
Incremental Learning for Large-Scale
Data Stream Analytics in a Complex

Environment

Choiru Za’in

A thesis submitted in total fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Engineering and Mathematical Sciences

La Trobe University
Melbourne, Australia

August 2020

Dedication

To my parents, my family, and my children

i

Declaration

Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis accepted for the award of any

other degree or diploma. No other person’s work has been used without due acknowledgment

in the main text of the thesis. This thesis has not been submitted for the award of any degree

or diploma in any other tertiary institution.

Choiru Za’in

08 August 2020

ii

Acknowledgements

The completion of this PhD would not have been possible without the blessing of Allah SWT

and the continuous support and encouragement of my supervisors, family, and colleagues.

First and foremost, I would like to acknowledge Allah, the Almighty, the Greatest of all. His

continuous grace and mercy was with me throughout my life and evermore during my PhD

journey.

I would like to thank my supervisors, Dr. Mahardhika Pratama, Dr. Eric Pardede, and

Dr. Zhen He, for their continuous support, dedication, and valuable guidance throughout my

candidature.

For my family, I would like to express my sincere thank you to my lovely wife, Dwi Anggraini

Puspita Rahayu, who relentlessly support my decision to take the PhD degree. Thank you for

your understanding and sacrifices during my candidature, especially during my study visit in

Singapore. I would also express my love to my children, Fathan Adhyaksa Zain and Ghayda

Atiqah Zain who give me spirit to keep moving. To my mother, Asliyah and Yulianti who

support me with their prayer day and night, visiting us, and accompanying our family, during

my stay in Singapore. My lovely sister, Nurul Fitriani, who also many times visited us to help

us. Also all my brothers and sisters in Bandung, Malang, and Tangerang, Indonesia who also

support me. My prayer also to my passed away fathers: Imam Rifa’i and Didik Murhadi (may

Allah have mercy on them). They inspired me to work hard, never give up, and reach the line

till the end.

I sincerely acknowledge the efforts of all those who directly or indirectly helped me in

completing my thesis. I acknowledge all my colleagues both at La Trobe University and NTU

Singapore, especially the one from SCSE Lab NTU Singapore, with whom I spent most of my

time, to finalize my thesis chapters.

iii

This research was supported by:

• La Trobe University Full Fee Research Scholarship (LTUFFRS) and La Trobe University

Postgraduate Research Scholarship (LTUPRS).

• NTU Start-up grant

• Nectar Research Cloud, a collaborative Australian research platform supported by the

National Collaborative Research Infrastructure Strategy (NCRIS).

• Pawsey Supercomputing Centre with funding from the Australian Government and the

Government of Western Australia.

iv

Publications

Some of the publications listed in the following journal/conferences have become the content

of this thesis.

Published Journals/Conferences

• C. Za’in, M. Pratama, E. Lughofer, and S. G. Anavatti, “Evolving type-2 web news

mining,” Applied Soft Computing, vol. 54, pp. 200–220, 2017. [The contents of this

paper form the motivation of the thesis].

• M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, and W. Ding, “Automatic construction

of multi-layer perceptron network from streaming examples,” in Proceedings of the 28th

ACM International CIKM, 2019. [Some parts of this contents share the idea of structural

evolution of evolving systems in reaction to drift, chapter 5].

• C. Za’in, M. Pratama, A. Ashfahani, E. Pardede, and H. Sheng, “Big data analytic

based on scalable panfis for rfid localization,” in 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pp. 1687–1692, IEEE, 2018. [The contents of

this paper form part of chapter 5].

• C. Za’in, M. Pratama, M. Prasad, D. Puthal, C. P. Lim, and M. Seera, “Motor fault

detection and diagnosis based on a meta-cognitive random vector functional link network,”

in Fault Diagnosis of Hybrid Dynamic and Complex Systems, pp. 15–44, Springer, 2018.

[The contents of this paper form the motivation of the thesis]

• C. Za’in, M. Pratama, E. Lughofer, M. Ferdaus, Q. Cai, and M. Prasad, “Big data

analytics based on panfis mapreduce,” Procedia Computer Science, vol. 144, pp. 140–152,

2018. [The contents of this paper form part of chapter 5].

• C. Za’in, M. Pratama, and E. Pardede, “Evolving large-scale data stream analytics

based on scalable panfis,” Knowledge-Based Systems, vol. 166, pp. 186–197, 2019. [The

contents of this paper form the main work of chapter 5].

v

• C. Za’in, A. Ashfahani, M. Pratama, E. Lughofer, and E. Pardede, “Scalable teacher

forcing networks under spark environments for large-scale streaming problems,” in 2020

IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8, 2020.

[The contents of this paper form the main work of chapter 6]

• A. M. Shiddiqi, W. Wibisono, and C. Za’in, “An enhanced sensor placement strategy

to quantify small leaks in water distribution networks using weighted lean graphs,” in

2019 International Conference on Computer, Control, Informatics and its Applications

(IC3INA), pp. 134–139, IEEE, 2019. [The work was done in collaboration with other

researchers].

vi

Abstract

Data streams are not only characterized by continuous and non-stationary characteristics, but

they also arrive at a rapid rate from multiple sources, generating high volumes of data which

might be beyond the capacity of single processing node machine learning. While most evolving

algorithms are adaptive, have an open structure and operate in a single-pass learning mode, they

are not designed to run in a distributed processing environment. A novel distributed evolving

system, a large-scale data stream analytics framework based on a parsimonious network of fuzzy

inference system (PANFIS), termed Scalable PANFIS, is proposed. Scalable PANFIS utilizes

the PANFIS evolving algorithm distributed across Spark computing nodes to train large-scale

data streams. Scalable PANFIS can deal with large-scale examples, generating a fast-evolving

distributed model using an expertly designed merging model mechanism.

Furthermore, the active learning (AL) method is designed to run with PANFIS to accelerate the

PANFIS learning mechanism further. We design four-structure Scalable PANFIS algorithms

using a combination of PANFIS with/without AL and the merging/majority voting method.

The results show that all these combinations produce comparable accuracy across all datasets.

Of these four structures, the combination of merging models with AL trains large-scale datasets

with a significantly faster running time. In comparison to the other algorithms in the Spark

library, Scalable PANFIS methods yield higher accuracy, despite a slightly slower training time

for some cases.

Another large-scale data stream analytics framework, namely scalable teacher-forcing networks

under the Spark environment for large-scale streaming problems (ScatterNet), is also proposed.

While Scalable PANFIS generates an evolving distributed model via the merging procedure in

one task, ScatterNet evaluates data streams in sequential tasks under the prequential test- then-

train scheme, a standard evaluation for data stream learning. Furthermore, Scalable PANFIS

does not adopt an elastic structure evolution in learning from data streams which is vital to

handle concept drift.

The ensemble structure of ScatterNet evolves in reaction to concept drift on both local and

global scales. Concept drift on a local scale is carried out by the teacher forcing network,

considering the temporal characteristic of data streams without using a time-intensive iterative

gradient calculation. On the global scale, the drift

vii

Contents

Abstract vii

Contents viii

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Background . 1

1.2 Research Motivations . 3

1.2.1 The Taxonomy of Online Algorithms and Further Development Work . . 4

1.2.2 The Types of Online Algorithms and the Reasons for Using these Algo-

rithms for Further Development . 5

1.2.3 The Connection between Frameworks in Our Thesis and the Underlying

Reasons for Developing Such Architectures 7

1.2.3.1 Tackling the Volume and Velocity Characteristics of Data Streams 7

viii

1.2.3.2 Tackling the Multiple issues of Data Streams 8

1.3 Objectives . 8

1.4 Contributions . 9

1.5 Structure of the Thesis . 11

2 Research Context - Architecture and Problem Definition 13

2.1 Introduction to Large-scale Data Analytics . 13

2.2 Large-scale Data Analytics Platform . 15

2.2.1 Hadoop . 15

2.2.2 Apache Spark . 17

2.3 The Learning and Inference Engine of Large-scale Data Analytics 19

2.4 The Ensemble Algorithms: Examples . 21

2.4.1 Boosting . 21

2.4.2 Bagging . 22

2.5 An Offline Base-Learning Algorithm . 23

2.5.1 ANFIS . 23

2.5.2 Decision Tree . 26

2.6 Learning Mechanism of Offline Algorithms . 27

2.6.1 The Batch Algorithms . 28

2.6.2 The Ensemble Algorithms . 29

2.6.3 Distributed Algorithms . 31

2.7 Learning Mechanism of Online Algorithms . 33

ix

2.7.1 The Incremental Learning Algorithms - Batch Incremental Learning Al-

gorithms . 36

2.7.2 The Evolving Algorithms - The Instance Incremental Learning Algorithms 36

2.8 Towards the Implementation of Distributed Incremental Ensemble Algorithms . 38

2.8.1 Dynamic Structure of the Incremental Ensemble 39

2.8.2 The Distributed Incremental Ensemble frameworks 40

2.9 Summary . 42

3 Literature Review 44

3.1 Learning from Data Streams in a Distributed Environment 44

3.1.1 The Current Development of Evolving Fuzzy Systems 44

3.1.2 Distributed Algorithms . 45

3.1.3 Research Gap . 46

3.2 Incremental Learning Based on Ensembles in a Distributed Environment 48

3.2.1 Ensemble Algorithms and the Challenges 48

3.2.2 The State-Of-The-Art and the Research Gap 50

3.3 Summary . 51

4 Evolving Large Scale Data Stream Analytics Based On PANFIS - Scalable

PANFIS 54

4.1 Introduction . 55

4.2 PANFIS . 58

4.3 Scalable PANFIS Framework - Architecture and Problem Formulation 60

4.3.1 Scalable PANFIS Framework Architecture 60

x

4.3.2 Problem Formulation of Scalable PANFIS 62

4.4 Structure of the Scalable PANFIS framework model 64

4.4.1 Scalable PANFIS Framework using the Model Merging Method 65

4.4.1.1 The Initial Distributed Models and Their Components 65

4.4.1.1.1 The Underlying Reason for Using a Rule as a Merging

Component . 65

4.4.1.1.2 The Need to Select and Remove Inconsequential Con-

catenated Rules Prior to Model Merging 66

4.4.1.2 Model Merging Implementation at the Rule Level 68

4.4.2 Scalable PANFIS Framework using the Majority Voting method 71

4.4.3 Scalable PANFIS Framework with AL and the Model Merging Method . 75

4.4.4 Scalable PANFIS Framework with AL and the Majority Voting Method . 77

4.5 Numerical Study . 78

4.5.1 Experiment Setup . 78

4.5.2 Results . 81

4.5.2.1 Scalable PANFIS discussion . 81

4.5.2.1.1 The effect of AL in the Scalable PANFIS performance

- Scalable PANFIS with and without AL comparison . 81

4.5.2.1.2 Determining the number of initial rules before the

merging process . 83

4.5.2.1.3 The Merging and Voting methods comparison 84

4.5.2.2 Scalable PANFIS and Spark-based Algorithms Comparisons . . 84

4.5.2.3 Statistical Testing . 85

xi

4.5.3 Summary Discussion . 88

4.6 Conclusion . 90

5 Scalable Teacher-Forcing Networks under Spark Environments for Large-

Scale Streaming Problems 92

5.1 Introduction . 93

5.2 Problem Formulation of ScatterNet . 96

5.3 Preliminaries . 97

5.4 Scalable Teacher-Forcing Network . 98

5.4.1 Penalty and Reward Mechanism . 101

5.4.2 Drift Detection Method . 101

5.4.3 Model Pruning Mechanism . 103

5.4.4 Data Stream Learning Phase . 103

5.4.4.1 Scalable Teacher-Forcing Network 104

5.4.4.2 Structural Learning of ScatterNet 105

5.4.4.3 Parameter Learning of ScatterNet 108

5.4.4.4 Data-Free Model Merging . 109

5.5 Numerical Results . 112

5.5.1 Dataset . 112

5.5.2 Algorithms and Parameters . 113

5.5.3 Environmental Setting: Spark Architecture, Hardware and Software . . . 114

5.5.4 Results and Discussion . 114

5.5.5 Ablation Study . 116

xii

5.5.6 Statistical Testing . 116

5.6 Conclusion . 117

6 Thesis Conclusions 118

7 Future Directions 121

Bibliography 122

xiii

List of Figures

1.1 The taxonomy of online algorithms and their structure models (single/multiple

models) along with the map of our research motivations 4

2.1 HDFS architecture . 16

2.2 MapReduce process sequence . 17

2.3 Spark cluster architecture . 18

2.4 Architecture of ANFIS . 24

2.5 The standard batch algorithm architecture. 28

2.6 The standard ensemble algorithm architecture - standard training and testing

scenario. 30

2.7 The Standard distributed algorithm architecture. 32

2.8 Online algorithm - standard batch incremental learning algorithm architecture

using prequential test-then-train scenario . 36

2.9 Online algorithm - evolving algorithm architecture - standard instance incremen-

tal learning algorithm . 38

xiv

4.1 The Data flow architecture of the Scalable PANFIS framework during the data

stream training phase in the Spark platform . 61

4.2 The structure of the Scalable PANFIS framework using the model merging

method at the rule level. 65

4.3 The structure of the Scalable PANFIS framework using the majority voting method 72

4.4 The voting mechanism scheme in the distributed machine learning PANFIS ar-

chitecture . 74

5.1 ScatterNet’s learning policy and network evolution 100

5.2 Model merging mechanism . 112

xv

List of Tables

2.1 Properties of training data D used in the batch algorithms 29

2.2 Properties of standard Ensemble Learning . 30

2.3 Properties of the distributed algorithms . 33

2.4 Properties of the Standard Batch Incremental Learning Algorithms 37

2.5 Properties of the Evolving Algorithms . 37

3.1 Overview of several types of algorithms . 52

4.1 The accuracy of the HEPMASS testing dataset for different Z best initial rule

selection with and without rule removal prior to model merging 67

4.2 Algorithm description . 79

4.3 Dataset description . 79

4.4 The average of performance (compression rate and accuracy of Scalable PANFIS

with and without AL using voting and merging method 82

4.5 The effect of the Active Learning Method in the distributed machine learning

PANFIS training algorithm on the running time using performance 5-fold cross

validations . 82

xvi

LIST OF TABLES

4.6 Number of rules generated before and after the model merging for initial dis-

tributed models generated with Scalable PANFIS (with and without AL) 83

4.7 Performance of Scalable PANFIS on merging and voting method 84

4.8 Accuracy for all datasets and algorithms using 5-fold cross validations 85

4.9 Running time for all datasets and algorithms using 5-fold cross validations . . . 86

4.10 Statistical Testing of Two Paired Algorithms using Wilcoxon Signed-Ranked Test 86

4.11 Matrix of statistical testing using Two-tailed Wilcoxon signed ranked test on 8

algorithms using Vstatistic values and pV alues . 88

5.1 Properties of Datasets . 113

5.2 Experimental Setting . 113

5.3 Numerical Results . 115

5.4 Ablation Study on the Susy Dataset . 116

5.5 Statistical Testing of Two Paired Algorithms using Wilcoxon Signed-Ranked Test 117

xvii

1
Introduction

1.1 Background

Nowadays, in the era of the Internet of Things (IoT), data are generated from devices/sensors

in the form of text, images, videos, etc. Data from sensors arrive continuously from multiple

sources, different environments as data streams [1]. As a result, vast volumes of data can

be generated in the cloud over time. Furthermore, data streams are also characterized by

non-stationary environments that come from real-world applications [2].

Due to the high business demands, these enormous volumes of data streams need to be learned

immediately as they arrive for decision-making purposes [3]. While large-scale data streams

have a high potential to improve effective decision making, learning from this data is challenging.

Based on [4], a general problem large-scale/big data of big data includes 5V (Variety, Velocity,

Volume, Value, and Veracity) characteristics. In machine learning literature, of these five

characteristics, there are at least two main issues in learning from data streams which trigger

further investigation: huge volumes and velocity. Another issue of data streams is the non-

stationary characteristics of data streams [5]. The vast volumes and velocity characteristics

causes the generation of big data due to the high speed of arrival data streams. In contrast, the

non-stationary characteristic is related to the changing of data distribution over time. These

challenges provide excellent opportunities for many research directions.

1

CHAPTER 1. INTRODUCTION

In the realm of learning from data streams, online algorithms and distributed algorithms

have become essential research topics over the last two decades in dealing with data stream char-

acteristics [6, 7, 8]. The online algorithms are capable of continuously updating their parameters

and modifying their structures to adapt to the available new samples of data streams. Further-

more, their single-pass learning mechanisms enable them to learn the infinite tasks without a

retraining phase, using a limited memory capacity which makes them different from traditional

offline learning algorithms [9]. On the other hand, due to the growth of distributed processing

technology, from the perspective of offline learning, distributed algorithms have become the

alternative solution to handle the vast volumes of data [10].

From an online learning perspective, the research in this area has grown significantly, which is

marked by a significant amount of work that has been conducted in recent years [11, 12, 13, 14,

15]. Of these online algorithms, work on evolving fuzzy systems [9, 16] and ensemble-based

incremental learning [17] is the most frequently published in the literature. These algorithms

have been developed to successfully handle web-scale datasets such as web news mining [18]

and a real-world problem demonstrated in [19].

The similarity between these two algorithms lies in their evolving/adaptive model, either single

or multiple models, and their single-pass learning mechanisms. In particular, the ensemble-

based incremental learning algorithms provide a mechanism to relinquish a previously valid

concept while acquiring new knowledge, the property of which the incremental learning algo-

rithms require.

Despite their online learning properties, they may suffer from problem of huge volumes of data

which need to be processed immediately due to the rapid arrival of data streams. The volume

of data being processed is beyond the capacity of single processing node machine learning

[10, 20]. The problem of data streams has scaled up into large-scale data streams which online

algorithms alone cannot handle.

From a distributed processing perspective, MapReduce [21] was recognized as the first dis-

tributed learning framework, which was initially run on the Hadoop distributed processing

2

1.2. RESEARCH MOTIVATIONS

platform [22]. Following this, many distributed processing platforms appeared. Apache Spark

(Spark) [23] is one of the latest distributed processing platform and provides a built-in machine

learning framework called MLlib [24]. Spark features in-memory computation where the com-

putation process is undertaken using random access memory instead of disk drives. As a result,

Spark can significantly reduce the processing time compared to other distributed platforms.

Despite the apparent advantages of the Spark platform, most of the distributed algorithms are

still built based on offline algorithms, which are computationally ineffective because they need

a retraining procedure to acquire the whole historical model. Therefore, they are not feasible

for processing ever-growing large-scale data streams.

While online learning and distributed processing have become emerging research topics for

large-scale data streams over the last decade, to the best of our knowledge, the synergy be-

tween them is rarely reported. The vast majority of online algorithms in the literature have

been built under a single processing node environment. This property hinders them from pro-

cessing large-scale data streams. While a lot of studies have been devoted to coping with data

stream characteristics, learning from data streams remains an open issue. Ideally, the desirable

properties of the algorithms should be capable of learning from new examples (adapting to the

recent concept drift), retaining the previously valid knowledge, and processing samples in a

distributed manner using the Spark platform.

The remainder of this chapter is organized as follows: section 1.2 discusses research motivations.

Section 1.3 discusses the objectives of the thesis, whereas section 1.4 details of the contributions

of the thesis. Finally, the structure of the thesis is summarized in section 1.5.

1.2 Research Motivations

This section presents the research motivations which briefly highlight the current state-of-the-

art of online algorithms, and their further development (e.g. incorporating distributed features

using Spark into the existing frameworks) based on the current challenges mentioned previously

3

CHAPTER 1. INTRODUCTION

in section 1.1. To cope with these challenges, our motivations are driven by the development

of frameworks which are capable of learning from new samples (either in the form of batch

or instance data), responding quickly to a change in the data distribution, keeping the useful

existing knowledge, and performing distributed learning.

1.2.1 The Taxonomy of Online Algorithms and Further Development

Work

Online
algorithm

Batch
incremental

using
Ensemble
Structure

Instance
incremental

Evolving
algorithm
using EFS

Distributed
evolving

algorithm

Incremental
ensemble

Research motivation 1:
single node to multi
nodes

Incremental
distributed
ensemble

Research motivation 2:
single node to multi nodes

𝐼: number of local models in 𝔼ℕ

𝔼ℕ : ensemble network (combination
Of local models)

𝔼ℕ = {ℱ!, ℱ", . . , ℱ#}ℱ!

ℱ"

ℱ#

…

𝔼ℕ = {𝓕𝟏, 𝓕𝟐, … , 𝓕𝑰}

The distributed EFS aims to generate
an evolving distributed model. Distributed
model produces the initial distributed
models containing local models. The
merging model procedure aggregates the
initial distributed models into merged
(final) model.

The Incremental distributed ensemble
focuses on the development of the elastic
structure of ensemble network (𝔼ℕ) to
handle concept drift. It is designed to handle
vast volumes of data in every batch
continually. Each batch is processed using
the Spark distributed computing platform.

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑜𝑓 𝑓𝑖𝑥𝑒𝑑 𝔼ℕ

Evolving Fuzzy System - EFS

Figure 1.1: The taxonomy of online algorithms and their structure models (single/multiple
models) along with the map of our research motivations

Due to the broad range of types of online algorithms, we illustrate the taxonomy of online

algorithms, as depicted in Fig. 1.1 to give an insight regarding the possible area in existing

online algorithms that can be scaled in a distributed learning framework. It can be seen that

online algorithms are the only possible solution to coping with the data stream problems. To

date, abundant seminal works have been carried out in this area as in [11, 12, 25, 13, 26],

all of which have the incremental feature, allowing them to evolve their models (structure

and parameter) to learn ever-growing data streams. Their structural evolution is an essential

4

1.2. RESEARCH MOTIVATIONS

procedure to adjust the model to the new instance(s) patterns [16]. Despite their incremental

feature, none of these algorithms are designed to be operated in the distributed processing

environment.

Our thesis motivations are to build large-scale data stream frameworks. The learning mecha-

nism of the vast majority of online algorithms can only run in a single processing node envi-

ronment. As a result, they may have difficulty processing the enormous volumes of data due

to their inability to process data streams in parallel mode. In this case, modifying the existing

online algorithms so they are able to operate in a distributed processing environment without

deteriorating the performance of the algorithms is essential, which entails some challenges.

1.2.2 The Types of Online Algorithms and the Reasons for Using

these Algorithms for Further Development

The majority of problems in data streams can be handled by using online algorithms. While

abundant work has been carried out in this area, there is a need to develop more advanced

frameworks (e.g. incorporating a distributed computing platform so that it can deal with vast

volumes of data streams). For this reason, it is essential to investigate the trend/current state

of some architectures of online algorithms to determine which area needs enhancement.

Firstly, we start our work with the evolving fuzzy systems (EFSs) whose models can be quickly

adapted to the system conditions at any state (specifically for every sample) during online

real-world processes as in [11]. We are motivated to scale the EFS into a distributed evolving

fuzzy system, where the challenge of this work lies in generating an evolving distributed model.

This is understandable because every node in the Spark cluster processes different partitions

of data streams, generating many local models. In this work, handling different local models

efficiently using either model merging or model combination is the main focus.

For the second motivation, we focus on developing an incremental learning approach [16],

particularly a distributed incremental ensemble. We are motivated to develop incremental

5

CHAPTER 1. INTRODUCTION

learning capable of processing large-scale data streams utilizing a Spark distributed processing

platform. In practice, the task undertaken in every batch is conducted in a distributed manner

due to the large size of the batch data. The model is built on a dynamic ensemble structure,

which evolves in each task.

We visualize our motivations in Fig. 1.1. The orange highlighted frameworks are the area we

want to develop, whereas the grey highlighted frameworks are the existing developed frame-

works. The underlying reasons for choosing these types of algorithms as our research motiva-

tions are summarized as follows:

• Our first motivation is to develop a distributed evolving fuzzy system framework

(distributed EFS). This framework is designed to scale the computational capability

of a single processing node EFS into multiple processing nodes of distributed EFS. This

procedure aims to speed up the learning process of EFS, while keeping the same level of

accuracy of EFS [3]. EFS is a fuzzy-based evolving model characterized by single-pass

learning and adopts the open-structure property. EFSs have become a well-established

research area in the data stream community with an extensive array of published work.

However, little attention has been paid so far to designing the EFS in a distributed manner

using the Spark ecosystem. Thus, it is worth investigation.

• Our second motivation is to develop a distributed incremental ensemble framework,

which is ensemble-based incremental learning which learns large-scale sequential batches.

This procedure is different from the distributed EFS, which is designed to learn large-

scale data streams in one task/batch. This framework also demonstrates the evolution of

the ensemble structure in every task, a feature that is absent from the first framework,

to react to concept drift. The reasons for choosing an ensemble method as the base-

learning algorithm for this framework is two-fold. Firstly, the ensemble algorithms tend

to cope better with the concept drift problem in data streams as presented in [27, 28, 29].

The second reason is that the incremental learning ability of ensemble methods has been

widely used in the literature [30, 31], but there is little evidence found for their distributed

6

1.2. RESEARCH MOTIVATIONS

versions. The incremental and distributed properties of this framework give us an answer

to the research challenge as to whether our frameworks are capable of handling massive

data streams which arrive continuously in large volumes over time [17].

1.2.3 The Connection between Frameworks in Our Thesis and the

Underlying Reasons for Developing Such Architectures

1.2.3.1 Tackling the Volume and Velocity Characteristics of Data Streams

In [8], it is discussed that evolving algorithms and distributed algorithms are two possible

approaches to deal with data streams. These approaches aim to improve the scalability of

the algorithms, so they become capable of handling large-scale dataset due to the volume and

velocity characteristics of data streams.

In the first approach, it is clear that evolving algorithms are scalable because they adopt the

online working principle, optimizing the limited resources (memory and storage) to process the

data streams as demonstrated in [11, 12, 32]. In practice, examples are learned instance-by-

instance incrementally in a single-pass scenario.

In the second approach, distributed algorithms, scalability is achieved through parallelization

as in [21], which aims to accelerate the training process. The main advantage of distributed

algorithms lies in their capability to process large-scale datasets at once. Their drawback,

however, lies in their offline learning mechanism, which hinders them from learning ever-growing

data streams. Learning new data requires a retraining procedure which leads to the problem

of catastrophic forgetting [33].

Evolving algorithms are limited by their single processing node capacity, which hinders them

from processing vast volumes of data. For this reason, it is necessary to endow evolving al-

gorithms with a distributed processing feature. Therefore, a distributed evolving algorithm

framework, namely distributed EFS, is designed in the Spark platform. In this case, EFS is

7

CHAPTER 1. INTRODUCTION

used as a base structure to develop distributed EFS.

1.2.3.2 Tackling the Multiple issues of Data Streams

The primary motivation of this subsection is to scale the incremental ensemble algorithms.

While the research on incremental ensemble algorithms has recently become state-of-the-art

with its remarkable performance [28], the issue of scalability remains a challenge due to the

problem of the rapid generation of data streams which is beyond the capacity of a single

processing node to process. In the literature, the state-of-the-art on distributed incremental

learning algorithms was undertaken in [34]. However, its base-learning algorithm still uses a

batch algorithm, which is static. Thus, it is not capable of handling the concept drift issue.

To the best of our knowledge, there are not many current works which address this issue.

Therefore, a distributed incremental ensemble is designed to tackle the multiple issues

(non-stationary, volume, and velocity issue characteristic) of data streams.

1.3 Objectives

The primary objective of this work is to develop effective algorithms that can deal with the

major problems of large-scale data streams: volume, velocity, and non-stationary traits, as de-

scribed in section 1.1. Our algorithms are mainly proposed to solve the classification task. Based

on our research motivations, we aim to develop large-scale data stream analytics frameworks

extended from existing state-of-the-art algorithms (EFS and incremental ensemble learning).

For each corresponding motivation mentioned in section 1.2, our proposed frameworks should

achieve the following objectives:

• To cope with the velocity issue of rapid data streams, a distributed EFS framework im-

plemented on the Spark platform is proposed. This framework should be able to speed up

the training process without reducing accuracy compared to its base-learning algorithm,

8

1.4. CONTRIBUTIONS

EFS, which only can be deployed in a single processing node machine. This framework

should demonstrate the scalability of EFS, which can adapt to the new environment as

well as work in a distributed fashion. As a result, this framework can learn large-scale

data streams characterized by huge volumes, high speed, and non-stationary traits of data

streams.

• A distributed incremental ensemble learning framework implemented on the Spark

platform is proposed to address the three problems of data streams: volume, speed, and

the non-stationary characteristics of data streams. This framework should demonstrate

a capability to deal with never-ending large-scale data stream problems. This framework

should also achieve comparable accuracy with the single processing node of the evolving

algorithm. This framework aims to equip an existing incremental ensemble with a dis-

tributed feature using Spark to scale its training capacity while keeping the advantageous

progressive learning feature. However, this task is challenging due to the scalability issue,

the increase of network capacity as the data batches grow, and it potentially suffers from

accuracy degradation when the model merging procedure is not adequately designed.

1.4 Contributions

In this thesis, two frameworks are compiled according to the corresponding objectives. The

contributions of this thesis can be summarized as follows:

• We propose Scalable PANFIS, a novel distributed EFS framework, which can deal with

the large-scale data stream classification problem. This framework is scalable so it can

cope with a data stream’s changing patterns. Scalable PANFIS introduces four struc-

ture learnings resulting from two types of model aggregation procedures in distributed

training task and two types of testing tasks. A distributed training task is undertaken us-

ing the Spark platform where large-scale data streams are divided into several partitions,

and from each partition, a local model is generated. Therefore, for a distributed training

9

CHAPTER 1. INTRODUCTION

task, several local models are generated, and the collection of local models is called the

initial distributed models. Each local model is formed as a result of the data partitions’

training using PANFIS (with or without Active Learning (AL)) as an evolving algo-

rithm. The AL mechanism is embedded in PANFIS to accelerate the learning process

at the local level (a partition of training data). The testing task of Scalable PANFIS

utilizes two types of model aggregations: model merging and majority voting. The

novel model merging method extracts, selects, and eliminates inconsequential rules across

the initial distributed models before the merging process. For majority voting, the initial

distributed models are used directly for the prediction task without merging. The final

output is determined from the majority class voted by local models. In other words, the

final result is a composite output of several local models.

• A novel distributed incremental ensemble, namely ScatterNet, is proposed. The incre-

mental feature of ScatterNet offers a solution of never-ending batches of massive data

stream learning problems under the distributed computing platform of Spark. The basic

structure of ScatterNet is an ensemble network containing a stack of base models which is

updated sequentially for every task/batch. For each batch, the distributed training task

is performed at the global level forming initial distributed models, where the initial dis-

tributed models contain local models. Each local model is generated from training data

partitions in the Spark node using the teacher-forcing network method, taking into

account the temporal characteristic of data streams without iterative gradient calculation.

The merging of the initial distributed models produces a merged model, as a candidate

of the base model, which is carried out using online model selection and zero-shot

merging approaches which are capable of keeping structural complexity under control

while retaining generalization performance. The dynamic structure of ScatterNet is con-

trolled by a drift detection method at the global level (across-the-batch) and advances

network significance with the incorporation of the forgetting mechanism based on the

bias-variance decomposition method at the local level. That is, if drift is detected, a

merged model is stacked in the current ensemble network. Conversely, base models are

10

1.5. STRUCTURE OF THE THESIS

removed by using the model pruning mechanism, employing a statistical measure-

ment to assess the insignificant models. At the local level, in the case of high bias, hidden

nodes grow, whereas in the case of high variance, hidden node pruning takes place.

1.5 Structure of the Thesis

In this thesis, the advanced algorithms are compiled to learn large-scale data streams. The

structure of the thesis is as follows:

• Chapter 1 presents the concept of learning from data streams and introduces three main

problems: velocity, volume, and the non-stationary traits of data streams. This chapter

provides the motivation for developing large-scale data stream frameworks which have

properties to deal with large-scale data stream problems. The thesis objectives which

address the challenges are also discussed, followed by the thesis contributions.

• Chapter 2 introduces the research context, providing a broad overview of machine learning

algorithms related to the large-scale data stream frameworks. For each type of algorithm,

the learning mechanism and the data flow in both the testing and training task are

elaborated.

• Chapter 3 introduces the literature review related to the proposed method, especially the

state-of-the-art distributed algorithms to cope with the velocity of data streams. It also

reviews some of the seminal incremental learning algorithms which offer solutions to deal

with the dynamic changes of data streams.

• Chapter 4 presents our work, namely Scalable PANFIS, a type of distributed EFS algo-

rithm, as our first contribution. This algorithm can speed up the training process using

multi-node processing instead of the single-node processing of evolving algorithm, namely

PANFIS [11] without suffering a loss of accuracy in comparison to the single processing

node of PANFIS.

11

CHAPTER 1. INTRODUCTION

• Chapter 5 presents one of the works on distributed incremental ensemble algorithms,

namely ScatterNet. This chapter proposes the idea of an incremental learning scheme in

a distributed fashion. In this work, the structure of the ensemble network dynamically

evolves in reaction to the concept drift which exists in data streams.

• Chapter 6 covers the conclusion of the thesis.

• Chapter 7 provides the future direction.

12

2
Research Context - Architecture and Problem

Definition

In this chapter, the background knowledge and methods related to the thesis are discussed.

We introduce the general problem, architecture, terminology, notation, learning, and inference

mechanisms used in learning from large-scale data streams. We structure this chapter into the

following discussions. Firstly, the general large-scale data challenges are discussed in subsection

2.1, which covers studies to cope with large-scale data problems. This part generally covers

the introduction of large-scale data analytics. Then, the details of the platform of large-scale

data analytics and algorithms attached to it as the learning and inference engine is discussed in

subsection 2.2 and 2.3 respectively. As our thesis is focusing on the development of algorithms

to handle large-scale data stream challenges, the rest of the chapter is discussing various algo-

rithms and their architecture. The architecture covers batch learning algorithms into evolving

algorithms as the learning and inference engine in large-scale data analytics. Note that the

algorithms developed in this thesis are supervised learning algorithms striving to solve the

classification problem.

2.1 Introduction to Large-scale Data Analytics

Large-scale analytics is commonly associated with scalable machine learning using an advanced

computational platform. This platform can be operated either by using vertical or horizontal

13

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

scaling techniques [35]. Vertical scaling technique refers to the enhancement of single machine

computational capabilities (e.g.Graphics Processing Unit (GPU)), whereas the horizontal one

refers to the distribution of tasks across multiple nodes. Large-scale data analytics is also

commonly known as a process to find hidden insight into the data to help organizations in

making business decisions. This process includes a complex process such as data preprocessing

and analysis. While standard machine-learning algorithms can only process the simple dataset,

the significant challenges imposed by large-scale data according to [35] are described as follows:

• Scalability: Large-scale data is associated with large or complex datasets from various

sensors. Thus the algorithm must be scalable to cope with the volume and velocity of

data.

• Decentralization: This problem is related to the capability of the algorithm to be dis-

tributed to handle multiple sources of data.

• Dynamic datasets: The algorithm should be able to operate on a dynamic dataset from the

dynamic sensors. It may also be capable of exploiting a dynamic graph for visualization.

• Nonuniform Dataset: Data may come from different formats such as audio, weblogs, social

media. This problem is also a challenge for large-scale data processing.

• Privacy: This challenge is related to the fact that many data is confidential and often

raises privacy concerns. While this data is beneficial to be processed, it cannot be handled

by traditional methods due to its unavailability to protect the data privacy.

As explained above, large-scale data analytics impose a wide range of problems. In general,

the study of large-scale data processing involves two significant steps: 1) The platform; 2) The

learning and inference. The first part includes setting the stage for large-scale data processing:

big data model selection, storage selection (e.g. Hadoop distributed file systems - HDFS), and

computational framework selection. The second part is related to the main algorithm that is

attached into the large-scale data platform. Our thesis focuses on the second part, specifically

the development of the algorithms which can deal with large-scale data stream problems.

14

2.2. LARGE-SCALE DATA ANALYTICS PLATFORM

2.2 Large-scale Data Analytics Platform

The explosion of data has led to the emergence of scalable data processing. According to [35],

big data computational frameworks could be categorized into three models: batch, real-time

processing, and hybrid model. These three models of scalable data processing are summarized

as follows:

• Batch model refers to the conventional distributed processing whose architecture is de-

picted in Fig. 2.5, which more focuses on solving the volume characteristics of data. The

example for this is MapReduce which has two main function Map and Reduce. Despite

its simplicity, MapReduce suffers from communication cost, availability to perform the

iteration process, and availability to process data in a real-time manner [36].

• Real-time processing model refers to the adaptability to process the continuous data as

stream. This model focuses on the velocity characteristic of the data stream. The example

platform that can accommodate this model is Storm. Another advantage of Storm also

lies on its latency. Despite its real-time characteristics, it is lack of iteration [35].

• The hybrid model offers the solution as the framework that can handle both volume

and velocity characteristics of big data (explosion of data). This model architecture can

handle both batch, real-time, and combination of both. The example of this hybrid model

is Spark which can operate for both batch and real-time model.

In this subchapter, the platform of large-scale data analytics using Spark is discussed. In

particular, we discuss about external file system such as HDFS and the interoperability

between Spark and HDFS.

2.2.1 Hadoop

Hadoop is an open-source data management platform which was initially developed by Google

to handle web-scale datasets as a result of cloud-based big data generation. Hadoop makes

15

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

use of the storage layer called HDFSs to run on commodity hardware. As a result, it can save

the operational cost. HDFS has many similarities with other standard distributed file systems.

However, a significant improvement from the previous distributed file systems is that Hadoop

is highly fault-tolerant.

A cluster of HDFS adopts the master-slaves architecture which consists of a single Namenode as

a master server and several Datanodes as the slaves where the actual data are stored. Namenode

manages the file system namespace which has the authority to let clients access the files in a

cluster. To support this operation, Namenode has a metadata which records all the files stored

in the HDFS’s cluster, e.g. the location of the blocks stored, the size of the files, permissions,

hierarchy, etc. Datanodes are responsible for providing requests from clients for either read and

write requests. In the case of the write operation, Datanodes are also responsible for splitting

the file into several blocks whose size is defined by the user. Right after the writing operation

has been executed, Datanodes create the replica for the blocks that have been made, a standard

procedure in HDFS, which aims to maintain the high availability of data. HDFS architecture

is depicted in Fig. 2.1.

NameNode

Medatada

DataNode DataNode DataNode

Replication

Block

Client

Accessing metadata

Client

Read data

Write data

Finding the information in which
blocks the specified file is stored.

Calling permission to
create a file in blocks.

Figure 2.1: HDFS architecture

MapReduce was one of the first programming models implemented in Hadoop to be used for

distributed learning operation. From a process point of view, a MapReduce program is split

16

2.2. LARGE-SCALE DATA ANALYTICS PLATFORM

into two procedures: 1) Map, and 2) Reduce. In the realm of parallel data processing, the

Map procedure is undertaken in the cloud, which processes a batch of data to be processed

distributively. A Map procedure performs partitioning, filtering, sorting, and training data from

the machine learning point of view. The results of the Map operation are stored on the local

disc. This mechanism aims to avoid replication in the cluster. A Reduce procedure executes an

aggregating operation such as (summation, averaging). The MapReduce sequence is depicted

in Fig. 2.2.

Driver Program

Input/
dataset Map Partition

Output/
Model

Reduce/
Aggregating/

Merging

Shuffling
/Sorting/
Learning

Figure 2.2: MapReduce process sequence

However, there are some drawbacks related to MapReduce programming due to its inability to

perform iterative and interactive analytics tasks. This problem is because MapReduce is a file-

intensive operation. When the Map and Reduce perform their operations, files are generated

into several blocks. This condition is not beneficial for read/write operation. Furthermore,

Hadoop read/write operation is carried out to HDFS storage, which is slower than using RDD

type storage. As a result, it will cause a significant delay in the overall machine learning tasks.

2.2.2 Apache Spark

Apache Spark (Spark) is an open-source data processing platform that allows machine learning

(e.g. it can be any application) to learn large-scale dataset in a distributed manner across

multiple workers/nodes/computers. Similar to Hadoop, the Spark cluster uses master-slave

architecture which comprises three parts: a driver node as a master, a cluster manager to

manage jobs (tasks and data flow), and many executors that run across as worker nodes in

17

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

the cluster. The interconnection between Spark components is depicted in Fig. 2.3. Unlike

Hadoop, which can only be used for batch algorithms, Spark offers real-time processing as one

of the additional features compared to Hadoop.

Driver Program

SparkSession Cluster Manager

Worker node

Executor Cache

TaskTask

Worker node

Executor Cache

TaskTask

Figure 2.3: Spark cluster architecture

The working principle of Spark is defined as follows. The driver generates SparkSession, the

entry point of Spark functionality, which allows the Spark application to access the cluster with

the help of a cluster manager, including converting the dataset into the Spark DataFrame as

a Spark data abstraction. While Spark is regarded as an advanced data processing platform,

it does not have a dedicated storage file system. As a result, Spark interoperate with the

other external storages such as HDFS. A Cluster Manager bridges the interoperability between

Spark and HDFS. It controls the requests from a driver program into a namenode of HDFS and

acquire a data from it. This procedure is similar to a Map function in the Hadoop ecosystem,

but in Spark, the data being taken from HDFS is converted first into specific Spark data

abstraction. Note that there are several types of Spark data abstractions such as the well-

known resilient distributed dataset. In this thesis, we use the Spark DataFrame as the

Spark data abstraction. After this, the Spark driver translates the user’s written code into

Spark jobs and passes these jobs to the cluster manager. Then, the cluster manager distributes

the smaller jobs and the Spark DataFrame partitions into all the worker nodes. Each worker

node may receive more than one partition depending on the settings of parameters. Each worker

node processes/learns all the corresponding Spark DataFrame partitions in a serial manner, and

sends the results back to the SparkSession.

Spark contains built-in modules encapsulated as a Spark ecosystem to enable the user to design

18

2.3. THE LEARNING AND INFERENCE ENGINE OF LARGE-SCALE DATA
ANALYTICS

user-defined commands (e.g. algorithm) to manipulate the Spark DataFrame inside the Spark

cluster via the SparkSession. The Spark ecosystem comprises the Spark library and Spark

core. Spark core consists of several basic programming languages such as R, Python, Java,

and Scala, whereas the Spark library covers several components such as Spark SQL, Spark

Streaming, Spark MLib, Spark GraphX, and Spark R, all of which are created to support data

manipulation in the cluster. Of these Spark components, MLib is a standard module which

consists of several built-in algorithms that are mainly used for a distributed machine learning

task.

2.3 The Learning and Inference Engine of Large-scale Data

Analytics

This subsection aims to define terms used in several types of algorithm to distinguish their

architectures, characteristics, and working principles, including the samples used to generate

their model. We introduce the term of base-learning algorithm. In this thesis, a base-

learning algorithm is a machine learning which is used to learn the data and produces a single

model. Base-learning algorithm can be regarded as the learning and inference engine that

learns the data, produces model, and infers the unlabelled data.

Conventional base-learning algorithms cover popular machine learning algorithms including

but not limited to: linear discriminant analysis, decision trees, naive Bayes classifiers, k-nearest

neighbours, and standard fuzzy inference systems such as an adaptive-network-based fuzzy

inference system (ANFIS) [37]. These algorithms are based on the offline working principle,

with a single and static model structure, and running on a single processing node as portrayed

in Fig. 2.5. When these base-learning algorithms are used in a more complex structure such

as ensemble or distributed algorithms, the multiple models are generated as depicted in Fig.

2.6 and Fig. 2.7.

An example of ensemble algorithms is presented in subsection 2.4. We introduce the ANFIS

19

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

structure in subsection 2.5. Then, in subsection 2.6, we review in detail the learning mechanisms

of all the related algorithms which adopt the offline working principle. In subsection 2.7, we

discuss the online algorithms which include batch incremental learning and instance incremental

learning. Finally, in subsection 2.8, we introduce the learning policy scenario of our proposed

algorithms.

As our work deals with the data stream problems, we utilize the evolving algorithms such as

a parsimonious network based on a fuzzy inference system (PANFIS) [11] and a parsimonious

learning machine (PALM) [32] as the base-learning algorithms. As the evolving algorithms, their

components (rules) are evolving following the data stream conditions. The types of evolving

algorithms are varied. Although ANFIS adopts an offline working principle, its structure is

adopted by many works as a basis on which to build their evolving systems, including PANFIS

and PALM. Thus, the ANFIS structure is worth discussing.

Furthermore, it is also essential to discuss the structure of ensemble and distributed algorithms,

including incorporating the base-learning algorithms into their learning systems. In general,

the structure and learning mechanisms of all the related algorithms are summarized as follows:

• The standard distributed algorithms use a base-learning algorithm distributed into

several nodes. Suppose that large-scale static batch data is divided and distributed evenly

into several nodes. Each node may learn several partitions which come to them. The data

partitions are learned locally in their corresponding nodes, such that from each partition a

local model is generated. At the end of the distributed training task, several local models

are constructed, and we refer to these models as the initial distributed models. A

merged model is obtained by merging the initial distributed models.

• The standard ensemble algorithms make use of multiple base-learning algorithms to

learn a static dataset using a single processing node. The learning output of an ensemble

algorithm is multiple models wher

20

2.4. THE ENSEMBLE ALGORITHMS: EXAMPLES

2.4 The Ensemble Algorithms: Examples

The aim of this subsection is to provide some examples of seminal ensemble algorithms which

exist in the literature. The ensemble algorithms are built based on the hypothesis that combin-

ing several base models for the testing task can often yield a better generalization performance.

Note that ensemble algorithms are not originally designed to handle large data. On the other

hand, it slows the inference process as inference tasks need to be carried out multiple times.

However, the ensemble algorithm can be attached in the large-scale data analytics platform.

Thus, this algorithm can yield a higher accuracy in acceptable running time.

The critical success in machine learning tasks (e.g. classification or regression) is determined by

selecting a suitable base model for prediction. The implementation of the model selection can

be carried out by assigning the weight for each base model in the network. Based on how the

base models are updated, generally, the ensemble methods can be categorized in two groups:

boosting and bagging. In this subsection, the two ensemble methods are discussed: boosting

and bagging.

2.4.1 Boosting

The boosting methods aim to improve the performance of the weak learners (base models or base

classifiers in a classification problem) by converting them into a strong learner. Suppose that

a base model will work on any data distribution in a binary classification task where instances

are classified into positive and negative. Suppose that the training instances are classified

into positive and negative. Suppose that the training instances are denoted as D = [X, Y].

X ∈ <N×n represents the input data and the labels are denoted as (Y ∈ <N×m). Y is also

called the ground-truth function of the training data, which is denoted as F ground.

After the training, the ensemble hypothesis is formed denoted as EN = {F1, ...,F i, ...,FI}.

EN is also called an ensemble network, and I denotes the number of base models in the EN. The

21

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

pseudocode of the boosting algorithm is presented in Algorithm 1. The idea of boosting is to

learn from the mistakes made by the previous base models to boost the ensemble performance.

That is, the next base model focuses more on incorrectly classified training samples.

Algorithm 1: The General Boosting Algorithm
Input :
Dataset samples: D ∈ <N×(n+m) = (X1, Y1), ..., (XN , YN)
% n denotes the dimension of input data;
% m denotes the number of classes (2 in binary classification case);
Base-learning algorithm: L
Number of learning rounds to be the number of base models: I
Output : Ensemble network (EN = {F1, ...,F i, ...,FI}), a stack of base models
Initialization:
Sample distribution: D ∈ <1×N

D1 = 1
N

- The equal weight for all samples
for i = 1 to I do
- F i = L(Di)% Training weak learner from distribution Di -
εboosti = PxDt(F i(x) 6=Fground(x))//Evaluate the error of F i% -
Di+1 = Adjust_Distribution(Di, εboosti)

end for
Inference : CombineBoostingOutputs(X ′)
% X ′ ∈ <N×n denotes the testing samples

The procedure described in algorithm 1 is the general form of boosting. The unspecified parts

such as Adjust_Distribution and Combine_Ouputs vary for every boosting-based ensemble

algorithm. One of the notable boosting algorithms is Adaboost [38]

2.4.2 Bagging

Unlike boosting which generates base models in an iterative manner, in bagging methods, base

models can be possibly generated in parallel as one base model is not dependent on previous

base models. An example of this method is in [39]. The parallel mechanism is motivated

by the fact that combining independent base models can reduce error dramatically due to the

independence between base models. Bagging is also called bootstrap aggregation, which applies

bootstrap sampling [40] to form several data subsets with replacement. Every subset is trained

using a base-learning algorithm to form a base model.

22

2.5. AN OFFLINE BASE-LEARNING ALGORITHM

Bagging embraces the most used methods for combining the inferences from the base models.

The most notable one is the voting method in the case of the classification task and averaging

for the regression task. For the inference task, the future samples are fed into all the base

models, and the output from all the base models are voted and the winner labels are taken as

the final prediction. The pseudocode of the bagging algorithm as depicted in Algorithm 2.

Algorithm 2: The General Bagging Algorithm
Input :
Dataset samples: D ∈ <N×(n+m) = (X1, Y1), ..., (XN , YN)
% n denotes the dimension of input data;
% m denotes the number of classes (2 in binary classification case);
Base-learning algorithm: L
Number of base-models: I
for i = 1 to I do
F i = L(D,Dbootstrap) % Dbootstrap is the bootstrap distribution

end for
Inference:

2.5 An Offline Base-Learning Algorithm

2.5.1 ANFIS

ANFIS [37] is one of the well-known algorithms in the fuzzy systems area. Accurately, ANFIS

is categorized as a neuro-fuzzy system (NFS) because it uses the hybrid intelligent system

represented by a graphical network of Sugeno-Type Fuzzy Systems endowed with neural network

learning capabilities. Due to its ability to cope with the non-linear systems of real-world

applications, ANFIS has been used by many researchers to develop many variations of evolving

neuro-fuzzy systems (ENFSs) such as PANFIS [11]. While PANFIS adopts an online working

principle where its structure is evolving, the basic structure of PANFIS is adopted from ANFIS.

Therefore, ANFIS architecture is worth discussion.

The main characteristic of ANFIS lies in the use of examples to define its membership function

to construct a fuzzy inference system (FIS). An example of ANFIS’s architecture consists of

23

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

two input variables x and y with f(x, y) as an output. Three associated membership functions

(MFs) for each input are illustrated in Fig. 2.4

x (input

variable

1)

y (input

variable

2)

Π

Π

Π

Π

Π

Π

Π

Π

Π

"#$(x)

"#%(x)

"#&(x)

"'$(y)

"'%(y)

"'&(y)

Layer 1 –

Membership

Function

Layer 2 –

Rule Layer

N

N

N

N

N

N

N

N

N
Layer 3 –

Normalization

Layer

Fully

connected

layer

)*
)*

)+

),

)-

).

)/

)0

)1

)2

3*(5, 7)

3+(5, 7)

3,(5, 7)

3-(5, 7)

3.(5, 7)

3/(5, 7)

30(5, 7)

31(5, 7)

32(5, 7)

Σ

Layer 4 –

Compute consequent

Parameters

Layer 5 –

Aggregates overall

output

)*3*

),3,

)+3+

).3.

)-3-

)/3/

)030

)131

)232

ℱ(x,y)

),

)-
).

)0

)/

)1

)2

)+ Model –

Overall systems’

behaviour.

The relation between

Input and output

from ANFIS’ learning

Adaptive

nodes

Adaptive

nodes

Fixed Nodes

labeled Norm

Fixed Nodes

labeled Prod

Fixed

Nodes labeled Sum

Figure 2.4: Architecture of ANFIS

The two fuzzy IF-THEN rules using the first-order Takagi-Sugeno fuzzy model [41] with nine

rules are defined as follows:

Rule 1: if x is a1 and y is b1, then f1 = p1x+ q1y + r1

Rule 2: if x is a1 and y is b2, then f2 = p2x+ q2y + r2

Rule 3: if x is a1 and y is b3, then f3 = p3x+ q3y + r3

Rule 4: if x is a2 and y is b1, then f4 = p4x+ q4y + r4

Rule 5: if x is a2 and y is b2, then f5 = p5x+ q5y + r5

Rule 6: if x is a2 and y is b3, then f6 = p6x+ q6y + r6

Rule 7: if x is a3 and y is b1, then f7 = p7x+ q7y + r7

Rule 8: if x is a3 and y is b2, then f8 = p8x+ q8y + r8

Rule 9: if x is a3 and y is b3, then f9 = p9x+ q9y + r9

where ai, and bj denote the linguistic label or fuzzy sets of the first input and second input

variable respectively, i = {1, 2, 3} and j = {1, 2, 3}, the index of fuzzy set ai and bj respectively.

24

2.5. AN OFFLINE BASE-LEARNING ALGORITHM

pr, qr, and rr represent the consequent parameters which can be obtained by ANFIS’ training

procedure using the examples as training data, whereas r = {1, ..., 9}. The number of rules is

obtained from the combination of the number of fuzzy sets in all input variables.

ANFIS architecture basically consists of five layers as follows:

• Layer 1: Fuzzification layer - also called the membership function layer whose function

is to determine the membership degree of the input variables to each fuzzy set for that

particular input. An example of a membership function is a Gaussian function. Thus

the membership degree of fuzzy set ai (using a Gaussian function) can be expressed as

follows:

µai(x) = exp(−(ci − x)2

2σ2
i

) (2.1)

µai is the membership degree of first input x with respect to ith fuzzy set. ci and σi

represent the center and width of fuzzy set ai.

• Layer 2: Rule layer: where each node in the first layer (µai(x) and µbj(y)) calculate the

firing strength of all rules. The function used can be MIN, PROD, AND, or any other

fuzzy operation. Suppose that the function calculating the firing strength uses the PROD

function. The firing strength of rule r is denoted as :

wr = µai(x).µbj(y) (2.2)

• Layer 3 : Normalization layer - This layer’s function is simply to normalize the all rules’

firing strength. The normalized firing strength of rth rule is denoted as :

w̄r = wr/

9∑
r=1

wr (2.3)

where wr denotes an rth rule’s firing strength. wr is then normalised as a normalised

firing strength w̄r.

25

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

• Layer 4: Defuzzification layer: In this layer, every node v is an adaptive node and the

output is the parameter output of rth rule denoted as :

w̄rfr(x, y) = w̄r(prx+ qry + rr); r = {1, .., 9} (2.4)

where pr, qr, and rr are the parameters set for the rth rule/node. Parameters in this layer

are called consequent parameters or the consequent function of the rth rule.

• Layer 5: Aggregation layer: This layer normally contains a single node that aggregates the

overall outputs from the previous layer as the summation of all incoming signals denoted

as:

F (x, y) =
9∑
r=1

w̄rfr(x, y)/
9∑
r=1

wr (2.5)

From Fig. 2.4 and the output of the ANFIS (layer 5), it can be seen that FIS which is depicted

by the model denoted as F (x, y) represents the relationship between input and output variables

x, y, and z describing the overall system’s behaviour.

2.5.2 Decision Tree

Decision tree is one of the popular supervised learning algorithm. Like ANFIS, decision tree

algorithm can solve the problem of regression and classification. In decision tree, the training

data is used to build the model in the form of decision rules the predict the class or value of

the target variable.

The decision tree procedure starts from finding the first deciding node as a root. The root

can be determined from several criteria, such as: Entropy, Information Gain, Gini Index, Gain

Ratio, Reduction in Variance, and Chi-Square. These criteria are used to calculate values for

every attribute.

Assume that the Information Gain is used as a criterion. The first step of building the tree

is calculating the entropy. Entropy is known as a measure of the uncertainty about source of

26

2.6. LEARNING MECHANISM OF OFFLINE ALGORITHMS

messages. The entropy is formulated as follows:

Entropy =
c∑
i=1

−pi ∗ log2(pi) (2.6)

where pi denotes the proportion of (collection S) belonging to ith class. When the value of

entropy is small, it means that the less information required to define a class. Entropy is zero

if all the members of S have the same class.

In order to determine the decision node, the Information Gain is calculated as follows:

Gain(S,A) = Entropy(S)−
∑

v∈values(A)

|Sv|
|S|

(2.7)

where A denotes the attribute, S represents each value v of all possible values of attribute A.

Sv denotes the subset of S when attribute A has value of v. |Sv| and |S| denote the number of

Sv and S respectively.

The highest value of the criteria (e.g. Information Gain), is assigned as a root. Once root is

obtained, a tree is built by creating the branch from the root. The splitting procedure is carried

out based on both splitting rules and classification features. This procedure is repeated until

the stopping criteria is reached (e.g. the value in the subset node has an equal value with the

target variable).

2.6 Learning Mechanism of Offline Algorithms

This subsection introduces three standard offline algorithms: the batch algorithms, the dis-

tributed algorithms, and the ensemble algorithms. They adopt an offline working principle and

utilize the static/fixed-size training data before the learning process.

27

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

2.6.1 The Batch Algorithms

The batch algorithms are commonly known as standard data mining algorithms. They use

a fixed size training data for learning, having a static single model, and perform a standard

testing task as depicted in Fig. 2.5. Some tasks and terms used in the batch algorithms are

described as follows:

𝑵
in

st
an

ce
s

training data 𝔻 ∈ ℜ!×($%&)

input data
𝑋 ∈ ℜ!×($)

𝑚 dimensional
output data

𝑛 dimensional
input data

true
label

𝑌 ∈ ℜ!×(&)

(optimization
procedure)

functionℱ,
a static final

model

testing data
𝑋(∈ ℜ)×($)

𝑨
nu

m
be

r o
f

te
st

in
g

in
st

an
ce

stesting task

output testing
(class label or

continuous
valued output)
𝑌(∈ ℜ)×(&)𝑨

nu
m

be
r o

f
ou

tp
ut

𝑌& = ℱ(𝑋&)

Fixed size training data Training task and generate
model

testing data and testing task
using model ℱ

training task

Figure 2.5: The standard batch algorithm architecture.

Definition 2.1. Training data D : The fixed number of observations consists of a pair of

input data X and true label Y denoted as D = (X, Y). X and Y contain a set of instances

X = (X1, .., Xi, ..., XN) and Y = (Y1, .., Yi, ..., YN) respectively. The properties of D are defined

in Table 2.1.

Definition 2.2. Training task : The task of approximation of an unknown function F :

X → Y from the observations D. F is searched using the optimization method so that the

error (F (X)− Y), is minimized. The optimized function F is also called a model.

Note: F represents a model generated from the training task in general. In this thesis, this

model is used for the inference task in a classification problem as a classifier.

28

2.6. LEARNING MECHANISM OF OFFLINE ALGORITHMS

Table 2.1: Properties of training data D used in the batch algorithms

No Term Symbol Dimension Note

1 input data X X ∈ <N×n
N denotes the fixed number of instances,
n denotes the dimension of the input data
(static data)

2 true label Y Y ∈ <N×m m denotes the dimension of the true label
(static data)

3 training data D D ∈ <N×(n+m)

training data is also called a pair of
observations (X, Y) which consists of
input data X and true label Y
(static data)

Definition 2.3. Testing data X̂ ∈ <A×n represents the unlabelled/unseen future data for

the purpose of the testing task. This data is separate from the training data. Similar to the

training data, it has n dimension of input without labels, where A represents the number of

instances in the testing data.

Definition 2.4. Testing task : This is also called the inference task. This is the process

when a model F generates an output testing Ŷ from the given X̂. This task is denoted as

Ŷ = F (X̂). Ŷ is the output in a form of a class label in the classification task or continuous

valued output in the regression task.

2.6.2 The Ensemble Algorithms

The standard ensemble algorithms utilize a fixed size training data D in both the training and

testing task. They use the multiple models to improve the system’s overall performance. The

architecture and the learning properties of the standard ensemble algorithms are depicted in

Fig. 2.6 and Table 2.2 respectively.

Definition 2.5. Ensemble training task: A learning mechanism that involves several base-

learning algorithms to learn either the same observations D = (X, Y), disjoint data partition,

or overlapping data partition to generate several base models. The collection of base models

29

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

Table 2.2: Properties of standard Ensemble Learning

No Term Symbol Dimension Note

1 Input data X X ∈ <N×n
Fixed size of input data
the same data as the batch algorithms
(static data)

2 True label Y Y ∈ <N×m kth label (static data)

3 Base model F i NA ith base model of ensemble network EN.

4 Ensemble network EN NA EN = {F1, ...,F i, ...,FI}
A stack of I base models.

is called ensemble network EN = {F1, ...,F i, ...,FI}, where I denotes the number of base-

learning algorithms or base models which exist in the EN.

𝑵
in
st
an
ce
s

training data 𝔻 ∈ ℜ!×($%&)

input data
𝑋 ∈ ℜ"×(%)

𝑚 dimensional
output data

𝑛 dimensional
input data

true label
𝑌 ∈ ℜ"×(')

Fixed size training data Training task and model generation

Looping
Mechanism

Base Models (𝔼ℕ)
(static model)

ℱ1

ℱ2

ℱ𝒊

ℱI

…

testing data
𝑋(∈ ℜ)×($)

𝑨
nu

m
be

r o
f

te
st

in
g

in
st

an
ce

s

Testing
task

Combination of
output testing
(class label or

continuous valued
output)

𝑌" ∈ ℜ#×(&)𝑨
nu

m
be

r
of

 o
ut

pu
t

𝑌(= 𝔼ℕ(𝑋()

𝑌"1 = ℱ1(𝑋")

𝑌"2 = ℱ2(𝑋")

𝑌"𝑖 = ℱc(𝑋")

𝑌"𝑧 = ℱC(𝑋")

Combined output

Testing task using 𝔼ℕ

…

Training
Task

Figure 2.6: The standard ensemble algorithm architecture - standard training and testing
scenario.

Definition 2.6. Ensemble testing task: The output of ith base model can be modelled as

Ŷi = F i(X̂). The final output (which is denoted as Ŷ = EN(X̂)) is the combination from all

the base models’ inferences after the voting weight mechanism is applied (Ŷ =
∑I

i=1 Ŷi ∗ βi).

Ŷi and βi are the inference output and voting weight of ith base model respectively, where the

voting weight can be determined through the performance evaluation mechanism (e.g. penalty

and reward scenario).

30

2.6. LEARNING MECHANISM OF OFFLINE ALGORITHMS

2.6.3 Distributed Algorithms

While standard batch algorithms are considered to be standard data mining algorithms, stan-

dard distributed algorithms are also introduced to expand the processing capacity of the batch

algorithms by processing D in a distributed manner. Thus, the distributed algorithms are ca-

pable of processing a much larger scale of instances. Both batch and distributed algorithms

are designed to process a fixed number of observations D. The tasks and terms used in the

distributed algorithms are defined as follows:

Definition 2.7. Distributed training task: A training task undertaken in a distributed

manner using several (Q) processing nodes. Suppose that a fixed number of instances of D

consists of X ∈ <N×n and Y ∈ <N×m. In the distributed algorithm task, X and Y are

divided into P partitions called input data partition Xp ∈ <V×n and true label partition

Y p ∈ <V×m respectively. The typical distributed algorithms learn all P number of partitions

of training data Dp, and for each Dp = [Xp, Y p], a local model F p is generated resulting in

the generation of initial distributed models F initial = {F 1, ...,F p, ...,FP} as the learning

outputs.

Dp represents a partition of training data, where p = {1, 2, ..., P}, and V denotes a number

of instances in the partition ofXp, Y p, andDp. Note that the V can be obtained from V ≈ N
P
. A

distributed learning platform (Spark) will automatically duplicate a small number of instances

to some partitions if (N mod P 6= 0) to make the number of V even for all partitions.

In the distributed algorithm task, all Dps are distributed evenly into Q nodes in the cloud.

Each node trains around G number of Dp (in a serial manner), where G ≈ P
Q . Please also note

that the number of G may not be even in all nodes (if (P mod Q 6= 0)). However, Spark will

automatically distribute all partitions as evenly as possible to all nodes. The architecture of

the standard distributed algorithms is depicted in Fig. 2.7, and its properties is summarized

in Table 2.3.

Definition 2.8. Merging (local) model task: The initial distributed models F initial contain

31

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

whole training data 𝔻 ∈ ℜ!×($%&)

𝑋!

𝑃 input data partitions
𝑿𝒑𝒂𝒓𝒕 ∈ ℜ%×'

Node 1

function

ℱ𝒎𝒆𝒓𝒈𝒆𝒅,
a static final

(merged)
model

testing data
𝑋" ∈ ℜ#×(&)

𝑨
nu

m
be

r o
f

te
st

in
g

in
st

an
ce

stesting task

output testing
(class label or

continuous
valued output)
𝑌" ∈ ℜ#×(()𝑨

nu
m

be
r o

f
ou

tp
ut

𝑌(= ℱ&)*+),(𝑋()

…

𝑋)

𝑋*

𝑋+

𝑋,

𝑋-

𝑋.

𝑌!

…

𝑌)

𝑌*

𝑌+

𝑌,

𝑌-

𝑌.

𝑃 output data partitions
𝒀𝒑𝒂𝒓𝒕 ∈ ℜ%×(

training task
(optimization procedure

in all nodes)

Node 2

Node 4

Node 3

assuming number
of node Q=4

ℱ!

…

ℱ)

ℱ*

ℱ+

ℱ,

ℱ-

ℱ.

Initial Distributed Models
containing P local models

Models
merging

Note: the testing task below only
shows the single node testing
procedure for simplicity

Note: testing data 𝑋) can also be
processed in distributed manner.
The results should be the same
with the single processing one 𝑵

in
st

an
ce

s

Fixed size training data
is divided into P partitions

Training task using Q nodes. For each partition,
a local model is generated. A merged model

is obtained model merging procedure

Testing data, testing task, and
generate output

…… …

ℱ𝒊𝒏𝒊𝒕𝒊𝒂𝒍

Figure 2.7: The Standard distributed algorithm architecture.

P number of local models (multiple models). The model merging procedure aggregates initial

distributed models F initial into a merged model Fmerged (single model). This procedure is

denoted as Fmerged = merge(F initial).

Definition 2.9. Distributed testing task: The output Ŷ can be obtained in two ways, either

using a merged model Fmerged or using the initial distributed models F initial. The former testing

task is carried out by simply feeding the X̂ into Fmerged denoted as Ŷ = Fmerged(X̂) as the

testing task depicted in Fig. 2.7. The latter testing task is undertaken by feeding X̂ into F initial

(Ŷ = F initial(X̂)) similar to the testing task conducted in the ensemble algorithms discussed

in subsection 2.6.2.

Note : The initial distributed models F initial structure is similar to the base models of ensemble

network (EN). In other words, F initial can be perceived as an EN because the structure of a

local model in F initial is the same as a base model in EN. One distributed training task can be

regarded as training of P same type and same parameter of base-learning algorithms trained

by the P disjoint partitions of training data D using an ensemble algorithm.

In summary, while the typical batch, ensemble, and distributed algorithms have different learn-

ing schemes, they are similar in terms of the use of N fixed instances of D, which is known

32

2.7. LEARNING MECHANISM OF ONLINE ALGORITHMS

Table 2.3: Properties of the distributed algorithms

No Term Symbol Dimension Note

1 input data partition Xp Xp ∈ <V×n
V denotes the number of
instances in Xp

p = {1, 2, ..., P}

2 true label partition Y p Y p ∈ <V×m

3 partition of training data Dp Dp ∈ <V×(n+m) Dp = (Xp, Y p); a pair of
observations (Xp, Y p)

4 local model F p NA A model of Dp; an approximated
function learned from Dp

5 initial distributed models F initial NA The initial distributed models;
Stack of P number of F p

6 merged model Fmerged NA The final model in the distributed methods
framework;

before the training task. Their models (EN, Fmerged, and F) are used to infer testing data X̂.

In the case of data streams where instances arrive continuously, learning from data streams

using these three types of algorithms is impractical as they are designed to learn static training

data. To gain knowledge of all samples, a retraining phase should be carried out upon the

arrival of new instances (including previously learned samples). However, the retraining phase

could lead to the problem of catastrophic forgetting because data streams are generated from

a non-stationary environment. For this reason, the algorithms suitable for this problem are the

online algorithms which are explained in section 2.7.

2.7 Learning Mechanism of Online Algorithms

In the previous subsection 2.6, three types of offline algorithms: the batch, ensemble, and

distributed algorithms whose corresponding models (F , EN, Fmerged) are generated from a

fixed training data, were presented. In this subsection, the online algorithms to learn from data

streams are introduced.

33

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

Definition 2.10. Data streams S : the sequential arrival of unbounded batches of training

data streams denoted as S = {B1.B2, ...,Bk, ...}, where Bk = (Xk, Yk), Bk ∈ <N×(n+m). Xk ∈

<N×n represents the batch of input data, Yk ∈ <N×m represents the batch of true label, and k

represents the timestamp of arrival Bk, k = {1, 2, 3, ..., K, ...}. K is possibly an infinite number,

and N represents number of instances in Bk.

From definition 2.10, it can be seen that learning from data streams requires algorithms which

can process sequential data by incrementally updating their models in every kth timestamp.

Furthermore, the algorithms must be adaptive so they can deal with the non-stationary trait

of data streams which can only be handled by using incremental learning algorithms.

The online or incremental methods which were inspired by the concept of an incremental

heuristic search [42] are deemed as appropriate solutions to handle data stream issues because

they feature the continual learning property to learn data in a task-by-task manner. Basically,

for every training task, they use the previous timestamp’s model Fk−1 to build the current

timestamp model Fk given the new data streams Bk.

The new data streams can either be in the form of batch or instance data. Their learning mech-

anisms can be called batch incremental for incremental learning algorithms and instance

incremental for evolving algorithms which are depicted in Fig. 2.8 and Fig. 2.9 respectively.

The formal mathematical point of view for the incremental learning model update is modeled

as follows:

Fk = L(Fk−1,Bk);Bk = (Xk1,...,kN ;Yk1,...,kN);Bk ∈ <N×(n+m), (2.8)

where Bk, Xk, and Yk denote training data, input data, and true label respectively, at kth

timestamp. N denotes the number of instances in the current timestamp. n and m denote

the dimensional feature of the input variable of Xk and the output variable of Yk respectively.

Similarly, the formal mathematical point of view for the evolving algorithm’s model update is

modeled as follows:

34

2.7. LEARNING MECHANISM OF ONLINE ALGORITHMS

Fk = L(Fk−1, Ik); Ik = (Xk;Yk); Ik ∈ <1×(n+m), (2.9)

where Ik, Xk, and Yk denote the instance stream, instance input stream, and instance label

stream respectively at current (kth) timestamp.

It is apparent from the learning mechanism’s point of view that both the evolving algorithms

and the incremental learning algorithms share a similar procedure, where they process the data

streams sequentially. The difference between the evolving algorithms and the incremental learn-

ing algorithms lie in the number of instances processed at the kth timestamp. The incremental

learning algorithms update their models per batch (N >> 1), whereas the evolving algorithms

update their models per instance (N = 1).

Furthermore, unlike the standard batch algorithms where the labels are available prior to the

training task, in data stream processing, data arrive without labels (labels are available after

some time due to a delay in the labelling effort). This means that in data stream processing,

for every timestamp, the testing task is carried out first followed by the training task. This

procedure is called the prequential test-then-train task.

Definition 2.11. Prequential test-then-train task: The sequential learning of the data streams,

where the testing task is conducted first followed by the training task for every timestamp in

Bk.

While prequential test-then-train can be used for both evolving algorithm and incremental

learning, this term is commonly used for the standard procedure in incremental learning. The

details of the prequential test-then-train task procedure in incremental learning is illustrated as

follows. When Xk arrives, the testing task is conducted first to infer Xk which results in output

testing batch Ŷk. The testing task is denoted as Ŷk = F(k−1)(Xk). Then, the training task is

conducted afterward denoted as Fk = L(Fk−1,Bk). The architectural diagram for prequential

test-then-train is depicted in Fig. 2.8.

35

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

2.7.1 The Incremental Learning Algorithms - Batch Incremental

Learning Algorithms

For incremental learning algorithms, especially in the prequential test-then-train scenario, the

learning procedure is described as follows. For every kth timestamp, the test-then-train task of

a batch Bk is repeated and the batch model Fk is incrementally updated until the end of the

batch (or possibly infinite Kth batch). The the properties of the test-then-train task scenario

is depicted in Table 2.4.

batch of input data

𝑋! ∈ ℜ"×$
𝑋!" ∈ ℜ"×$

1st instance input
Batch 𝑋!

𝑋!%

𝑋!&

𝑋!'

𝑋!(

𝑋!)

Nth instance input
Batch 𝑋!…

𝑌! ∈ ℜ"×%
𝑌!"

1st instance output
Batch 𝑌!

𝑌!%

𝑌!&

𝑌!'

𝑌!(

𝑌!)

Nth instance output
Batch 𝑌!

…

𝑌!" ∈ ℜ"×$

𝑋!

𝑌!

batch of training data

𝔹! ∈ ℜ"×($'%)batch of (output data/label)

𝒮 = {𝔹", 𝔹# , 𝔹$,… ,𝔹!,, … }

𝑋" 𝑌"

labelling data 𝑋"
training task
of batch 𝔹"

idle,
no training task,
no testing task

1st timestamp

function
ℱ𝟏,

a initial
model

ℱ𝟏: 𝑋"→ 𝑌"
ℱ𝟏 = ℒ(𝔹")

𝑋# 𝑌#

labelling batch 𝑋&
training task
of batch 𝔹&

testing task &

2nd timestamp

function
ℱ𝟐,

2nd model

ℱ𝟐 = ℒ(ℱ𝟏, 𝔹&)
𝒀𝟐(= ℱ𝟏(𝑋&)

𝑋$ 𝑌$

3nd timestamp

function
ℱ𝟑,

3rd model

ℱ𝟑 = ℒ(ℱ𝟐, 𝔹*)
𝒀𝟑(= ℱ𝟐(𝑋*)

𝑋! 𝑌!

kth timestamp

function
ℱ𝒌,

kth model

ℱ𝒌 = ℒ(ℱ(𝒌-𝟏), 𝔹!)
𝒀𝒌(= ℱ(𝒌-𝟏)(𝑋!)

…

… 𝑋'
possibly

unbounded
batch

Prequential test-then-train scenario
(1)In the first timestamp, only training task is conducted. In

this timestamp, the goal is constructing initial model ℱ𝟏
using first timestamps’ training data 𝔹+(𝑋+ and 𝑌+).

(2)Second timestamp: (a) Testing task of 𝑋, using a model from
previous timestamp ℱ𝟏 (b) Training task, constructing model
ℱ𝟐 (previous model ℱ𝟏 is evolving by the use of information
of third timestamps’ training data 𝔹+)

(3)kth timestamp: (a) Testing task of 𝑋. using a model from
previous timestamp ℱ(𝒌1𝟏) (b) Training task, constructing
model ℱ𝒌 (previous model ℱ(𝒌1𝟏) is evolving by the use of
information of kth timestamps’ training data 𝔹.).

𝑌!𝑋!

labelling batch 𝑋*
training task
of batch 𝔹*

testing task &

labelling batch 𝑋!
training task
of batch 𝔹!

testing task &

Figure 2.8: Online algorithm - standard batch incremental learning algorithm architecture using
prequential test-then-train scenario

2.7.2 The Evolving Algorithms - The Instance Incremental Learning

Algorithms

The slight difference between evolving algorithms and incremental learnings is that in the

evolving algorithms, the model update is carried out instance-by-instance instead of batch-by-

batch for every timestamp. Data fed in the kth timestamp is an instance called instance stream

Ik instead of a batch of instances called the batch of training data Bk.

36

2.7. LEARNING MECHANISM OF ONLINE ALGORITHMS

Table 2.4: Properties of the Standard Batch Incremental Learning Algorithms

No Term Symbol Dimension Note

1 batch of input data Xk Xk ∈ <N×n
N denotes the number of
instances in Xk

2 an instance in
a batch of input data Xkt Xkt ∈ <1×n t denotes index of instance

in a batch Xk ; t = {1, 2, 3, ..., t, ..., N}

3 a batch of true label Yk Yk ∈ <N×m

4 an instance in
a batch of true label Ykt Ykt ∈ <1×n t denotes index of instance

in a batch Yk ; t = {1, 2, 3, ..., t, ..., N}

5 a batch of training data Bk Bk ∈ <N×(n+m) a batch of training data
consisting of (Xk, Y k)

6 timestamp model Fk NA

an evolving model at timestamp k.
This model is evolving every
timestamp adapting to the
pattern of Bk = (Xk, Y k)
while also considering previous
merged model Fk−1

The learning scenario of the common evolving algorithms is described as follows. For every

timestamp k, a test-then-train task of instance stream Ik is repeated and the model Fk is

updated until the end of the batch where the number of timestamp k is possibly unbounded.

The architecture and the properties of the learning and evaluation scenario are depicted in Fig.

2.9 the Table 2.5 respectively.

Table 2.5: Properties of the Evolving Algorithms

No Term Symbol Dimension Note

1 instance input stream Xk Xk ∈ <1×n kth instance input of
unbounded data stream

2 instance label stream Yk Yk ∈ <1×m kth instance label of
unbounded data stream

3 instance stream Ik Ik ∈ <1×(n+m)

The pair of (Xk, Yk),
a training data at kth timestamp Bk,
Bk = Ik, means
a training data is an instance stream

37

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

Data stream 𝒮 = { 𝑋!, 𝑌! , 𝑋", 𝑌" , 𝑋#, 𝑌# , … , 𝑋$, 𝑌$, … }

𝑋! ∈ ℜ"×$

instance input
stream

𝑌! ∈ ℜ"×%

instance output
stream

instance stream (𝐼!)

𝕀! = 𝔹" ∈ ℜ#×(&'()

𝒮 = {𝕀!, 𝕀" , 𝕀# , … , 𝕀$, … }

idle,
no training task,
no testing task

1st timestamp

function
ℱ𝟏,

a initial
model

ℱ𝟏:𝑋" → 𝑌"
ℱ𝟏 = ℒ(𝕀))

2nd timestamp

function
ℱ𝟐,

2nd model

ℱ𝟐 = ℒ(ℱ𝟏, 𝕀$)
𝒀𝟐% = ℱ𝟏(𝑋$)

3nd timestamp

function
ℱ𝟑,

3rd model

ℱ𝟑 = ℒ(ℱ𝟐, 𝕀')
𝒀𝟑% = ℱ𝟐(𝑋')

kth timestamp

function
ℱ𝒌,

kth model

ℱ𝒌 = ℒ(ℱ(𝒌*𝟏), 𝕀,)
𝒀𝒌% = ℱ(𝒌*𝟏)(𝑋,)

…

… 𝑋&
possibly
unbounded
batch

Learning evaluation scenario in Evolving Algorithms
(1)In the first timestamp, only training task is conducted. In this

timestamp, the goal is constructing initial model ℱ𝟏 using first
instance stream 𝕀"(𝑋" and 𝑌").

(2)Second timestamp: (a) Testing task of 𝑋) using a model from
previous timestamp ℱ𝟏 (b) Training task or model update
(constructing model ℱ𝟐 making use initial model ℱ𝟏 and
current 2nd instance stream 𝕀)).

(3)kth timestamp: (a) Testing task of 𝑋! using a model from
previous timestamp ℱ(𝒌-𝟏) (b) Training task or model update
(constructing model ℱ𝒌 making use previous model ℱ(𝒌-𝟏) and
kth instance stream 𝕀!).

…

𝑋$ 𝑌$

training task
of instance 𝕀" labelling

instance 𝑋$

training task
of instance 𝕀$

testing task &
labelling

instance 𝑋'

training task
of instance 𝕀'

testing task &

labelling
instance 𝑋,

training task
of instance 𝕀,

testing task &

z𝑋$

𝑌$

𝑋!

𝑌$

𝑌$ 𝑌" 𝑌#𝑋"

𝑋$

𝑋#

where N = 1

Figure 2.9: Online algorithm - evolving algorithm architecture - standard instance incremental
learning algorithm

2.8 Towards the Implementation of Distributed Incremen-

tal Ensemble Algorithms

This subsection discusses two methods: incremental ensemble and distributed incremental en-

semble algorithms. Both are categorized as incremental learning, but the latter runs in the

distributed environment. The most challenging part of incremental learning algorithms is keep-

ing their model updated at any timestamp without losing the generalization performance when

the model is used to infer future data. The problem with distributed incremental learning

algorithms is much more challenging due to the problem of structural complexity. That is,

the initial output of distributed algorithms in each task is the initial distributed models whose

structure needs to be simplified to warrant the incremental learning procedure.

38

2.8. TOWARDS THE IMPLEMENTATION OF DISTRIBUTED INCREMENTAL
ENSEMBLE ALGORITHMS

2.8.1 Dynamic Structure of the Incremental Ensemble

The backbone of this algorithm is the architecture of the ensemble algorithms implemented in

the incremental setting, as explained in subsections 2.6.2 and 2.7.1 respectively. An example of

this kind of algorithm is applied in pENsemble [28]. In pENsemble, data arrive in batches as in

the incremental learning algorithms. A prequential test-then-train is applied for every batch.

In the testing part, an ENk−1 infers Xk, and it produces the combination of output testing Ŷk

similar to the inference mechanism in the ensemble algorithms.

The dynamic structure of incremental ensemble algorithms: The structure of incre-

mental ensemble algorithms evolve in every task. In [28], a new base model F I+1 is added

into the existing ENk when drift occurs by employing a drift detection mechanism at the kth

timestamp. Conversely, any statistical measurements can be applied as the pruning criterion

to remove some of existing models in the EN if they are deemed to be no longer significant to

the ensemble network EN.

An example scenario for the dynamic structure of the incremental ensemble algo-

rithms: At the 9th timestamp, k = 9, a 9th batch of input data X9 arrives and is fed to the

ensemble network (assuming that at the previous timestamp (8th), the ensemble network has

two base models) EN8 = {F 1,F 2}. The update of the EN in the 9th timestamp is performed

based on the following steps:

• Testing task at batch 9: The testing task is performed first following the testing

procedure in the ensemble algorithm as shown in Fig. 2.6 resulting in the combination of

output testing Ŷ9 denoted as Ŷ9 = EN8(X9).

• Model removal: In this step, the models’ performance is measured. The model removal

procedure is based on the performance of each base model inside the EN. The insignificant

base models are removed from the network.

• Model selection or model (inside EN8) selection: Of the existing base models, only

one model needs to be updated as the winning model. The selection mechanism is based

39

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

on the testing task performance in the current (testing task) step. For example, suppose

the winning model is F 2, thus F 2 will be used as the model to be updated in the training

task step.

• The drift detection mechanism: This method measures the drift rate in the current

batch ensemble output Ŷ9.

• Training task or model update: In this step, the ensemble network modifies its models

based on the following procedures:

(1) Update the winning model: Assuming that the batch 9 true label X9 arrives, the batch

of training data can be obtained B9 = (X9, Y9). The winning model update is denoted

as Fupdate = L(F 2,B9), F 2 = Fwinning, which means that an updated model is obtained

given a new batch of training data B9 using a winning model Fwinning.

(2) Modify the network structure: (a) In a case where drift is detected, a new base model

Fupdate is added to the ensemble network, so that EN9 = {F 1,F 2,Fupdate}. (b) In the

case that drift is not detected, the updated model replaces the winning model (F 2), so

that EN9 = {F 1,Fupdate}.

From the example above, it can be seen that the structural evolution in the incremental

ensemble algorithms occur sequentially in data stream learning triggered by a drift. When

drift is detected in the 9th batch, the ensemble network evolves from EN8 = {F 1,F 2} into

EN9 = {F 1,F 2,Fupdate}. Otherwise, if no drift is detected in the 9th batch, the ensemble

network evolves from EN8 = {F 1,F 2} into EN9 = {F 1,Fupdate}. Note that in this case, the

model’s performance and drift detection task are evaluated at the end of the instance in the

batch B9, thus the structural ensemble evolution is performed afterwards.

2.8.2 The Distributed Incremental Ensemble frameworks

Distributed incremental ensemble algorithms are the extension of typical incremental ensemble

algorithms implemented in a distributed processing platform. Their dynamic structure is similar

40

2.8. TOWARDS THE IMPLEMENTATION OF DISTRIBUTED INCREMENTAL
ENSEMBLE ALGORITHMS

to incremental ensemble algorithms in terms of the structural evolution mechanism, except both

the training and the testing task are performed in a distributed manner instead of single-node

processing, thus it requires a merging procedure once the local models are generated from

all partition learning, as depicted in Fig. 2.7 (the distributed training task). The dynamic

architecture of this algorithm is illustrated in Fig. 5.1. The learning scheme for this algorithm

also uses the prequential test-then-train similar to the incremental ensemble algorithms.

An example scenario for the dynamic structure of the distributed incremental

ensemble algorithms (using the same scenario as the incremental ensemble algo-

rithms): The steps of the learning mechanism in each timestamp are summarized as follows:

• Distributed Testing task: At the 9th timestamp, the distributed testing task is per-

formed first denoted as a 9th, Ŷ9 = Fnetwork;distributed
8 (X9).

• Model removal: The model’s performance is measured based on the distributed testing

task performance. The superfluous models are removed.

• Model selection: This aims to determine which model (inside ensemble network at 8th

timestamp) should be used for the model update process in the distributed training task.

The selected model is called the winning model.

• The drift detection mechanism: The drift detection method used in this algorithm

is similar to that of the one used in the incremental ensemble algorithms. This method

is applied to measure the drift rate in the current batch output Ŷ9 (9th timestamp).

• Distributed training task and model update: This step is the most challenging part

due to the distributed nature of the training procedure. This step is broken down into

several substeps:

– (1) Update the winning model:

(a) Pick the winning model - Suppose that the winning model in EN is F 2 (2nd base

model).

41

CHAPTER 2. RESEARCH CONTEXT - ARCHITECTURE AND PROBLEM
DEFINITION

(b) In the same way as for the incremental ensemble algorithms, the training data

B9 can be obtained after the labels arrive.

(c) Divide batch B9 into P partitions evenly and distribute them into Q nodes.

In each partition, the training/model update is performed, F p
9 = L(F 2,Dp

9). F p
9

denotes pth local models at 9th timestamp.

(d) Collect all P local models. The collection of all P sub-models is denoted as

F initial
9 = {F 1

9 , ...,F
p
9 , ...,FP

9 }.

– (2) Merging all the collected P local models to generate a merged model: merged

model Fmerged
9 = Merge(F initial

9) as a result of the distributed algorithms of batch

B9. Previously, we had a winning model at 8th timestamp F 2 (2nd model).

– (3) Model Update : candidate model Fupdate = Fmerged
9 .

– (4) Modify the ensemble network structure: (a) In the case that drift is de-

tected, the new model Fupdate is added to the ensemble network, so that EN9 =

{F 1,F 2,Fupdate}. (b) In the case that drift is not detected, the updated model

replaces the winning model, so that EN9 = {F 1,Fupdate}.

2.9 Summary

This chapter presents the related backgrounds (e.g. terms, notations, and architectures) used in

the large-scale data stream framework. In general, we utilize online algorithms because we deal

with the problems of data streams. We categorize online algorithms into two categories based

on the number of sample(s) learned in every task. The first category is instance incremental

learning, which updates its model in every instance. The second is batch incremental learning,

which learns and updates its model in every batch/task. In this thesis, we use the term evolving

algorithm to refer to instance incremental learning. The term incremental learning refers

to batch incremental learning.

A base-learning algorithm is introduced as a learning and inference engine component for

42

2.9. SUMMARY

both ensemble algorithms and distributed algorithms. Once a base-learning component is

used in either ensemble or distributed algorithms, the learning output is the multiple models.

While the ensemble methods aim to increase accuracy by combining multiple models, the

distributed methods aim to speed up the single processing node algorithm. When an evolving

algorithm is implemented as a base-learning algorithm in a distributed training task, the output

is the evolving initial distributed models. These models contain multiple models similar to the

ensemble model structure. The initial distributed models can be processed in two ways: model

merging and a combination mechanism (e.g. weighted voting, majority voting). The testing

mechanism can be carried out either using a merged model obtained from the model merging

or using the initial distributed models directly, similar to the testing task of the ensemble

algorithms. For the case of using the initial distributed models, the final output is obtained

from the combination of outputs from several models.

Batch incremental learning algorithms aim to learn the continual data streams. One of the

prevalent methods in incremental learning are the incremental ensemble algorithms. In the

literature, some of the earlier methods are built based on static EN without structural evolution.

Recently, incremental learning with the dynamic evolution of EN was proposed, and has been

proven to be effective in handling concept drift. The dynamic evolution of EN is also further

enhanced into its distributed version, a distributed incremental ensemble algorithm.

In the next chapter, we present the literature review and the research gap between our frame-

works and the existing online learning algorithms.

43

3
Literature Review

This chapter presents a review of the related literature used in this thesis. Section 3.1 presents

the current development of the evolving algorithms based on fuzzy systems and distributed

algorithms followed by identifying the research gap between them. In section 3.2, the types

of algorithms in incremental learning, particularly ensemble-based batch incremental learning

algorithms are reviewed followed by a discussion of the research gap.

3.1 Learning from Data Streams in a Distributed Environ-

ment

In this section, we present the state-of-the-art algorithms related to the distributed EFS frame-

work and the underlying research gap in the framework.

3.1.1 The Current Development of Evolving Fuzzy Systems

The general term for evolving algorithms in the literature is evolving intelligent systems. Over-

all, the research on evolving algorithms has enjoyed great success for the last two decades, as

evidenced by the appearance of seminal works conducted by the soft computing community

for both evolving neural networks [43], evolving fuzzy systems [44], and evolving neuro-fuzzy

systems [45].

44

3.1. LEARNING FROM DATA STREAMS IN A DISTRIBUTED ENVIRONMENT

One of the works in the evolving fuzzy systems area was pioneered by dynamic evolving neural-

fuzzy inference systems (DENFIS) [46]. This work was based on the evolving structure of fuzzy

systems architecture employing a recursive clustering method namely the evolving clustering

method. Following DENFIS, another seminal work, namely evolving Takagi-Sugeno fuzzy sys-

tems (eTS) was carried out in [47]. eTS makes use of the potential of new incoming data to

recursively update its models’ structure which was later extended in evolving Takagi-Sugeno

fuzzy systems from streaming data (eTS+) by introducing the concept of rule ages, utility

function, and zone of influence. Yager’s participatory learning concept [48] was introduced to

extend eTS in the work of on evolving participatory learning (ePL) [49] and sequential adaptive

fuzzy inference systems (SAFIS) [50], where SAFIS introduced the fuzzy rule contribution to

the system output concept to define the fuzzy rule’s influence. Rule contribution was later used

as the basis on which to remove rules from the system to make the system more compact.

Further, in the area of fuzzy systems, several seminal works using more advanced approaches

such as a variation of rule merging, generalized rules, incremental feature weighting, input

pruning scenario etc. were introduced in [11, 32, 51, 52, 12, 53, 54, 55, 56]. In this thesis, a

seminal EFS, namely a parsimonious network based on a fuzzy inference system (PANFIS) [11]

is used as a base-learning algorithm in our distributed EFS. A comprehensive review of EFS

can be found in [16].

3.1.2 Distributed Algorithms

Distributed algorithms were initially developed to cope with the problem of big data stored in

temporary storage, as a result of the arrival of data streams from real-time world applications.

MapReduce [21] was one of the first groundbreaking distributed computing platforms and is

capable of processing data on a large-scale.

MapReduce controls the parallelization for the computation across the storage (large-scale

database cluster) with its functions named Map and Reduce. Even though MapReduce is

no longer popular as a distributed processing platform, it has been the inspiration for the

45

CHAPTER 3. LITERATURE REVIEW

development of other platforms. Spark [23] has become one the most popular platforms in

distributed processing, particularly for scalable machine learning tasks. Unlike MapReduce,

Spark provides a built-in library which makes it possible for users to use it directly. Moreover,

its speed is much faster than other available platforms due to the use of memory clusters for

storing temporary datasets. However, their built in algorithms are still based on traditional

algorithms which are offline in nature.

Big data is often stored on the cloud due to its large volume to support the extensibility and

scalability of local storage. In order to efficiently extract valuable information from big data,

there is an urgent need to modify existing data mining techniques, so they are scalable in

processing large-scale datasets. This issue led to the need to develop a distributed or parallel

scenario to process big data. Big data are also generated by the continuous arrival of new

instances either in batches or one by one, which is known as a data stream and is generated

by real-world applications [57, 58]. Therefore, it is necessary for a machine learning algorithm

to adapt to a rapidly changing non-stationary data stream. Stream processing/mining in the

web news domain was conducted in [18] using eT2Class [59], which is able to handle streaming

data [60]. This triggered the development of evolving learning algorithms, which are able to

learn big data continuously [1] by evolving its model to adjust the shift and drift of big data

patterns.

3.1.3 Research Gap

In the era of big data, the processing speed of data analytics is paramount. Initially, several

algorithms were developed to cope with the volume of big data by increasing the scalability

of machine learning algorithms as discussed in [61, 62, 63, 64]. Recently, a large amount of

attention has been focused on the development of big data analytics by considering the velocity

and volume of data streams. For example, big data stream clustering [65, 66] processes big

data by distributing the data stream for processing in many processors/nodes to speed up the

computational time. Despite the increase in computational speed, these works still suffer from

46

3.1. LEARNING FROM DATA STREAMS IN A DISTRIBUTED ENVIRONMENT

changing data patterns, which in turn, possibly lead to the fusion of non-related clusters [67].

This means that the final generated model does not represent the knowledge of the data, which

can lead to misleading inferences in prediction and clustering results.

The development of algorithms and techniques which are scalable for handling large-scale data

streams and can also cope with the changing environment is crucial. This procedure enables

data streams to be processed in a parallel mode by distributing them into many processors,

where each processor processes/learns a block of a data stream (data chunk). In addition, it

also processes every data chunk in an online mode with the capability of changing its data

pattern incrementally.

To the best of our knowledge, only a few studies have addressed online big data processing and

analytics in both distributed and online modes. Parallel_TEDA was introduced in [68], and

is based on the parallel mode which processes every data chunk in a single pass mode using

its evolving characteristic which is inherited from an evolving algorithm, namely typicality

based empirical data analysis (TEDA) [69], which supports the recursive form of calculation

and is parameter free. Even though Parallel_TEDA applies a parallel strategy and an evolving

algorithm to improve the scalability and speed of the learning process, its model is still generated

using a simple fusion technique, which can cause a redundancy problem.

Distributed algorithms have emerged as methods to solve the problem of data volume which

grows beyond the capabilities of a single processing node. Big data platforms such as MapRe-

duce [21] and Apache Spark [23] have been introduced in the last decade to scale out compu-

tation from single to multiple processing nodes to perform the distributed learning task. Work

on distributed learning was conducted in [20] where distributed fuzzy rule-based classification

systems (FRBCSs) are distributed [70] utilizing MapReduce. Moreover, the Spark-based dis-

tributed random forest algorithm was introduced in [3]. Distributed learning with the feature

selection method was conducted in [71] to reduce system complexity. Association rules in large-

scale data based on the genetic programming algorithm were proposed in [72]. Nonetheless,

they were built based on an offline algorithm. The gaps and/or challenges of the existing

47

CHAPTER 3. LITERATURE REVIEW

evolving algorithms are summarized as follows:

• Most of the evolving algorithms are built based on single-node processing so they are

unable to cope with the problem of data explosion when data grows beyond the processor’s

capability to process it. To address this problem, an evolving algorithm needs to be

developed in a distributed manner.

• One of the most challenging problems in distributed processing is aggregating the models

generated from different training data partitions. To address this problem, the robust

model merging procedure is designed to deal with large-scale distributed data stream

training. The merging procedure should be handled carefully to reduce system complexity

and the redundancy problems among the model components (rules).

3.2 Incremental Learning Based on Ensembles in a Dis-

tributed Environment

Incremental ensemble algorithms are one of the popular types of incremental learning algo-

rithms. In this subsection, we divide the review into two topics: ensemble algorithms and the

challenges of coping with the data stream problems, and the research gap.

3.2.1 Ensemble Algorithms and the Challenges

The original ensemble algorithm was introduced by Dasarathy and Sheela in [73] where a fixed

number of models are built from different partitions of training data (the partition used in

forming each model) which may overlap each other. The ensemble algorithm was initially built

for a static system where high accuracy was the main purpose without considering its scalability

[74]. Further, many seminal ensemble algorithms have been introduced in either multiple-

model same type models (bagging [39], boosting (AdaBoost) [38] and a mixture of expert

48

3.2. INCREMENTAL LEARNING BASED ON ENSEMBLES IN A DISTRIBUTED
ENVIRONMENT

classifiers [75, 76]) or multiple-model different types of models such as in [77]. In this thesis,

distributed incremental ensemble algorithms utilize multiple models of same type using PALM

[32] as a base-learning algorithm similar to the incremental ensemble algorithm implemented

in pENsemble [28].

There are three main challenges in building ensemble algorithms [78]: (1) data sampling/selec-

tion; (2) training the base models in the ensemble network; and (3) combining the base models

to determine the aggregated output. The first challenge, data sampling selection, is to achieve

diversity among models, which can be done in several ways, such as using different subsets of

training data, using different subsets of the available features to train each model, known as

the random subspace method as in [79], using different sets of parameters of the model, or

different types of models inside the ensemble network. The second challenge is related to the

strategy used to train models, where methods such as bagging, boosting, stack generalization

and hierarchical MoE are the most frequently used approaches to train the ensemble’s models.

To address the third challenge, methods such as majority voting, and weighted majority voting

can be used to combine the predictions from each base model. The algebraic combiners and

weighted average, minimum/ maximum/ median/ rule, product rule, generalized mean, and

decision template can be used to combine the continuous output of several models.

Furthermore, in [30], the taxonomy of ensemble learning from data streams, especially in super-

vised learning for the classification task, is divided into four categories: 1) batch incremental

ensemble algorithm stationary environments; 2) instance incremental ensemble algorithm sta-

tionary environments; 3) batch incremental ensemble algorithm non-stationary environments;

and 4) instance incremental ensemble algorithm non-stationary environments. As we focus on

the third category, concept drift adaptation is employed from the new batch data to create a

new model. In this way, ensemble network base models may represent a mixture of different

distributions (concepts) that are present in the data stream because their models are formed

from training from different chunks. Furthermore, the removal of the model in the ensemble

network can also be done by evaluating the performance output of every model, where the

poorest performing model is removed. This offers a way to dynamically control the number of

49

CHAPTER 3. LITERATURE REVIEW

models inside the ensemble network to maintain the network’s system complexity.

3.2.2 The State-Of-The-Art and the Research Gap

Most of the earliest batch incremental learning algorithms feature a dynamic number of models

based on the evaluation of each testing and training for each timestamp. The streaming ensem-

ble algorithm (SEA) [13] as a composite model (e.g. classifiers if the task is a classification task)

system is one of the earliest incremental ensemble learning algorithms. It iteratively replaces

the poorest performing model with a new one in every timestamp. Accuracy weighted ensemble

(AWE) [80] works by assigning a weight to all models based on their prediction. A new model

is created from the latest training chunk and the existing models whose performance is below

this new model are removed. There are several other incremental ensemble algorithms such as

dynamic ensemble pruning [81], and the recently published pENsemble [28]. However, the way

they maintain the number of ensemble models, either with a static or dynamic structure and

how they combine the network output is different.

While various incremental ensemble algorithms have been designed, their base models are gen-

erated from the static base-learning algorithm. Evolving algorithms were used as base-learning

algorithms in incremental ensemble algorithms in [13, 82]. They processed training data in a

single pass manner so unbounded data can be processed without a retraining mechanism. The

advantage of using evolving algorithms as a base classifier is that they can increase network

adaptability, where a classifier can adapt to a changing data distributions.

The further development of incremental learning lies in the adaptability of its structure, where

most the incremental learning algorithms are built based on the static ensemble network where

the number of its base models are fixed. The fixed network hinders incremental learning in

making its base classifiers diverse, a condition where the network classifiers’ decision boundaries

are significantly different from those of the others which may improve its performance. In the

fixed ensemble network, although the classifier’s diversity can be reached through the use of

different user-defined parameters, different data partitions, and a combination according to

50

3.3. SUMMARY

[28, 83, 78], concept drift remains the major issue due to the fixed structure of the ensemble

network.

A recent incremental learning approach, pENsemble [28], an evolving ensemble fuzzy classifier,

offers a solution of a flexible network structure, where its base classifier is built from an evolving

classifier (pClass [84]) and its ensemble network is also dynamic. While intensive research has

been undertaken in the area of incremental learning to cope with data stream problems, the

issue of scalability remains an open issue because the proposed solutions are mostly designed

in a single processing node.

The research gaps in the distributed incremental ensemble algorithms are summarized as fol-

lows:

• Multiple models of ensemble systems in batch incremental learning have been proven to

be effective in handling concept drift which exists in data streams [78]. While common

ensemble systems have some advantages, they are not scalable because they are designed

for small datasets which cannot cope with the problem of continuous data. In addition, the

merging mechanism of local models in every timestamp/task must be handled carefully.

3.3 Summary

This section presents a review of the state-of-the art approaches related to our proposed algo-

rithms (distributed EFS and the distributed incremental ensemble algorithms). To summarize

and comprehend between our algorithms, we provide an overview of several types of algorithms

that related to our work in Table 3.1.

For the distributed EFS, the current work on fuzzy-based evolving algorithms is reviewed, fol-

lowed by a review of the distributed algorithms. The second proposed method, a distributed in-

cremental ensemble algorithm, the state-of-the art of the ensemble methods is reviewed. Then,

the study of incremental learning based on ensembles with the elastic structure is also pre-

51

CHAPTER 3. LITERATURE REVIEW

Table 3.1: Overview of several types of algorithms

No Type of
Algorithm

Online
learning

mechanism

Deep
Structure
Network

Dynamic
Network
Structure

Architecture Form of
Model

Additional
Notes Reference

1 Batch
Algorithms 8 8 8

Offline
base-learning
algorithm
working on
single node

Rules, Trees,
Nodes, etc. as

a single
base model

(1)Fixed structure of single
model; (2)Only can learn
static data

Example: ANFIS, Decision Tree
Architecture: Subchapter 2.6.1

2 Distributed
Algorithms 8 8 8

Offline
base-learning
algorithm
working on

multiple nodes

Rules, Trees,
Nodes, etc. as

a single
base model

(1)Fixed structure of single
model as a merged model
generated from a collection of
local models; (2)Only can
learn static data

Example: ANFIS, Decision Tree,
which are attached to the
the Spark platform
Architecture: Subchapter 2.6.3

3 Ensemble
Algorithms 8 4 8

Offline
base-learning
algorithm
working on
single node
forming a mul-
tiple models

Stack of
base models

(1)Fixed structure of mul-
tiple models; (2)Only can
learn static data

Example: ANFIS, Decision Tree,
which are attached to the
ensemble learning mechanism
such as bagging and boosting
Architecture: Subchapter 2.4
Subchapter 3.2.1

4

Evolving
or Instance
Incremental
Algorithms

4 8 8

Online
base-learning
algorithm
working on
single node

Rules, Trees
or Nodes as
single evolving
base model

(1)Adaptive single model;
(2)Features continual
learning

Example: PANFIS, PALM
Architecture: Subchapter 2.7.2
Subchapter 3.1.1

5
Incremental
Ensemble
Algorithms

4 4 4

Online
base-learning
algorithm
working on
single node

processing data
batch-by-batch
forming mul-
tiple models

Stack of
evolving
base models

(1)Dynamic structure of
multiple models
(2)Features continual
learning

Example: pENsemble
Architecture: Subchapter 2.8.1
Subchapter 3.2.1

6
Distributed
Evolving
Algorithm

4 8 8

Online
base-learning
algorithm
working on

multiple nodes
forming mul-
tiple models

single evolving
base model
from merging
model mechanism

(1)Adaptive single model as
a merged model; (2)Features
continual learning

Our proposed method
Subchapter 3.1.3
Implementation: Chapter 4

7

Distributed
incremental
Ensemble
Algorithm

4 4 4

Online
base-learning
algorithm
working on

multiple nodes
processing data
batch-by-batch
forming mul-
tiple models

Stack of evolving
base models. Each
base model is
formed from
merging mechanism

(1)Dynamic structure of
multiple adaptive models.
Each model is formed from a
merged model constructed du-
ring distributed learning;
(2)Features continual
learning

Our proposed method
Subchapter 2.8.2
Implementation: Chapter 5

52

3.3. SUMMARY

sented. Finally, the research gap between the incremental ensemble algorithms in a distributed

environment is presented. In the next chapter, the implementation of thesis contribution is

discussed.

53

4
Evolving Large Scale Data Stream Analytics Based On

PANFIS - Scalable PANFIS

Abstract

In this chapter, a type of distributed evolving fuzzy systems (distributed EFS), namely an

evolving large-scale data stream analytics framework based on a parsimonious network of a

fuzzy inference system (Scalable PANFIS) is proposed. Scalable PANFIS makes use of the

PANFIS evolving algorithm distributed across Spark computing nodes. The Scalable PANFIS

inherits evolving algorithm traits which are adaptive to the new instance patterns and capable

of demonstrating the single-pass learning mechanism. Furthermore, the distributed learning

mechanism allows Scalable PANFIS to deal with the vast volumes of training data streams.

The main feature of Scalable PANFIS over the single processing node PANFIS lies in the fast

generation of the evolving distributed model without suffering from a loss of accuracy. On

the training side, the evolving distributed model is obtained through two main steps: 1) the

generation of initial distributed models as a result of learning from several data stream

partitions in a task; 2) model merging which aggregates the initial distributed models into a

merged model. The Scalable PANFIS framework also features active learning (AL) embedded

to PANFIS to further accelerate the training process of data stream partitions. The majority

voting method is also utilized as an alternative to model merging to be used for testing. On

the testing side, the output of the Scalable PANFIS can be obtained from either using a model

54

4.1. INTRODUCTION

merging mechanism or using a majority voting mechanism. The combination of the Scalable

PANFIS’ training scheme in terms of initial distributed model generation (PANFIS with or

without AL) and the testing scheme (model merging or majority voting) resulted in four types

of Scalable PANFIS structures. Extensive experiments on this framework are validated by

measuring the accuracy and running time of four types of Scalable PANFIS and other Spark-

based built-in algorithms. The results indicate that Scalable PANFIS with AL improves the

training time to be almost two times faster than Scalable PANFIS without AL. The results also

show that both the model merging and majority voting mechanisms yield similar accuracy in

general among Scalable PANFIS algorithms, and they are generally better than Spark-based

algorithms. In terms of running time, the Scalable PANFIS training time outperforms all the

Spark-based algorithms when classifying a multi-class label dataset.

4.1 Introduction

Large-scale data stream analytics has become one of the emerging areas in data science [85, 86,

87]. A large volume of data in many forms (e.g. text, picture, sound, video, signals etc.) can

be generated from numerous sources (e.g. IoT, Web 2.0, and social networks) in the internet

era. This information is essential for many companies/corporations to support their urgent

decision-making to ensure they maintain their competitive advantage.

Extracting valuable knowledge from large-scale data streams is challenging due to its 5V char-

acteristics: volume, velocity, variety, value, and veracity [1]. In fact, data streams are mostly

generated by real-world applications which arrive continuously in non-stationary environments

in a rapid and high-volume condition. Hence, it is paramount to obtain knowledge from large-

scale data efficiently (in a reasonable timeframe without a reduction in the algorithm’s accuracy)

[88].

Large-scale data stream analytics problems can be solved in two ways: 1) distributed algorithms

; and 2) evolving algorithms [8]. Distributed algorithms focus on how to distribute/parallelize

55

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

data processing from single-node into a multi-node processing framework [89], thus accelerating

the learning time. The evolving algorithm processes/learns data at high speed, in a single pass,

and online manner. Its structure is evolving following an update of the current instance. The

evolving algorithm does not require historical data as the current information/pattern/model

is updated after the last instance has been learnt. This feature can help to reduce the amount

of stored data because the historical data can be discarded.

Recent work on large-scale data analytics was reported in [20], utilizing the MapReduce [21]

method. In this work, the distributed algorithm used to learn the data partition was still based

on the offline algorithm, namely Fuzzy Rule-Based Classification Systems (FRBCSs) [70] to

model complex problems. However, the offline learning of FRBCS is not efficient, especially in

handling rapidly varying and large-scale data streams. On the other hand, processing large-

scale data using a single-node evolving algorithm is limited by the memory and bandwidth of

a single machine. This issue remains the main challenge for further developments in large-scale

data analytics. Considering the benefits of both distributed algorithms and the online learning

mechanism, a large-scale data stream analytics framework should accommodate the scalability

of distributed algorithms and the efficiency of an evolving algorithm.

In this work, we propose an evolving large-scale data stream analytics framework based on

Scalable PANFIS, where PANFIS [11] is a seminal evolving algorithm based on a hybrid neuro-

fuzzy system (NFS) which has the capability of learning data streams in the single pass mode

to cope with the velocity and changing patterns of data stream. As an evolving version of NFS,

PANFIS is capable of learning the non-linear systems in real-world applications. A Scalable

PANFIS framework learning and inference mechanism involves three methods: 1) the AL which

is embedded along with PANFIS to generate the fast initial distributed models which contain

many local models as a result of learning from many partitions of training data; 2) model

merging to aggregate the initial distributed models; and 3) majority voting to combine all the

local models’ output.

The training phase of this framework is conducted by distributing the PANFIS algorithm (with

56

4.1. INTRODUCTION

or without AL) across the worker nodes. AL is the method embedded in PANFIS whose function

is to accelerate the learning process by selecting only the important instances of training data.

Note that PANFIS (with or without AL) operates on the local level, which means it learns a

partition of the data stream and yields a local model. The output of Scalable PANFIS is the

initial distributed models as depicted in Fig. 4.1. A model merging procedure is developed in

Scalable PANFIS to aggregate the initial distributed models into a merged model. The output

of the system can be obtained from either the inference of a merged model or combination

of the initial distributed model inferences to the testing data using majority voting.

To summarize, the main contributions of this work are as follows:

• We present a Scalable PANFIS framework, an evolving large-scale data stream analytics

framework, a distributed EFS, which can deal with large-scale data stream classification

problems. This framework is scalable/distributable and it can cope with the changing

patterns of data streams.

• We present the robust model merging method to solve the aggregation problem in large-

scale distributed data stream training, where initial distributed models (the collection

of local models) are generated. Each local model consists of one or more rules as the

representation of a training data partition. The extracted rules are obtained from con-

catenation of rules in the initial distributed models. The extracted rules cannot be used

as components in the model merging process. This is because the distribution of training

data partitions are different to each other. Our model merging method can solve the

aggregation problem and yields a stable performance (accuracy) for all datasets.

The rest of the chapter is organized as follows. Section 4.2 discusses the related research:

PANFIS algorithm and its learning policy. Section 4.3 discusses the Scalable PANFIS architec-

ture and problem formulation. Section 4.4 explains the architecture of the Scalable PANFIS

framework with its four structures. Section 4.5 discusses the numerical study: experimental

objective, experiment setup, and the results of evaluating large-scale data analytics. Section

4.5.3 presents the discussion and section 4.6 concludes the chapter.

57

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

4.2 PANFIS

PANFIS is an evolving algorithm which is built based on evolving neuro-fuzzy systems (ENFS),

an extension of the well-known classic neuro-fuzzy systems (NFSs) [90] such as ANFIS [37].

NFSs combine fuzzy systems which imitate human reasoning and neural networks which have a

learning ability, parallelism, and robustness characteristics. Basically, ENFSs are the evolving

version of NFSs and have the capability of evolving their structure (rules) so they can adapt

to the changing environment, which is essential to cope with the non-stationary environment

of data streams.

The PANFIS evolving algorithm can learn the data without an initial structure. During the

learning, its structures (fuzzy rules and its parameters) are evolving, so the new rule can be

generated, updated, and pruned. In addition, the merging process is carried out by identifying

identical (or similar) fuzzy rule sets to simplify the rules’ complexity.

The main feature of PANFIS is the construction of ellipsoids in arbitrary positions to the

support the multidimensional membership function in the feature space. These ellipsoids in

arbitrary positions are projected to fuzzy sets to form the antecedent parts of fuzzy sets which

are easy for the user to interpret. The inference scheme of PANFIS still uses high-dimensional

ellipsoidal representation.

The evolution of rules is controlled by the datum significance (DS) criterion which represents

the potential of the current instance being learned in the system. DS was initially proposed

by [43] and [50] to identify the high-potential of the instance which can be measured by the

statistical contribution of the instance to PANFIS’ output. Once its value is high, this instance

is considered to have high descriptive power and generalization potential and is worth being

hired as a new rule.

The rule adaptation policy is executed when the arrival instance falls in the current clusters. In

this case, the winning rule parameters are adjusted to determine the new coverage/span of the

winning rule. Rule adaption in the original PANFIS utilizes an evolving self-organizing map

58

4.2. PANFIS

(ESOM) [91]. However, this method has the drawback of instability which requires reinversion

once the inverse covariance matrix is ill-conditioned (e.g., due to redundant input features). As

a result, the adaptation formula of GENEFIS [12], pClass [84], and GEN-SMART-EFS [53] is

adopted instead.

The three properties of the winning rule are updated as follows:

Cwin(update) =
Supwin(prev)

Supwin(prev) + 1
+

X − Cwin(prev)

Supwin(prev) + 1
(4.1)

∑
win

(update)−1 =

∑
win(prev)−1

1− α
+

α

1− α

=

∑
win(prev)−1(X − Cwin(update)))(

∑
win(prev)−1(X − Cwin(update)))T

1 + α(X − Cwin(prev))
∑

win(prev)−1(X − Cwin(prev))T

(4.2)

Supwin(update) = Supwin(prev) + 1, (4.3)

where Cwin(update),
∑

win(update)−1, and Supwin(update) denote the updated focal point,

dispersion matrix, and the population of the winning rule respectively prior to instance arrival.

These rule property updates also show that the winning rule (part of the rule base system) is

evolving based on the value of the current instance.

The rule pruning of PANFIS is driven by an extended rule significance (ERS) concept which

represents the contribution of every rule to the system output. ERS is inspired by the concept

of the SAFIS method [50] by integrating hyperplane consequents and generalizing to ellipsoids

in an arbitrary position which enable rules to be pruned in the high-dimensional learning space.

The fuzzy sets merging in PANFIS is carried out when some fuzzy sets are overlapped, which

means they have a similar membership function. This is done to reduce fuzzy rule redundancies,

59

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

thus forming a more interpretable rule base. The similarity calculation between two fuzzy sets

can be found in [92]. The two fuzzy sets can be merged if the similarity Sker ≥ 0.8.

The fuzzy consequences adjustment of PANFIS is driven by the enhanced recursive least squares

(ERLS), which is inspired by conventional recursive least squares (RLS) [93]. The main function

of ERLS is to support the convergence of the system error, which is used for weight vector

updates.

4.3 Scalable PANFIS Framework - Architecture and Prob-

lem Formulation

In this section, we discuss the architecture and the problem formulation of Scalable PANFIS.

The first part (subsection 4.3.1) discusses the Scalable PANFIS framework architecture which

focuses on the interaction between components in Apache Spark (Spark), a distributed process-

ing platform. The second part (subsection 4.3.2) discusses the problem formulation of Scalable

PANFIS.

4.3.1 Scalable PANFIS Framework Architecture

The Spark platform [23] is the latest platform for distributed-based data processing. In com-

parison with the older platforms, such as Hadoop, Spark improves performance significantly

in terms of the speed of data processing because it supports an in-memory based instead of

disk-based programming model. The Spark ecosystem comprises two parts: 1) spark-core ; and

2) programming interface core. Spark-core lies in the lower level library of the Spark ecosys-

tem to serve the programming interface core. The programming interface core is integrated by

Spark APIs which support many programming languages such as Scala, Java, Python, and R.

Furthermore, Spark API also provides a machine learning library (Spark MLib), GraphX for

analysis, a stream processing module of Spark Streaming, and SQL for structured data process-

60

4.3. SCALABLE PANFIS FRAMEWORK - ARCHITECTURE AND PROBLEM
FORMULATION

ing. For large-scale data analytics, these Spark ecosystem components enable the framework

to conduct parallel data processing and support the real-time insight/knowledge generation of

large-scale data streams.

The R language is chosen as the main operating programming language in the Scalable PANFIS

framework as it is a well-known programming language which is commonly used for data anal-

ysis. In order to bridge the operation between R and Spark, the SparkR library (as a backend

R and Java Virtual Machine (JVM)) is utilized to manipulate and process large-scale data in

a parallel/distributed manner. The type of data used in processing large-scale data in parallel

mode is Spark DataFrames, a unique Spark data abstraction which is stored in memory cluster

computing.

Spark
Cloud

Memory
Cluster

HDFS

2. Load
HDFS

JVM

R

Stable
Storage as

Data
Source

Temporary
Fast

Storage

Worker
Nodes

Driver
Node

3. Form P training data
partitions

4. Distribute all P partitions
to Q nodes in the cloud.

Each node receives
around the same number

of (G) partitions.

5. Storing P local
models

(INITIAL
DISTRIBUTED

MODEL)
as R data frame

to the driver node

6. Storing
Data to
HDFS

PANFIS with AL or PANFIS
without AL operates at the

partition level.
From each partition, a local

model is generated

JVM

R

node 1

node Q

…
.

Scalable PANFIS or
Scalable PANFIS+AL

R

Ba
ck

en
d

R

JVM

1. Create training data𝔻 as a Spark
Data Frames from HDPS into memory
cluster

Driver node’s command

Figure 4.1: The Data flow architecture of the Scalable PANFIS framework during the data
stream training phase in the Spark platform

Fig. 4.1 shows the data flow architecture of the Scalable PANFIS framework in the distributed

training phase utilizing the Spark platform which focuses on the interaction between Spark’s

components (driver node, worker nodes, memory cluster, and HDFS). This is different from

the distributed learning diagram portrayed in Fig. 2.7, which emphasizes the visualization

61

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

distributed learning process in detail which involves the distributed training of all training

data partition Dp, initial distributed model generation F initials, merged model Fmerged, and

inference procedure Ŷ = Fmerged(X̂). Note that training data D and its partition Dp used in

the distributed algorithm portrayed in Fig. 2.7 is in the form of static data.

Furthermore, PANFIS is chosen as a base-learning algorithm because it is of leading fuzzy-based

evolving system. While nowadays, deep learning (deep neural network) algorithm has arised

as a state of the art approach, they are considered as a black box approach as the relation of

input and output cannot be mapped easily. Each rule in PANFIS represents the local model of

the system. Thus, the merging process can be done with ease.

4.3.2 Problem Formulation of Scalable PANFIS

Suppose that the data stream is formulated as S = {B1,B2,B3, ..,Bk, ...} demonstrating the

batch-by-batch arrival of data on a large scale. Bk denotes the batch of data at kth timestamp,

Bk ∈ <N×(n+m). Scalable PANFIS is a large-scale data stream analytics framework which

learns the first batch of training data B1. The Scalable PANFIS framework, in this case, has

not been evaluated in an incremental fashion. In this chapter, the proposed method is used

to develop a large-scale data stream model, the evolving distributed model, since every

batch partition was learned by the PANFIS evolving algorithm generating an evolving model.

The important challenge here is how to combine or merge the local models obtained from the

batch partition learning without decreasing the accuracy in the testing task. Note that in this

chapter, Scalable PANFIS is used to solve the classification problem. Therefore, in Scalable

PANFIS, the model can be seen as the classifier.

Learning from data streams can be perceived as generating an evolving model sequentially in

every timestamp. In Scalable PANFIS, suppose that B ∈ <N×(n+m) denotes the batch of the

training data which has N instances (in large-scale). In this chapter, we call B as the training

data since Scalable PANFIS only evaluates the first batch of training data. Based on Fig.

62

4.3. SCALABLE PANFIS FRAMEWORK - ARCHITECTURE AND PROBLEM
FORMULATION

4.1 (interaction between Spark’s components) and Fig. 2.7 (the architecture of distributed

algorithms), we draw a problem formulation in the Scalable PANFIS framework and the steps

are summarized as follows:

• Load an R DataFrames consisting of training data B from HDFS and convert it into a

Spark DataFrames of training data B in the memory cluster. N represents the number of

instances in the training data, and n and m are the dimensional input and output vector

of the training data, respectively.

• The driver node sends the third instruction which divides DataFrames in the memory

cluster into P number of partitions. All the partitions are denoted as Bp ∈ <V×(n+m),

where p = {1, ..., p, ..., P} and V is the number of instances in a partition Bp.

• Send all P training data partitions Bp into Q nodes, so that each node receives around

an equal number of G partitions to process. The partition distribution mechanism is

explained in section 2.6.3).

• Each node, on which PANFIS and AL are embedded, processes/trains G number of

training data partitions in order (serial mode). This process is a local training, resulting

in G number of local models generated in each node (see the solid blue box with the

dashed arrow where PANFIS and AL algorithms embed every single node).

• This part marks the training process of Scalable PANFIS overall. Once all nodes have

processed all G partitions coming into them, these results are collected and stored in a

driver node. The collection of the results is an R DataFrames consisting of P local models

as the initial distributed models denoted as F initials = {F 1, ...,F p, ...,FP}.

• The last step is an optional step depending on whether the models should be saved in the

stable storage for back up purposes or directly used for the next process (and majority

voting).

63

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

4.4 Structure of the Scalable PANFIS framework model

This subsection details the four structures (learning mechanism) the of Scalable PANFIS frame-

work due to the combination of distributed training and the testing mechanism in the frame-

work. The distributed training mechanism of Scalable PANFIS has two approaches in terms of

how a local model is generated:

• Using PANFIS as an evolving base-learning algorithm.

• Using PANFIS with AL as an evolving base-learning algorithm

Furthermore, the testing/inference mechanism of Scalable PANFIS can be conducted using two

approaches:

• Using a merged model Fmerged = merge(F initials) generated from merging the initial

distributed models. Fmerged can be used to infer the testing data X̂ using Fmerged similar

to the testing task in the distributed algorithms (Fig. 2.7). The output of this inference

can be denoted as Ŷ = Fmerged(X̂). Note that model merging is executed at the rule

level as the smallest component of a model.

• Using the initial distributed models F initials = {F1, ...,F i, ...,FI} as a result of training

data stream partitions. In the case of distributed learning, I = P , where P denotes

the number of partitions in a distributed training task. The output is determined from

the combination output from all base models using the majority voting method. The

majority voting method can be seen as the testing task in the ensemble learning framework

illustrated in Fig. 2.6, particularly in the testing part, but the voting weight (βi, i is the

index of the model in F initials, i = {1, ..., i, ..., I}, and I represents the number of models

in F initials) for all the base models in the majority voting are set to be equal.

Taking two combinations for each distributed training and testing mechanism in Scalable PAN-

FIS, in this thesis, we present the four structures of the Scalable PANFIS framework: (1)

64

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

Scalable PANFIS using the model merging method; (2) Scalable PANFIS using the ma-

jority voting method; (3) Scalable PANFIS with AL using the model merging method;

(4) Scalable PANFIS with AL using the majority voting method. Note that PANFIS can

learn a set of training data and form a model with or without the AL method.

4.4.1 Scalable PANFIS Framework using the Model Merging Method

This subsection discusses the first structure of Scalable PANFIS which utilizes the PANFIS

evolving algorithm in the distributed training task to generate initial distributed models. The

model merging methodology is discussed for the testing task.

Large-
scale
data

stream

Distributed
training phase

Model collection from
training P data partitions

using PANFIS

Merging
Phase

Spark distributed
processing platform

Node 1 (PANFIS)
…

Node Q (PANFIS)

The Initial
distributed models

model 1

…
.

Model P

s rules

Final Model
scenario

Rule
extraction

Rule Merging
Method

Scalable PANFIS TRAINING PHASE
(with or without AL)

Merged
(Final)
Model

Model MergingDistributed training (𝐷!"#$%$%&)

• Rules elimination
• Z-Dominant rules

selection
• U-Weaker rules

merging

A local model
for each

data partition

PANFIS trains a
data partition

Figure 4.2: The structure of the Scalable PANFIS framework using the model merging method
at the rule level.

4.4.1.1 The Initial Distributed Models and Their Components

4.4.1.1.1 The Underlying Reason for Using a Rule as a Merging Component

As can be seen in Fig. 4.2 the initial distributed models are the direct representation of large-

scale training data streams which consist of P local models resulting from training all the

65

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

training data partitions Bp, p = {1, ..., p, ..., P}. It is worth noting that the merging of the

initial distributed models should consider merging at the rule level instead of the local model

level. This is because a local model in PANFIS is a multiple fuzzy if-then rules, and each rule

contributes to the overall inference output. Since there are P local models inside the initial

distributed models, all rules as the smallest component of the initial distributed models are

concatenated in order to form the overall output of the fuzzy inference system. Assuming that

s denotes the number of concatenated rules from the initial distributed models (each local

model may contain one or more rules), the number of concatenated rules is possibly higher

than the number of local models in the initial distributed models (s ≥ P). In this thesis, the

model merging procedure is conducted at the rule level. The model merging (at the rule level)

method has previously been applied in other distributed PANFIS frameworks in [94] and [95].

4.4.1.1.2 The Need to Select and Remove Inconsequential Concatenated Rules

Prior to Model Merging

From the previous discussion, it is clear that initial distributed models contain P local models

or s concatenated rules extracted from the initial distributed models. In the testing task, using

a merged model from the extracted rules directly for inference is impractical. The extracted

rules contain many rules which are overlapping each other and this condition deteriorates the

generalization power of the system’s model.

We investigate whether the decrease in accuracy is caused by the difference in the data distri-

bution of all data partitions, thus leading to misclassification output when the data is close to

the rules which have a lower generalization power. Furthermore, during data partition training,

outliers may appear and generate new rules with a very small population. Thus, these rules

cannot represent the distribution of the data partition. To validate our hypothesis, we conduct

an experimental test on the HEPMASS dataset to show that the initial rule selection (select-

ing Z best rules) and rule removal (eliminating rules which have a small population) prior

to the model merging influence the model’s performance. The results of this experiment are

66

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

illustrated in Table 4.1.

Table 4.1: The accuracy of the HEPMASS testing dataset for different Z best initial rule
selection with and without rule removal prior to model merging

k Accuracy(rule removal) Accuracy(without rule removal)
1 83.87 83.57
3 83.47 83.68
5 83.15 83.37
45 83.63 83.46
50 83.52 82.82
55 77.28 62.16
60 71.11 61.64

It can be seen from the empirical result in Table 4.1 that not all rules in the classification

system provide the same classification output. It is clear that at Z = 55, the performance of

the HEPMASS testing dataset decreases with a higher rate of without rule removal. In the case

of rule removal, there are no outliers involved, so the performance decrease is purely due to the

existence of rules which have a low generalization power. For the case of without rule removal,

the number of rules which have a low generalization power is higher than the model with rule

removal, thus the result is worse. This indicates that some outliers are wrongly chosen because

they have a higher ranking than other rules.

From the above investigation, it is clear that rule removal and rule selection are the steps

that need to be carried out prior to model merging. Rule selection is inspired by the work in

[20], where they select the rules with the highest weight which are among the same antecedent

in the same partition. The same procedure is repeated where the rules selected from every

partition are compared with the rules selected from the other partitions. Rules which have the

highest weight among the same antecedent are selected. At the end of the process, only the

clusters/rules which have the highest weight for all unique antecedents will exist and can be

used as the component in generating the final merged model.

Furthermore, apart from rule removal, we propose rule selection by first selecting the Z best

rules. This is done by observing the highest classification training accuracy among local models

when data partitions were trained using the Scalable PANFIS framework. The training accuracy

reflects the confidence level of the local model to be recruited as the preferred local model. Since

67

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

each local model is constructed by one or more fuzzy rules, the weight of the rules are assigned

by the weight of their corresponding local models.

4.4.1.2 Model Merging Implementation at the Rule Level

From the previous explanation, we can summarize that preliminary steps need to be carried

out prior to model merging. As the first step, the rule extraction is carried out by simply

concatenating all rules in the system, resulting in s rules being concatenated from P local

models, s ≥ P . The next step is assigning the rule weight which can be acquired from the

training accuracy of the local model corresponding to it. Rule removal in step three aims

to remove the outliers. The outliers can be identified as they have a lower population than

the others, thus they contribute less during their lifespan. We apply a 5 percent threshold

population of the rule in the total population of the cluster. If it does not meet the requirement

of the threshold, the rules are removed from the system. From this step, o number of rules

are extracted, where P ≤ o ≤ s. Up to this step, we have o rule candidates to be fed in

the rule merging process (rule merging is part of model merging). The implementation of

rule selection is initialized by choosing the most Z influential rules among the other o rule

candidates. We call the Z-most influential rules the Dominant rules, whereas the U number

of rules are called the Weaker rules thus, o = U +Z. If the set of Dominant rules is denoted

by Dz = {D1, .., Dz, ..., DZ}, and the Weaker rules is denoted by Wu = {W1, ..,Wu, ...,WU}.

The merging process between rules occurs by following the procedure illustrated in algorithm

3.

The first Z-Dominant rules are selected, and they become the reference of the other U number

of Weaker rules, assuming that the Dominant rules have more optimum results than the

Weaker ones. From algorithm 3, it can be seen that the first loop process aims to assign each

of the Weaker rules to the closest Dominant rule as well as discards the rule if the maximum

similarity obtained is less than or equal to θ. The value of θ is set to 0.9 in this experiment.

This value is set with the assumption that the higher the level of the threshold, the more

68

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

similar rules will be merged to avoid a decrease in classification performance. In other words,

the reason of using the high value of θ = 0.9 is to maintain the high quality of rules/clusters

having the high generalization power. As it can be seen in Table 4.1, that the more rules to be

included in the merging process, the higher chance the accuracy will decrease. At the end of

the rule similarity calculation, only the shortlisted number of rules (var) are selected, var ≤ U ,

to be merged to Z-Dominant rules. The rest of Weaker (U − var) rules are discarded.

The similarity calculation between two rules is adopted from the method proposed in [53].

This is based on the degree of deviation in the hyper-planes’s gradient information, where the

deviation is calculated based on the dihedral angle of the two hyper-planes they span formulated

as follows:

φ = arccos(
aT b

|a||b|
), (4.4)

where a = (Dz;1Dz;2Dz;3−1)T and b = (Wu;1Wu;2Wu;3+1)T the normal vectors of the two planes

corresponding to rules Dz and Wu, showing in the opposite direction with respect to target ŷ

(-1 and +1 in the last coordinate). Thus, the similarity of two hyper-planes is formulated as

follows:

Sim(Dz ,Wu) =
φ

π
, (4.5)

Two hyper-planes are regarded as similar if the similarity degree Sim(Dz ,Wu) ≥ θ.

The next loop in Algorithm 3 performs the merging of var assigned rules to the associated

Dominant rules. The parameter update of the dominant rules is carried out iteratively, where

Dominant rules can only be updated with the list of the Weaker rules assigned to them.

Note that PANFIS base-learning algorithm adopts TSK fuzzy system, whose rules/clusters

describe the input-output relations as depicted in formula 4.11. PANFIS rule premise part is

built upon ellipsoids shape in arbitrary position as the fuzzy sets. The consequent inference

part itself is built upon polynomial function as depicted in formula 4.12 as the hyperplanes.

While some rules can be directly merged using a simple Euclidean distance criterion from the

premise parameters (e.g. centres of the clusters) [51] or using membership function criterion as

69

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

Algorithm 3: Model merging algorithm
Input : Set of Dominant and Weaker Rules (D and W) after rule selection and rule
removal are applied from the extracted rules.
Ouput : Set of Updated parameter of Dominant Rules
Initialization:
Z : number of Dominant rules
U : number of Weaker rules
Dz : index z of Dominant rules
Wu : index u of Weaker rules
listassign = [] ; Array of empty set to store the index of recruited weaker rules
Loop Process :
-Assign Weaker Rules to the closest Dominant Rules
for u = 1 to U do
for z = 1 to Z do
Count Similarity between Wu and Dz (SimDz ,Wu) ((Formula 4.5))

end for
Determine winning rule: calculating maximum similarity
Dz(winning) = arg maxz=1,..,Z(SimDz ,Wu)
if (SimDz ,Wu(winning) ≥ θ) (Formula 4.5) then

Rule Wu is recruited to be merged with the rule Dz

listassign = [listassign u]
else

Discard Wu (Wu is regarded has a low similarity over current Dominant rules)
end if

end for
Some rules may be eliminated, resulted in var = sizeof(listassign) assigned rules to be used
for the next merging process (var ≤ U).
Loop Process :
Rule merging: merging of assigned Weaker rules to the closest Dominant Rules
for z = 1 to Z do
for u = 1 to U do

- Iteratively update Dominant rule parameters by merging it with the assigned list of
Weaker rules
if (u not in listassign) then
skip for the next Dz

else
if (the condition of blow-up effect is met- Formula (4.6)) then
Dz(Update)=Merging of rule Dz(current) and rule Wu (Formula 4.7 4.8 4.9
4.10)
Dz(Current) = Dz(Update)

else
Cancel merging, discard rule Wu

end if
end if

end for
end for

70

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

initially carried out in PANFIS, we adopt a geometric-based criteria as carried out in [53]. In

particular, our approach adopts the calculation of hyperplanes’ gradient information to measure

the direction of the rules.

While we only use a gradient information in the merging process [53], we calculate the blowup

effect to ensure that both merged rules should form a homogeneous shape (ellipsoids) and

direction (gradient). This measurement represents the accurate representation of the two rules/-

clusters when merged to ensure a homogeneous joint region. The blowup effect is formulated

as:

V olmerged 6 n(V olDominantz + V olWeakeru), (4.6)

where V ol stands for volume and n is the dimension of input attribute. After these two

conditions are fulfilled (formula 4.5 and formula 4.6), the updated parameters of the merged

rule referring to the work in [12], is as follows:

cDomz(update) =
cDomz (cur)SupDomz (cur)+cWeaku (cur)SupWeaku (cur)

SupDomz (cur)+SupWeaku (cur)
, (4.7)

∑−1
Domz

(update) =
∑−1

Domz
(cur)∗SupDomz (cur)+

∑−1
Weaku

(cur)∗SupWeaku (cur)

SupDomz (cur)+SupWeaku (cur)
, (4.8)

SupDomz(update) = SupDomz(cur) + SupWeaku(cur) , (4.9)

wDomz(update) =
wDomz (cur)∗SupDomz (cur)+wWeaku (cur)∗SupWeaku (cur)

SupDomz (cur)+SupWeaku (cur)
, (4.10)

where cDomz(update) and
∑−1

Domz
(update) are the updated antecedent parameters of the merged

rule and wDomz(update) is the updated consequent parameter of the merged rule.

4.4.2 Scalable PANFIS Framework using the Majority Voting method

This subsection discusses the second structure of Scalable PANFIS. The distributed training

task of this structure utilizes PANFIS, the same base-learning algorithm as the one used in the

71

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

first structure, whereas on the testing task, a majority voting method is used to aggregate

the output. Unlike the first structure, where initial distributed models are merged first prior

to the testing task, in this structure, the initial distributed models are used directly as the

multiple-classifiers to form the output. The majority voting inference scheme can be seen as an

ensemble algorithm inference scheme where its output is drawn from the composite of multiple

output using the same voting weight for all local models. That is, every local model infers the

same instance. The composite output of the instance is determined from the most voted class

among the local models. The second Scalable PANFIS structure is depicted in Fig. 4.3.

Large-
scale
data

stream

Distributed
training phase

Model collection from
training P data partitions

using PANFIS

Spark distributed
processing platform

Node 1 (PANFIS)

…
Node Q (PANFIS)

Initial distributed
models

model 1

…
.

Model P

Final Model
scenario

Aggregation
Phase

Scalable PANFIS TRAINING PHASE
(with or without AL)

Majority Voting MechanismDistributed training

• Using P
models
directly for
testing

Voting
Method

Final
Model

Figure 4.3: The structure of the Scalable PANFIS framework using the majority voting method

Voting methods have become popular to combine multiple models, such as those in the early

works in [77, 96, 97]. A voting method in the fuzzy rule-based classification system was pio-

neered by Ishibuchi et al. in [98]. In the realm of fuzzy rule-based classification systems, there

are two kinds of fuzzy rule-based voting schemes: 1) multiple fuzzy if-then rules in a single

fuzzy rule-based classification system; and 2) multiple fuzzy rule-based classification systems.

For majority voting, we adopt the second method where the voting procedure is carried out

using multiple fuzzy rule-based classification systems. In this case, the voting procedure is

conducted at the model level instead of the rule level.

In PANFIS, the n-dimensional pattern classification problem is defined by the fuzzy rule-based

72

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

classification system. The classification system makes use of a generalized form of the Takagi

Sugeno Kang (TSK) fuzzy system. Its antecedent part is developed by the ellipsoids in arbitrary

positions connected with a new projection concept in terms of linguistic terms (fuzzy sets). The

ellipsoids are generated by the multivariate Gaussian function. The generalized fuzzy rule is

formally written as follows:

Rr : If x1 is close to A1
1 and ... and xn is close to Anr

THENŷr = wrφr (4.11)

where wr and φr are the particular output parameter and the firing strength of particular rth

rule respectively which reflect the consequent part of the fuzzy rule. The output ŷ in the fuzzy

system is determined by the following formula:

ŷ =
v∑
r=1

φrwr, (4.12)

where v denotes the number of rules in the system. PANFIS was originally designed for the

regression problem. In the case of classification, the output of a given instance of testing data

is structured following the multi-input-multi-output (MIMO) form. The output parameter wr

of rth rule in the MIMO form is expressed as follows:

wr =

w1
r0, w

2
r0, ..., w

m
r0

w1
r1, w

2
r1, ..., w

m
r1

............

w1
rn, w

2
rn, ..., w

m
rn

, (4.13)

where m and n denote the number of classes and input dimension, respectively. Thus, the

multiplication of output parameter wr ∈ <(n+1)×m and the firing strength φr ∈ <1×((n+1))

will result in the output value ŷ ∈ <1×m. The classification decision of a particular instance is

73

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

determined by observing the highest activation degree of output over all rules which is expressed

as follows:

O = arg max
c=1,..,m

(Oc) (4.14)

Note that for PANFIS, the n-dimensional classification model is conducted in a particular node

of the large-scale data analytics framework which processes particular G partitions of data in a

serial manner, while parallel across nodes. In the case of distributed learning, there are many

partitions to be processed/learnt in large-scale data analytics training phase. Therefore, a P

number (P is set by user) of local models is generated in the distributed training phase. In the

case of the majority voting procedure for the final classification decision, all models generated

in the large-scale data training phase influence the classification decision of every instance in

the testing data. An illustration of the models generated in the training phase in inferencing

an instance from the testing dataset is depicted in Fig. 4.4.

Model 1

Large-
scale
data

stream

Partitio
n 1

Partitio
n 2

Partitio
n 3

Partitio
n P

Node 1

Node 2

Node
Q

Partitio
n 4

Model 2

Model 3

Model 4

Model P

Instance sample’s pattern
taken from testing dataset

with n-input dimension

2
1

3

.

.

.

n

m Class (Classification
decision for each model)

0 1 … 00 1 … 0

0 1 … 00 0 … 1

0 1 … 00 1 … 0

0 1 … 00 1 … 0

0 1 … 01 0 … 0

Inference

0 1 … 00 1 … 0

Final Decision
Voted by
P Models

…
…

…
…

…
… …
…

Training
in worker

nodes
INITIAL DISTRIBUTED
MODEL OF SCALABLE

PANFIS

Figure 4.4: The voting mechanism scheme in the distributed machine learning PANFIS archi-
tecture

The majority voting mechanism is applied in the Scalable PANFIS framework because it adopts

the multiple model classification technique as in the ensemble algorithm where the weight of all

local models is set to be equal. Classification systems are usually formed by the combination

74

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

of either many uniform or different types of local models, which often show better performance

than a single local model [99].

4.4.3 Scalable PANFIS Framework with AL and the Model Merging

Method

This subsection mainly discusses the third structure of Scalable PANFIS, where active learn-

ing (AL) is involved in the distributed training task. The learning mechanism in this structure

is similar to the one described in subsection 4.4.1. However, this Scalable PANFIS framework

structure uses AL to train large-scale data streams. In other words, the number of samples

trained to generate a local model from a training data partition is less than the number of

samples in the original one. Furthermore, the procedure of generating the initial distributed

model generation remains the same. That is, every worker node sends their results (G local

models) to be accumulated with the results from the other nodes into a driver node. A set of

local models is collected in the driver node as an initial distributed model. In this structure,

initial distributed models are then merged using the model merging method. This structure is

illustrated in Fig. 4.2.

The key feature in large-scale data stream analytics is the ability of the framework to train

the data efficiently in terms of running time and accuracy. In addition to distributed data

stream processing, sample selection (also known as prototype reduction) is used to reduce

computational learning time. Sample selection in this work is inspired by the certainty-based

active learning (AL) concept. The main difference in prototype reduction is that AL evaluates

the data in an unsupervised mode.This concept is able to define the relevant instances and

minimize the labour-intensive labelling effort.

The AL was inspired by the what-to-learn method of the traditional meta-cognitive model in

[100][101], which still completely depends on labeled training samples. The online AL was put

forward in [102] to improve the previous concept accommodating the online learning scenario.

However, none of these concepts involve concept drift in the data stream. Therefore, in order

75

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

to cope with this issue, a certainty-based active learning scenario is proposed in [103].

The certainty-based AL scenario is developed by virtue of the Bayesian concept, where the

Bayesian posterior probability determines the conflict level between input and output spaces.

This Bayesian concept is more preferable than the firing strength criterion because the Bayesian

concept is more robust to outliers. In addition, the variable of the uncertainty strategy [104]

counterbalances the effects of concept drift. This strategy adjusts the conflict threshold cor-

respondingly to an up-to-date system dynamic. The substantial conflict in the output spaces

is triggered by the instance occupying an adjacent proximity to the decision boundary. The

model’s truncated output defines the conflict in the output which is expressed as follows:

p(ŷs|X)output = min(max(conffinal, 0), 1), conffinal

=
ŷ1

ŷ1 + ŷ2

, (4.15)

where p(ŷs|X)output represents the output posterior probability. The first and second dominant

outputs are denoted as ŷ1 and ŷ2, respectively. The conflict in the output space is determined

by the quality of the decision boundary, whereas the conflict of the input space is caused by

the unclean cluster, where the cluster has a different class sample. We calculate the posterior

probability using the joint-category and class probability p(ŷs|Ri) estimation as follows:

p(ŷs|X) =

∑r
i=1 p(ŷs|Ri)p(X|Ri)p(Ri)∑m

o=1

∑r
i=1 p(ŷs|X)p(X|Ri)p(Ri)

, (4.16)

p(ŷs|Ri) =
log(Supsi + 1)∑m
o=1 log(Supsi + 1)

, (4.17)

where Supsi represents the number of the ith cluster falling to the sth class,m denotes the number

of output dimensions or classes, and p(ŷs|X)input represents the input posterior probability. If

the model exhibits a strong confusion, the training samples are allowed to update the model.

76

4.4. STRUCTURE OF THE SCALABLE PANFIS FRAMEWORK MODEL

This criterion is defined as follows:

p(ŷs|X)output < υ and p(ŷs|X)input < υ, (4.18)

where υ represents the conflict threshold. The variable budget Bud is introduced to determine

the maximum number of samples allowed to be annotated during the training process. With

the assumption that data is uniformly distributed, υ is initialized as υ = 1
m

+ Bud(1 − 1
m

).

When the conflict in the output space or the conflict in the input space is higher than the

conflict threshold, the sample does not need to be trained. Otherwise, the sample needs to be

trained. The value of υ is dynamically changing, increasing when the sample is trained, and

decreasing whenever the sample is discarded from the training process.

4.4.4 Scalable PANFIS Framework with AL and the Majority Voting

Method

The fourth structure of Scalable PANFIS employs PANFIS with AL for the distributed

training task while majority voting is used for the testing task. In the distributed training

task, initial distributed models are obtained from the collection of local models, where each

local model is the representation of the corresponding training data partition trained by PANFIS

with AL. The inference procedure follows the majority voting conducted in subsection 4.4.2.

The initial distributed models contain P number of models (e.g. PANFIS with AL). The

final model is obtained by processing the initial distributed models using majority voting, as

explained in subsection 4.4.2. This final model is then used to classify large-scale data stream

testing. The fourth structure of the Scalable PANFIS framework (using AL) sequence from the

initial distributed models until the final model is generated is illustrated in Fig. 4.3.

77

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

4.5 Numerical Study

This section describes the numerical study of large-scale data stream analytics using Scalable

PANFIS and the Spark-based algorithm. Subsection 4.5.1 details the experiment procedure

including the environmental setup, performance measures, datasets, and methods used in the

experiment. The results of the experiment are discussed in subsection 4.5.2.

4.5.1 Experiment Setup

In this work, all the experiments are performed in the Spark platform, under the Nimbus

Pawsey Supercomputing Centre Australia. The Spark platform is built by one master node

and 6 worker nodes, where the Pawsey version of Ubuntu 20.04 Focal Fossa is installed for all

nodes as the operating system. Each node has the maximum specification 32GB RAM. For the

total memory used in the cluster, we configure only 24GB for each worker node to be allocated

in the memory cluster, leaving the rest for other operations, thus the total memory cluster is

144GB. For the driver node, we allocate 8GB for the Spark operation, leaving the rest (24GB)

for other operations, considering there may be a lot of variables stored in the local memory of

the driver node. For software, we use Apache Spark version 3.0.0 and R version 3.6.3.

In this experiment, eight algorithms are compared in order to measure their performance in

terms of running time, accuracy, and the number of rules generated after the merging. The

first four algorithms are the Scalable PANFIS algorithms and the other algorithms are the

algorithms which are built in the SparkR API library. For the sake of simplicity, we abbreviate

the four structures of the Scalable PANFIS algorithms which employ a combination of three

techniques (e.g, the active learning, the model merging, and the majority voting) as shown in

Table 4.2.

For a clearer explanation, Fig. 4.2 and Fig. 4.3 show the Scalable PANFIS model sequence

using the model merging and majority voting methods as the aggregation method after initial

78

4.5. NUMERICAL STUDY

Table 4.2: Algorithm description

No Algorithm Description

1 Scalable PANFIS Merging Scalable PANFIS using
Model Merging Technique

2 Scalable PANFIS Voting Scalable PANFIS using
Majority Voting Technique

3 Scalable PANFIS with AL Merging Scalable PANFIS with AL
using Model Merging Technique

4 Scalable PANFIS with AL Voting Scalable PANFIS with AL
using Majority Voting Technique

5 Spark.KMeans K-Means
6 Spark.GLM Spark Generalized Linear Model
7 Spark.GBT Spark Gradient Boosted Tree
8 Spark.RF Spark Random Forest

distributed models are generated. We utilize six datasets taken from the UCI dataset repository

[105] for the large-scale data analytics framework: SUSY, HIGGS, HEPMASS, Poker Hand,

RLCPS, and KDDCup, their specifications being shown in Table 4.3. All datasets are divided

into 80% training data and 20% testing data using 5-fold cross-validations.

Susy, Higgs, Hepmass, and RLCPS datasets are commonly used for large-scale data classifi-

cation problems, such as in [106, 20]. Poker Hand and KDDCup are multiclass datasets with

10 and 22 classes, respectively. While the Poker Hand dataset is trained using all 10 classes

to perform classification task based on [106], the KDDCup dataset is trained using only two

classes: "normal" and "on attack" mode based on the work in [20].

Table 4.3: Dataset description

Dataset #Samples #IA #Class

SUSY 500000 18 2
HIGGS 11000000 28 2

HEPMASS 1050000 28 2
RLCPS 5174219 9 2

Poker Hand 1025011 10 10
KDDCup 4898431 41 2

Samples: data points, IA: Input Attribute

There are 96 data partitions set in this work for all datasets to perform Scalable PANFIS

training. Every partition is mapped into eight worker nodes to be processed on the Spark

platform in parallel mode. For each data partition, one model is generated. This number of

79

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

partition (96 partitions) is chosen based on the consideration that our system has 96 cores with

8 driver nodes, so every driver node processes an equal number of partitions (12 partitions).

Increasing the number of partitions will generally speed up the training process, such as the

work conducted in [106]. However, our main concern in this experiment is to investigate the

performance of Scalable PANFIS using model merging and Scalable PANFIS using majority

voting (with and without AL) in terms of accuracy and running time. The model merging

method is our main contribution which is able to merge many rules and yields stable accuracy

for classification. For each dataset executed by the algorithms shown in Table 4.2, we measure

the following performance:

1. Accuracy : The percentage of correctly classified testing data over all testing data.

2. Compression rate: The performance measure of the AL technique embedded in the PAN-

FIS algorithm. This represents the percentage of instances learned over all instances in

the training data in particular data partitions. It is also called compression ratio. Note

that the compression ratio is only calculated by the Scalable-PANFIS algorithm with the

AL method embedded on it. Otherwise, the compression rate is 100 percent, meaning

that all samples in the dataset are trained.

3. Running time: The measurement of the training time required for all distributed ma-

chine learning algorithms (Table 4.2) in processing a large-scale data (Table 4.3) (from

distributing the data partition into the worker nodes until the large-scale data model is

generated in the driver node). The results are presented in the Table 4.5.

4. Testing time: The measurement of inference time required for Scalable PANFIS based

algorithms. This measurement aims to compare the effectiveness of inference task between

model merging and majority voting methods. The results are presented in Table 4.7.

5. Number of rules: The measurement of the number of rules shows the complexity of the

model system. The lower the number of rules, the lower the complexity of the model

system.

80

4.5. NUMERICAL STUDY

4.5.2 Results

Two group of experiments are conducted to measure the performance of the algorithms. The

first group compares Scalable PANFIS without AL (Algorithm 1-2) and Scalable PANFIS with

AL (Algorithm 3-4). The second group compares all the algorithms as shown in Table 4.2

(Scalable PANFIS algorithms and Spark-based algorithms). For the first group, we measure

the following performance: 1)accuracy; 2)compression rate; 3)running time; 4) testing time; and

5)number of rules generated after merging. The second group measures the performance of all

the algorithms (both Scalable PANFIS and Spark-based) in terms of both accuracy and running

time as illustrated in Table 4.8 and Table 4.9. The hyperparameters for Scalable PANFIS are

hand-tuned to yield the optimum results for all datasets and kept fix for all experiments. Three

parameters are set as follows: growing threshold kgrow = 1, pruning threshold kprune = 0.25,

and safety width kfs = 0.05 for the PANFIS local learning.

4.5.2.1 Scalable PANFIS discussion

4.5.2.1.1 The effect of AL in the Scalable PANFIS performance - Scalable PANFIS

with and without AL comparison

As previously discussed, the difference between Scalable PANFIS with AL and Scalable PANFIS

without AL lies in the generation of the collected model of all partitions after the training phase

(initial distributed models) as shown in Fig. 4.2 and Fig. 4.3. Scalable PANFIS with AL only

trains selected samples in each data partition, whereas Scalable PANFIS without AL trains all

samples in each data partition. Therefore, it is important to compare Scalable PANFIS with

AL and Scalable PANFIS without AL.

Table 4.4 shows that the average accuracy for both Scalable PANFIS with and without AL

is comparable, although Scalable PANFIS without AL performs slightly better accuracy in

general with maximum difference only 0.3 per cent in Susy dataset in comparison to Scalable

PANFIS with AL. However, Scalable PANFIS without AL-only trains around 40 per cent of

81

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

Table 4.4: The average of performance (compression rate and accuracy of Scalable PANFIS
with and without AL using voting and merging method

Dataset Aggregating
Method

Performance using (AL) Method Performance without using (AL) Method

Overall Average
Accuracy

(5-fold CV)

Average
Merging+
Voting

Average
Compression
Rate using
AL(%)

Overall Average
Accuracy

(5-fold CV)

Average
Merging+
Voting

Average
Compression

Rate without using
AL (Normal)(%)

Susy
Merging 76.08±0.13

75.73 40.12±0
76.46±0.18

76.06 100Voting 75.38±0.13 75.66±0.04

Higgs
Merging 63.93±0.18

63.85 40.07±0
63.95±0.15

64 100Voting 63.76±0.22 64.05±0.20

Hepmass
Merging 83.49±0.03

83.48 40.08±0
83.49±0.07

83.5 100Voting 83.47±0.04 83.51±0.05

RLCPS
Merging 99.93±0.05

99.92 40.12±0
99.91±0.13

99.95 100Voting 99.91±0.15 99.98±0

PokerHand
Merging 50.12±0.1

49.35 40.41±0
50.12±0.09

49.18 100Voting 48.60±0.19 48.23±0.5

KDDCup
Merging 99.65±0.03

99.65 40.12±0
99.68±0

99.69 100Voting 99.64±0.03 99.7±0.01

the samples in the worker nodes on average in comparison with Scalable PANFIS without AL

which trains all the samples coming to the nodes.

From this, we can conclude that AL can operate in the training process without a significant loss

of accuracy. This also means that fewer resources are required to process the samples/streams

to generate the model which produces a comparable performance to Scalable PANFIS without

AL. Note that average accuracy is the average of the classification result for Scalable PANFIS

with AL or Scalable PANFIS without AL for both model merging and majority voting, where

each of them is carried out using 5-fold cross-validations.

Table 4.5: The effect of the Active Learning Method in the distributed machine learning PAN-
FIS training algorithm on the running time using performance 5-fold cross validations

Dataset
Average

Compression Rate
(%)

Average
Running Time
without AL (s)

Average
Running Time
with AL (s)

Susy 40.12 842.11±18.11 417.02±12.76
Higgs 40.07 4279.80±131.44 2009.97±57.32
Hepmass 40.08 3877.84±90.08 1852.66±50.94
RLCPS 40.12 842.11 ± 18.11 341.40±38.42
PokerHand 40.41 164.24±7.77 86.91±5.91
KDDCup 40.12 3443.68±116.89 1530.83±31.22

A similar comparison between Scalable PANFIS with AL and without AL is shown in Table

82

4.5. NUMERICAL STUDY

Table 4.6: Number of rules generated before and after the model merging for initial distributed
models generated with Scalable PANFIS (with and without AL)

Dataset
Scalable PANFIS Scalable PANFIS Scalable PANFIS Scalable PANFIS
Before Merging After Merging with AL Before Merging with AL After Merging

Rule # Rule # Rule # Rule

SUSY 107 5 103 5
HIGGS 102 5 119 5

HEPMASS 135 5 137 5
RLCPS 96 5 96 5

Poker Hand 126 5 125 5
KDDCup 96 5 96 5

4.5 in terms of running time. It is noted that the average compression rate is linear with the

speed of the training partition. For example, in the case of training SUSY dataset using 5-

fold cross validations, Scalable PANFIS requires around 842 seconds to generate the large-scale

data model, whereas Scalable PANFIS with AL needs around half the time, this being around

417 seconds. This trend is similar with the other datasets where the running time of Scalable

PANFIS with AL is around half the running time of Scalable PANFIS without AL.

4.5.2.1.2 Determining the number of initial rules before the merging process

The number of rules generated by Scalable PANFIS with and without AL (initial distributed

models) and the number of rules after the merging is depicted in Table 4.6. It is clear that the

proposed model merging method reduces the complexity of rules in the system from before and

after merging. The initial constant number of rules after merging for all datasets is constant

(5 rules) as we set the five best initial rules prior to the merging process. Note that this initial

number is determined solely from empirical experiment as the higher number initial rules to

be picked before merging at some point may deteriorate the generalization power due to the

wrong rules being picked as the outliers as depicted in table 4.1. The dynamic selection of

initial rules to be picked before merging is still beyond the scope of this chapter. In summary,

merging method using a few number of initial rules is able to classify large-scale data streams.

83

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

4.5.2.1.3 The Merging and Voting methods comparison

Table 4.7 shows the comparison of performance between Scalable PANFIS using merging and

voting method for both accuracy and testing time. It can be seen that the accuracy of the

merging method slightly outperforms the voting method on Pokerhand and Susy dataset by

around 1.5 and 0.7 per cent respectively.

Table 4.7: Performance of Scalable PANFIS on merging and voting method

Dataset
Training
Method

Merging method performance Voting method performance

Average ac-
curacy using
5-fold CV (%)

Overall av-
erage merg-
ing (with and
without AL)
(%)

Average
testing time
using 5-fold
CV (s)

Overall av-
erage test-
ing time on
merging (s)

Average ac-
curacy using
5-fold CV (%)

Overall
average
voting (with
and without
AL) (%)

Average
testing time
using 5-fold
CV (s)

Overall av-
erage test-
ing time on
voting (s)

Susy
with AL 76.08+0.13

76.27
24.42+1.06

24.07
75.38+0.13

75.52
2196.55+22.20

2179.62without AL 76.46+0.18 23.73+0.45 75.66+0.04 2162.69+52.67

Higgs
with AL 63.93+0.20

63.94
75.32+4.19

75.43
63.76+0.22

63.91
6688.43+452.53

6725.81without AL 63.95+0.15 75.54+9.58 64.05+0.20 6762.99+310.79

Hepmass
with AL 83.49+0.03

83.49
68.57+1.96

68.99
83.47+0.04

83.49
6117.43+212.54

6135.82without AL 83.49+0.07 69.42+1.99 83.51+0.05 6154.21+150.82

RLCPS
with AL 99.93+0.05

99.92
22.89+2.36

22.89+2.36
99.91+0.15

99.95
1897.69+71.91

1893.41without AL 99.91+0.13 22.47±1.61 99.98+0 1889.13+114.13

PokerHand
with AL 50.12+0.1

50.12
5.83+0.51

5.88
48.60+0.19

48.42
492.367+31.07

493.49without AL 50.12+0.09 5.93+0.55 48.23+0.5 494.62+18.58

KDDCup
with AL 99.65+0.03

99.67
40.70+1.18

41.15
99.64+0.03

99.67
3878.41+46.16

3884.23without AL 99.68+0 41.59+1.83 99.7+0.01 3897.04+50.52

The similar trend is also shown in the testing performance. Voting method suffers from com-

putational inefficiency. The testing time required for the voting method for all datasets was

almost 100 times slower than those of testing time carried out by the merging method. This

problem is understandable because the number of testing is carried out in every sub-models

(model before merging). As the number partition of the Scalable PANFIS framework uses 96

partitions, the number of testing is carried out at least 96 times.

4.5.2.2 Scalable PANFIS and Spark-based Algorithms Comparisons

The performance comparison between all Scalable PANFIS frameworks and Spark-based al-

gorithms are summarized in Table 4.8 and Table 4.9 in terms of accuracy and running time,

respectively.Note that this experiment is performed using five times cross-validations procedure.

In general, in terms of accuracy (Table 4.8), all Scalable PANFIS algorithms have a similar

performance for all datasets. For example, for the SUSY, HIGGS, HEPMASS, RLCPS, Poker

84

4.5. NUMERICAL STUDY

Hand, and KDDCup datasets, the Scalable PANFIS algorithms demonstrate an accuracy of

around 76, 64, 83, 99, 50, and 99 percent, respectively. Conversely, for the Spark-based al-

gorithms, the accuracy for some of the datasets is not the same. For the SUSY and HIGGS

datasets, for example, the Spark.KMeans algorithm is outperformed by its counterparts with

only 49.73 and 48.82 percent accuracy in comparison with other Spark-based algorithms, with

around 75 and 60 percent accuracy. Table 4.8 also shows that Scalable PANFIS algorithms

outperform Spark-based algorithms in terms of accuracy with a significance difference of accu-

racy in dataset SUSY, HIGGS, and HEPMASS (around 3 percent). However, for the remaining

datasets (RLCPS, Poker Hand and KDD Cup), most of Scalable PANFIS algorithms accuracy

are slightly lower than Spark.RF.

Table 4.9 shows that most of the Spark-based algorithms perform faster when they train large-

scale data. However, in one case (Poker Hand dataset), all the Spark-based algorithms (Al-

gorithm 5-8) perform slower than the Scalable PANFIS algorithms (Algorithm 1-4). Of the

Spark-based algorithms, Spark-GLM consumes more time than the other Spark-based algo-

rithms. In some cases (SUSY and Poker Hand dataset), Spark-GLM also performs slower than

Scalable PANFIS with AL algorithms.

Table 4.8: Accuracy for all datasets and algorithms using 5-fold cross validations

Algorithm Accuracy (%)
SUSY HIGGS HEPMASS RLCPS Poker Hand KDD Cup

Scalable PANFIS Merging 76.46+0.18 63.9+0.15 83.49+0.07 99.91+0.13 50.12+0.09 99.68+0
Scalable PANFIS Voting 75.66+0.04 64.05+0.20 83.51+0.05 99.98+0 48.23+0.5 99.7+0.01

Scalable PANFIS with AL Merging 76.08+0.13 63.93+0.18 83.49+0.03 99.93+0.05 50.12+0.1 99.65+0.03
Scalable PANFIS with AL Voting 75.38+0.13 63.76+0.22 83.47+0.04 99.91+0.15 48.60+0.19 99.64+0.03

Spark.KMeans 49.73+0.48 48.82+1.26 50.09+0.55 70.34+18.43 50.12+0.09 39.62+12.52
Spark.GLM 74.91+0.03 63.80+0.13 83.48+0.06 99.98+0 50.12+0.09 99.70+0.01
Spark.GBT 73.5+0.09 59.35+6.18 77.8+1.02 99.64+0 50.12+0.09 97.04+0.02
Spark.RF 75.88+0.26 59.77+0.51 80.91+0.27 99.98+0 50.63+0.60 99.9+0.04

4.5.2.3 Statistical Testing

In this thesis, we conduct a statistical testing (hypothesis testing) to measure the performance

of all algorithms over multiple datasets. We use Wilcoxon signed-ranked test, a non-parametric

statistical test which considers the magnitude of difference and sign between two paired samples

85

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

Table 4.9: Running time for all datasets and algorithms using 5-fold cross validations

Algorithm Running Time (s)
SUSY HIGGS HEPMASS RLCPS Poker Hand KDD Cup

Scalable PANFIS
without AL (merging and voting)

842.11+18.11 4279.8+131.44 3877.84+90.08 527.81+68.30 164.24+7.77 3443.68+116.89

Scalable PANFIS
with AL (merging and voting)

417.02+12.76 2009.97+57.32 1852.66+50.94 341.40+38.42 86.91+5.91 1530.83+31.22

Spark.KMeans 132.56+6.52 562.41+153.47 475.33+69.44 77.28+9.43 333.76+19.78 415.99+74.91
Spark.GLM 436.26+21.25 1223.4+112.6 1200.32+80.2 308.43+8.55 953.02+63.47 812.71+35.52
Spark.GBT 346.4+34.52 813.45+193.38 644.05+47.04 191.75+43.92 815.89+33.41 712.31+79.88
Spark.RF 147.54+5.12 377.27+203.69 454.72+60.1 174.79+16.8 542.47+48.61 457.44+46.56

(e.g. vector of accuracies of two algorithms). The accuracy is considered as the only perfor-

mance metric we used for testing since the running time performance is obviously different one

to the others—for example, the running time of Spark.KMeans (algorithm 5) is obviously faster

than Scalable PANFIS with AL (algorithm 4) on all datasets (Table 4.9).

For each algorithm, there are 30 observations (vector of accuracies) to be compared as a result

of performing five times cross-validation over six datasets as illustrated in the Table 4.10. The

vector v1 reflects the accuracy of Scalable PANFIS Merging or Scalable PANFIS Voting on

SUSY dataset on first cross-validation. The Vector v2 up to v30 reflect the results of both

algorithm on SUSY dataset on the second cross-validation all the way to KDDCup on the fifth

cross-validation.

Table 4.10: Statistical Testing of Two Paired Algorithms using Wilcoxon Signed-Ranked Test

Algorithm
Vector of accuracies Statistical

Test Results

v1 v2 v3 v4 v5 v26 v27 v28 v29 v30 Vstatistic pV alue

Algorithm 1 76.47 76.51 76.16 76.57 76.61 99.68 99.68 99.68 99.68 99.67 283 0.309
Algorithm 2 75.66 75.65 75.71 75.68 75.61 99.71 99.70 99.70 99.70 99.68 182 0.309

It can be seen in Table 4.10 that the statistical test results show that algorithm 1 performs

better in accuracy, having higher Vstatistic value than algorithm 2 (283 against 182), despite the

significance difference pV alue is still higher than significance level αsignificance.

Since there are eight algorithms to be compared, all of the statistical testing using Wilcoxon

signed-ranked are stored in 8×8 performance matrix. Table 4.11 shows the matrix of statistical

testing which store Vstatistic values and pvalues for every pair of compared algorithms. In this

context, Vstatistic reflects the score obtained from the sum of ranks multiplied by positive sign

86

4.5. NUMERICAL STUDY

when an algorithm outperforms another algorithm at a pair of observation, whereas pvalue

reflects the measure of significance difference between two compared algorithms. For example,

the statistical testing measure of accuracy between Scalable PANFIS Merging (algorithm 1)

and Scalable PANFIS Voting (algorithm 2) is stored in first row and second column of Table

4.11, where Vstatistic value and pvalue of this test are 283 and 0.309 respectively.

From the same Table 4.11 it is clear that algorithm 1 statistically better than algorithm 2, having

higher Vstatistic value than algorithm 2. However, using significance level αsignificance = 0.05, it

is considered that algorithm 1 is not significantly better than algorithm 2, where the measure of

significance difference pV alue = 0.309 is greater than αsignificance, thereby the null hypothesis is

not rejected. Note that the significance level αsignificance = 0.05 is equivalent with V left
critical = 137

for left tail and V right
critical = 328 for right tail for 30 observations. V right

critical is the minimum statistical

value (sum of ranks) an algorithm is considered significantly better than another, and vice versa.

Furthermore, algorithm 1 (Scalable PANFIS Merging) also outperforms of other algorithms,

especially compared to algorithm 4, 5, and 7 significantly where the values of significance dif-

ference are 1.89e-04, 2.61e-08, and 1.11e-04 respectively (all of them are below the αsignificance).

In contrast, algorithm 5 (Spark.KMeans) is outperformed by other algorithms significantly, hav-

ing Vstatistic below V left
critical and pV alue < αsignificance. In Table 4.11, we highlight the statistical

measure in bold, the one that provides non-significance difference between two algorithms.

Of the Scalable PANFIS structure, only algorithm 4 is outperformed by one of Spark-based

algorithm, particularly Spark.GLM. However, there is no significance difference of statistical

result as its pvalue = 0.25 greater than αsignificance. Of the Spark-based algorithms, Spark.GLM

is considered as the best performer, significantly better than Spark.KMeans and Spark.GBT,

and slightly better than Spark.RF, having higher Vstatistic than Spark.RF (255 against 210).

In summary, Scalable PANFIS algorithms (1-4) are generally better than Spark-based algo-

rithms (5-8) statistically, even though for particular algorithms (Spark.GLM and Spark.RF)

the statistical test results show that there is no evidence that Scalable PANFIS methods are

significantly better in accuracy. Furthermore, Wilcoxon signed ranked test provide a better

87

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

description about overall performance. For most notable example is the comparison between

Scalable PANFIS Merging and Spark.RF. Scalable PANFIS Merging better than Spark.RF

in the three datasets (Susy, Higgs, and Hepmass), whereas Spark.RF outperforms Scalable

PANFIS Merging in RLCPS, PokerHand and KDDCup. In fact that Spark.RF only exceeds

the Scalable PANFIS Merging with small amount of difference (around 0.3 percent), whereas

Scalable PANFIS Merging achieve accuracies with much higher difference (around 4 percent).

Wilcoxon signed ranked test considers the magnitude (differences of accuracies), where the

higher gap performance is multiplied by the higher value. It can be seen that Vstatistic of

Scalable PANFIS is higher than Vstatistic of Spark.RF (329 against 136).

Table 4.11: Matrix of statistical testing using Two-tailed Wilcoxon signed ranked test on 8
algorithms using Vstatistic values and pV alues

Comparison

Vstatistic values/pvalues
Scalable
PANFIS

Merging (1)

Scalable
PANFIS
Voting (2)

Scalable
PANFIS with
AL Merging (3)

Scalable
PANFIS with
AL Voting (4)

Spark.
KMeans (5)

Spark.
GLM (6)

Spark.
GBT (7)

Spark.
RF (8)

Scalable PANFIS
Merging (1) NA 283/0.309 295/0.205 404/1.88e-04 459/2.60e-08 293/0.221 458/3.54e-08 329/0.047

Scalable PANFIS
Voting (2) 182/0.309 NA 194/0.44 310/0.047 450/2.55e-07 267/0.49 409/1.11e-04 264/0.529

Scalable PANFIS
with AL Merging (3) 170/0.205 271/0.44 NA 390/0.001 458/3.54e-08 283/0.309 458/3.54e-08 299/0.177

Scalable PANFIS
with AL Voting (4) 61/1.89e-04 125/0.047 75/0.001 NA 450/2.55e-07 179/0.28 418/3.90e-05 261/0.57

Spark.KMeans (5) 6/2.61e-08 15/2.55e-07 7/3.54e-08 15/2.55e-07 NA 0/1.31e-05 1/1.48e-05 0/1.86e-09

Spark.GLM (6) 172/0.221 198/0.49 182/0.309 286/0.28 325/1.31e-05 NA 325/1.31e-05 255/0.655

Spark.GBT (7) 7/3.54e-08 56/1.11e-04 7/3.54-08 47/3.90e-05 324/1.48e-05 0/1.31e-05 NA 54/8.85e-05

Spark.RF (8) 136/0.047 201/0.529 166/0.177 204/0.57 465/1.86e-09 210/0.655 411/8.86e-05 NA

4.5.3 Summary Discussion

This section summarises the methods, algorithms, and results obtained in this experiment.

There are at least six points we can discuss in relation to this experiment. As discussed in the

results section, firstly, the AL strategy is embedded in the PANFIS machine learning algorithm

to speed up the training process by selecting samples to be trained in the worker node of the

Scalable PANFIS framework. For many cases of large-scale data stream processing, reducing the

number of samples to be trained slightly reduces the accuracy without a significance difference.

88

4.5. NUMERICAL STUDY

For smaller datasets, such as Poker Hand, distributed machine learning PANFIS using a voting

technique yields a lower accuracy than the others (48.23 and 48.60 percent for algorithm 1 and

3 compared to the others). This is due to the small size of the Poker Hand dataset compared

to the other datasets. With around 800k of total samples, if it is divided into 96 partitions,

each partition will have around 8k samples. With the further AL applied on each partition, the

samples trained in each chunk is around 3.2k (assuming the compression rate is around 0.4).

Hence, the training process in all the partitions is not converged.

Secondly, both the model merging and voting techniques yield similar performance results in

terms of accuracy. The voting mechanism discards the less supported decision made by the

Weaker models which generate a false classification output, whereas the model merging mech-

anism discards the models which have a lower confidence level (lower weight/lower classification

training results) thus resulting in better inference results. Furthermore, the over-complex rule

base leads to the overfitting issue and thus deteriorates the generalization ability.

Thirdly, the PANFIS architecture is designed for MIMO architecture. In the case of binary

classification problems, the Spark-based algorithm can directly process the data. However,

for the multi-class classification problem, Spark-based algorithms need to be modified into the

One-Versus-All (OVA) form. Therefore, for the Poker Hand dataset, Spark-based algorithms

require a longer time to process the training data, as shown in Table 4.9.

Fourthly, the large-scale data stream framework based on PANFIS accelerates the training

process by processing all the data partitions in parallel mode. From each partition, one single

model is generated by PANFIS with or without AL. In order to gain a final model, model

merging methods, such as model merging and the voting mechanism are applied because simply

concatenating the data partition model can result in the overfitting issue deteriorating the

generalization ability of the concatenated model because some rules may be overlapping.

Fifthly, in general, all Scalable PANFIS algorithms produce similar accuracy without a sig-

nificance difference. However, it can be concluded that the use of voting method, in general,

slightly decreases the accuracy. This is because the number of local models that have lower gen-

89

CHAPTER 4. EVOLVING LARGE SCALE DATA STREAM ANALYTICS BASED ON
PANFIS - SCALABLE PANFIS

eralization powers influence the final results. This fact also emphasizes that the model selection

should be considered prior the voting rather than using all local models directly to infer the

testing data. Therefore, using limited rules/local models as described in Table 4.6 is one of the

way to keep the quality of the distributed model. Furthermore, using voting method is costly

when the number of local models involved is very high (more than 96 local models). Table

4.7 shows that the testing/inference time of voting method is almost 100 times slower than

inference of model generated from model merging, due the compact of its structure. This fact

also confirms that our designed model merging method robust to handle evolving distributed

data model, especially in dealing with the outliers.

Finally, we design the robust model merging method by selecting the initial rules which have

the highest weight and applying rule removal before the model merging process, as can be seen

in the performance (accuracy and number of rules after merging). The model merging process

is explained in algorithm 3. Rule removal is performed based on the consideration that the rules

which have less support are considered as outliers, thus this could reduce the generalization

capability of the classification performance.

4.6 Conclusion

The evolving large-scale data stream analytics framework, namely Scalable PANFIS, demon-

strates distributed data stream processing. Scalable PANFIS combines two ways of dealing

with the large volume of large-scale data: streaming algorithms and distributed computing.

It makes use of a PANFIS evolving algorithm which is adaptive to the changing data stream

patterns and works on the single-pass learning scheme. The Spark distributed processing plat-

form ensures that PANFIS can be scaled up into the desired number of nodes, enabling it

to process large-scale data stream examples. This combination ensures that the final model

generated from Scalable PANFIS (the initial distributed models followed by the model merg-

ing/aggregation) is kept up to date, and the generalization performance does not decrease.

On the training side, the AL method is also applied in the framework to further speed up

90

4.6. CONCLUSION

the PANFIS training process in the partition level with comparable accuracy. On the testing

side, the majority voting method is also implemented. The results show that model merging

is slightly better to the majority voting method. All in all, the four structures of the Scalable

PANFIS approaches demonstrate the comparable accuracy with a slight decrease of accuracy

in voting method. Furthermore, a model selection should be incorporated before applying the

voting method because over complex model not only slows the testing time but also degrades

the generalization performance.

From this point, we can conclude that the needs of the advanced framework is vital for pro-

cessing data streams. That is, a framework should be effective in coping with the vast volumes

of data generated, the changing patterns, and the continuous arrival of data streams. While

Scalable PANFIS has been proven to effectively handle the large-scale and changing patterns of

data streams, it has not been evaluated in the continual learning environment which is vital to

ensure the scalability of the algorithm. In the next chapter, the incremental learning framework

is proposed to cope with sequential data streams, which arrive batch-by-batch. Furthermore, a

prequential Scalable PANFIS is also considered as a benchmark algorithm to show the effective-

ness of a new framework whose architecture is detailed in the subchapter 2.7.1. The learning

performance is evaluated task-by-task using prequential test-then-train, a standard evaluation

method for data stream learning.

91

5
Scalable Teacher-Forcing Networks under Spark

Environments for Large-Scale Streaming Problems

Abstract

A novel self-organizing structure of ensemble under incremental learning scheme using a dis-

tributed processing platform is proposed. Unlike Scalable PANFIS, ScatterNet differs from

Scalable PANFIS in that its learning mechanism is evaluated under the test-then-train proto-

col allowing it to process never-ending batches of training data. While the generation of the

fast-evolving distributed model in Scalable PANFIS is undertaken in one task, the distributed

learning performed in ScatterNet takes place in sequential tasks. Furthermore, Scalable PAN-

FIS does not adopt an elastic structure evolution in learning from data streams which is vital

to handle concept drift. ScatterNet adopts the elastic network principle, where the number of

base models (the base classifiers for a classification problem) in the ensemble network (EN)

evolves over time. Network performance is evaluated for every task, where a winning model

is obtained. Each base model’s performance in the EN is also assessed, and the base models

are removed from the EN if they are considered to be inconsequential base models using a

statistical measure. The distributed training of ScatterNet makes use of a winning model to

be updated in a distributed learning system. Every partition is processed in the corresponding

assigned node using a teacher-forcing method distributed across the Spark nodes. The initial

92

5.1. INTRODUCTION

distributed models are formed for the first time after the distributed training task. Then, a

data-free model merging compresses them into a merged model as a candidate base model in

the EN. The EN is expanded and a candidate base model is added into the EN, once drift

across the batch is detected. Otherwise, a candidate model replaces the winning model.

5.1 Introduction

The problems of large-scale data streams are related to learning from large-sized data whose size

is beyond the traditional computing platform to process [107]. In the era of IoT, smart devices

which are interconnected might produce a large amount of data as streams, and this can lead

to a data explosion problem. While vast volumes of data are beneficial for decision-making

purposes, it also demands advanced machine learning methods to handle the large-size and

fast sampling rate of data streams [108]. While data stream problems are commonly treated by

various incremental or online learners as described in [30] with their ability to handle continuous

data, the issue of large-scale data streams has not received adequate research study. Most of

the existing approaches are built under a standard single processing node architecture. While

data streams might arrive in batches periodically, the single node architecture might not be

able to keep up to process a large-size data stream batch.

Learning using a distributed computing platform is becoming the dominant way of dealing with

large-scale data [109]. This approach aims to learn huge volumes of static data distributively in

a single shot process. However, for continuous large-scale data streams, the learning approach

should be designed to cope with data stream characteristics. The distributed learning approach

faces several challenges when dealing with data streams. Firstly, the problem of the structural

complexity of a model might exponentially increase concerning the generation of several models

for each data stream accumulated over time (caused by the nature of distributed computing

platform, drifts, shifts, and new operation modes or dynamic system states). Secondly, there

is a decrease in the model’s accuracy (due to a complex structure which leads to the flexibility

issue). Our experimental finding shows that a simple combination of neurons or rules from

93

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

distributed nodes deteriorates the model’s accuracy because they are trained using different

partitions of a massive data batch and are optimized independently with a lack of synergy

among them.

Apache Spark (Spark) is a distributed data processing platform that is suitable for use in a

wide range of computational tasks. Particularly, in big data and machine learning tasks, the

Spark platform is powerful enough to process massive datasets across multiple nodes [23]. The

Spark platform is more effective than MapReduce [109] in streaming environments because it

is designed to be fast for iterative algorithms and process the data directly from the memory

instead of the disk. The kNN-based distributed algorithm was developed in [34] using the

Spark platform to handle large-scale data streams. It utilizes the distributed metric tree for

sample selection to speed up the calculation of the distance of kNN. However, kNN differs from

neural networks, where the underlying challenge lies in model selection if being undertaken

in the distributed computing environment. While [110] also performs large-scale data streams

analytics using evolving fuzzy rule-based classifiers, it has not been configured to evaluate

sequential data in the prequential test-then-train scheme and the lifelong setting. Work on

distributed learning was also carried out using the graphics processing unit (GPU) instead of

Spark in [111]. It puts forward the evolving rule-based classifier, which is constructed using the

genetic programming method. Note that a GPU can also be used as an alternative platform on

which to perform distributed learning tasks, although it requires a unique setting to demonstrate

mini-batch execution. The advantage of Spark over the GPU is that Spark is a cloud-based

platform, whose computing nodes can be expanded anytime on demand without changing the

algorithm operating in each computing node.

A large-scale streaming algorithm, namely Scalable Teacher-Forcing Networks (ScatterNet),

is proposed in this chapter under the Spark platform. ScatterNet makes use of the teacher-

forcing concept. The teacher-forcing concept offers an internal memory to capture the temporal

dynamics of data streams while avoiding iterative gradient calculations. The teacher-forcing

used in this work is the extension of [112] where the parameter learning mechanism is performed

without using the back-propagation method. The issue of massive data streams is solved using

94

5.1. INTRODUCTION

a distributed learning strategy utilizing Apache Spark. A zero-shot merging mechanism is

proposed to effectively merge the several models generated from learning from every large-scale

data stream batch. The merging procedure solves the structural complexity due to the nature

of distributed processing without deteriorating the generalization performance. The model

simplification procedure, model merging, can help to address the problem of lifelong learning

under a distributed computing environment.

ScatterNet adopts an open structure capable of coping with concept drift on local and

global scales. Note that local drift here refers to drift evaluation using the teacher-forcing

module at the partition level, where large-scale data streams are partitioned and distributed

to all nodes across the cluster. At the global level, the drift detection method is employed to

mark global concept drift followed by introducing a new model representing the new, drifted

concept.

The major contribution of ScatterNet is as follows:

• ScatterNet solves the problem of learning from large-scale data streams utilizing the

distributed computing platform, namely Apache Spark. ScatterNet employs the teacher-

forcing network [32, 113, 112] to evaluate data streams at the local level (a data stream

partition) taking into account the temporal characteristic of data streams without using

a time-intensive iterative gradient calculation.

• ScatterNet introduces the data-free model merging strategy which encapsulates both the

zero-shot merging strategy and online model selection. The former is capable of control-

ling the complexity of the model structure, whereas the latter provides the model selection

mechanism before the merging procedure. Data-free model merging offers the same level

of accuracy as that of its single node implementation.

• ScatterNet solves the local or within-the-batch drift making use of the teacher-forcing

mechanism whose network is adaptively changing through the addition or pruning of its

hidden nodes based on streaming examples. Furthermore, global or across-the-batch drift

95

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

is resolved using the drift detection method. A new model is incorporated into the existing

EN if a concept drift is signalled. Conversely, a model pruning mechanism is employed

to alleviate the heavy network structure by removing insignificant models in the EN.

• ScatterNet advances the network significance (NS) method [15, 114, 115] by incorporating

the forgetting mechanism. The forgetting mechanism solves the concept drift issue which

causes changes between the distribution of input data and the true label, P (Yk, Xk) 6=

P (Yk−1, Xk−1). This forgetting mechanism is undertaken by out-weighing older learned

(distributive) relations.

ScatterNet’s performance is numerically evaluated under two scenarios, large-size-small-

number and small-size-large-number using six large-scale data stream problems. Our nu-

merical results demonstrate the improvements of performance over related work in the aspect

of execution time while retaining comparable accuracy.

5.2 Problem Formulation of ScatterNet

The problem of large-scale data streams is defined as a situation where a process continuously

creates data formulated as B1,B2, ..,Bk, ...,BK ∈ <N [1]. K indicates the number of data

batches which may be unbounded. N expresses the size of a data batch. The size of N is

considered very large and it either cannot or is too costly to be learned by the single-node

machine learning algorithm.

Data streams often appear without the presence of class labels Bk = Xk ∈ <N×n where n is

the dimensionality of input space. A labelling process is carried out to provide the input vector

Xk to their corresponding true class labels denoted as Yk ∈ <N . The one-hot-encoding scheme

translates the target vector into an m-dimensional class vector so that a data stream can be

expressed mathematically as Bk = (X, Y) ∈ <N×n+m. n and m denote the dimensionality

of input and output space, respectively. Large-scale data streams are simulated under the

96

5.3. PRELIMINARIES

prequential test-then-train scheme [1] where numerical evaluation is independently evaluated

per data batch Bk.

The large-scale data stream problem illustrates a real-world case where a batch of data samples

must be processed promptly without decreasing its generalization power. In this case, Bk

cannot be efficiently processed under a single computing node algorithm as they cannot keep

pace with the large size of a batch of samples. From an offline learning point of view, the

standard distributed learning strategy might be suitable to learn a typical big data problem.

However, this technique might not be ideal for large-scale data stream problems where its

underlying issue lies in controlling structural complexity, where the model merging procedure

has to be carried out many times to deal with the never-ending data generation process. In

practice, the model merging strategy should be carried out to maintain structural complexity

without deteriorating accuracy, as achieved under a single processing node [110]. Furthermore,

the issue of drift may occur both locally (within the stream) and globally (across the stream),

where the drift handling strategy should be constructed thoughtfully.

5.3 Preliminaries

Apache Spark (Spark) is regarded as one of the latest distributed-computing platforms. In

Spark, the data processing mechanism is executed in the memory cluster instead of on a disk.

The ecosystem of Spark is partitioned into two parts: 1) spark-core; 2) programming interface

core. While the former serves the latter by defining the instructions received from it using its

lower-level library, the latter constructs a series of instructions to manipulate a large-scale data

batch Bk using a high-level library namely Spark API. Spark API provides several programming

languages such as Scala, Java, Python, R, and Spark MLib employing the Java Virtual Machine.

In Spark, Bk is processed through the subsequent steps:

• Obtaining Bk as a data frame from the cluster and covert it into Spark DataFrames in

the memory cluster.

97

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

• Several job tasks are created, and the necessary operations (e.g. training or testing data

partition) are performed over the nodes.

• The output from the several processes are collected (e.g. training models and predictions

collection).

Spark API also provides custom operations using its library, making it easy to manipulate Spark

DataFrames. Furthermore, these operations are carried out in parallel, utilizing the memory

cluster. As a result, it can speed up the data processing time. Due to this mechanism, Spark

can accommodate the iterative processing, which is vital for incremental learning scheme.

In Spark, the incremental learning mechanism is carried out by processing data streams batch-

by-batch or task-by-task. For each task, the prequential testing and training of data of Bk

are performed in a distributed manner. A large-scale data stream batch Bk is divided into P

number of partitions where the driver node controls the distribution of Bpk data partitions over

several worker nodes in the cloud. For each partition processed on any node, a result is obtained

(training model or an inference output). The same operation (the distributed prequential test-

then-train) is repeated for the future batches utilizing models/parameters stored in the global

environment generated from previous learning. Note that both testing and training data are

executed in the Spark environment (green part in Fig. 5.1).

5.4 Scalable Teacher-Forcing Network

The learning policy of ScatterNet is illustrated in Fig. 5.1. ScatterNet adopts an open structure

which assumes that the learning procedure is carried out from scratch without a pre-existing

model. This means that the initial distributed models are obtained from the first data stream

batch B1. ScatterNet characterizes a self-organizing network structure where hidden nodes

evolve following the distributional variation of data streams. The evaluation of ScatterNet is

carried out under the prequential-test-then-train scheme. Under this scheme, for every batch

Bk, the testing procedure is undertaken first followed by the training procedure. Once the

98

5.4. SCALABLE TEACHER-FORCING NETWORK

testing for each phase is done, the prequential error is recorded, producing an accuracy matrix

A ∈ <N . The matrix A contains the value of 1 and 0, which represent a false and correct

prediction, respectively.

ScatterNet is built based on the ensemble concept containing a stack of base models called the

EN. Every model in the EN is assigned a voting weight βi, and its value reflects its relevance

to cover the current concept. The changes of the voting weight are controlled by the penalty-

reward procedure based on the prediction output made by every model (base classifier). In

the case of a wrong prediction, the penalty scheme is applied so that the voting weight of

the corresponding model decreases. Conversely, the voting weight increases if the base model

predicts the test sample correctly. At the end of each task, every model has its weight according

to their performance on the test samples. A model which has the highest testing accuracy is

deemed to be the winning model.

The implementation of the drift detection mechanism is undertaken to detect drift across the

batch utilizing the accuracy matrix. Once drift occurs, a new model is appended. Conversely,

the system is regarded as a stable condition. In this case, EN renews one of its base models, a

winning model. The zero-shot merging simplifies the structure of the complex network resulting

from the generation of P distributed models of each distributed training task under the Spark

environment. P denotes the number of data partitions. ScatterNet can be deemed to be similar

to the work of MUSE-RNN [113] where the multi-layer RNN using the teacher-forcing concept

is developed. However, [113] has not been designed to cope with large-scale data streams.

Furthermore, ScatterNet does not apply the back-propagation method for parameter learning.

This practice hinders the issue of vanishing or exploding gradients and to escape the local

optima trap. ScatterNet also demonstrates a distributed process for both testing and learning

datasets, which are performed under Spark. The presentation of ScatterNet’s learning policy

is illustrated sequentially as per its order of Fig. 5.1. Note that in Fig. 5.1, a base model

(classifier) generated at kth task is denoted by yk. A base model yk has the same structure as

F i, a member of ensemble network EN as depicted in Fig. 2.6. The use of symbol yk in Fig.

5.1 only aims to illustrate the evolution of base models during the evolution of EN. Otherwise,

99

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

𝑫𝒂𝒕𝒂 𝑺𝒕𝒓𝒆𝒂𝒎𝑩 = 𝑩𝟏, 𝑩𝟐, 𝑩𝟑, … , 𝑩𝒌, … , 𝑩𝑲, … ; 𝟏 ≤ 𝒌 ≤ 𝑲;
Distributed testing case : 𝑩𝒌 = 𝑿𝒌 ∈ 𝕽𝑵×𝒏;
Distributed training case : 𝑩𝒌 = (𝑿𝒌, 𝒀𝒌) ∈ 𝕽𝑵×(𝒏*𝒎);𝑻𝒂𝒔𝒌 𝟏

𝐵!

𝐒𝐜𝐚𝐭𝐭𝐞𝐫𝐍𝐞𝐭-𝐬 𝐥𝐚𝐫𝐠𝐞 − 𝐬𝐜𝐚𝐥𝐞 𝐩𝐫𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 𝐭𝐞𝐬𝐭 − 𝐭𝐡𝐞𝐧 − 𝐭𝐫𝐚𝐢𝐧 𝐬𝐜𝐞𝐧𝐚𝐫𝐢𝐨 in classification task

DTraining! 𝑦!
𝔼ℕ! 𝑦!

Initial 𝔼ℕ 𝔼ℕ evolution from
task to task

DTesting%𝐵"
Drift Detection
Penalty and Reward
Model Pruning

𝑻𝒂𝒔𝒌 𝟐
DTraining%
Teacher Forcing
executed at the
local level

Passing 𝒚𝒘𝒊𝒏
parameters

𝔼ℕ! is used for
testing

Scenario 1: drift is detected

Model
Merging

𝑦#
𝔼ℕ# 𝑦!

𝑦#

Expanded EN

DTesting&𝐵#
Drift Detection
Penalty and Reward
Model Pruning

𝑻𝒂𝒔𝒌 𝟑
DTraining&
Teacher-Forcing
executed at the
local level

Passing 𝒚𝒘𝒊𝒏𝒏𝒆𝒓
parameters

𝔼ℕ# is used for
testing

Scenario 2: 𝑦& is pruned
and drift is detected and 𝑦'
is added

Model
Merging

𝑦% 𝔼ℕ% 𝑦#

𝑦%

Evolved 𝔼ℕ

𝔼ℕ# 𝑦#

Shrinked 𝔼ℕ

DTesting'𝐵$
Drift Detection
Penalty and Reward
Model Pruning

𝑻𝒂𝒔𝒌 𝟒
DTraining'
Teacher Forcing
executed at the
local level

Passing 𝒚𝒘𝒊𝒏
parameters

𝔼ℕ% is used for
testing

Scenario 3: Drift is not
detected and No Model
Pruning

Model
Merging

𝑦&
𝔼ℕ& 𝑦#

𝑦&

Updated 𝔼ℕ

Example scenario of ScatterNet’s Network evolution:
(1) In Task 1, initially, there is no 𝔼ℕ exist. Thus new base model 𝑦! is induced into 𝔼ℕ!. 𝑦! is basically generated

from distributed training (𝐷𝑇𝑒𝑠𝑡𝑖𝑛𝑔!) as an ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 of 𝐵!. At this stage, 𝔼ℕ! consists of one member base
model (𝑦!).

(2) In Task 2, drift is detected. Thus, new base model 𝑦) as an ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆 is added into 𝔼ℕ) .
(3) In Task 3, model is pruned, and at the same time, drift is detected. Insignificant model 𝑦! is pruned form 𝔼ℕ).

Existing model 𝑦) , as a winning model (ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆) is used for training. The new model 𝑦* (ℱ𝒖𝒑𝒅𝒂𝒕𝒆) is stacked
into 𝔼ℕ*.

(4) In Task 4, there is no either drift or pruning model. The winning model (ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆), in this case 𝑦*, is used for
training. The new model 𝑦- (ℱ𝒖𝒑𝒅𝒂𝒕𝒆) replaces 𝑦*.

(5) In every task, 𝔼ℕ is evolving, and in Task K, following three scenario either expanding, pruning, or updating 𝔼ℕ.

𝐵9

𝑻𝒂𝒔𝒌 𝑲
DTesting(

Drift Detection
Penalty and Reward
Model Pruning

DTraining(
Teacher Forcing
executed at the
local level

Passing 𝒚𝒘𝒊𝒏
parameters

𝔼ℕ'(! is used for
testing

Model
Merging

𝑦'

Stack of
Base

Models (y)

Evolved 𝔼ℕ

𝔼ℕ& is used for testing 𝐵)

𝑦' is a winning model (ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆). 𝑦, (ℱ𝒖𝒑𝒅𝒂𝒕𝒆) replaces 𝑦'

𝑦/ is a winning model (ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆) . 𝑦' (ℱ𝒖𝒑𝒅𝒂𝒕𝒆) replaces 𝑦/

𝑦/ is a winning model(ℱ𝒄𝒂𝒏𝒅𝒊𝒅𝒂𝒕𝒆).
𝑦/(ℱ𝒖𝒑𝒅𝒂𝒕𝒆) is added into 𝔼ℕ

Figure 5.1: ScatterNet’s learning policy and network evolution

we denote the evolved ensemble network as ENk = {F1, ...,F i, ...,FI} to describe that there

are I th base models at kth task.

100

5.4. SCALABLE TEACHER-FORCING NETWORK

5.4.1 Penalty and Reward Mechanism

The penalty and reward mechanism controls the voting weight of a model βi. The higher the

voting weight of a model, the more substantial influence of a model on the classification decision

(ensemble inference). In contrast, the models with less voting weight have less impact on the

ensemble inference. A model receives a reward when it classifies samples correctly, whereas a

penalty is imposed in the opposite situation. The penalty and reward mechanism is formulated

as follows:

βi = min(βi(1 + fac), 1), (reward)

βi = βi ∗ fac, (penalty) (5.1)

where fac ∈ [0, 1] denotes an adjustment factor. The minimum operator in the reward function

(5.1) is inserted to limit the voting weight in the range of value [0, 1]. This strategy is conceived

to achieve a stable weighted voting mechanism while pushing a model to be more sensitive to

the current concept. In this way, its voting weight can be mitigated or recovered quickly.

The mechanisms of penalty and reward refer to some recent work [116, 15], in which they

successfully implement similar strategies concerning the weighted voting method. Practically,

in the distributed learning environment, the penalty and reward mechanisms of the particular

model are undertaken in each data partition. Once, the voting weight of every data partition

βpi is collected, the final voting weight βi can be measured by solely using the average of all

voting weights βi = (
∑P

p=1 β
p
i)/P from all partitions. This process is performed in a driver

node as it only requires low computational resources.

5.4.2 Drift Detection Method

The drift detection method is implemented to identify the status of a data stream, e.g. whether

the existing concept remains fit. The state of stable means that the current concept remains

101

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

relevant, whereas the status of drift implies that the concept may be slightly irrelevant to the

data stream condition. In this chapter, we adopt the same principle as the work in [116, 15, 115]

derived from the drift detection method in [117]. This method is initialized by determining

the cutting point of accuracy describing the rise of the population means. The rise of the

population indicates the model’s performance has been compromised because of the binary

characteristic of the accuracy matrix A - 1 (false prediction), 0 (true prediction). The cutting

point is established if it meets the following criteria: Â+ εA ≤ B̂ + εB. Â and B̂ stand for the

statistics of the accuracy matrices A and B, respectively. The εA and εB denote the Hoeffding

bound of A and B, respectively. B ∈ <cut is a partition of the accuracy matrix A recording

up to cut entries. The Hoeffding bound is calculated as in the work in [116, 15, 115] where

εA,B = (b−a)
√

size
2∗cut∗size ln(1

α
). a and b are the minimum and maximum points of interest while

size is the size of the matrix of interest. α is the significance level and is inversely proportional

to the confidence level 1− α.

Like other schemes in ScatterNet, drift is also monitored in every partition Bp
k of a large-scale

data stream. The cutting point is evaluated in every partition. Once eliciting the cutting point,

the accuracy matrix of Bp
k is divided into two subpartitions in respect to the cutting point cut.

Assume that the two matrixes are established denoted as B ∈ <cut, C ∈ <N−cut. The drift

condition is flagged by rejecting the null hypothesis |B̂− Ĉ|≤ ε. The opposite case, in contrast,

implies a stable situation. A drift situation means that the current model is under-fitting

[116, 15].

To alleviate the under-fitting problem, a candidate base model F candidate is appended to the

existing EN as a new base model. F candidate is basically a merged model obtained from three

sequential processes: 1) selecting a winning base model Fwinning; 2) updating Fwinning using

the current data streams Bk (in the distributed training task); 3) merging the initial dis-

tributed models. In the mathematical notation, these three sequential processes are denoted as

F candidate = merge(L(Fwinning,Bk)). The current EN after the addition of a candidate base

model is denoted as ENk = [ENk−1;F candidate], and I = I + 1. ENk−1 expresses the ensemble

network containing I th number of base models before distributed training is conducted at kth

102

5.4. SCALABLE TEACHER-FORCING NETWORK

timestamp. FI denotes I th base model, a new base model.

In another case, if drift is not detected, the stable condition, F candidate replaces an Fwinning. In

other words, the winning base model is updated to keep improving the predictive performance.

Note that there is no warning case incorporated here as implemented in [115]. A warning

presents a case where a drift requires substantiation of the next samples. This situation is

unlikely to happen in ScatterNet due to the massive size of a data stream. Note that the drift

situation is evaluated in every partition of a data stream Bp
k.

5.4.3 Model Pruning Mechanism

The focus of drift detection is to increase the complexity of the EN by adding a new base model

in the network as a result of concept drift. As a counterbalance, model pruning mechanism

is designed to remove the insignificant base models F i. This mechanism is undertaken by

evaluating every voting weight βi of F i in each task (in the distributed testing task), where

voting weight βi is dynamically updated using a penalty and reward mechanism. The voting

weight directly reflects the performance of each base model F i. The lower the voting weight, the

less important the model is to the ensemble output. Thus, it is considered should be removed

to reduce the network complexity [118].

5.4.4 Data Stream Learning Phase

Once the testing phase of ScatterNet is executed, ensemble accuracy is evaluated followed by the

execution of the three following methods: drift detection, penalty and reward, and the model

pruning mechanism. The learning/training process is then undertaken, where the winning

model as evaluated from the testing is updated in the distributed training system (Dtraining).

Assume that the previous task’s winning model is denoted as Fwinning and the learning output

of the distributed learning is denoted as F candidate. The detail of the transformation or process

from Fwinning to F candidate is described as follows. The learning phase is undertaken in a

103

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

distributed fashion, where initially the distributed learning engine is induced by P partitions

B
p
k. When we look particularly into a data partition Bpk at the local level, the teacher-forcing

mechanism (sub subsection 5.4.4.1) takes the initial parameter of Fwinning to be evolved based

on a data stream partition Bpk condition. As a result, a local model denoted as F p
k is produced.

From this point, P local models F p
k are produced as the initial distributed models. Then, the

zero-shot merging process compresses the initial distributed models into F candidate. Note that

this merging is similar to the procedure of Scalable PANFIS in Fig. 4.2 with some of extensions.

5.4.4.1 Scalable Teacher-Forcing Network

The ScatterNet’s main algorithm, teacher-forcing, is derived from the concept of the hyperplane

activation function, which is based on the notion of hyperplane clustering. [32, 119]. This

idea takes into account the development of a hidden node utilizing a hyperplane defined as

Wr ∈ <(n+1)×m. For each node, the activation degree is determined via the distance between

point to hyperplane [32, 119] formulated as follows:

discr =
|(ycd or ŷct−1)− xe ∗W c

r |√
1 +

∑D−1
d=0 W

2
r,d,c

(5.2)

hr = exp (−(γdiscr)/(max
r=1,...,R

discr))

where γ and hr denote a control parameter and the hyperplane activation function of rth

hidden node, respectively. R represents the number of hidden nodes, xe = [1, x] ∈ <1×(n+1) is

the extended input vector, whereas ycd is the ith target variable.

The teacher-forcing mechanism [112] is depicted in (5.2) where the activation degree is deter-

mined from either target variable ycd or the predictive output at the t− 1 time instant with an

equal proportion while the network output during the testing phase is fully produced by ŷct−1.

That is, 50 percent of training samples are captured by ycd while the remainder is processed

by ŷct−1. The use of ŷct−1 generates an implicit recurrent connection offering short-term mem-

ory to cope with the temporal nature of data streams [113]. While teacher-forcing mechanism

104

5.4. SCALABLE TEACHER-FORCING NETWORK

was initially introduced in a recurrent neural network to address the slow convergence and

instability during the training, it had not been applied in neuro-fuzzy system algorithm until

PALM [32] was developed. Note that in the realm of data streams, instances arrive without

label. The teacher-forcing mechanism is beneficial for data stream application as it overcomes

the dependency to the label (target output) in order to calculate the distance for membership

function.

The predictive output is obtained from the shared network parameters of the activation function

and the hyperplane W functions using a weighted average mechanism, which is formulated as

follows:

ŷc = (
R∑
r=1

hrxeWr)/(
R∑
r=1

hr) (5.3)

where the normalization is applied in (5.3) to enforce the partition of unity. ScatterNet make

use of the shared network parameters in which the hyperplaneWr generates activation degree hr

as in formula(5.2). Both hyperplane Wr and activation degree hr are used to infer the network

output. ScatterNet’s unique property lies in keeping the local model property in which each

rth local model can produce its local output. The activation degree hr takes into consideration

the granularity of input space in terms of local proximity, which can be drawn by the popular

fuzzy IF-Then rules. In practice, the network output is similar to a standard Takagi-Sugeno

Fuzzy Systems inference scheme for output estimation/prediction.

5.4.4.2 Structural Learning of ScatterNet

The network significance (NS) governs the structural learning method of ScatterNet. NS deter-

mines the generalization performance of the model based on the bias-variance decomposition

[15, 114, 115]. When high bias is signalled, the network implies the underfitting condition

and hidden node growing is undertaken. Conversely, the high variance signifies the overfitting

105

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

condition. In this case, hidden node pruning is carried out. Bias and variance are defined

as Bias = (y − E[ŷ])2 and V ar = E[ŷ2] − E[ŷ]2, respectively. The expected output E[ŷ] is

formulated as E[ŷ] =
∑R

r=1Wr

∫∞
−∞ hr(x;Wr)p(x)dx.

The simplification of the hyperplane activation function hr is implemented as its integral solu-

tion which is difficult to estimate. hr is assumed to be at the maximum point when hr = 1.

Suppose the case of the normal distribution, E[ŷ] can be solved as follows:

E[ŷ] =
R∑
r=1

µeWr (5.4)

where µe ∈ <n+1 = [1, µ] denotes the mean of data points. The µ here is obtained from the

recursive calculation of historical data points. As the application of static µ is ineffective in

coping with concept drift causing a change of data density P (x)t 6= P (X)t−1, some methods

should be implemented to avoid the static µ.

As per the implementation in [120, 121], the AGMM method is put forward to ease the strict

normal distribution. The AGMM, however, incurs notable extra computational and space

complexities because a mixture of Gaussian models has to be processed. As an alternative, we

put forward the dynamic forgetting strategy because of the strict normal distribution. In this

case, the recursive mean calculation [122] can be adjusted as follows:

µt = µt−1 + (ft/Ft)(Xt − µt−1) (5.5)

where Ft = Ft−1 + ft. In the case where the sample is treated equally, then Ft and ft are

defined as Ft = t and ft = 1, respectively. As with [117], Γ = exp (−Rate) denotes the

forgetting factor. Moreover, the forgetting factor ft is scaled into the range [0.9, 1]. This value

of range aims to enable smooth forgetting to avoid an unstable calculation [123] in the case of

a too small forgetting factor. The lowest value of 0.9 presents the maximum forgetting case,

whereas the highest value of 1 means there is no forgetting factor. The contribution of our

method lies in the setting of Rate, which is dynamic depending on the drift rate. When the

106

5.4. SCALABLE TEACHER-FORCING NETWORK

drift rate is higher, the forgetting factor should be stronger.

In this chapter, we follow the definition of the drift rate implemented in [124] outlined from a

distance between two consecutive mini-batches defined as follows:

Ratet = lim
∆−→∞

∆D(t− 0.5/∆, t+ 0.5/∆) (5.6)

where Ratet is the drift rate of the tth data stream. The total variation distance is used here

where the discretization is applied. Moreover, two data distributions are represented by forming

two non-overlapping data groups at the mid-point of data streams Bpk. Note that Bpk refers to

the pth data partition of Spark operation task (either distributed training or distributed testing

task). The use of the drift rate allows us to fit the so-called sweet path in [124]. That is, a

high-bias-low-variance is generated in the case of a high drift rate while a low-bias-high-variance

model is produced in the case of a low drift rate.

The statistical process governs the growing and pruning criteria [125]. However, the variable is

directly obtained from bias ad variance instead of via the conversion of binomial distribution.

The criteria of bias and variance are set as follows:

µtBias + σtbias ≥ µminBias + 2 ∗ k1 ∗ σminbias , (Growing) (5.7)

µtvar + σtvar ≥ µminvar + k2 ∗ σminvar , (Pruning) (5.8)

Equations (5.7) and (5.8) are the extension of the famous k sigma rule employing the strict

Gaussian assumption. In this chapter, it is eased here by implementing the dynamic k ranging

from [1, 2] formulated as in [115]:

k1 = 1.25exp(−Bias2) + 0.75 (5.9)

k2 = 1.25exp(−V ar2) + 0.75 (5.10)

107

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

In practice, a new node is introduced in the model in the case of a high bias. In the case

of a high variance, an insignificant node is pruned. Every time these two conditions occur,

µminBias, σ
min
bias , µ

min
var , σ

min
var are reset. In equation 5.7, a growing condition formula, term 2 is inserted

showing that the growing mechanism is less preferred than the pruning mechanism. This choice

aims to circumvent the exponential increase in network complexity. Note that a lot of new nodes

are introduced concurrently in the parallelization process.

Condition (5.7) presents a high bias condition which triggers the expansion of a new node. Due

to the local property of ScatterNet, only one node is integrated. The new hyperplane Wr+1 and

its support Supr+1 are respectively initialized as :

WR+1 = wamp ∗ 1(n+1),r; SupR+1 = 1 (5.11)

where wamp denote the predefined initial weight. The hidden node pruning process is carried

out to the weakest node determined from (5.4) minr=1,...,RE[ŷr] = µeWr once (5.8) is satisfied.

The support of pruned node is accumulated to the winning node (Supwin = Supwin+Suppruned).

The pruning process aims to mitigate the high variance dilemma. If no growing or pruning

mechanism is triggered, a sample is associated to a winning node and its support is incremented

as per Supwin = Supwin + 1 [32].

5.4.4.3 Parameter Learning of ScatterNet

The tuning of hyperplane Wr is performed using the widely known fuzzily weighted generalized

recursive least squares (FWGRLS), which are also adopted in evolving fuzzy systems [11, 12].

This approach is an extension of fuzzily weighted recursive least squares (FWRLS) in [47] where

the major difference lies in the application of a regularization term ζr to prevent the overfitting

problem and to retain the small and bounded weight parameter [11, 12].

The system updates the network parameters W locally per node, where every node has its

own output covariance matrix Ωr ∈ <(n+1)×(n+1). Instead of the gradient descent method, the

108

5.4. SCALABLE TEACHER-FORCING NETWORK

covariance matrix is preferred here as it is formed as a well-converging recursive version of the

least squares (LS) solution. In practice, the covariance matrix makes convergence to the global

optimum within one iteration step possible, i.e. within one update step on a new incoming

sample. However, the drawback of using the covariance matrix over the gradient descent method

lies in dealing with the high-dimensional feature. The covariance matrix method imposes the

use of feature selection to compress the size of covariance matrix Ωr. In terms of ScatterNet,

the high-dimensional problem is beyond the scope of this chapter.

5.4.4.4 Data-Free Model Merging

The aim of the model merging strategy is to simplify network complexity as a result of dis-

tributed training in every task (DTraining). The model merging procedure in ScatterNet is

depicted in Fig. 5.2. Data-free model merging is the extension of model merging implemented

in Scalable PANFIS. Model merging in ScatterNet makes use of data-free online model selection

without pre-model selection as implemented in Scalable PANFIS.

Data-free model merging comprises two main components: zero-shot merging and online model

selection. Commonly, model merging controls the structural complexity during the distributed

training where the initial distributed models are compressed into a merged model [110]. Note

that initial distributed models which contain P sub models are induced by P data partitions

of Spark for every data stream. Model merging is necessary to control structural complexity,

as the merged model can be used for a continual learning situation to be used for learning

large-scale data streams of future tasks.

Suppose that K,R stand for the number of data streams and the average number of hidden

nodes across P models, the total number of nodes goes up to P ∗K∗R. Since K is unknown and

possibly unbounded, the structural complexity becomes untenable. Another issue is related to

the issue of predictive accuracy because P models are generated by different data distributions.

Thanks to the local property of ScatterNet, an aggregated model does not suffer significantly

from the issue of accuracy drop. This issue is obvious if a model is trained under a global

109

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

optimization strategy such as conventional recursive least squares with a single global covariance

matrix Ω ∈ <(n+1)∗R×(n+1)∗R.

The model merging strategy is crafted from the concept of hyperplane merging. Two hyper-

planes are considered to be similar to each other if they possess similar angles [53] and are close

to each other Dist(r, r′) [126] where r 6= r′. The distance and similarity of two hyperplanes are

thus measured as follows:

Dist(r, r′) = (||Wr −Wr′||)/(||Wr +Wr′||) (5.12)

Sim(r, r′) = φ/π; φ = arccos (aT b)/(|a||b|) (5.13)

where (5.12) stands for the normalized distance between two hyperplanes while (5.13) ex-

presses the similarity based on the dihedral angle between the two normal vectors a =

[Wr,1,Wr,2, ...,Wr,n,−1], b = [−Wr′,1,−Wr′,2, ...,−Wr′,D, 1] [53] of the two hyper-planes (repre-

sented by the regression coefficients of the inputs and−1∗y, becauseWr,1∗x1+...+Wr,n∗xn−y =

−Wr,0, equivalent to the original regression formulation y = Wr,1 ∗ x1 + ... + Wr,n ∗ xn + Wr,0,

denotes the normal vector form of a plane, with Wr,0 the intercept). The normal vector of the

second plane b has to be set to the opposite direction (thus being multiplied by −1), to achieve

a (desired) high similarity when the two normal vectors point to the same direction (and thus

have a low original angle φ, which is then turned into an angle of π− φ, leading to a similarity

Sim(r, r′) close to 1).

Zero-Shot Merging Mechanism: the hidden node merging process has to be carried out

carefully due to the presence of poor hidden nodes significantly compromising the generalization

of a merged node. That is, the accuracy of a resultant node deteriorates if the merging process

involves poor nodes [110]. A poor hidden node is one which has minor support or poor accuracy.

The minor support is interpreted as a hidden node covering a low variance direction of data

distribution. Accuracy here refers to the training classification rate when learning Bpk data

partitions. The hidden node merging process starts with the removal of inconsequential hidden

nodes, defined as hidden nodes with a low number of supports formalized as Supr ≤ q% ∗ N ,

110

5.4. SCALABLE TEACHER-FORCING NETWORK

where q is set to 2 in all the experiments.

Hidden node merging based on hyperplane similarity was proposed in [53] and is implemented

in a one-to-one fashion. ScatterNet differs by implementing the Z-best-nodes-merging strategy.

That is, the Z-best-nodes are extracted based on their training accuracy [110]. Once finding

the Z best nodes, other nodes are merged to those Z nodes by following the angle and distance

concepts in (5.12, 5.13). Fig. 5.2 on the left-hand side visualizes data-free model merging.

Unlike its predecessor in [110] where the number of best nodes Z are blindly selected, an online

model selection process is implemented here to determine the number of Z.

Online Model Selection: the online model selection process is carried out to select the

parameter Z on the fly rather than setting it as a hyper-parameter leading ScatterNet to be ad

hoc. Online model selection initiates with the generation of Z candidates where Z = 3, 5, 8, 10

are selected. The training accuracy is used to induce the Z best nodes. That is, other nodes

are coalesced to the Z best nodes. The online model selection mechanism of the 4 candidates

is performed by minimizing the tradeoff between the bias Bias and variance V ar as follows:

min
Z=3,5,8,10

|Bias− V ar| (5.14)

The candidate minimizing (5.14) is chosen. In the case of drifts, the selected model is added as

a new base classifier embracing the new concept of the data stream. On the other hand, it will

replace the winning base classifier if there is no drift detected in Bk as an effort to improve the

predictive performance.

The online model selection strategy drives the ScatterNet base classifier to arrive at an optimal

complexity satisfying bias and variance trade-off. As a result, the generalization power of the

network can be preserved. Note that Bias and V ar are enumerated by exploiting the aggregated

mean across P data partitions
∑P

p=1
µp
P
. Because of Bias = (y − E[ŷ])2, P data samples are

randomly sampled from P data partitions meaning that a single sample of each data partition

is picked.

111

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

o Hidden Nodes
are splitted into
two parts (Z,U)

𝒁 best nodes
obtained from local

model training
accuracy

U Weaker
Nodes

𝑈 = 𝑜 − 𝑍

s Hidden Nodes
extracted from P

partitions P ≤ 𝑠

Process:

1. nodes
extraction

2. nodes
elimination

o Hidden Nodes
eliminated from s

nodes o ≤ 𝑠

3. nodes
splitting:

4. Merging
nodes

U Weaker Nodes are merged

into 𝒁 best nodes

𝒁 best nodes merging Online model selection

3,5,8,10 candidate of
merged nodes are

created

Process:

1. Perform 4 times Z best
nodes merging (Z=3,5,8,10)

2. Collect one sample from
each P partitions

3. Feed the collected
samples into 3,5,8,10
best nodes

4. Selection

P (96) instances are
collected for testing

96 instances

3 best nodes
merging

5 best nodes
merging

8 best nodes
merging

10 best nodes
merging

Feed

Results

Value1= 𝑩𝒊𝒂𝒔 − 𝑽𝒂𝒓

Value2= 𝑩𝒊𝒂𝒔 − 𝑽𝒂𝒓

Value3= 𝑩𝒊𝒂𝒔 − 𝑽𝒂𝒓

Value4= 𝑩𝒊𝒂𝒔 − 𝑽𝒂𝒓

The selected (Z best model) is the model that has the
least value between Value1, Value2, Value3, and Value4

Figure 5.2: Model merging mechanism

5.5 Numerical Results

In this section, the effectiveness of ScatterNet is examined in two cases: large-size-small-

number and small-size-large-number. An ablation study is conducted to analyze each

learning component. The source codes of the consolidated algorithms and raw numer-

ical results of all the experiments are available at this link https://bit.ly/2TSRGFJ.

5.5.1 Dataset

The advantage of ScatterNet is demonstrated using six popular big data problems namely

Hepmass, Higgs [127], Susy [127], RLCPS [128], KDDCup [129], and Poker Hand [130]. All

problems are of a large size to simulate real data stream environments. The properties of the

datasets are given in Table 5.1.

A prequential test-then-train procedure [1] is used to demonstrate ScatterNet’s lifelong learning

over K sequential tasks, where each task is tested first before it is trained in a distributed

112

https://bit.ly/2TSRGFJ

5.5. NUMERICAL RESULTS

manner as depicted in Fig. 5.1. The experimental setting depicted in Table 5.2 shows that the

ScatterNet processes the flow of data batches sequentially.

Table 5.1: Properties of Datasets

Dataset #IA #C Size (# instances)

Higgs 18 2 11,000,000
Hepmass 28 2 10,500,000
Susy 18 2 5,000,000

RLCPS 9 2 5,000,000
KDDCup 2 41 4,898,432

Poker Hand 10 2 1,025,011

IA: input attributes, C: classes

5.5.2 Algorithms and Parameters

The conducted experiment has been compared with the previous work namely Scalable PANFIS

[110]. It does not feature the lifelong learning scheme. Some modifications are applied from

the original code of Scalable PANFIS to make it applicable in the lifelong learning scenario.

The hyperparameters are hand-tuned to find the best possible results for all datasets. Once

they are tuned, they are kept fix for all experiments. ScatterNet parameters αdrift is set to

0.0005 which controls the drift rate of the output at the global level. At the local level, the

control parameter γ is set to 0.7, whereas wamp, a coefficient for weight initialization of the first

Table 5.2: Experimental Setting

Dataset

ScatterNet
Large size

small number scenario

ScatterNet
Small size

large number scenario

#Batch #Partition
per batch

Batch size
(# instances)

Partition size
(# instances) #Batch #Partition

per batch
Batch size

(# instances)
Partition size
(# instances)

Higgs 66 96 166,666 1,736 189 96 55,555 578
Hepmass 63 96 166,666 1,736 198 96 55,555 578
Susy 30 96 166,666 1,736 90 96 55,555 578
RLCPS 30 96 166,666 1,736 90 96 55,555 578
KDDCup 29 96 168,911 1,759 87 96 56,303 586
Poker Hand 6 96 170,835 1,779 18 96 56,945 593

113

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

sample, is set to 0.2. The merging parameter threshold, dist and angle, are set to 0.6 and 0.4

as the criteria used for similarity distance and dihedral angle of two hyperplanes, respectively.

For Scalable PANFIS, three parameters are set: kgrow = 2, kprune = 3, and kfs = 0.05 which

represent the growing threshold, pruning threshold, and safety width respectively. Note that

all of these parameters are fixed in all experiments.

5.5.3 Environmental Setting: Spark Architecture, Hardware and

Software

Apache Spark is installed across the nodes in the NeCTAR Cloud, a flexible scalable computing

infrastructure. One driver node and eight worker nodes are deployed where each of them has

NeCTAR Ubuntu 16.04 LTS (Xenial) amd64 as an operating system, 390 GB disk capacity,

and 48GB RAM. The memory configuration for the driver node is 30GB out of 48GB leaving

18GB for other processes. For all worker nodes, the memory capacity is set to 48GB out of

48GB, so that the total of the 384GB memory is occupied for the Spark cluster.

5.5.4 Results and Discussion

The final [22] numerical results are reported in Table 5.3 by averaging the numerical results

across all tasks. It is observed that ScatterNet is better than Scalable PANFIS in terms of

accuracy in several datasets. Specifically, it attains performance improvements with around

a 1% margin on: Higgs, Hepmass, KDDcup and Poker Hand in the case of large-size-small-

number and small-size-large-number. To put it plainly, this exhibits the advantage of the

teacher-forcing mechanism which is capable of capturing the temporal dynamic of data streams

while incurring low network parameters. These results also demonstrate the effectiveness of

the model merging strategy in combining the local model without decreasing the predictive

performance. As a further point, ScatterNet generates an acceptable number of base classifiers.

This shows that drift detection and the model pruning mechanisms are capable of governing the

114

5.5. NUMERICAL RESULTS

Table 5.3: Numerical Results

Algorithm Dataset
Average
accuracy

per batch (%)

Average
training time
per batch (s)

Average
testing time
per batch (s)

Average
base classifier

per task

ScatterNet
Large size

small number
scenario

Higgs 63.80 34.67 90.88 3.2
Hepmass 83.43 34.42 62.97 2.31
Susy 75.35 27.08 53.38 2.48
RLCPS 99.65 22.34 16.80 1
KDDCup 99.59 43.37 35.59 1
Poker Hand 50.13 36.61 31.33 1

ScatterNet
Small size

large number
scenario

Higgs 63.05 13.87 23.38 2.35
Hepmass 83.22 13.34 14.57 1.53
Susy 74.97 11.65 18.12 2.25
RLCPS 99.64 9.49 7.12 1
KDDCup 99.29 17.29 12.39 1
Poker Hand 50.09 18.09 11.76 1

Scalable PANFIS
Large size

small number
scenario

Higgs 63.29 352.5 23.90 1
Hepmass 83.36 345.08 24.25 1
Susy 75.67 163.38 16.68 1
RLCPS 99.78 74.20 11.89 1
KDDCup 99.44 662.51 32.11 1
Poker Hand 50.04 144.41 19.53 1

Scalable PANFIS
Small size

large number
scenario

Higgs 61.97 114.85 8.40 1
Hepmass 82.87 114.29 8.68 1
Susy 75.51 53.44 6.28 1
RLCPS 99.70 26.17 5.04 1
KDDCup 99.18 216.20 11.34 1
Poker Hand 49.96 48.27 7.11 1

evolving process to arrive at appropriate network complexity for a given data stream problem.

Separately, it can be observed that ScatterNet execution time (the sum of training time and

testing time) is faster than Scalable PANFIS in all cases although Scalable PANFIS applies a

single model. This demonstrates ScatterNet’s scalability to execute a big dataset via the im-

plementation of the MapReduce [109] paradigm and the Spark framework [23]. Also, the model

merging and hidden node pruning mechanisms help to maintain model complexities without

compromising the predictive performance. As a further point, the use of hyperplane-shaped

activation function (5.2) being free from antecedent components helps to significantly reduce

the space and computational complexities compared to the Gaussian activation function. When

tested on the Higgs and Hepmass datasets in the case of large-size-small-number, ScatterNet

testing times are inferior to Scalable PANFIS. This result is understandable because ScatterNet

has more than one base classifier boosting its predictive performance.

115

CHAPTER 5. SCALABLE TEACHER-FORCING NETWORKS UNDER SPARK
ENVIRONMENTS FOR LARGE-SCALE STREAMING PROBLEMS

Table 5.4: Ablation Study on the Susy Dataset

Algorithm Accuracy Training time Testing time # Base classifier

ScatterNet large size small number 75.49 29.65 60.69 2.41
Single Node Configuration 75.63 621.57 373.13 NA
ScatterNet Without Merging 76.02 46.84 218.33 2.45

5.5.5 Ablation Study

An ablation study of ScatterNet has been outlined in Table 5.4. It covers two scenarios:

executing ScatterNet on a worker node and disabling the merging process. From Table 5.4 it is

observed that both the training and testing time of ScatterNet is significantly faster than those

a single node teacher-forcing network. It confirms that parallelization process helps to speed up

the training process of a teacher-forcing networks. Moreover, this benefit is achieved without

compromising the predictive accuracy. This claim is supported by the fact that ScatterNet

and ScatterNet without the merging process achieved comparable performance when tested on

the Susy dataset. This finding is likely due to the local property of ScatterNet. Separately,

it is observed that the deactivation of the merging mechanism slows down the training and

testing process. This is understandable as all the resulting hidden nodes in the learning process

are utilized. Note that ScatterNet distributes a task among eight computation nodes during

training and testing. The resulting local models are merged by the model merging method and

then it is used to test the incoming data batch.

5.5.6 Statistical Testing

The hypothesis testing is carried out to measure how significant is the proposed method in

comparison to a benchmark algorithm. In this chapter, we conduct a Wilcoxon signed-ranked

test, the same procedure as the one in sub chapter 4.5.2.3. Only two algorithms to compare,

ScatterNet and Scalable PANFIS in prequential setting environment. For each algorithm there

are 12 observations (vector of accuracies) as a result of learning over six datasets using both

large and small batch settings. The two vector of accuracies to be tested are depicted in Table

116

5.6. CONCLUSION

5.5. The vector v1 reflects the accuracy of ScatterNet or Scalable PANFIS on Higgs dataset,

whereas v2 up to v12 are the accuracy of Hepmass on Large size scenario up to Poker Hand in

small size scenario.

It can be seen in Table 5.5 that the statistical test results show that ScatterNet performs better

in accuracy, having higher Vstatistic value than Scalable PANFIS (53 against 25), despite the

significance difference pV alue is still higher than significance level αsignificance.

Table 5.5: Statistical Testing of Two Paired Algorithms using Wilcoxon Signed-Ranked Test

Algorithm
Vector of accuracies Statistical

Test Results

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 pV alue Vstatistic

ScatterNet 63.80 83.43 75.35 99.65 99.59 50.13 63.05 83.22 74.97 99.64 99.29 50.09 53 0.3013
Scalable PANFIS 63.29 83.36 75.67 99.78 99.44 50.04 61.97 82.87 75.51 99.70 99.18 49.96 25 0.3013

5.6 Conclusion

We develop a novel Scalable Teacher-Forcing Network (ScatterNet) to answer the data stream

challenges: non-stationary environment, high-speed arrival rate, and high volumes of data gen-

erated in the storage. ScatterNet is built upon the teacher-forcing concept possessing short-term

memory. As an evolving system, the structure of ScatterNet evolves in reaction to concept drift

on both local and global scales. The ScatterNet evaluation scheme uses the prequential test-

then-train protocol where both the testing and training phase are executed in parallel to speed

up the computation using the Spark distributed processing platform without compromising pre-

dictive performance. The issue of network complexity is undertaken by using model pruning in

the ensemble network. In addition, data-free model merging compresses the initial distributed

models into a merged model without compromising predictive performance. ScatterNet shows

a competitive advantage in computational and memory aspects. The results are validated by

both numerical results, ablation study, and statistical testing, which confirm that ScatterNet

outperform Scalable PANFIS for both accuracy and training time.

117

6
Thesis Conclusions

This chapter provides a summary from this thesis. The results obtained at various stages of

the research are summarized as follows:

• All of the methods developed in this thesis are designed to handle vast volumes of data

streams, where the evaluation of the methods is undertaken using large-scale public

datasets available in high dimensional input space which is a challenging problem.

• In the last two decades, the rise of evolving systems offers the possibility to process

streaming data using limited resources (e.g. memory and hard disk capacity). Despite

these significant efforts, processing data streams effectively without compromising model

performance remains a crucial issue in large-scale data stream processing. A novel large-

scale data stream analytics, namely Scalable PANFIS, is developed to solve this issue.

The critical feature in Scalable PANFIS lies in its capability to generate a fast-evolving

distributed model from large-scale streaming data using a Spark distributed learning

platform.

• The distributed learning process produces the initial distributed models, a stack of several

local models which also can be used to infer the future data using the combination of

inference models (e.g. simple majority voting). However, this heavy structure comes at

the cost of a longer testing time. A robust model merging method designed in Scalable

PANFIS proves that model merging can solve the structural complexity problem without

118

compromising the generalization performance of the merged model.

• To further help the effectiveness of the learning process, the active learning (AL) method

is implemented in the training process along with PANFIS. The results show that the use

of AL does not reduce accuracy.

• Scalable PANFIS is evaluated in relation to four types of structures using the combination

of (PANFIS with AL or without AL on the training side and using a merged model or

majority voting on the testing side). All of the structures yield similar accuracy in all

datasets, but the combination of PANFIS with AL and a merged model achieves the best

training time. It can be concluded that our developed method can effectively handle

large-scale data streams.

• The use of evolving algorithms helps Scalable PANFIS to identify catch the underlying

data stream patterns. As a result, Scalable PANFIS produces better results in comparison

to Spark-based distributed algorithms.

• ScatterNet is a large-scale batch incremental learning method implemented under a dis-

tributed processing environment. The aims of this framework are two-fold. The incre-

mental learning mechanism ensures the scalability of the algorithm to learn data streams

continually without a performance decrease. The distributed feature of the framework

enables the algorithm to process large-scale data streams in one task.

• ScatterNet handles drift on both local and global scales. Concept drift on local scale is

carried out by the teacher-forcing network, taking into account the temporal characteristic

of data streams without using time-intensive iterative gradient calculation. On a global

scale, the drift detection strategy is utilized to mark the drift event in data streams.

• ScatterNet adopts the open structure learning mechanism to allow it to adapt to the data

stream conditions, where its ensemble network is expanded in reaction to the drift condi-

tion by adding the new base model into the network. As a counterbalance, ScatterNet is

also equipped with the model pruning strategy to keep network complexity under control

by removing the inconsequential base models inside the ensemble network.

119

CHAPTER 6. THESIS CONCLUSIONS

• To deal with large-scale data streams in every task, a problem of structural complexity

appears. This challenge is handled by a data-free model merging strategy, which is ex-

pertly designed to simplify the dense structure, ensuring its model is able to be passed to

the next task.

• Incremental learning, in general, solves the problem of continual learning mimicking the

human ability to learn an accumulated experience, where both historical and new knowl-

edge are retained to infer future samples. However, in the realm of artificial intelligence,

massive data stream processing utilizing distributed processing still receives a scant atten-

tion. ScatterNet offers a solution for processing never-ending batches of enormous data

streams under a distributed computing platform.

120

7
Future Directions

This chapter provides a possibility of suggestions for future work emanating from this thesis.

For scalable evolving system, the extension could be taken from several directions: architecture,

data stream, and big data issues, etc. Some future directions are listed as follows:

• Dealing with the real-time system is challenging because data stream can arrive without

label due to the costly labelling effort. This problem is known as weakly supervised

learning. While some efforts have been made to address this problem, this study in the

distributed evolving system is worth to receive a further investigation.

• The problem of imbalance data has long received the attention from the researcher. How-

ever, most of the work in high-class of imbalance big data are still using the offline

distributed architecture. Finding the right architecture to address this problem could be

the next research direction.

• Data quantization has been known as a method to accelerate data processing. This

technique is often used to reduce the computation load (e.g. image compression). While

this method is possibly applied in offline machine learning, the online quantization method

in large-scale data stream would be another possible direction.

121

Bibliography

[1] J. Gama, Knowledge Discovery from Data Streams. Chapman & Hall/CRC, 1st ed., 2010.

[2] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in nonstationary environments:

A survey,” IEEE Computational Intelligence Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[3] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, “A parallel random forest

algorithm for big data in a spark cloud computing environment,” IEEE Transactions on

Parallel and Distributed Systems, vol. 28, no. 4, pp. 919–933, 2017.

[4] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing big data issues

in scientific data infrastructure,” in 2013 International Conference on Collaboration

Technologies and Systems (CTS), pp. 48–55, IEEE, 2013.

[5] D. Brzeziński, “Block-based and online ensembles for concept-drifting data streams,” 2015.

[6] G. Krempl, I. Žliobaite, D. Brzeziński, E. Hüllermeier, M. Last, V. Lemaire, T. Noack,

A. Shaker, S. Sievi, M. Spiliopoulou, et al., “Open challenges for data stream mining

research,” ACM SIGKDD explorations newsletter, vol. 16, no. 1, pp. 1–10, 2014.

[7] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept

drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37, 2014.

122

BIBLIOGRAPHY

[8] A. Bifet and G. D. F. Morales, “Big data stream learning with samoa,” in Data Mining

Workshop (ICDMW), 2014 IEEE International Conference on, pp. 1199–1202, IEEE,

2014.

[9] E. Lughofer, “Evolving fuzzy systems—fundamentals, reliability, interpretability, useabil-

ity, applications,” in HANDBOOK ON COMPUTATIONAL INTELLIGENCE: Volume

1: Fuzzy Logic, Systems, Artificial Neural Networks, and Learning Systems, pp. 67–135,

World Scientific, 2016.

[10] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,” IEEE transactions

on knowledge and data engineering, vol. 26, no. 1, pp. 97–107, 2014.

[11] M. Pratama, S. G. Anavatti, P. P. Angelov, and E. Lughofer, “Panfis: A novel incremental

learning machine,” IEEE Transactions on Neural Networks and Learning Systems, vol. 25,

no. 1, pp. 55–68, 2014.

[12] M. Pratama, S. G. Anavatti, and E. Lughofer, “Genefis: toward an effective localist

network,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 547–562, 2014.

[13] W. N. Street and Y.-S. Kim, “A streaming ensemble algorithm (sea) for large-scale clas-

sification,” in Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’01, (New York, NY, USA), pp. 377–382,

ACM, 2001.

[14] D. Sahoo, Q. D. Pham, J. Lu, and S. C. Hoi, “Online deep learning: Learning deep neural

networks on the fly,” arXiv preprint arXiv:1711.03705, vol. abs/1711.03705, 2017.

[15] A. Ashfahani and M. Pratama, “Autonomous deep learning: Continual learning approach

for dynamic environments,” in In SIAM International Conference on Data Mining, 2019.

[16] I. Škrjanc, J. Iglesias, A. Sanchis, D. Leite, E. Lughofer, and F. Gomide, “Evolving fuzzy

and neuro-fuzzy approaches in clustering, regression, identification, and classification: A

survey,” Information Sciences, 2019.

123

BIBLIOGRAPHY

[17] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on ensemble learning

for data stream classification,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–36,

2017.

[18] C. Za’in, M. Pratama, E. Lughofer, and S. G. Anavatti, “Evolving type-2 web news

mining,” Applied Soft Computing, vol. 54, pp. 200–220, 2017.

[19] C. Za’in, M. Pratama, M. Prasad, D. Puthal, C. P. Lim, and M. Seera, “Motor fault

detection and diagnosis based on a meta-cognitive random vector functional link network,”

in Fault Diagnosis of Hybrid Dynamic and Complex Systems, pp. 15–44, Springer, 2018.

[20] S. del Rio, V. Lopez, J. M. Benítez, and F. Herrera, “A mapreduce approach to address

big data classification problems based on the fusion of linguistic fuzzy rules,” International

Journal of Computational Intelligence Systems, vol. 8, no. 3, pp. 422–437, 2015.

[21] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[22] Apache Software Foundation, “Hadoop.”

[23] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[24] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, et al., “Mllib: Machine learning in apache spark,” The Journal of

Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[25] M. Pratama, J. Lu, and G. Zhang, “An incremental interval type-2 neural fuzzy classifier,”

in Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International Conference on, pp. 1–8, IEEE,

2015.

[26] R. Elwell and R. Polikar, “Incremental learning of concept drift in nonstationary environ-

ments,” Trans. Neur. Netw., vol. 22, pp. 1517–1531, Oct. 2011.

124

BIBLIOGRAPHY

[27] H. Bouchachia and E. Balaguer-Ballester, “Dela: A dynamic online ensemble learning

algorithm.,” in ESANN, 2014.

[28] M. Pratama, W. Pedrycz, and E. Lughofer, “Evolving ensemble fuzzy classifier,” IEEE

Transactions on Fuzzy Systems, pp. 1–1, 2018.

[29] L. L. Minku and X. Yao, “Ddd: A new ensemble approach for dealing with concept drift,”

IEEE transactions on knowledge and data engineering, vol. 24, no. 4, pp. 619–633, 2012.

[30] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensemble learning

for data stream analysis: A survey,” Information Fusion, vol. 37, pp. 132–156, 2017.

[31] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept drift:

A review,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 12,

pp. 2346–2363, 2018.

[32] M. M. Ferdaus, M. Pratama, S. Anavatti, and M. A. Garratt, “Palm: An incremental

construction of hyperplanes for data stream regression,” IEEE Transactions on Fuzzy

Systems, 2019.

[33] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks:

The sequential learning problem,” in Psychology of learning and motivation, vol. 24,

pp. 109–165, Elsevier, 1989.

[34] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera, “knn-is: An iterative spark-based design

of the k-nearest neighbors classifier for big data,” Knowledge-Based Systems, vol. 117,

pp. 3–15, 2017.

[35] P. Gupta, A. Sharma, and R. Jindal, “Scalable machine-learning algorithms for big data

analytics: a comprehensive review,” Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, vol. 6, no. 6, pp. 194–214, 2016.

[36] C. Doulkeridis and K. NØrvåg, “A survey of large-scale analytical query processing in

mapreduce,” The VLDB Journal, vol. 23, no. 3, pp. 355–380, 2014.

125

BIBLIOGRAPHY

[37] J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” IEEE transactions

on systems, man, and cybernetics, vol. 23, no. 3, pp. 665–685, 1993.

[38] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, et al., “Boosting the margin: A new

explanation for the effectiveness of voting methods,” The annals of statistics, vol. 26,

no. 5, pp. 1651–1686, 1998.

[39] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[40] R. J. Tibshirani and B. Efron, “An introduction to the bootstrap,” Monographs on

statistics and applied probability, vol. 57, pp. 1–436, 1993.

[41] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling

and control,” IEEE transactions on systems, man, and cybernetics, no. 1, pp. 116–132,

1985.

[42] S. Koenig, M. Likhachev, Y. Liu, and D. Furcy, “Incremental heuristic search in ai,” AI

Magazine, vol. 25, no. 2, pp. 99–99, 2004.

[43] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized growing and prun-

ing rbf (ggap-rbf) neural network for function approximation,” IEEE Transactions on

Neural Networks, vol. 16, no. 1, pp. 57–67, 2005.

[44] E. Lughofer, Evolving fuzzy systems-methodologies, advanced concepts and applications,

vol. 53. Springer, 2011.

[45] N. K. Kasabov, Evolving connectionist systems: the knowledge engineering approach.

Springer Science & Business Media, 2007.

[46] N. K. Kasabov and Q. Song, “Denfis: dynamic evolving neural-fuzzy inference system and

its application for time-series prediction,” IEEE Transactions on Fuzzy Systems, vol. 10,

no. 2, pp. 144–154, 2002.

126

BIBLIOGRAPHY

[47] P. P. Angelov and D. P. Filev, “An approach to online identification of takagi-sugeno fuzzy

models,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

vol. 34, no. 1, pp. 484–498, 2004.

[48] R. R. Yager, “A model of participatory learning,” IEEE Transactions on Systems, Man,

and Cybernetics, vol. 20, no. 5, pp. 1229–1234, 1990.

[49] E. Lima, M. Hell, R. Ballini, and F. Gomide, “Evolving fuzzy modeling using participatory

learning,” Evolving intelligent systems: methodology and applications, pp. 67–86, 2010.

[50] H.-J. Rong, N. Sundararajan, G.-B. Huang, and P. Saratchandran, “Sequential adaptive

fuzzy inference system (safis) for nonlinear system identification and prediction,” Fuzzy

Sets and Systems, vol. 157, no. 9, pp. 1260–1275, 2006.

[51] A. Lemos, W. Caminhas, and F. Gomide, “Multivariable gaussian evolving fuzzy modeling

system,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 1, pp. 91–104, 2011.

[52] D. Dovžan, V. Logar, and I. Škrjanc, “Implementation of an evolving fuzzy model (efumo)

in a monitoring system for a waste-water treatment process,” IEEE Transactions on Fuzzy

Systems, vol. 23, no. 5, pp. 1761–1776, 2014.

[53] E. Lughofer, C. Cernuda, S. Kindermann, and M. Pratama, “Generalized smart evolving

fuzzy systems,” Evolving Systems, vol. 6, no. 4, pp. 269–292, 2015.

[54] M. Pratama, G. Zhang, M. J. Er, and S. Anavatti, “An incremental type-2 meta-cognitive

extreme learning machine,” IEEE transactions on cybernetics, vol. 47, no. 2, pp. 339–353,

2017.

[55] R. D. Baruah, P. Angelov, and J. Andreu, “Simpl_eclass: Simplified potential-free evolv-

ing fuzzy rule-based classifiers,” in 2011 IEEE International Conference on Systems, Man,

and Cybernetics, pp. 2249–2254, IEEE, 2011.

[56] P. Angelov and X. Gu, “Mice: Multi-layer multi-model images classifier ensemble,” in

2017 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–8, IEEE,

2017.

127

BIBLIOGRAPHY

[57] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, “Real-time data

mining of non-stationary data streams from sensor networks,” Information Fusion, vol. 9,

no. 3, pp. 344–353, 2008.

[58] M. Sayed-Mouchaweh and E. Lughofer, Learning in non-stationary environments:

methods and applications. Springer Science & Business Media, 2012.

[59] M. Pratama, J. Lu, and G. Zhang, “Evolving type-2 fuzzy classifier,” IEEE Transactions

on Fuzzy Systems, vol. 24, no. 3, pp. 574–589, 2016.

[60] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Data stream mining,” A practical

approach, 2011.

[61] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in the cloud,” in

Proceedings of the 2nd workshop on many-task computing on grids and supercomputers,

p. 8, ACM, 2009.

[62] J. Shafer, R. Agrawal, and M. Mehta, “Sprint: A scalable parallel classi er for data

mining,” in Proceedings of the 22nd International Conference on Very Large Data Bases,

pp. 544–555, 1996.

[63] D. Luo, C. Ding, and H. Huang, “Parallelization with multiplicative algorithms for big

data mining,” in IEEE 12th International Conference on Data Mining (ICDM), pp. 489–

498, IEEE, 2012.

[64] R. Chen, K. Sivakumar, and H. Kargupta, “Collective mining of bayesian networks from

distributed heterogeneous data,” Knowledge and Information Systems, vol. 6, no. 2,

pp. 164–187, 2004.

[65] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data

streams: Theory and practice,” IEEE Transactions on Knowledge and Data Engineering,

vol. 15, no. 3, pp. 515–528, 2003.

128

BIBLIOGRAPHY

[66] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework for clustering evolving

data streams,” in Proceedings of the 29th international conference on Very large data

bases-Volume 29, pp. 81–92, VLDB Endowment, 2003.

[67] J. Gama, P. P. Rodrigues, and R. Sebastião, “Evaluating algorithms that learn from data

streams,” in Proceedings of the 2009 ACM symposium on Applied Computing, pp. 1496–

1500, ACM, 2009.

[68] X. Gu, P. P. Angelov, G. Gutierrez, J. A. Iglesias, and A. Sanchis, “Parallel computing

teda for high frequency streaming data clustering,” in INNS Conference on Big Data,

pp. 238–253, Springer, 2016.

[69] P. Angelov, X. Gu, D. Kangin, and J. Principe, “Teda: typicality based empirical data

analysis,” Submitted to Information Sciences, 2016.

[70] H. Ishibuchi, T. Nakashima, and M. Nii, “Classification and modeling with linguistic

granules: Advanced information processing,” 2004.

[71] S. Ramírez-Gallego, H. Mouriño-Talín, D. Martínez-Rego, V. Bolón-Canedo, J. M.

Benítez, A. Alonso-Betanzos, and F. Herrera, “An information theory-based feature selec-

tion framework for big data under apache spark,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 48, no. 9, pp. 1441–1453, 2017.

[72] F. Padillo, J. M. Luna, F. Herrera, and S. Ventura, “Mining association rules on big

data through mapreduce genetic programming,” Integrated Computer-Aided Engineering,

vol. 25, no. 1, pp. 31–48, 2018.

[73] B. V. Dasarathy and B. V. Sheela, “A composite classifier system design: Concepts and

methodology,” Proceedings of the IEEE, vol. 67, no. 5, pp. 708–713, 1979.

[74] L. I. Kuncheva, “Classifier ensembles for changing environments,” in International

Workshop on Multiple Classifier Systems, pp. 1–15, Springer, 2004.

[75] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, G. E. Hinton, et al., “Adaptive mixtures of

local experts.,” Neural computation, vol. 3, no. 1, pp. 79–87, 1991.

129

BIBLIOGRAPHY

[76] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the em algorithm,”

Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[77] L. Xu, A. Krzyzak, and C. Y. Suen, “Methods of combining multiple classifiers and

their applications to handwriting recognition,” IEEE transactions on systems, man, and

cybernetics, vol. 22, no. 3, pp. 418–435, 1992.

[78] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34, Springer, 2012.

[79] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 832–844,

1998.

[80] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data streams using

ensemble classifiers,” in Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 226–235, 2003.

[81] W. Fan, F. Chu, H. Wang, and P. S. Yu, “Pruning and dynamic scheduling of cost-sensitive

ensembles,” in AAAI/IAAI, pp. 146–151, 2002.

[82] J. A. Iglesias, A. Ledezma, and A. Sanchis, “Ensemble method based on individual evolv-

ing classifiers,” in 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems

(EAIS), pp. 56–61, IEEE, 2013.

[83] T. R. Hoens, R. Polikar, and N. V. Chawla, “Learning from streaming data with concept

drift and imbalance: an overview,” Progress in Artificial Intelligence, vol. 1, no. 1, pp. 89–

101, 2012.

[84] M. Pratama, S. G. Anavatti, M. Joo, and E. D. Lughofer, “pclass: an effective classifier for

streaming examples,” IEEE Transactions on Fuzzy Systems, vol. 23, no. 2, pp. 369–386,

2015.

[85] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and analytics: from big

data to big impact,” MIS quarterly, pp. 1165–1188, 2012.

130

BIBLIOGRAPHY

[86] A. Fernández, S. del Río, V. López, A. Bawakid, M. J. del Jesus, J. M. Benítez, and F. Her-

rera, “Big data with cloud computing: an insight on the computing environment, mapre-

duce, and programming frameworks,” Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery, vol. 4, no. 5, pp. 380–409, 2014.

[87] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and

technologies: A survey on big data,” Information Sciences, vol. 275, pp. 314–347, 2014.

[88] S. Ramírez-Gallego, A. Fernández, S. García, M. Chen, and F. Herrera, “Big data: Tu-

torial and guidelines on information and process fusion for analytics algorithms with

mapreduce,” Information Fusion, vol. 42, pp. 51–61, 2018.

[89] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems for big data analytics:

A technology tutorial,” IEEE access, vol. 2, pp. 652–687, 2014.

[90] C.-T. Lin et al., Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems.

Prentice hall PTR, 1996.

[91] D. Deng and N. Kasabov, “On-line pattern analysis by evolving self-organizing maps,”

Neurocomputing, vol. 51, pp. 87–103, 2003.

[92] E. Lughofer, J.-L. Bouchot, and A. Shaker, “On-line elimination of local redundancies in

evolving fuzzy systems,” Evolving Systems, vol. 2, no. 3, pp. 165–187, 2011.

[93] B. Wittenmark, “Adaptive dual control methods: An overview,” in Adaptive Systems in

Control and Signal Processing 1995, pp. 67–72, Elsevier, 1995.

[94] C. Za’in, M. Pratama, E. Lughofer, M. Ferdaus, Q. Cai, and M. Prasad, “Big data

analytics based on panfis mapreduce,” Procedia Computer Science, vol. 144, pp. 140–152,

2018.

[95] C. Za’in, M. Pratama, A. Ashfahani, E. Pardede, and H. Sheng, “Big data analytic

based on scalable panfis for rfid localization,” in 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pp. 1687–1692, IEEE, 2018.

131

BIBLIOGRAPHY

[96] J. A. Benediktsson and P. H. Swain, “Consensus theoretic classification methods,” IEEE

transactions on Systems, Man, and Cybernetics, vol. 22, no. 4, pp. 688–704, 1992.

[97] R. Battiti and A. M. Colla, “Democracy in neural nets: Voting schemes for classification,”

Neural Networks, vol. 7, no. 4, pp. 691–707, 1994.

[98] H. Ishibuchi, T. Nakashima, and T. Morisawa, “Voting in fuzzy rule-based systems for

pattern classification problems,” Fuzzy sets and systems, vol. 103, no. 2, pp. 223–238,

1999.

[99] A. Fernández, S. del Río, A. Bawakid, and F. Herrera, “Fuzzy rule based classification

systems for big data with mapreduce: granularity analysis,” Advances in Data Analysis

and Classification, vol. 11, no. 4, pp. 711–730, 2017.

[100] K. Subramanian, S. Suresh, and N. Sundararajan, “A metacognitive neuro-fuzzy infer-

ence system (mcfis) for sequential classification problems,” IEEE Transactions on Fuzzy

Systems, vol. 21, no. 6, pp. 1080–1095, 2013.

[101] R. Savitha, S. Suresh, and H. Kim, “A meta-cognitive learning algorithm for an extreme

learning machine classifier,” Cognitive Computation, vol. 6, no. 2, pp. 253–263, 2014.

[102] E. Lughofer and O. Buchtala, “Reliable all-pairs evolving fuzzy classifiers,” IEEE

Transactions on Fuzzy Systems, vol. 21, no. 4, pp. 625–641, 2013.

[103] M. Pratama, J. Lu, S. Anavatti, E. Lughofer, and C.-P. Lim, “An incremental meta-

cognitive-based scaffolding fuzzy neural network,” Neurocomputing, vol. 171, pp. 89–105,

2016.

[104] I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, “Active learning with drifting stream-

ing data,” IEEE transactions on neural networks and learning systems, vol. 25, no. 1,

pp. 27–39, 2014.

[105] K. Bache and M. Lichman, “Uci machine learning repository,” 2013.

132

BIBLIOGRAPHY

[106] I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera, “Mrpr: a mapreduce

solution for prototype reduction in big data classification,” neurocomputing, vol. 150,

pp. 331–345, 2015.

[107] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà, “New ensemble meth-

ods for evolving data streams,” in Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 139–148, ACM, 2009.

[108] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile networks and applications,

vol. 19, no. 2, pp. 171–209, 2014.

[109] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing tool,” Communications

of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[110] C. Za’in, M. Pratama, and E. Pardede, “Evolving large-scale data stream analytics based

on scalable panfis,” Knowledge-Based Systems, vol. 166, pp. 186–197, 2019.

[111] J. Maillo, S. García, J. Luengo, F. Herrera, and I. Triguero, “Fast and scalable approaches

to accelerate the fuzzy k nearest neighbors classifier for big data,” IEEE Transactions on

Fuzzy Systems, 2019.

[112] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436,

2015.

[113] M. Das, M. Pratama, S. Savitri, and Z. Jie, “Muse-rnn: A multilayer self-evolving recur-

rent neural network for data stream classification,” in 19th IEEE International Conference

on Data Mining, 08 2019.

[114] M. Pratama, A. Ashfahani, Y.-S. Ong, S. Ramasamy, and E. Lughofer, “Autonomous

deep learning: Incremental learning of denoising autoencoder for evolving data streams,”

arXiv preprint arXiv:1809.09081, vol. abs/1809.09081, 2018.

[115] M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, and W. Ding, “Automatic construction

of multi-layer perceptron network from streaming examples,” in Proceedings of the 28th

ACM International CIKM, 2019.

133

BIBLIOGRAPHY

[116] M. Pratama, W. Pedrycz, and G. Webb, “An incremental construction of deep neuro

fuzzy system for continual learning of non-stationary data streams,” arXiv preprint

arXiv:1808.08517, vol. abs/1808.08517, 2018.

[117] I. Frias-Blanco, J. d. Campo-Avila, G. Ramos-Jimenez, R. Morales-Bueno, A. Ortiz-

Diaz, and Y. Caballero-Mota, “Online and non-parametric drift detection methods based

on hoeffdings bounds,” IEEE Transactions on Knowledge and Data Engineering, vol. 27,

pp. 810–823, March 2015.

[118] P. P. Chan, X. Zeng, E. C. Tsang, D. S. Yeung, and J. W. Lee, “Neural network ensemble

pruning using sensitivity measure in web applications,” in 2007 IEEE ICSMC, 2007.

[119] W. Zou, C. Li, and N. Zhang, “At–s fuzzy model identification approach based on a

modified inter type-2 frcm algorithm,” IEEE Transactions on Fuzzy Systems, vol. 26,

no. 3, pp. 1104–1113, 2017.

[120] M. Pratama, A. Ashfahani, and M. A. Hady, “Weakly supervised deep learning approach

in streaming environments,” 2019.

[121] M. Pratama, M. de Carvalho, R. Xie, E. Lughofer, and J. Lu, “Atl,” Proceedings of the

28th ACM International Conference on Information and Knowledge Management - CIKM

’19, 2019.

[122] T. Finch, “Incremental calculation of weighted mean and variance,” University of

Cambridge, vol. 4, no. 11-5, pp. 41–42, 2009.

[123] A. Shaker and E. Lughofer, “Self-adaptive and local strategies for a smooth treatment of

drifts in data streams,” Evolving Systems, 2014.

[124] G. I. Webb, R. Hyde, H. Cao, H. Nguyen, and F. Petitjean, “Characterizing concept

drift,” Data Min. Knowl. Discov., vol. 30, no. 4, 2016.

[125] J. a. Gama, R. Fernandes, and R. Rocha, “Decision trees for mining data streams,” Intell.

Data Anal., vol. 10, pp. 23–45, Jan. 2006.

134

BIBLIOGRAPHY

[126] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep neural networks.,”

CoRR, vol. abs/1507.06149, 2015.

[127] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson, “Parameterized machine

learning for high-energy physics,” arXiv preprint arXiv:1601.07913, 2016.

[128] M. Sariyar, A. Borg, and K. Pommerening, “Controlling false match rates in record linkage

using extreme value theory,” J. of Biomedical Informatics, vol. 44, pp. 648–654, Aug. 2011.

[129] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-based modeling for

fraud and intrusion detection: Results from the jam project,” in In Proceedings of the

2000 DARPA Information Survivability Conference and Exposition, pp. 130–144, IEEE

Computer Press, 2000.

[130] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

135

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Research Motivations
	The Taxonomy of Online Algorithms and Further Development Work
	The Types of Online Algorithms and the Reasons for Using these Algorithms for Further Development
	The Connection between Frameworks in Our Thesis and the Underlying Reasons for Developing Such Architectures
	Tackling the Volume and Velocity Characteristics of Data Streams
	Tackling the Multiple issues of Data Streams

	Objectives
	Contributions
	Structure of the Thesis

	Research Context - Architecture and Problem Definition
	Introduction to Large-scale Data Analytics
	Large-scale Data Analytics Platform
	Hadoop
	Apache Spark

	The Learning and Inference Engine of Large-scale Data Analytics
	The Ensemble Algorithms: Examples
	Boosting
	Bagging

	An Offline Base-Learning Algorithm
	ANFIS
	Decision Tree

	Learning Mechanism of Offline Algorithms
	The Batch Algorithms
	The Ensemble Algorithms
	Distributed Algorithms

	 Learning Mechanism of Online Algorithms
	The Incremental Learning Algorithms - Batch Incremental Learning Algorithms
	The Evolving Algorithms - The Instance Incremental Learning Algorithms

	Towards the Implementation of Distributed Incremental Ensemble Algorithms
	Dynamic Structure of the Incremental Ensemble
	The Distributed Incremental Ensemble frameworks

	Summary

	Literature Review
	Learning from Data Streams in a Distributed Environment
	The Current Development of Evolving Fuzzy Systems
	Distributed Algorithms
	Research Gap

	Incremental Learning Based on Ensembles in a Distributed Environment
	Ensemble Algorithms and the Challenges
	The State-Of-The-Art and the Research Gap

	Summary

	Evolving Large Scale Data Stream Analytics Based On PANFIS - Scalable PANFIS
	Introduction
	PANFIS
	Scalable PANFIS Framework - Architecture and Problem Formulation
	Scalable PANFIS Framework Architecture
	Problem Formulation of Scalable PANFIS

	Structure of the Scalable PANFIS framework model
	Scalable PANFIS Framework using the Model Merging Method
	The Initial Distributed Models and Their Components
	The Underlying Reason for Using a Rule as a Merging Component
	The Need to Select and Remove Inconsequential Concatenated Rules Prior to Model Merging

	Model Merging Implementation at the Rule Level

	Scalable PANFIS Framework using the Majority Voting method
	Scalable PANFIS Framework with AL and the Model Merging Method
	Scalable PANFIS Framework with AL and the Majority Voting Method

	Numerical Study
	Experiment Setup
	Results
	Scalable PANFIS discussion
	The effect of AL in the Scalable PANFIS performance - Scalable PANFIS with and without AL comparison
	Determining the number of initial rules before the merging process
	The Merging and Voting methods comparison

	Scalable PANFIS and Spark-based Algorithms Comparisons
	Statistical Testing

	Summary Discussion

	Conclusion

	Scalable Teacher-Forcing Networks under Spark Environments for Large-Scale Streaming Problems
	Introduction
	Problem Formulation of ScatterNet
	Preliminaries
	Scalable Teacher-Forcing Network
	Penalty and Reward Mechanism
	Drift Detection Method
	Model Pruning Mechanism
	Data Stream Learning Phase
	Scalable Teacher-Forcing Network
	Structural Learning of ScatterNet
	Parameter Learning of ScatterNet
	Data-Free Model Merging

	Numerical Results
	Dataset
	Algorithms and Parameters
	Environmental Setting: Spark Architecture, Hardware and Software
	Results and Discussion
	Ablation Study
	Statistical Testing

	Conclusion

	Thesis Conclusions
	Future Directions
	Bibliography

