ(n)

}
concerns the distribution of the periodic points

Pn := {x ∈ X : T nx = x}.

For finite conformal iterated function system with open set condition, it corresponds to a
finite full shift symbolic space making it convenient to study the corresponding set.

• In this full shift setting, the set Pn can be precisely expressed and the points in Pn

are sufficiently well distributed in X.
• The finiteness of the iterated function system ensures that a ball is equivalent to a
cylinder set. So everything can be translated to a finite full shift symbolic space.
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• The natural measure supported on X is a Gibbs measure, so it has a nice Bernoulli
property which leads to quasi-independence of the sets in question.

Remark 1.7 (Chernov–Kleinbock, [5]). We take this opportunity to compare the recur-
rence set above with the shrinking target set. Define the shrinking target set

S(ψ) =
{
x ∈ X : d(T nx, x0) < ψ(n), i.m. n ∈ N

}
= lim sup

n→∞
T−nB(x0, ψ(n))

for some fixed x0 ∈ X. A dynamical Borel–Cantelli lemma for this setting was presented
by Chernov–Kleinbock [5]. For this set,

• Since µ is T -invariant, the measure of events Bn := T−nB(x0, ψ(n)) can be calcu-
lated easily.

• The mixing property, Condition (II), together with the invariance property of µ,
can be applied directly to verify the quasi-independence of the events {Bn}n≥1.

Remark 1.8 (Our method). In our setting, the set Pn cannot be constructed easily. The
events in our setting cannot be expressed as the T -inverse image of some sets, so the
invariance of µ and the mixing property cannot be used directly. The way to overcome
these difficulties is to look at the set An locally, then locally An behaves like T−nBn for
some Bn. Then the invariance and the mixing property of µ can be applied. It should be
noted that this will lead to a superposition of the error terms, which makes the problem
more involved.

Acknowledgements. We thank the anonymous referee for valuable comments. M.H.
was supported by the Australian Research Council Discovery Project (200100994). B.L.
was supported partially by NSFC 11671151 and Guangdong Natural Science Foundation
2018B0303110005. D.S. was supported by the Royal Society Fellowship. B.W. was sup-
ported by NSFC 11722105 and 11831007. Part of this work was carried out when B.L. and
D.S. visited La Trobe University. Thanks to La Trobe University and MATRIX research
institute for travel support. B.L. is the corresponding author.

2. Proof of Theorem 1.3

We split the proof of the theorem into several subsections for convenience. Let

An := {x ∈ X : d(T nx, x) < ψ(n)},

then R(ψ) = lim sup
n→∞

An.

For notational simplicity, we use a . b or a = O(b) to say a ≤ Cb for some unspecified
constant C > 0; and a ≍ b if a . b and b . a.

2.1. The measure of An. In this subsection, the main aim is to prove the following
proposition.

Proposition 2.1. Assume that conditions (I) and (II) hold. Then

∞∑
n=1

ψδ(n) = ∞ ⇐⇒
∞∑
n=1

µ(An) = ∞.

As previously stated, the set An cannot be expressed in the form T−nBn for some Bn.
However, if considered locally, it can be expressed in this form.
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Lemma 2.2. Let B = B(x0, r) be a ball centred at x0 ∈ X and radius r > 0. Then for
any n ∈ N with ψ(n) > r and any subset E of B,

E ∩ T−n
(
B(x0, ψ(n)− r)

)
⊂ E ∩ An ⊂ E ∩ T−n

(
B(x0, ψ(n) + r)

)
.

Proof. Fix a point x ∈ E ∩ An, then d(x, x0) < r and d(T nx, x) < ψ(n). By using the
triangle inequality

d(T nx, x0) ≤ d(T nx, x) + d(x, x0) < ψ(n) + r.

That is, x ∈ T−n(B(x0, ψ(n) + r)). Therefore,

E ∩ An ⊂ E ∩ T−n
(
B(x0, ψ(n) + r)

)
.

The left hand side inclusion follows similarly. �

Remark 2.3. The lemma above gives us a way to write the set An as the inverse of a ball
with a fixed center by restricting it to a smaller ball. If we choose the ball B = B(x0, ϵψ(n))
with 0 < ε < 1, then the above lemma yields

B ∩ T−n
(
B(x0, (1− ϵ)ψ(n))

)
⊂ B ∩ An ⊂ B ∩ T−n

(
B(x0, (1 + ϵ)ψ(n))

)
.

For any ball B, with Lemma 2.2 at our disposal, we are in a position to estimate the
measure of B ∩ An.

Lemma 2.4. Let 0 < ε ≤ 1
2
and B = B(x0, ϵψ(n)) with fixed x0 ∈ X. Assume that

conditions (I) and (II) hold. Then

µ(B ∩ An) ≥ C1µ(B)ψδ(n)− C2γ
nψδ(n) (2.1)

µ(B ∩ An) ≤ C3µ(B)ψδ(n) + C3γ
nψδ(n), (2.2)

where C1 = η1(1− ε)δ, C2 = η2C(1− ε)δ, C3 = max{η2(1 + ε)δ, η2C(1 + ε)δ} are constants
and η1, η2, C are constants arising from conditions (I) and (II).

Proof. We prove inequality (2.1) only as the proof of inequality (2.2) follows similarly.

Using the left inclusion in Lemma 2.2 and then the mixing property of µ (Condition
II), we have

µ(B ∩ An) ≥ µ
(
B ∩ T−nB(x0, (1− ε)ψ(n))

)
≥ µ(B) · µ

(
B(x0, (1− ε)ψ(n))

)
− Cγnµ

(
B(x0, (1− ε)ψ(n))

)
.

Now using the Ahlfors regularity of µ (Condition I), we conclude that

µ(B ∩ An) ≥ η1(1− ε)δµ(B)ψδ(n)− η2C(1− ε)δγnψδ(n).

�

The next lemma estimates the µ-measure for the set An.

Lemma 2.5. Let 0 < ε ≤ 1
2
and n ∈ N. Assume that conditions (I) and (II) hold. Then

C4ψ
δ(n)− C5γ

nε−δ ≤ µ(An) ≤ C6ψ
δ(n) + C6γ

nε−δ,

where C4 = η1η
−1
2 5−δC1, C5 = 5−δε−δC2, and C6 = max{η−1

1 η2C35
δ, η−1

1 ε−δC3} are con-
stants.
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Proof. Consider the collection of balls{
B(x, εψ(n)) : x ∈ X

}
,

which naturally coversX. By Vitali’s covering theorem (or commonly known as 5r covering
lemma), we can find countably many disjoint balls {B(xj, εψ(n))}j∈J such that∪

j∈J

B(xj, εψ(n)) ⊂ X ⊂
∪
j∈J

B(xj, 5εψ(n)). (2.3)

By the left inclusion of (2.3) and the disjointness of {B(xj, εψ(n))}j∈J , we have∑
j∈J

η1(εψ(n))
δ ≤

∑
j∈J

µ(B(xj, εψ(n)))

= µ

(∪
j∈J

B(xj, εψ(n))

)
≤ µ(X) = 1.

So the cardinality N of J is bounded from above by η−1
1 (ϵψ(n))−δ. Similarly, by the right

inclusion of (2.3), we have

1 = µ(X) = µ(
∪
j∈J

B(xj, 5εψ(n)))

≤
∑
j∈J

µ(B(xj, 5εψ(n)))

≤
∑
j∈J

η25
δ(εψ(n))δ.

Thus N is bounded from below by η−1
2 5−δ(ϵψ(n))−δ.

It is clear that

An ⊂
∪
j∈J

(B(xj, 5εψ(n)) ∩ An). (2.4)

Thus by Lemma 2.4,

µ(An) ≤
∑
j∈J

µ
(
B(xj, 5εψ(n)) ∩ An

)
≤ N ·

[
C3µ

(
B(xj, 5εψ(n))

)
ψδ(n) + C3γ

nψδ(n)

]
≤ η−1

1 η2C35
δψδ(n) + η−1

1 ε−δC3γ
n.

The other inequality concerning µ to be proved can be done by replacing (2.4) by

An ⊃
N∪
j=1

(B(xj, εψ(n)) ∩ An).

�

Proof of Proposition 2.1. Take ε = 1
2
. Then in view of Lemma 2.5 we have that

∞∑
n=1

µ(An) ≍
∞∑
n=1

ψδ(n) +
∞∑
n=1

γn.

Since 0 < γ < 1, the second term on the right converges and the proof of the proposition
is complete. �
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2.2. Estimating the measure of Am ∩ An with m < n. Recall that Fm denotes the
collection of cylinders of order m,

Fm := {Xi0 ∩ T−1Xi1 ∩ · · · ∩ T−(m−1)Xim−1 : i0, i1, . . . , im−1 ∈ I}.

Lemma 2.6. Let Jm be a cylinder in Fm. For any open set U ⊂ Jm, we have

µ(TmU) ≍ Kδ
Jmµ(U).

Proof. For a ball B(x0, r) ⊂ Jm, Condition V implies that

B(Tmx0, C
−1KJmr) ⊂ TmB(x0, r) ⊂ B(Tmx0, CKJmr).

Then the Ahlfors regularity of µ implies that

µ(TmB(x0, r)) ≍ Kδ
Jmµ(B(x0, r)).

Together with the fact that every open set can be written as the disjoint union of at most
countably many balls, the desired result follows. �

Lemma 2.7. Let Jm be a cylinder in Fm. Then

rad(Jm) . K−1
Jm

and µ(Jm) . K−δ
Jm
.

Proof. The proof follows straightaway from the expanding rate of Tm|Jm and then the
Ahlfors regularity of µ. �

Lemma 2.8. Let Jm be a cylinder in Fm. Then there is a ball of radius r = K−1
Jm
ψ(m),

say B(z, r), such that

Jm ∩ Am ⊂ B(z, r) ∩ Jm := J∗
m.

Proof. Choose z ∈ Jm ∩ Am. For any x ∈ Jm ∩ Am, on the one hand we have

d(Tmx, Tmz) ≍ ∥Dz(T
m)∥ · d(x, z);

and on the other hand,

d(Tmx, Tmz) ≤ d(Tmx, x) + d(x, z) + d(z, Tmz) < 2ψ(m) + d(x, z).

Since T is expanding,

∥Dx(T
m)∥ ≥ ∥(Dx(T

m))−1∥−1 & 1,

thus

d(x, z) . ∥Dz(T
m)∥−1ψ(m).

�

Proposition 2.9. Let m < n. Then

µ(Am ∩ An) . ψδ(m)ψδ(n) + γn−mψδ(n) +O(γn)ψδ(m).

Proof. Write

Am =
⊔

Jm∈Fm

Jm ∩ Am =
⊔

Jm∈Fm

J∗
m.

Now we estimate µ(J∗
m ∩ An) for any fixed Jm ∈ Fm. Take r = K−1

Jm
ψ(m) and the ball

B(z, r) as in Lemma 2.8. There are two cases.
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Case (i): r ≤ ψ(n). Applying Lemma 2.2 to J∗
m, we have

J∗
m ∩ An ⊂ J∗

m ∩ T−n
(
B(z, 2ψ(n))

)
. (2.5)

Applying Lemma 2.6 to the right hand side of the inequality (2.5), we have

µ(J∗
m ∩ An) . K−δ

Jm
· µ
(
Tm(J∗

m) ∩ T−(n−m) (B(z, 2ψ(n)))
)
. (2.6)

By the conformality of T (Condition V), we claim that

TmJ∗
m = Tm

(
B(z, r) ∩ Jm

)
⊂ B

(
Tmz, (C +K)ψ(m)

)
.

In fact, write the open set B(z, r) ∩ Jm as a disjoint union of balls in Jm, saying

B(z, r) ∩ Jm =
⊔
i≥1

B(zi, ri). (2.7)

Trivially, ri ≤ r for all i. Then applying Condition V to the balls in the right side of
(2.7), one has

Tm
(
B(z, r) ∩ Jm

)
⊂
∪
i≥1

B
(
Tm(zi), Cψ(m)

)
.

On the other hand, since both of z and zi are in Jm and Tm|Jm is C1, it follows that

|Tmz − Tmzi| = |Dz′T
m| · |z − zi| ≤ K ·KJm · |z − zi| ≤ K · ψ(m).

This shows the claim. Thus, recalling (2.6) and writing C̃ = C +K, one has

µ(J∗
m ∩ An) ≤ K−δ

Jm
µ
(
B
(
Tmz, C̃ψ(m)

)
∩ T−(n−m) (B(z, 2ψ(n)))

)
.

Finally by the mixing property of µ (Condition II), it follows that

µ(J∗
m ∩ An) ≤ K−δ

Jm

[
µ
(
B(Tmz, C̃ψ(m))

)
· µ
(
B(z, 2ψ(n))

)
+ Cγn−mµ

(
B(z, 2ψ(n))

)]
. K−δ

Jm

[
ψδ(m) · ψδ(n) + γn−mψδ(n)

]
.

So

I1 : =
∑

Jm∈Fm
r≤ψ(n)

µ(J∗
m ∩ An) . ψδ(m) · ψδ(n) + γn−mψδ(n),

where we have used the boundedness (Condition IV) of
∑

Jm∈Fm K
−δ
Jm

.

Case (ii) r > ψ(n). We replace the ball B(z, r) by a collection of balls of radius ψ(n). To
achieve this, choose a maximal ψ(n)-separated points in B(z, r), denoted by {zi}1≤i≤pm,n .
Then it is clear that

B(z, r) ⊂
pm,n∪
i=1

B(zi, ψ(n)), and

pm,n∪
i=1

B(zi, ψ(n)) ⊂ B(z, 2r).

By the Ahlfors regularity of µ, a volume argument implies that

pm,n ≍
(

r

ψ(n)

)δ

≍

(
K−1

Jm
ψ(m)

ψ(n)

)δ

.
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Now for each ball B(zi, ψ(n)) with 1 ≤ i ≤ pm,n, we have

µ
(
B(zi, ψ(n)) ∩ An

)
≤ µ

(
B
(
zi, ψ(n)

)
∩ T−nB

(
zi, 2ψ(n)

))
≤

[
µ
(
B(zi, ψ(n))

)
+O(γn)

]
µ
(
B(zi, 2ψ(n))

)
.

[
ψδ(n) +O(γn)

]
ψδ(n).

Finally, summing over all 1 ≤ i ≤ pm,n, we have

µ(J∗
m ∩ An) ≤

pm,n∑
i=1

µ
(
B(zi, ψ(n)) ∩ An

)
.
[
ψδ(n) +O(γn)

]
ψδ(m)K−δ

Jm
.

Therefore,

I2 :=
∑

Jm∈Fm
r>ψ(n)

µ(J∗
m ∩ An) .

[
ψδ(n) +O(γn)

]
ψδ(m) ·

∑
Jm∈Fm

K−δ
Jm

. ψδ(m)ψδ(n) +O(γn)ψδ(m).

Hence,

µ(Am ∩ An) =
∑

Jm∈Fm

µ(J∗
m ∩ An) = I1 + I2

. ψδ(m)ψδ(n) + γn−mψδ(n) +O(γn)ψδ(m).

�

2.3. Completing the proof of Theorem 1.3. There are two parts of the proof: the con-
vergence part and the divergence part. The convergence part, however, is a straightforward
application of the first Borel–Cantelli lemma and Proposition 2.1 by noting that

∞∑
n=1

ψδ(n) <∞ =⇒
∞∑
n=1

µ(An) <∞.

The main ingredient in proving the divergence part is the usage of well-known Paley–
Zigmund inequality which enables us to conclude the positiveness of µ(lim supAn). Then
with a technical argument, we conclude the full measure property.

2.3.1. Positive measure. Let N ∈ N and ZN(x) =
∑N

n=1 χAn(x), where χ is the character-
istic function. We first estimate the lower bound for the first moment and then the upper
bound for the second moment of the random variable ZN .

• The first moment. By Lemma 2.5 and choose ε = 1
2
, for N sufficiently large, one

has

E(ZN) =
n∑

n=1

µ(An) ≥
N∑

n=1

(
C4ψ

δ(n)− C5γ
nε−δ

)
≥ C4

N∑
n=1

ψ(n)δ − C ′
5 ≥

C4

2

N∑
n=1

ψ(n)δ

where for the second inequality, we used the divergence of
∑

n≥1 ψ(n)
δ.
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• The second moment.

E(Z2
N) = E

(
N∑

n=1

χAn + 2
∑

1≤m<n≤N

χAmχAn

)

=
N∑

n=1

µ(An) + 2
∑

1≤m<n≤N

µ(Am ∩ An).

Summing over m,n (1 ≤ m < n ≤ N) in Proposition 2.9 gives

∑
1≤m<n≤N

µ(Am ∩ An) .
( ∑

1≤n≤N

ψδ(n)

)2

+
∑

1≤n≤N

ψδ(n).

Therefore,

E(Z2
N) =

N∑
n=1

µ(An) +
∑

1≤m<n≤N

µ(Am ∩ An)

≤ C

( ∑
1≤n≤N

ψδ(n)

)2

+ (1 + C)
∑

1≤n≤N

ψδ(n).

By the Paley–Zygmund inequality, for any λ > 0, we obtain

µ
(
ZN > λE(ZN)

)
≥ (1− λ)2

E(ZN)
2

E(Z2
N)

≥ (1− λ)2
(∑

1≤n≤N(C4/2)ψ
δ(n)

)2
C
(∑

1≤n≤N ψ
δ(n)

)2
+ (1 + C)

∑
1≤n≤N ψ

δ(n)
.

Letting N → ∞ we get

µ
(
lim supAn

)
≥ µ

(
lim sup(ZN > λE(ZN))

)
≥ lim supµ

(
ZN > λE(ZN)

)
> 0.

2.3.2. Full measure. Consider a subset of X:

R′(ψ) = {x ∈ X : lim inf
n→∞

ψ(n)−1|T nx− x| <∞}.

We check that the set R′(ψ) is invariant in the sense that

µ
(
R′(ψ) \ T−1R′(ψ)

)
= 0. (2.8)

More precisely, take a point x ∈ R′(ψ) ∩ (∪i≥1Xi). Let i ≥ 1, c(x) > 0 and {nk}k≥1 ⊂ N
be such that

x ∈ Xi, and |T nkx− x| < c(x) · ψ(nk), for all k ≥ 1.

Since Xi is open, then for all k large, T nkx ∈ Xi too. So, for each k ≥ 1 large

|T nk(Tx)− Tx| = |T (T nkx)− T (x)|
≤ K∥Dx(T )∥ · |T nkx− x| < c̃(x) · ψ(nk).

This means that

R′(ψ) ∩ (∪i≥1Xi) ⊂ T−1R′(ψ)

which proves (2.8) since

µ(X \ ∪i≥1Xi) = 0.
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It is clear that R(ψ) ⊂ R′(ψ). The exponential mixing property (Condition II) implies
that T is ergodic. Thus, together with the invariance of R′(ψ), we have shown that∑

n≥1

ψ(n)δ = ∞ =⇒ µ(R(ψ)) > 0 =⇒ µ(R′(ψ)) > 0 =⇒ µ(R′(ψ)) = 1. (2.9)

Next we show that µ(R(ψ)) = 1. Take a sequence of positive numbers {ℓ(n) : n ≥ 1}
such that

∞∑
n=1

(
ψ(n)

ℓ(n)

)δ

= ∞, lim
n→∞

ℓ(n) = ∞.

Applying (2.9) to ψ̃(n) = ψ(n)/ℓ(n), we have that for µ-almost all x ∈ X,

lim inf
n→∞

ℓ(n)

ψ(n)
d(T nx, x) <∞.

By Egorov’s theorem, for any ϵ > 0, there exists M > 0 such that the set

RM =
{
x ∈ X :

ℓ(n)

ψ(n)
d(T nx, x) < M, for i.m. n ∈ N}

is of measure at least 1− ϵ. It is clear that

RM ⊂ R(ψ), since ℓ(n) > M, for large n ∈ N.

Since ϵ is arbitrary, we conclude that

µ(R(ψ)) = 1.

3. Applications

In this section we present some applications of Theorem 1.3. There may be more ap-
plications but we have restricted ourselves to some well-known examples. In particular,
Theorems 3.1 and 3.3 given below are new and never appeared in the literature before.
These two theorems gives the dichotomy laws for the Lebesgue measures of the recur-
rence sets for β-transformation and Gauss map respectively. In contrast, the Dynamical
Borel–Cantelli lemma for the shrinking target problems was studied over fifty years ago by
Philipp [8], where he considered the dynamics of N -adic transformation, β-transformation,
and Gauss map.

3.1. β-transformation. For a real number β > 1, define the transformation Tβ : [0, 1] →
[0, 1] by

Tβ : x 7→ βx mod 1.

This map generates the β-transformation dynamical system ([0, 1], Tβ). It is well known
that β-expansion is a typical example of an expanding non-finite Markov system whose
properties are reflected by the orbit of some critical point. General β-expansions have
been widely studied in the literature, beginning with the pioneering works of Renyi [9],
Parry [7], Schmeling [10], and Tan–Wang [11] etc.

For this application we first check that the β-dynamical system satisfies all the conditions
stated in our framework.

(1) Partition:

Xi =
(i− 1

β
,
i

β

)
; and 1 ≤ i ≤ ⌊β⌋, X⌊β⌋+1 =

(⌊β⌋
β
, 1
)
.
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(2) Ahlfors regularity of the measure. Let µ be the Parry measure which is equivalent
to the Lebesgue measure L with the density

h(x) =

(∫ 1

0

∑
n:Tn1<x

1

βn
dx

)−1 ∑
n:Tn1<x

1

βn
.

(3) Strong mixing property is due to Philipp [8].
(4) Bounded distortion. Restricted to a cylinder Jn of order n, T n

β is a linear map with
slope βn.

(5) ∑
Jn∈Fn

(
KJn

)−δ

=
∑

Jn∈Fn

β−n = β−n ·#Fn ≤ β

β − 1
,

where the inequality follows from the fact that βn ≤ #Fn ≤ βn+1

β−1
, see [9].

Hence all the conditions in the main theorem are fulfilled for β-transformation. Thus, as
an application of our theorem, we are able to prove full Lebesgue measure of the recurrence
set

R(Tβ, ψ) :=
{
x ∈ [0, 1] : |T n

β x− x| < ψ(n) for i.m. n ∈ N
}
,

in the β-dynamical system.

Theorem 3.1. Let µ be the Parry measure. Then

µ(R(Tβ, ψ)) =

{
0 if

∑∞
n=1 ψ(n) <∞,

1 if
∑∞

n=1 ψ(n) = ∞.

Remark 3.2. It should be noted that the β-transformation for a general β > 1 is neither
a self-similar set nor a finite conformal iterated function system with open set condition.
So the results of Baker–Farmer [1] and Chang–Wu–Wu [4] are not applicable to the beta
dynamical systems. Their results are not applicable to the dynamical systems generated
by Gauss map either as stated below.

3.2. Gauss map. Let TG be the Gauss map on [0, 1). It was shown by Philipp [8] that
the system ([0, 1), TG) is exponentially mixing with respect to the Gauss measure µ given
by dµ = dx/(1+x) log 2. Since the Gauss measure µ is equivalent to the Lebesgue measure
(L), Condition I is satisfied with δ = 1. For any irrational x ∈ [0, 1),

q2n(x) ≤ |(T n
G(x))

′| ≤ 4q2n(x), (3.1)

where qn(x) is the denominator of the n-th convergent of the continued fraction expansion
of x. It follows that given any cylinder I(a1, a2, · · · , an) with a1, . . . , an ∈ N, for any
x, y ∈ I(a1, a2, · · · , an),

1

4
≤ |(T n

G(x))
′|

|(T n
G(y))

′|
≤ 4.

So Condition III also holds.

For any Jn = I(a1, a2, · · · , an) ∈ Fn,

q2n(a1, . . . , an) ≤ KJn = inf
x∈Jn

|(T n
G(x))

′| ≤ 4q2n(a1, . . . , an). (3.2)

Note that
1

2q2n
≤ |I(a1, a2, · · · , an)| =

1

qn(qn + qn−1)
≤ 1

q2n
,
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we have ∑
Jn∈Fn

K−1
Jn

≤
∑

Jn∈Fn

q−2
n (a1, . . . , an) ≤

∑
Jn∈Fn

2|I(a1, a2, · · · , an)| ≤ 2.

That is, Condition IV is satisfied. Since TG|Jn is monotonic and C1, combining (3.1) and
(3.2) gives that Condition V holds with C = 4.

Define the recurrence set as

R(TG, ψ) = {x ∈ [0, 1) : |T n
Gx− x| < ψ(n) for i.m. n ∈ N}.

Thus we can apply Theorem 1.3 to this set.

Theorem 3.3. Let ψ be a positive function and TG be the Gauss map. Then

L(R(TG, ψ)) =

{
0 if

∑∞
n=1 ψ(n) <∞,

1 if
∑∞

n=1 ψ(n) = ∞.

3.3. Homogeneous self-similar sets. Our result is applicable to a range of self-similar
sets but here we demonstrate it for the classical middle-third Cantor set K. Let T3 be the
3-adic transformation on K, µ the Cantor measure restricted on K, δ = log3 2. Then all
the conditions are fulfilled for Theorem 1.3. Let

R(T3, ψ) = {x ∈ K : |T n
3 x− x| < ψ(n) for i.m. n ∈ N} .

We have

Theorem 3.4. Let ψ be a positive function. Then

µ(R(T3, ψ)) =

{
0 if

∑∞
n=1 ψ(n)

δ <∞,

1 if
∑∞

n=1 ψ(n)
δ = ∞.
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