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ABSTRACT
Introduction Since its onset, the COVID-19 pandemic 
has caused significant morbidity and mortality worldwide, 
with particularly severe outcomes in healthcare institutions 
and congregate settings. To mitigate spread, healthcare 
systems have been cohorting patients to limit contacts 
between uninfected patients and potentially infected 
patients or healthcare workers (HCWs). A major challenge 
in managing the pandemic is the presence of currently 
asymptomatic/presymptomatic individuals capable of 
transmitting the virus, who could introduce COVID-19 into 
uninfected cohorts. The optimal combination of personal 
protective equipment (PPE), testing and other approaches 
to prevent these events is unclear, especially in light of 
ongoing limited resources.
Methods Using stochastic simulations with a susceptible- 
exposed- infected- recovered dynamic model, we quantified 
and compared the impacts of PPE use, patient and HCWs 
surveillance testing and subcohorting strategies.
Results In the base case without testing or PPE, the 
healthcare system was rapidly overwhelmed, and became 
a net contributor to the force of infection. We found that 
effective use of PPE by both HCWs and patients could 
prevent this scenario, while random testing of apparently 
asymptomatic/presymptomatic individuals on a weekly 
basis was less effective. We also found that even imperfect 
use of PPE could provide substantial protection by 
decreasing the force of infection. Importantly, we found 
that creating smaller patient/HCW- interaction subcohorts 
can provide additional resilience to outbreak development 
with limited resources.
Conclusion These findings reinforce the importance 
of ensuring adequate PPE supplies even in the absence 
of testing and provide support for strict subcohorting 
regimens to reduce outbreak potential in healthcare 
institutions.

INTRODUCTION
The COVID-19 pandemic is one of the most 
serious threats to public health in over a 
century. Early reports indicated a relatively 
large proportion of cases among health-
care workers (HCWs).1–3 Not only is this a 
major concern for the health of frontline 
responders, there is also a risk of transmission 
to patients. For this reason, the design and 

implementation of cohorting strategies to 
restrict contact between COVID-19 patients 
and the rest of the healthcare system are of 
great importance. For example, in some loca-
tions, hospitals or other facilities are being 
exclusively dedicated for COVID-19 patients, 
separate from others reserved for the non- 
COVID cohort and alternate care facilities 
are in the process of being established.4 5

As the pandemic progresses, the use 
of personal protective equipment (PPE), 
together with regular testing to identify 
infected individuals, are important ways of 
preventing transmission. The large exis-
tence of transmissions from asymptomatic 
or presymptomatic individuals presents a 
sobering challenge to infection control.6 
Thus, testing to detect these invisibly infected 
individuals seems to be the key for preven-
tion. This is particularly important in health-
care systems throughout the continuum of 
care, including hospitals, primary care and 
long- term care facilities such as nursing 
homes, which have been a focus of the early 

Strengths and limitations of this study

 ► This study focuses on the important high- risk popu-
lations of non- COVID patients and healthcare work-
ers in the healthcare settings, including long- term 
care facilities and nursing homes.

 ► The model proposes optimal and most effective 
measures to protect individuals in healthcare set-
tings even with scarce resources.

 ► The model is deliberately general and does not in-
clude other potentially important factors (such as 
non- pharmaceutical interventions) influencing the 
course of the pandemic.

 ► We do not include any overdispersed transmission 
(super- spreading events) in the model.

 ► Though not modelled explicitly, overdispersion 
would be expected to increase the impact of the 
subcohorting strategy by limiting the total potential 
outbreak cluster size.
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pandemic. Once SARS- CoV-2 is introduced to these 
settings, rapid transmission has been observed.7 But 
testing is not perfect, unless we stop all physical HCW–pa-
tient interactions, it is not possible to keep the disease out 
of healthcare settings.

To provide safe interactions during the healthcare 
process, besides regular testing, the effective use of PPE 
is the major proposed measure to prevent the spread 
of infection to and from patients and HCWs, but the 
shortage of PPE has already proven a critical problem 
in many healthcare institutions8 and there is no reason 
to think this will change in the event of future waves of 
the pandemic. It is often suggested that cohorting low- 
risk patients is a way to preserve scarce PPE, but for this 
to be effective and safe, again it requires an extremely 
high accuracy of rapid virological testing to detect new 
infections and prevent further transmissions. Such testing 
regimens are not currently implemented in many settings 
in the USA8 or worldwide. With the reality of supply 
shortage and the high risks of infection in these health-
care settings, the optimal combination of viral testing, 
PPE and other non- pharmaceutical prevention measures 
has not been quantified.

Determining optimal interventions during epidemics 
can be challenging, as there is often limited time and 
resources for launching large prospective studies. More-
over, informed decisions about infection control practices 
need to be made early on. Dynamic models offer a scien-
tific framework with which to predict epidemic outcomes 
using established parameters and known disease transmis-
sion characteristics. Such models have been employed to 
evaluate potential COVID-19 management approaches,9 
that have informed physical distancing policy throughout 
the world. Therefore, we can use these models to help us 
better plan PPE use, diagnostic testing and other preven-
tion measures.

Using a modified stochastic susceptible- exposed- 
infected- recovered (SEIR) model, we seek to evaluate the 
impacts of PPE, diagnostic testing and HCWs/patients 
cohorting strategies in the context of the interaction 
between HCWs and non- COVID patients. In detail, PPE 
use refers to wearing face masks as it is the most practical 
way to implement in healthcare settings; diagnostic testing 
indicates weekly surveillance testing and cohorting is a 
measure to separate a population into different groups 
based on infection status to limit the interactions between 
groups and thus reduce transmissions.10 Since we focus 
on non- COVID cohorts, we customise a subcohorting 
strategy using different group sizes to manage the HCWs 
and patients’ interaction to contain introductions. We 
found that although regular testing can identify asymp-
tomatic/presymptomatic individuals and reduce the 
force of infection (FOI), PPE is the most effective compo-
nent to prevent COVID-19 transmission in healthcare 
settings. Importantly, our modelling results emphasised 
the role of subcohorting strategy where the population 
is divided into subgroups, to reduce the probability of 
large outbreaks; that is, dividing the non- COVID patients 

and HCWs into multiple subcohorts with smaller sizes 
can contain the impact of an introduction to a smaller 
outbreak when other interventions are not available.

METHODS
We use a basic transmission model. It has two major 
components: transmission in the general population to 
factor in the outbreak situation in the general public 
outside the healthcare system, and transmission within a 
cohort of HCWs and patients who are initially not infected 
with SARS- CoV-2, that is, the non- COVID cohort. Individ-
uals in the model begin as susceptible (S). Following a 
transmission event, they move into the exposed class (E). 
After that they become infectious (I). A fraction of these 
remains asymptomatic (IA) and so can only be identified 
through testing. Another fraction of infections is initially 
‘presymptomatic’ (I1) and eventually exhibit symptoms 
(I2) which could lead to identification. Finally, they 
recover with immunity (R). We note that we are model-
ling the risk of transmission and the most effective ways to 
minimise it in healthcare settings, which may not be the 
direct effects of mitigation strategies.

The non- COVID HCWs and patient cohort is modelled 
stochastically using a Gillespie- Doob algorithm.11 The 
cohort experiences introductions either through HCWs 
infected in the broader community or patients (which 
may come from visitors or from newly admitted patients 
who are incorrectly identified as uninfected). Within 
the non- COVID cohort, we assume that once individuals 
become symptomatic, they are identified and removed. 
We use stochastic simulations to track these components. 
To demonstrate the impacts of control measures and 
cohort size, we focus on a single cohort of HCWs and 
the patients. The specific details of our simulations are 
described in the online supplemental appendix. The 
simulations are scripted in Python (available at https:// 
github. com/ joelmiller/ HospitalCOVID19).

Variables and parameters
We will use the variables S, E, IA, I1, I2 and R for two 
purposes: both to denote the number of individuals in 
a particular state, and also as a shorthand to refer to the 
status of an individual. So the number of S individuals 
in the population is S, the number of E HCWs in the 
cohort is EH and the number of asymptomatically infected 
patients is IA,P.

Table 1 shows the variables we track with the models, 
and tables 2 and 3 show the parameters and their default 
values.

The basic reproduction number in the general popu-
lation is

 
R0 =

(
1 − q

) ( λ1
γI,1

+ λ2
γI,2

)
+ qλA

γA   

With our default values of λ and γ from table 2, we find 
R0=2.5–0.25q. If all individuals become symptomatic (q=0), 
then R0=2.5, while if all become asymptomatic (q=1), then 
R0=2.25. The R0 value is in the range of estimates from 
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previous studies.12–14 We assume that the average trans-
mission rate in asymptomatic infection is the same as that 
in presymptomatic infection, that is, λA = λ1.

Within the healthcare setting, we expect that HCWs are 
at high risk of infection, which may be reduced but not 
eliminated by PPE. This is because of the frequent close 
interactions between HCWs and their patients. Addition-
ally, this expectation is supported by the observed high 

rates of infection among HCWs in many different popula-
tions.1 3 15 16 This is reflected in the large value of CPH, repre-
senting that an infected patient transmits to HCWs at a rate 
that is CPH times that of a general member of the public to 
other members of the public. We refer to CPH and following 
similar parameters as ‘scaling factors’ to capture the rela-
tive transmission rate between different populations. We 
anticipate that in the absence of intervention, the transmis-
sion rate from HCWs to patients will also be relatively high. 
HCWs transmit to patients at a rate that is CHP times that of 

Table 1 The variables used in the model

Variable Definition

S, E, IA, I1, I2, R Number of susceptible, 
exposed, asymptomatic 
infectious, presymptomatic 
infectious, symptomatic 
infectious and recovered 
individuals in the general 
population.

SP, EP, IA,P, I1,P, RP Number of patients in the 
cohort. We assume that 
symptomatic cases are 
removed immediately.

SH, EH, IA,H, I1,H, QH, RH Number of HCWs of each 
status. We assume that 
identified infections are 
moved into a quarantine 
class QH until recovering.

NP=SP + EP+IA,P+I1,P+RP and
NH=SH+EH+IA,H+I1,H+RH

Number of patients and 
healthcare workers active in 
the cohort (no symptomatic 
or quarantined individuals).*

*The I2,P, I2,H classes are neglected in the model because we 
assume individuals are removed as soon as they become 
symptomatic.

Table 2 Default parameter values of disease spread in 
general population

Parameter
Default 
value Definition

λ1 1/4 Average transmission rate from 
presymptomatic I1 individuals.

λ2 2/7 Average transmission rate from 
symptomatic I2 individuals.

λA λ1 Average transmission rate from 
asymptomatic IA individuals.

λ λ1I1 + λ2I2 
+ λAIA

Overall transmission rate (force of 
infection) to S individuals in general 
public.

γE 1/3 Rate of a transition out of E to either 
I1 or IA.

q 1/2 The probability a transition from E is 
to IA.

γI,1 1/2 Rate of an I1 → I2 transition.

γI,2 1/7 Rate of an I2 → R transition.

γA 1/9 The rate of an IA → R transition.

Table 3 The default values for healthcare- related 
parameters

Parameter
Default 
value Definition

γQ 1/14 The rate at which quarantined individuals 
are released.

ω 0 Weekly testing rate of HCWs and 
patients.

ρ 0 Probability a non- symptomatic individual 
would get admitted.

CH 0.1 The relative transmission from the 
general public to HCWs.

CP 0.1 The relative transmission from the 
general public to patients (it captures 
risk from visitors).

CPP 0.5 Scaling factor for patient- to- patient 
transmission relative to number 
expected an infected individual would 
cause in general population.

CPH 2 Scaling factor for patient to HCW 
transmission, representing that an 
infected patient transmits to HCWs at 
a rate that is CPH times that of a general 
member of the public to other members 
of the public.

CHP 2 Scaling factor for HCW to patient 
transmission, representing that an 
infected HCWs transmits to patients at 
a rate that is CHP times that of a general 
member of the public to other members 
of the public.

CHH 1 Scaling factor for HCW–HCW 
transmission within the cohort, 
representing that an infected HCWs 
transmits to HCWs at a rate that is CHH 
times that of a general member of the 
public to other members of the public.

 ̂N  1000 The typical size of a cohort in the 
absence of transmission. The natural 
discharge rate is b/ N̂  . In the absence of 
disease NP would oscillate around N̂   .

 ̂N/4 250 The total number of HCWs allocated to 
the cohort (changes when HCWs go into 
or return from quarantine).

b  ̂N/14 Natural rate at which new patients arrive 
at a cohort.

HCW, healthcare workers.
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a general member of the public to other members of the 
public. It should be noted that patients typically outnumber 
HCWs. So the transmissions from patients to HCWs are 
concentrated in a smaller population and HCWs experi-
ence potential repeated exposures from different patients. 
This means that all else being equal, the FOI experienced 
by HCWs is higher than that of patients. So even if CPH=CHP, 
this represents a higher transmission probability per inter-
action from patients to HCWs than vice versa.

Parameter values for different scenarios
To quantify the impacts of different interventions, we 
defined parameter values for different scenarios in addi-
tion to the base model with the default parameter values 
without interventions above.

In detail, in the scenarios with viral testing, we set the 
testing rate of patients and HCWs to be weekly that is, 
ω=1/7, where general population has no surveillance viral 
testing.

 ► To explore the impacts of PPE, several scenarios have 
been defined:
 – At best, PPE reduces the scaling factor to 1/8 of the 

default, that is, CPP=0.0625, CPH=0.25, CHP=0.25 and 
CHH=0.125.

 – When only HCWs use PPE, we set CPP=0.5 (the de-
fault for between patient transmissions), CPH=0.25, 
CHP=0.25 and CHH=0.125.

 – When both HCWs and patients use PPE, we set 
CPP=0.0625, CPH=0.25, CHP=0.25 and CHH=0.125.

 – The 75% effective PPE is defined as reducing the 
scaling factor to 1/4 of the default transmissions, 
that is, CPP=0.125, CPH=0.5, CHP=0.5 and CHH=0.25.

 – The 50% effective PPE is defined as reducing the 
scaling factor to half of the default transmissions, 
that is, CPP=0.25, CPH=1, CHP=1 and CHH=0.5.

 ► To account for the uncertainty of the proportion and 
the duration of asymptomatic infections, we set
 – Lower proportion of asymptomatic infections: 

q=0.3.
 – Higher proportion of asymptomatic infections: 

q=0.7.
 – Shorter duration of asymptomatic infections: 
γA=1/5.

 ► To explore the impacts of subcohort size in the non- 
COVID patient/HCWs cohort, we run simulations with 
patient cohort size as 50, 100, 200, 400, 800 and 1600, 
respectively, with the probability a non- symptomatic 
individual would get admitted as ρ=0.05. And the corre-
sponding number of HCWs in each cohort is 12, 25, 50, 
100, 200 and 400, respectively, to maintain a patient:HCW 
ratio as 4.

Patient and public involvement
Patients or the public were not involved in the design, or 
conduct, or reporting or dissemination plans of our research. 
This study takes a pure mathematical modelling approach to 
examine the impact of different strategies, based on param-
eter estimates drawn from the literature.

RESULTS
Base model without testing and PPE
We find that in the absence of any interventions to prevent 
introduction of SARS- CoV-2 to the non- COVID cohort, 
HCWs rapidly become infected (figure 1A), consistent with 
general observations from the early stages of the current 
pandemic.1 17 While this leads to a high FOI to patients in the 
early stage of the epidemic (figure 1A), later, once many of 
the HCWs have developed immunity or become symptom-
atic and moved into quarantine, the FOI to patients drops. At 
later stages, as the epidemic grows in the general population, 
the patients are at reduced risk. This is because the patients 
primarily interact with HCWs who have been immunised by 
infection, meanwhile they have relatively little interaction 
with other patients or the general public.

Impacts of regular testing
Accurate virological testing is important to implement 
containment measures where a case is identified. HCWs have 
been recognised as an important group to receive testing 
both because of the exposure risks inherent in their profes-
sion and the potential consequences of their infection for 
others.4 Testing, especially while it has been scarce, has been 
understandably directed at those with symptoms. However, 
COVID-19 has a range of presentations, and infectious indi-
viduals may be asymptomatic or presymptomatic.18 In the 
absence of testing, the asymptomatic or presympomatic 
patients and HCWs cannot be removed from the population 
and pose an infection risk to the rest of the cohort. We model 
this as a random testing rate of the non- COVID patients 
and HCWs cohort (note they may have been infected but 
only demonstrating asymptomatic or presymptomatic) on a 
weekly basis ω=1/7, we see a significantly lower FOI on both 
HCWs and patients (figure 1B). It takes longer for the HCWs 
to all become infected, and the peak level of HCWs quaran-
tine is higher as a result of more cases being identified. These 
impacts are expected to be larger for higher testing rates.

Impacts of PPE
PPE, representing facial masking in this simulation for 
practical implementation, substantially delays the peak of 
infection and reduces FOI, even when only used by HCWs 
(figure 1C–E). In many locations, PPE supply has been 
limited, leading to reuse of normally disposable facial masking 
items or in some cases improvised equipment. Our model 
also considers the potential flaws of PPE use throughout the 
non- COVID patients/HCWs cohort. So we investigated the 
impact of less effective PPE (whether due to improper use or 
lower quality equipment). we define perfect PPE as reducing 
the transmission to 1/8 of default values; imperfect PPE is 
defined by the reduced effectiveness of PPE in preventing 
transmission, and can be considered to represent situations 
in which PPE shortages lead to diversion of supply to the 
COVID-19 cohort. For example, 50% effective PPE means 
that the use of PPE reduces the transmission rate by half. 
Based on the simulations (figure 2), we find that even half 
effective PPE (figure 2B) can bring down the FOI of HCWs 
near to that in the general population.

P
rotected by copyright.

 on A
pril 11, 2021 at S

erials D
ivision La T

robe U
niversity Library.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2020-044644 on 2 M
arch 2021. D

ow
nloaded from

 

http://bmjopen.bmj.com/


5Qiu X, et al. BMJ Open 2021;11:e044644. doi:10.1136/bmjopen-2020-044644

Open access

Impacts of asymptomatic infection
The estimated proportion of asymptomatic infections 
(18%–75%) varies among currently available epidemio-
logical studies,7 19–22 reflecting the difficulty of accurately 
assessing this parameter.23 An advantage of mathematical 
simulations is that we can examine the consequences for 
scenarios in which varying proportions of infections were 
asymptomatic (q), in the presence of testing to detect 
them at rate ω=1/7 (figure 3). As shown, as the propor-
tion of asymptomatic infections increases, the FOI among 

HCWs increases with it, leading it to peak earlier with 
concomitant effects on patients (figure 3A–C).

The effect of this is minor in comparison with the 
consequences of reducing the duration of the asymp-
tomatic period (figure 3D), which intuitively reduces the 
opportunity for exposure and transmission. This suggests 
the importance of testing for detecting asymptomatic or 
presymptomatic- infected individuals among both HCWs 
and patients promptly. It also indicates the importance of 
PPE use among as many individuals as possible, in order 

Figure 1 Comparing different scenarios of testing and PPE. Plots show the susceptible and infected portions of the cohort, 
and the force of infection (FOI). When there is no testing and no PPE (A), all HCWs are rapidly infected. The calculation of FOI 
on HCWs terminates once all have been infected. At peak about 40% of the HCWs are infected (not in quarantine), and shortly 
thereafter about 20% of the HCWs are under quarantine. The plots show that both testing (B) and PPE (C and D) can reduce the 
FOI. But PPE has more substantial impacts on delaying and reducing the HCWs infection peak and the FOI. Noticeably, even 
only HCWs use PPE in (C), the infection peak and FOI in both HCWs and patients are reduced. (E) The impact of simultaneous 
use of testing and effective PPE. HCW, health care workers; PPE, personal protective equipment.
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to limit unwitting transmission from individuals not yet 
tested or impossible to be tested due to limited supply.

Impacts of subcohort size
The probability that a given introduction establishes in 
a cohort is independent of the cohort size L once L is 
reasonably large. However, the expected number of intro-
ductions is proportional to L. For this reason, the prob-
ability a cohort does not have a successful introduction 
increases as L decreases.

Assuming the introduction rate is proportional to the 
cohort size, the probability infection establishes itself into 
a cohort of size L is e−kL for some k>0, where e is Euler’s 
number (the base of the natural logarithm) and k is the 
successful introduction rate per individual. The value of k 
increases with the rate at which non- symptomatic- infected 
individuals are admitted, the rate at which the general 
public transmits to patients or HCWs and the transmis-
sion rate between individuals in the healthcare system. 
The value of k decreases as the recovery rates and testing 

rates increase. The probability of at least one successful 
introduction into a cohort is thus 1−e−kL.

If infection is established within a cohort, it will typically 
infect some fraction of the total population. Like typical 
epidemics, this fraction is independent of the population 
size. So for larger populations, the number of infections 
increases.

This motivates the following observation: given a collec-
tion of cohorts that are small enough to each have a non- 
negligible chance of escaping infection, then joining them 
together increases the risk to all members of the cohorts. 
The cumulative distribution function of outbreak sizes for 
cohorts of different sizes is shown in figure 4. This suggests 
that dividing the cohort into smaller subcohorts and thus 
minimising the risk of successful introduction can be an 
effective way to reduce the risk of infection within the 
cohorts. Smaller cohorts also reduce the amount of addi-
tional testing required to identify secondary transmission 
among contacts once one case is identified.

Figure 2 The relative protection of PPE in a non- COVID-19 cohort. In all scenarios, testing rate ω=1/7 but with PPE of varying 
efficacy. At best, we assume PPE reduces the nosocomial transmission to 1/8 of the default values (D); Plot (A) represents no 
PPE use; (B) represents prevention of 50% of transmission events; (C) represents prevention of 75% of transmission events. 
Results indicate that even modest reductions in transmission can reduce the force of infection inside healthcare setting. HCW, 
healthcare workers; PPE, personal protective equipment
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Whether infection comes in through an externally 
infected HCW, a visitor or an asymptomatic/presymp-
tomatic, new infection does not significantly affect the 
outcomes. As long as the within cohort reproduction 
number (online supplemental appendix B) is greater 
than 1, once the infection is established in the cohort, 
the dynamics will be dominated by the internal infection 
process.

DISCUSSION
COVID-19 presents an unprecedented challenge 
throughout all healthcare systems. The pronounced 
increases in the risk of severe disease or death that are 
found in older age groups, as well as patients suffering 
comorbidities, demands that these at- risk groups be 
protected. And yet they are also disproportionately 
likely to require healthcare for conditions other than 

COVID-19. Contact and risk to these high- risk groups 
can be reduced by innovations such as telemedicine 
consultations for chronic conditions, but urgent care will 
continue to be needed in acute cases and higher demands 
of healthcare will happen in the seasons of high respira-
tory infections. Therefore, this work has been an attempt 
to evaluate the roles of cohorting, prompt and accurate 
diagnostic testing, and PPE in protecting patients and 
HCWs, in order to propose the most effective measures to 
protect individuals in healthcare settings even with scarce 
resources.

Our primary finding is that though the relative impacts 
of interventions depend on the underlying properties 
of the disease and in particular infection from currently 
asymptomatic/presymptomatic individuals, PPE, mainly 
referring to facial masks in this study for practical imple-
mentation, is the most effective approach to reduce 

Figure 3 Comparison of scenarios with varying proportions of asymptomatic infections (q). Here all scenarios have a testing 
rate ω=1/7. The asymptomatic proportion was changed from the default value of q=0.5 in (B) to a lower value of q=0.3 in (A) 
and then to a higher value of q=0.7 in (C). To explore the impact of potential shorter duration of infectiousness of asymptomatic 
infections, the parameter of γA was changed from the default 1/9 to 1/5 with q=0.7 in (D). We find that the increasing proportions 
of asymptomatic infections can increase the peak of infected HCWs and patients, increase, the FOI and reduce the peak of 
quarantined HCWs. However, the duration of infectiousness of the asymptomatic has larger impacts, where under the higher 
proportion q=0.7, if the duration of infectiousness is shorter, the peak of infections and FOI can substantially reduce. FOI, force 
of infection; HCW, healthcare workers; PPE, personal protective equipment.

P
rotected by copyright.

 on A
pril 11, 2021 at S

erials D
ivision La T

robe U
niversity Library.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2020-044644 on 2 M
arch 2021. D

ow
nloaded from

 

https://dx.doi.org/10.1136/bmjopen-2020-044644
http://bmjopen.bmj.com/


8 Qiu X, et al. BMJ Open 2021;11:e044644. doi:10.1136/bmjopen-2020-044644

Open access 

the FOI for all cohorts, compared with regularly viral 
testing. The possibility of asymptomatic transmission has 
been apparent for some time and it has recently been 
confirmed to be responsible for a large fraction of trans-
mission events.18 24 We find that it makes little impact on 
the FOI (with the caveat that it depends on the dura-
tion of the asymptomatic period), but it magnifies the 
impact of effective PPE. The potential transmission from 
presymptomatic individuals has long been known to be a 
crucial component, as it largely increases the difficulty to 
control an infectious disease.25 This model confirms that 
if we wish to prevent SARS- CoV-2 transmission in the non- 
COVID cohort, all individuals should be assumed to be 
infectious, both HCWs and patients. Where appropriate 
PPE is available, it should be widely used throughout 
healthcare, and indeed the use of cloth masks is now 
recommended for the general public by the Centers for 
Disease Control. However, ample PPE may not continue 
to be available in all settings, and PPE for the non- COVID 
cohort is an important element of planning. Notably, the 
impact of weekly random testing of HCWs and patients 
in the non- COVID cohort is unable to prevent infec-
tion from becoming established in the absence of other 

interventions. Furthermore, in many locations testing is 
not only infrequent, but also testing results are not avail-
able in a rapid turnaround to take timely preventions. 
The testing delay is expected to become more severe as 
prevalence increases in the community and in healthcare 
settings. These findings on PPE and viral testing are also 
relevant to resource- limited settings where testing may 
not be widely available, or anywhere a tradeoff exists 
between testing and PPE.

Another important finding is regarding the size of 
subcohorts—by keeping subcohorts smaller, we can 
reduce the probability that infection establishes. If 
infection reaches a cohort, the introduction may fail to 
establish itself. However, modelling shows that when an 
infection does establish, it tends to have an increased 
early growth rate.26 Mathematically, this can be inter-
preted as a consequence of the fact that if on average 
a small outbreak would grow by a factor of R0 at each 
generation, but some go extinct, then those that do not 
go extinct must have increased transmissibility in order to 
achieve the observed average.27 This means that interven-
tions that increase the probability of causing 0 transmis-
sions from an introduction are of particular importance. 

Figure 4 The impacts of cohort size based on 1000 simulations per cohort size. Probability density of outbreak sizes for 
different cohort sizes is demonstrated. Each cohort keeps a patient:HCW ratio as 4. As the cohort size increases, the frequency 
of small outbreaks goes down and the frequency of large outbreaks goes up. With large cohort sizes, all cohorts have outbreaks 
that infect a large fraction of people. With small cohort sizes, many cohorts have no outbreaks, or outbreaks that only infect a 
few.
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In the presence of a very high FOI from the community at 
large, they are of less value compared with interventions 
that reduce R by more. However, in combination with a 
sustained effort to prevent the introduction of infections 
(and at the initial stage of the pandemic), smaller cohorts 
in which HCWs are divided into smaller groups with no 
intragroup interactions may have value in preventing 
establishment of the infection in the healthcare setting. 
Moreover, this work does not model any attempted miti-
gation strategies in the community at large to reduce the 
FOI. In the presence of community mitigation strategies, 
the value of subcohorting is expected to be enhanced. 
While cohorting is understood to be important,28 subco-
horting has so far received less attention. Our findings 
suggest that this can be an important strategy, especially 
in combination with community mitigation strategies and 
in settings where PPE and testing may be in short supply.

There are several important elements of the COVID-19 
pandemic and SARS- CoV-2 biology that are not captured 
by our model. We have assumed an unmitigated outbreak 
outside the non- COVID cohort, which is not the case in 
most locations; that is, the model is deliberately general 
and does not include potentially important factors 
(such as non- pharmaceutical interventions—physical 
distancing or salutary sheltering) influencing the course 
of the pandemic outside healthcare, which will deter-
mine the number of times that the virus is introduced 
to the non- COVID cohort. However, much of the most 
important dynamics we observe happen early on, and so 
our findings will be relevant independent of the details of 
the pandemic outside. We also do not directly model the 
consequences of transmission in the healthcare setting; 
obviously transmission to elderly patients or otherwise 
vulnerable individuals is expected to have an outsize 
impact on overall mortality and the strain on healthcare in 
general. We have also not considered the consequences of 
an overdispersed R0. The SARS- CoV-1 outbreak, as well as 
MERS outbreaks have both been characterised by super-
spreading events in healthcare settings.29 30 SARS- CoV-2 
has also demonstrated overdispersed R0, with 19% of the 
cases seeded 80% of the transmissions.31 Though we do 
not model overdispersion explicitly, it would be expected 
to increase the impact of the subcohorting strategy 
by limiting the total potential cluster size, because it is 
known that an overdispersed R0 can lead to situations in 
which most disease introductions go extinct.27 Finally, we 
have assumed some conditions on the testing and the 
COVID-19 symptomatic monitor: (1) viral testing is accu-
rate, while in reality sensitivity likely depends on the stage 
of infection or the viral load dynamics during the course 
of the infection;32 (2) testing continues at a constant rate 
in the cohort, which neglects an enhanced level of testing 
that might be expected if an infection is detected and (3) 
all patients and HCWs are monitored closely enough that 
individuals are immediately identified once symptomatic.

As communities around the globe confront the 
pandemic, the most important way to reduce transmis-
sion in healthcare settings is to ensure an adequate supply 

of PPE to reduce transmission. Testing, especially rapid 
testing, should also be made available both to identify 
those who are infected and those who have been infected, 
and innovative approaches will need to be taken to mini-
mise the pandemic threat. Subcohorting within institu-
tions is a simple and potentially underutilised approach 
that could also help reduce healthcare transmission, espe-
cially in lower incidence settings and in combination with 
strategies to mitigate the pandemic in the community 
at large. We hope that our analysis will motivate future 
action to preserve lives.
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