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Abstract
Using genomic information to predict phenotypes can improve the accuracy of
estimated breeding values and can potentially increase genetic gain over conven-
tional breeding. In this study, we investigated the prediction accuracies achieved
by best linear unbiased prediction (BLUP) for nine potato phenotypic traits using
three types of relationship matrices pedigree ABLUP, genomic GBLUP, and a
hybridmatrix (H) combining pedigree and genomic information (HBLUP). Deep
pedigree information was available for >3000 different potato breeding clones
evaluated over four years. Genomic relationships were estimated from >180,000
informative SNPs generated using a genotyping-by-sequencing transcriptome
(GBS-t) protocol for 168 cultivars, many of which were parents of clones. Two
validation scenarios were implemented, namely “Genotyped Cultivars Valida-
tion” (a subset of genotyped lines as validation set) and “Non-genotyped 2009
Progenies Validation”. Most of the traits showed moderate to high narrow sense
heritabilities (range 0.22–0.72). In the Genotyped Cultivars Validation, HBLUP
outperformed ABLUP on prediction accuracies for all traits except early blight,
and outperformed GBLUP for most of the traits except tuber shape, tuber eye
depth and boil after-cooking darkening. This is evidence that the in-depth rela-
tionship within the H matrix could potentially result in better prediction accu-
racy in comparison to using A or G matrix individually. The prediction accura-
cies of the Non-genotyped 2009 Progenies Validation were comparable between
ABLUP and HBLUP, varying from 0.17–0.70 and 0.18–0.69, respectively. Better
prediction accuracy and less bias in prediction using HBLUP is of practical util-
ity to breeders as all breeding material is ranked on the same scale leading to
improved selection decisions. In addition, our approach provides an economical
alternative to utilize historic breeding data with current genotyped individuals
in implementing genomic selection.

Abbreviations: ABLUP, pedigree Best Linear Unbiased Prediction; ACD, after-cooking darkening; GBLUP, Genomic Best Linear Unbiased
Prediction; GBS-t, genotyping-by-sequencing transcriptomics; GS, genomic selection; GWAS, genome-wide association studies; HBLUP, Hybrid Best
Linear Unbiased Prediction; MAS, marker-assisted selection.
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1 INTRODUCTION

Cultivated potato (Solanum tuberosum L.) is the fourth
most important food crop in the world after the major
grain crops of wheat, rice, and maize. The world’s major
potato producing regions are in Asia and Europe, account-
ing for more than 80% of global production. The high
genetic diversity in potato has allowed for the identifica-
tion of genotypes suited to various uses and diverse grow-
ing conditions. Almost all potato varieties grown across the
globe have been developed following conventional breed-
ing methods, i.e. hybridization, clonal propagation, eval-
uation and selection. The process can take more than 12
years, and considerable land and labour resources for the
release of a new variety. Although potato breeding has
resulted in the development of highly successful potato
cultivars, it has been noted that there have been no signifi-
cant improvements in the yield of potato cultivars over the
last century (Barrell, Meiyalaghan, Jacobs, &Conner, 2013;
Jansky, 2009) in comparison to grain crops (Hill, 2008).
As a further challenge to plant breeders, shrinking land
resources due to population growth and climate change
add another layer of complexity to meet the future produc-
tivity of new cultivars.
Accelerating the genetic gain in potato using molec-

ular tools is of great interest to potato breeders and for
future global food security (Caruana et al., 2019; Endelman
et al., 2018; Gebhardt, 2013; Slater et al., 2018; Slater, Cogan,
Forster, Hayes, & Daetwyler, 2016; Slater, Wilson, Cogan,
Forster, & Hayes, 2014b; Sverrisdóttir et al., 2018). Since
the sequencing of the potato reference genome in 2011
(Potato Genome Sequencing Consortium 2011), the appli-
cation of molecular marker techniques in potato breeding
has become more accessible. The majority of the applica-
tions ofmarker-assisted selection (MAS) have been limited
to resistance screening against biotic stresses. Markers are
available for disease resistancemediated bymajor R-genes,
as they are dominant traits and the presence/absence of
the marker is often directly indicative of presence/absence
of resistance. Traits of great interest, such as tuber yield
and quality, are polygenic and complex, and using MAS
for individual genetic effects for these traits would not
be practical for potato breeding programs (Slater et al.,
2014a). While significant genetic gains have been achieved
for complex traits in diploid crops from high throughput
genotyping methods and advanced genetic and statisti-
cal analysis (Crossa et al., 2010; Daetwyler, Bansal, Bar-
iana, Hayden, & Hayes, 2014; Heffner, Jannink, & Sor-
rells, 2011), genomic data application in autopolyploids is
still developing (Bourke, Voorrips, Visser, & Maliepaard,
2018; de Bem Oliveira et al., 2019). Autopolyploid inher-
itance is complex due to the presence of genotypes with
higher allele dosage, a higher number of genotypic classes,

Core Ideas

∙ HBLUP can better leverage historic data for
genomic selection or prediction than using only
pedigree or genomics alone.

∙ HBLUP uses all data and ranks individuals on
the same scale to ensure better selection deci-
sions.

∙ Harnessing historical phenotypes through pedi-
grees was beneficial for genotyped individuals.

poor knowledge of meiotic behaviour and multivalent for-
mation (de Bem Oliveira et al., 2019; Sharma et al., 2018;
Slater et al., 2014b). Next generation sequencing technolo-
gies have allowed for genome wide marker discovery that
is less expensive, and new approaches for sequence-based
genotyping have been developed to implement genomic
breeding approaches such as genomic prediction (Meuwis-
sen, Hayes, & Goddard, 2001). Early genomic prediction
results have shown the promise for rapid genetic progress
in animals from selecting better individuals. Genomic pre-
diction of breeding values has the potential to improve
selection, reduce costs and provide a platform that unifies
breeding approaches, biological discovery, and methods
in both plant and animals breeding (Hickey, Chiurugwi,
Mackay, & Powell, 2017). Nevertheless, effective utilization
of genomic selection or prediction can be expensive and
requires specialist skills (Hickey et al., 2017). Genomic pre-
dictions in different crop plants, including autopolyploids,
using whole genome regression of phenotypes on sets of
dense molecular markers is an active research area.
In crop breeding programs, the parental material and

the breeding populations derived from them are generally
large, consequently the genotyping costs are high. A breed-
ing program would benefit if only a subset of individu-
als could be genotyped from a larger population without
sacrificing genomic prediction accuracy as compared to
using genetic information from the whole population. Use
of genotypic information in place of pedigree information
was first proposed in animals by Nejati-Javaremi, Smith,
and Gibson (1997) to predict breeding values. For the past
decade, more importance was given to genotypic informa-
tion to predict the breeding values of individuals, which
provided much better estimates than using only pedigree
information. However, in order to merge the informa-
tion from both pedigree and genotype data, where a few
individuals have genotypes and the rest only have pedi-
gree information available, a unified single step computa-
tional approach for Genomic Best Linear Unbiased Predic-
tion (ssGBLUP) for combining phenotypic, pedigree and
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genomic information was proposed and demonstrated in
animals (Christensen & Lund, 2010; Legarra, Aguilar, &
Misztal, 2009; Misztal, Legarra, & Aguilar, 2009) based on
Henderson’s (1975, 1976) standard mixed model equations.
This method has been called HBLUP in crop breeding.
In HBLUP, the pedigree-based relationship matrix of

individuals is augmented with the genomic relationship
matrix of genotyped individuals to obtain a hybrid (H)
matrix. The H matrix therefore increases the connected-
ness in the genomic prediction reference population, espe-
cially for genotyped individuals and their relatives with
incomplete pedigrees. This methodology could be of great
interest in crops because it enables the inclusion of pheno-
type data from ungenotyped individuals in genomic pre-
diction. This could be advantageous to make use of his-
torical datasets where DNA is not available or when it is
cost-prohibitive to genotype all individuals of larger popu-
lations. To date twoHBLUP studies have been published in
crops (Ashraf et al., 2016; Pérez-Rodríguez et al., 2017) and
this is the first report of the method in an autotetraploid
crop like potato.
In the present study we a) investigate the predic-

tion accuracy of breeding values using either pedigree
(ABLUP) or genomic information (GBLUP) on various
potato traits; b) augment the numerator relationship
matrix information from the pedigree data of a large set of
individuals with genotypic data of a subset of genotypes
(H matrix) to perform HBLUP, and c) compare the pre-
diction accuracy of ABLUP, GBLUP and HBLUP in potato
for different traits of economic interest.

2 MATERIALS ANDMETHODS

2.1 Populations and phenotypic data

Two phenotypic datasets were used for the present study.
The first phenotypic data set contained three sets of breed-
ing population progenies across two field generations (G2
and G3) evaluated from 2008 to 2011 and have been used
earlier for estimating breeding values based on a pedigree
matrix (Slater et al., 2014b). The second dataset was com-
posed of 168 cultivars evaluated over several years prior to
2012 andused earlier for genomic predictions using various
models (Caruana et al., 2019). In the breeding populations,
the number of individuals varied across different traits due
to higher tuber numbers in later generations allowing for
more traits to be assessed.
The potato breeding populations were developed

through hybridization under controlled conditions
followed by germination and selection in the next gener-
ations. The derived true potato seeds were raised in trays
and germinated seedlings transplanted to pots to raise the

glasshouse (G0) generation. The plants were grown to
maturity and a single tuber from each seedling pot was
selected for field testing. The tubers were space planted in
the first field generation (G1), each representing a unique
individual. The G1 generation was manually harvested
to maintain purity, and based on visual selection, the
best plants were advanced to the next generation. All
tubers were kept to enable up to 30 plants in the second
field generation (G2). The G2 generation individuals
were assessed for maturity and early blight resistance.
The tubers from G2 generation plots were assessed for
tuber shape and tuber eye depth at harvest, while selected
individuals were assessed for cooking quality traits after
harvest. Each individual was measured once for the traits.
Selected individuals were then assessed in a third field
generation (G3) replicated, randomised complete block
trial for yield. Each plot consisted of 2 rows and was
5 m long with plant spacing varying depending on tuber
size in the previous generation to mirror commercial
practice. Each individual/parent only had a mean yield
over replicates for further analyses.
The ‘07’ series contained 1,132 individuals across 57 fam-

ilies in the G2 trial in 2008, and 141 individuals in the G3
trial in 2009. The ‘08’ series had 1,137 individuals across
37 families in the G2 trial in 2009, and 138 individuals in
the G3 trial in 2010. Similarly, the ‘09’ series had 952 indi-
viduals across 61 families in the G2 trial in 2010, and 112
individuals in the G3 trial in 2011. In brief, G2 trials were
for phenotyping all the traits except yield, while G3 trials
were for yield phenotyping solely. The series name repre-
sents the first year the series was planted in the field. Par-
ents were used across multiple years, and each field trial
had common check cultivars for performance comparison
across years. Further details are described in Slater et al.
(2014b).
The second dataset of cultivars contained data for more

than 60 traits recorded in the Australian potato breeding
program. The cultivars data were the result of the aver-
age of 3 years of trialling. The common traits from both
of the datasets were selected for this study. The field tri-
als for both the breeding populations and cultivars were
conducted at the same field location in Toolangi, Victoria,
Australia (37◦34′ S, 145◦30′ E, elevation ∼560 m).
The two phenotypic datasets were collected for different

purposes and contained variations in the use of descrip-
tive data, numerical data, or scale. For each trait the data
was carefully examined and re-scaled so that it could be
compared and combined. To illustrate this, plant maturity
wasmeasured by visual observations on plants towards the
end of life cycle in comparison to standard cultivars. The
breeding population data set had 18 categories of maturity
ranging from 0 for extremely late to 17 for very, very early,
while the cultivars dataset observed nine categories from 1
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for very, very early to 9 for very, very late. In order to com-
pare the data, the scale of the 18 categories in the breed-
ing population dataset was reversed and reduced to eight
categories to align with the cultivar dataset (Supplemental
Table S1a). The total number of individuals phenotyped for
plant maturity was 3,545.
For the following traits any re-scaling of data is pre-

sented in the supplementary file (Supplemental Table S1b-
d). Early blight resistance was visually scored towards the
end of crop life cycle under natural infection conditions.
The numerical score was from 1 for severe symptoms to 9
for absence of symptoms. The total number of individu-
als phenotyped for early blight resistance was 3,454. Tuber
shape was visually scored at harvest on a scale of 1 for
round to 8 for long taper/spindle/cigar. Tuber eye depth
was visually scored on a scale of 1 for shallow to 6 for very
deep. Tuber shape was scored for 1,636 individuals, while
tuber eye depth was recorded for 1,637. Specific gravity was
assessed through a comparison of the tubers weight in air
compared with their weight in water. Average crisp score
was assessed by cooking slices of tuber in oil at 180 ◦C for 2
min and they were then scored on a numerical scale from
1 for very light to 10 for very dark. For flesh colour, boil
sloughing and after-cooking darkening (ACD), tuberswere
peeled and boiled until cooked then boil sloughing scored
from 1 for nil breakdown, to 5 for total breakdown, flesh
colour was scored from 1 for white to 6 for deep yellow,
and ACD was scored after 24 h from 1 for nil to 5 for very
dark. The number of phenotyped individuals varied from
1,724–1,729 for these traits.
The tuber yield data in the breeding population dataset

was assessed in the G3 generation in replicated trials
in comparison to standard cultivars. Total tuber yield
(tonnes/ha) was determined as fresh weight. The tuber
yield data for the cultivars were scored visually. The indi-
viduals were placed in one of seven categories for total
tuber yield. The tuber yield data of cultivars could not be
merged with the data on the breeding populations, so only
breeding population progenies yield data of 399 individuals
were used in the analysis.

2.2 Pedigree information

Deep pedigree information was compiled from various
sources for all the individuals in the merged dataset. The
major source for pedigree information were our own pedi-
gree database, the Potato Pedigree Database (van Berloo,
Hutten, van Eck, & Visser, 2007) and European Cultivated
Potato Database (https://www.europotato.org/). The infor-
mation on US varieties was collected from individual vari-
etal publications in American Journal of Potato Research.
There were 261 founders, or individuals with no parental

information, out of 4,179 total individuals in the pedigree.
The pedigree file is available as supplementary Table S2.

2.3 Genotypic data

The Illumina sequence data of 168 potato cultivars was
generated via a genotyping-by-sequencing transcriptomics
GBS-t protocol (Malmberg et al., 2017). The sequence data
was aligned, subjected to filters, and a vcf file was gener-
ated using GATK tools (Caruana et al., 2019). Genotypes
were extracted using the ‘vcfR’ package (version 1.8,
Knaus and Grünwald (2018)) in R (Version 3.4.4, The
R Foundation) from the same vcf file as Caruana et al.
(2019). Tetraploid allele dosage calling was performed by
counting the number of copies of a reference allele, where
0 denotes fully homozygous allele (AAAA), 1–3 represent
heterozygous genotypes AAAB, AABB, ABBB, respec-
tively, and 4 the other homozygous genotype (BBBB).
The genotype file was processed in R to remove SNPs
with more than two alleles, SNPs with missing data for
more than 50 cultivars and with a minor allele frequency
of < 0.03. The final file with genotypic information on
167 cultivars and 180,550 SNPs was used to generate the
genomic relationship matrix (G).

2.4 A, G and Hmatrices and the
corresponding BLUP

The pedigree-based relationship matrix (A) was built con-
sidering an autotetraploid model with 10 per cent double
reduction (Slater et al., 2014b). The details of the approach
for the numerator relationship matrix can be seen in
Slater et al. (2014b). G was generated using method 1 in
Van Raden (2008). The R package ‘AGHmatrix’ (Amadeu
et al., 2016) was used to obtain these two matrices. The
hybrid matrix (H) that combined information from A and
G (Legarra et al., 2009) was derived using the method in
Pérez-Rodríguez et al. (2017). Heatmaps of the relationship
were plotted using ‘superheat’ R package. Relationships
between genotyped cultivars were investigated from G
as well as the subset of corresponding lines from A and
H. Solely for plotting heatmaps, the G and H matrices
were adjusted to be on the same scale by subtracting the
minimum values in the matrix before plotting, so that
the minimum value was 0 for all three matrices to enable
comparisons.
Pedigree based best linear unbiased prediction (ABLUP)

is a model predicting breeding values using the expected
relatedness among individuals (A) (Henderson, 1984),
while genomic best linear unbiased prediction (GBLUP)
is used to predict genomic breeding values by replacing A

https://www.europotato.org/
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F IGURE 1 Description of the two main genomic prediction scenarios using best linear unbiased prediction (BLUP) with pedigree (A),
genomic (G) and hybrid (H) relationship matrices

with G. In addition, HBLUP is a model applying a hybrid
matrix (H) to predict breeding values based on pedigree,
phenotypes and genotypes.

2.5 Mixed linear model

Single-trait linear mixed models were used to predict
breeding values using the restricted maximum likelihood
approach (REML) as follows:

𝐲 = 𝟏𝐧μ + 𝐗𝐛 + 𝐙𝐮 + 𝐞

where, y is a vector of phenotypic records for the partic-
ular trait, μ is the overall mean, 1n is a vector of ones,
b is a vector of fixed effects (i.e. year), X is a matrix
allocating records to the effects, Z is a matrix allocating
records to breeding values, u is a vector of breeding val-
ues, distributed as N(0,Mσ2g), where M denotes A, G or
H in ABLUP, GBLUP and HBLUP, respectively, and σ2g is
the respective genetic variance captured by the associated
matrix, e is a vector of random error terms distributed as
N(0, Iσ2e), I denotes an identity matrix and σ2e is the error
variance. The R package Sommer was used to fit all predic-
tions (Covarrubias-Pazaran, 2016).

2.6 Cross validation schemes

Two scenarios of cross validation were applied to test the
prediction accuracies from different BLUP models. The

prediction accuracies were estimated as the Pearson cor-
relation coefficient between the genetic estimated breed-
ing values and the observed phenotypic values per trait.
The first scenario (genotyped cultivars validation) was to
randomly sample 50 genotyped cultivars as a validation
set, while using the remaining genotyped cultivars as a
training set in GBLUP, and the remaining genotyped culti-
vars plus progenies as the training set in ABLUP/HBLUP
and 50 replicates. The fixed effect in ABLUP/HBLUP was
the years of the G2 trials (2008, 2009 and 2010) of the
three series (‘07’, ‘08’ and ‘09’). The second scenario (Non-
genotyped 2009 progeny validation) assigned all of the pro-
genies from 2009 into a validation set and used the remain-
ing progenies as well as genotyped cultivars as training set
in both ABLUP and HBLUP (Figure 1). Year information
of the G3/cultivar trials except for the ‘09’ series (the vali-
dation set) was fitted as a fixed effect. Bias was investigated
as the slope of the regression of phenotypes on (G)EBV
for both scenarios, where the results were the mean (s.e.)
across 50 replicates per trait for the genotyped cultivars
validation, while one regression coefficient per trait for
the Non-genotyped 2009 progeny validation. In addition,
narrow-sense heritabilities were estimated for all the traits
viaHBLUPby fitting all available phenotypes in themodel.

2.7 Data availability

Phenotypic data used in the analyses are available in Sup-
plemental Table S3, while genotypic data are available in
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F IGURE 2 Heatmaps of A (left panel) and H (right panel) for genotyped cultivars and progenies, where darker colour indicates higher
relatedness

Caruana et al. (2019). All data necessary for confirming the
conclusions of the article are publicly available or present
within the article, figures, and tables.

3 RESULTS

3.1 Phenotype and genotypes

There was a wide phenotypic range for all the traits in
the combined dataset (breeding populations and cultivars;
Supplemental Table S4; Supplemental Figure S1). Individ-
ual genotypes spanned the five categories of boil ACD,
although the vast majority had lower ACD scores, as this is
the desirable trait (Supplemental Figure S1e). For average
crisp score, the trait distribution varied from 2–10, where
a lower score indicates a lighter and better crisp, while
a higher value indicates a darker undesirable crisp (Sup-
plemental Figure S1g). Similarly, for boil sloughing, there
was representation of individuals in all the categories rang-
ing from 1 of no sloughing to 5 a total breakdown (Sup-
plemental Figure S1f). The number of individuals in each
category for maturity also followed a normal distribution
(Supplemental Figure S1j). Early blight score varied from
1 for severe symptoms to 9 for no symptoms, with most
individuals in the middle followed by individuals towards
the lower score and least in the higher score (Supplemen-
tal Figure S1i). Flesh colour score varied from 1 for white

to 5 for deep yellow and exhibited a similar pattern to
that of early blight (Supplemental Figure S1d). Tuber eye
depth and tuber shape score showed right skewed distri-
bution indicating most individuals had shallow eye depth
and round oval to oval tubers (Supplemental Figure S1b,c).
Specific gravity values followed a normal distribution
and the range of variation was 1.053–1.119 (Supplemental
Figure S1h).

3.2 Relationship matrices

The relationship among progenies and genotyped culti-
vars was investigated via heatmaps of A andH (Figure 2),
where compared to A, a stronger relationship was found
in H with the additional information from the genomic
data of cultivars. The relationship among genotyped cul-
tivars was investigated via heatmaps of A, G and H (Sup-
plemental Figure S2). As shown in the histogram of Sup-
plemental Figure S2a, the majority of the relationship
captured by A was between 0 and 0.1. The relationship
among the same populations was found to be stronger inG
with approximately 20,000 pairwise relationship between
0.1 and 0.3, and further increased in H with 24,000
pairwise relationship between 0.1 and 0.3. In addition,
scatter plot of the off-diagonal elements was created for
the corresponding lines between G and A (Supplemental
Figure S3).
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TABLE 1 Narrow sense heritabilities estimated using HBLUP
(Hmatrix)

Traits Heritability
Total tuber yield 0.37
Tuber shape 0.72
Tuber eye depth 0.42
Flesh color 0.59
Boil ACD 0.35
Boil sloughing 0.29
Average crisp score 0.52
Specific gravity 0.55
Early blight 0.47
Plant maturity 0.22

3.3 Heritabilities

The heritabilities estimated for different traits varied from
0.22 (Plant maturity) to 0.72 (tuber shape) usingH. Tuber
shape (0.72), flesh colour (0.59), specific gravity (0.55)
and average crisp score (0.52) recorded high heritabilities,
while other traits showed moderate to low heritabilities
(Table 1).

3.4 Genomic prediction

3.4.1 Genotyped cultivars validation

(G)EBVs were estimated for the 50 randomly sampled cul-
tivars per replicate using ABLUP, GBLUP, and HBLUP,
respectively. Prediction accuracies (Table 2) varied from
0.10 for plant maturity to 0.68 for flesh colour in ABLUP.
Besides flesh colour (0.68), specific gravity (0.44), tuber
eye depth (0.40), boil sloughing (0.36) and tuber shape
(0.32) also observed moderate to high accuracies, while
low prediction accuracies were achieved for early blight

(0.20), boil ACD (0.18), average crisp score (0.15) and plant
maturity (0.10). As compared to ABLUP, accuracies were
significantly increased in GBLUP for average crisp score
(0.15 vs. 0.34), plant maturity (0.10 vs. 0.25), flesh colour
(0.68 vs. 0.77), specific gravity (0.44 vs. 0.52), boil sloughing
(0.36 vs. 0.41) and tuber eye depth (0.40 vs. 0.43) (Table 2).
The highest accuracy was again observed for flesh colour
(0.77), while the lowest accuracy was found for early blight
(0.14). Prediction viaHBLUP resulted in higher accuracy in
comparison to ABLUP for all the traits except boil slough-
ing (both 0.36) and early blight (0.10 vs. 0.20). Moreover,
HBLUP was superior over GBLUP on prediction accura-
cies for tuber shape (0.37 vs. 0.28), tuber eye depth (0.49 vs.
0.43) and boil ACD (0.27 vs. 0.20), while it achieved com-
parable or lower accuracies for the other traits (Table 2).

3.4.2 Non-genotyped 2009 progenies
validation

The predictions accuracies of (G)EBVs were investigated
on the non-genotyped 2009 progenies via ABLUP and
HBLUP (Table 3). In general, the prediction accuracies
achieved on 2009 progenies were comparable between
ABLUP and HBLUP for all the traits without a consider-
able increase or decrease. Prediction accuracies were fur-
ther investigated on the non-genotyped 2009 individuals
which were progeny or grand-progeny of genotyped par-
ents and were found to be marginally increased compared
to the accuracies for the whole population across all the
traits (Table 3).
The regression coefficient of phenotypes on (G)EBVs

were investigated for both scenarios (Tables 4 and 5). As
shown in Table 4 (genotyped cultivars validation), the
regression coefficients frommost of the traits are distant to
1, except tuber shape which was relatively close to 1 across
the three BLUP models. The overall mean of regression

TABLE 2 Training population sizes and the prediction accuracies for traits in the genotyped cultivars validation. Results are means ± s.e.
across 50 replicates

Training population size Prediction accuracy
Traits GBLUP ABLUP and HBLUP ABLUP GBLUP HBLUP
Tuber shape 103 1591 0.32 ± 0.019 0.28 ± 0.016 0.37 ± 0.015
Tuber eye depth 104 1595 0.40 ± 0.017 0.43 ± 0.012 0.49 ± 0.012
Flesh color 88 1676 0.68 ± 0.010 0.77 ± 0.007 0.75 ± 0.008
Boil ACD 90 1678 0.18 ± 0.013 0.20 ± 0.015 0.27 ± 0.014
Boil sloughing 90 1678 0.36 ± 0.016 0.41 ± 0.016 0.36 ± 0.013
Average crisp score 88 1680 0.15 ± 0.016 0.34 ± 0.012 0.34 ± 0.011
Specific gravity 91 1681 0.44 ± 0.009 0.52 ± 0.009 0.53 ± 0.007
Early blight 65 3405 0.20 ± 0.016 0.14 ± 0.013 0.10 ± 0.019
Plant maturity 79 3495 0.10 ± 0.010 0.25 ± 0.014 0.21 ± 0.008
Mean - - 0.31 ± 0.01 0.37 ± 0.01 0.38 ± 0.01
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TABLE 3 Training population sizes and prediction accuracies on all/subset of non-genotyped 2009 progenies

Accuracy on all non-
genotyped 2009 progenies

Accuracy on non-genotyped 2009
progenies with close relatedness to
genotyped cultivars

Trait

Training
population
size ABLUP HBLUP ABLUP HBLUP

Total tuber yieldA 413 0.30 0.32 0.33 0.34
Tuber shapeB 1140 0.69 0.68 0.70 0.69
Tuber eye depthB 1141 0.47 0.50 0.50 0.53
Flesh colorB 1232 0.61 0.60 0.64 0.63
Boil ACDB 1234 0.27 0.29 0.27 0.29
Average crisp scoreB 1235 0.48 0.51 0.47 0.50
Boil sloughingB 1235 0.57 0.56 0.56 0.56
Specific gravityB 1236 0.70 0.69 0.70 0.68
Early blightC 2510 0.18 0.18 0.20 0.21
Plant maturityC 2593 0.17 0.19 0.18 0.20
Mean - 0.44 0.45 0.46 0.46

Note. No. in validation sets: A 100, B 500, and C 950 for ‘all 2009 progenies’, and subtracting ∼50 for ‘the 2009 progenies which having relatedness with genotyped
cultivars’.

TABLE 4 Regression coefficients of phenotypes on (G)EBV for the random genotyped cultivars validation set, means ± s.e. across 50
replicates per trait

Traits
Regression coefficient
with EBV of ABLUP

Regression coefficient
with GEBV of GBLUP

Regression coefficient
with GEBV of HBLUP

Tuber shape 1.07 ± 0.03 1.02 ± 0.02 1.18 ± 0.02
Tuber eye depth 1.32 ± 0.03 1.35 ± 0.04 1.57 ± 0.02
Flesh color 1.42 ± 0.00 1.29 ± 0.00 1.33 ± 0.00
Boil ACD 0.43 ± 0.01 1.67 ± 0.06 0.69 ± 0.02
Average crisp score 0.49 ± 0.02 1.75 ± 0.13 1.10 ± 0.01
Boil sloughing 0.64 ± 0.01 1.27 ± 0.06 0.65 ± 0.00
Specific gravity 1.04 ± 0.01 1.53 ± 0.02 1.19 ± 0.01
Early blight 0.84 ± 0.04 1.96 ± 0.13 0.45 ± 0.06
Plant maturity 0.65 ± 0.04 1.58 ± 0.12 1.38 ± 0.03
Overall mean (s.e.) 0.88 ± 0.12 1.49 ± 0.10 1.05 ± 0.12

TABLE 5 Regression coefficients of phenotypes on (G)EBV for the non-genotyped 2009 progenies validation set

Traits
Regression coefficient with
EBV of ABLUP

Regression coefficient with
GEBV of HBLUP

Total tuber yield 1.29 1.41
Tuber shape 1.18 0.93
Tuber eye depth 0.98 0.98
Flesh color 0.85 0.84
Boil ACD 1.73 1.78
Average crisp score 1.23 1.19
Boil sloughing 3.02 2.89
Specific gravity 1.30 1.31
Early blight 0.54 0.59
Plant maturity 0.33 0.43
Overall mean 1.25 1.24
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coefficient from HBLUP was the one closest to 1 as com-
pared to the ones from ABLUP and GBLUP. In addition,
regression coefficients estimated in the scenario of non-
genotyped 2009 progeny validation (Table 5) were close to
one for tuber eye depth, flesh colour, tuber shape and aver-
age crisp score. Regression coefficients for boil sloughing
and boil ACD showed large deviations from one. However,
the overall means of regression coefficients were compara-
ble between ABLUP and HBLUP in this scenario (1.25 vs.
1.24, Table 5).

4 DISCUSSION

This study demonstrates the application of genomic selec-
tion in autotetraploid potato by combining genotyped and
non-genotyped individuals from two previously published
studies to investigate the potential prediction accuracy
(Caruana et al., 2019; Slater et al., 2014b). In general, the
prediction accuracies were moderate to high for most of
the traits with high heritabilities and vice versa, except
early blight in both the scenarios. HBLUP outperformed
GBLUP for three traits in genotyped cultivars prediction,
while the accuracies of ABLUP andHBLUPwere at par for
most traits in non-genotyped 2009 progeny prediction. The
inclusion of genetic marker information in the G and H
matrices increased the relatedness amongst the lines. This
increased connectedness in the combined H matrix was
expected to increase the analytical power and increased
prediction accuracy in both validation scenarios. How-
ever, the increase in prediction accuracy was modest using
HBLUP, but, overall, using historical data for prediction
was observed to be beneficial for genomic prediction. In
addition, computational times were comparable between
all three BLUP models in this study.
We observed a wide range of phenotypic variation for

all traits in the merged dataset, which is the prerequisite
for any selection program in crop breeding, and popula-
tions with high genotypic variance tend to display better
genomic selection accuracy (Crossa et al., 2013). High nar-
row sense heritability for a trait indicates that most of the
phenotypic variance is under genetic control and selection
will be effective. Flesh colour and tuber shape is expected
to show high heritability as the trait is governed by few
genes and is not strongly affected by environmental con-
ditions (Slater et al., 2014a). Tuber eye depth should not be
affected greatly by growing conditions and should express
high heritability, however we observedmoderate heritabil-
ity. Specific gravity and average crisp score could be influ-
enced by environmental growing conditions and soil nutri-
tional status. Early blight observed moderate heritability
as the early blight ratings are affected by variable inocu-
lum levels in different years. Low heritabilities estimated

for plant maturity, boil sloughing and boil ACD indicates
higher environmental influence and non-additive genetic
components for these traits. The low heritability estimated
for plant maturity could be due to seasonal variation and
disease pressure. Our result of heritability for plant matu-
ritywas in contrast to Slater et al. (2014b) and Stich andVan
Inghelandt (2018), who observed high estimates of heri-
tability for plant maturity. The heritability estimated for
flesh colour, specific gravity, average crisp score and early
blight were similar to Slater et al. (2014b), and for average
crisp score similar to Sverrisdóttir et al. (2017)). In accor-
dance with our study, Ticona-Benavente and da Silva Filho
(2015) also observed low heritability for tuber yield and
high heritability for specific gravity.
High prediction accuracies of genotyped cultivars for

most traits except early blight and tuber shape in GBLUP
over ABLUP are attributed to more variance captured
by G than with pedigree information. The predictions
based on genotype data should do better than pedigree
based method because they can account for and predict
the effects of Mendelian segregation (Ashraf et al., 2016).
Endelman et al. (2018) also reported superiority of GBLUP
over ABLUP for tuber yield and fry colour, which is the
same as our trait average crisp score. The prediction
accuracies for cultivars in HBLUP were higher or at par
for most traits except boil sloughing, early blight, and
plant maturity in comparison to GBLUP (Table 2). Most
cultivars had pedigree information and their genomic
relationship information could flow deep into the pedi-
gree, resulting in increased accuracy from HBLUP. The
improved relationship in the G subset of the H matrix
in comparison to A matrix is evident in the heatmaps
(Supplemental Figure S2). The increased relationship
captured more additive variation and likely to result in
enhanced prediction accuracy in HBLUP. Moreover, usage
of H allowed non-genotyped individuals to join model
training for genomic prediction. The size of training
population could therefore be increased (e.g. training size
of ∼100 in GBLUP increased to >2000 in HBLUP in our
study), leading to potential enhancements to prediction
accuracies using HBLUP as compared to GBLUP.
In the second scenario (non-Genotyped 2009 Progeny

Validation), the prediction accuracy of ABLUP and
HBLUP were similar (Table 3). In addition, prediction
accuracies differed little between progenies regardless of
whether they had genotyped parents or not. We would
have expected an increase in the accuracy from HBLUP
due to better capturing the relatedness between lines, as
was evident from the heatmaps of the A and H relation-
ship matrices (Figure 2), however, the improvement was
minimal. One reason may be that most progenies had par-
ents with phenotypes and that adding genotypes through
H may be more beneficial for lines whose parents do not



10 of 12 SOOD et al.The Plant Genome

have phenotypes. Another reason could be that the addi-
tional information provided by G was small due to a large
difference of population size between G and A (167 and
4179 individuals, respectively). Similarly, non-significant
differences were observed among HBLUP and ABLUP
for prediction accuracy of wheat grain yield across loca-
tions (Pérez-Rodríguez et al., 2017). Another study found
HBLUP outperformed ABLUP for all the traits in fivefold
cross validations. However, standard errors on accuracies
were not reported so it is difficult to judge whether the dif-
ferences were significant (Ashraf et al., 2016). In addition,
our study only tested a single weight onG to obtainH. Fur-
ther work could investigate various weights or even trait-
specific weights to obtain a more optimalH.
The level of prediction accuracy for different traits in

both the scenarios were similar to previous studies (Caru-
ana et al., 2019; Enciso-Rodriguez, Douches, Lopez-Cruz,
Coombs, & de Los Campos, 2018; Endelman et al., 2018;
Slater et al., 2016; Stich &Van Inghelandt, 2018; Sverrisdót-
tir et al., 2017; Sverrisdóttir et al., 2018) on genomic selec-
tion in potato, except plantmaturity and disease resistance.
Stich and Van Inghelandt (2018) observed moderate (0.5)
to high (0.8) cross prediction accuracies for six key perfor-
mance traits including tuber yield using GBLUP and three
Bayesian approaches, and suggested the use of Bayesian
methods for oligogenic traits. Enciso-Rodriguez et al.
(2018) observed prediction correlation range of 0.41–0.74
using large populations. We observed low prediction accu-
racy for plant maturity, while high prediction accuracies
were observed previously (Slater et al., 2016; Stich & Van
Inghelandt, 2018). Low heritability of late maturity due to
merger of two different datasets could be the probable rea-
son for low prediction accuracy. This could be substanti-
ated with two earlier studies, breeding population dataset
(Slater et al., 2016) and cultivars dataset (Caruana et al.,
2019), which observed high and low prediction accuracy
for plant maturity, respectively. Similarly, low genomic
prediction accruacy was also found for early blight.
Although disease resistance is expected to show high
prediction accuracy as observed for late blight (Enciso-
Rodriguez et al., 2018; Stich & Van Inghelandt, 2018), low
prediction accuracy for early blight resistance despitemod-
erate heritability estimate is consonant with the observa-
tion that for early blight the relationship between expected
and observed values was especially low due to inconsis-
tency in the phenotypic score of the disease resistancemea-
sured for the two populations (progenies and cultivars).
Finally, moderate accuracies were observed for specific
gravity and fry colour, which were comparable to other
studies (Endelman et al., 2018; Sverrisdóttir et al., 2018).
For the successful application of genomic selec-

tion/prediction must be accurate and unbiased. A
coefficient near one indicates that the (G)EBVs are nei-

ther over or underestimated when compared against
phenotypes. This is important when combining (G)EBVs
from different datasets for ranking purposes. Compared to
ABLUP and GBLUP, our study foundHBLUP had the least
bias on prediction in the genotyped cultivars validation.
While in the non-genotyped 2009 progeny validation, the
averaged bias across traits was approximately 1.25 using
HBLUP, which is in the acceptable range.
Overall, our study found that the prediction accura-

cies were in the usable range and suggest that substantial
genetic gain could be achieved for potato traits per unit of
time and cost using the GBLUP model (Slater et al., 2016).
The level of accuracy achieved indicate that parental cul-
tivars should be part of the reference population to ensure
sufficient prediction accuracy and this would allow for use
of GEBVs in glasshouse seedlings. The accuracy in the sec-
ond and third generation could be further improved by
sparse phenotyping a subset of progenies for inclusion in
the reference population. Computer simulations could be
used to shed more light on how to increase genetic gain
in genomic potato breeding programs, which has been
demonstrated in other plant species (Iwata & Jannink,
2011; Lin et al., 2016; Yabe, Ohsawa, & Iwata, 2013).
There are several benefits from implementing HBLUP

for breeding. First, it can increase the size of training popu-
lation for genomic prediction by incorporating phenotypes
from non-genotyped individuals. This is especially attrac-
tive for a breeding program (i.e. potato breeding) to get the
most from its non-genotyped historical germplasm, while
only a small number of samples are genotyped. HBLUP
enables the use of historical data on non-genotyped indi-
viduals and could also be used to combine information
from different breeding programs and research groups.
Second, cost savings could be realised by only genotyp-
ing the parents and a subset of the progenies rather than
genotyping the entire breeding population, and then using
HBLUP to predict the better families and individuals for
further evaluation. Third, HBLUP ensures that all breed-
ing values are on the same scale and can be ranked easily to
facilitate breeding decisions, without having to blend pedi-
gree and genomic breeding values that are potentially esti-
mated on different scales. Four, the method is practical, as
only one evaluation is needed for both genotyped and non-
genotyped individuals making use of all available informa-
tion to increase power and potentially reduce bias. How-
ever, the inconsistency of phenotyping across datasets may
present one of the largest hurdles when combining differ-
ent data sources. Further research is needed to more opti-
mally standardise phenotype datasets. In terms of genomic
data, the combination of datasets genotyped using differ-
ent platforms also presents challenges, not only in finding
sufficient overlapping markers but also due to differences
in scoring autotetraploid genotypes. Aside from using
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exactly the same genotyping platform, whole-genome
sequencing and imputation may be able to link genotype
datasets going forward, but imputation of autopolyploids
also requires method development. Finally, in very large
datasets and when non-genotyped individuals outnum-
ber genotyped ones, the inversion ofH becomes computa-
tionally challenging. However, methods are developed for
animal populations that are already reaching those limits
(Boerner & Johnston, 2019; Misztal, 2016).
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