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Abstract: Perennial ryegrass biomass yield is an important driver of profitability for Australian dairy
farmers, making it a primary goal for plant breeders. However, measuring and selecting cultivars
for higher biomass yield is a major bottleneck in breeding, requiring conventional methods that
may be imprecise, laborious, and/or destructive. For forage breeding programs to adopt phenomic
technologies for biomass estimation, there exists the need to develop, integrate, and validate sensor-
based data collection that is aligned with the growth characteristics of plants, plot design and size,
and repeated measurements across the growing season to reduce the time and cost associated with
the labor involved in data collection. A fully automated phenotyping platform (DairyBioBot) utilizing
an unmanned ground vehicle (UGV) equipped with a ground-based Light Detection and Ranging
(LiDAR) sensor and Real-Time Kinematic (RTK) positioning system was developed for the accurate
and efficient measurement of plant volume as a proxy for biomass in large-scale perennial ryegrass
field trials. The field data were collected from a perennial ryegrass row trial of 18 experimental
varieties in 160 plots (three rows per plot). DairyBioBot utilized mission planning software to
autonomously capture high-resolution LiDAR data and Global Positioning System (GPS) recordings.
A custom developed data processing pipeline was used to generate a plant volume estimate from
LiDAR data connected to GPS coordinates. A high correlation between LiDAR plant volume and
biomass on a Fresh Mass (FM) basis was observed with the coefficient of determination of R2 = 0.71
at the row level and R2 = 0.73 at the plot level. This indicated that LiDAR plant volume is strongly
correlated with biomass and therefore the DairyBioBot demonstrates the utility of an autonomous
platform to estimate in-field biomass for perennial ryegrass. It is likely that no single platform will be
optimal to measure plant biomass from landscape to plant scales; the development and application
of autonomous ground-based platforms is of greatest benefit to forage breeding programs.

Keywords: perennial ryegrass biomass; high-throughput phenotyping; LiDAR plant volume; un-
manned ground vehicle; autonomous platform

1. Introduction

Perennial ryegrass (Lolium perenne L.) is the most important forage species in temperate
pasture regions, such as Northern Europe, New Zealand, and Australia [1]. In Australia,
perennial ryegrass is the dominant pasture grass utilized as the grazing feed-base in dairy
and meat production livestock industries. These industries have an estimated economic
gross value of AU $8 billion per year in Australia [2]. With modern crop breeding, the
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annual increase in genetic gain for yield is generally 0.8–1.2% [3]. However, genetic gains
for the estimated biomass yield of perennial ryegrass are very low and around 4 to 5%
in the last decade [4] or approximately 0.25 to 0.73% per year [5]. The genetic gain in
perennial ryegrass is thus far less than the expected rate in other major crops—e.g., wheat
(0.6 to 1.0% per year) [6] and maize (1.33 to 2.20% per year) [7]. To increase the rate of
genetic gain in perennial ryegrass, new effective plant breeding tools are required to get
a better understanding of the key factors influencing vegetative growth and to rapidly
assess genetic variation in populations to facilitate the use of modern breeding tools such
as genomic selection.

Depending on the stage of a breeding program, field trials may involve plants sown
as spaced plants, rows, or swards. This allows breeders to select the best genotypes based
on biomass accumulation across seasons and years. The assessment of Fresh Mass (FM)
and Dry Mass (DM) has been performed using a range of methods including mechanical
harvesting, visual scoring, sward stick measurements, and rising plate meter measure-
ments; some of these methods can be slow and imprecise, and others rely on destructive
harvesting [8–10]. Although DM is considered the most reliable measure of biomass, FM
is still a good indicator of biomass and has been used as biomass in many recent studies
because it has been proven to have a strong relationship with DM and removes a processing
step from the data collection pipeline [11–13]. Time and labor costs are a limiting factor
for scaling up breeding programs, and new higher throughput methods are necessary to
replace conventional phenotyping methods and thus reduce time and labor costs.

The development of a high-throughput phenotyping platform (HTPP) integrated
with remote sensing technology offers an opportunity to assess complex traits more ef-
fectively [14,15]. Current development is focused on three platforms, including manned
ground vehicles (MGV), unmanned ground vehicles (UGV), and unmanned aerial vehicles
(UAV). Of these platforms, UAVs have the great advantage of measuring large areas in a
short amount of time [16]. UAVs are, however, limited in the number of sensors onboard
due to a small payload and being reliant on favorable weather conditions, and the data
quality can also vary based on flight height and atmospheric changes [17]. Ground vehicles
can overcome these limitations and provide high-resolution data due to the closer proximity
between the sensor and targeted plants [18,19]. Due to this proximity to the ground, greater
time is required to cover large field trials compared to UAVs. In comparison with MGV, the
UGV reduces staff time to cover large trial plots and provides more accurate measurement
due to driving at a constant speed and avoiding human errors [20]. By equipping the
UGV with Global Navigation Satellite System (GNSS) technology or advanced sensors for
precise autonomous navigation, UGVs are becoming a vital element in the concept of preci-
sion agriculture and smart farms [21,22]. UGV development has recently branched into
two main approaches—automated conventional vehicles and autonomous mobile robots.
Automated conventional vehicles allow for the modification and deployment of existing
farm vehicles (mainly tractors) to perform automated agricultural tasks (planting, spraying,
fertilizing, harvest, etc.). Despite their reliability and high performance in rough terrain,
farm vehicles lack some adaptability features (e.g., to integrate sensors and equipment
and to work on trials with different distances between rows). As farm vehicles have been
designed to carry humans and pull heavy equipment, they are generally heavier and larger
in size, which could lead to soil compaction and requires robust mechanisms to steer the
vehicle [23].

In the other approach, autonomous mobile robots are specially designed with a
lightweight structure that can be configured with different wheel spacings and sensor
configurations, allowing for deployment on a range of different trials and terrains with
minimal soil compaction [24–26]. The use of electric motors and rechargeable batteries
also reduces noise and ongoing operational costs [27,28]. Over the last decade, the use of
wheeled robots has been mainly deployed for weed control in crops and vegetables [29–31].
Especially for row trial design, wheeled robots offer more flexible locomotion and are faster
in comparison with other types of robots (e.g., tracked or legged robots) [32]. Wheel-legged
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robots are based on wheeled robots with an adjustable leg support that make them able
to operate on different trial configurations with varying crop and forage heights. From
this approach, an autonomous wheel-legged robot would be a promising high-throughput
phenotyping platform to estimate the biomass of a range of crops and forages sown as row
field trials.

Remote sensing has been deployed to measure digital plant parameters such as
vegetation indices or structure properties to use as a proxy for biomass compared with data
from conventional methods [33–35]. Plant height is the most used parameter to estimate
biomass in crops and grassland [36–38]. Despite plant height being a simple parameter
to measure, the variation from vegetative growth characteristics and spatial variability in
grassland makes it difficult to develop a robust estimation model for biomass [39,40]. The
normalized difference vegetation index (NDVI) is also a good predictor of biomass and it
is widely used in crops to quantify live green vegetation [41–44]. However, NDVI values
can be affected by many factors (e.g., vegetation moisture, vegetative cover, soil conditions,
atmospheric condition) [45,46], and one of its limitations is that its values saturate at higher
plant densities [47–49].

Unlike plant height and NDVI, plant volume is the total amount of aboveground plant
material that is measured in the three-dimensional space that the object occupies. Measur-
ing the plant volume of ryegrass should allow for a higher correlation to plant biomass,
as plants are measured as a whole instead of the height or leaf density separately [50,51].
The routine measurement of plant volume will thus enhance future predictions of biomass
estimation and the growth rate of perennial ryegrass. Due to the widely varied structural
nature of plants, volume cannot be measured by current methods and there is no volume
formula for perennial ryegrass [13,40]. Recent publications have exploited remote sensing
data to measure the tree crown volume [52–55], but it is still a new area in perennial rye-
grass. Among optical remote sensing, Light Detection and Ranging (LiDAR) sensors have
many advantages such as high scanning rate, operation under different light conditions,
and the accurate measurement of the spatial plant structure [56–59]. Thus, it will be able to
generate high-resolution three-dimensional (3D) data of objects. The application of LiDAR
sensors in estimating biophysical parameters (biomass, height, volume, etc.) has recently
been reported in major crops such as in maize [60,61], cotton [62,63], corn [64,65], and
wheat [66,67]. Until now, two studies using ground-based LiDAR data applied on peren-
nial ryegrass have reported a good correlation between LiDAR volume and FM [13,68].
However, the LiDAR data collected in both studies were collected manually and further
automation is needed to allow the method to be scaled up for large field trials.

Although the development and validation of sensor-based technologies to estimate
plant biomass is an area of active development and delivery platforms have spanned aerial
and ground based systems, there are still costs associated with the time, labor, and data
integration that may limit the broad-scale adoption of these systems or the collection of
data across a range of environmental conditions.

In this study, we have deployed a UGV with ground-based LiDAR to drive au-
tonomously over a perennial ryegrass field trial containing 480 rows or 160 plots to mea-
sure row/plot volume. Data collected from the field trial were processed using a custom
developed data processing pipeline that integrated and processed the collected LiDAR and
Global Position System (GPS) coordinate data to determine the row/plot volume based on
their geolocation. The calculated plant volume from each row/plot was compared to the
corresponding FM of each row/plot. The application of methodologies that incorporate
these principles will enhance capabilities for the large-scale field phenotyping of forage
grasses.
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2. Materials and Methods
2.1. Unmanned Ground Vehicle (UGV)

The DairyBioBot, a UGV, was designed and purpose-built to monitor and assess the
growth and performance of forages in experimental field trials. The prototyping of the
DairyBioBot’s capability and performance was carried out in a perennial ryegrass field
trial at the Agriculture Victoria Research Hamilton Centre, Victoria, Australia (Coordinates:
−37.846809 S, 142.074322 E).

2.1.1. System Architecture Design

The DairyBioBot is a low-weight four-wheel system with front-wheel drive. The frame
is made of aluminum alloy and can be adjustable (1000–1500 mm height), which is low-cost,
durable, and flexible for further modification and replacement. The drive system utilizes
electric 320 W 24 V 128 RPM 25 n-M drive worm motors (Motion Dynamics Australia Pty
Ltd, Wetherill Park, NSW, Australia) for each front wheel independently, while electronic
SUPER500 high-torque metal 12 V to 24 V 500 kg/cm (Happymodel, Quzhou, Zhejiang,
China) servos steer the vehicle. The two drive motors were controlled by RoboClaw 2 × 30
A motor controllers (Basicmicro Motion Control, Temecula, Canada). The UGV is equipped
with the Pixhawk 2.1 Cube flight control unit (Hex Technology Limited, ProfiCNC, PX4
autopilot, and Ardupilot; http://www.proficnc.com/) as a core part of the main driving
system to connect and control all the electrical and driving components. The unit enables
point-and-click waypoint entry, heads-up display, and telemetry data link as well as hosting
an array of safety features such as geofence and failsafe systems. For precise navigation
and tracking, the Here+ V2 RTK GPS kit (including Here+ RTK Rover GPS module and
Here + RTK Base GPS and USB Connector module) was used. The Here+ V2 is a small,
light, and power-efficient module with a high navigation sensitivity (167 dBm) and has
a concurrent reception of up to three augment GNSS systems (Galileo, GLONASS, and
BeiDou) incorporated with a Global Position System (GPS). This module can provide
centimeter-level positioning accuracy with a speed measurement of up to 5 Hz. The Here+
RTK Rover GPS module was connected to the Pixhawk unit at the GPS connector on the
DairyBioBot, while the Here+ RTK Base GPS and USB module was connected through the
laptop USB port at the base station. To ensure smooth and accurate turns, a motor encoder
unit programmed an appropriate wheel rotation for each front wheel and is configurable
to the vehicle’s selected track width. The LMS400 2D LiDAR (SICK Vertriebs-GmbH,
Germany) unit was used to precisely measure distances and contours. The width track of
DairyBioBot was set at 1.2 m long to capture two rows of perennial ryegrass planted 60 cm
apart. The LMS400 LiDAR unit was placed centrally under the roof-box and mounted 7 cm
behind the front wheels to ensure that the field of view (FOV) of the LMS400 is not affected
by the wheels. This FOV footprint of the LMS400 can be adjusted through adjusting the
height of the DairyBioBot. Two Trimble GreenSeekers were mounted 30 cm behind and
30 cm offset to the left and right of the LMS400 unit and were used to measure NDVI. The
FOV of each GreenSeeker is wider than a single plant, making it suitable for measuring
a sward or plot rather than a single plant or single row. Captured data are transferred
and stored on a Dell Latitude E6440 laptop (Dell, Round Rock, TX, US) for processing and
analysis. For safety, a metal frame at the front acts as a safety bumper that immediately
shuts down the DairyBioBot operation when it comes in contact with an object. A RS 236-
127 12 V 2 W beacon (RS Components Pty Ltd, Smithfield, NSW, Australia) is also installed
on the vehicle to indicate whether the vehicle is in operation. The Prorack EXP7 Exploro
Roof Box (Yakima Australia Pty Ltd, Queensland, Australia) provides a waterproof space
for storing sensors and hardware on the DairyBioBot. To reduce the overall weight of the
vehicle, Drypower batteries have been used. Three IFR12-650-Y 12.8 V 65 Ah Lithium Iron
Phosphate (Drypower, Australia; http://www.drypower.com.au/) rechargeable batteries
were used to power the DairyBioBot’s operation and placed on the bedding frame at the
back. The total weight of the UGV is 170 kg with three batteries and payload, as shown in

http://www.proficnc.com/
http://www.drypower.com.au/
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Figure 1, which allows travel at the speed of 4.3 km/h (or 1.2 m/s) and up to 70 km on a
full charge.
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Figure 1. The system architecture diagram of the DairyBioBot.

2.1.2. Trailer Design

As the DairyBioBot was designed to be deployed on different trials at different loca-
tions, the customized box enclosed trailer (shown in Figure 2) was designed as a secure
housing for the DairyBioBot as well as a mobile base station for the RTK system. Through
the telemetry data link installed in the trailer, the Pixhawk unit can be remotely controlled
and transmits/receives data from/between the telemetry modules. One telemetry module
was adapted to the Piwhawk unit via a TELEM port and another one is connected to a USB
port of a Panasonic Toughbook CF-54 laptop (Panasonic, Osaka, Japan) at the base station.
Mission Planner software was installed on the laptop at the base station to communicate
with the Piwhawk unit through a telemetry data link.
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Figure 2. An unmanned ground vehicle (DairyBioBot) equipped with SICK LMS400 Light Detection
and Ranging (LiDAR) unit and two Trimble GreenSeeker sensors operated at the Hamilton Centre
experimental trial and was stored in the custom enclosed trailer. The trailer functions as a secure
housing of the DairyBioBot as well as a base station for Real-Time Kinematic Global Positioning
System (RTK GPS) navigation.

The trailer can be connected to any appropriate tow vehicles, has a remote control
to open/close the tailgate as a ramp for unloading/loading the UGV, and has stabilizing
legs to stabilize the trailer when parked. The DairyBioBot is secured by a bedded position
designed on the trailer and by additional ratchet straps attached to the trailer when
traveling. The trailer is equipped with a solar charger PowEx PX-s20 system (Zylux
Distribution Pty. Ltd., VIC, Australia) with two 12 V–24 V 20 A Solar Panels placed on
the roof of the trailer and a 12–24 V 20 A Solar Regulator Battery Charger that is used to
charge two Century C12-120XDA 12 V 120 Ah Deep Cycle (Century Batteries, Kensington,
VIC, Australia) batteries on the trailer. These batteries were used to power the base station
and additional accessories in the trailer and as a power source to charge the DairyBioBot,
allowing for consecutive days of deployment without reliance on 240 V AC power. The
Projecta 12 V 1000 W Modified Sine Wave Inverter (Brown & Watson International Pty. Ltd.,
VIC, Australia) is installed to convert 12 V DC from the Solar panels to 240 V AC power to
have easy access and charge applications that required a 240 V supply, such as laptop and
remote controller chargers. To maintain high-performance and long-life batteries, the Blue
Smart 12 V/15 A IP65 Charger (Victron Energy B.V., Almere, The Netherlands) was used to
charge all three batteries on DairyBioBot by providing a seven-step charging algorithm and
a deeply discharged battery function at a low current; the charging status can be remotely
checked by smart devices through a Bluetooth connection. Charging with solar power at
the trailer avoids the need to place all this equipment on the UGV, thereby making the
UGV lighter and smaller. In addition, consecutive charging and discharging reduce battery
life and performance. The trailer was also equipped with a bench and chair to allow the
operator to use the trailer as a workstation.

2.1.3. Navigation System

The mobile base-station fitted to the trailer requires a fixed-location to be surveyed
prior to the deployment of the DairyBioBot unit to allow for RTK-GNSS navigation. The
surveying procedure for the mobile base-station can be done either through RTKNavi
version 2.4.3 b33 (Tomoji Takasu, Yamanashi, Japan; http://www.rtklib.com/) or the
Mission Planner version 1.3.68 software (ArduPilot Development Team and Community;
https://ardupilot.org/planner/). By connecting to the internet, the RTKNavi software
with built-in algorithms can access the Continuously Operating Reference Station (CORS)

http://www.rtklib.com/
https://ardupilot.org/planner/
https://ardupilot.org/planner/
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network to provide a GPS location of the base station with an accuracy of up to 3 cm in a few
hours [69]. Without requiring internet connection, Mission Planner can obtain a location
from Here + RTK Base GPS and USB Connector module for an extended period and uses
an algorithm to correct its occupied position accuracy. To achieve the same accuracy by
RTKNavi, the process may require several days.

2.1.4. Driving Operation

The DairyBioBot can be operated both manually via a remote control FrSky Taranis
X9D Plus 2019 (FrSky, Jiangsu, China) and automatically from a created mission, which
is imported to Mission Planner software. As the DairyBioBot operates in a large area,
we integrated an RFD 900+ modem (RFDesign Pty Ltd., Archerfield, QLD, Australia)
associated with an Omni Outdoor Antenna High Gian Fiberglass Full Wave 915 MHz 6
dBi RP-SMA (Core Electronics, Adamstown, NSW, Australia) on the base station to extend
the connection range to the DairyBioBot. For our row/plot field trial, we developed a
specific program and graphical user interface to create missions from measured GPS points
to navigate the DairyBioBot on specific paths through a field trial (Figure 3). High-accuracy
GPS points for our row/plot field trials were obtained by a Trimble RTK GNSS receiver
(Navcom SF-3040, Nav Com Technology Inc., Torrance, CA, USA), which can provide an
accuracy of 2 cm. In our ryegrass trial, the aim was to be able to drive over two rows, make
a turn, and then drive over the next two rows within the trial.
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Figure 3. The workflow describes creating a mission to navigate the DairyBioBot on specific paths
to drive in each two rows in our experimental field trial. (1) The measured GPS points were taken
between every two rows using a Trimble RTK Global Navigation Satellite System (GNSS) receiver
and presented by red points on the aerial image of a trial. (2) These points were imported to the
developed Mission Maker application to create additional points to allow the DairyBioBot to correctly
turn to the next two rows. (3) A created mission was then imported to Mission Planner software to
upload to the DairyBioBot. (4) A closer view of the created mission shows the turning points and
planned paths with number labels.

2.2. LiDAR Signal Reception and Processing

The scan frequency and the angular range were set at a maximum of 500 Hz and
from 55◦ to 123◦, respectively, according to the manufacturer’s recommendation. With
the deployment of DairyBioBot over the ryegrass row trials, the LiDAR was mounted at a
distance of 1.127 m to the ground level to cover a width of 1.578 m (or to cover two rows per
scan). At a scan resolution of 1◦, each scan creates 70 data points that measure the distances
to a zero point (which is at the center of the LMS400 LiDAR unit) on the respective scan
angle. The measured distance values are presented in polar coordinates depending on
the scan range (Figure 4). The scan range can be up to 3 m, but the detectable area is at
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least 70 cm away from the LMS400 unit. To convert from a polar to a cartesian coordinate
system to present objects as compared to the ground level, the converted distance values
and their position to the zero point per scan can be calculated with the following formula:

hα = (h0 − cos(α) ∗ dα), (1)

xα = sin(α) ∗ dα, (2)

where hα is the converted height value on scan angle α (in mm), h0 is the measured distance
from the LMS400 LiDAR sensor to the ground level (mm), α is the scan angle and dα is
the measured distance to the zero point on respective angular scan α (in mm), and xα is a
position of dα to the zero point on the horizontal axis (mm).
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and d123 are measured on the scan angles 55◦ and 123◦, respectively; h0 is a distance represented on
scan angle 0◦ from the LMS400 sensor to the ground cover.

2.3. Estimated LiDAR Volume Equation

Each scan creates a contour of an object from 70 converted height values. We can
estimate the volume of an object by measuring the area of scans and width between each
scan, which is constant at constant driving speed. Therefore, the volume of an object can
be calculated as:

Vobject = ∑N
1

(∫
f (x, y)dxdy ∗ ∆z

)
, (3)

where Vobject is the volume of the object, f (x, y) is the area of the object occupied in each
scan, ∆z is a distance between each scan, and N is the number of scans.

2.4. LiDAR Data Validation in Experiment

A data validation experiment was designed using a rectangular cardboard box to
define the accuracy and quality of LiDAR measurements recorded during driving. A rect-
angular cardboard box volume can be calculated as:

Volume = Width ∗ Height ∗ Length. (4)

Five differently sized boxes were placed in a line with clear gaps (Figure S1). The
DairyBioBot was manually driven over the boxes to capture LiDAR data at a speed of
4.3 km/h (1.2 m/s). The LiDAR data was then processed as described above and visualized
in a three-dimensional (3D) view in MATLAB R2019b (The MathWorks Inc., Natick, MA,
USA; https://www.mathworks.com/) software. The MATLAB Data Tip tool was used to

https://www.mathworks.com/
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measure dimensions, which were then compared to ruler measurements. General linear
regression was used to estimate the coefficient of determination between the two-volume
measures and is presented in the first part of the Results section.

2.5. LiDAR Mapping Method

The relating of the LiDAR data to a georeferenced map required the interpolation
of georeferenced coordinates to each data point in the 3D data point cloud. The LMS400
LiDAR does not have an integrated GPS unit and relies on an independent GPS unit and
post-processing. Therefore, we have developed a data processing pipeline that matches the
LiDAR data with GPS data recorded by Here+ V2 RTK GPS kit based on their timestamps
to create a data point cloud to calculate the plant volume per row/plot (Figure 5).
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Detection and Ranging (LiDAR) plant volume of the Area of Interest (AOI).

After data collection, raw LiDAR data were processed using Equations (1) and (2) with
a 5 cm aboveground threshold, which is the common ryegrass harvest height. The GPS
frequency is low at 5 Hz (5 scans/s), and only LiDAR data with the exact same timestamp
as GPS could be matched. Therefore, the GPS coordinates for the LiDAR data between two
consecutive GPS points must be inferred. The time and distance traveled are known from
the two consecutive time points and the initial bearing angle between the two points was
calculated from the first time point to the next time point by the forward Azimuth formula
to define the vehicle’s direction. Field testing revealed that the bearing angle had an offset
of 10◦ compared to the actual direction, therefore, all initial bearing angles were subtracted
by 10◦. A number of assumed GPS points were then defined by dividing the elapsed time
between two GPS points by the LiDAR scan rate (2 ms/scan). The new GPS coordinates
associated with each timestamp were inferred based on the calculated distance and initial
bearing angle in a loop for a number of assumed GPS points in which the timestamp was
taken from the first point of two consecutive points and then increased by the scan rate
(2 ms) on each iteration. The new GPS points were then appended to the existing set. Based
on the timestamp, the processed LiDAR scans were merged with the GPS data. When
the bearing angle was greater than 345◦ and less than 351◦ (north by west direction in the
32-point compass rose) in the mission, it signified the turning of the DairyBioBot to drive
over the next two rows, and thus the LiDAR scans were flipped to account for the change
in orientation. To simplify the processing, the bearing angle of all scans was fixed at 167◦

(south by east direction), as all the scans were in the same orientation.
In creating a data point cloud step, GPS coordinates for each scan were converted to

the coordinate reference system World Geodetic System 1984 (WGS)/Universal Transverse
Mercator (UTM) zone 54S. Each LiDAR scan was annotated with GPS coordinates for a
single point per scan by applying distances of north and east directions, fixed bearing
angle, and GPS coordinates of a scan. There was a 20 cm distance between the mounting
position of the GPS and LMS400 sensor on the DairyBioBot, so the east distance is set to
0.2 m in the script. For the north distance, an array for 70 points was calculated based on
the scan width of the LMS400 LiDAR to the ground. All the resulting single points in each
scan were then extracted to create a data table with three columns: UTMX (easting), UTMY
(northing), and height.
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The field trial was exactly sown allowing the rectangular polygon of each row to be
drawn manually on an aerial image of the trial via Add rectangular from 3 Points tool in the
QGIS 3.4.15 software (QGIS.org(2020). QGIS Geographic Information System. Open Source
Geospatial Foundation Project; http://qgis.osgeo.org). This enables the selection of areas
of interest (AOI), such as rows and columns. Polygons were classified by the row and plot
identity (ID) numbers and saved as a shapefile file with the projected coordinate system
of EPSG: 32754–WGS 84/UTM zone 54 S. The merging conditions were set to within and
intersect with polygon to optimally select the LiDAR points per polygon to calculate the
volume per row. The volume per plot was calculated as the sum of its three rows. The
data processing pipeline was performed with the Python programming language (Python
Software Foundation, Python Language Reference, version 3.7; http://www.python.org/).

2.6. Field Experiment

The field trial was located at the Agriculture Victoria Hamilton SmartFarm, Hamilton,
VIC, Australia (Coordinates: −37.846809 S, 142.074322 E). The trial was established in June
2017 with 18 varieties of perennial ryegrass each grown in 7 to 11 replicate plots and was
designed as a row/plot field trial, resulting in a total of 160 plots (480 rows), laid out in
a 4 plot × 40 plot configuration. Each plot was 4 m long and 1.8 m wide and consisted
of 48 plants in three rows each with 16 plants. A gap between rows was 60 cm. The gap
between the top of each row was 1 m. Plants were harvested when the plots were at the
reproductive stage in December 2019.

2.6.1. Ground-Truth Sampling

The biomass of all plots was collected by a destructive harvest method using a push
mower. The cut level was set at 5 cm above the ground. The mower was a 21” self-propelled
lawn mower (Model: HRX217K5HYUA; Engine capacity—190 cc; Honda Motor Co., Ltd.,
Tokyo, Japan). Each row was collected separately. All the ground-truth samples were
weighed for FM to estimate their relationship with plant volume measured from LiDAR.

2.6.2. Aerial Images Captured by UAV

DJI Matric 100 (DJI Technology Co., Shenzhen, China) UAV mounted with a RedEdge-
M (MicaSense Inc., Seattle, WA, USA) multispectral camera was used to capture aerial
images of the field trial. Pix4DCapture software (Piz4D SA, Switzerland; https://www.
pix4d.com/) was used to generate automated flight missions based on the areas of interest.
Image overlap was set at 75% forward and 75% sideways. The UAV was flown at 30 m
above ground level with a speed of 2.5 m/s (9 km/h) on a flight path specified by the
planned mission. The RedEdge-M multispectral camera was mounted under the UAV
at an angle of 90◦ to the direction of travel and pointing directly downward. To ensure
capturing high-quality images with UAV configurations, the RedEdge-M camera picture
trigger is set on fast mode with Ground Sample Distance (GSD) 2.08 cm per pixel and
auto white balance. To calibrate the reflectance values of the acquired images, radiometric
calibration tarps (Tetracam INC. Chatsworth, CA, USA) with five known reflectance values
(3%, 6%, 11%, 22%, and 33%) was placed on the ground at the corner of the trial during
image capturing. Orthomosaic images of each multispectral band were created in the Pix4D
mapper 4.2.16 software (Pix4D SA, Switzerland; https://www.pix4d.com/) following the
recommended Pix4D processing workflow. As a part of the image processing in the Pix4D
software, the ground control points (GCPs) were required for the georectification of the
orthomosaic final image. Six GCPs were placed within the field trials (four at the corners
and two inside at the center of the trial) and measured by a Trimble RTK GNSS receiver
(Navcom SF-3040, Nav Com Technology Inc., Torrance, CA, USA). The output image was
set to the Coordinate Reference System (CRS) WGS 84 54 S.

http://qgis.osgeo.org
http://www.python.org/
https://www.pix4d.com/
https://www.pix4d.com/
https://www.pix4d.com/
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2.6.3. LiDAR Data Captured by the DairyBioBot

The SICK LMS400 LiDAR was set up as discussed in the previous section and data
were stored on a laptop onboard the DairyBioBot. Here+ V2 RTK GPS kit was set to record
GPS data at a frequency of 5 Hz and all GPS recordings were automatically saved by the
Mission Planner software on the laptop at the base station. A created mission made by the
developed Mission Maker application was imported to the Mission Planner software to
navigate DairyBioBot in this field trial with total travel distance of 2.1 km. The DairyBioBot
was manually controlled from the trailer to the field trial site and waited until an RTK
Fixed mode to be acquired before starting the automated mission. This RTK Fixed mode
indicates that the DairyBioBot has entered the RTK mode, which can provide a better
signal strength and a higher positioning accuracy. Once RTK Fixed mode was acquired,
the automated mission was started in Mission Planner and the DairyBioBot started driving
the guided planned mission and record data, as indicated in the next result section with
a constant speed of 4.3 km/h. Recorded GPS points were extracted from the Mission
Planner logging file and converted to CRS EPSG: 4326–WGS 84. This allowed for the
visualization of the GPS recordings of the DairyBioBot on the aerial image captured from
the DJI M100 (DJI Technology Co., Shenzhen, China) UAV on the same date on the QGIS
software. Additionally, the position error and average position error are used to evaluate
the accuracy of autonomous navigation and are determined by formulas described in [70].
The cross-track error (distance) of recorded GPS points along each two-row path were also
calculated following the formula in the papers [71–73] to verify the trajectory accuracy.
All the LiDAR and GPS recordings were processed and analyzed through our developed
pipeline to calculate the plant volume per row/plot.

3. Results
3.1. Validation Experiment Result

Our validation on five cardboard boxes demonstrated highly accurate measurements
of all three dimensions of the objects under our setting (Figure 6): the R2 score of fitting a
linear regression between the actual size and the LiDAR-measured size in the X (width),
Y (height), and Z (length) dimensions was 0.993, 0.997, and 0.953, respectively. As a
result, the volumes estimated from the LiDAR measurements were about 98% of the actual
volumes on average, with the standard deviation of differences at 885.23 cm3 and the R2

score of fitting a linear regression for the volume across the five objects at 0.997. The slight
difference between the actual volumes and the measured volumes was potentially caused
by subtle experimental errors such as equipment fluctuation due to the rough surface.
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3.2. Autonomous Driving Performance

The DairyBioBot successfully navigated the field trial without human control, as
demonstrated by the aerial image with recorded GPS points in Figure 7. At a speed of
4.3 km/h, the DairyBioBot has traversed the whole trial traveling up and down 60 times
across pairs of rows within approximately 40 min. From Figure 8, the position error at
120 planned and recorded GPS points ranged up to a maximum 0.45 cm, while most were
less than 0.3 cm. The average position error was 0.175 cm that demonstrates a high accuracy
of trajectory tracking in entering the two-row paths. Within the two-row paths, the mean
cross-track error was smaller (6.23 cm) in comparison of outlier points (a range of 12.5 cm)
of the path. The path was planned in the Mission Maker application, and recorded GPS
points of the DairyBioBot were recorded consistently and have an adequate amount of
coverage by a mean 41 points with approximately four outlier points (Figure 9) for a 17.8 m
distance path throughout the trial to allow for further processing.
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Figure 9. Autonomous driving performance of the DairyBioBot per path within two rows assessed
as the mean cross-track error of points within a path, the total recorded GPS points, and the outlier
points of a 25 cm row gap.

3.3. LiDAR Mapping Performance

The LiDAR data were appropriately matched to GPS points to map the ryegrass rows
and plots in the field trial (Figure 10). Most of the plant canopy was covered by LiDAR
data points, with some plants shorter than 5 cm being excluded. A clear gap is visible
between rows, which would allow for the drawing of polygons from the LiDAR data itself
if desired or an aerial image in this case (Figure S2). Hence, the LiDAR data of rows can be
correctly selected by created polygons with row ID numbers to calculate the plant volume.
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3.4. Correlation between LiDAR Plant Volume and Biomass

The data were captured in December 2019 during the summer season when the plants
were flowering (Figure 11). A variation in biomass was observed that included vegetative
biomass, stems, and seed heads. The R2 between the LiDAR-derived volume and fresh
biomass across for rows was 0.71 and for plots was 0.73. Higher R2 may be possible when
plants are not flowering.
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3.5. Ranking Varieties Based on LiDAR Plant Volume Versus Biomass

A key aim of using high-throughput phenomics is to rank lines or varieties. The ranking
of varieties based on LiDAR was very similar to that from fresh biomass (Figure 12). Therefore,
the ranking order of LiDAR plant volume can be used to identify top cultivars and potentially
replace conventional biomass as a phenotype.
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4. Discussion

In this paper, we have demonstrated the capability of the developed UGV Dairy-
BioBot and a data processing pipeline as a non-destructive, effective, and high-throughput
phenotyping platform to assess the biomass of perennial ryegrass using LiDAR sensor
technology in field conditions. This platform could replace conventional methods which
can be imprecise, time-consuming, and/or required destructive harvests for estimating FM
and DM accumulation. The DairyBioBot had excellent autonomous navigation through
the row field trial with a 60 cm gap between rows and capturing the data of 480 rows
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(or 160 plots) within 40 min. With the ability to cover 70 km by three large capacity batteries,
it can repeat the mission more than 30 times on one full charge and more after recharging
from solar power. Although the set-up cost of the autonomous vehicle is greater than
mounting sensors on existing ground-based crewed vehicles, the DairyBioBot has the great
advantage of having a low operational cost for long-term deployment, and this would
also be true if the sensors were mounted on pre-existing autonomous vehicles. In contrast,
conventional methods can accrue a significant amount of time and labor costs depending
on the level of assessment and trial size. For the row assessment, a person using a visual
score can take up a half minute per row including scoring and recording, and that can
result in up to 4 h working in the field with 480 rows. Even more for actual biomass, the
time taken for each row using manual harvesting is approximately 7 min from cutting
and bagging to weighing. Furthermore, in the breeding of new forage cultivars, multiple
measurements across years are needed to evaluate the biomass performance in response
to the season and climate variability. Substantial time and cost savings can be realized by
using the DairyBioBot in place of a visual score or destructive methods, especially in larger
field trials. Importantly, rich high-resolution LiDAR data from screening hundreds of rows
provides more an accurate biomass estimation than a simple ranking of the visual score.
Thus, the DairyBioBot can replace the conventional and destructive methods to assess the
in-field biomass of a large population of perennials in modern genomic selection programs.

With the current design, DairyBioBot has a total weight of 170 kg, which is lighter than
the crewed ground vehicles that are currently in use. Soil compaction has been identified
as an issue in UGVs used for weed control in crops [20,74] when the minimum weight was
around 300 kg [29,32] due to their robust structure and payload, as they carried weeding
equipment along with sensing and self-charging systems. However, this lightweight
structure with small bicycle wheels and without rugged wheels/shock absorbers limits
the ability of the DairyBioBot to drive on rough and very wet terrains. Nevertheless, these
conditions are not common in breeding trials. Another advantage of the DairyBioBot is
that the frame can be adjusted to increase the resolution of plant architecture during plant
growth and at various ages. Especially for grass species, vegetative parts can vary greatly
in height due to plant growth and reproductive development. For these reasons, this design
of DairyBioBot is suited for biomass estimation in ryegrass species sown in field trials.

The use of remote sensing is rapidly emerging for measuring and predicting biomass
in plant science [75–77]. A wide range of proximal and optical sensors was used to estimate
the biomass trait in field conditions [78,79]. Despite satellites effectively capturing large-
scale areas, their resolution is not high enough to be suitable for phenotyping single-plant
or row-based field trials. In breeding programs, field trials are usually designed as spaced-
planted single plant trials, row trials, and plot or sward trials to monitor and evaluate
each cultivar’s performance. For this configuration, high-resolution proximal sensors are
required to ensure accurate measurement at different levels. Several studies in perennial
ryegrass have been conducted to estimate in-field biomass [80]. Using an ultrasonic sensor
to measure plant height, the estimated correlation between plant height and biomass at
a single plant level varied from R2 = 0.12 to 0.65 across seasons [39] and from 0.61 to
0.75 at the sward level [81]. The ultrasonic sensor measures the distance to a target by
measuring the time between the emission and reception of ultrasonic waves. An echo in
reflecting a target mainly depends on the surface of a target. As ultrasonic sensors have
low scan frequencies that may not be suitable at higher driving speed, this can result in a
sparsity of measured points and inaccurate measurements. The NDVI extracted from a
UAV multispectral camera has been shown to have a moderate to good correlation with
biomass with R2 = 0.36 to 0.73 at the individual plant level [39]. Similarly, at the row plot
level, the R2 value of the NDVI and the biomass ranged from 0.59 to 0.79 [41]. However,
the high variation in the correlation can be explained by the effect of the saturation of the
NDVI value for high-density vegetative at late growth stages. To overcome the limitations
of these methods, plant height and NDVI were combined and incorporated with predictive
models to achieve a more robust R2 [39,82,83]. In this study, the use of LiDAR on a UGV
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resulted in a similar correlation to those previously reported between plant volume and
FM at both the row and plot-level (R2 = 0.71 and 0.732, respectively). The R2 on the plot
level was slightly higher than in another study using LiDAR on a ground-based mobile
vehicle where an R2 of 0.67 was achieved on a December harvest [13]. It is necessary to
note that the data was presented in this study during the reproductive phase of growth,
which would have included vegetative biomass and flower heads. In the flowering period,
the plant canopy creates a great complexity of plant structure, including a mixture of leaves
and tiller with flowering heads. Overall, our results indicate that standalone LiDAR plant
volume can be used to predict biomass for perennial ryegrass row and plot trials.

Although previous studies in perennial ryegrass have reported good results, data
acquisition was generally via manual to semi-automated systems. Plant height was col-
lected by manually driving the ground-based vehicle through all the rows/swards [39,81].
Ground-based vehicles are more familiar and potentially simpler to use and operate for
plant breeders, farmers, and research scientists. However, manual methods require a large
amount of time and labor depending on the field trial size. Human driving can also result
in low data accuracy due to variations in speed and data entry errors. The use of UAVs
offers an effective powerful approach that can rapidly produce multispectral images of
large trials in a short amount of time. Nevertheless, image processing requires several
steps (e.g., data importation, calibration, and processing; accurate georeferencing; and
quality assessment) that can be time-consuming [84,85]. NDVI is generally calculated
as the average NDVI value per measured area unit (e.g., within a polygon), which will
include non-plant areas or soil. LiDAR data avoids these shortcomings, as it simultane-
ously provides accurate plant area and volume. In this study, the rectangular polygon of
rows/plots was manually drawn to select LiDAR data within a polygon. This method is
simple and suitable for a large object such as a row or a plot. Additionally, the polygons are
drawn once at the beginning of the trial and are used until the trial is terminated, which in
breeding can be up to 5 years. However, the definition of a polygon is not strictly necessary
in LiDAR processing, as a polygon of rows/plots can be automatically constructed from the
LiDAR data. The automated polygon detection requires more time in developing a proper
algorithm and processing data to correctly detect each row/plot. Further development of
this approach would be helpful to speed up the processing and remove the importation
of manual polygons. An integrated, manually operated, semi-automated system was
developed by Ghamkhar et al. [13] and has been used to measure the plant volume of
single rows in an effective manner to estimate in-field biomass. Solutions that are not
fully automated require more labor, which makes the successful scaling up to large field
trials difficult. Fully automated systems offer a promising opportunity in agriculture that
provides reliable high-resolution data, enhances data collection ability, and significantly
reduces time-consuming costly operation and human involvement [86,87].

5. Conclusions

To the best of our knowledge, the DairyBioBot is the first UGV that has been designed
and developed to autonomously measure the plant volume of perennial ryegrass. It is a
completely automated high-throughput system to estimate biomass under field conditions
capable of autonomous driving guided by real-time GPS. The initial results showed a good
estimated correlation with biomass at the row and plot level, even when captured in the
flowering period. In comparison with the observed R2 in previous studies, the LiDAR
data captured with the DairyBioBot provided a similar or more accurate measurement
of biomass. The estimated R2 id promising but will require further improvement and
more understanding of the key influencing factors. The data processing pipeline has
connected LiDAR and GPS data taken with two different sensors at different frequencies.
The further development of the DairyBioBot will optimize the data collection and analysis
with minimal human effort. The autonomous nature of the DairyBioBot results in a large
reduction in the labor requirement for phenotyping, allowing for scaling up to larger trials
and potentially remote locations through the use of a lockable base station trailer. The
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DairyBioBot has accurately assessed in-field biomass for perennial ryegrass, and further
development may allow its use for biomass estimation for other pasture species.

6. Patents

This section is not mandatory but may be added if patents result from the work
reported in this manuscript.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/1/20/s1: Figure S1. (A) The experiment with five different rectangular cardboard boxes placed
in a line on field terrain is to define the accuracy and quality of LiDAR measurements due to driving
at a speed of 4.3 km/h. All dimension of boxes was measured by a ruler and attached to each box
on a picture. (B) The three-dimension (3D) view of these five boxes in MATLAB software is used to
manually measure all three dimensions of each box to compare with manual measurements from a
ruler. Figure S2. The drawn polygons of rows with row Identity (ID) numbers were obtained from an
aerial image of the trial and presented by light pink rectangular polygons on the QGIS software.
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