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Abstract

Due to complexities from the interaction between steel tube and concrete filling of concrete-filled

steel tubular (CFST) columns, their strengths are very complicated, which is a highly nonlinear

relation with material strengths and geometry. Categorical gradient Boosting (CatBoost),

which is advanced boosting machine, is presented to solve the problems. A total of 3103

tests, which is divided in four datasets, is trained and tested the learners to determine the

ultimate axial strength as the output variable while the strength of materials (concrete and

steel) and geometry (e.g., diameters/width/heights, thickness, effective length, eccentricities)

are the input ones. The comparison of the present results from 10-fold cross validation and

those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous

study shows very high prediction accuracy in terms of coefficient of determination (R2), which is

the lowest value (R2=0.964) for Dataset 2 and the highest one (R2=0.996) for Dataset 1. While

the predictions from three codes beyond material limit and slenderness are less conservative

than those within it, CatBoost provides nearly similar experiment results with the mean values

as unity without any limits. This algorithm can be used to predict an accurate strength of

CFST columns.

Keywords: Concrete-filled steel tubular columns, Categorical gradient Boosting (CatBoost),

Code predictions, Material strengths, Slenderness ratio

1. Introduction

Concrete-Filled Steel Tubular (CFST) columns, which have excellent structural perfor-

mance, provide not only high load carrying and energy absorption capacity but also reduce
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construction costs. Due to these advantages, they have been widely used in many structural

applications such as high rise building, bridges, offshore structures, etc. Their strength pre-

diction has been attracted to many researchers using experimental, simulation modelling and

theoretical studies. Only some representative works are mentioned here and more papers re-

lated to this topic can be found in the recent comprehensive work by Thai et al. [1]. Since

the first experimental study by Kloppel and Goder [2], a large number of tests have been car-

ried out to study their structural responses and then collected as databases by many authors

([3–8]). In order to reduce the use of construction materials, there also has been a significant

interest in using high steel yield strength (fy) and concrete compressive strength (f ′c) in the

CFST columns. Liew et al. [9] and Xiong et al. [10] studied these structures with fy and f ′c

up to 779 MPa and 193 MPa, as well as those by Khan et al. [11] up to 762 MPa and 113

MPa, respectively. Their tests were also conducted by Mursi and Uy ([12], [13]) and Sakino

et al. [14] with fy up to 761 MPa and 853 MPa. The guidelines for the design of the CFST

structures have been documented in various design codes such as American (AISC 360-16 [15]),

British (BS 5400 [16]), European (Eurocode 4 [17]), Japan (AIJ [18]), China (GB 50936 [19]

and Australian/New Zealand (AS/NZS 2327 [20]). Only three typical codes of AISC 360-16,

Eurocode 4 and AS/NZS 2327 are considered in this study. Among them, AS/NZS 2327 is the

only code that allows the use of high strength steel and concrete (with fy and f ′c up to 690 MPa

and 120 MPa). It is clear that these above codes cannot cover the whole range of materials

strengths as shown in Fig. 1. Besides, there are some deviations among the obtained results

from these codes for the same problem and thus it is difficult to predict precisely the strength

of the CFST columns.

The above code limitations can be overcome by using machine learning algorithms, which

learn from the dataset and provide relationships between the input and output variables ([21–

23]). There have been some efforts to utilise them to predict the performances of the CFST

columns using genetic algorithms (GA) by Naser et al. [24] and Artificial Neural Network

(ANN) based-method ([25–29]). Ren et al. [30] combined a metaheuristic algorithm with a

Support Vector Machine (SVM) to predict the ultimate axial capacity of square CFST short

columns. Mai et al. [31] employed the neural network as a predictive model to solve this

problem. However, most previous researches used simple ANNs to train the regression problems

by using experimental dataset, while there are some ensemble learning models [32], which are

more accurate, robust and powerful. By using the training data, these models train several
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Figure 1: Ranges of material strengths in the CFST columns.

weak learners and then integrate them to construct a strong one. Therefore, their accuracy and

robustness is improved.

In order to pursue such goal, this paper explores Categorical gradient Boosting (CatBoost)

[33], which is the most typical ensemble learning models, to predict the capacity of CFST

columns. The set of hyper-parameters, which maximises the effective performance, is deter-

mined by using a grid search method. CatBoost is trained and validated against a comprehen-

sive database of 3103 tests covering a wide range of material and geometric properties as well as

loading configurations. The comparison of the present results from 10-fold cross validation and

those from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) and previous

study shows very high prediction accuracy. Finally, the effects of the training dataset amount

and input variable sensitivities as well as input variable number are discussed.

2. Categorical gradient Boosting (CatBoost)

The dataset of CFST columns can be a regression problem (Fig. 2), which is the process of

learning relationships between the input and output variables [34]. There is a variety of regres-

sion algorithms that can be considered as candidates to predict the capacity of CFST columns.

In particular, more effective ensemble machine learning algorithms have been proposed incorpo-

rating many of the recent advances in machine learning [35]. The ensemble methods combine
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Figure 2: Generic flowchart for regression algorithms.

multiple differential machine learning models to improve the accuracy [36]. The most com-

mon approaches to create ensemble models are bagging [37] , boosting [38], and stacking [39].

This study focuses on the boosting in general and Gradient Boosting Machines (GBM) [40] in

particular, which combines a set of models, whose individual predictions are aggregated [41].

CatBoost proposed by Yandex [42] is a new type of GBM that can handle a categorical fea-

tures well. Let {(Xk, Yk)}nk=1 be the given input dataset, then Xi = (xi,1, · · · , xi,m) and Yi ∈ R

are a vector of m feature and a label value, respectively. The simplest way is to substitute

xi,k with the average label value
∑n

j=1[xj,k=xi,k]·Yj∑n
j=1[xj,k=xi,k]

on the whole train dataset, where [·] denotes

Iverson brackets (if xj,k = xi,k, then [xj,k = xi,k] equals 1 and 0 otherwise). However, this

procedure leads to overfitting problems. Unlike other GBM learning algorithms, CatBoost has

the following aspects:

• Level-wise tree : by using level-wise symmetric trees (Fig. 3), it employs the same

features to split learning instances for each level. The structure implements a vectorized

representation of the tree, which can be evaluated rapidly.

• Ordered boosting and categorical feature combinations : by using ordered boost-

ing as a new method to estimate the gradient, it can overcome gradient bias using unbiased

boosting techniques with categorical features and enhance the generalization ability of the

model [43].
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• Random permutation : by implementation of the gradient boosting, CatBoost uses

a random permutation of the training examples to prevent over-fitting problems. The

set of input values are first randomly organised to create the random permutations. The

average sample values are then calculated for the same category. If a permutation is

σ = (σ1, · · · , σn), it is substituted with:∑p−1
j=1[xσj,k = xσp,k ]Yσj + β · P∑p−1

j=1[xσj,k = xσp,k ] + β
(1)

where P and β are a prior value and the weight of the prior, respectively.

• One-hot encoding : Because GBM cannot handle categorical features, in this case,

one-hot encoding process is demanded. However, CatBoost directly contains the one-hot

encoding process to convert categorical features to target statistics.

• Optimized parameter tuning : it provides a flexible interface for hyper-parameter

tuning, which includes tuning the learning rate and the depth of the trees. These param-

eters guarantee to get the highest accuracy of the analysis [44].

…..

…..

…..

Figure 3: Level-wise tree growth in CatBoost.

3. Test database and design guidelines

3.1. Test database

Fig. 4 depicts cross sections of two typical CFST columns, where the concrete is filled

in a circular or rectangular hollow section. The notations D,B,H, and t denote the outside

diameter of a circular section, width and height of rectangular section and thickness of the steel

sections, respectively. The results of 3103 tests collected from 173 studies were used as test

database [1], which is summarised in Table 1. The compressive strength is the output variable

for whole datasets.
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Table 1: Summary of experimental specimens.

Dataset No.
Section

type

Loading

type

No. of

specimens
Violin plot Heat-map

1 Circular Concentric* 1245 Fig. 5(a) Fig. 5(b)

2 Eccentric$ 485 Fig. 6(a) Fig. 6(b)

3 Rectangular Concentric* 979 Fig. 7(a) Fig. 7(b)

4 Eccentric$ 394 Fig. 8(a) Fig. 8(b)

* Short (L/D (or B) ≤ 4) and slender column (L/D (or B) > 4).

$ Beam-column.

Dataset 1 and 2 consist of 1245 and 485 testing results for concentric and eccentric circular

columns. There are five input variables including steel and concrete strengths (fy, f
′
c) and

geometry (D, t, L) for Dataset 1 and two extra variables related to eccentric parameters (et, eb)

for Dataset 2. The distribution and correlation matrix heat-map of features are shown in Figs.

5 and 6. The correlation between the compressive strength (N) and diameter (D) as well as

thickness (t) is very strong with the coefficients of 0.91, 0.54 for Dataset 1 and 0.79 and 0.54

for Dataset 2, respectively.

Dataset 3 and 4 have 979 and 394 samples for concentric and eccentric rectangular columns.

The compressive strength can be predicted by six input variables, namely, material strengths

(fy, f
′
c) and geometry (B,H, t, L) for Dataset 3 and three extra variables including eccentric

parameters (et, eb, X) for Dataset 4. The violin plots show the distribution and correlation

matrix heat-map of features are depicted in Figs. 7 and 8. A strong correlation is observed

between N and three attributes (B,H, t) of samples.

3.2. Design guidelines

Detailed guidelines for calculating the strength of CFST columns from AISC 360-16 [15],

Eurocode 4 [17] and AS/NZS 2327 [20] are given in Thai et al. [1]. For concentrically loaded

columns, the section capacity is contributed from the structural steel tube and concrete infill

by considering the confining effect which is significant for circular sections. In the AISC 360-16

code, this effect in circular section is considered by increasing the concrete compressive strength

from 0.85f ′c to 0.95f ′c. Meanwhile, both Eurocode 4 and AS/NZS 2327 account for the confining

effect by using the same manner. In this method, the yield stress of the steel tube is reduced
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Figure 4: Rectangular hollow section (RHS) and circular hollow section (CHS).

by ηsfy due to the lateral pressure from the expansion of the concrete core, whilst the concrete

compressive strength is increased by (1+ηc
t
D

fy
f ′c

)f ′c (with t and D being the thickness and outside

diameter of the steel tube) due to the confining effect. The coefficients ηs and ηc are expressed

as the functions of the relative member slenderness [λ̄ =
√
Nus/Ncr] (with Nus and Ncr being

the section strength and Euler buckling load of the column, respectively) as ηs = 0.25
(
3 + 2λ̄

)
and ηc = 4.9 − 18.5λ̄ + 17λ̄2. It can be seen from these equations that the confining effect is

maximised in short columns at the smallest value of λ̄ and is negligibly small in long columns

when λ̄ is greater than 0.5. This is a rational approach which represents exactly the mechanical

behaviour of the confining effect in CFST circular columns under axial compression. Therefore,

both Eurocode 4 and AS/NZS 2327 codes give the prediction of the section capacity of CFST

circular columns more accurate than AISC 360-16 [1]. For eccentrically loaded columns, the

AISC 360-16 code simplifies the axial force-moment interaction of CFST columns by using bi-

linear curves for compact and slender sections as shown in Fig. 9a. Whereas, both Eurocode 4

and ASNZS 2327 adopt the four-point interaction curve as shown in Fig. 9b, and use a similar

procedure to account for the effect of initial imperfections (the shaded part in Fig. 9b).

Regarding to the local buckling effect of the steel tube, Eurocode 4 does not allow the use

of slender section due to ignoring the local buckling effect. Whereas, both AISC 360-16 and

AS/NZS 2327 do allow for the use of non-compact and slender sections due to considering
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Figure 7: Violin plots and correlation matrix heat-map of features for Dataset 3.
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the local buckling effect. In the AISC 360-16 code, the local buckling effect is considered by

reducing the concrete compressive strength from 0.95f ′c to 0.7f ′c and the strength of the steel

tube from the yield stress fy to the buckling stress fcr (a function of the section slenderness

ratio D/t). Meanwhile, the AS/NZS 2327 code accounts for the local buckling effect of the

steel tube by means of the effective width method with a form factor kf . The global buckling

effect of columns is considered through a reduction factor χ as shown in Fig. 10. It can be seen

that the column curves of Eurocode 4 and AS/NZS 2327 (without local buckling effect, i.e. kf

= 1) are almost identical.
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Figure 10: Column curves from the considered design codes.
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4. Parameters setting and selection of training dataset amount

4.1. Parameters setting

A scikit-learn Python package CatBoostRegressor and a stratified 10-fold cross-validation

are used to set the training model. Two hyper-parameters, maximum depth (max depth) and

learning rate (learning rate) are chosen before the learning process begins. They should be

appropriately selected to reach the best performance in the machine learning models. A grid

search is the most popular method to find the best optimal combination. The distributed grid

search using GridSearchCV of scikit-learn in Python ([45]) is implemented in this study. Fig. 11

shows the scores of tuning hyper-parameters heat, where their R2 scores can be identified. The

best combination of two hyper-parameters can be found by the brightest colour. max depth=4

is used for whole dataset but learning rate is different and depends on each dataset, which

is 0.3, 0.05, 0.1 and 0.05 for Datasets 1-4, respectively.

4.2. Selection of training dataset amount

The accuracy of the machine learning model relies on the training data amount. In order

to evaluate the test accuracy of CatBoost, the following performance measures are used.

• Coefficient of determination (R2)

R2 =

(
n
∑
ty − (

∑
t)(
∑
y)√

n(
∑
t2)− (

∑
t)2
√
n(
∑
y2)− (

∑
y)2

)2

(2)

where t and y are the target and predicted values and n indicates the number of data

samples.

• Mean Square Error (MSE)

MSE =
1

n

n∑
i=1

(ti − yi)2 (3)

• Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(ti − yi)2 (4)

• Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|ti − yi| (5)
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• Coefficient of Variation (CoV)

CoV =
RMSE

Mean
(6)

The results of three cases, in which the dataset is divided for 9–1, 8.75-1.25 and 8–2 as

training and testing, are given in Table 2. Dataset is divided equally into 10 subsets, in which

9, 8.75 and 8 subsets are used to build the strong learner while the rest ones (1, 1.25 and 2) are

used to validate the model. It is clear to see that all results have very high accuracy in which

R2 are very close to unity. As the training data amount increases, RMSE and MAE reduce.

For the test of Dataset 1, when the training data increases from 80% to 90%, R2 increases from

0.995 to 0.996 and RMSE and MAPE decrease from 280.77, 119.142 to 231.152, 109.345. The

results from 9-1 test give the best prediction and are used in the following sections.

5. Results and discussion

Several machine learning models are used to train four datasets, which are given in Table 1,

to predict the strength of the CFST columns. The results are validated against a comprehensive

database of 3103 tests covering a wide range of material and geometric properties as well as

loading configurations. The ratio of the strength obtained from experiments to that from

CatBoost model and design codes are given in tables and plotted in figures.

5.1. Comparison of CatBoost with several machine learning models

The performance of CatBoost is demonstrated by comparing with several machine learning

models including Classification And Regression Tree (CART), Adaptive Boosting (AdaBoost),

Gradient Boosting (GB), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light

Gradient Boosting (LightGB), Neural Network (NN) and Support Vector Machine (SVM). It

can be observed from Table 3 that five boosting ensemble methods (AdaBoost, GB, XGBoost,

LightGB and CatBoost) as well as bagging ensemble method (RF) give very high accuracy in

prediction. Among them, CatBoost shows an obvious superior over single learning methods

(NN and SVM) for all the four measures. For example, R2 increase from 0.962 (NN) to 0.9996

for Dataset 1, while the MAE decrease from 298.015 (NN) to 109.345. The performance of

CatBoost is improved significantly. Based on the above observation, it can be concluded that

CatBoost provides the best performance with the smallest error for these datasets.
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Table 2: Different training dataset amount results using CatBoost.

Dataset Split Performance indicators

R2 MSE RMSE MAE

1 9-1 Train 1.000 4080.250 63.801 33.277

9-1 Test 0.996 57894.073 231.152 109.345

8.75-1.25 Train 1.000 4035.832 63.437 32.526

8.75-1.25 Test 0.996 61694.425 243.242 113.089

8-2 Train 1.000 3728.278 60.921 31.085

8-2 Test 0.995 87313.519 280.770 119.142

2 9-1 Train 0.999 911.164 30.173 22.135

9-1 Test 0.964 24319.791 137.579 60.895

8.75-1.25 Train 0.999 913.452 30.200 22.039

8.75-1.25 Test 0.963 25222.807 143.864 60.976

8-2 Train 0.999 867.673 29.439 21.392

8-2 Test 0.965 23680.972 144.530 64.009

3 9-1 Train 0.997 10702.576 103.309 63.287

9-1 Test 0.982 70021.877 259.090 141.312

8.75-1.25 Train 0.997 10423.678 101.905 62.609

8.75-1.25 Test 0.979 80173.306 274.818 144.565

8-2 Train 0.997 9608.625 97.796 60.993

8-2 Test 0.978 81685.599 283.340 152.710

4 9-1 Train 0.999 1479.532 38.426 29.519

9-1 Test 0.981 21477.168 132.306 80.922

8.75-1.25 Train 0.999 1480.014 38.432 29.392

8.75-1.25 Test 0.976 22171.287 139.674 84.575

8-2 Train 0.999 1463.175 38.163 29.362

8-2 Test 0.973 28452.692 163.148 93.044
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Table 3: Comparison between the performance of CatBoost with several machine learning models.

Dataset Reference R2 MSE RMSE MAE

1 Present (CatBoost) 0.996 57894.073 231.152 109.345

CART 0.978 225875.636 444.333 154.754

AdaBoost 0.984 146579.192 372.080 249.915

GB 0.994 79287.530 267.877 109.291

RF 0.982 293742.469 501.507 209.865

XGBoost 0.995 66962.798 243.538 121.858

LightGB 0.990 89441.261 287.131 125.247

NN 0.962 547184.312 687.431 298.015

SVM 0.976 247092.407 488.957 286.563

2 Present (CatBoost) 0.964 24319.791 137.579 60.895

CART 0.896 48660.790 207.621 89.571

AdaBoost 0.939 37859.434 182.122 86.809

GB 0.921 40081.254 182.728 68.753

RF 0.934 33981.481 178.523 85.407

XGBoost 0.949 32933.484 160.048 71.955

LightGB 0.952 34176.014 164.268 77.721

NN 0.929 37601.985 184.895 101.777

SVM 0.907 55596.804 201.024 89.400

3 Present (CatBoost) 0.982 70021.877 259.090 141.312

CART 0.933 237713.990 473.991 200.162

AdaBoost 0.926 268370.394 510.002 386.042

GB 0.975 97241.874 297.450 137.456

RF 0.966 129475.199 343.567 188.431

XGBoost 0.981 72756.248 264.612 145.719

LightGB 0.980 78150.591 271.573 136.580

NN 0.954 177596.574 396.922 263.501

SVM 0.967 120339.029 341.573 213.207

4 Present (CatBoost) 0.981 21477.168 132.306 80.922

CART 0.871 137417.275 324.806 165.827

AdaBoost 0.950 53706.034 203.213 110.783

GB 0.973 30498.199 158.949 85.764

RF 0.946 58662.214 225.695 151.225

XGBoost 0.977 23580.041 140.923 82.247

LightGB 0.926 65191.574 238.238 135.531

NN 0.952 49963.143 176.497 97.809

SVM 0.795 207787.040 324.207 155.860
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5.2. Comparison of predicted capacity

Table 4 shows the comparison of the present results from 10-fold cross validation and those

from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) as well as previous

study [24] using genetic algorithms (GA) for four datasets. All present results show very

high prediction accuracy in terms of coefficient of determination (R2), which is the lowest value

(R2=0.964) for Dataset 2 and the highest one (R2=0.996) for Dataset 1. It should be noted that

R2 is close to unity indicating high accuracy of model. Evidently, compared with the results

performed by previous researchers [24], the present model has a much better performance

for all the five measures. Comparing error metrics (MAE and RMSE) also illustrates well

performance with a remarkable improvement of the present model. For example, with the

nearly same R2=0.996 and 0.993 with Eurocode 4, CatBoost obtains a lower RMSE, MAE

(231.152, 109.345) compared to that (347.536, 193.663), which means that their improvement

is 33.48% and 43.53 %, respectively. The relation between the measured output and predicted

one is almost linear as can be seen in Fig. 12. It implies that the present predictions are close to

the experiment ones. Overall, present model accurately captures the strength of concentrically

and eccentrically loaded CFST columns with a better overall performance compared with the

code predictions.

Other key statistics in Table 5 and Fig. 13 show the high predictive capability of present

model compared with the code predictions. The present percentage in the error range of 5%

is 91.75%, 84.74%, 86.93% and 88.32% for Datasets 1-4 as well as 91.08% for whole dataset,

respectively. This number depends on the code predictions and is varied in the range of 12.62%-

54.03%. It should be mentioned that the number of predictions that exceeded 5% the actual

value in experiment tests shows how design codes overestimate the strength of the CFST

columns by a large margin. This shows the need for machine learning algorithms in order

to better predictive capability and accuracy. It can overcome many limitations associated

with those adopted in design codes which do not account for specific material strengths and

slenderness ratio.

The effect of the material strengths and slenderness ratio on the strength predictions of the

present model and code predictions are shown in Figs. 14-16. It is clear to see that the results

from three codes underestimate the column capacity. Among them, Eurocode 4 and AS/NZS

2327 give the best predictions, whereas, the most conservative ones are for AISC 360-16. For

example, their mean values are 1.094, 1.091 and 1.272 for Dataset 1 (Table 4). While the
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predictions from three codes beyond material limit and slenderness are less conservative than

those within it [1], CatBoost provides nearly similar experiment results with the mean values as

unity without any limits. It highlights the novelty of machine learning in general and CatBoost

in particular to predict the strength of the CFST columns.

5.3. Effects of input variable sensitivities and input variable number

The sensitivity of each input variable and effect of the number of input variable on the

strength of the CFST columns are studied in Fig. 17 and Table 6. In the feature selection

methods, the feature importance ranking is calculated on the training data using the relation-

ship between input and output variables [46]. Here, a Gini variable importance measure [47],

which is commonly used as the splitting criterion in classification tress, has been selected. Three

geometric features (D,H,B) are the most important factors that have strong effect on the final

prediction since they are the main contributor to the cross-sectional area of CFST columns.

For circular section, the relative feature important of D is 69.32% and 63.962% for Datasets 1

and 2. For rectangular section, it is much lower and depends on concentric or eccentric loading.

The most critical one for Dataset 3 is B with 36.575% and for Dataset 4 is H with 25.301%.

Steel yield strength (fy) and concrete compressive strength (f ′c) have higher relative important

for rectangular section than circular one.

Finally, effect of the input variable number on the predictions is analysed. The intention

is to investigate how the model performs if some input variables are missing. Table 6 presents

the results with various combinations, which include original data (combination 1) and neglect

some input variables (combination 2-6). As expected, the accuracy is dropped in combination

2 for Dataset 1 and 2 when the D is not considered. The lowest accuracy (R2=0.789) is found

for combination 3 for Dataset 2 when both D and f ′c, which are the top two relative feature

important (Fig. 17), are not available. The same trend can be observed for Dataset 3 and 4.

In summary, three geometric features (D,H,B) should be included in the model to get a high

accuracy prediction.

6. Conclusion

In this paper, CatBoost is used to predict the strength of the CFST columns. Four datasets

collected from the literatures, which dealt with different attributes, are trained. Violin plots

with distribution and correlation matrix heat map of features are plotted to see their relationship

in these datasets. The comparison of the CatBoost from 10-fold cross validation and those
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from the code predictions (AISC 360-16, Eurocode 4 and AS/NZS 2327) shows very high

prediction accuracy. The coefficient of determination (R2) from CatBoost, which is the lowest

value (R2=0.964) for Dataset 2 and the highest one (R2=0.996) for Dataset 1. The present

percentage in the error range of 5% is 91.75%, 84.74%, 86.93% and 88.32% for Datasets 1-

4 as well as 91.08% for whole dataset, respectively. While the predictions from three codes

beyond material limit and slenderness are less conservative than those within it, CatBoost

provides nearly similar experiment results with the mean values as unity without any limits.

This algorithm can overcome any limitations associated within design codes such as material

strengths and slenderness ratio to provide an accurate solution.
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Table 4: Comparison of the performance of CatBoost in four datasets with 10-fold cross validation.

Dataset Reference Mean CoV R2 RMSE MAE

1 Present 1.000 0.043 0.996 231.152 109.345

GA ([24]) 0.980 0.160 0.991 384.730 232.440

AISC 360-16 1.272 0.179 0.986 1032.678 493.790

Eurocode 4 1.094 0.149 0.993 347.536 193.663

AS/NZS 2327 1.091 0.150 0.992 380.268 202.628

2 Present 1.000 0.051 0.964 137.579 60.895

GA ([24]) 1.200 0.170 0.976 126.860 93.560

AISC 360-16 1.229 0.243 0.942 252.031 152.576

Eurocode 4 1.083 0.175 0.959 173.366 92.387

AS/NZS 2327 1.170 0.186 0.929 239.399 113.223

3 Present 1.000 0.038 0.982 259.090 141.312

GA ([24]) 1.020 0.130 0.977 126.860 91.560

AISC 360-16 1.181 0.178 0.959 481.465 330.077

Eurocode 4 1.069 0.182 0.954 442.438 270.814

AS/NZS 2327 1.075 0.171 0.960 403.150 255.102

4 Present 1.000 0.022 0.981 132.306 80.922

GA ([24]) 1.260 0.180 0.954 218.760 168.420

AISC 360-16 1.222 0.230 0.942 356.817 252.027

Eurocode 4 1.056 0.192 0.938 251.648 155.515

AS/NZS 2327 1.110 0.203 0.939 285.749 178.965
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Figure 12: The correlation between actual and predicted output using the CatBoost algorithm.
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Table 5: Number of test and corresponding percentage in the error range from CatBoost and code predictions

Error range Dataset AISC 360-16 Eurocode 4 AS/NZS 2327 Present

(%) No of test (%) No of test (%) No of test (%) No of test (%)

5 1 159 12.62 562 44.60 580 46.03 1156 91.75

2 158 32.58 230 47.42 128 26.39 411 84.74

3 258 26.35 529 54.03 505 51.58 851 86.93

4 105 26.65 207 52.54 160 40.61 348 88.32

10 1 87 6.90 199 15.79 173 13.73 71 5.63

2 28 5.77 61 12.58 59 12.16 62 12.78

3 124 12.67 117 11.95 126 12.87 86 8.78

4 36 9.14 42 10.66 34 8.63 32 8.12

15 1 143 11.35 127 10.08 135 10.71 25 1.98

2 40 8.25 56 11.55 55 11.34 3 0.62

3 133 13.59 80 8.17 92 9.40 24 2.45

4 33 8.38 42 10.66 40 10.15 9 2.28

20 1 140 11.11 101 8.02 100 7.94 7 0.56

2 29 5.98 46 9.48 64 13.20 5 1.03

3 101 10.32 63 6.44 60 6.13 12 1.23

4 29 7.36 33 8.38 39 9.90 3 0.76
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Figure 13: Distribution of the errors from CatBoost and code predictions.
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Figure 14: Effect of concrete compressive strength on CatBoost and code predictions for circular and rectangular

columns.
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Figure 15: Effect of steel yield strength on CatBoost and code predictions for circular and rectangular columns.
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Figure 16: Effect of slenderness on CatBoost and code predictions for circular and rectangular columns.
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Figure 17: Relative importance of different input variables for circular and rectangular columns.
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Table 6: Performance measures for analysis of different input variable combinations with 10-fold cross validation.

Dataset Combinations Performance indicators

R2 MSE RMSE MAE

1 1: D, t, fy, f
′
c, L 0.996 57894.073 231.152 109.345

2: t, fy, f
′
c, L 0.947 637816.116 760.461 291.023

3: D, t, fy, f
′
c 0.993 88872.197 292.030 156.155

4: D, t, fy 0.959 372518.992 602.872 282.293

2 1: D, f
′
c, t, L, et, eb, fy 0.964 24319.791 137.579 60.895

2: f
′
c, t, L, et, eb, fy 0.864 76908.03 256.893 123.595

3: t, L, et, eb, fy 0.789 113505.028 311.995 155.115

4: D, f
′
c, t, L, et, eb 0.957 30157.339 153.315 63.816

5: D, f
′
c, t, L, et 0.960 28473.703 148.125 64.271

6: D, f
′
c, t, L 0.847 81733.416 281.241 165.814

3 1: B, t, f
′
c, fy, H, L 0.982 70021.877 259.090 141.312

2: t, f
′
c, fy, H, L 0.978 84389.639 284.052 164.144

3: t, fy, H, L 0.921 296603.150 535.334 307.185

4: B, t, f
′
c, fy, H 0.969 115826.524 332.788 181.346

5: B, t, f
′
c, fy 0.966 128715.266 353.863 208.358

6: B, t, f
′
c 0.956 158630.305 396.024 241.177

4 1: H, f
′
c, B, t, fy, et, L, eb, X 0.981 21477.168 132.306 80.922

2: f
′
c, B, t, fy, et, L, eb, X 0.967 34102.685 168.556 104.994

3: B, t, fy, et, L, eb, X 0.944 52376.630 216.121 134.610

4: H, f
′
c, B, t, fy, et, L, eb 0.982 20415.825 129.284 79.542

5: H, f
′
c, B, t, fy, et, L 0.981 20481.847 134.018 87.571

6: H, f
′
c, B, t, fy, et 0.969 28858.254 162.289 108.525
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