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A B S T R A C T   

Macroinvertebrate surveys are commonly used for assessing the health of freshwater systems around the world. 
Traditionally, surveying involves morphologically identifying the families, and sometimes genera, present in 
samples. Biological indices, derived from taxonomic lists, provide convenient ways to summarise community 
data and may be fairly insensitive to species-level changes in community compositions. In recent years, mo
lecular techniques for identifying taxa have become increasingly popular and metabarcoding approaches that 
offer the ability to identify species from mixtures of whole animals (bulk-samples) or from environmental 
samples have gained much attention. However, generating accurate species lists from metabarcode data is 
challenging and can be impacted by sample type, choice of primers, community composition within samples, and 
the availability of reference sequences. This study compares the performance of molecular data extracted from 
bulk-samples against morphological data in calculating two biological indices (the Stream Invertebrate Grade 
Number Average Level 2 (SIGNAL2), which is calculated from family-level data, and a genus-level equivalent of 
this index, SIGNAL_SG) and one biological metric (taxon richness). Further, molecular indices and metrics 
derived from global, local or mixed reference DNA libraries and with varying degrees of filtering processes 
applied to them, are compared with respect to the strength of their relationships with morphological indices and 
metrics. Molecularly derived SIGNAL2 and SIGNAL_SG scores correlated strongly with morphologically derived 
scores, and were strongest when using a reference library containing a mix of local and global data. Molecularly 
derived richness metrics were moderately correlated with morphological taxa richness; however, the strongest 
correlations were observed when taxa that could not be assigned SIGNAL grades were omitted from analyses. 
This study highlights the utility of using molecular data as an objective and sensitive alternative to traditional 
freshwater biological assessment using macroinvertebrates.   

1. Introduction 

Biological assessment of freshwater systems is used globally for 
deriving information on stream conditions and aids in tracking the 
impact of management actions (Buss et al., 2015; Carew et al., 2017). 
Measures of river health are typically evaluated through deriving indices 
or metrics based on the presences, or absences, of macroinvertebrate 
taxa within freshwater systems. Various metrics and indices have been 
developed and tailored to specific regions or countries. Examples 
include the Australian River Assessment System (AusRivAS) (Smith 
et al., 1999) and Stream Invertebrate Grade Number – Average Level 
(SIGNAL) (Chessman, 1995) in Australia, the River Invertebrate 

Prediction and Classification System (RIVPACS, (Wright et al., 1998) in 
the United Kingdom, the Empirical Biotic Index (EBI) (Chutter, 1972) in 
South Africa and the Family-level Biotic Index (FBI) (Hilsenhoff, 1988) 
in the United States of America. In most cases, these involve identifying 
macroinvertebrate specimens to the family level. However, in some 
cases genus-level abundance data may be used (Chessman et al., 2007; 
Besley and Chessman, 2008). The collection and identification of mac
roinvertebrates can be costly, with costs increasing as the resolution of 
taxonomic identification increases (Marshall et al., 2006). 

DNA barcodes are fragments of DNA, typically unique to individual 
species, that can be used to delineate and identify taxa (Hebert et al., 
2003; Goldstein and DeSalle, 2011; Carew et al., 2017). There is now a 
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large body of evidence that shows the utility of DNA barcodes for species 
identification. Coupled with High-Throughput Sequencing (HTS) tech
nologies, DNA barcodes can be extracted from multiple target organisms 
simultaneously; an approach termed DNA metabarcoding (Taberlet 
et al., 2012; Ruppert et al., 2019). The presence of species can be 
determined from sample types ranging from “bulk” mixtures of whole 
animals (bulk-samples) to environmental samples, such as water, sedi
ments or air (Ruppert et al., 2019). Metabarcoding, thus, offers an op
portunity to collect species-level presence/absence data, for a range of 
organisms simultaneously and possibly at lower cost than traditional 
methods. 

Metabarcoding for generating accurate species lists offers some 
challenges and can be impacted by sample type, choice of primers, 
compositions of the communities within samples, and the availability of 
reference sequences. High detectability rates have been achieved from 
samples containing whole macroinvertebrate communities (Carew et al., 
2018), whereas many target taxa are missed when analysing water- 
based environmental DNA (eDNA) samples using standard Cyto
chrome Oxidase I (COI) primers (Hajibabaei et al., 2019a); however, see 
Leese et al. (2020) for recent improvements in this area. So-called uni
versal primers do not capture all taxa, for instance commonly used 
invertebrate primers fail to detect flatworms, and the affinity of primers 
can vary among taxa, leading to primer bias (Kanagawa, 2003; Elbrecht 
and Leese, 2015). For this reason, multiple primers may need to be used 
to comprehensively survey fauna (Hajibabaei et al., 2019b). Ultimately, 
assigning correct species names to sequence data requires a compre
hensive reference database with barcodes that represent species from 
the sampling area (Weigand et al., 2019). Where this is lacking, taxon
omy will be either assigned at higher taxonomic levels or to the next best 
matching species, which can often be a species not from the sampled 
region (Shackleton and Rees, 2016). 

While the above-mentioned issues may have effects on the detect
ability of taxa or the ability to compile comprehensive species lists, it is 
probable that they will have a lesser effect on being able to derive 
indices commonly used for inferring river health. Many such indices 
require identification to genus or, more commonly, family level only. 
Moreover, for indices that use systems to grade macroinvertebrate taxa, 
such as The Stream Invertebrate Grade Number – Average Level 
(SIGNAL, Chessman (1995)), identifications incorrectly made to closely 
related taxa are not likely to have a significant impact, as closely related 
taxa are more likely to have similar grades due to phylogenetic niche 
conservatism. SIGNAL is the index commonly used in Australia to 
characterise river health from the presence of macroinvertebrate taxa. 
The SIGNAL method applies a grade from 1 to 10 to each taxon, with 1 
indicating taxa that are highly tolerant and 10 highly sensitive to 
pollution (Chessman, 2003). SIGNAL has been used extensively for 
biological assessment of freshwater systems and for investigating a va
riety of environmental impacts (Chessman et al., 2006; Lester et al., 
2007; Besley and Chessman, 2008; Rose et al., 2008; Davies et al., 2010; 
Nichols et al., 2010; Tippler et al., 2012). The mean, or weighted mean, 
of all taxa within a sample provide a SIGNAL score for a reach, with 
scores indicating levels of impact as severe (<4), moderate (4–5), mild 
(5–6) and healthy (>6). The most commonly used form, SIGNAL2 
(Chessman, 2003), uses a system that places grades on families. How
ever, the SIGNAL_SG system, developed specifically for the region 
around Sydney, Australia, derives scores based on genus-level grades 
(Chessman et al., 2007). SIGNAL-SG was developed in response to 
suggestions that region-specific models are more suitable than those 
derived for the broad scale as was the case for the original version of 
SIGNAL (Bunn, 1995; Bunn and Davies, 2000) and later Australia-wide 
objectively derived SIGNAL2 (Chessman, 2003). 

Taxonomic richness is also commonly used in routine biological 
monitoring programs. However, it often provides a poorer indicator of 
possible impacts to a system than SIGNAL. Growns et al. (1997) found 
taxa (family) richness to be a weaker measure of the effects of pollution 
by municipal sewage effluent and urban stormwater than SIGNAL for 12 

streams of outer suburban Sydney and the lower Blue Mountains, 
Australia. Walsh (2006) in a study of 16 streams subject to urban 
disturbance in eastern Melbourne, Australia, found SIGNAL to be a more 
sensitive indicator than taxa (family) richness. 

Very few studies have investigated the use of metabarcoding for 
deriving water quality indices. Carew et al. (2018) dissected tissues from 
macroinvertebrates in river bioassessment samples, metabarcoded COI 
fragments, and compared molecularly and morphologically derived 
indices and metrics. They found little difference between the two 
methods for SIGNAL2 scores, the Number of Families, Key Families and 
Australian Rivers Assessment System (AusRivAS) bands. Marshall and 
Stepien (2020) found that eDNA metabarcoding of 16S fragments 
revealed similar trends in multiple alpha and beta diversity metrics to 
those seen in morphological data. 

The present study used a short, 313 base-pair, fragment of the COI 
barcoding region to determine whether SIGNAL2 and SIGNAL_SG biotic 
indices derived from DNA data are comparable to those derived from 
traditional, morphological data. However, to differentiate this study 
from other studies in this area key differences were made, some of which 
aimed to reduce the cost and time involved with sample preparation. 
Firstly, DNA was extracted from whole bulk-samples rather than dis
secting tissue from individual animals as was done in Carew et al. 
(2018). Secondly, only a single set of primers was used in this study, 
compared to three sets in Carew et al. (2018) and Marshall and Stepien 
(2020). While this may reduce taxonomic coverage it also reduces the 
sample preparation time and increases the sequencing read depth 
available per sample. Thirdly, past studies have investigated family level 
metrics, whereas the present study includes a genus level metric (SIG
NAL_SG). Because taxonomic assignment of Operational Taxonomic 
Units (OTUs) can be affected by the taxonomic composition of reference 
DNA databases, metrics were derived using three molecular datasets 
containing the same OTUs but with differing taxonomic identifications 
applied from different reference databases in order to investigate how 
incomplete barcode libraries effect metric outcomes. The effect that 
filtering OTUs, based on their percent contribution to samples, has on 
index and metric outcomes was investigated at varying thresholds. 
Lastly, comparisons were made between morphological and molecular 
taxonomic richness, including for molecular analyses richness of OTUs 
as well as taxa richness (i.e. genus, family), taxa lists were compared, 
and the detectability of taxa investigated. 

2. Methods 

2.1. Site selection and macroinvertebrate sampling 

Macroinvertebrates were collected from 7 sites in 3 freshwater creeks 
(Tributary of Devlins, Lalor and Vineyard) in Sydney, Australia (Fig. 1) 
on multiple occasions between December 2016 and July 2017 (see 
Supplementary Table S1). On each sampling occasion, three replicate 
samples were taken from the edges of pools. Edges were sampled with 
hand-held nets (320 × 250-mm opening; 250-µm mesh) and sweep 
sampling over transects of approximately 10 m. Macroinvertebrates 
were subsampled selectively by the unaided eye for 30 to 60 min, with 
the goals of picking approximately 100 specimens per sample and a wide 
range of species rather than large numbers of the same species. Further 
details are given by Chessman (1995). 

Samples were originally collected into 70% ethanol. However, this 
was removed for transport between laboratories (approx. 2 days) and 
topped up with 100% ethanol and placed in a freezer at − 20 ◦C until 
DNA extraction. Macroinvertebrates were morphologically identified to 
genus level where possible, with the aid of microscopes and published 
keys and identification guides. Details of published keys and identifi
cation guides for identification of Australian invertebrates has been 
consolidated by the Centre for Freshwater Ecosystems (Hawking et al., 
2013; https://www.mdfrc.org.au/bugguide/index.htm). Keys and 
guides used in morphological identification included Arachnida (Cook, 
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1974, 1986; Harvey, 1996; Harvey and Growns, 1998), Annelida 
(Pinder, 2010), Diptera (Cranston, 2019; Debenham, 1987; 
Elson-Harris, 1990; Madden, 2009), Coleoptera (Davis, 1998; Glaister, 
1999; Porch and Perkins, 2010; Watts, 2002), Gastropoda (Ponder, 
2013), Hemiptera (Andersen and Weir, 2004; Porch and Perkins, 2010), 
Hirudinida (Govedich, 2001), Odonata (Theischinger and Hawking, 
1999; Theischinger, 2000, 2001; Theischinger and Endersby, 2009), 
Trichoptera (Dean et al., 2004). 

2.2. DNA extraction and amplification 

Extraction of DNA was undertaken on bulk samples (i.e. all macro
invertebrates collected in a sample were processed together). DNA 
extraction was undertaken in a laminar flow cabinet, with UV serial
isation, to avoid contamination issues. Prior to extraction, ethanol was 
drained from and then evaporated off the samples by placing the open 
samples on a heating block at 70 ◦C. Genetic material was extracted 
using a DNeasy blood and tissue kit (Qiagen, USA) with the following 
modifications to the manufacturer’s guidelines: samples were placed in 
a solution of 20 µl Proteinase K (20 mg/mL) and 200–400 µl of buffer 
and bead beaten for 5 min using a Mini-bead beater (Daintree scientific), 
followed by manual crushing using a pestle. Tubes and beads used for 
bead beating were from the MoBio Power Water DNA extraction kit. 
From each sample, 200 µl of material was taken and used as the sample 
from which genetic material would be extracted and the remaining steps 
in the DNeasy blood and tissue protocol were adhered to. A blank sample 
was prepared, alongside the samples, as a control and underwent all 
steps that non-blank samples underwent. 

A 313 base-pair (bp) internal region of the COI barcode region was 
amplified using the primer pair mlCOIintF (GGWACWGGWT
GAACWGTWTAYCCYCC) and jgHCO2198 (TAIACYTCIGGRTGIC
CRAARAAYCA) (Leray et al., 2013) with 8 bp index barcodes attached. 
Amplification and sequencing were done by the sequence provider Mr 
DNA (www.mrdnalab.com, Shallowater, TX, USA), during June 2018, 
using the provider’s standard protocols. Duplicate, one-step PCRs were 

undertaken using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) 
with a protocol of 94 ◦C for 3 min; 30 cycles of 94 ◦C for 30 s, 53 ◦C for 
40 s and 72 ◦C for 1 min; and a final elongation step at 72 ◦C for 5 min. 
Successful amplification was assessed through checking on a 2% agarose 
gel. Multiple samples were pooled in equal proportions, based on mo
lecular weight, and purified using Ampure XP beads. An Illumina DNA 
library was prepared from the pooled samples. Sequencing was per
formed on an Illumina MiSeq sequencer using V2 300 cycle kit. 

2.3. Taxonomic assignment 

Sequence data were demultiplexed using a custom built script pro
vided by Mr DNA; FASTq Processor (http://www.mrdnafreesoftware. 
com/). Processing and cleaning of data, and creation of OTU tables 
was performed using the Greenfield Hybrid Analysis Pipeline (GHAP) 
(Greenfield, 2017). In summary, sequences with a minimum overlap of 
25 bp and homology of at least 80% were merged. Sequences were 
quality filtered using a Maximum Expected Error (max_EE) threshold of 
1. Only sequences that were between 304 and 350 bp long were retained 
for further analyses. Sequences were clustered into operational taxo
nomic units (OTUs) using a 97% clustering threshold and OTUs that 
occurred over less than three samples or consisted of fewer than three 
reads were filtered out. To test the effect that filtering OTUs based on 
read numbers has on downstream analyses, OTUs were filtered at 6 
thresholds where read abundance was greater or equal to 0%, 0.025%, 
0.075%, 0.01%, 0.05% and 0.1%. 

Taxa were assigned to OTUs using three reference libraries of COI 
barcodes, resulting in three sequence datasets. The first was a library of 
curated barcodes obtained from GenBank (Benson et al., 2012) 
(https://www.ncbi.nlm.nih.gov/genbank/ accessed May 2018), which 
contains data from species across the world. The second was the Aquatic 
Invertebrates of Australia reference library (AIA), housed on the Barcode 
of Life Database (BOLD) (Ratnasingham and Hebert, 2007) 
(http://www.boldsystems.org/ accessed July 2018), which contains 
only data from Australian macroinvertebrate species and many 

Fig. 1. Map of sample locations.  
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sequences from species that were not within the GenBank library. The 
third was a combination of the two libraries, herein referred to as the 
Best of Both Worlds (BoBW) library. Taxonomic assignment for BoBW 
was achieved by taking the highest percent identity match from either 
the GenBank or AIA datasets. Taxonomic assignment was further filtered 
using the arbitrary default thresholds in the GHAP pipeline which assign 
OTUs at various taxonomic levels depending on percent homology: 97% 
or greater for species, 95 - <97% for genus, 90- <95% for family, 85- 
<90% for order and <85% are unassigned. For analyses involving genus 
or family level data, OTUs with identical taxonomic assignments were 
merged and their read numbers summed. Non-target taxa, such as fish, 
fungi and microinvertebrates were removed from the data. 

2.4. Analyses 

SIGNAL grades provide an indication of how tolerant taxa are to 
pollution and SIGNAL scores, calculated as the un-weighted (presence 
absence) or weighted (with square root transformed abundance data) 
average of grades within a sample, are often used to determine the 
health of river systems. Two methods were used to assign SIGNAL grades 
to taxa. The first applied a genus-level grade (SIGNAL_SG) based on 
Chessman et al. (2007) regional version of SIGNAL for Sydney, 
Australia. For the genus-level analyses OTUs that could not be identified 
to genus were removed. The second method applied SIGNAL2 grades as 
per Chessman (2003), which were developed from Australia wide 
sampling and as such are the most commonly used in Australia. Each 
family was assigned a family-level SIGNAL2 grade except organisms 
belonging to Oligochaeta and Acarina were assigned a single grade, 
respectively, and members of the Chironomidae were assigned grades at 
the sub-family level. OTUs that could not be identified to the level 
required for their respective SIGNAL2 grade were removed. Both indices 
were created with the same approach of setting sensitivity grades of the 
taxa objectively (Chessman, 2003; Chessman et al., 2007). For each 
reference library, the total number of taxa that could be assigned 
SIGNAL grades and the average SIGNAL grades of those taxa were 
calculated to investigate possible biases due to reference library 
composition. 

For each sample an un-weighted SIGNAL score was calculated from 
both the morphological and molecular datasets. An un-weighted 
SIGNAL score was chosen because treating abundances of DNA reads 
as abundances of organisms suffers from numerous problems that have 
not yet been adequately resolved, such as primer biases (Elbrecht and 
Leese, 2015) and differential mitochondrial or cell numbers (Elbrecht 
et al., 2017a). Pawlowski et al. (2018) state that there is no simple so
lution to address the abundance issue and advocated the most conser
vative approach is to use only presence-absence data. Moreover, 
weighted SIGNAL2 scores are generally calculated using predefined bins 
of taxa counts (e.g. 1–2, 3–5 organisms) and it is not clear how these 
would correspond with read numbers. Moreover, other studies suggest 
that when abundance data are swapped for presence/absence data dif
ferences in biotic indices are generally low (Beentjes et al., 2018; 
Buchner et al., 2019). Correlations between morphologically and 
genetically determined SIGNAL scores were assessed using Pearson’s 
Correlation Coefficient (PCC) tests. SIGNAL scores are often used to 
classify river reaches in terms of severity of pollution. Classifications 
were applied using those provided in Chessman (1995). Confusion 
matrices of paired morphological and molecular classifications were 
created at the generic and family level. 

Numbers of taxa were similarly treated, with comparisons made 
between the numbers of unique taxa in the morphological data and the 
numbers of OTUs and numbers of unique taxa in the molecular data. The 
set of unique OTUs within the molecular data contained taxa not 
traditionally targeted in macroinvertebrate monitoring (e.g. fish, 
microcrustacea and fungi). A comparison using all OTUs was undertaken 
to investigate whether richness metrics can be reasonably used without 
identifying OTUs to taxa. Two further comparisons of the number of taxa 

between morphological and molecular datasets were undertaken using 
1) all unique taxa with taxonomic identification taken to genus level 
where possible, and 2) only those taxa to which SIGNAL scores could be 
applied. The reasoning for the latter being that this better represents 
what would be collected in a traditional survey. 

Differences in taxonomic assignment between the two methods were 
assessed by examining taxa lists. Metrics were calculated to investigate 
the detectability of taxa, including accuracy, precision, prevalence, and 
true positive, true negative, false positive and misidentification rates. An 
F1 score, which provides a harmonic mean between the precision and 
true positive rate, was also calculated for each family and genus to 
further aid in assessing how well the molecular methods performed at 
detecting the presence or absence of taxa. How these metrics change in 
response to filtering thresholds was also investigated using a single well- 
performing dataset. It should be noted here that the assumption is that 
the morphological identification is correct. However, in reality, a false 
positive does not necessarily mean a taxon was not present in the sam
ple, as it is possible taxa may have been missed or mis-identified in the 
original morphological assessment. For instance, Chessman et al. (2007) 
measured genus-level taxonomic disagreement of 4.2% and difference in 
enumeration of 0.05%, for 94 samples selected randomly and reproc
essed by a person who had not done the original identification and 
counting. These 94 samples were drawn from 2740 samples that were 
the basis of the Sydney regional version of SIGNAL_SG (Chessman et al., 
2007). Moreover, during the time at which the current samples were 
identified the identification error for the laboratory processing the 
samples was 3.9%, following similar methods as those of Chessman et al. 
(2007). 

3. Results 

3.1. Data processing 

An r-markdown file of the R script and details of analyses is provided 
as a supplementary html file (S2) and r-markdown script (S3) along with 
the raw data used in the script (S4.1-S4.8). DNA sequencing resulted in 
over 3 million reads. The minimum number of reads within samples was 
42,072 and the maximum was 141,085. Filtering samples across read 
number thresholds and by removing non-target taxa, had little effect on 
reducing the number of reads per sample across the three datasets 
(Fig. 2). Analyses at taxonomic levels (i.e. genus and family) required 
filtering out OTUs that could not be identified to the required level. For 
the AIA dataset there were no reads removed between filtering on OTU 
read number and filtering non-target taxa, as the reference library 
contained only target taxa, thus OTUs that represent non-target taxa 
remained in the dataset until genus or family level filtering was applied. 
On average, this filtering resulted in a greater loss in sequences for the 
GenBank dataset than either the AIA or BoBW datasets (Fig. 2). An 
exception occurred in the AIA dataset for one sample that, in the generic 
level analyses, ranged from 5025–5318 depending on the read threshold 
applied, which was similar to samples with lowest read numbers in the 
GenBank database. Mean read numbers for family level analyses ranged 
from 75,774–76,393 for the BoBW dataset, 67,089–67,577 in the AIA 
dataset and 42,415–42,756 in the GenBank dataset. Mean read numbers 
for generic level analyses ranged from 67,823–68,213 for the BoBW 
dataset, 60,413–60,701 in the AIA dataset and 37,856–38,067 in the 
GenBank dataset. 

3.2. SIGNAL grades and unique taxa 

The numbers of OTUs that could be assigned SIGNAL_SG and 
SIGNAL2 grades and that contributed to the total number of unique taxa 
(at family or generic levels) varied between datasets (Fig. 3). The 
average SIGNAL grades of taxa within the morphological dataset best 
matched the average grades of taxa in the BoBW dataset. At the family 
level, the average SIGNAL2 grades of taxa within all datasets fell within 
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the 3–4 band. At the genus level, the average SIGNAL_SG grade of taxa in 
both the BoBW and AIA datasets fell within the same band as the 
morphological dataset (between 5 and 6), with AIA average grades 
marginally higher than BoBW. In contrast, taxa in the GenBank dataset 
had an average SIGNAL_SG grade in the 4–5 band. 

While the total numbers of families or genera that could be assigned 
SIGNAL grades was lower in the molecular datasets than the morpho
logical dataset, the BoBW had the greatest number, followed by AIA and 
then GenBank. The morphological dataset had around 30 more genera 
that the BoBW dataset. Applying increasingly more stringent read 

number threshold filters had little effect on average SIGNAL grades or 
numbers of unique taxa. 

. 

3.3. Correlations of molecular and morphological SIGNAL_SG and 
SIGNAL2 scores 

Molecularly derived SIGNAL_SG and SIGNAL2 scores of site samples 
across collection events were generally significantly and strongly 
correlated with morphologically derived scores as long as some read 

Fig. 2. Effect on total read number within samples from filtering out OTUs below a read number threshold (dark blue), non-target taxa (red), OTUs that could not be 
identified to the appropriate level for family (green) and generic (light blue) level analyses. Note the read number threshold of 0 represents no filtering having been 
applied and is thus the original total number of reads. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 3. Four metrics of mean SIGNAL_SG grade, mean SIGNAL2 grade, total number of unique taxa at family or generic levels in three eDNA datasets and a 
morphological dataset (colours), and the effect of applying read number threshold filters (x axis) on these four metrics. 
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number filtering had been applied; although, generic level GenBank 
scores were only moderately correlated (Fig. 4). Correlations in unfil
tered datasets were weak and in one case non-significant. At the generic 
level the AIA dataset marginally outperformed the BoBW, with the 
strongest correlations seen in the comparisons that used 0.05percent 
threshold for the AIA dataset (PCC = 78.5 p-value < 0.001). At the 
family level, correlations with the GenBank database improved sub
stantially from the generic level analyses and also with increased 
threshold filtering. While at the family level the BoBW dataset per
formed best across most thresholds, except at 0.1 percent threshold the 
GenBank database outperformed the BoBW and provided the highest 
correlation. In contrast the correlations for the AIA dataset grew 
markedly weaker with increasing threshold filtering when analysed at 
the family level. 

Comparisons between morphological and molecular SIGNAL_SG and 
SIGNAL2 scores at each threshold are graphically illustrated in the 
supplementary r-markdown file, Figs. 2.3 and 2.11, respectively. When 
threshold filtering was applied, molecular-based scores mostly fell 
within the same unit of morphologically-based scores. Scores that fell 
outside the same unit tended to be only 1 unit either side of the 
morphological score, with GenBank tending to skew towards lower 
scores at both the generic and family level and BoBW and AIA tending to 
skew towards higher scores in the family level analyses (see supple
mentary r-markdown Figs. 2.4 and 2.10). 

Confusion matrices of the classifications into which each dataset 
places river reaches showed a greater spread of discrepancy between 
morphological and molecular classifications at the generic level than the 
family level (see supplementary r-markdown file Figs. 2.5 and 2.13 
respectively). At the generic level, the GenBank dataset was more likely 
to overestimate the severity of pollution, for instance 15 cases assessed 
by the morphological analyses as moderately polluted were classified as 
severely polluted by the GenBank analyses at 0.1% read number 
threshold. In contrast, the AIA and BoBW most often ascribed the same 
classification as in the morphological analyses, with few cases in 
disagreement. For instance, the AIA analysis with a 0.05% read number 
filter had only 6 samples that disagreed with the morphological classi
fication and four of these either ascribing mild pollution to moderately 
polluted reaches or vice versa. The percentage of cases where the mo
lecular classification agreed with the morphological classification at the 
generic level, when read number filtering greater than 0 was applied, 
was between 67.6 and 86.5% in the AIA analyses, 67.6–78.4 in the 
BoBW analysis and 35.1–48.6% in the GenBank analysis (Table 1). The 
family level analyses were in much greater agreement. However, all but 
one sample was morphologically categorised as severely polluted. The 
percentage of cases where the molecular classification agreed with the 
morphological classification at the family level was between 89.2 and 
97.3% in the AIA analyses, 94.6–100 in the BoBW analysis and 97.3% 
across all read number thresholds in the GenBank analysis (Table 1). 

3.4. Correlations of molecular and morphological taxonomic richness 

Correlations between taxa richness of morphological data and OTU 
or taxa richness of molecular data were investigated for each dataset and 
across all read number filters. Analyses were conducted using three 
levels of the molecular data 1) all OTUs, 2) all unique taxa with genus as 
the lowest taxonomic level, and 3) only those taxa for which SIGNAL 
grades could be applied. 

In general, morphological taxa richness was weak to moderately 
correlated with molecular OTU and unique taxa richness measures. OTU 
richness returned significant PCCs between 0.34 and 0.44 when some 
level of read number thresholding was applied (Fig. 5). Molecular 
unique taxa richness correlated best with morphological taxa richness 
when using the AIA dataset, with PCCs over 0.5 when read numbers that 
contributed at least <0.025% were removed. At the 0.025 read number 
threshold the PCC reached 0.59 (p-value < 0.01). The BoBW and Gen
Bank datasets correlated relatively poorly with morphological taxa 
richness, with PCCs increasing as read number thresholds increased. 
However, at the 0.1% read number threshold PCCs were 0.51 and 0.49 
respectively, with p-values < 0.01. Including only those taxa for which 
SIGNAL grades could be applied (i.e. SIGNAL taxa richness) increased 
the performance of the BoBW dataset, and this dataset returned com
parable although slightly lower PCC values than the AIA dataset (Fig. 5). 
In contrast, the GenBank PCC values increased and became significant at 
the 0% read number threshold, but became non-significant for thresh
olds between 0.01 and 0.075%. The greatest correlation over all ana
lyses was between the morphological taxa richness and the AIA SIGNAL 
taxa richness at 0.01% read number threshold (PCC = 0.63, p-value <

Fig. 4. Pearson correlation coefficient scores among three datasets (colour) and thresholds (x axis). Shapes of points indicate the degree of significance.  

Table 1 
Percent agreement between morphological and molecular water classifications.  

Dataset Threshold Generic level Family level 

AIA 0  37.84 97.30  
0.01  67.57 94.59  
0.025  70.27 97.30  
0.05  83.78 89.19  
0.075  81.08 89.19  
0.1  86.49 89.19 

BoBW 0  45.95 97.30  
0.01  67.57 97.30  
0.025  75.68 100  
0.05  72.97 97.30  
0.075  78.38 94.60  
0.1  78.38 91.90 

GenBank 0  59.46 97.30  
0.01  48.65 97.30  
0.025  43.24 97.30  
0.05  45.95 97.30  
0.075  40.54 97.30  
0.1  35.14 97.30  
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0.01) (Fig. 5). Fig. 6 shows the scatter of data points between the 
morphological and AIA dataset at the 0.01% threshold. For brevity only 
these scatterplots are presented here. However, further scatterplots, 
including for analyses at all thresholds, are provided in the r-markdown 
supplementary material Figs. 2.25, 2.26 and 2.27. Similarly, Fig. 7 
shows the relationship between morphological and molecular richness 
at sites over time for the AIA dataset with a read number threshold of 
0.1%. Here, OTU richness is generally higher, taxa richness higher or 
lower and SIGNAL taxa richness generally lower than morphological 
richness. 

3.5. Detectability 

The ability of the molecular approach illustrated by the BoBW 
dataset to detect taxa, varied among genera (Fig. 8) and families (Fig. 9). 
Increasing the read number threshold reduced the number of taxa that 
occurred exclusively in the molecular data but also reduced the per
centage of genera and families that were shared between the molecular 
(AIA, BoBW and GenBank) and morphological datasets (Fig. 10). 
Overall, the morphological dataset shared more taxa with the BoBW 

dataset than the AIA or GenBank datasets. Whereas the BoBW and AIA 
datasets had at least some samples with 100% of the families present in 
the morphological dataset, the GenBank dataset only included 100% of 
families when a 0% read number threshold was applied and never 
included 100% of the genera (Fig. 10). The BoBW dataset was the only 
dataset to have samples that contained 100% of the genera present in the 
morphological dataset (Fig. 10). 

Metrics of detectability and prevalence were calculated across all 
thresholds and are provided as supplementary material (S5 for genera 
and S6 for families). These calculations were based on the assumption 
that the morphological identification was correct. For brevity, only 
those for the BoBW dataset using a read number threshold of 0.1% are 
provided here for genera (Fig. 11) and families (Fig. 12). Prevalence was 
highly variable among families and genera, with the majority of taxa 
having a prevalence below 50%. Prevalence below 10% occurred in 28 
of the 59 families and 64 of 101 genera. 

Overall, the accuracy of the molecular method was relatively high, 
with the notable exception of the flatworm Dugesiidae which had a true 
positive rate of 0% and very high misclassification rate (81.1%) 
(Fig. 11). However, the primers used in this project are known to not 

Fig. 5. Pearson’s correlation coefficients between morphological taxa richness and richness of molecularly derived OTUs, taxa, and taxa for which SIGNAL grades 
could be applied. Colour represents datasets and shape of points provide the significance of the correlations. Note that at the OTU level all datasets were the same so 
here only the GenBank values are supplied. 

Fig. 6. Scatterplots of correlations between morphological taxa richness and the molecular dataset and threshold with the highest correlated richness measure for A) 
OTUs, B) unique taxa and C) SIGNAL taxa, at the 0.1% read number threshold. Blue line is a linear model of best fit with 95% confidence intervals. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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amplify flatworm DNA. The high accuracy values were, in most cases, 
largely driven by high true negative rates. To gain a better under
standing of how the molecular methods performed at determining the 
presences or absences of taxa an F1 score was used, which provides a 
balance between precision and true positive rate. The molecular ana
lyses correctly determined the presences/absences for five families and 
six genera (i.e. F1 scores = 1): Pionidae Piona (mite), Scirtidae (beetle), 
Psychodidae Psychoda (true fly), Simuliidae Simulium (true fly), and 
Culicidae culex (mosquito), and Philopotamidae Chimarra (Caddisfly) 
(Fig. 11). Generally, most families returned F1 scores greater than 0.5. 
However, one or two families within most orders returned null F1 scores. 
These were often families that occurred at low prevalence within the 
samples. However, some occurred at a similar prevalence to other 
families of their order; for instance, Synthemistidae and Gomphidae 
both had a prevalence of 0.08, but where the former returned a null F1 
score, the latter returned a score of 0.8 (Fig. 12). 

Values of the detectability metrics changed with increasing read 
number threshold (Fig. 13). As read number thresholds are increased, 
there is a trade-off between decreasing the mean and increasing the 
spread of values in the true positive rate and increasing the mean and 
reducing the range of values in the true negative rate. However, all 
metrics improve with at least some degree of read number filtering while 
filtering beyond the 0.05% threshold only marginally improved these 
metrics. 

4. Discussion 

This study demonstrates that the river health SIGNAL biotic indices 
can be derived from bulk sample DNA data with results that are com
parable to those derived through traditional morphological analyses. 
Strong and significant correlations between morphologically and 
molecularly derived SIGNAL scores were observed for both family 

(SIGNAL2) and genus-level (SIGNAL_SG) analyses (Fig. 4). However, the 
choice of DNA reference library and data pre-processing influences the 
significance and strength of correlations. In both generic and family 
level analyses, correlations greatly improved when at least some 
filtering of low contribution OTUs was performed (e.g. filtering those 
that contributed<0.01%). At the generic level, datasets with taxonomic 
identifications made using a reference database of local taxa (i.e. AIA) 
performed better than using the GenBank reference library, with the AIA 
dataset returning the highest Pearson Coefficient Correlation (PCC) of 
0.785 (p-value < 0.001) when using a 0.05% read number threshold. At 
the family level, the correlation of the GenBank with the morphological 
SIGNAL2 scores was greatly improved and when applying a read num
ber filter at the 0.1% threshold the GenBank dataset had the highest 
correlation of the molecular datasets (PCC = 0.795, p-value = <0.001). 
However, at lower thresholds the BoBW dataset performed marginally 
better. In contrast the performance of the AIA dataset decreased. 

In practice, SIGNAL scores are interpreted as bands (water quality 
status classes) indicating gradients of pollution. Chessman (1995), who 
introduced the first signal score classified bands as greater than 6 =
clean water, 5–6 possible mild pollution, 4–5 moderate pollution and <4 
severe pollution. In the present study, when applying at least some de
gree of read number filtering, most molecularly derived scores were in 
agreement with the morphologically derived scores in terms of water 
quality classification. When molecular classifications deviated from 
morphological classifications they predominately classified to the next 
lower or higher classification; the notable exception being in the genus 
level analyses using the GenBank dataset which classified a few mildly 
polluted samples as severely polluted. 

While application of the SIGNAL biotic indices can be used to assign 
water quality status classes, Besley and Chessman (2008) demonstrated 
graphical and statistical assessment of SIGNAL_SG scores based on 
morphological data collected from paired sites situated upstream and 

Fig. 7. Per site comparisons between number of taxa in the morphological (Morph) data and in the AIA molecular dataset with a read number threshold of 0.1% for 
the number of A) OTUs, B) unique taxa and C) taxa for which SIGNAL grades could be placed. 
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Fig. 8. Comparison of genera detected in samples within the morphological (morph) and BoBW datasets across read number thresholds (panels). Sample names have 
been removed for ease of plotting; however, grey divisions (x-axis) indicate different samples, which are arranged alphabetically and by date. 
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downstream of point source discharge of treated sewage wastewater. 
That graphical assessment illustrated SIGNAL_SG scores do not neatly 
fall into a band, and often occur across two water quality status classes 
(bands). Addition of an overall upstream mean of SIGNAL_SG scores 
with error bars of ± one standard deviation for a temporal period allows 
presentation in a process control chart for ecological monitoring as 
advocated by Burgman et al. (2012). An example of this control chart 
approach is provided by the 25-year long-term study (1995 to 2020) of 
the Nepean River near the West Camden sewage treatment plant in the 
Sydney region, Australia, which illustrates the SIGNAL_SG range of 
morphologically derived scores of about a unit fluctuation as typical 
variation (see Fig. S1 in Supplementary material). In adopting meta
barcoding data as the basis for assessment with biotic indices such as 

SIGNAL, our study suggests the underlying barcode library will influ
ence slight differences in SIGNAL scores and a period where both 
morphological and metabarcoding data are obtained would provide an 
understanding of the potential site specific ranges. This conservative 
approach would consider Buchner et al. (2019) advocation of the 
importance of properly evaluating the potential to link metabarcoding 
data to established indices and relating them to existing data. This 
approach seems prudent as management decisions can be expensive, for 
example the Blue Mountains Sewage Transfer Scheme in the Sydney 
region, Australia, was established to upgrade the sewerage system at a 
cost of $AU 360 million, by progressively closing small, local plants and 
diverting sewage to a larger, more efficient plant (Besley and Chessman, 
2008). 

Fig. 9. Comparison of families detected in samples within the morphological (morph) and BoBW datasets across read number thresholds (panels). Sample names 
have been removed for ease of plotting; however, grey divisions (x-axis) indicate different samples, which are arranged alphabetically and by date. 
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Overall, molecular classification was relatively accurate with accu
racies over 80% at the generic level and over 95% at the family level 
obtainable. At these levels, managers of river health could apply the 
molecular techniques described here with some confidence that their 
results will be relatively consistent with those of traditional methods. 
However, a limitation to the current study is that it lacked samples 
classified as mildly polluted and had only one sample classified as 
moderately polluted at the family level. Further experimentation on a 
wider variety of streams with less surrounding urbanisation would 
provide greater insight into how family level classifications perform 
outside the category of severely polluted. 

The morphologically derived taxa richness metric was generally 
significantly, but only weak to moderately, correlated with the molec
ularly derived metrics of richness. At the OTU level, correlations were 
significant and exceeded PCC values of 0.3 only when some degree of 
read number thresholding was applied. Correlations improved for 
measures of unique taxa but only when using the AIA dataset. However, 
correlations for the GenBank and BoBW datasets increased with 
increasing read number threshold, with the highest and significant 
correlations occurring at the 0.1% read number threshold. When only 
taxa for which SIGNAL grades could be applied were included in ana
lyses, correlations became moderately strong in both the AIA and BoBW 
datasets, with PCC values ranging from 0.44 at the 0% and 0.63 at the 
0.1% read number threshold for the AIA dataset and 0.44 at the 0% and 
0.59 at the 0.1% read number threshold for the BoBW dataset. In 
contrast, the GenBank analyses were only significant at the 0% and 0.1% 
read number thresholds. The improvement in correlations from the OTU 
level analyses to the unique taxa and SIGNAL taxa analyses, is likely 
partly due to the removal of sequences of non-target taxa such as fish, 
microinvertebrates or terrestrial organisms, thus better representing the 
suite of taxa collected in a traditional sample. Moreover, the OTU 
clustering method used a 97% threshold which perhaps better represents 
delineations of species rather than genera, as in the morphological data 
(Hebert et al., 2003). Fig. 7 shows a trend where, compared with 
morphological richness, OTU richness is generally higher, taxa richness 
is either higher or lower and SIGNAL taxa richness is generally lower. 
This trend is driven by the distinct clustering of OTUs into taxa and then 
the filtering out of taxa to which SIGNAL grades could not be applied. 
However, it should be noted that SIGNAL taxa richness was generally 
lower than morphological taxa richness because not all the taxa in the 
morphological dataset have been barcoded, and thus are missing from 
the SIGNAL taxa richness analysis. 

The performance of the genetic data to determine the presence or 

absence of genera was assessed using F1 scores derived from the BoBW 
dataset with 0.1% read number threshold. Around 63% of families and 
43% of genera had F1 scores above 0.5; and 42% of families and 28% of 
genera had F1 scores over 0.7. Within orders there were usually one or 
two families that returned null F1 scores, with these predominantly 
being at low prevalence among samples. The Odonata were the most 
family diverse taxa and performed relatively well in terms of F1 scores, 
with scores ranging from 0.67 to 0.92. The notable exception in the 
Odonata was the family Synthemistidae, which returned a null F1 score 
despite being as prevalent as Gomphidae. The family Planorbidae was a 
similar notable exception among the snails, having a prevalence of 0.16 
but a null F1 score. For the Dugesiidae, the null F1 score can be explained 
by the choice of primers used for this study, as they are known not to 
amplify this taxon (Vanhove et al., 2013; Carew et al., 2018). For other 
families with related taxa that did return F1 scores it is less clear as to 
why they did not. It is possible that genetic variation could have been 
inadequate to distinguish between some taxa, and that taxa were mis
identified to sister taxa, due to the small size of the barcodes used. This 
occurs usually when large reference libraries are used for identification 
(Hajibabaei et al., 2006). However, mini-barcodes are frequently used 
for metabarcoding analyses and lengths of 100 and 250 bp have been 
shown to distinguish around 90 and 95% of species, respectively 
(Meusnier et al., 2008; Yeo et al., 2020). The use of references from local 
species and a barcode length of 313 bp in this study should also have 
improved performance. Moreover, a cursory investigation into the 
variation in the gene fragment used among genera suggests that all 
genera should be reasonably distinct. 

In one case, the null F1 score can be attributed to an error in the 
reference library. The two mite genera Oxus and Frontipoda were 
morphologically recorded among the samples but were never found 
within the same sample. Frontipoda did not occur in the molecular data; 
however, suspiciously, Oxus was recorded in all of the samples that 
contained Frontipoda. A review of the Oxus voucher specimens that 
contributed to the AIA barcode library, revealed, incorrect identifica
tions placed onto some of the Oxus specimens, specifically those that 
genetically matched the misidentified Frontipoda, and that the vouchers 
were in fact Frontipoda. These voucher specimens were the same that 
genetically matched to the misidentified Frontipoda in the molecular 
analyses. This highlights the issue of incorrectly assigned taxonomy in 
DNA databases and the need for adequately curated reference libraries, 
as has been emphasized by other authors (Nilsson et al., 2006; Tixier 
et al., 2012; Shen et al., 2013; Shackleton and Rees, 2016; Carew et al., 
2017). 

Fig. 10. Boxplots of the percent of genera and families shared between the morphological and molecular datasets and how these percentages change with read 
number threshold. 
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Fig. 11. Metrics of detectability and prevalence for genera in the BoBW dataset with a read number threshold filter of 0.1%.  
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Fig. 12. Metrics of detectability and prevalence for families in the BoBW dataset with a read number threshold filter of 0.1%.  
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In general, this study attributed discrepancies between morpholog
ical and molecular taxonomic assignments to be errors in molecular 
assignment. Because the samples used were destroyed during the genetic 
extraction process, morphological identifications could not be double 
checked. However, errors in morphological identification are probable 
and not unexpected. An error rate of about 4% was documented for the 
laboratory that performed morphological identification and this corre
sponds with the rate found by Chessman et al. (2007) for genus level 
analyses on taxa in the same region. 

One possibility for unexpected positive results is that trace or envi
ronmental DNA (eDNA) may have been present in the samples (Beer
mann et al., 2020), including for species that may have been present as 
dietary components of the collected specimens (Zaidi et al., 1999; 
Sheppard et al., 2005; Hosseini et al., 2008). A further possibility, as 
recorded for Oxus above, is that specimens have been miss-identified in 
the reference databases used and thus the best matches for sequence 
data are to incorrectly assigned species. Pawlowski et al. (2018) sug
gested the most cited explanation for discrepancies between molecular 
and morphological datasets is the incompleteness and lack of accuracy 
of the molecular reference databases that impedes the correct taxonomic 
assignment of DNA sequences. Elbrecht et al. (2017b) describes data
bases like BOLD (where AIA is hosted) as containing misidentified taxa 
or conflicting taxonomic assignments for the same Barcode Index 
Number. Some of the cases of false negatives were due to taxa missing 
from the reference databases, but these were limited to Physolimnesia 
(mite), Illebdella, Vivabdella (leeches), Synthemis (Dragonfly) and Pyg
manisus (snail). 

Despite the differences between morphologically and genetically 
detected taxa, SIGNAL scores (for both index versions tested) were 
generally comparable between data types. This is likely to be primarily 
driven by phylogenetic signal to pollution tolerance occurring within 

taxa, with closely related taxa likely to share similar SIGNAL grades. For 
instance, Carew et al. (2011) showed phylogenetic signal within the 
Ephemeroptera and Chironomidae to tolerance to organic pollution and 
zinc concentration, respectively. In the presence of phylogenetic signal, 
it follows that if sequences are assigned to incorrect but closely related 
taxa the effect on SIGNAL grade assignment would be minimal. This 
suggests that while the molecular data used in this study may not have 
provided 100% detection rate for certain taxa, reliable SIGNAL scores 
can still be derived. 

Our findings support those of Carew et al. (2018) who found little 
difference between DNA derived and morphologically derived family 
level indices: SIGNAL2, AusRivAS (Reynoldson et al., 1997) and a 
Chironomidae-based pollution index developed as part of their study. 
However, unlike Carew et al. (2018), the present study used a single 
primer pair, reducing the time and costs involved in processing samples 
and increasing the available sequencing depth per sample. This does, 
however, come at the cost of increasing the number of undetected taxa 
due to primer bias and primer-template mismatches. While Carew et al. 
(2018) were able to recover 85% of families known to be in their sam
ples, in the present study the average number of families recovered 
ranged from 70.3% to 84.3% in the BoBW dataset with a range from 
38.1% to 100% of families known to occur in the samples were recov
ered. It should be noted that many of the species used in the present 
study have since been added to GenBank, and it is thus possible that 
these percentages will increase if analyses are performed on updated 
libraries. However, our work has also shown that databases with local 
taxa maybe more important, thus GenBank identifications are unlikely 
to improve in regions where local data is depauperate. 

While the full value of using DNA as a way to track river health lies in 
its ability to monitor species-level changes in communities, species-level 
metrics are yet to be developed (Nichols et al., 2020). Buchner et al. 

Fig. 13. Changes in detectability metrics over read number thresholds for family and generic level analyses.  
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(2019) suggest the central incentive for including genetic data in 
assessment of ecological status should be the fundamental improvement 
of resolution down to species or even population level that can be ob
tained in a standardised fashion. For biotic indices, such as SIGNAL, this 
will require compiling species responses to environmental stressors. 
Additionally, biotic index grade values could be inferred through ma
chine learning predictive models trained on metabarcoding data linked 
to associated pressure data (Pawlowski et al., 2018). Buchner et al. 
(2019) suggests using supervised machine learning based on direct 
comparisons of metabarcoding data and traditional morphological taxa. 
Hence, suitable data for this development could be obtained from bulk- 
sample DNA methods as they are applied to routine biomonitoring, 
especially as detectability of individual species improves. In the mean
time, our results show how bulk-sample DNA derived data can be used as 
an alternative way to calculate family- and genus-level river health 
metrics with similar results to current practices. Buchner et al. (2019) 
indicated DNA metabarcoding provided high-resolution taxonomic data 
for the data sets required by any of the currently used EU Water 
Framework Directive assessment methods including those at the genus 
level. While still in its infancy, DNA metabarcoding shows promise as a 
cheaper, yet robust, alternative to traditional morphological methods 
for biological monitoring. 
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