
1

AREMUCCS: A REcursive, MUlti-stage machine learning
Classifier for Client-side Spam filtering

Submitted By

Kamini Simi Bajaj

Master of Computing, University of Western Sydney, Australia

Master of Statistics(Medal holder), Panjab University, India

A Thesis submitted for the total fulfilment

of the degree of

Doctor of Philosophy

 School of Engineering and Mathematical Sciences

La Trobe University

Victoria, Australia

September 2020

2

Abstract

The upsurge of email spam is a by-product of the use of emails as the preferred medium

of communication, professionally and to some extent also personally. Over the last two

decades, this email spam has motivated email providers and academic researchers to

contribute to this area of email spam filtering in various shapes and forms.

Server-side spam filtering is a mature technology that generally adopts a naïve, “one

size fits all” approach to classifying emails as either spam or ham (i.e. not spam). However,

user preferences are critical elements that must be taken into account for accurate

classification based on individual requirements and tastes, including tolerance for high

false positive or false negative rates: in other words, what constitutes spam is often in the

“eye of the beholder”. However, filtering at the client side has not caught, to any significant

extent, the attention of researchers. In this thesis, a sophisticated client-side approach to

spam filtering is proposed (AREMUCCS), where the classification approach is based on

user preferences, and the ever-changing tactics of spammers. The algorithm presented is

recursive and multi-stage, incorporating user profiling, a number of novel heuristics and

approaches to classification; it can detect typical spammer anti-filtering approaches such

as random string injection, using both structural and text features. Feature selection is

performed using word embedding, the count vectorizer and term frequency inverse

document frequency methods, before multiple classifiers - including machine learning

(ML), deep learning (DL) and entropies – are applied. Across datasets ranging in size from

1,600 to 75,000 cases, including Ling-spam, PU1, CSMDC2010, Enron and TREC07,

classification metrics for accuracy, precision, recall, F1 scores, ROC/AUC and PRC have

been achieved in the range of 93-99.8%. Future directions for further enhancing

AREMUCCS are considered.

3

Statement of Authorship

"Except where reference is made in the text of the thesis, this thesis contains no material
published elsewhere or extracted in whole or part from a thesis accepted for the award of
any other degree or diploma. No other person's work has been used without due
acknowledgment in the main text of the thesis. This thesis has not been submitted for the
award of any degree or diploma in any other tertiary institution."

Kamini Simi Bajaj 8 September 2020

4

Acknowledgement

This research could never be considered complete without acknowledging some of

important people who supported and motivated me throughout my journey. First and

foremost, with utmost gratitude, I cannot thank my supervisor, Prof. Paul Watters enough.

This thesis could not have been completed without his support, his excellent guidance,

inspiration, motivation and advice. Throughout my candidature, his support, suggestions,

feedback and supervision have been extremely encouraging. During the thesis preparation,

his recommendations and guidance helped me to keep going towards completion. I am

deeply indebted for his support; he is the best supervisor.

Next I would like to express my gratitude to my co-supervisor, Dr A.S.M. Kayes for his

help and moral support when the project overwhelmed me. His friendly attitude gave me

self-confidence while writing the thesis and helped me towards completion. I cannot fail

to mention support from Uncle Alex, Dr Alex Ng for inspiring me to keep moving ahead

at critical times. His consistent support and care for my wellbeing helped me to complete

this thesis. An important contributor to my thesis is Mrs Angelika Maag who spent

numerous hours reading and editing my thesis. A big thanks to her with gratitude for

correcting my English.

I would like to thank La Trobe University for giving me the opportunity to complete my

research and thesis. This work was supported by an Australian Government Research

Training Program Scholarship.

I am grateful to my employer Western Sydney University, especially Prof. Simeon Simoff,

Dean, School of Computer, Data and Mathematical Sciences for his support and

allowing me to take time off from my academic duties to focus on my research. Without

this, I could not have achieved my goal of completing my PhD work. I am obliged and

thankful to him. Finally, I am thankful to my family, particularly my sisters who are my

pillar of strength for anything I do in life with their unbounded and unconditional

love for me and my children, they gave me reason to progress in life by calling me

their ‘hero’. I have relied so many times on their love and that of my friends who

believed in me.

Last but not least, it is my God who gives me courage to face challenges and strengths

to do well in life and encouragement to complete my thesis.

5

Table of Contents

ABSTRACT .. 2
STATEMENT OF AUTHORSHIP ... 3
ACKNOWLEDGEMENT ... 4
LIST OF FIGURES ... 7
LIST OF TABLES ... 12
CHAPTER 1 .. 15
INTRODUCTION .. 15
1.1 INTRODUCTION .. 15
1.2 RESEARCH CHALLENGE AND SCOPE ... 17
1.3 RESEARCH QUESTION ... 22
1.4 HYPOTHESIS AND RESEARCH GOALS ... 22
1.5. THESIS OUTLINE ... 25
CHAPTER 2 .. 26
RESEARCH MOTIVATION: EMAIL SPAM AS AN ISSUE OVER THE LAST 40 YEARS AND PROFFERED
SOLUTIONS ... 26
2.1 OVERVIEW .. 26
2.2 WHY IS UNSOLICITED EMAIL CALLED SPAM? A HISTORICAL REVIEW ... 27
2.3 EMAIL SPAM AS AN ISSUE ... 27
2.4 IMPACT OF EMAIL SPAM ... 29
2.5 CATEGORIES OF EMAIL SPAM ... 31
2.6 TYPES OF EMAIL SPAM .. 33
2.7 TAXONOMY OF EMAIL SPAM CONTROL MEASURES .. 34
2.8 EVALUATIVE ANALYSIS OF PROPOSED SOLUTIONS .. 45
CHAPTER 3 .. 47
CLIENT-SIDE USER SPECIFIC EMAIL SPAM FILTERING - CAN WE CAN THE EMAIL SPAM FOR SPECIFIC
USERS ... 47
3.1 OVERVIEW .. 47
3.2 EMAIL CLASSIFICATION AND SPAM FILTER .. 48
3.3 LEARNING-BASED FILTER MODEL .. 52
3.4 MAIL SERVER-BASED VERSES CLIENT-BASED EMAIL SPAM FILTERING .. 55
3.5 SPAM FILTERING AND REACTIVITY OF SPAMMERS .. 58
3.6 CONTEXT SPECIFIC TRAINING DATASETS ... 59
3.7 EXPERIMENT 1 - CLIENT-SIDE FILTERING WITH CONTEXT SPECIFIC TRAINING DATASETS: A BAYESIAN
CLASSIFIER .. 60
3.8 EXPERIMENT 2: PERFORMANCE TESTING OF CLIENT-SIDE BAYESIAN CLASSIFIER WITH N-GRAM
PARAMETRISATION .. 70
3.9 ANALYSIS OF RESULTS AND DISCUSSION – MODIFIED BAYESIAN CLASSIFIER 93
CHAPTER 4 .. 95

 6

DMLEM-DYNAMIC MULTI-LAYER ENSEMBLE MODEL FOR HIGH PRECISION
CLASSIFICATION OF GREYS .. 95
4.1 OVERVIEW .. 95
4.2 EXPERIMENT 3: DYNAMIC MULTI-LAYER EMAIL SPAM DETECTION MODEL (DMLM) FOR
CLASSIFICATION OF GREYS ... 97
4.3 SEMANTIC FEATURE SELECTION .. 102
4.4 SYNTACTIC FEATURE SELECTION ... 105
4.5 MODEL GENERATION METHOD ... 113
4.6 CLASSIFICATION RESULTS AND DISCUSSION .. 115
4.7 EXPERIMENT 4-DMLEM - DYNAMIC MULTI-LAYER ENSEMBLE MODEL ... 123
4.8 EXPERIMENTAL RESULTS – DYNAMIC MULTI-LAYER ENSEMBLE MODEL .. 133
4.9 ANALYSIS OF EXPERIMENTAL RESULTS AND DISCUSSION .. 137
CHAPTER 5 .. 141
USER PROFILING FOR USER PREFERENCES TO PERSONALISE EMAIL CLASSIFICATION 141
5.1 OVERVIEW .. 141
5.2 USER PROFILING FOR USER PREFERENCES - USER BEHAVIOURS AND ACTIONS? 142
5.3 METHODOLOGY: ... 145
5.4 EXPERIMENTAL RESULTS ... 151
5.5 CROSS VERIFICATION OF USER PREFERENCES .. 163
5.6 ANALYSIS OF RESULTS AND DISCUSSION: .. 165
CHAPTER 6 .. 167
HUNTING RANDOM STRINGS AND TOPIC-BASED DETECTION METHODS ... 167
6.1 OVERVIEW .. 167
6.2 RANDOM STRING INJECTION- USING ENTROPY FOR CLASSIFICATION AT CLIENT SIDE 170
6.3 EXPERIMENTAL RESULTS AND ANALYSIS ... 181
6.4 TOPIC-BASED CLASSIFICATION AT CLIENT SIDE .. 199
6.5 EXPERIMENT RESULTS AND ANALYSIS ON TOPIC-BASED CLASSIFICATION 201
6.6 DISCUSSION: ... 205
CHAPTER 7 .. 208
CONCLUSION AND FUTURE WORK .. 208
7.1 OVERVIEW .. 208
7.2 SUMMARY .. 209
7.3 THESIS CONTRIBUTION ... 211
7.4 FUTURE WORK .. 212

 7

List of Figures

Figure 1.1: Percentage of Email Spam in Q2 and Q3 in 2019 (Maria Vergelis, 2019)

Figure 1.2 Percentage of email spam of various sizes (Maria Vergelis, 2019)

Figure 2.1: Leading countries of origin for email spam in 2019 (copyright Statista 2020)

Figure 2.2: Amount Lost for Spam Types from ACCC Scamwatch

Figure 2.3 Technical Anti-Spam Measures

Figure 2.4: Learning-Based Spam Control Measures

Figure 3.1: Email Life Cycle

Figure 3.2: Email Transmission Process

Figure 3.3: Email spam Life Cycle

Figure 3.4 : Structure of Typical Spam Filter (Guzella & Caminhas, 2009)

Figure 3.5: Process of Learning email filter

Figure 3.6: Learning email filter model (Mir & Banday, 2010)

Figure 3.7: Learning and classification Method of Bayesian Classifier

Figure 3.8: Test Results for all four datasets for Unigrams with token size of 15 for several

threshold sets

Figure 3.9: Test Results for all four datasets for Unigrams with token size of 50 for several

threshold sets

Figure 3.10: Test Results for all four datasets for Unigrams with token size of 75 for several

threshold sets

Figure 3.11: Test Results for all four datasets for Unigrams with token size of 150 for several

threshold sets

Figure 3.12: Test Results for all four datasets for Unigrams with token size of 200 for several

threshold sets

Figure 3.13: FP rate and cost function for all four datasets for Unigrams for all parameter values

Figure 3.14: Test Results for all four datasets for Bigrams with token size of 150 for several

threshold sets

 8

Figure 3.15: Test Results for all dataset for Bigrams with token size of 500 for several threshold

sets

Figure 3.16: Test Results for all dataset for Bigrams with token size of 5000 for several threshold

sets

Figure 3.17: Test Results for all dataset for Bigrams with token size of 10000 for several threshold

sets

Figure 3.18: Test Results for all dataset for Bigrams with token size of 20000 for several threshold

sets

Figure 3.19: Test Results for all dataset for Bigrams with token size of 25000 for several threshold

sets

Figure 3.20: FP Rate and Cost Function for All Four Datasets for Bigrams for All Parameter Values

Figure 3.21: Test Results for all dataset for Trigrams with token size of 150 for several threshold

sets

Figure 3.22: Test Results for all dataset for Trigrams with token size of 500 for several threshold

sets

Figure 3.23: Test Results for all dataset for Trigrams with token size of 5000 for several threshold

sets

Figure 3.24: Test Results for all dataset for Trigrams with token size of 10000 for several threshold

sets

Figure 3.25: Test Results for all dataset for Trigrams with token size of 20000 for several threshold

sets

Figure 3.26: Test Results for all dataset for Trigrams with token size of 25000 for several threshold

sets

Figure 3.27: Test Results for all dataset for Trigrams with token size of 50000 for several threshold

sets

Figure 3.28: FP rate and cost function for all four datasets for Trigrams for all parameter values

Figure 4.1: 2-stage filtering at client side

Figure 4.2: Framework for Multi-Layer Email Spam Detection Model

Figure 4.3: Machine learning Process

Figure 4.4: Architecture of DMLM

Figure 4.5: Building feature space using Semantic Features

Figure 4.6: Process Flow model for Semantic Feature Selection

 9

Figure 4.7: Non-Fiction Text Features for a document

Figure 4.8: Distribution of data showing Concept drift from 2013 to 2019

Figure 4.9: The classification accuracy using unigrams and bigrams as features.

Figure 4.10: Graph showing a) False positive rate and b) False Negative for all 10 datasets for

Bayesian classifier and DMLM

Figure 4.11: Graph showing accuracy for all 10 datasets for Bayesian classifier and DMLM

Figure 4.12: Architecture of DMLEM

Figure 4.13: A One-Dimensional Hyperplane Separating the Data Points

Figure 4.14: Support Vector Machine showing one dimensional hyperplane

Figure 4.15: k-Nearest Neighbors algorithm with k=1 (Navlani, 2018)

Figure 4.16: k-Nearest Neighbour algorithm with multiple higher values of k (Navlani, 2018)

Figure 4.17: Euclidean distance representation

Figure 4.18: A Typical logistic(sigmoid) function

Figure 4.19: Bagging Classifier Ensemble

Figure 4.20: Graph showing a) false positive and b) false negative rate for all 10 datasets for

Bayesian classifier 0.5-.5 threshold, DMLM and DMLEM

Figure 4.21: Graph showing accuracy comparison for Bayesian classifier 0.5-.5 threshold, DMLM

and DMLEM for all 10 datasets

Figure 4.22: Accuracy comparison among different models

Figure 4.23: False Positive rate comparison

Figure 4.24: False Negative rate comparison

Figure 5.1: Significant phrases from emails

Figure 5.2: AUC ROC curve

Figure 5.3: Confusion Matrix, ROC/AUC curve and PRC curve for using term frequency method

Figure 5.4: Confusion Matrix, ROC/AUC curve and PRC curve for using tf-idf method

Figure 5.5: Confusion Matrix, ROC/AUC curve and PRC curve for using tf-idf method

Figure 5.6: Layers of a Convolutional Neural Network (CNN) for text classification

Figure 5.8: Architecture of a CNN for text classification.

Figure 6.1: Datasets with their ham/spam training and test split

Figure 6.2: Random Forest Prediction Model

 10

Figure 6.3: Visualization of Random Forest prediction (Yiu, 2019)

Figure 6.4: Algorithm for Dense Neural Network

Figure 6.5: Word cloud tests for Enron dataset a) and test data b) test data with random good text

c) test data with random good scrambled text.

Figure 6.6: Word cloud tests for Ling-spam dataset a) test data b) test data with random good text

c) test data with random good scrambled text.

Figure 6.7: Shannon entropy for Ling-spam dataset for Logistic regression machine learning model

Figure 6.8: Relative entropy for Ling-spam dataset for Logistic regression machine learning models

Figure 6.9: ROC/AUC curve a) before strings b) after strings c) after scrambled strings for Ling-

spam dataset -Naive Bayes machine learning model

Figure 6.10: Shannon entropy for CSDMC2010 dataset for Naïve Bayes machine learning model

a) after adding strings b) after adding scrambled strings

Figure 6.11: Relative entropy for CSDMC2010 dataset for Naïve Bayes machine learning model

a) after adding strings b) after adding scrambled strings

Figure 6.12: Shannon entropy for CSDMC2010 dataset for DNN deep learning model a) after

adding strings b) after adding scrambled strings

Figure 6.13: Relative entropy for CSDMC2010 dataset for DNN deep learning model a) after

adding strings b) after adding scrambled strings

Figure 6.14: ROC/AUC curve CSDMC2010 dataset for a) before strings b) after strings c) after

scrambled strings NB machine learning model

Figure 6.15: PRC curve CSDMC2010 dataset for a) before strings b) after strings c) after scrambled

strings NB machine learning model

Figure 6.16: Shannon entropy for Enron dataset for XGB machine learning model a) after adding

strings b) after adding scrambled strings

Figure 6.17: Relative entropy for Enron dataset for XGB machine learning model a) after adding

strings b) after adding scrambled strings

Figure 6.18: Relative entropy for Enron dataset for CNNv2 deep learning model a) after adding

strings b) after adding scrambled strings

Figure 6.19: Confusion matrix for Enron dataset for XGB machine learning model for a) before

strings b) after strings c) after scrambled strings

Figure 6.20: ROC/AUC curve for Enron dataset for DNN deep learning model a) before strings b)

after strings c) after scrambled strings

 11

Figure 6.21: PRC curve for Enron dataset for DNN deep learning model a) before strings b) after

strings c) after scrambled strings

Figure 6.22: Shannon entropy for TREC07 dataset for SVM machine learning model a) after adding

strings b) after adding scrambled strings

Figure 6.23: Relative entropy for TREC07 dataset for SVM machine learning model a) after adding

strings b) after adding scrambled strings

Figure 6.24: Shannon entropy for TREC07 dataset for CNNv1 deep learning model a) after adding

strings b) after adding scrambled strings

Figure 6.25: Relative entropy for TREC07 dataset for CNNv1 deep learning model a) after adding

strings b) after adding scrambled strings

Figure 6.26: ROC/AUC curve for TREC07 dataset for CNNv1 deep learning model a) before valid

strings b) after adding random strings c) after adding scrambled strings

Figure 6.27: PRC curve for TREC07 dataset for CNNv1 deep learning model a) before valid strings

b) after adding random strings c) after adding scrambled strings

Figure 6.28: Overall architecture of topic-based classification

Figure 6.29: Ling-spam Subject Field Word Clouds for Train Data

Figure 6.30: Ling-spam Subject Field Word Clouds for Test Data

Figure 6.31: Enron Subject Field Word clouds for Train Data

Figure 6.32: Enron Subject Field Word Clouds for Test Data

Figure 6.33: Sample Shannon and Relative entropy values with their Prediction Probability for

XGBoost model

 12

List of Tables

Table 1.1: Sample Email Spam with Text Features from Ling-spam dataset

Table 1.2 Sample Email Spam with Non-Text Features from Ling-spam dataset (K. Bajaj, 2017)

Table 3.1. Threshold Values for Spam and Ham cut off

Table 3.2: Total Number of Training and Testing Emails for each Dataset used

Table 3.3 Token Sizes (Max Discriminators) used for 3 n-gram types

Table 3.4: Parameter Sets for each dataset for Unigrams

Table 3.5: Test Execution results for Ling-spam dataset for threshold value of 0.5 each for spam

and ham cut off.

Table 3.6: Results for Unigrams for all four datasets for all the parameters

Table 3.7: Parameter Sets used for Classification using Bigrams

Table 3.9: Parameter Sets for each dataset for Trigrams

Table 3.10: Results for all Parameter Sets for all dataset for Trigrams

Table 4.1 Sample Spam email with Text Features

Table 4.2 (a) Sample Spam email with Numeric digits

Table 4.2 (b) Sample Spam email with Mis-spelt words

Table 4.2 (c) Sample Spam email with links as content

Table 4.3: Syntactic Features

Table 4.4: Syntactic features list during the Feature selection Step

Table 4.5: Number of Training and Testing Emails for each Dataset used

Table 4.6: Feature Extraction using n-grams

Table 4.7: Semantic feature selection, Training and test times

Table 4.8: a) False positive and b) false negative rate for all 10 datasets for Bayesian classifier and

DMLM

Table 4.9: Accuracy for all 10 datasets for Bayesian classifier and DMLM

Table 4.10: Comparison of performance of DMLM with other machine learning classifiers

Table 4.11: Comparison of DMLM and DMLEM for computation complexity

 13

Table 4.12: Table showing False Positive rate, false negative rate and accuracy figures for Bayesian

classifier 0.15-0.09 threshold, Bayesian classifier 0.5-.5 threshold, DMLM and DMLEM all 10

datasets

Table 4.13: Comparison of Accuracy

Table 4.14: Comparison of rate of False Positive

Table 4.15: Comparison of rate of False Negative

Table 4.16: Comparison of detection rate for DMLEM with other Ensemble models

Table 5.1: User Behaviour Associated with Ham Emails

Table 5.2: User Behaviour Associated with Spam Emails

Table 5.3 User datasets for training and testing

Table 5.4: Class distribution data for all users

Table 5.5: Results of classification using term frequency feature selection method

Table 5.6 FP and FN for each user using term frequency method

Table 5.7: Classification results using TF-IDF

Table 5.8: Classification Results using Word Embedding

Table 5.9: Classification results using deep learning models

Table 5.10: Comparison of user preference of User 1 with other users using 5 samples

Table 5.11: User preference Comparison of User 1 with other users using 20 samples with DNN

model

Table 5.12: Comparison of user preference using 5 samples with CNNv1

Table 5.13: Comparison of user preference using 20 samples with CNNv1

Table 5.14: Comparison of user preference using 5 samples with CNNv2

Table 5.15: Comparison of user preference using 20 samples with CNNv2

Table 6.1 Confusion Matrix

Table 6.2: Shannon and relative entropy for Ling-spam dataset for a) machine learning models b)

deep learning models

Table 6.3: Performance metrics for Ling-spam dataset for a) machine learning models b) deep

learning models

Table 6.4: Confusion matrix for Ling-spam dataset for a) machine learning models b) deep learning

models

Table 6.5: Shannon and relative entropy for CSDMC2010 dataset for a) machine learning models

b) deep learning models

 14

Table 6.6: Performance metrics for CSDMC2010 dataset for a) machine learning models b) deep

learning models

Table 6.7: Confusion matrix for CSDMC2010 dataset for a) machine learning models b) deep

learning models

Table 6.8: Shannon and relative entropy for Enron dataset for a) machine learning models b) deep

learning models

Table 6.9: Performance metrics for Enron dataset for a) machine learning models b) deep learning

models

Table 6.10: Confusion matrix for Enron dataset for a) machine learning models b) deep learning

models

Table 6.11: Shannon and relative entropy for TREC07 dataset for a) machine learning models b)

deep learning models

Table 6.12: Performance metrics for TREC07 dataset for a) machine learning models b) deep

learning models

Table 6.13: Confusion matrix for TREC07 dataset for a) machine learning models b) deep learning

models

Table 6.14: Total number of Words in dictionary found from the Subject Field

Table 6.15: Classification Report comparison for Machine Learning Models

Table 6.16: Confusion Matrix for Machine Learning Models

Table 6.17: Classification Report comparison for Deep Learning Models for TREC07 dataset

Table 6.18: Classification Report comparison for Deep Learning Models for Enron dataset

Table 6.19: Classification Report comparison for Deep Learning Models for CSDMC2010 dataset

Table 6.20: Classification Report comparison for Deep Learning Models for Ling-spam dataset

Table 6.21: Confusion Report comparison for Deep Learning Models for TREC07 dataset

 15

Chapter 1

Introduction

 “The only crime that has been proven is the hack. That is the story.”
– Ramon Fonseca

1.1 Introduction

Emails been fully accepted as a communication medium since their origin in 1960s and the

number of emails sent daily has exponentially increased every year since. The estimated number

of email users are 3.8 billion and it is expected that this number will grow to 4.4 billion in 2023.

The total number of emails sent and received every day worldwide in 2018 was approximately 281

billion. It is projected for 2023 that this figure may increase to over 347 billion emails exchanged

daily. The main reasons emails are the most popular choice for communication are the advantages

associated with their use such as immediacy, spontaneity, convenience and low cost. Furthermore,

storage of data generated by email is easy and inexpensive.

However, since emails are so extensively used, they also come with problems. Together the

high usage number and advantages associated with emails have led to an upsurge in email spam

over two decades, increasing the total percentage of email spam from 36% in 2002 to 96% in 2006-

2007. It started declining post 2010 and has been stable at around 50-60% over the last 5 years.

A fact recognised many centuries ago is that wherever money exists, there is fraud. The

motivation for this thesis is to develop a dynamic and user focused machine learning based solution

to combat a particular type of fraud associated with emails called email spam, an abuse of electronic

messaging systems by violating privacy with unsolicited information, products or services.

Though it began as a form of advertising, the wide use of email has created avenues for

opportunists for scams and fraud. This may be in the form of identity theft with the intention of

 16

making unauthorised withdrawals from bank accounts, gaining access to sensitive financial

information in the case of companies or the use of credentials to obtain credit elsewhere. However,

it may also be aimed at the disruption of systems through malware and many more (Ford &

Spattord, 2007).

Email spam has been faced by everyone who has used email applications via computers, tablets

or smartphones for information exchange by sending or receiving email messages from last two

decades. One reason for its continuous existence is that it is profitable for spammers who, with

limited investment, are able to advertise and lure users to click on unexpected link, disclose their

personal data or download viruses and malware. Even at its lowest, during the 2009 economic

downturn, spammers were able to rake almost $4000.00 per day from its Viagra spam campaign.

Today, spammers earn $7000.00 on average per day with only 1 response received per 12.5 million

email spam messages.

As discussed earlier, email spam can be of many types and may lead to other forms of cyber

fraud such as phishing, DDoS attacks, botnets, viruses/malware, sniffing, key logging, and identity

theft, causing billions of dollars in losses. Email spam evidently is the origin of all these other types

of cyber fraud. Earlier, the latter were spread via viruses; however, with the emergence of

sophisticated techniques for generating trillions of emails to reach user inboxes, easy access to has

been created to also commit other forms of fraud. This often starts with embedding viruses and

malware in the spam email, which is downloaded by the user. However, even without opening the

spam email, significant damage can be caused. Out of the many listed, phishing and botnets are

perhaps the most commonly used. Phishing coaxes users into revealing personal financial

information such as bank login credentials and credit card details. Using these bank details

spammers transfer funds from the user’s accounts and make purchases using the illegally obtained

credit card details. In many cases, the stolen credentials are sold on, causing significant financial

losses for individuals and institutions. Botnets work on a different principle where a network of

private interconnected devices infected with malicious software is controlled as a group without

the knowledge of owners. These botnets can be used to perform distributed denial-of-service

attacks, steal credentials, generate and send email spam and also allow the attacker access to device

and connection. Each device in botnet may run one or more bots that are able to produce billions

of emails per day. Hence, it is important to understand that controlling email spam not only saves

users and organisations time, resources and money but also indirectly tackles other fraudulent

activities. Finding a solution to these problems could be said to be a ‘one size fits all’ approach to

combating cyber fraud.

Such solution needs to come from technology that has the ability to analyse vast amounts of

data generated by immense email exchange. The most promising of these is machine learning

(Grobelnik, Mladenić, & Fortuna), a set of algorithms that work together to improve performance

through, among others, prediction capabilities. When presented with exemplified sets of labelled

 17

data, these algorithms learn and improve their ability to predict. These algorithms have been

widely used by researchers and email providers in an attempt to combat email spam. However, so

far no one algorithm has been proven to be superior to another, in fact many of them produce

similar outcomes. The main reason is that the majority of algorithms focus only on text features

contained in the email and do not account for 1. Differences in individual users’ preferences, 2.

structural attributes and 3. anomalies introduced into the text features by spammers.

1.2 Research Challenge and Scope
Since the early 2000s researchers, commercial organisations and email providers have been

developing techniques to control the influx of email spam resulting in well-developed anti-spam

filters (details are presented in Chapter 2). They are based on header analysis, list-based (i.e.

blacklists, white lists, grey lists) for address and keywords, protocols, content filtering (at the mail

server) with further classification through statistical analysis based on learning systems, artificial

immune systems (AIS), reputation-based filters, ontologies, social networking, p2p, and grid

computing (G. Caruana, Maozhen, & Man, 2011; Pelletier, Almhana, & Choulakian, 2004; Pham,

Lee, Jung, and Sadeghi-Niaraki, 2011; Vu Duc & Truong Nguyen, 2012; Ying Zhang, Yang, &

Liu, 2012).

Figure 1.1: Percentage of Email Spam in Q2 and Q3 in 2019 (Vergelis, 2019))

Figure 1.1 shows the percentage of email spam from April to September 2019 where the highest

number of spam in global email traffic occurred in August. Despite extensive efforts by researchers

 18

and leading IT companies, who have developed complex anti-spam software solutions, email spam

has continued to grow quickly.

However, the statistics above indicate that the issue is still unresolved, and further research is

needed to look for anti-email spam solutions to counteract new techniques devised by spammers.

Success in controlling email spam remains elusive and is like a tug of war despite more than a

decade of research efforts. Hence, the problem which is the focus of this thesis is well researched;

however, we are approaching this issue from a different viewpoint.

Existing anti-email spam solutions can be categorised into prevention and detection techniques.

Prevention is aimed at stopping email spam at the source while detection techniques focus on the

recipient, identifying an email as spam and directing it to the spam folder. While prevention is

highly desirable, this is difficult to achieve, to some extent due to the fact that spammers continue

inventing new ways of circumventing the filters. Furthermore, they seize external computers to

generate and send spam without the knowledge of the owners. They also often operate only

intermittently. Hence detecting a source and shutting it down is almost impossible. This is further

complicated by the fact that the same email, for example ‘advertising a product’, may be legitimate

for one user and spam for another. Such scenario brings forward a challenge with the use of listing

techniques as prevention. With control of the source remaining elusive, most research has focused

on detection techniques.

Detection is possible at the server and the client site. In both cases, research has achieved some

success with content filters, based on machine learning techniques (Balakumar & Vaidehi, 2008;

Blanzieri & Bryl, 2008; Godwin Caruana & Li, 2008; Chih-Chin & Ming-Chi, 2004). At the mail

server level application of content filtering solutions has the following important points to consider.

First, the content filtering technique is common to the entire pool of emails received by the mail

server on behalf of thousands of email users of the organization. Second, as K. Bajaj and Pieprzyk

(2014) and Shajideen and Bindu (2018) point out, the classification of an email as spam is

subjective to each individual user whereby it may be spam to one user and legitimate to some other

user. Therefore, with an aim to filter email spam if the classifier is kept very stringent, this may

result into a large number of false positives. A false positive (FP) is a legitimate email that is

tagged/classified as spam, this may create false alarm and block emails coming from legitimate

sources. Isacenkova and Balzarotti (2014) flagged this as significant because user missing out on

receiving an email in their inbox may cause them a loss of important information. On the other

hand, if the classifier is kept at a low level of filtration, it may lead to higher false negatives. A

false negative (FN) is an email spam that is classified/tagged as legitimate email, indicative of the

problem of email spam in the user’s inbox.

A sample email spam shown in Table 1.1 from a public email spam dataset called Ling-spam

first presented in J. K. Androutsopoulos, Chandrinos, K.V. Paliouras,G and Spyropoulos, C.D.

(2000a) that was successfully classified as spam by a content-based filter. The content filer

 19

identified words such as ‘information’, ‘$2 million’, ‘1-800’ as spam words and classified the email

as spam.

Table 1.1: Sample Email Spam with Text Features from Ling-spam dataset

Subject: re: information requested
hi, name is john ' m 27 years old. was able $ 2 million working
home, 'd share did. please few moments busy life listen short
message tell! call listen, 1-800 - 764-6203 change life!

As pointed out above, in order to overcome the content-based filters the spammers constantly

find new techniques to mislead filters. Gargiulo, Penta, Picariello, and Sansone (2009) and K. Bajaj

(2017) cited examples of how email spam has evolved to contain concealed words with inclusion

of special characters and numbers. The word ‘sale’ may be modified as ‘s@1e’ to trick the filters.

Thus, email spam now includes more than words in the form of links, numerical digits, special

characters etc. These non-textual features, as shown in the sample email in Table 1.2, are often

successful in misleading text-based filtering mechanisms and are not be identified as spam. Non

textual features are structural features that define the size, date, time of the email or other

characteristics associated with the email.

Table 1.2 Sample Email Spam with Non-Text Features from Ling-spam dataset (K. Bajaj, 2017).

Subject: free promotional offer
' ' own 100 % free web site site : http : / / 000000138 .
0000127 . 000044 . 00000005 . cearth . . ca / users /
freewebsites / * * * charge * * * * * * commitment * * * * * *
problem * * * opportunity s33kers internet m@rketers small lagre
site is . s1te linked thousands web sites ? amazing site . . .
http : / / 000000000138. 000027 . 44 . 5 . cearth . . ca / users
/ freewebsites / * * * charge * * * * * * commitment * * * * * *
problem * * * is tru1y going site century ! * * * * * * * * * *
* * * * * * * * * * * * please excuse intrusion . one fr33 offer
mailing * * * * * * * * * * * *

Another important issue that is the subject of research is concept drift, the subject of recent

investigation by several researchers (K. Bajaj & Pieprzyk, 2014; Sheu, Chu, Li, & Lee, 2017),

meaning a continuous change of the topics of the spam emails. The content of email spam generally

focuses on certain topics that either may be of interest to users or are prevalent in a particular time

period. For example, many topics of email spam in 2013 were related to Apple, Microsoft, success

of Steve Jobs and Australia post (with the aim of targeting Australian users), national holidays in

 20

the US, malicious eCards, the birth of the royal baby in the UK, Edward Snowden’s FBI hunt,

Spain’s railway accident and delivery failure notifications. The email spam topics reported by

Securelist in 2019 were Valentine’s Day, Apple Products, fake technical support, new features in

Instagram, mailshot phishing, financial spam, job offers, ransomware and cryptocurrency, and

malicious attacks on the corporate and banking sector. An experiment with email spam and

evaluation results related to concept drift are presented in Chapter 4.

A notable feature of email spam is the size of the email as reported by Kaspersky lab. In Figure

1.2, it shows the movement in the percentage of emails of various sizes for Q1 2019 as compared

to Q4 in 2018. The share of very small emails (up to 2 KB) in spam increased in 2019 to 73.98%

(shown in red in Figure 1.2) against 67% shown in green in Figure 4) Q4 2018. It is evident from

this data that the majority of spam emails are smaller than 2kb.

Figure 1.2 Percentage of email spam of various sizes (Vergelis, 2019)

All of these examples of non-text structural features in email spam highlight their importance

in content filters. The spam reports published in the 2nd quarter of 2015 by Kaspersky labs

(Shcherbakova, Vergelis, & Demidova, 2015) shows non-textual structural features for email spam

filtering based on the features identified in spam emails that spammers are using to deceive the

filtering solutions. Some of the examples of such features are IP address modifications,

introduction of upper and lower-case letters, special characters, numerical digits and symbols,

incorrectly spelt words, email size and presence of links to direct users at forged sites.

 21

From the foregoing, it is clear that spammers confound researchers by constantly changing their

tactics, that the magnitude of spam is not reducing, and that there are potentially costly

misclassifications at the end user’s site because user preferences are not taken into consideration.

Therefore, it is required to improvise the method of spam detection to incorporate user

preferences, syntactic features and techniques to detect latest spammer techniques to make the

process of spam detection efficient so that the percentage of email spam in users inbox can be

reduced.

This work takes inspiration from the following research challenges:

• There is lack of an appropriate approach to incorporate individual user preferences into

email classification methods. Though there are approaches available that builds models

based on use behaviour with an aim to classify emails using these models, user behaviour

is not the right reflection of user preferences. Typical user behaviour associated with an

email involves read, save, delete, report as spam. Unless a user reports an email as spam,

no other behaviour helps the model learn. How many of us either delete or do nothing when

we see s spam email in our inbox? Just relaying on user behaviour is not an effective way

of identifying user preferences for type of email they want to welcome in their inbox.

Majority of machine learning model(s) with automated feature selection mechanism are

heavily based on the nature of data used to characterise the learning of these models.

Hence, user data can be utilised to model user preferences.

• There is relatively small body of publications available on client-side email spam filtering

solutions. This thesis focuses on the under-developed and ignored area of client-side email

spam filtering, proposing that a multi-level filtering system can improve the user email

experience and minimise the loss of important emails as FP. This thesis highlights the need

to reclassify emails detected as spam by a mail server. Most existing client-side email spam

filtering solutions are based on a single machine learning model, although it has been

demonstrated that ensembles of machine learning models outperform these. For this

purpose, we develop a multiple stage filtering mechanism at the client side for reclassifying

the emails identified by the first round of filtering.

• Current machine leaning models heavily rely on semantic features contained in either

header or body or both which, in isolation, may not be enough to detect email spam.

Structural features have equal significance in terms of patterns that can be identified. In

this work, feature selection takes into consideration the structural components of an email,

as syntactic features to design a more effective model for classification.

• Current techniques for spam filtering are proving inadequate against the ever-changing

tactics of spammers who bring noise into emails to confuse the filters. Forged emails

represent another side of the tactics which is very prevalent today and is very easy to

achieve as email systems do not require authentication. This research focuses on the

 22

development of an independent feature for machine learning models to classify emails.

The main target is the type of words present in spam. They differ from those used in

legitimate emails; however, spammers infuse their email content with random pieces of

valid text as strings to confuse filters and lower their capacity for protection. In some cases,

the random text is even scrambled to confuse the content filters. These tactics can be

countermanded through entropy distribution using a series of machine learning algorithms.

With these challenges in mind, this research aims to develop a sophisticated filtering system at

the client end capable of appropriately segregating emails for that individual user based on their

preferences. In summary, server-side mail filtering is not sufficient to classify incoming emails

correctly, and current client-side filtering does not effectively countermand current tactics of

spammers.

1.3 Research Question

The broad aim of this thesis is to reduce the impact of the threat coming from the loss of

important legitimate emails and the clogging of users’ inboxes with email spam. More precisely,

the following research question is addressed:

Are the existing machine learning based filtering solutions for email spam detection

effective against the challenges posed by changing spamming techniques?

To answer this broad question, we ask:

a. Is email spam generic to all users?
b. Are current email spam control measures at the mail server level

adequate?
c. Is second level email spam detection required?
d. Should the greys be manually segregated?
e. Are text features enough to detect and classify email spam?
f. Would using single machine learning technique effectively reduce False

Positives?
g. Do ensemble-based machine learning techniques increase the efficiency

of email spam detection via filtering?

1.4 Hypothesis and Research Goals

The overall intention of this thesis is to identify the optimum level of features to feed into

machine learning model(s) to reduce the number of FN (email spam) and minimise FP (losing

legitimate email as spam). This is possible through the customisation of user inboxes to individual

 23

preferences and needs. The goal is to achieve this with minimum over head of time and resources

for the user.

The thesis investigates the following hypothesis:

A client-side multi-stage machine learning classifier based on text and non-text features

significantly minimises FN and FP for individual users.

This hypothesis is tested through developing a recursive multi-stage classifier for email spam

filtering at the client side (AREMUCCS), which first develops profiling for individual users using

machine learning and deep learning models. AREMUCCS then measures the performance of a

dynamic multi-level ensemble model (DMLEM) based on CART, SVM, kNN and LR machine

learning models. DMLEM builds attribute sets using semantic and syntactic features as a sparse

frequency matrix. AREMUCCS addresses the new tactics of spammers such as addition of random

strings to mystify the filters and uses entropy distribution as email classification method based on,

among others, LR, SVM, XGB, NB and RF and deep learning models such as CNN and DNN.

Given the specific feature sets, feature selection is carried out using count vectoriser, term

frequency inverse document frequency and word embedding methods. AREMUCCS assumes that

features are conditionally independent given the class labels, though in reality there is some

dependence between the features. Experiments demonstrate that the resulting model is easy to fit

and works.

AREMUCCS does not require users to enter thresholds, numbers or types of features and is a

fully automated algorithm. It works on original feature space; this means that the learning algorithm

incorporates all knowledge acquired during its usage as original feature set not as modified or

transformed feature set for classification by the machine learning models. Furthermore,

AREMUCCS does not incur high computation cost that is generally assumed to be the case with

learning algorithms.

Thus, there are several research goals:

1. Each user’s definition of unwanted emails (i.e. spam) is tailored to their preferences

and needs, to develop an effective user profile.

2. Email spam filtering at client site provides another level of filtering that trains filters

according to the individual user profile.

3. To develop a fully automated system that obviates the necessity to manually classify

emails. This is accomplished by an ensemble of machine learning models, evaluated

for performance.

4. To develop a system for email classification incorporating techniques to counteract the

latest methods deployed by spammers such as random string infusion.

 24

5. To incorporate the deep learning models as the classification model for user profiling,

topic-based classification and random string detection.

1.5 Thesis Contribution

In order to achieve these goals, the aim is to accomplish the following tasks:

1. Provide an overview of existing email spam classification techniques with close focus on

machine learning based classification. A survey of mail server level solutions versus client-

based solutions is conducted, with special emphasis placed on email spam detection

techniques. In order to classify an email, it is important to understand how email spam

filters work, especially learning-based email spam filter models. Close attention will be

paid to existing feature selection and machine learning models with a view to using them

for this research.

2. Propose and implement a system that develops profiles for each user based on their dataset.

This profile will distinguish user preference and need from other users but is sufficiently

generic to be applied to any user and be customisable.

3. Survey and select an existing client-based email spam filter to develop proof of concept

for client-based email classification. Experiments will be conducted to validate that client-

based user specific filtering improves performance.

4. To develop and implement a system that requires no involvement from user to manually

classify emails, while providing high performance in terms of minimising rates of FP and

FN.

5. Define and select semantic as well as syntactic features that comprehensively cover

necessary parameters for accurate classification. These features will be used to form a

feature set, used to train the model. The feature set is formed using feature selection

methods: countvectoriser, tfidf and word embedding.

6. Develop an ensemble model based on the selected features, incorporating a range of

machine learning models and evaluating performance on selected datasets.

7. Identify specific features and techniques to combat the latest spammer techniques such as

legitimate random text or strings in spam emails that spoof the filters. The use of entropy

distribution, machine learning models and deep learning models to classify as spam emails

with valid random text.

 25

1.6. Thesis Outline
The remainder of this thesis is structured as follows:

Chapter 2 introduces the key concepts and provides details on the email information life cycle,

classification, modelling and filtering techniques. The current state of art in spam filtering is

examined in the literature review and available work on email spam control is enumerated as

taxonomy of control measures.

Chapter 3 gives an overview of classification models, datasets, supervised machine learning and

deep learning algorithms used in this framework. Different models are presented and compared.

The performance evaluation metrics used to evaluate the models are introduced and defined.

In Chapter 3 a typical email model is described along with elaboration of a learning email spam

filter which forms the basis for machine learning algorithms. It then outlines the theory

underpinning the client-side email spam filtering systems. Experimental details for client-side

email spam filtering with user specific data are provided along with results. This chapter introduces

a Bayesian Classifier as case study example of client-side filtering where this classifier classifies

emails into three categories of spam, legitimate and greys; here greys are the emails that have the

attributes of both, spam and legitimate emails hence are not clearly classified. This chapter also

presents performance testing experiments of this classifier using token types, max-discriminators

(token sizes) and thresholds. Results of the experiments are reported along with the discussion

justifying the need for another layer to improve the performance of this Bayesian client-based

classification filter into two-class output.

Chapter 4 A, MUlti-stage machine learning Classifier for Client-side Spam Filtering with sub

sections on feature selection, a dynamic ensemble classifier, DMLM: Dynamic multi-layer model

for high precision classification of greys from the Bayesian classifier introduced in Chapter 3 and

further improvised into DMLEM using methods for combining machine learning models into a

bagging ensemble. DMLEM, a Dynamic multi-layer ensemble model focuses on improving

performance of the Bayesian classifier by reclassifying spam and classifying greys into spam and

legitimate emails to achieve an acceptable level of FP and FN.

Chapter 5, User Profiling to incorporate user preferences for email classification is outlined,

evaluated and experimental results are presented.

Chapter 6 presents email classification based on Random String detection, using entropy

distribution and subject based email spam classification based on machine and deep learning

models. Experimental results to validate the model are also reported in this chapter followed by a

conclusion of thesis and future work in Chapter 7 which also provides analysis and the discussion.

The main contribution of this thesis is covered in Chapters 3, 4, 5 and 6.

 26

Chapter 2

Research Motivation: Email Spam as
an Issue over the last 40 years and

Proffered Solutions
“A love letter lost in the mail, forgotten, miss delivered and then discovered years later and
received by the intended is romantic. A love letter ending up in someone's spam filter is just

annoying.”

― B.J. Neblett

2.1 Overview
The attributes which make email the preferred communication medium for exchanging

messages is convenience and cost-effectiveness. The message size in an email may vary from one

kilo byte to many megabytes and sending is very cheap using the email address and the simple mail

transfer protocol (SMTP), a communication protocol for email transmission. One of the features

of the SMTP protocol is that it allows sending messages to anyone, not dependent on any email

client or provider. An undesirable consequence is email spam. The features that differentiate spam

from legitimate emails are, firstly, that the email is unsolicited, and the receiver had no intentions

of receiving it. Furthermore, the sender of the email is unknown to the receiver and they have no

direct or indirect connection with this sender who has directed the message to a massive number

of email addresses. Email spam accounted for almost 58% of all emails sent in August 2019.

However, this is not a recent phenomenon. In fact, the problem existed already more than 40 years

ago with the first unsolicited email sent by Gary Thuerk in 1978 to promote a new model of

computer (Deffree, 2019).

 27

2.2 Why is unsolicited email called SPAM? A historical
review

The Word ‘spam’ was originally the brand name for Hormel Foods, maker of the canned

"Shoulder Pork and hAM"/"SPiced hAM" luncheon meat since 1937. The term was suggested by

Ken Daigneau, brother of the Vice President of Hormel Foods in a contest to win $100 to name

‘spam’. However, today the term "spam" has come to mean network abuse, particularly for

unsolicited email and massive junk postings.

Historically, spam originated in the 1970s as a mechanism for advertising via messages that

were sent to large numbers of recipients regardless of whether they had subscribed to the

advertising message. 1978 marked the sending of the first spam message that caught attention of

scientific literature. In 1982, Denning (1982) was one of the first to study the issue of email spam.

However, spam in early 1980’s, also known as unsolicited commercial email (UCE), was merely

an innovative way of sending information to large cross-sections of people, while today it has

become a serious threat. Spam itself is controversial as the message an originator could be the

means of advertising products or services or an unwanted message -a ‘nuisance’.

2.3 Email Spam as an Issue
Overall, spam is today one of the major social issues as the abuse perpetrated through electronic

messaging systems includes most broadcasting media and digital delivery systems. This means

that the email system may not only be used to circulate text messages but also for promoting

unsolicited information, products or services, and turn an electronic tool into a relay for spam. They

have become a staging ground for attacking other systems and spreading malware or

indiscriminately spying to capture identity information, such as bank account details and credit

card information (Ford & Spattord, 2007). The email addresses are collected in such a way that

they are useful for advertisers. However, such emails are unsolicited emails and, hence, spam.

Spamming is economically viable as the only cost associated is the cost to manage the mailing

list. An ‘Email Statistics Report 2013-2017’ by the Radicati Group Inc. stated that in 2013, 3.9

billion email accounts were registered from which 929 million mailboxes were for organisations.

This means that more than 50% of the world’s population use email and that the average number

of email accounts is 1.75 accounts per user. In the same year, most of the email traffic came from

business emails, which accounted for 100 billion emails per day, a 9% increase from 2012. Overall,

190 billion emails were sent daily in 2015 (Symantec, 2016) which rose to 269 million in 2017

(Radicati, 2017), 281 billion in 2018 (Radicati, 2018), and 293.4 billion in 2019 (Radicati, 2019);

this is projected to increase to more than 347 billion emails exchanged daily by 2023 with the

 28

current 3.8 billion email users worldwide are estimated to grow to 4.4 million in 2023 (Clement,

2019).

This is not without dangers, however. Online technologies make it relatively simple to disguise or

misrepresent identity, or to make use of someone else's. As a result, even if the user replies to a

spam email with a disguised identity, it never reaches the sender as the sender address is only

temporary. Hence, it is difficult to identify the true sender to report the issue. Thus, the history of

spam elimination attempt is long and troubled.

According to statistics, the percentage of emails spam sent over the Internet increased from 36%

of total emails sent worldwide in 2002 (Clifford, Faigin, Bishop, & Brutch, 2003) , to 45% in 2003,

64% in 2004 (Jaeyeon & Emil, 2004), and 68.6 in 2005 (Leavitt, 2007). Siponen and Stucke (2006)

conducted a study of 500 businesses in the USA and suggested that 81.6% of all email traffic was

spam in 2005. It increased to 86.2% in 2006 (Leavitt, 2007), and 92.6% in 2008 (Han, Kim, Ha, &

Jo, 2008). There was a small decline to 90% in 2010 (OstermanResearch, 2011) and, again, to 86%

in 2011 (Gudkova & Namestnikova, 2011) as a result of the permanent elimination of the Rustock

botnet in March 2011 which compromised 1.1 to 1.7 million computers. Symantec reported that

spam decreased from 92% in August 2010 to 74% in October 2011. Thereafter, the statistics for

email spam stayed around 71.8% in 2012 (Namestnikova, 2012) and 70% in 2013 (Patidar, Singh,

& Singh, 2013). This figure has been around 50-60% since 2014. The email spam rate for 2018

was recorded as being 55% (Clement, 2019). For the first quarter of 2019 the proportion of email

spam in mail traffic was reported as 56% which rose to 58.71% in May, averaging 57.64% in the

second quarter of 2019.

Figure 2.1: Leading countries of origin for email spam in 2019 (Statista 2020)

 29

An increase of 20% in email spam occurred from 2005 to 2006 when it reportedly rose to almost

90% of all email traffic towards the end of 2006. Antispam vendor message labs reported it as

being 89.4% from which 27% originated in the United States of America (USA) and 26% in China.

Brazil, France, India, Russia, South Korea, and the UK were also significant sources of email spam

in 2006. In 2019, spam from China peaked at 20.43% and from the USA at 13.37% (Figure 2.1).

A report by MacAfee in 2009 revealed that in 2008 alone, 62 trillion spam messages were sent.

2.4 Impact of email spam
Email spam is a problem, clogs the inboxes of users and makes it difficult to distinguish

important messages from spam hence wasting time in reading and deleting. They also consume

computing and networking resources such as storage and bandwidth and are frequently used as a

sinister tool for cybercrime activities such as the denial of service attack (DoS), distribution of

malware, phishing, stealing sensitive information to name a few. Rao & Reiley (2012) report that

approximately 90 million spam emails were sent out daily in 2010, responsible for 88-90% of the

email traffic worldwide during that year.

The impact of spam can be summarised as:

1. Waste of computing resources - spam consumes bandwidth, introduces delays in routing

and causes unnecessary processing (Dada & Joseph, 2018a). Some businesses store spam messages

for analysis to find a solution (Pour & Kholghi, 2012) which further adds to wastage of computing

resources.

2. Loss of productivity - clearing mailboxes from unwanted emails wastes time and can be

highly frustrating for the recipients (Dada & Joseph, 2018a).

3. Denial of service - flooding networks with spam can create bottlenecks and blockages

making communication via the network impossible (Blanzieri & Bryl, 2008).

4. Invasion of Privacy - collection of addresses from email recipients may be carried out

without their knowledge - an invasion of privacy that then also exposes senders to further

unsolicited emails.

5. Fraud and Deception - popular kinds of spam that create the perception of offering users’

financial opportunities (i.e., ‘get rich quick schemes’ a Nigerian Letter scam). Other methods may

prompt users to provide access to confidential information (i.e. their email account or bank details).

6. Unnecessary expenditure – cost may be incurred for deploying anti-spam systems that

process and delete email spam (OstermanResearch, 2011) .

7. Identity theft – the main intent of some spam is to collect private and sensitive information

to get access to valid credentials (OECD & Ahn, 2004).

8. Spreading Malware – email spam can also be dangerous in other ways as it may contain

viruses, trojans or the kind which may damage software and systems (Ali Elsiddig, Elhadi, &

Ahmed, 2017).

 30

9. Security breaches – some spam causes security breaches in systems and networks (Sanz,

Gómez Hidalgo, & Cortizo Pérez, 2008).

10 Loss of reputation – forged emails are sent with an intention of damaging the reputation of

an individual or an organisation

11 Bounced emails due to forged return addresses - undelivered emails are returned to the

sender by the mail server with notification causing network clogging.

12. Reduced consumer confidence –financial and information losses may lead to loss of trust in

digital technology and emails among consumers.

From the above, it is evident that the problem of email spam is economically quantifiable. In a

press release in 2009, Gartner stated that more than 5 billion US consumers experienced financial

losses through phishing attacks, a particular type of email spam - 39.8% more than the year before

(Gartner, 2009).

In summary, three main goals of spam were identified: 1) Gain illegal financial advantage 2)

extract data and 3) compromise networks and systems. Within a few years of its introduction, email

spam morphed from nuisance to serious security risk to individual and organisational data;

therefore, this needs further research (Ali Elsiddig et al., 2017; K. Bajaj & Pieprzyk, 2014; S. K.

Bajaj & Pieprzyk, 2013). According to Ferris Research, which studied messaging and content

control, the cost of email spam to organizations in the USA was USD 8.9 billion in 2002 with a

12% increase in 2003 to $10 billion and to $17 billion in 2005 (Ferris_Research, 2007). This rose

to $20 billion in 2006 (Leavitt, 2007) and 2011 (Rao & Reiley, 2012). In 2010, email spam cost

global economies around $130 billion in combating 107 trillion email spam sent as reported by the

World Economic Forum in 2016 (Smith, 2016).

In Japan, the amount of lost GDP was about 500 billion yen in 2008 (Takemura & Ebara, 2008),

while according to a report by the government of United Kingdom, about 1.9 million incidents

from email spam cost citizens an estimated amount of £10 billion in 2016. ACMA investigated

compliance through the Spam Act and reported the number of spam complaints received for Jan

2013 to be 51,525 from which 50,477 were complaints related to emails. The Behavioural Science

Lead from MWR Info Security, Adam Sheehan, reported to The Economic Times in 2018 that

email spam had gained traction as a successful attack vector with click rates rising to 14.2% from

13.4% in 2017. In Australia, a 2019 report by the Australian Competition and Consumer

Commission (ACCC) Scamwatch showed the number of reports as 1,67,798 and financial losses

as $142,934,416.00 (Figure 2.2).

 31

Figure 2.2: Amount Lost for Spam Types from ACCC Scamwatch

Dhinakaran, Chae, and Lee (2007) have argued that this impacts on the existence and popularity

of emails (i.e. low despatch cost and ease of sending it through various software tools)

(Dhinakaran, Chae, & Lee, 2007; Takumi et al., 2007). High financial outlays by consumers and

organisations globally (Deepak & Sandeep, 2005) counteract the potential benefits of emails

(Figure 2.3). When to this, the negative impact of wasted computing resources, loss of productivity,

denial of service, invasion of privacy, as well as fraud and deception are added, some doubt could

be raised about the viability of email communication (Ferris Research, 2007; Nagamalai et al.,

2007; Toit & Kruger, 2012). Furthermore, the impact of these undesirable consequences may still

increase as email use is still growing.

2.5 Categories of Email Spam

Email spam can be grouped into categories based on different criteria. Most are applicable to

Networked PCs, laptops and mobile devices. Many researchers have studied the content of spam

messages for developing taxonomies (Aradhye, Myers, & Herson, 2005; Balakumar & Vaidehi,

2008; Chao & Yiming, 2007; Chih-Chin & Ming-Chi, 2004; Drucker, Donghui, & Vapnik, 1999;

M. R. Islam, Wanlei, & Chowdhury, 2008; R. Islam & Wanlei, 2007; Kun-Lun, Kai, Hou-Kuan,

& Sheng-Feng, 2002; Zhen, Xiangfei, Weiran, & Jun, 2006). This section investigates email spam

based on content and attachments. Some authors have categorised email spam according to the type

of content in the spam, popular families of email spam or genres (Sanz et al., 2008).

Taxonomies/types of email spam are discussed in the next section.

 32

Email spam can be characterised into two major categories

2.5.1 Spam without Attachments
These are email spam messages containing text messages with or without a clickable URL to a

web source but no attachment. It can be further classified as content and link email spam:

2.5.1.1 Content Email Spam (Jindal & Liu, 2007)
 This kind of spam contains text messages as means of advertising, marketing or scam. It may

content text that may lead the reader to take an action based on the information in the email. In

many cases. it does not serve any particular purpose other than annoying the reader. One classic

example is the Nigerian letters scam. Most of the sender’s mail accounts do not exist. Such emails

are limited in number a when compared to other categories. In the case of text messaging spam in

mobile devices as SMS, the spammers target users with lucrative offers and ask them to respond

whereby the cost of sending that message is high, leading to financial loss to the users.

2.5.1.2 Link Email Spam (Guoyang et al., 2006; Jindal & Liu, 2007)

Contemporary search engines rank web pages by taking into consideration the number of links

connected to the pages. A web page to which more links (called in-links) are connected is more

likely to be ranked higher. Spammers, therefore, often attempt to manipulate links on the web by,

for example, adding thousands or even millions of links to the pages they want to promote – a

technique referred to as ‘link spam’(Guoyang et al., 2006). Link spam in emails is where an email

contains a link either to an external source to advertising or an attempt to discover the identity of

the individual via a phishing attempt. The link in the email may lead to downloading viruses and

malware on the individual’s device.

Such types of email spam use techniques to alter the logical view of the content of the email

such as keyword stuffing, hidden text inclusion, or doorway links. The overall look and feel of

such emails generally convince readers of the purpose of the email and they may take the intended

action. On mobile devices, link spam on the messages prompts the user to click on a link which

would take them to another website to complete the task. This may lead to the user device acting

as a spambot generating numerous messages beyond its capacity and, thereby, clogging the device

preventing it from its intended tasks or compromising user identity.

2.5.2 Spam with Attachment
This kind of spam contains combination of image, text and URL or a clickable link to a website.

The attachments in most cases are image or executable files that may be embedded in or attached

to an email. The image files are mostly in .gif format.

2.5.2.1 Image Spam
Image spam has been growing since the early 2000s and is now a serious problem as text-based

filters can analyse the textual components of an email. However, for image spam the textual content

is implanted into images attached or embedded into the email body. The origin of image spam

 33

comes from the limitations of the conventional spam blocking tools that rely on textual analysis of

incoming messages which does not work well against image spam. The volume of image spam has

increased dramatically from <4% in 2005 to over 40% in 2007. By 2010, around 85% of the email

spam contained images (Bhowmick & Hazarika, 2018). In a March 2007, a survey conducted by

Osterman Research reported that more than 60% of messaging decision makers cited image spam

as a problem for their organizations. There are various combinations of image spam: Image and

text as attachment, Image, text and URL and Image and URL (Dhinakaran et al., 2007;

Sirisanyalak & Somit, 2007). Image-based filtering has been reviewed in detail by (Ching-Tung,

Kwang-Ting, Qiang, & Yi-Leh, 2005).

2.5.2.2 Executable file (Virus Spam)(Qiu, Hao, & Chen, 2004)
Spam with executable files as an attachment is intended to spread viruses and try to establish

mail bombs to plan DDoS attacks on the mail servers and networks. Upon execution of the

attachment, the machine acts as a zombie and performs tasks intended by the spammer such as

downloading big programs to harm the network or automatic generation of emails to others in the

same domain clogging the entire network (Dhinakaran et al., 2007).

2.6 Types of Email Spam
A taxonomy of spam in terms of needs to include advertisements for products and services (such

as adult content spam, pharmacy and medicine, software, personal finance, education), phishing,

denial of service attacks and distribution of viruses and malware. Due to the commercial purpose,

this is denoted as UCE (unsolicited commercial email) and is seen by organisations as a tool to

approach potential customers because email is a low cost and convenient way to reach large groups

of people. Furthermore, email spam is represented as the following types:

• Commercial Advertising

• Scam

• Phishing

• Financial

• Image spam

• Botnet spam

• DDoS

Malware

Pour and Kholghi (2012) mention two more types as word obfuscation and backscatter spam.

 34

2.7 Taxonomy of Email Spam Control Measures

Basic anti-spam techniques and measures try to separate spam from legitimate emails. The

literature includes several research works that propose techniques for combating email spam,

including blacklists, whitelists, grey lists, content-based filtering, feature selection methods, bag-

of-words, machine learning techniques such as Naïve Bayes (Vu Duc & Truong Nguyen, 2012;

Ying Zhang et al., 2012), Support vector machines (G. Caruana et al., 2011), and neural networks

(du Toit & Kruger, 2012). Further, there are lazy learning and reputation-based techniques

(Zheleva, Kolcz, & Getoor, 2008), artificial immune systems (Xiao-wei & Zhong-feng, 2012),

protocol-based procedures, and many more that have not been listed here (Aldwairi & Flaifel,

2012; Balakumar & Vaidehi, 2008; Pham et al., 2011; Xiao, Junyong, & Meijuan, 2010); (du Toit

& Kruger, 2012; Horie & Neville, 2008; Huai-bin, Ying, & Zhen, 2005; M. Islam & Zhou, 2007;

Klonowski & Strumiński, 2008; P. Liu, Dong, & Zhao, 2007; McGibney & Botvich, 2007; Moon,

Shon, Seo, Kim, & Seo, 2004; Nhung & Phuong, 2007; Rajendran & Pandey, 2012; So Young &

Shin Gak, 2008; Wei, Feng, Di, & Feng, 2010; Wu & Tsai, 2008; Xiao et al., 2010; Xiao-wei &

Zhong-feng, 2012; Ying Zhang et al., 2012). Godwin Caruana and Li (2012) list some emerging

approaches such as peer to peer and grid computing, social networks and ontology-based semantics

along with several other approaches.

Many authors have conducted surveys and listed measures to control spam over the last decade

(Aggarwal, 2012; Blanzieri & Bryl, 2008; Godwin Caruana & Li, 2008; Lai, 2007; Nazirova, 2011;

Paswan, Bala, & Aghila, 2012; Quinten, van de Meent, & Pras, 2007).

These solutions can be grouped into categories such as list-based and filtering techniques. A

different categorization proffered by Nakulas, Ekonomou, Kourtesi, Fotis, and Zoulias (2009) is

by purpose (i.e. prevention, detection and reaction). Paswan et al. (2012) categorize email spam

filtering techniques as origin-based, content-based or traffic-based filtering, and as feature selection

or feature extraction methods. This thesis has analysed these categories and has broadly classified

spam solutions into three categories: Regulatory Laws and Legislatives, Education and Awareness

and Technical Measures, with the major focus being on technical measures.

2.7.1 Regulatory Laws and Legislation
The economic damage and violation of laws caused by email spam have resulted in some

countries in the implementation of new regulations and legislation (Guzella & Caminhas, 2009;

Stern, 2008). Efforts have been made by individuals and organizations such as governments, ISPs,

anti-spam organizations, consumer protection organizations, and organizations providing anti-

spam solutions at commercial as well as non-commercial level. In a global network such as the

internet, resisting email spam requires uniform global legislations and compels the creation of

 35

uniform universal laws. An article published by an Organization for Economic Co-operation and

Development, France, provided a list of 39 national and international anti-spam, mostly non-

commercial, organizations (OECD & Ahn, 2004). The following legislative measures have been

set up by a large number of countries using two kinds of approaches – (a) existing laws and

regulations which, though not specifically addressing spam, may nevertheless be implicated by

some aspects of spam, e.g. laws to protect consumers from deceptive marketing or to prevent the

distribution of pornographic images and (b) amendment of existing laws and regulations or creation

of new regulations to address the problem of spam (OECD & Ahn, 2004). There is a range of

regulatory approaches such as opt-in, opt-out, ISP rights and responsibilities, scope of spam (for

example the US CAN SPAM Act of 2003 allows for UCE but places restrictions on it), spam ware,

disclosure of personal data, EU member states as well as National Cyber Alert systems and

complaint mechanisms (Blanzieri & Bryl, 2008). In order to avoid spam in Australia, the Spam

Act 2003 sets out the responsibilities under the Australian Law. It was reported that 80% of spam

in Europe and North America originates from fewer than 200 spammers operating illegally

(Hoanca, 2006).

The laws and legislation addressing mobile devices are: General guidelines provided by US-

CERT for mobile devices such as securing the device, posting (sharing) the device number and

email address carefully. The user should refrain from following links sent in emails or text

messages, being wary of downloadable software and applying security settings, all of which is also

applicable to networked PCs (McDowell, 2006). The US Federal Government CAN SPAM Act

for mobile devices prohibits sending unsolicited commercial email messages to wireless devices

without prior permission. The Commission found that SMS messages transmitted solely to phone

numbers (as opposed to those sent to addresses with references to Internet domains) are not covered

by these protections.

Unfortunately, a code of conduct provides only limited protection against “bad” spammers.

Spammers easily find methods to side-step systems and studies show that the Acts have had little

impact on spammer activities and the number of spam emails sent (Grimes, 2007; Kigerl, 2009;

Nazirova, 2011; Schryen, 2007).

2.7.2 Education and Awareness
Educating spam victims may play an important part in reducing spam. Awareness could turn

those victims who unknowingly post their email addresses on public sites into spam free users.

This also would increase the efforts spammers have to put in to collect email addresses. Such

social approaches cannot eliminate spam; however, in general they increase awareness about spam

and the way to deal with it. Legal provisions can control the problem to some extent although steps

taken by informed users will certainly help reduce the problem if not eliminate it. Consumer

protection and government organizations have raised public awareness by informing consumers

about spamming tactics and providing them with suggestions on how to protect against them

 36

(OECD & Ahn, 2004). Examples come from the National Cyber Alert Systems by the US

Computer Emergency Readiness team that published a document on ‘Defending Cell Phones and

PDAs Against Attack’ (McDowell, 2006). Furthermore, the US Federal Trade Commission

operates a website dedicated to spam awareness.

2.7.3 Technical Measures
There are several measures used to prevent and detect spam; however, among all anti-spam

measures used for combating email spam technical measures have proven to be the most effective.

These control techniques can be classified as techniques to prevent, detect or react to email

spam. Some of these approaches are included in this section.

Technical measures are broadly categorized into protocol based (Mir & Banday, 2010). filtering

techniques which can be further sub-divided into learning-based , P2P computing, grid computing,

ontology-based approaches and social networks (Godwin Caruana & Li, 2012).

Figure 2.3 Technical Anti-Spam Measures

The focus of this research is learning-based filters for spam filtering, which can be implemented

using content-based methods such as statistical, rule-based, machine learning and a mix of these.

These methods use the features identified from the selected components of the spam email for

classification as spam or non-spam. Since focus of this research is around learning-based methods,

the following will elaborate leading up to content-based filters which is the main focus of this

research.

Protocol based Filtering

Learning based
methods P2P computing Grid Computing Ontology based

approaches
Social Networks

 37

Figure 2.4: Learning-Based Spam Control Measures

2.7.3.1 Non-Machine Learning methods

Whitelist/Blacklist Filters

Whitelist/Blacklist filtering as a preventative technique which forms part of integrated filtering

systems and is one of the most popular approaches to email spam filtering. Most web filters

(parental controls) have incoming and outgoing packets, go through a filter driver and use a

blacklist/whitelist approach.

White-lists (set of email addresses of users whose messages are allowed) and blacklists (email

or IP addresses known to be spammers) are used to filter spam by using the e-mail address, IP

address and DNS address. Real-time Blacklists are one kind of application based on this method.

(L. Yang, Bin-Xing, & Li, 2006). However, lists are vulnerable to address spoofing and may also

include legitimate messages from users who are not in a white list or who are present in a black list

by mistake (Garg, Battiti, & Cascella, 2006).

A Whitelist is used in instant messaging networks and contains a list of email addresses of

people that are allowed to email and are therefore on a known list of good email addresses while

other addresses are blocked (Pour & Kholghi, 2012). These lists contain email addresses of people

permitted to email while others are blocked.

This assumes that everyone in the whitelist is a genuine non-spam source and, without bias,

would probably not become one in future. Again, there are several open issues here. Firstly, this

completely discounts that individuals may become spammers and unknown email addresses would

be denied access. Although some individuals may not find this problematic, companies,

Non
Machine
learning

• White listing
• Blacklisting
• Grey Listing
• Challenge Response Filter
• Digital Signatures
• Pattern Recognition
• Reputation based
• Heuristics-rule based

Machine
Learning

• Supervised
• Unsupervised

Supervised

• Bayesian
• SVM
• Neural Network
• Lazy Learning
• Genetic Algorithms
• Hidden Markov
• Artificial Immune System
• Markov Random Fields
• Case Based Reasoning
• Decision Trees
• k-Nearest Neighbor

Un-
supervised

• Clustering
• Artificial Neural Networks
• Fuzzy Logic
• K-means algorithm

Machine
LearningLearning

Based
Methods

 38

organisations and businesses will as they depend on as yet unknown customers and clients to

remain functional.

Thus, while for non-organisational users the whitelist is relatively difficult to circumvent by

spammers, as it primarily deals with known identities and gives users total control; thus, unsolicited

and unidentified emails are reduced or avoided. However, a change of identity of whitelist members

will also lead to automatic rejection. This means known users need to be aware that they must first

communicate the change of identity before they can use their new identity which can be

problematic if they are on a large number of whitelists. Although his may still be manageable, in

the case of organisations where users get emails from a large number of people, it becomes a

problem to build and maintain a whitelist.

In contrast, blacklist filters are access control mechanisms that maintain a list that will allow in

messages and email addresses unless these are on the list of ‘bad’ sources; in other words, it

maintains a list of email addresses that are not allowed. A well-maintained blacklist will result in

zero false positives although, when implemented on a wider scale, it may be difficult to maintain,

and some genuine emails may be eliminated in the process of excluding spammers. However, the

effect on spammers may be severe enough for them to deem it unprofitable to spam.

Greylisting

This method rejects emails on the assumption that legitimate mail transfer agents will always

retry while spam ware will not. Instead, it will go on to another spamming message on its list. To

initiate their attacks, spammers use spam ware like rat ware rather than normal mail transfer agents;

and if the receiver’s network or internet service provider identifies the characteristics of spam ware

as different from legitimate mail transfer agents, it will reject or flag the mail as spam in a short

message transmission protocol session (Bhowmick & Hazarika, 2018).

But grey listing has been found to delay mail from new IP addresses on the theory that it is a

spam source and even if it retries, it will be on blacklist before the mail can be accepted (Levine,

2005). Thus, while grey listing is a simple, effective way to weed out undesirable messages with

few mistakes in detection, it can fail by losing legitimate mails. This can be an issue but as grey

lists can be bypassed by automatically resending the message (Pour & Kholghi, 2012), this

minimises the problem. However, the delay is also an issue, because delaying delivery of a

particular email can be problematic and therefore may not be suitable for a company, business or

organisation.

Digital Signatures

Digital signatures, also known as fingerprints, identify messages via this detection technique.

In some cases where secure data is involved, messages without digital signatures are identified as

spam. Signatures of messages that have been identified as spam can be put in a database. This

database is then used to compare the signature of received emails with the list of signatures of

spam. If there is a match, the email is spam (Pelletier et al., 2004; A. B. M. S. Ali & Xiang, 2007).

 39

Messages coming through an unsecured channel with a digital signature indicates to the recipient

that the message was sent by the claimed sender. The signature can be provided by the sender or

the service provider.

Challenge/Response Filter (CR)

This type of prevention technique is often referred as ‘Handshake’ or ‘Turing Test’ (Nakulas et al.,

2009) and may automatically prompt the user or sender of an email to access a website to validate

their authenticity. There are two entities to CR systems, a secret value and a variable response

value. Passwords, CAPCHA- a computer system used to differentiate human from machine input

and biometric techniques for authentication are examples of CR systems (Muhammad Iqbal,

Muneeb Abid, Ahmad, & Khurshid, 2016). This may be likened to a permission filter which blocks

all emails not coming from recognised, authorised sources. Thus, emails sent to an address that

uses a permission filter will result in an auto-response inviting or directing the sender to go to a

web page for opt-in information and their email address will be whitelisted as authorised for future

emails (Bhowmick & Hazarika, 2018).

CR uses spam filtering with dynamically updated URL statistics, a measure which calculates

the probability of whether an email message is spam or legitimate based on statistical analysis. A

real world deployment of such challenge response system was implemented and evaluated by

(Isacenkova & Balzarotti, 2011).

Challenge-Response systems send a challenge to potential (as yet unknown) senders requiring

them to perform an action so that their original message can be delivered. Once they receive a

confirming email of validation, they will automatically be white listed. Although this method may

be criticised for wasting time, it appears to achieve relatively positive results in confronting

spammers and reducing unwanted emails. It ensures a measure of authenticity and security which

cannot be compromised.

Pattern Detection

Detection methods identify the patterns in emails based on graph theory, data analysis,

clustering and operations research. Identified commonalities in a large sample of emails is used to

identify a pattern matched to incoming emails to calculate a score for the message (Dada et al.,

2019). The higher the number of patterns identified in an email, the higher the score. Based on this

score, it is classified as spam or legitimate email. This technique is also called ‘rule-based’ or

‘heuristics-based’ email spam filtering and is one of the most advanced techniques used for email

spam detection over last few years (Muhammad Iqbal et al., 2016).

Reputation Filtering

Reputation-based filtering systems can be regarded as modern identity-based spam filtering

techniques because they make decisions based on comprehensive information about the source of

a message, blocking spam rigorously and reducing false positives. This technique is of high

importance to the effective performance of modern simple mail transmission protocol (SMTP)

 40

servers used for email transmission and enhances their ability to stop spammers by validating,

verifying and analysing messages and source content on networks to establish trust relationships.

According to Antonakakis, Perdisci, Dagon, Lee, and Feamster (2010), this approach can be

classified into two categories, of which the first is pre-acceptance filtering prior to acceptance of a

message (i.e. IP reputation). Another category is post-acceptance filtering after the message has

been accepted (i.e. content-based signatures). However, the effectiveness of these techniques varies

based on the type of SMTP sender, a client who is sending the email. The emphasis is on pre-

acceptance anti-spam technique filters of the sender, essential in checking spam because SMTP

servers and custom IP reputation lists constitute 90% of sources used by all spam senders; however,

effective IP reputation filtering can significantly reduce the load on email delivery systems and

reduce the exploit of legitimate SMTP servers by spammers for spam messages (Esquivel, Akella,

& Mori, 2010).

Collaborative Filtering

Collaborative filtering is a detection technique based on a distributive approach where

collaborative information is shared as knowledge base for the community (Sophos, 2013). Since

email spam is sent to massive numbers of users, it is likely that the same email has been received

by others. Some organizations prefer tagging/identifying large numbers of messages sent as spam.

In collaborative filtering, an email is tagged as spam for all similar users when a particular user

marks an email as spam (Beigy, 2012).They are either labelled as spam and sent to the inbox or to

a spam mail box. Such identification is applied to large numbers of users and does not take into

account the contents of the email, but is based on collaboratively identified information (Bhowmick

& Hazarika, 2018). This kind of centralised spam filtering is more economical than the personal

approach; however it may prove to be more costly in the sense of misclassification and

reclassification of incorrectly classified email spam (Nazirova, 2011).

Community Filters

With community filters, users scan emails automatically for spam; and if discovered to be spam,

its characteristics will be reported to a central server held at the database. Once the email spam has

been reported enough times by enough people, it will be automatically blocked or filtered out for

other users in the future (Deepak & Sandeep, 2005). It can be adapted by users who prefer selective

blocking of spam mail based on their interests; users can also identify nuisance mail, mark it as

spam and block it from getting to others in future. This is a positive technique that prevents

particular spam from replicating and prevents future unsolicited emails. The disadvantage is that

some users will be the first to receive the spam message which is initially stored on their database,

wasting their bandwidth. There are possibilities of false positives as one person’s idea of spam may

be different from another, which may lead to blocking legitimate emails from legitimate senders.

 41

Payment-At-Risk

Spammers send millions of bulky spam messages daily using considerable bandwidth at

significant cost to internet and network service providers. This cost has to be passed on to the user

in form of internet service bills. It could also result in reduced efficiency on the part of internet or

network provider. Furthermore, precious time is wasted in clicking or checking spam by the

receiver whereas it costs the sender or spammer little.

For example, if the cost to an Internet service provider is $2 per gigabyte of transferred data and

a typical spam message is 3K in size, 333,000 spam messages cost $2 in bandwidth. Considering

that spammers spam in bulk, they could send about 432,000 per day, that is, 13.4 million spam

emails per month. As reported by Spam Laws, this figure is currently 10 billion (conservative

figure) per day, and the cost to an internet service provider might be as high as $30,000 in

bandwidth per day. Furthermore, if it takes roughly 5 seconds to stop any activity to check or delete

spam, 10 billion spam per day cost the world 50 billion seconds or 1585 years in lost productivity

per day.1

Spammers are insensitive to the consequences of their activities and need to be dissuaded by

being made to pay by the internet service providers for the waste of bandwidth occupied by

unwanted spam blocking servers. This would be a feasible deterrent to reduce spam. To execute

this, all service providers must act in unison and agree to force spammers to pay for the

inconvenience of the spam and the server clean-up. Kuipers, Liu, Gautam, and Gouda (2005)

proposed a zmail ‘zero-sum’ email protocol which requires the sender of email to pay small

amounts called ‘e-penny’ to the receiver of the email. Mail senders who require to send emails

within their established average will not pay or profit from this email set up with their email service

providers, but spammers will have to pay significant amounts because they send out in bulk. Such

a technique would moderate their behaviour. The authors regard Zmail to be an accounting

relationship among complaint email service providers to reconcile payments to and from users

which can be implemented on existing short message transfer protocols.

Limit rate

A reactive technique which is also a preventive measure is limiting the number of emails sent

by a user, thus reducing the rate of emails sent. This technique can mainly be used at the ISP or

mail server level. This rate limitation is irrespective of a user having been identified as spammer

or not (Nakulas et al., 2009). Another limiting mechanism comes from Kholghi, Roudsari, and

Pour (2011) in the form of a counter-based filter which saves time as the mail server may decide

the legitimacy of an email before it is received. However, the limitation is that legitimate emails

may not pass through this filter.

1 http://www.prismemail.com/abouteconomics.php

 42

2.7.3.2 Content-Based Filtering - Machine Learning Methods
The most common email spam detection technique is content-based filtering. These filters can

be built manually or automatically and are traditional types of filters that have been in existence

for a long time and have been effective and relatively reliable. They analyse contents of an email

message body, the message subject and the email headers searching for clues that indicate spam.

Machine learning, one of the sub-fields of computer science, aims at developing self-learning

systems that automatically improve their performance based on new knowledge gained. It explores

building models from a given set of emails labelled as legitimate (non-spam or ham) treated as

negative and non-legitimate (spam or unwanted) that are used for filtering incoming emails. Once

the models are developed, they need to be trained before they can perform the filtering function

(Pour & Kholghi, 2012). Email spam filters based on machine learning methods retrain themselves

based on the experience and have been reviewed in the past with notable contributions from a range

of researchers (J. K. Androutsopoulos, Chandrinos, K.V. Paliouras,G & Spyropoulos, C.D. ,

2000b; Blanzieri & Bryl, 2008; Cormack & Cruz, 2009; Cormack & Lynam, 2007; De, Irani, &

Pu, 2013; Graham, 2002; Guzella & Caminhas, 2009; Mojdeh & Cormack, 2010).

A typical email consists of components such as the header, the body and attachments. The

models based on machine learning algorithms that classify emails may use different features of the

mail to make decision about them. Email spam can be identified based upon parameters such as

header, body text, links (URLs) in email, non-content features, text fields, type of terms in the text

fields or subject terms. The taxonomy based on text fields is body, title, meta tag, anchor and URL

spam. Gyöngyi, Zoltán, Garcia, and Hector (2005) present the type of text terms taxonomy as

repeating, dumping, weaving, or phrase stitching. The subject of terms included in the email spam

is unlimited, but the most common terms found are impacted by the latest occurring topics and

events in the world and change from time to time.

A survey of content-based email spam filtering techniques for the period of 2002-2019

identified that machine learning methods used for content-based filtering are Neural Network

Algorithm (A. B. M. S. Ali & Xiang, 2007; Sirisanyalak & Somit, 2007), Boosting, Bayesian

Statistics (A. B. M. S. Ali & Xiang, 2007; Sirisanyalak & Somit, 2007), Heuristics (Ming, Yunchun

& Eei, 2007; (A. B. M. S. Ali & Xiang, 2007), Signature-based analysis, k-Nearest Neighbour,

Decision Trees, Support Vector machines (Guoyang et al., 2006; Ming, Yunchun, & Wei, 2007),

Visualization, Instance-based Learning (A. B. M. S. Ali & Xiang, 2007), Markov Random Field,

Random Forest (Goel, 2017; Yiu, 2019), Ontology-based Machine Learning Approach (Brewer,

Thirumalai, Gomadam, & Kang Li, 2006; Shajideen & Bindu, 2018), Deep learning (Barushka &

Hajek, 2018; Diale, Celik, & Van Der Walt, 2019; Jacovi, Sar Shalom, & Goldberg, 2018) and

Ensembles (Anandita, Yadav, Paliwal, Kumar, & Tripathi, 2017; K. S. Bajaj, 2016; George &

Vinod, 2015; Singh & Batra, 2018; S. K. Trivedi & Dey, 2013; Shrawan Kumar Trivedi & Dey,

2014; W. Wang, 2010; Z. Yang, Nie, Xu, & Guo, 2006).

 43

There has been a growing need for an efficient anti-spam filter to block all spam without

blocking legitimate emails. The Bayesian filter has satisfied this need to some extent. The rise of

Bayesian filtering is owed to Paul Graham, a Harvard computer science PhD. He presented

Bayesian filtering as a spam filtering technique in his paper ‘A Plan for Spam’ in 2002 (Graham,

2002) which was followed by a Bayesian Filtering implementation thereafter. The Bayesian anti-

spam filter has been content-based and self-learning (adaptive) in nature (Deshpande, Erbacher, &

Harris, 2007).

This implies they ‘train’ from known ‘good’ and ‘bad’ emails and during training extract

‘tokens’ (separate words) and store them in a database. They return impressive detection rates with

fewer false positives and false negatives. It does not require pre-set rules and analysis of message

content. Under the principle of calculating a spam message, if the probability value is higher than

the set of threshold, the message is classified and treated as spam and with its self-adapting

technique, its degree of accuracy increases with learning (J. Kim, Chung, & Choi, 2007).

Chhabra, Yerazunis, and Siefkes (2004) presented a Markov Random Field model-based

approach to filtering email spam. This approach examines the importance of the neighbourhood

relationship (MRF cliques) among words in an email message for the purpose of spam

classification. Guoqing, Wei, Haixia, and Jianshe Dong (2006) proposed a multi-agent based

collaborative peer-to-peer system to combine a content-based filter with a P2P collaborative filter,

so the system can respond to new spam rapidly as well as take advantage of prior spam knowledge.

An ontology assisted parallel scheme for scalable SVM training is presented by G. Caruana et

al. (2011), utilising a distributed computing framework that uses Hadoop implementation and spam

ontologies for improving accuracy. However, the use of such distributed computing techniques on

the training set causes variable but noticeable amounts of degradation in accuracy.

J. Kim et al. (2007) deployed a Naive Bayes model to focus on URLs in the email messages to

develop a model for the filter instead of considering words. The filter is later updated with the

incoming messages that were classified. The filter is fed back only periodically for correctly

classified messages but more regularly for incorrectly classified ones. The advantage this filter

offers is that it is automated unlike other URL-based filtering approaches though the performance

is similar.

Wu and Tsai (2008) presented a novel behaviour-based method for email spam filtering by

designing and implementing a back propagation neural network. This research analysed and

extracted the features from the behaviour of spammers from the headers and system logs of the

emails. A classification model was developed and evaluated. From a temporal perspective,

behavioural features are robust when compared to text-based features, and studies have shown that

this method is more robust than textual feature-based classification.

 44

A comparison between spam filtering and ontology-based filtering was drawn in Shajideen and

Bindu, (2018), who argued that conventional filtering offers no control to users over emails, while

the ontology-based filters develop users profile and propose email spam detection based on user

preferences for classification, using a support vector machine.

Awad et al. (2011) reviewed the applicability of the most popular six machine learning methods

on the problem of email spam classification. The algorithm descriptions of the methods (Bayesian

classification, k-NN, ANNs, SVMs, Artificial immune system and Rough sets) and results of the

experimental conducted on the Spam Assassin dataset are presented.

Huang and Xu (2013) proposed a hybrid spam filtering model based on user feedback

identifying social network relationships among users. Identity-based and content-based

characteristics of emails were utilised to develop the Bayesian model for identification of email

spam, which is updated dynamically from the knowledge gained from user feedback. Results show

that the model outperforms the classification performance of traditional filtering methods when the

email characteristics change.

B. Zhou, Yao, and Luo (2014) present a cost sensitive three-way email spam filtering system to

reduce the chances of misclassification by adding a ‘suspect’ folder where users can examine the

suspicious emails. The model addresses two issues, the threshold values for the three classes and

the interpretation of the cost sensitive characteristics of filtering problem. It computes the threshold

based on a decision-theoretic rough set model and cost as a loss function selecting the one with

minimum loss.

A. Wijaya and Bisri, (2016) investigated a hybrid combination of Logistic Regression (LR)

false negative threshold and decision tree (DT) to detect spam emails. DT has a tendency to be

oversensitive to noisy data; hence the method utilises LR for reducing noise in the data by filtering

the correct prediction with false negative threshold before the data is fed to DT to build the

classification model. The proposed method is evaluated using a Spambase dataset of size 4601 with

2788 non-spam and 1813 spam messages at a 61-39 ratio.

Sheu et al. (2017) proposed an efficient systematic email spam filtering mechanism based on a

decision tree machine learning method to track concept shifts. The method analyses the header of

the emails to identify features to detect a concept shift in new emails to classify them as spam or

ham. The filtering method is incremental in nature, thereby strengthening the ability of the method

to adapt to dynamic environments. C4.5 decision tree is used as data mining algorithm to support

numerical as well as categorial attributes, selected for training and testing from the TREC data set,

with a size of 59,116 for this method, Dada and Joseph (2018a) applied a Logistic Model Tree

machine learning algorithm to develop a classification model to filter email spam. The study aimed

at achieving higher accuracy using this model with a small feature set size and a sample of 5180

emails from the publicly available Enron dataset for training and testing. The classification results

showed 99.3% accuracy and high false and true positive rates.

 45

Yan Zhang, Liu, and Yao (2019) proposed a Game theoretic rough sets model for classifying

emails into three categories - spam, ham and suspicious with a trade-off between accuracy and

coverage. The study aims to minimise the classification error, examines the game formulation and

repetition learning mechanisms of the model and compares it to the Pawlak rough sets model for

email spam filtering. The authors compare and evaluate the two models using training and testing

data sets obtained from the UCI Spambase dataset.

Email spam has become a real threat to the extent that many content-based filters are not able

to efficiently and effectively identify it even with recent techniques; and spammers are able to

obscure their intentions with confused texts, phrases, and words (Sheu et al., 2017). New spammer

methods have even worse impact. They try to circumvent filters through web roots and spambots

which are capable of performing human activities such as registering user accounts, browsing

pages and posting web content. These filters are unable to detect them as they are trained to identify

content-based spam features and not spambots. This raises a new wave of concern regarding the

continuous threat posed by spammers in this “cat and mouse” game with them.

2.8 Evaluative Analysis of Proposed Solutions
This chapter identifies different types of anti–spam techniques either using filters and other

characteristics to deter spammers. Although these anti-spam techniques may be suitable for some

users, they may be unsuitable for others, they may achieve some level of protection against

unwanted email messages. They have been implemented at commercial as well as non-commercial

level.

Each of these anti-spam techniques has unique features that distinguish it from others. Although

none of these may be completely able to stop all real-time potential spam since spammers

continuously develop new tricks to deceive the filters, some well-designed filters achieve 90-95%

success under certain conditions. However, a perfect anti-spam filter would be a combination of,

firstly most unique features described and the features lacking. Most anti-spam solutions include

multiple techniques such as white and blacklists, content analysis, authentication, as well as

heuristic rule-based and network-based techniques. However, determining that an email message

is spam is difficult through a purely automated process. Moreover, user involvement-based filters

such as challenge response systems, put an extra burden on the senders of legitimate emails.

Additionally, with such systems, there is a challenge where automated response systems are

involved, with difficulty in answering the challenge response filter.

The main problem with many of the techniques suggested is the performance of the filters (Dada

& Joseph, 2018a). There is need to increase the accuracy of classification especially with the

evolving nature of email spam and the new techniques spammers apply. There is a need to find the

optimum balance between performance, robustness and cost.

 46

The problem with list-based techniques is that people can have more than one email address or

use more than one location to have a different IP address. So, a new IP address or email address

does not give assurance that the person is sending a message for the first time. It is usual for

individuals to send an email from a new location or email address; hence filtering emails based on

unknown credentials would risk losing some important emails. Another issue with lists is that it is

susceptible to penetration and demands frequent updating or fails (Sheu et al., 2017).

It has been demonstrated that content-based filtering techniques are able to identify the features

in the email spam and classify them as spam, using machine learning techniques. However, the

new waves of spambots deceive these filters. Spammers devise new and more complicated

techniques with confused words and phrases that evade the filters (Sheu et al., 2017). Moreover,

the filters are trained on certain common messages but are not comprehensive; therefore, self-

learning takes time for maximum filtering performance. Social interactions attract email traffic

coming in form of telemarketing and opt-ins, and most existing spam filters are exposed to high

false positives and false negatives. Spammers hide email contents or forge fields in the email header

in order to deceive content-based filters. These undesirable methods of spammers to obfuscate and

circumvent contents of filters with words or confusing terms like “via@gra”, “L/0/a/n/s”,

“mort.gage” etc, sometimes tend to make content filters less efficient and evade detection. A

sizable number of existing email spam filters are unable to keep spam away from users’ inboxes.

Chapter 3 discusses the issue of email spam filtering for an individual user at the client side. It

proposes a Bayesian classifier based on Naïve Bayes machine learning method to prove the

hypothesis that user preferences play an important role to reduce email spam for users. Further

presented are the experiments that this research aims to utilize in order to circumvent email spam

at the client end.

 47

Chapter 3

Client-side User Specific Email Spam
filtering - Can we CAN the Email

Spam for specific users

"The difference between a stranger sending you a message that you might be interested in at a
very low volume level, no repetition, just sending it to very few people, and that being done as
spam - those things get close enough that you want to be careful never to filter out something

that's legitimate." ~ Bill Gates

3.1 Overview
Email spam problems can be tackled at three stages: Prevention, Detection and Reaction.

Prevention is stopping the email spam before it is delivered to the recipient, to control the

distribution of email spam altogether (Gupta, Kumar, & Mohandas, 2011). Some of the preventive

methods are legislative controls, protocols for senders and blocking of email spam senders

(Nazirova, 2011). Detection means identification of an email received as spam, at the destination

and reaction is the response after an email has been detected as spam. It would be an ideal solution

to have the techniques for prevention implemented to minimize email spam; however, prevention

alone is not feasible as it may lead to loss of important emails due to the following reasons: the

nature of this problem is diverse, the content of email spam is dynamic, email spam is subjective

to recipients and there are chances of misclassification. Hence, most of the research for this

problem has focused on detection as a solution for email spam reduction. In most cases, especially

 48

where supervised machine learning is used, detection is followed by reaction. Initial parts of this

chapter explain email classification and filtering process where firstly, the life cycle of email is

explained followed by email transmission and filtering in Sections 3.2. Section 3.3 explains

learning-based filter models for email spam classification. A discussion of filtering at the server-

side versus the client side is given in Section 3.4, followed by a discussion on spammers’ reactivity

to spam detection mechanisms in Section 3.5. The focus of this chapter is user-based email spam

filtering at the client side that addresses user preferences.

 It is considered a fact that email spam classification is specific to users and investigations have

been carried out to test this hypothesis in Section 3.6. Here, an experiment is presented based on

context specific datasets to enhance filtering performance at the client side for a user.

Some client-based filters are set at threshold cut off values for ham and spam in order to reduce

the amount of email spam in users’ inboxes; however, with these threshold scores, only the clear

cases of spam are directed to spam folder. With this approach, a substantial amount of emails lies

between the two threshold values and all emails with spam scores within those values fall into the

‘grey’ which requires users’ involvement to manually segregate them as spam and ham. This

contributes to the enhanced learning of the filter; however, it is not cost effective. In this chapter

experiments are carried out with Bayesian classifier that revealed that the model with 0.5 thresholds

for spam and ham each lead to a sizeable number of false positives. Feature size plays a significant

role in classifier performance. The experiments are aimed at determining the optimum number of

features and threshold values for a better spam detection rate by the classifier. The details of these

experiments and results are presented in Section 3.8 and the analysis and discussion is provided in

Section 3.9, followed by the conclusion.

3.2 Email classification and Spam Filter

In order to understand the problem of email spam, it is useful to document the lifecycle of an

email since along this life cycle, there are many steps where an email may become spam. The life

cycle of an email spam (Ridzuan, Potdar, & Talevski, 2010) runs parallel to the life cycle of an

email as shown in Figure 3.1.

Figure 3.1: Email Life Cycle

Creation Transmission Delivery Action Destination Use

 49

It begins as soon as the email is created. The intention behind the ‘creation’ of an email

represents the line of demarcation for whether the email should be classified as spam or ham. This

newly created email is then addressed to recipient(s), sent, transmitted (‘transmission’ stage)

through the network and delivered (‘delivery’ stage) to the listed recipient(s).

Once delivered the ‘action’ is that the email is analysed and classified as of interest or not. Here,

the terms ‘of interest’ and ‘not of interest’ are being used for the following reasons: Initial creation

of each email is legitimate and is targeting a recipient. If the content of the email is not what the

recipient would like to receive, the recipient is not interested in receiving the email and, hence, the

email is labelled as non-legitimate or spam. If interested, the email is classified as ham and the

destination is the inbox where it goes into ‘use’ stage. If not of interest, the email can be classified

as spam at any of two levels - the server or the client side. In either of the case, the ‘destination’ is

the junk mail folder. ‘Use’ stage for email spam is its usage as training sample for spam email.

However, some email spam bypasses the filters and stays in the users’ inbox. This may also

attribute to another interesting classification called ‘grey’ - also referred to as ‘unsure’. This

classification is associated with those emails which have characteristics of both spam and ham but

cannot be clearly be classified as either, hence the terms ‘unsure’ or ‘grey’.

3.2.1 Email Transmission and Spam Identification
This section discusses the email transmission process and the location of spam identification.

The World Wide Web or internet is used to transmit email(s) from one user to another or to a group

of users. People located in geographically distant places are communicating over emails

transmitted via the internet. The mechanism of operation of a typical email communication and

transmission process between one sender and one receiver which is graphically represented and

described with Figure 3.2.

Figure 3.2: Email Transmission Process

 50

User A, in this case Alice, sends an email to user B, Bob. The process starts when Alice’s mail user

agent (MUA) composes an email to Bob. The email is transferred by the email client of the sender

to the SMTP server of the sender with her mail transfer agent (MTA) using the SMTP protocol

(Nakulas et al., 2009). The SMTP server tries to establish a connection with the recipient SMTP

server through their MTA by performing an MX record lookup though the DNS namespace service.

Bob’s DNS server responds with the MX record and a connection is established between the two

mail servers. The email is transmitted to Bob’s SMTP which then delivers the email to Bob’s

mailbox via the MUA of the email client. The process described above can be used for multiple

emails sent and received between multiple users. For example, a series of email exchanges between

2 or more users on the same subject line is termed a ‘thread’ where user A is sending emails to

multiple users B, C, D and so on. Another scenario is when multiple users are sending an email to

user B.

Spam identification can be carried out at several stages in this email transmission process. At

the receiver’s (in the example, it is Bob) mail server (SMTP), or at the sender’s mail server. It can

also take place at the email client of the receiver. Figure 3.3 shows the life cycle of email spam

where the intent of creation of an email message is to send spam, here email spam detection can

be carried out at steps 4, 5 and 6.

Figure 3.3: Email spam Life Cycle

Filtering at each of these levels is discussed further.

3.2.2 Email Spam Filter
Content filtering for email spam detection appears to be the most effective technique for

defending users against spammers. Content filtering of emails generally falls into two categories -

header and body.

 51

An email is divided mainly into three parts: header, body and attachment. The algorithms that

classify emails may use different features of the mail components to make decisions about them.

The header contains structured sets of fields carrying names with specific meaning, which are

displayed in a particular email varying among mail servers. The header contains information such

as ‘From’ (sender), ‘To’ (recipient), ‘Subject’, ‘Date received’, ‘Date sent’, ‘routing information’,

etc. The body contains the actual content of the email - either in plain text or html format. The body

contains text, the URL, images or all of them. The majority of the email spam body contains text

or/and a URL due to its size and network bandwidth. The third part is the attachment, which is

any file type attached to the email. For example, filename, filetype. File type can be .exe, .pdf, .doc

etc. The literature suggests filtering based on the header only (Khamis, Mohd Foozy, Aziz, &

Rahim, 2020; Khater, 2012), the body and subject only (Saeedian & Beigy, 2009; A. K. Sharma &

Yadav, 2015; Xiao et al., 2010), the body only (Ali Elsiddig et al., 2017), the body, subject and

attachment (Firte, Lemnaru, & Potolea, 2010), and finally, the body, header and attachment (Fdez-

Riverola, Iglesias, DÃaz, MÃ©ndez, & Corchado, 2007). The most common method uses the

subject and the body for email spam detection. In this research, the focus is on the header, body

and attachment. Although attachments are part of the email, the content of the attachments are not

included in the text classification of the email. So, this research is limited to the type of the

attachment to be included in the classification.

Figure 3.4 shows the structure of a typical email spam filter. The contents from the email

message require appropriate pre-processing steps such as feature extraction and selection before

they can be utilized by a classifier in a filter. The entire process of a spam filter for classification

is set out below:

(1) Tokenization: All the words in the email (body as well as header) are extracted as Tokens;

(2) Lemmatization: Tokens are reduced to their root forms (for example, ‘‘retaining” to ‘‘retain”);

(3) Removal of Stop-word; words that often appear in sentences are removed from the list of tokens

(for example, ‘‘as”, ‘‘the”);

(4) Representation: selected Tokens from the email are converted to a format that is acceptable to

the classifier, as feature vector in Figure 3.4.

 52

Figure 3.4 : Structure of Typical Spam Filter (Guzella & Caminhas, 2009)

It is important to note that the process shows the analysis of the text only and represents the

words as tokens. Several other components present in an email message such as links and html are

identified as tokens only. In the URL, the link it points to is not included in the scope of content

filtering. Pictures in the body of an email are not included in this classification but is part of image

spam classification. Furthermore, it is noted that some email spam filtering approaches do not

follow all of these four steps. For example, some classifiers do not lemmatize or remove stop

words, while others work on raw message tokens.

3.3 Learning-Based Filter Model
In several cases email spam filtering as one of the detection mechanisms is followed by a

reaction to prevent receiving the same email spam repeatedly or to improvise the detection

capability and performance. Such filters are also called Learning Filters. A simple representation

of the spam filtering architecture is shown in Figure 3.5 where an initial collection of spam and

ham emails go through the transformation process followed by feature extraction and selection to

train the model for classification (Yu & Xu, 2008). The last step applies machine learning

algorithms for classification of an email as spam or ham and the decision is fed back into the model

for learning purpose.

 53

Figure 3.5: Process of Learning email filter

In general, an email filter classifies an email as either spam or ham based on the function f. This

function contains some pre-defined parameters P that are used to classify an email e. The function

is represented as

f (e, P) = {es, email is classified as spam; eh, email is classified as ham}

Machine learning algorithms for classification are a classic example of learning-based filters,

and are most commonly used in filters for classifying emails (Nazirova, 2011). Machine learning,

a subset of artificial intelligence enables systems to learn from data, identify patterns and make

predictions without any explicit instructions and requires only minimal human intervention. It is

an adaptive approach that responds to the actions taken by users of a system to improve accuracy

of automated actions over time.

The strength of these algorithms is their learning capability that divides the email classification

into two stages: learning stage and detection stage as shown in the Figure 3.6, also known as

training and testing stage respectively (Patidar et al., 2013). The major focus of machine learning

since its origin over two decades ago has been to comprehend concepts and then generalize them

into models based on that conceptual learning (Thornton, 1992). These generalized set of models

contain predetermined output classes that are associated with terms and concepts. A new input is

classified into an output class based on features identified from it. In many cases, new input may

not already have been encountered in the data used for the learning process due to the novelty of

an item and its absence from existing data; however, the generalization process performs the

Emails Pre-
processing

Feature
vector

New
Email

Classifier

Feature
Extraction

Self-Learning

Model

Training set

Decisio
n

 54

classification based on comparable features between the new input and an output. This

classification technique also deals with any discrepancies that may have arisen in the new input

data

Figure 3.6: Learning email filter model (Mir & Banday, 2010)

It is worthwhile to address the two stages shown in Figure 3.6. In the learning stage, a training

email corpus 𝑀 that contains labelled spam and ham messages is fed into the filter. Machine

learning improves the accuracy of classification through algorithms designed to solve the problem

being addressed. For these algorithms to function as programmed, they require clean and accurate

data of an optimal size, representative of the entire population it is representing. Hence, the pre-

processing steps of feature extraction and feature reduction are carried out on this training dataset.

A feature set 𝑋 and a set of parameters 𝑃	are identified and used by the training function to calculate

the probability of each feature in the feature set 𝑋 as being spam or ham. This prior probability is

stored in the feature set library for later use. Hence, the training model provides the feature set with

collection of features and their associated probabilities of occurring in spam and ham messages.

The feature set from the library is then used for the classification task in the detection stage when

a new email message arrives at the filter.

The characteristic of all forms of artificial intelligence is the capability to learn how to classify

objects into one of the Z classes, by allocating input vectors to a class, based on learning from

training sets belonging to each of the Z classes.

The overall goal in a classification task is to learn mapping from an input set a to an output set

b, where b ∈ {s,t,….z}, with z being the number of classes. When z = 2, the classification is binary;

however, where b ∈ {s,t}; If z > 2, it is multiclass classification which is also the case when the

attributes of class labels are overlapping. In general, the term classification refers to multiclass

classification with a single output class. In contrast, if function f represents the mapping between

 55

objects a and b shown as b=f(a), where f gives an output b for a value of a initially learned from

the input dataset and later, in another instance for a new value of a that does not belong to the input

dataset, f is able to define a label b. This process if called function approximation. The goal here

is to generalize the function f developed from the input training set ai that enables this function to

make correct predictions on unknown input belonging to an output class.

In the email domain, the problem is assumed to be binary with two output labels as either spam

or legitimate, although other class labels are also possible. The classification function can

determine which class a new email belongs to depending on features or characteristics, pointing to

one of the classes that have been identified through the training dataset.

In the detection stage, when a new (test) email m arrives, it goes through the stages of pre-

processing via email parsing (tokenization, lemmatization etc.) and a feature set is deduced. Each

feature identified as a result is then allocated the probability of occurring in spam and ham

messages. The probability distribution P(b|a) for each class label b given the input vector a for the

training set T. If spam email is represented as 1 and legitimate email as 0 then b∈(1,0). In this case,

the conditional probability of email spam can be represented as P(b=1|a,T) and legitimate email as

P(b=0|a,T). Based on this, a new email can be classified using the approximation function

f ̂(a)=P(b=i|a,T) where i=1,0 which can be conditioned for each machine learning model to be used

for prediction. Once done for all the features identified, the total probabilities of each group i.e.

spam, and ham is calculated. These total probabilities are then used to classify the email as es or eh

on the basis of pre-defined threshold values defined for spam and ham. If the spam threshold value

is more than the total of the spam group value, the email is labelled as ham eh otherwise it is labelled

as spam es. Accordingly, the email is then delivered to a mail folder (inbox) or spam folder. Next

is the reaction stage, where the feature probability library of the filter is updated (Update Learning

step in Figure 3.6) on the basis of this classification. This learning improves the capability of the

email spam filter.

3.4 Mail Server-Based verses Client-Based Email Spam
Filtering

Bayesian filters have been the most effective by far and most of the email spam filtering

solutions incorporate Bayesian algorithms. Initially these were utilized as stand-alone solutions;

however, with the increase in complexity of the email spam problem, they are now commonly used

as part of several techniques and applied in many layers. Given the fact that email spam has taken

many shapes and forms, it is difficult to detect and filter email spam with only one layer. To achieve

an effective level of reduction in email spam, many layers of filtering are suggested and used.

There is, thus. a need for a high rate of filtering of email spam, and multi-layer solutions have been

suggested in the literature. However, most of these are at the server level (M. Islam & Zhou, 2007).

Multi-layer filtering can be understood as being applied at each side - email server and email client.

 56

Nevertheless, multi-layer solutions that have been suggested at the server side have invariably

given some promising results (Fahad, 2015; M. R. Islam et al., 2008; Khater, 2012); (Nagamalai,

Dhinakaran, & Lee, 2007)

Server-based and client-based filtering are methods to detect email spam at the destination, a

post acceptance system where emails are first received before any filtering is performed. Most

popular spam filtering is performed at mail server level. In fact, the majority of the literature refers

to email spam filtering as filtering at the server side only. Protecting emails at a server level is

generally more beneficial for the organizations, though individual filters for the user may have

their own advantages. For example, if an individual user is attacked, a filter at client level can

prevent such messages being received - hence help solve the problem. However, not many filters

give an option of blocking the spam emails at the email client and few studies suggest filtering at

the client level (users email program) even for large providers such as Gmail, outlook or yahoo

(Dada & Joseph, 2018a). There exist commercial anti-spam filters that users can install on their

email client; however, they are limited and require substantial user involvement.

Server-based filtering is applied at the mail server level and is popular as it is a better choice

for organizations in most cases for the following advantages. Firstly, it is easier to implement.

Organization employ experts who control the implementation of the content filtering solution.

Secondly, it is cost effective in two ways; it is a one-off cost for detecting email spam as early as

possible rather than delivering it to clients and individual users and also, the resources required to

implement the filter for the organizational users as a whole requires the same resources such as

software, hardware and human resources whereas the cost involved in directly protecting

individual users are high due to the purchasing cost and the maintenance of the software for the

users. Thirdly, having a server-based solution allows the administrators higher levels of control

since individual users may not use it appropriately, hence causing errors. The tuning of filter control

is managed at one point which gives organizations more control. Fourthly, server-based solutions

provide a common point of control for ensuring organizational policies for email content use are

followed (Pelletier et al., 2004). Lastly, server-side solutions protect the users of an entire

organization.

If server-side filtering were the best solution, then users would not face the problem of email

spam; it would have minimized the email spam problem. However, spam has different meaning to

different users. The same email may be spam for one user and useful for another. It is important

that users have control over what emails they want to receive. Inadvertently, server-side solutions

ignore the fact that users would like to choose which email messages they would like to receive

and which not. Some users may find the problem of email spam bigger than others. These users

may have individual preferences in relation to which emails they would want to receive and which

not. The organisational filters at server level are unable to take care of such user preferences.

Hence, such emails may end up in user inboxes as spam.

 57

 Receiving too many emails as spam may have substantial impact on productivity and levels of

frustration. Dealing with a large number of email spam, users may mistakenly click on the wrong

link in an email causing them and the organization financial loss as well as damage to reputation.

It is acceptable for organizations to monitor the content of emails received by users; however,

removing emails based on their content is not acceptable and should not be exercised. The main

objective of filtering is to combat unwanted emails not censorship. Hence, client-based filtering

that gives users rights to control which messages they want to receive is important and can offer

higher accuracy in filtering assuming appropriate user data is available to guide the filters (Kolcz,

Bond, & Sargent, 2006).

Client-side filtering is applied directly at the client’s email program as an add-on and is usually

more accurate. It provides users with options in terms of deciding what kind of email they want to

receive in their inbox and may reduce the total number of email messages they receive as spam.

Client-based filtering provides protection for user emails on an individual level. In client-based

filtering, close attention is paid to users’ personal information. Email spam detection at the mail

server uses a mix of list-based and content filtering techniques; however, the emails classified

incorrectly escape those filters and land in users’ inboxes. This can be attributed to the fact that

address and keyword lists should account for each individual user’s preferences which is not

possible at the server level.

If email spam filtering is applied at client side, it is sent to a labelled folder whereas if the filter

is applied at the mail server level, messages for different users are either labelled as spam or are

deleted providing limited ways in which email spam can be managed (Guzella & Caminhas, 2009).

It is important to consider the concepts of false positives and false negatives again before

discussing the problem further. False positive is the legitimate message that is mistakenly identified

and marked as spam. False negative is a non-legitimate message not identified as spam but marked

as a ‘legitimate non-spam message’.

Major problems, for instance, arise when anti-spam techniques misjudge or misclassify legitimate

emails as spam (false positive) or fail to deliver or block spam on the SMTP server (false negative),

thus causing significant cost in loss of time, effort and monetary terms. False positive cause loss

of important information for users while false negatives negate the purpose of the spam filter. False

positives and false negatives still pose considerable problems, especially the latter. Misclassifying

a legitimate mail as spam has far greater negative impact than letting a spam message pass the filter

(L. Yang et al., 2006).

During the process of email classification, there is probability of making such errors, more so

at the server level due to its generic nature (Kolcz et al., 2006). Hence, there is need to find a

reasonable trade-off between the two types of errors, -having spam emails in the inbox versus

losing valuable information. Since most of the business transactions in an organization are

conducted through emails, losing an important email can have significant consequences on the core

 58

business of an organization and may lead to revenue losses. For example, potential students enquire

about courses at a university. If such emails are lost as spam, the university may suffer loss of

revenue and reputation. On the other hand, classifying several spam messages as legitimate mail

defies the purpose of having a filter. Hence, it is important to have a reasonable trade-off between

the two. For instance, if the aim is to reduce the probability of false positives to zero, then is it

enough not to filter messages at all. Also, if it is desired that the probability of false negatives be

equal to zero, is it sufficient to classify all messages with a spam factor (weak spam)? Obviously,

the two extremes are unacceptable.

Spam can be classified as an organizational and an individual problem. It must be acknowledged

that server-based filtering is beneficial to address organizational email spam problems and filter

the generic spam. Client-based filtering at another level is more suitable to individual user email

spam problems. Implementing only client-side filtering solutions may not eliminate all email spam

that targets organization. Solution that is closer to the problem is better, hence email spam detection

at server side is advisable.

Hence, to eliminate this problem, another layer of filtering at the client level - as a client-based

solution – would be advantageous. To further address this issue, a closer look at a filter model is

important. Server-based filters use a generic model defined for all whereas client-based filters are

personalized for each individual user. Mere reliance on business rules does not suffice.

3.5 Spam filtering and Reactivity of Spammers
The field of software development is continuously evolving, and spam filtering is following the

same pattern. Since customer needs are changing due to the evolving nature of businesses, the

need for spam filtering also constantly changes due to spammers capacity to react quickly to

changes in spam filtering.

Though a significant number of techniques have been suggested for spam filtering (see Chapter

2), content filtering has become more important. The current state-of-the-art in spam filtering

consists of a combination of several techniques. The most popular machine learning methods used

for content filtering are Bayes classification, Support Vector Machine, k-Nearest Neighbor, Neural

Network, Decision trees, Hidden Markov and others. Though researchers have done work on other

techniques and have noticeable contributed to the area of email spam filtering, literature suggests

that Bayes classification is superior given the speed and accuracy of email spam filtering it

provides. It serves as the basis for many commercial and non–commercial solutions for email spam

filtering. However, Bayes classifiers are often used in combination with other techniques (i. e., a

Bayes classifier is combined with listing techniques).

Over the past decade, spam filtering methods have become increasingly sophisticated; however,

so have spamming techniques that reduce the efficiency of filters. Unfortunately, they are highly

 59

successful as many false negatives escape filters and reach the inbox of users. Researchers are

generally quick to respond to new challenges, aided by technology. As discussed, a remarkable

capability of email spam filtering is the learning ability of machine learning algorithms such as

Bayes classifier providing a counter measure. However, once a counter measure to a spamming

activity has been created, spammers are quick to react with a new way of deceiving filters. Such

techniques include tokenization, obfuscation, concept drift, poisoning attacks and many more.

Hence, one of the major problems in email spam filtering is the capacity of spammers to react

rather than the spamming activity or attack itself.

3.6 Context Specific Training Datasets
Most content filters are trained using datasets that contain a collection of generic spam and

diverse ham sample messages which results in a relatively broad feature set for calculating the

probabilities of the tokens used for building the classification model. Since a significant amount of

email traffic comes from business emails, focus must be on the needs of business email users in an

organization. An organization may belong to a particular industry type of which a broad

categorization of industry types is finance, banking, healthcare, education, automobiles and so on.

Each organization belonging to a particular industry type would have a specific collection of emails

that are termed as ham. That means that all ham emails contain the same semantic features that

are typically used in that context (Gargiulo et al., 2009). In any context, analysis of the word

localization of an entire email at a semantic level effectively measures the weight of a word in a

single email. Therefore, a training set that contains ham emails coming from a generic dataset

would not apply to a specific context and the classification model performance to correctly classify

the new emails would be compromised (K. Junejo & Karim, 2013). Hence, a training dataset

containing a collection of emails based on information exchange within that industry type yields

better results.

To test these proposed enhancements, in further sections a proof of concept is realized to

demonstrate that context specific training datasets improve the performance of email classification.

This requires experiments to be conducted to train client-side email filters with context and user

specific datasets. The domain is ‘educational’ context. The filter is trained with context specific

8000+ ham and 4000+ spam emails. The outcome of this training was evaluated on new incoming

emails, with results showing promise with improvement of the false positive rate by 86% i.e. the

emails that were earlier landing in the user’s inbox as spam emails were now detected by the

retrained client-side filter with context and user specific dataset. The following section provides

details of the proof of concept experiment.

 60

3.7 Experiment 1 - Client-side filtering with Context
Specific Training datasets: A Bayesian Classifier
The main motivation for this experiment is the fact that individual user’s interests are different.

Some well-designed filters (for example, Bayesian Filters) work well, having considerable success

under certain conditions; however, this is not static. Spammers are able to vary the success rate

with ease, evolving new techniques to deceive filters.

Two factors in particular impact the success rate of spam filters. One of these arises from the

fact that a user may belong to a particular industry type - referred to as ‘Context”. The other element

is that users’ have individual preferences. For a user in a particular type of organization, the typical

collection of emails belonging to that domain will be ‘ham’ in most cases; however, due to users’

individual preferences there are variations. Here, both factors are addressed, and the following

hypothesis is put forward:

Context and user specific training datasets improve the classification performance of email spam

filters at the client side and reduce false positives.

To prove this hypothesis, an experiment was conducted to verify that the capability of the

filtering model can be enhanced with context and user preference specific training datasets. This

leads to an increase in the performance of the spam filter on the email client side. For the

experiment, a Bayesian classifier was used as an email filtering tool on the email client side of a

user, trained with a context-specific dataset and performance monitored over 12 months.

The aim was to ascertain whether such training can reduce the false negatives (email spam) in

the inbox of an individual user. Hence, the classification filter was trained with context and user

specific datasets and performed classification tasks on incoming new emails for evaluation. Results

were then analysed to determine if such training improves the classifier performance and reduces

false negatives.

The argument underlying the experiment was built around the fact that there is lack of

correlation between the receiving user’s area of interest and content of spam email used for training

the filters. There are many email spam corpora repositories for training filters with collections of

spam and ham emails which. These become the training data sets that can be fed into the filter to

create a feature set library while filters at the mail server are trained with generic spam and ham

data. Many researchers have studied the content of spam messages and a range of categorisations

have been published. One of the categorisations based on content type is Scams, Adult, Financial,

Pharmaceuticals, stock, phishing, diploma, software Malware, gambling, dating and others

(SpiderLabs, 2013). Email spam detection relies on such categorisations present in datasets to train

content filters, whereafter the filters look for features related to any of those categories in any email

received. Such training datasets contain features from a mix of these categories and the features

 61

may be confusing for a filter. For a new email feature set, the classifier considers everything other

than the features found from these categories as ham. In fact, the characteristics and features present

in collections of emails for users differ from one context to another. For example, a user that

belongs to the healthcare context is likely to receive healthcare related emails as compared to a

user who belongs to the real estate industry. Hence, the features learnt by the filtering system are

different too.

Training of filters with different feature selection methods is addressed in Gomez and Moens

(2010) and training filters at the client side using client data is not totally new; any user who installs

an add-on client filter can train it with training data (Meyer & Whateley, 2004). An organisation

that uses add-on client-based filters to sieve incoming emails, would have to retrain the filter on all

received email for multiple users (Nelson et al., 2009) - an expensive exercise.

Hence, this research aims to identify the percentage impact of context specific training datasets

used to train email filters on email spam that an individual user receives in their inbox - at the

client-side.

Method: In order to test the hypothesis, this Bayesian filter as client-side email spam filter was

installed on a Microsoft outlook email client and trained with a context specific dataset. A Bayesian

classifier was chosen due to the use of pure machine learning methods for filtering, good accuracy,

validity, popularity and its familiarity with the academic community (Meyer & Whateley, 2004;

Nelson et al., 2009).

The novelty in this experiment is that the dataset developed for training the filter was designed

to contain emails that incorporate users’ email preferences. The dataset contains a collection of

spam and ham emails classified by an individual user for this purpose. The filter was trained to

avoid correlation between the receivers’ domain area and the email content - the email was

unwanted by the user. Details of the Bayesian filter and the experiment using specified datasets are

discussed below.

3.7.1 The Bayesian Classifier:
This Bayesian classifier is a content-based spam filter that classifies messages based on tokens

(including header tokens) observed in an email. It is, therefore, of importance to understand the

training model and learning methods of this classifier. The classifier is based on Bayes Theorem

(Toit & Kruger, 2012; Liang & Yu, 2012; Vu Duc & Truong Nguyen, 2012) that calculates the

probability of occurrence of each word in the document:

Naïve Bayes
The Bayesian classifier is based on the Naïve Bayes algorithm which was first developed by the

18th century mathematician Thomas Bayes (1702-1761) from whom it takes its name. It is a

probabilistic machine learning algorithm that performs well on large datasets, is based on Bayes

theorem used for predictive classification tasks, and is a simple but powerful model with a naive

assumption of statistical independence among features (V. Metsis, 2006). It assumes that there is

 62

no relationship among features present in a particular class; thus, no inferences can be drawn from

one feature about another. The theorem is based on the conditional probability that if an event can

occur than another event has already taken place. The theorem allows the calculation of the

probability of an event belonging to a certain class - in the form of a hypothesis, given some prior

knowledge and the frequency at which the new event occurs. For email spam filtering, the theorem

is used to calculate the probability that a particular email is spam or ham.

The theorem is stated as 𝑃(𝑥|𝑦) = 	
,-.𝑦/𝑥0∗	-(2)3

-(4)
 where 𝑥 is the hypothesis or class or target, 𝑦 =

(𝑦5, 𝑦7, 𝑦8, …𝑦:) constitutes predictors or features or evidence which is prior knowledge or the

event that has already occurred; 𝑃(𝑥|𝑦) is the probability of hypothesis 𝑥 given 𝑦, called posterior

probability; 𝑃(𝑥) is the probability of hypothesis 𝑥; 𝑃(𝑦|𝑥) is the probability of predictor 𝑦 given

hypothesis 𝑥, called likelihood and 𝑃(𝑦) is the a-priori probability of predictor 𝑦.

Naïve Bayes Classifier:
It calculates the probability that a vector of features belong to a particular class (Androutsopoulos,

et. al. , 2000b). For vector 𝑦 = (𝑦5, 𝑦7, 𝑦8, …𝑦:), its probability is 𝑃(𝑥;│𝑦5, 𝑦7, 𝑦8, …𝑦:) where

𝑚 is the number of classes

From Bayes theorem,

𝑃(𝑥;|𝑦) = 	
.𝑃(𝑦|𝑥;) ∗ 	𝑃(𝑥;)0

𝑃(𝑦)

In the case of the email spam filtering problem, there are two classes (x): spam, S and legitimate,

L and a probability distribution corresponding to each class; 𝑃(𝑦|𝑥) represents the probability of

am email 𝑦 with feature vector (𝑦5, 𝑦7, 𝑦8, …𝑦:), from class 𝑥.

𝑃(𝑥|𝑦) = 	
.𝑃(𝑦|𝑥) ∗ 	𝑃(𝑥)0

𝑃(𝑦)
= 	

.𝑃(𝑦|𝑥) ∗ 	𝑃(𝑥)0
𝑃(𝑦|𝑆) ∗ 	𝑃(𝑆) + 𝑃(𝑦|𝐿) ∗ 	𝑃(𝐿)

where 𝑃(𝑦) is a-priori probability of email 𝑦 and 𝑃(𝑥) is a-priori probability of class 𝑥 and with

known values for 𝑃(𝑥)		and		𝑃(𝑦|𝑥), 𝑃(𝑥|𝑦) is calculated for spam emails as (𝑃(𝑆|𝑦) and

legitimate emails as (𝑃(𝑆|𝑦) though it is difficult to calculate P(S) and P(L), an approximation

only can be developed for each, based on training data as the total number of spam or legitimate

email messages verses the total number of email messages. To calculate 𝑃(𝑦|𝑥), given a word w

is present in email message, the feature vector y can be defined as 1 if the word is present and 0 if

it is absent. So

𝑃(𝑦|𝐿) =
frequency	of	legitimate	email	with	word	𝑤	in	it

total	email	messages

 63

The classification can, thus, be based on probability values of 𝑃(𝑆|𝑦) and 𝑃(𝐿|𝑦), select the one

with highest probability. If 𝑃(𝑆|𝑦) is greater, then the email is classified as spam or, otherwise as

legitimate; this is the maximum probable hypothesis known as maximum a-posterior probability

(MAP) (Tretyakov, 2004). 	

MAP(𝑆) = max.𝑃(𝑆|𝑦)0 =
,-.𝑦/𝑆0∗	-(Y)3

-(4)
=.𝑃(𝑦|𝑆) ∗ 	𝑃(𝑆)0

as 𝑃(𝑦) being a normalising term can be dropped when the most probable hypothesis is achieved

as it is a constant.

From this, a MAP rule is developed that an email is spam if

𝑃(𝑦|𝑆)
𝑃(𝑦|𝐿)

> 	
𝑃(𝐿)
𝑃(𝑆)

else it is a legitimate.

Hence, the principles of probability calculation for a single or multiple features by the Naive

Bayesian algorithm (Vu & Nguyen, 2012) are used as follows:

Let the content of each email be called: document.

Class spam email is called ‘spam’ and

Class ham email is called ‘ham’.

The probability that an email is spam is

𝑃(𝑠𝑝𝑎𝑚|𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡) =
𝑃(𝑠𝑝𝑎𝑚) ∗ 𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡|𝑠𝑝𝑎𝑚)

𝑇𝑜𝑡𝑎𝑙

where 𝑇𝑜𝑡𝑎𝑙 is calculated by

𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡|𝑠𝑝𝑎𝑚)	∗ 	𝑃(𝑠𝑝𝑎𝑚)	+ 	𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	|	ℎ𝑎𝑚)	∗ 	𝑃(ℎ𝑎𝑚)

𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	|	ℎ𝑎𝑚) 	= 	Õ	𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒j	|	ℎ𝑎𝑚); 	1 < 𝑖 < 𝑛

𝑃(𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	|	𝑠𝑝𝑎𝑚) 	= 	Õ	𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒j	|	𝑠𝑝𝑎𝑚); 	1 < 𝑖 < 𝑚

𝑃(𝑠𝑝𝑎𝑚) = 	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑝𝑎𝑚	𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠	|	𝑡𝑜𝑡𝑎𝑙	𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

𝑃(ℎ𝑎𝑚) 	= 	𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	ℎ𝑎𝑚	𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠		|	𝑡𝑜𝑡𝑎𝑙	𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠

 64

3.7.2 Bayesian Classifier Training Model
The architecture of this classifier acts on tokenisation where an email message is broken into tokens

- individual words in the message referred to as features. Tokens are allocated scores and the

combined score of the message is calculated. Subsequently, it compares the combined score against

a threshold to classify the message.

The occurrences of each token in spam and ham emails are counted to learn which tokens are

more indicative of each class. To predict whether a new email is spam or not, a statistical test

determines whether the email's tokens are sufficiently indicative of one class or the other and

returns its decision or a verdict of ‘unsure’ is used. The following section details the statistical

method the classifier uses to learn token scores before combining them into predictions, but here a

realistic model for deployment is discussed.

The training model starts by training a set of labelled messages as spam or ham, which is fed

into the filter to generate a classification model. This model (or filter) is subsequently used to

classify future email messages. This classification model has multiple output classes: (1) messages

that are clearly classified as spam are labelled ‘spam’ and moved to the spam folder (2) those

clearly classified as useful are labelled ‘ham’ and routed to the Inbox (3) there is also has a third

output class - when the tool is not confident it will return an output of ‘unsure’ which labels the

email as spam suspect. The following terminology is adopted: the true class of an email can be ham

or spam, and the classifier produces the labels ham, spam, and grey (spam suspects).

There are three natural choices for how to treat unsure-labelled messages: they can be placed in

the spam folder, they can be left in the user's inbox, or they can be put into a third folder called

Spam Suspects for separate review by the user. The user can then go through this folder of unsure

messages to either mark them as spam or ham. Sometimes classifying them as spam or ham can

confuse the classifier as those messages contain mixed features of spam and ham. Hence, another

choice is to leave them as it is in unsure folder as the purpose here is not to contaminate the training

of the filter with these messages.

3.7.3 Bayesian Classifier’s Learning and Classification Method
Intuitively, the classifier learns how strongly each token indicates ham or spam by counting the

frequency of emails that the token appears in. When classifying a new email, it looks at all of its

tokens and uses a statistical test to decide whether they indicate one label or the other with sufficient

confidence; if not, it returns unsure.

It considers header and body of an email for classification, tokenizes each email E based on

words, URL components, header elements, and other character sequences that appear in E. Each

of them is treated as a unique token of the email. The algorithm only records whether or not a token

occurs in the message, not the frequency of the token. The training and classification method are

represented in the Figure 3.7 below:

 65

Figure 3.7: Learning and classification Method of Bayesian Classifier

Email E is represented as a binary vector e where

ej = q1				 − 	𝑖𝑓	𝑖
st	𝑡𝑜𝑘𝑒𝑛	𝑜𝑐𝑐𝑢𝑟𝑠	𝑖𝑛	𝐸

0		 − 																									𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here e is used to refer to the original message E and its representation since the main concern

is the latter.

During training, the algorithm computes a spam score vector 𝑃(𝑆) where the ith component is a

token, spam score for the ith token is given by

𝑃(x,j) =
y!y"($)

y!y"($)zy&y!($)
 (1)

where NS, NH, NS(i), and NH(i) are the number of spam emails, ham emails, spam emails including

the ith token and ham emails including the ith token, respectively. The quantity P(S,i) is an estimate

of 𝑃𝑟(𝐸	𝑖𝑠	𝑠𝑝𝑎𝑚	|	𝑒j) if the prior of ham and spam are equal, but in this case, it is simply a per-

token score for the email. An analogous token ham score is given by

𝑃({,j) = 	1	 −	𝑃(Y,j)

 66

P(S,i) is smoothed through a convex combination with a prior belief x (default value of x = 0.5),

weighting the quantities by N(i) (the number of training emails with the ith token) and s (chosen for

strength of prior with a default of s = 1), respectively(Robinson, 2003):

𝑓(j) =
x2zy($)
xzy($)

	𝑃(Y,j) (2)

Effectively, smoothing reduces the impact low token counts have on scores. For rare tokens, the

score is dominated by the prior x. However, as more tokens are observed, the smoothed score

gradually shifts to the score in Eq. (1). An analogous smoothed ham score is given by 1	 − 	𝑓.

After training, the filter computes the overall spam score S(m) of a new message M using Fisher's

method for combining the scores of the tokens observed in M. The maximum number of tokens

chosen to be used here from message M, are 150; the tokens with scores furthest from 0.5 and

outside the interval [0.4,0.6] are selected. Let 𝛿(𝑚) be the binary vector where 𝛿(𝑚)𝑖	 = 	1 if

token i is one of these tokens, and 0 otherwise. The token spam scores are combined into a message

spam score for M by

S(m) 	= 	1 −	c'~�	(−2(log	f)(d	(m)) (3)

where n is the number of tokens in M and c2
2n

 (•) denotes the cumulative- distribution function of

the chi-square distribution with 2n degrees of freedom.

A ham score H(e) is similarly defined by replacing f with 1 - f in Eq. (3). Finally, an overall

spam score for M is constructed by averaging S(m) and 1 - H(m) (both being indicators of whether

m is spam) giving the final score.

𝐼(𝑚) = 5z	�(�)	–	�(�)
7

 (4)

for a message; a quantity between 0 (ham) and 1 (spam). This Bayesian classifier finally makes

prediction by thresholding I(m) against two user-tuneable thresholds θ0 and θ1, with defaults θ0 =

0.15 and θ1 = 0.9. The classifier predicts ham, grey, or spam if I(m) fall into the interval [0, θ0], [θ0,

θ1], or [θ1,1], respectively, and filters the message accordingly.

3.7.4 Data, Method and Results
This experiment was conducted with the aim of testing if the training of this Bayesian classifier

tool with context specific data and user preferences is effective for the selected domain. Individual

user data was collected for this experiment in this domain with extra care taken to segregate spam

and ham.

 67

During the experiment, the server-side email filtering was also in place which filters incoming

emails for multiple users of the organisation, but false negatives were expected to escape the server

and reach the mailbox of the email client. The reason for this is that the features identified by filters

are common to all users and secondly, that those filters have not been trained on the basis of context

specific keywords/features. In this experiment, it was tested if this Bayesian classifier tool can

provide client-based filtering in addition to the existing content filtering at the mail server. This

means that the Bayesian classifier filters false negatives that have escaped the content filters at the

mail server. This section is structured as Dataset, Method and Outcome.

3.7.4.1 Training Dataset
In an attempt to catch the spam messages coming to the inboxes, the use of appropriate samples

to train the filter is vital. The following questions are also of high importance: is the available body

of data sufficiently large to reach a conclusion? Is the dataset too broad? Will it capture and feed

the intended behaviour for which it needs to be trained into the filter? Is sample data unbiased?

Since the focus is on a user belonging to an organisation in a particular industry domain, it is

useful to refer to the worldwide business emails count in reference to the size and nature of the

training dataset. Given the total amount of business emails sent per day, (Levenstein, 2013) (given

in Chapter 2), if a training corpus consists of 100,000 messages, this still only constitutes a very

small portion (approximately 1%) of business email traffic globally. Hence, the dataset used to

train the filter represents an extrapolation of generalisations made in the training dataset (Pitsillidis,

Kanich, Voelker, Levchenko, a& Savage, 2012).

In this case, to prepare a dataset that is not too large or too small, the issue of biased data is

ignored since the data is specific to a domain context. The focus here is to train the filter so that it

is capable of identifying incoming emails belonging to this domain as ham.

Based on these considerations, the false negatives (email spam) that arrived in the inbox of a

user were collected over 5 years in order to prepare a dataset for this research. A separate folder

called ’InboxJunk-Spam’ was created and once determination about an email being spam was

made; the message was moved to that folder. Since the domain under consideration was

‘Educational’, which is a broad domain, careful attention was paid while classifying the unwanted

messages arriving in the inbox so that the filter was not contaminated with those messages that

belong to the same domain but represented spam for this user. Hence, email messages that belonged

to the education domain but were unwanted by the user were classified as spam and also moved to

folder InboxJunk-Spam. Hence, the user did not continue to receive spam emails though they were

related to the domain. The final collection count of messages was 13146 with 8723 ham email

messages and 4423 spam email messages, to be used for training the Bayesian classifier.

 68

3.7.4.2 Experimental Method
For experimental purpose, the Bayesian classifier was installed on the Outlook client of a user.

The next step was to train the classifier. The training of the tool was carried out with the collected

context specific user preference dataset of 8723 ham and 4423 spam messages.

Once the training was complete, the classifier performed classification to filter an incoming

email message on the basis of this training. For each incoming email, the Bayesian classification

tool first performed tokenisation of the header and body of the message followed by feature

extraction of 150 significant tokens, and then computed the spam score of the message. It then

classified and categorised the message into one of the three output classes - ham, spam or grey

according to the threshold values of 0.15 and 0.9. If the spam score was more than 0.9, it was

classified as spam, less than 0.15 it was classified as ham and if it lay between 0.15 and 0.9, it was

classified as grey. If misclassified, they end up in one of the three, 1) user’s inbox as spam (false

negative), 2) spam folder or 3) grey folder as false positive. To observe and record the results

correctly, several folders were created and managed. In order to evaluate the performance of the

filter, the email spam that was not detected by the Bayesian classifier was kept separately in a

folder so that future messages arriving in the inbox as false negatives would not get mixed with

those correctly classified. The folders to observe the results of training and evaluation were as

follows:

Bayesian Classifier Filtered Spam – This folder collected all emails for this user that had been

classified as spam, had passed through the organisational filter and been received by the email

client of the user. These emails were the ones that were not detected as spam by the mail server

filters. These were incoming emails aiming to land in the user inbox but were detected by the

classifier as spam and moved into this folder.

InboxSpam- This folder collected the emails that were false negatives due to not being detected by

the organisational mail server filters, stayed false negatives as not detected by the classifier and

landed in user’s inbox as legitimate emails. The trained tool could not identify these emails as

spam. Such emails were manually moved from the inbox to this folder.

Spam Suspects (Grey) – This folder was created to collect emails that were suspected by the

classification tool to be spam. A user has the option to manually classify email messages in this

folder and report the emails to the classifier as spam or ham for learning. This folder might also

contain false positives.

The information from these folders was then used by the Bayesian classifier to further train the

filter.

 The performance of the classifier was observed for a period of 12 months to identify if there

was an improvement in the number of email spam arriving at the user’s inbox.

 69

At the end of the experiment, the classification filter was retrained with the updated collection

of 11529 ham and 5042 spam messages. Hence, the classifier was retrained with additional ham

and spam messages collected in this12 months period.

3.7.4.3 Results

The following results were recorded.

The folder ‘Bayesian Classifier filtered Spam’ collected 683 emails that were going to the inbox

as false negatives. The folder InboxSpam collected 170 emails which were not identified by the

classification tool as spam and were false negatives.

The folder Spam Suspects collected 408 emails that were otherwise going to the inbox as false

negative. Out of these spam suspects, the user identified 10 emails as false positives, unimportant

emails that would, if missed, not impact the productivity of the user. An important point to note is

that once the classifier was trained with the initial dataset, it was deliberately not retrained until the

end of the observation period to not contaminate the learning of the filter with further data.

The above experiment proved the hypothesis as follows: Training the Bayesian classifier tool

on a context specific user preference dataset, the instances of false negatives in the user inbox were

reduced by 86%, representing savings in time and increases in user productivity and motivation

(K. Bajaj & Pieprzyk, 2014).

3.7.4.4 Discussion:
Among the recommendations to be made as a result of this experiment is to re-emphasise the need

to train the filters with user preferences and context specific data so that unwanted emails that pass

through the filters can be isolated. This makes the filters at the client level more effective. Although

this may not stop the false negatives completely, as noted in this experiment, as 14% of email spam

still passed through despite specific training of the Bayesian classification filter. However, it did

deter a large number of email spam from reaching the user and reduced the inconvenience caused

by spamming. Analysing the 14% email spam that deceived the specifically trained client-side

filter, it was revealed that most of those emails belonged to the ‘education’ domain only. Hence,

context specific training was effective, and it can be deduced that training the tool with context

specific and user preference data did eliminate most false negatives from the inbox that were

unrelated to the domain such as emails containing content selling viagr@ or other pharmaceutical

items, banks, holiday deals etc. which were detected by the trained tool. This was a first step

towards a client-side classification filter model; however, there is room for improvement and

further research and experiments were carried out and are shown in following chapters.

 70

3.8 Experiment 2: Performance Testing of Client-side
Bayesian Classifier with n-gram Parametrisation

Naive Bayesian classifier identifies tokens as maximum discriminators. The sequence of any n

characters, tokens or words that appear in a message, is represented as an n-gram. A window, as

wide as an n-gram, slides over an entire email message to calculate the total number of occurrences

of each n-gram in each email. This data is then used as tokens to calculate the spam score of an

email. Unigrams are one-word representations. During feature selection, our Bayesian classifier

uses unigrams from the header and body of an email. These tokens are selected from training and

testing data based on the probability of occurrence of a particular unigram. To classify an email,

this classifier selects only 150 significant unigram (single word) tokens. Naïve Bayesian

classification assumes that tokens in a given class are independent of each other; in this section

experiments are conducted to identify the best performing parameters of this Bayesian Classifier.

To do so, several parameters were fine-tuned to analyse and monitor the performance against

numerous threshold values, token types and token sizes.

Experiment details:
The experimental technique includes modification of the features used for classification by

tweaking 1) n-grams used as text features to include two and three words as tokens called bigrams

and trigrams respectively 2) number of tokens selected for classification of a new message, these

tokens are termed here as max discriminators.

Though Naïve Bayesian classification considers tokens as independent from each other,

correlations are possible between different tokens of an email. To identify these correlations, a

correlation matrix was created in these experiments for bigrams and trigrams. However, if a

correlation matrix for every word with every other word in a message were created for bigrams

and trigrams, the size of the matrix would consume too much memory which would slow down the

classifier performance. It was, therefore, decided to consider only the correlations between

neighbouring tokens for both, bigrams and trigrams.

For example, if a, b and c are the three tokens then bigrams are ab, bc, a, b, and c. The frequency

of bigrams is calculated as the number of times they appeared in spam and ham emails. Trigrams

were created in a similar manner, if a, b, c, d and e are the three tokens then trigrams are abc, bcd,

cde, ab, bc, cd, de, a, b, c, d and e. Subsequently, all tokens (unigrams, bigrams or trigrams) were

sorted according to their importance and only the first n significant tokens were taken to calculate

the score of an email.

The Bayesian classifier uses the default threshold of 0.15 and 0.9 for classification. Several

threshold values for spam and ham cut off were used to find the best performing cut offs. Threshold

value sets used are shown in Table 3.1.

 71

Table 3.1. Threshold Values for Spam and Ham cut off

Ham Cut-off 0.5 0.15 0.2 0.3 0.8
Spam Cut-off 0.5 0.9 .9 0.8 0.6

The dataset in machine learning is the collection of data used to train the machine learning

model to automatically perform actions for decision making and predictions. Several datasets are

generally used to measure the effectiveness of each of the machine learning models. For the email

spam filtering problem, the supervised machine learning model relies on a dataset that contains the

collection of labelled spam and legitimate emails to create the classifier.

In order to validate the performance results and to find the optimal values, several types of data

input were used in the experiments consisting of four publicly available spam email datasets, PU1

(J. K. Androutsopoulos, Chandrinos, K.V. Paliouras,G & Spyropoulos, C.D. , 2000b), Ling-spam

(J. K. Androutsopoulos, Chandrinos, K.V. Paliouras,G & Spyropoulos, C.D. , 2000a), ENRON

(V. Metsis, 2006), and TREC07, a dataset published at the Text REtrieval conference 2007

(TREC20072), by the University of Waterloo, Canada.

PU1:This corpus was first released in 2000 and then updated and described in I. Androutsopoulos,

Paliouras, and Michelakis (2006) is only in its bare form here, where tokens are separated by white

spaces but lemmatisation of stop words has been applied. The corpus consists of 10 partitions and

an unused partition. Each of the 10 partitions contain 619 spam and 482 legitimate messages.

Ling-spam: This linguistic mailing list public spam corpus was introduced in 2000 (J. K.

Androutsopoulos, Chandrinos, K.V. Paliouras,G & Spyropoulos, C.D. , 2000a) and is used for

evaluating the performance of the Naïve Bayes machine learning algorithm as a classifier. The

corpus consists of a total of 2893 email messages, of which 2412 are legitimate and 481 are spam

messages. This dataset is somewhat imbalanced in the sense that it is quite small and secondly it

only has 16% spam messages. However, the messages in this dataset are more homogenous when

compared to messages found in a usual inbox hence the dataset can be effective for its purpose.

TREC07: This publicly available email spam dataset contains 75,419 messages out of which

25,220 are legitimate emails and 50199 are spam messages (Cormack G V., 2007).

Enron: Enron corpus was made available in 2004 by the Federal Energy Regulatory Commission

during their investigation of the Enron corporation. The dataset contains data from 158 users of

Enron organised into folders and constituting the only publicly available real email spam dataset

(J. K. Androutsopoulos, Chandrinos, K.V. Paliouras,G & Spyropoulos, C.D. , 2000a). Though the

entire dataset is large with 619448 messages (Klimt & Yang, 2004), not all are labelled and some

2 http://plg.uwaterloo.ca/~gvcormac/treccorpus07/

 72

also contain redundant data. The labelled dataset size is 33k belonging to 6 users. The latest update

on the dataset was done on 7 May 2015.

Percentage splits for training and testing in existing studies vary; however, this thesis uses a 70-

30 split to divide the datasets for training and testing purposes. The method of 70-30 split is called

hold out method. The issue with the holdout method is that there is no control over which emails

fall into which category which may lead to an imbalance in the datasets and performance evaluation

may be affected. Cross validation is an effective way to reduce such shortcomings using k fold

cross validation where the entire dataset is divided into k parts. With a 70-30 split, the model is

trained with 70% of the data and tested on 30%, performed k times with for each operation.

The totals emails used for each of the datasets is shown in Table 3.2.

Table 3.2: Total Number of Training and Testing Emails for each Dataset used

Dataset Name Total Emails Number - Training Number - Testing

PU1 1,100 770 330

Ling-spam 2,893 2,025 868

Enron 11,935 8,354 3,581

TREC07 20,026 14,862 5,164

There were 85 parameter sets in total for each dataset - 25 for unigrams and 30 each for bigrams

and trigrams. For each parameter set, 20 iterations were run, randomly selecting emails for training

and testing for the purpose of cross validation. For example, for unigrams token size 15 and

thresholds of 0.5-0.5 as spam and ham cut off, 20 iterations for each dataset were executed. Email

messages were selected randomly to be allocated to the pool of training and testing sets for each

iteration. Similarly, for each token size corresponding to every n-gram as shown in Table 3.3,

selected threshold set iterations were run.

Table 3.3 Token Sizes (Max Discriminators) used for 3 n-gram types

Unigram Bigrams Trigrams

15 150 150

50 500 500

75 5000 5000

150 10000 10000

200 20000 20000

 25000 25000

50000

 73

For execution of each dataset, results were recorded for all 20 iterations for all parameter sets.

The performance metrics used were False Positive (FP) rate, False Negative (FN) rate and Grey

rates. The false positive and false negative rates are defined as:

The False positive rate (FPR) is the measure of accuracy of a classifier and is defined as the

probability of falsely rejecting the null hypothesis. In this case, it is the number of incorrect positive

predictions (misclassified ham messages) versus the total negatives (ham messages). is calculated

as:

𝐹𝑃	𝑟𝑎𝑡𝑒	 = 	𝐹𝑃	/	(𝐹𝑃	 + 	𝑇𝑁)	

The False positive rate (FPR) is also called miss rate of a classifier and is defined as the

probability of falsely rejecting the null hypothesis. In this case, it is the number of incorrect

negative predictions (misclassified spam messages) versus the total positives (spam messages). It

is calculated as:

𝐹𝑁	𝑟𝑎𝑡𝑒	 = 	𝐹𝑁	/	(𝑇𝑃	 + 	𝐹𝑁)	

The Grey rate is the measure of non-classification of a classifier and is defined as the probability

where the classifier is not able to make a decision about the null hypothesis. In this case, it is the

rate of unclassified or no predictions made in relation to the email messages.

𝐺𝑟𝑒𝑦	𝑟𝑎𝑡𝑒	 = 	unclassified	emails	/	(𝑇𝑃	 + 	𝑇𝑁)	

A cost function as a function of FP rate, FN rate and grey rate was calculated to determine the

best performing parameters as below:

Cost function = C(f) = 0.5 * FP rate + 0.2 *FN rate + 0.3 * grey rate

The cost function is based upon the impact of FP rate, FN rate and grey rate on a user. The

weights of 50%, 20% and 30% were attached to FP rate, FN rate and grey rate. These weights were

selected since losing an important email as false positive can cause significant damage to a user

and hence FP rate was given 50% importance. Grey email may contain a mix of ham and spam

whereby losing an important email as spam via this output class and removing email message from

inbox, thus given 30% importance. FN rate determines the capability of the filter to deter email

spam message from the inbox therefore was allocated a weightage of 20%.

 74

Experiment 2.1: Unigrams with Varying Feature set (token) size

In order to improve the performance of the Bayesian classifier, the first experiment was aimed at

working with unigrams to identify the optimum number of significant tokens selected for

performing the classification.

Method: In this experiment, unigrams with varying significant token sizes of 15, 50, 75, 150 and

200 for each of the threshold value set given in Table 3.1 was selected for each dataset. The total

number of parameters tested for unigrams for each dataset - PU1, Ling-spam, Enron and TREC07

is shown in Table 3.4.

Table 3.4: Parameter Sets for each dataset for Unigrams

Significant token size Spam cut off Ham cut off

15 0.5 0.5
15 0.15 0.9
15 0.2 0.9
15 0.3 0.8
15 0.4 0.6
50 0.5 0.5
50 0.15 0.9
50 0.2 0.9
50 0.3 0.8
50 0.4 0.6
75 0.5 0.5
75 0.15 0.9
75 0.2 0.9
75 0.3 0.8
75 0.4 0.6
150 0.5 0.5
150 0.15 0.9
150 0.2 0.9
150 0.3 0.8
150 0.4 0.6
200 0.5 0.5
200 0.15 0.9
200 0.2 0.9
200 0.3 0.8
200 0.4 0.6

10-fold cross validation was performed as shown in Table 3.5 for Ling-spam dataset under

column headings ‘Train Folders’ and ‘Test Folders’

 75

Table 3.5: Test Execution results for Ling-spam dataset for threshold value of 0.5 each for spam

and ham cut off.

NHAM TESTEDNHAM RIGHTNHAM WRONGFALSE POSITIVE RATE [%]NSPAM TESTED
NSPAM RIGHTNSPAM WRONGFALSE NEGATIVE RATE [%]TRAIN FOLDERS

TEST FOLDERS
NUM TRAIN MESSNUM TEST MESSTRAIN MESS %HAM CUTOFFSPAM CUTOFFFALSE POSITIVES

FALSE NEGATIVES
724

724
0

0
144

140
4

2.777777778
part3 part8 part9 part7 part6 part10 part4part1 part2 part5

2025
868

69.99654338
0.5

0.5
spmsga125.txt spmsga3.txt spmsga16.txt spmsga26.txt

724
724

0
0

145
137

8
5.517241379

part2 part7 part9 part8 part1 part5 part3part10 part4 part6
2024

869
69.96197719

0.5
0.5

spmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt spmsgb108.txt spmsga99.txt spmsgb56.txt
723

721
2

0.276625173
144

142
2

1.388888889
part2 part3 part9 part1 part10 part6 part5part8 part4 part7

2026
867

70.03110957
0.5

0.5
6-809msg3.txt 6-42msg3.txt

spmsgb108.txt spmsgb90.txt
723

723
0

0
144

137
7

4.861111111
part5 part10 part2 part7 part4 part8 part3part1 part6 part9

2026
867

70.03110957
0.5

0.5
spmsga100.txt spmsga125.txt spmsga110.txt spmsga124.txt spmsgb56.txt spmsgc18.txt spmsgc33.txt

724
724

0
0

144
142

2
1.388888889

part8 part4 part1 part3 part9 part2 part10part5 part6 part7
2025

868
69.99654338

0.5
0.5

spmsgb56.txt spmsgb90.txt
724

723
1

0.138121547
145

138
7

4.827586207
part9 part3 part1 part8 part2 part6 part5part10 part4 part7

2024
869

69.96197719
0.5

0.5
6-42msg3.txt

spmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt spmsgb108.txt spmsgb90.txt
723

722
1

0.138312586
144

142
2

1.388888889
part2 part6 part10 part7 part4 part9 part5part8 part1 part3

2026
867

70.03110957
0.5

0.5
8-1132msg1.txt

spmsgc117.txt spmsga125.txt
724

724
0

0
144

143
1

0.694444444
part6 part10 part2 part1 part8 part9 part4part3 part5 part7

2025
868

69.99654338
0.5

0.5
spmsgb90.txt

723
723

0
0

144
142

2
1.388888889

part10 part5 part9 part8 part4 part2 part6part1 part3 part7
2026

867
70.03110957

0.5
0.5

spmsga125.txt spmsgb90.txt
724

721
3

0.414364641
144

142
2

1.388888889
part7 part9 part4 part10 part3 part6 part1part8 part2 part5

2025
868

69.99654338
0.5

0.5
6-809msg3.txt 6-896msg3.txt 8-1132msg1.txt

spmsga16.txt spmsga26.txt
724

723
1

0.138121547
145

137
8

5.517241379
part4 part8 part1 part2 part3 part7 part5part9 part10 part6

2024
869

69.96197719
0.5

0.5
8-922msg3.txt

spmsgc18.txt spmsgc33.txt spmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt spmsgb56.txt
724

724
0

0
144

143
1

0.694444444
part6 part1 part2 part9 part8 part10 part3part4 part5 part7

2025
868

69.99654338
0.5

0.5
spmsgb90.txt

723
723

0
0

144
137

7
4.861111111

part7 part8 part10 part3 part6 part4 part5part1 part2 part9
2026

867
70.03110957

0.5
0.5

spmsga125.txt spmsga124.txt spmsga3.txt spmsga16.txt spmsga26.txt spmsgc18.txt spmsgc33.txt
724

722
2

0.276243094
145

140
5

3.448275862
part6 part9 part1 part2 part7 part4 part5part8 part10 part3

2024
869

69.96197719
0.5

0.5
8-1132msg1.txt 6-107msg3.txtspmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt

723
721

2
0.276625173

144
141

3
2.083333333

part5 part3 part4 part7 part10 part9 part2part8 part1 part6
2026

867
70.03110957

0.5
0.5

6-896msg3.txt 8-1132msg1.txtspmsgc117.txt spmsga125.txt spmsga124.txt
724

724
0

0
144

142
2

1.388888889
part8 part1 part10 part3 part2 part4 part9part5 part6 part7

2025
868

69.99654338
0.5

0.5
spmsgb56.txt spmsgb90.txt

724
722

2
0.276243094

145
138

7
4.827586207

part4 part8 part2 part1 part6 part7 part5part9 part10 part3
2024

869
69.96197719

0.5
0.5

8-922msg3.txt 6-107msg3.txtspmsgc18.txt spmsgc33.txt spmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt
723

722
1

0.138312586
144

139
5

3.472222222
part9 part1 part5 part3 part8 part6 part10part2 part4 part7

2026
867

70.03110957
0.5

0.5
5-1375msg2.txt

spmsga3.txt spmsga16.txt spmsga26.txt spmsgb108.txt spmsgb90.txt
725

725
0

0
145

139
6

4.137931034
part6 part3 part4 part8 part2 part9 part7part1 part10 part5

2023
870

69.92741099
0.5

0.5
spmsga125.txt spmsgc90.txt spmsgc83.txt spmsgc57.txt spmsgc62.txt spmsgc94.txt

723
723

0
0

144
137

7
4.861111111

part5 part4 part10 part3 part6 part7 part8part1 part2 part9
2026

867
70.03110957

0.5
0.5

spmsga125.txt spmsga124.txt spmsga3.txt spmsga16.txt spmsga26.txt spmsgc18.txt spmsgc33.txt

 76

The Bayesian classifier was trained using 70% of the email messages from each dataset and the

learning of the filter model was evaluated by executing the model for all 25 parameter sets on 30%

of the email messages from each dataset and results recorded.

Results:
For unigrams with 15 token size, Bayesian classier performed well for FP rates for all datasets for

all thresholds except PU1; however, the difference in values for rates was quite low as shown in

Figure 3.8. The grey rate was high, ranging between 6-9.6% for the thresholds that are far apart

from the median threshold values for all three datasets except Enron where it was below 1.5%. The

FN rate was higher for the 0.5 threshold value compared to other threshold values for spam and

ham cut offs for the Ling-spam dataset though it was showing good performance for other datasets.

Figure 3.8: Test Results for all four datasets for Unigrams with token size of 15 for several

threshold sets

The performance of the classifier for unigrams with a token size of 50 was good for the FP rate

which was below 0.4% for all three datasets except the PU1 with FP rates between 2-3% as shown

in Figure 3.9. The FN rate is on the higher side for the Ling-spam dataset, although for remainder

of the datasets the classifier performed well. They grey rate was higher by between 2-8.5% for

most datasets.

 77

Figure 3.9: Test Results for all four datasets for Unigrams with token size of 50 for several

threshold sets

The performance of the classifier for the token size of 75 was similar to the token size of 50 for

unigrams as is evident from Figure 3.10 though the FN rate was somewhat higher and the grey rate

lower across all threshold values for all datasets.

Figure 3.10: Test Results for all four datasets for Unigrams with token size of 75 for several

threshold sets

Figure 3.11 represents the classifier performance for token size 150 where the FP rate ranges

between 1-4% for PU1 and Ling-spam datasets; however, it is relatively low for Enron and

TREC07 datasets. For the FN rate, the classifier performed exceptionally well for the Enron

dataset, and well for PU1 and Ling-spam datasets with <1% whereas for the TREC07 the rate was

between 2-5% for several threshold values.

 78

Figure 3.11: Test Results for all four datasets for Unigrams with token size of 150 for several

threshold sets

Increasing the token size to 200, the classifier performance as shown in Figure 3.12 improved

for the FP rate compared to the token size of 150 however performance for the FN and grey rate

declined for all four datasets.

Figure 3.12: Test Results for all four datasets for Unigrams with token size of 200 for several

threshold sets

The overall results for all token sizes for all thresholds for each of the four datasets is shown in

Table 3.6 for unigrams. The value of the cost function for each parameter set is shown for each of

the datasets. Results indicate that the classifier for token size 15 for the Enron and TREC07 datasets

performed better whereas classifier performance is comparable for token sizes 150 and 200 for all

datasets. For the FP rate, the classifier performance was superior for token size 15; however, the

values were very close for all datasets and token sizes for each of the datasets individually.

Considering the cost and other metrics the performance is noted to be better for the token size of

150 overall.

 79

Table 3.6: Results for Unigrams for all four datasets for all the parameters

M
AX

HAM

SPAM

FP RATE
FN RATE

GREY RATE
COST

FP
FN

GREY
COST

FP
FN

GREY
COST

FP
FN

GREY
COST

TOKENS
CUT OFF

CUT OFF
PU1

PU1
PU1

LINGSPAM
LINGSPAM

LINGSPAM
ENRON

ENRON
ENRON

TREC07
TREC07

TREC07

15
0.5

0.5
2.376654

2.11614
0

1.611585
0.15205788

12.4909004
0

3.808123
0.232358

0
0

0.092973
0.16345

1.103838
0

0.396561
15

0.15
0.9

0.161581
0.173372

9.727609
2.061017

0
2.28927203

8.241518
2.335115

0
0

1.478637
0.295757

0
0.072938

6.732618
1.368435

15
0.2

0.9
0.21549

0.347222
8.554811

1.888182
0

2.52681992
7.908288

2.339734
0

0
1.35437

0.270904
0

0.102001
6.59971

1.350572
15

0.3
0.8

0.539234
0.72773

6.381959
1.691585

0
3.2217433

6.015644
2.169682

0
0

1.118403
0.223711

0
0.139056

5.29134
1.100015

15
0.4

0.6
1.10608

1.005508
2.94401

1.342974
0.02766252

4.53448276
3.7672

2.12488
0.060241

0
0.869869

0.1981
0

0.211331
3.220422

0.707514
0.879808

0.873994
5.521678

1.719038
0.03594408

5.01264368
5.18653

2.555477
0.05852

0
0.964256

0.216259
0.03269

0.325833
4.368818

0.984589
50

0.5
0.5

3.12949
1.284004

0
1.821646

0.20038142
4.87452107

0
1.542609

0.447504
0

0
0.179102

0
2.759902

0
0.828071

50
0.15

0.9
0.59256

0.034722
6.747146

1.652754
0.01382171

0.6585249
4.880545

1.179295
0

0
1.069534

0.214007
0

0.372941
8.878492

1.887681
50

0.2
0.9

0.754432
0.311542

6.092148
1.658054

0.01381218
0.76077586

4.441126
1.122083

0
0

1.016476
0.203395

0
0.446919

8.574017
1.848979

50
0.3

0.8
1.212002

1.109195
4.819628

1.791866
0.05529638

1.3493774
2.788539

0.98474
0.017212

0
0.740017

0.154988
0

0.720389
6.914191

1.599055
50

0.4
0.6

2.483152
0.659722

2.018791
1.777379

0.12440494
1.83500958

1.750916
0.950548

0.043029
0

0.621335
0.141579

0
1.115941

4.507536
1.23639

1.634327
0.679837

3.935543
1.74024

0.08154333
1.89564176

2.772225
1.155755

0.101549
0

0.689472
0.178514

0
1.083218

5.774847
1.479935

75
0.5

0.5
3.291082

1.35273
0

1.916237
0.38020681

3.9454023
0

1.335853
0.438898

0
0

0.175709
0

3.741255
0

1.122527
75

0.15
0.9

0.916888
0.208333

6.870512
1.874363

0.01382171
0.90038314

3.900584
1.05591

0
0

0.848925
0.169935

0
0.94406

8.40207
1.963782

75
0.2

0.9
1.051003

0.3125
6.018576

1.791866
0.04837122

0.83141763
2.805536

0.830031
0

0
0.726054

0.145361
0

1.135867
8.227305

1.986371
75

0.3
0.8

1.698925
0.416667

3.849744
1.702895

0.03455904
1.31704981

2.212541
0.851597

0
0

0.548729
0.109896

0
1.449827

6.413275
1.717753

75
0.4

0.6
2.856736

0.659722
1.63853

1.888168
0.22808209

1.62835249
1.036921

0.787273
0.051635

0
0.438425

0.108489
0

2.117802
3.650738

1.365638
1.962927

0.58999
3.675473

1.834556
0.14100818

1.72452107
1.991116

0.971983
0.098107

0
0.512427

0.141728
0

1.877762
5.338678

1.631064
150

0.5
0.5

3.882605
0.693487

0
2.0803

0.26946125
2.70043103

0
0.918214

0.361446
0

0
0.144878

0
5.212777

0
1.564133

150
0.15

0.9
0.972698

0.13841
6.460026

1.806336
0.04839033

1.00502874
2.869577

0.89508
0

0
0.674393

0.135179
0

2.235901
7.849024

2.240875
150

0.2
0.9

1.160569
0.450431

5.583698
1.78741

0.02764341
0.90158046

2.449261
0.771684

0
0

0.561296
0.112559

0
2.381849

7.719565
2.258767

150
0.3

0.8
1.619014

0.796456
3.85209

1.739516
0.06219293

1.24497126
1.479946

0.694658
0

0
0.411896

0.082679
0

3.01188
5.148665

1.933597
150

0.4
0.6

2.936646
0.658525

1.500375
1.900403

0.17274745
1.69731801

0.633568
0.705308

0.034423
0

0.318347
0.077739

0
3.849089

2.301927
1.615412

2.114306
0.547462

3.479238
1.862493

0.11608707
1.5098659

1.48647
0.796689

0.079174
0

0.393186
0.110307

0
3.338299

4.603836
1.922257

200
0.5

0.5
4.070339

1.005029
0

2.236575
0.36630866

3.60632184
0

1.22882
0.387263

0
0

0.155305
0

5.174904
0

1.552871
200

0.15
0.9

1.160573
0.103927

5.931314
1.787735

0.02765297
1.00454981

2.494302
0.811687

0
0

0.586428
0.117686

0
2.602435

7.453667
2.271864

200
0.2

0.9
1.239756

0.138889
5.047543

1.657564
0.02763389

0.86494253
2.269496

0.724836
0

0
0.552918

0.110984
0

2.818818
7.315858

2.309217
200

0.3
0.8

1.943056
0.277538

3.322383
1.691912

0.0483712
1.10871648

1.302555
0.612874

0.025818
0

0.409104
0.092548

0
3.368697

4.969044
2.004818

200
0.4

0.6
3.454529

0.589799
1.047115

2.055047
0.18660737

1.97246169
0.576004

0.781982
0.051635

0
0.209439

0.062942
0

3.979116
2.2369

1.641515
2.373651

0.423036
3.069671

1.885367
0.13131482

1.71139847
1.328472

0.83164
0.092943

0
0.351578

0.107493
0

3.588794
4.395094

1.955657

 80

In order to carry out further analysis of the classifier performance for each parameter, the FP

rate and the cost for all token sizes for all thresholds for each of the dataset is represented in

graphical form in Figure 3.13.

False Positive Rate

PU1 Ling-spam

Enron TREC07

Cost

PU1 Ling-spam

 Enron TREC07

Figure 3.13: FP rate and cost function for all four datasets for Unigrams for all parameter values

For far apart threshold values the cost was high and the FP rate low due to the high number of

greys for far apart threshold values.

 81

Experiment 2.2 Bigrams with Varying Feature Set (Token) Size

For the second experiment, it was decided to use bigrams as features to determine if this

increases the performance of the Bayesian classifier. A bigram is an n-gram where n=2 (i.e. two

words) are considered as significant tokens that offer the best cost value for bigrams to compare

against other n-grams.

Method: In this experiment, since bigrams can generate a higher number of features for a

message, it was decided to have the least number of tokens selected as features for classification

as 150 and maximum number of tokens as 25,000. Therefore, significant token sizes of 150, 500,

5000, 10000, 20000, and 25000 for each of the threshold value set given in Table 4.1 were selected

for classification and evaluated using all four datasets- PU1, Ling-spam, Enron and TREC07. In

bigrams, the relationships between features are considered and a correlation matrix of tokens is

developed; however, bigrams are created from the relationships of a token with only the

neighbouring tokens as otherwise the correlation matrix would become too large causing high cost

of processing and time. The Bayesian classifier was trained using 70% of the dataset by calculating

the probability of bigrams as features. The parameters selected for evaluation of bigrams using

each dataset are shown in Table 3.7.

Table 3.7: Parameter Sets used for Classification using Bigrams

Maximum Token Size Spam cut off Ham cut off

150 0.5 0.5
150 0.15 0.9
150 0.2 0.9
150 0.3 0.8
150 0.4 0.6
500 0.5 0.5
500 0.15 0.9
500 0.2 0.9
500 0.3 0.8
500 0.4 0.6
5000 0.5 0.5
5000 0.15 0.9
5000 0.2 0.9
5000 0.3 0.8
5000 0.4 0.6
10000 0.5 0.5
10000 0.15 0.9
10000 0.2 0.9
10000 0.3 0.8
10000 0.4 0.6
20000 0.5 0.5
20000 0.15 0.9

 82

20000 0.2 0.9
20000 0.3 0.8
20000 0.4 0.6
25000 0.5 0.5
25000 0.15 0.9
25000 0.2 0.9
25000 0.3 0.8
25000 0.4 0.6

Results:
The classification results of the Bayesian classifier evaluated on 30% of the messages from each

of the dataset are reported below:

For bigrams with 150 tokens, the classification results showed an FP rate <1% for three

datasets-Ling-spam, Enron (except for 0.5 threshold) and TREC07 for all threshold values. For

the PU1 dataset an FP rate between 1-4.3% resulted. The Grey rate was the lowest for the Enron

dataset and range between 1.5-8% for the remaining three datasets as shown in Figure 3.14.

Figure 3.14: Test Results for all four datasets for Bigrams with token size of 150 for several

threshold sets

For token size of 500 for bigrams (shown in Figure 3.15), the classifier performance was similar

to the token size of 150 although the grey rates were lower for the Ling-spam and TREC07 datasets

and the FP rates were lower for the PU1 and Enron datasets. Overall, having additional 250 bigram

tokens did not change the performance.

 83

Figure 3.15: Test Results for all dataset for Bigrams with token size of 500 for several threshold

sets

Selecting 5000 significant tokens for classification shows similar results for FP, FN and grey

rates (Figure 3.16) for all four datasets as other token sizes.

Figure 3.16: Test Results for all dataset for Bigrams with token size of 5000 for several threshold

sets

It is, thus, noted that further increasing the token size does not make an impact on the outcome

produced by the classifier as shown in Figures 3.17, 3.18 and 3.19, and the results are comparative

and close.

 84

Figure 3.17: Test Results for all dataset for Bigrams with token size of 10000 for several

threshold sets

With a token size of 10,000, FN and FP rates reduced slightly for far apart threshold values;

however, they increased for 0.5-0.5 threshold values. The Grey rate remained comparable to

smaller token sizes for all datasets.

Figure 3.18: Test Results for all dataset for Bigrams with token size of 20000 for several

threshold sets

By increasing the token size further to 20,000 as shown in Figure 3.18, FP and the Grey rate

remained similar to lower token sizes used as features. The FN rate reduced slightly which means

that spam detection efficiency increased.

 85

Figure 3.19: Test Results for all dataset for Bigrams with token size of 25000 for several

threshold sets

For bigrams, the largest token size used in the experiment was 25000, with values of FP, FN rate

and grey rates similar to 20000 bigram tokens used as features. Hence, this demonstrates that token

size has no significant impact on classifier performance.

Table 3.8 show the comparative metrics for the performance of classifiers for all parameters. The

FN, FP and grey rate are very similar for all token sizes. Increases in token sizes simultaneously

increase the complexity of the correlation matrix; hence, if the classifier provides similar outcomes

for smaller token sizes in terms of accuracy of spam or ham output class determination for smaller

token size, then selecting a smaller token size for bigrams would be advisable.

Table 3.8: Results for all Parameter Sets for all dataset for Bigrams

 (on next page)

 86

Figure 3.20 show the cost function and FP rate comparison for all datasets with all selected token

sizes and threshold values for bigrams to identify the best performing combination of token size

and threshold value.

M
AX

HAM

SPAM

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

TOKENS
CUT OFF

CUT OFF
PU1

PU1
PU1

LINGSPAM
LINGSPAM

LINGSPAM
ENRON

ENRON
ENRON

TREC07
TREC07

TREC07
150

0.5
0.5

4.425916
1.005508

0
2.414059

0.075996
3.495211

0
0.73704

0.63683305
0

0
0.318417

0.135701
2.527517

0
0.573354

150
0.15

0.9
1.431279

0.243056
8.028938

3.172932
0

0.380987
3.515142

1.13074
0

0
1.158894

0.347668
0

0.588928
5.82161

1.864268
150

0.2
0.9

1.159408
0.346743

7.105764
2.780782

0
0.795977

3.347521
1.163452

0
0

1.094666
0.3284

0
0.641335

5.685381
1.833881

150
0.3

0.8
1.972553

0.416188
4.557861

2.436872
0

1.175287
2.419351

0.960863
0

0
0.906171

0.271851
0

0.961663
4.546829

1.556381
150

0.4
0.6

2.696609
0.797653

2.684308
2.313128

0.034578
1.453784

1.446352
0.741951

0
0

0.635297
0.190589

0
1.309491

2.856463
1.118837

2.337153
0.56183

4.475374
2.623555

0.022115
1.460249

2.145673
0.946809

0.12736661
0

0.759006
0.291385

0.02714
1.205787

3.782056
1.389344

500
0.5

0.5
4.718407

1.03999
0

2.567202
0.076015

3.395354
0

0.717078
0.47332186

0
0

0.236661
0.109253

2.51374
0

0.557374
500

0.15
0.9

1.402365
0.173611

7.157493
2.883153

0
0.657567

2.961118
1.019849

0
0

0.941078
0.282323

0.044679
0.745832

5.410273
1.794588

500
0.2

0.9
1.052165

0.45091
6.598186

2.59572
0

0.623084
3.024297

1.031906
0

0
0.816811

0.245043
0.044705

0.879877
5.311599

1.791808
500

0.3
0.8

1.832757
0.485632

4.24543
2.287134

0
1.244971

1.803423
0.790021

0.0172117
0

0.610165
0.191655

0
1.062057

4.298144
1.501855

500
0.4

0.6
3.18018

0.555316
1.758501

2.228704
0.013812

1.316092
0.875756

0.532851
0.03442341

0
0.402122

0.137848
0.018657

1.414402
2.595782

1.070943
2.437175

0.541092
3.951922

2.512382
0.017965

1.447414
1.732919

0.818341
0.10499139

0
0.554035

0.218706
0.043459

1.323181
3.52316

1.343314
5000

0.5
0.5

4.157525
1.040469

0
2.286856

0.06908
2.873324

0
0.609205

0.47332186
0

0
0.236661

0.288963
2.702055

0
0.684893

5000
0.15

0.9
1.322735

0.277059
7.692125

3.024417
0

0.58932
2.915972

0.992656
0

0
1.00391

0.301173
0

0.802971
5.469775

1.801527
5000

0.2
0.9

1.240487
0.520354

6.338964
2.626004

0
0.658285

2.616199
0.916517

0
0

0.844736
0.253421

0
0.892673

5.434281
1.808819

5000
0.3

0.8
2.265481

0.138889
4.097644

2.389812
0

1.175287
1.739673

0.756959
0.02581756

0
0.639486

0.204755
0

1.113718
4.222922

1.48962
5000

0.4
0.6

3.347302
0.90182

2.201032
2.514324

0.020737
1.694684

0.933367
0.629315

0.06024096
0

0.430047
0.159135

0
1.49332

2.638211
1.090127

2.466706
0.575718

4.065953
2.568283

0.017963
1.39818

1.641042
0.78093

0.11187608
0

0.583636
0.231029

0.057793
1.400948

3.553038
1.374997

10000
0.5

0.5
4.847719

0.797414
0

2.583342
0.055315

3.251437
0

0.677945
0.49053356

0
0

0.245267
0.284714

2.746325
0

0.691622
10000

0.15
0.9

1.484749
0.104167

7.489854
3.010164

0
0.381226

3.088961
1.002933

0.00860585
0

0.922927
0.281181

0
0.831806

5.570283
1.837446

10000
0.2

0.9
1.374455

0.346743
6.321286

2.652962
0

0.623324
2.937957

1.006052
0

0
0.869869

0.260961
0

0.853445
5.516399

1.825609
10000

0.3
0.8

1.725375
0.762452

4.62602
2.402984

0
0.865182

1.538146
0.63448

0.0172117
0

0.628316
0.197101

0
1.104388

4.326348
1.518782

10000
0.4

0.6
3.020212

0.590038
2.184778

2.283547
0.041465

1.248324
1.048892

0.585065
0

0
0.471935

0.141581
0

1.423603
2.674614

1.087105
2.490502

0.520163
4.124388

2.5866
0.019356

1.273898
1.722791

0.781295
0.10327022

0
0.578609

0.225218
0.056943

1.391913
3.617529

1.392113
20000

0.5
0.5

4.64286
0.832854

0
2.488001

0.082921
2.458094

0
0.533079

0.37005164
0

0
0.185026

0.190796
2.664007

0
0.6282

20000
0.15

0.9
1.483587

0.069444
7.038479

2.867226
0

0.520115
2.725639

0.921715
0

0
0.973192

0.291958
0

0.81336
5.51577

1.817403
20000

0.2
0.9

1.458597
0.207854

6.768146
2.801313

0
0.934626

2.517252
0.942101

0.00860585
0

0.875454
0.266939

0
0.86951

5.358677
1.781505

20000
0.3

0.8
1.673795

0.76341
5.006964

2.491669
0

0.727011
1.917761

0.720731
0.0172117

0
0.654845

0.205059
0

1.152701
4.271434

1.51197
20000

0.4
0.6

2.936356
0.623324

2.045004
2.206344

0.027643
1.58932

0.76033
0.559785

0.03442341
0

0.467746
0.157536

0
1.452657

2.702491
1.101279

2.439039
0.499377

4.171719
2.570911

0.022113
1.245833

1.584196
0.735482

0.08605852
0

0.594247
0.221303

0.038159
1.390447

3.569674
1.368071

25000
0.5

0.5
4.774061

0.970785
0

2.581188
0.110574

2.835489
0

0.622385
0.37005164

0
0

0.185026
0.257384

2.693587
0

0.667409
25000

0.15
0.9

1.485624
0.138889

7.5902
3.04765

0
0.795259

2.805522
1.000708

0
0

0.988551
0.296565

0
0.778321

5.549466
1.820504

25000
0.2

0.9
1.349041

0.207854
6.232843

2.585944
0

0.657567
2.678305

0.935005
0

0
0.889416

0.266825
0

0.876668
5.429015

1.804038
25000

0.3
0.8

1.7277
0.519875

4.399115
2.28756

0
0.900144

1.716599
0.695008

0.00860585
0

0.629712
0.193217

0
1.137279

4.182345
1.482159

25000
0.4

0.6
3.128021

0.416667
2.077791

2.270681
0.006916

1.352251
0.9567

0.560918
0.02581756

0
0.417481

0.138153
0

1.423168
2.638438

1.076165
2.492889

0.450814
4.05999

2.554605
0.023498

1.308142
1.631425

0.762805
0.08089501

0
0.585032

0.215957
0.051477

1.381805
3.559853

1.370055

 87

FP Rate

PU1 Ling-spam

Enron TREC07

Cost

 PU1 Ling-spam

Enron TREC07

Figure 3.20: FP Rate and Cost Function for All Four Datasets for Bigrams for All Parameter Values

The above comparison shows that increasing token sizes did not significantly contribute to the

classifier performance for bigrams. Analysing the values and graphs from Table 3.8 and Figure

3.20, it was found that classifier performance is inferior for close threshold values although cost is

lower since those threshold values lead to no or low greys whereas for far apart threshold values

the classifier performs well with high cost due to high numbers of greys. Hence, for bigrams, far

apart threshold values of 0.15 and 0.9 are chosen as best performing parameters for 150 token size.

 88

Experiment 2.3: Trigrams with Varying Feature Set (Token) Size

To determine if correlation between three consecutive tokens impacts on the learning model and

its capability to perform better in classification, trigrams were considered in this experiment, a

correlation matrix was developed with the trigrams for each message, probability calculated and

stored to be used for classification later.

Method: In this experiment, trigrams with varying significant token sizes of 150, 500, 5000,

10000, 20000, 25000 and 50000 for each of the threshold value sets given in table 3.1 was selected

for each dataset. Only neighbouring tokens were considered to form the trigrams. For each trigram

constructed from ham and spam datasets, the probability of the token was calculated and learned

by the filter model. When a new message arrives, trigram features are extracted, probabilities

calculated, and most the significant tokens are used to perform classification. The total number of

parameters tested for trigrams for each dataset - PU1, Ling-spam, Enron and TREC07 is shown in

Table 3.9.

Table 3.9: Parameter Sets for each dataset for Trigrams

Max Tokens Spam cut off Ham cut off

150 0.5 0.5

150 0.15 0.9

150 0.2 0.9

150 0.3 0.8

150 0.4 0.6

500 0.5 0.5

500 0.15 0.9

500 0.2 0.9

500 0.3 0.8

500 0.4 0.6

5000 0.5 0.5

5000 0.15 0.9

5000 0.2 0.9

5000 0.3 0.8

5000 0.4 0.6

10000 0.5 0.5

10000 0.15 0.9

10000 0.2 0.9

10000 0.3 0.8

10000 0.4 0.6

 89

20000 0.5 0.5

20000 0.15 0.9

20000 0.2 0.9

20000 0.3 0.8

20000 0.4 0.6

25000 0.5 0.5

25000 0.15 0.9

25000 0.2 0.9

25000 0.3 0.8

25000 0.4 0.6

50000 0.5 0.5

50000 0.15 0.9

50000 0.2 0.9

50000 0.3 0.8

50000 0.4 0.6

Results:

Figures 3.21 to 3.27 show that the FP rate was not impacted by increasing the token size. The

FN rate increased slightly by increasing the token size across all datasets.

Figure 3.21: Test Results for all dataset for Trigrams with token size of 150 for several threshold

sets

 90

Figure 3.22: Test Results for all dataset for Trigrams with token size of 500 for several threshold

sets

Figure 3.23: Test Results for all dataset for Trigrams with token size of 5000 for several

threshold sets

Figure 3.24: Test Results for all dataset for Trigrams with token size of 10000 for several

threshold sets

 91

Figure 3.25: Test Results for all dataset for Trigrams with token size of 20000 for several

threshold sets

Figure 3.26: Test Results for all dataset for Trigrams with token size of 25000 for several

threshold sets

Figure 3.27: Test Results for all dataset for Trigrams with token size of 50000 for several

threshold sets

From the results compared in Table 3.10, it was observed that the FP rate increased slightly for

all datasets as the token size increased. For the FN rate no pattern was detected though the

performance of the classifier produced comparative results for all parameters. The Grey rate

 92

skewed towards higher values for far apart threshold values although the FP rate showed good

performance for those thresholds. The cost function confirms comparative performance of the

classifier as the difference in value is negligible.

Table 3.10: Results for all Parameter Sets for all dataset for Trigrams

M
AX

HAM

SPAM

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

FP RATE
FN RATE

GREY RATE
COST

TOKENS
CUTOFF

CUTOFF
PU1

PU1
PU1

LINGSPAM
LINGSPAM

LINGSPAM
ENRON

ENRON
ENRON

TREC07
TREC07

TREC07
150

0.5
0.5

4.148358
0.728448

0
2.219869

0.034559043
3.188457854

0
0.654971

0.757314974
0

0
0.378657

0.156297559
2.643325

0
0.606814

150
0.15

0.9
0.919224

0.312021
8.682133

3.126656
0

0.554118774
3.831381213

1.260238
0

0
1.263614

0.379084
0

0.572218
5.798838

1.854095
150

0.2
0.9

0.998405
0.277299

7.493861
2.80282

0
0.796695402

3.56707958
1.229463

0
0

1.075119
0.322536

0
0.686223

5.877857
1.900602

150
0.3

0.8
1.483737

0.416188
5.052018

2.340711
0

1.038314176
2.46597759

0.947456
0

0
0.950852

0.285256
0

0.933398
4.664807

1.586121
150

0.4
0.6

2.39989
0.381466

2.821509
2.122691

0.027662517
1.454262452

1.549674755
0.769586

0
0

0.770734
0.23122

0
1.233538

2.967943
1.137091

1.989923
0.423084

4.809904
2.522549

0.012444312
1.406369732

2.282822628
0.972343

0.151462995
0

0.812064
0.319351

0.031259512
1.21374

3.861889
1.416944

500
0.5

0.5
4.36924

0.589799
0

2.30258
0.055277301

3.35967433
0

0.699574
0.464716007

0
0

0.232358
0.119756941

2.742612
0

0.608401
500

0.15
0.9

1.079047
0.416667

7.735621
2.943543

0
0.380507663

3.139934554
1.018082

0
0

1.161687
0.348506

0.009578544
0.726515

5.641066
1.842412

500
0.2

0.9
1.078909

0.381944
7.143077

2.758767
0

0.899185824
2.856205443

1.036699
0

0
1.012287

0.303686
0.009009009

0.868898
5.475826

1.821032
500

0.3
0.8

1.6475
0.346743

4.874899
2.355568

0
0.968869732

1.76307289
0.722696

0.008605852
0

0.713488
0.218349

0.045106393
1.011495

4.240571
1.497024

500
0.4

0.6
2.451613

0.416188
2.076459

1.931982
0.013831259

1.727729885
1.048269338

0.666942
0.060240964

0
0.576655

0.203117
0.009191176

1.383174
2.748396

1.105749
2.125262

0.430268
4.366011

2.458488
0.013821712

1.467193487
1.761496445

0.828798
0.106712565

0
0.692823

0.261203
0.038528413

1.346539
3.621172

1.374923
5000

0.5
0.5

3.964109
0.865661

0
2.155187

0.069099008
3.08045977

0
0.650641

0.473321859
0

0
0.236661

0.266663288
2.679514

0
0.669235

5000
0.15

0.9
1.269125

0.3125
8.285976

3.182855
0

0.657806513
2.8295319

0.980421
0

0
1.146328

0.343898
0

0.764832
5.564806

1.822408
5000

0.2
0.9

0.889719
0.449952

6.89606
2.603668

0
0.58908046

2.639213944
0.90958

0
0

0.95504
0.286512

0
0.863716

5.504816
1.824188

5000
0.3

0.8
1.672926

0.450431
4.928781

2.405183
0

0.831417625
1.901150657

0.736629
0

0
0.746998

0.224099
0

1.076187
4.434441

1.54557
5000

0.4
0.6

2.29251
0.588841

2.365816
1.973768

0.013831259
1.419300766

0.944987025
0.574272

0.034423408
0

0.435633
0.147901

0
1.452391

2.806895
1.132547

2.017678
0.533477

4.495327
2.464132

0.016586053
1.315613027

1.662976705
0.770309

0.101549053
0

0.6568
0.247814

0.053332658
1.367328

3.662192
1.398789

10000
0.5

0.5
4.291657

0.797414
0

2.305311
0.089855421

2.628591954
0

0.570646
0.576592083

0
0

0.288296
0.23613678

2.602459
0

0.63856
10000

0.15
0.9

1.024269
0.414751

7.937427
2.976313

0
0.622605364

3.184909113
1.079994

0
0

1.098855
0.329657

0
0.79408

5.732188
1.878472

10000
0.2

0.9
1.240192

0.277778
7.052375

2.791364
0

0.864463602
3.081821386

1.097439
0

0
0.985758

0.295727
0

0.882272
5.61527

1.861035
10000

0.3
0.8

1.643999
0.449713

4.877841
2.375294

0
0.901340996

1.895846496
0.749022

0.008605852
0

0.691148
0.211647

0
1.043837

4.441966
1.541357

10000
0.4

0.6
2.42692

0.588602
2.395145

2.049724
0.013831259

1.662356322
0.950733785

0.624607
0.04302926

0
0.469143

0.162257
0

1.374369
2.833804

1.125015
2.125407

0.505651
4.452558

2.499601
0.020737336

1.335871648
1.822662156

0.824342
0.125645439

0
0.648981

0.257517
0.047227356

1.339403
3.724645

1.408888
20000

0.5
0.5

4.422999
0.520115

0
2.315522

0.048342568
3.081657088

0
0.640503

0.662650602
0

0
0.331325

0.396746372
2.579626

0
0.714298

20000
0.15

0.9
0.890733

0.345785
8.435692

3.045231
0

0.9348659
3.110677373

1.120176
0

0
1.118403

0.335521
0

0.745901
5.5655

1.81883
20000

0.2
0.9

1.107243
0.416188

7.208642
2.799451

0
0.623563218

2.990842246
1.021965

0.008605852
0

1.023457
0.31134

0
0.810814

5.582458
1.8369

20000
0.3

0.8
1.564962

0.58932
5.12911

2.439078
0

1.107279693
1.970652737

0.812652
0.008605852

0
0.745602

0.227983
0

1.03442
4.345699

1.510594
20000

0.4
0.6

2.4551
0.485872

2.866496
2.184673

0.006906077
1.626676245

1.077315987
0.651983

0.051635112
0

0.554314
0.192112

0
1.350695

2.822901
1.117009

2.088207
0.471456

4.727988
2.556791

0.011049729
1.474808429

1.829897669
0.849456

0.146299484
0

0.688355
0.279656

0.079349274
1.304291

3.663311
1.399526

25000
0.5

0.5
3.881731

0.588362
0

2.058538
0.034539939

3.425766284
0

0.702423
0.542168675

0
0

0.271084
0.298801278

2.703939
0

0.690188
25000

0.15
0.9

1.105644
0.312021

8.128798
3.053866

0
0.658524904

2.898796825
1.001344

0
0

1.090478
0.327143

0
0.765707

5.664889
1.852608

25000
0.2

0.9
1.133246

0.311542
7.125282

2.766516
0

0.829741379
2.851100586

1.021278
0

0
1.022061

0.306618
0

0.913364
5.596592

1.86165
25000

0.3
0.8

1.403818
0.72773

5.115292
2.382043

0
1.038793103

1.925000565
0.785259

0.008605852
0

0.751187
0.229659

0
1.071883

4.479275
1.558159

25000
0.4

0.6
2.377803

0.693966
2.77881

2.161338
0

1.349856322
1.042893223

0.582839
0.034423408

0
0.538956

0.178898
0

1.409599
2.774618

1.114305
1.980449

0.526724
4.629636

2.48446
0.006907988

1.460536398
1.74355824

0.818629
0.117039587

0
0.680536

0.262681
0.059760256

1.372898
3.703075

1.415382
50000

0.5
0.5

4.366173
0.797414

0
2.342569

0.055267749
2.559626437

0
0.539559

0.542168675
0

0
0.271084

0.249256927
2.772192

0
0.679067

50000
0.15

0.9
1.159406

0.207615
8.008364

3.023735
0

0.588362069
2.938640472

0.999265
0

0
1.10444

0.331332
0

0.787601
5.666799

1.85756
50000

0.2
0.9

1.158384
0.207615

6.865515
2.680369

0
0.691810345

2.885564024
1.004031

0
0

0.959229
0.287769

0
0.856068

5.514677
1.825617

50000
0.3

0.8
1.699365

0.347222
5.309268

2.511907
0

0.967193487
2.079237226

0.81721
0.125502008

0
0.667097

0.26288
0

1.106637
4.361877

1.52989
50000

0.4
0.6

2.534299
0.45067

2.304012
2.048487

0
1.590996169

0.961558641
0.606667

0.130731258
0

0.663768
0.264496

0
1.348141

2.831114
1.118963

2.183525
0.402107

4.497432
2.521414

0.01105355
1.279597701

1.773000073
0.793346

0.159680388
0

0.678907
0.283512

0.049851385
1.374128

3.674893
1.402219

 93

FP rate

PU1 Ling-spam

Enron TREC07

Cost

PU1 Ling-spam

Enron TREC07

Figure 3.28: FP rate and cost function for all four datasets for Trigrams for all parameter values

3.9 Analysis of Results and Discussion – Modified Bayesian
Classifier

Initial results indicated inconsistent behaviour among the datasets, especially for the PU1. The

value of FP, FN and grey varied slightly for all 5 datasets. Different data sets showed different

optimum values for cut-offs and token sizes. This may mean that each data set differs since data

sets belong to different times, probably have different styles of both spam and ham emails

belonging to different authors and spam designs. From the results for unigrams, bigrams and

 94

trigrams it is noted that FP and FN rates consistently increased consistent with the widening of the

gap between spam and ham cut offs. For median values of the threshold, it is observed that the

classifier performed with high accuracy for low FP rates.

In general, it is noticed that FN and grey rates skew towards higher values which means the

accuracy of the classifier is low. From the overall results, it is noticed that the following models

had the best scores amongst all of parameters

For the unigram model 50, 0.4, 0.6, (and (50, 0.5, 0.5))

For the bigrams model 20000, 0.4, 0.6, (and (20000, 0.5, 0.5))

For the trigrams model 5000, 0.4, 0.6 (and (5000, 0.5, 0.5))

Since the FP rate for the best performing models for bigrams and trigrams are comparable, it is

important to consider the execution cost. It transpired that the model with 0.4 and 0.6 cut-offs and

the same model with 0.5 and 0.5 cut-offs had similar execution times. For example, the times for

20 iterations of 3393 messages are:

unigram: 302 seconds

bigrams: 391 seconds

trigrams: 476 seconds

A general increase in time of 29% for bigrams and 57% for trigrams was observed compared to

unigram models.

When computing the average time for one email (divide seconds with 20*3393), the same

percentage increase was observed. However, considering that one email is scored as far below 1

second, it could be argued that this performance penalty is acceptable if emails are "coming slowly"

to the inbox and processing requires 60% more time (although that is still much less than a second).

In this light, it can be concluded that training data sets have a significant impact on choice of

parameters for classification (K. Bajaj & Pieprzyk, 2014). Further, it is deduced that increasing the

token size for bigrams does not increase the performance of the classifier. For token sizes of 150-

200 for unigrams and bigrams, there is similar performance. If the FP rate is low, that means high

accuracy of the model; however, the values of the FN and the grey rates were as high as 6% and

9% respectively. Hence, it is concluded that further research with unigrams and bigrams of token

size 150 to improve the FN rate and eliminate greys would certainly contribute to improving the

performance of the Bayesian classifier.

The next chapter develops a framework for the inclusion of semantic and syntactic feature sets

which can be fed into the classification filter which adds another layer of classification. The results

of this addition upon classification are then tested across a series of experiments to determine

positive and negative effects followed by a discussion.

 95

Chapter 4

DMLEM-Dynamic Multi-Layer Ensemble
model for high precision classification of

Greys

Security in IT is like locking your house or car – it doesn't stop the bad guys, but if it's good
enough they may move on to an easier target. — Paul Herbka

4.1 Overview
In the previous chapter, it was shown that Bayesian Classifier provides an additional level of

email spam content filtering at the client side to detect the email spam that escaped the mail server.

This classifier was designed using a Naïve Bayes classification algorithm where the default value

of tokens is unigrams. It has been shown that email spam detection rates can be improved by using

bigrams with little cost in terms of time, efficiency and computation. It works with numerous

threshold values. Several experiments conducted on variety of datasets have demonstrated that this

Bayesian classifier provides good results for obtaining a reasonable trade-off between false

positives and false negatives, especially the false positive rate.

However, although the classifier achieves the best performance for low false positives and false

negatives with far apart threshold values, it leads to higher numbers of unclassified emails, referred

to as ‘greys’. This requires substantial time commitment from the user to filter these greys and

classify them manually to obtain high performance from the filter. Client-side email filtering is

designed to be efficient and independent, with the purpose of reducing the impact of email spam

such as loss of user productivity, time and cost.

 96

Hence, in this chapter a multi-layer model is proposed that suggests an enhancement to the

Bayesian Classifier - an additional layer of filtering for use as client-side filter. It is proposed to

use techniques for, first, feature selection and then, classification of unclassified greys in the

Bayesian Classifier into ham and spam adding a further supervised machine learning algorithm.

The goal of supervised learning (predictive approach) is to learn from examples. This data is

called ‘training set’, based on which an algorithm generalises patterns that correctly respond to all

possible inputs. Suppose there is a labelled set of input-output pairs in a training set T with a given

set of X training examples of input a which forms a vector of dimension T and an output b. Given

the labelled training set T = {(𝑎j, 𝑏j)}j�5� that contains mapping between a and b, the aim is to

identify a pattern. Here, each training input ai may be, for example, the length and weight of an

object, known as features or attributes. The training input could also represent an image, a sentence

or a document such as an email message, etc. The output bi may be anything in principle, but the

common assumption is that it is a finite set of outputs such as bi belongs to {s, t,….z} such as day

or night known as categorical or even real value scalars, known as regression. The supervised

algorithms used in the proposed model are correlation and regression technique, logistic regression,

k-nearest neighbour and support vector machine.

Furthermore, this Bayesian Classifier only relies on text features and assumes that all the

unigram features are independent and uncorrelated. During the feature selection process, it

performs feature reduction by selecting 150 significant unigram tokens. Hence, selecting

appropriate features with correct representation is critical to this classifier’s performance.

Feature selection is essential to creating an efficient content-based filtering system taking into

account the computation complexity and the classifier performance. One of the major challenges

of content-based filtering is the relevance of features to email spam filtering and the redundancy

between features. Selection of appropriate techniques and methods for feature selection can

precisely determine the appropriate features and address these challenges. There are several

methods used by researchers for selection of appropriate features from header and/or body of

emails for content-based email spam filtering. However, there is limited evidence in research for

feature selection with the use of syntactic features. Furthermore, to the best of our knowledge, there

are no research papers using syntactic features for filtering email spam at the client side as

additional layer of spam detection. J. Kim et al. (2007) used a Naive Bayes model to focus on

URLs in the email messages instead of considering words in the filter they developed. As part of

the learning process, the filter was updated with the messages that were classified. The filter was

fed back only periodically for correctly classified messages but more regularly for incorrectly

classified ones. A. K. Sharma & Yadav (2015) suggested a data mining technique for client-based

filtering; however, no implementation for clients has been presented, proposed or mentioned as

future work. This thesis presents a model that fills this gap in research.

 97

In this chapter, for feature selection and classification of ham and spam emails, a BoW approach

with term frequency using sparse features is proposed. The Term Frequency method provides

tokenisation of a collection of text documents and builds a vocabulary of words converting the raw

collection of text to a numerical vector representation of terms and n-grams which makes this easy

to use this representation as features for classification in machine learning. BoW and the Term

Frequency technique have been used for feature selection in email spam detection and achieved

good results. However, they have not been used together and for syntactic feature selection. Here,

these two techniques are proposed to be used for semantic and syntactic feature selection and email

classification into two output classes as ham and spam. In further sections of the chapter, the

implementation of these two techniques for selection of semantic and syntactic features and then

discrimination of emails into legitimate ham and malicious spam is described. Here, the solution

for feature relevance and reduction through the selection of structural features as syntactic features

are explained as well as identification of groups of features which enable an efficient use of the

Bayesian Classifier for client-side email spam filtering.

The selected features are evaluated on two experiments using an individual supervised machine

learning algorithm, correlation and regression technique as part of proposed multilayer dynamic

model (DMLM) as presented in Section 4.2 and results are presented in Section 4.6. There is

evidence that suggests that ensembles tend to perform better than individual models. Therefore,

the subsequent experiment develops a bagging ensemble of four supervised machine learning

algorithms as stated earlier to perform evaluation in the additional layer of the proposed model.

With this ensemble, the model becomes a dynamic multi-layer ensemble model (DMLEM) as

presented in Section 4.7, the model is termed “Dynamic” since the model is updated in real time

as soon as classification of the email message is complete. The outcome of the classification feeds

back into the model generation process to update the learning dynamically as shown in figure 4.4.

The results of experiments conducted in section 4.7 are presented in Section 4.8 along with a

comparison with other ensemble models from current research although these latter models are

designed for spam detection at the server side and are not multi-layer. Furthermore, the

classification is performed with thresholds such that there is only one outcome of spam or ham.

Hence, the proposed model is a novel technique for email spam detection. Section 4.9 contains a

detailed analysis of results and discussion followed by a conclusion to the section.

4.2 Experiment 3: Dynamic Multi-layer email spam
detection Model (DMLM) for Classification of Greys

A solution to spam emails remains elusive despite more than a decade of research efforts on

spam filtering. As stated earlier, Naïve Bayesian algorithm-based content filtering has achieved a

reasonable level of success among the spam detection mechanisms proposed in the past. Chapter

 98

3 introduced the Bayesian classifier, a content filtering spam detection tool based on Naïve

Bayesian classification using textual features.

This Bayesian classifier uses semantic text features to classify emails into three classes: spam,

ham and grey. Grey is an email that lies between the two threshold values called the grey area. It

is not classified as spam or ham as it contains features that belong to both. It was observed in

Chapter 3 that the performance of the Bayesian classifier meets high expectations except for this

third classification output class ‘grey. Grey emails lead the user to spend time in manually

classifying those emails to determine if any important emails were incorrectly categorised as greys,

adding to false positives. This manual classification is inefficient and causes loss to user in terms

of time and money.

Hence, in this section of the chapter a dynamic multi-layer model (DMLM) is proposed that is

superimposes onto the client-based Bayesian classifier - a second layer of filtering containing text

(semantic) and non-textual (syntactic) features. This additional layer, shown as layer 2 in Figure

4.1, has three main objectives of eliminating the greys, to detect false positives that may have

slipped through the Bayesian classifier, and to increase the accuracy of email spam detection.

This layer 2 is used to detect (1) email spam that was misclassified by the mail server as

legitimate email message to arrive in the user’s email client and then also classified by the Bayesian

classifier filter as ‘grey’ and (2) ham that is incorrectly classified by the Bayesian classifier as

‘greys’ or spam. This 2-layer filtering at client side is shown in Figure 4.1 where layer 1 is the

Bayesian classifier and layer 2 is the additional layer that forms the DMLM.

Figure 4.1: 2-stage filtering at client side

Layer 1: Bayesian Classifier-Content Filtering using Text
Features

Inbox

Spam Grey

Layer 2: DMLM-Content Filtering using Semantic and Syntactic
Features

Spam Grey

Inbox

 99

This proposed model eliminates greys by re-classifying the grey messages. The second layer in

the model performs the following classification steps (1) categorizes grey emails into clear spam

and ham, where spam is moved to a spam folder and ham to the Inbox and (2) reclassifies spam

messages into ham and spam, where ham in forwarded to the Inbox and spam stays in the spam

folder. The objective of this model is two-fold, first to recover the loss of important emails as false

positives in folders for greys and spam created by Bayesian classifier and second to improve the

learning for enhanced classification performance accuracy. This multi-layer model improves the

accuracy of classification. The experimental results of this model are encouraging. The framework

for multi-layer email spam detection model is shown in Figure 4.2.

Figure 4.2: Framework for Multi-Layer Email Spam Detection Model

It has four stages - semantic feature selection, syntactic feature selection, model generation and

email spam detection and classification. In content filtering, the raw feature set is composed of

large numbers of features which lead to high computation cost in terms of power consumption and

time for the classification process. The Bayesian classifier handles this by considering only 150

significant tokens. However, it has a limitation in that it does not categorise the emails into two the

classes of ham and spam. The multi-layer spam detection model visualises the classification

problem as two output class categorisations (ham and spam). Here, a count vectorizer method is

used to extract features and then selected feature set is used to build a spare matrix. In the first

stage, it builds an initial attribute set from semantic text features, then considers and selects

syntactic non-text features. Several syntactic features such as numbers of link symbols, numbers

of mis-spelt words and overuse of numeric characters provide significant information about emails.

Finally, all the selected features are integrated into a new significant feature set as a frequency

matrix. This is used for model generation and email spam detection and classification using the

machine learning process. It then sends the feedback to the model for the learning process.

The first step is to collect and understand the data and its structure before preparing it for the

algorithms to learn from. Before data can be used for learning, it must have certain conditions

related to content, amount, format and presentation. Classifiers and algorithms in machine learning

do not perform well if the data is of poor quality in terms of accuracy and sufficiency in terms of

size. Hence data preparation involves gathering, pre-processing and representing the data in the

Spam

Greys
Semantic
Feature

Selection

Syntactic
Feature

Selection

Model
generation

Email
Spam

Detection/
Classificati

on

 100

right format. The format may take the form of attribute value vectors where attribute is the

characteristic known as token and the value is the output also known as class. The next step

consists of identification of features that represent this data and that will point to a particular type

of output. Thereafter, the data is fed into statistical distribution via a model suited to text and

numeric or image data. Machine learning algorithms are fed with the prepared data to build a model

to be used for classifying novel inputs if these inputs follow the representation that is suitable. The

model is then evaluated using the test harness. Data representation, feature selection and model

training are the key processes.

Figure 4.3: Machine learning Process

Data Selection: This step is important as the type and size of data chosen will affect the entire

learning process of the model. The data should be representative of the domain for which the model

is being developed. For supervised learning, the data contains input as well as output values; input

values are independent, while outputs are dependent on input attributes.

Data Pre-processing: The data in its raw form is sometimes flawed and may not be suitable. It is

important to ensure that errors are identified, cleaned, secured and governed. Errors may be empty

spaces or even columns. The pre-processing of data involves addressing errors, as well as missing

values and outliers.

Data Representation: refers to the form in which data is stored and processed for learning. Data

must be prepared in the format that correctly represents populations or domains. Data may be

skewed and relationships which represent imbalances may lead to bias. This stage also involves

adjustment and manipulation such as normalisation, augmentation, de-duping of data so that final

Data Selection

Datasets

Raw Data
Data Pre-

Processing
Structured

Data

Iterate until data representation is
complete

Feature
Selection

Machine
Learning
algorithm

Model Generation

Candidat
e Model

Iterate to get best model and parameters

Best Model Deploy
Model

Model Training

Model Evaluation

Applications

 101

prepared data contain attributes to shape the dataset for the purpose. The focus is to analyse the

input data and then to develop a suitable representation to learn from.

Feature Selection: During this process, important features are selected that assist in choosing

appropriate data relevant to the problem domain to feed into the model. Also called attribute

selection or variable selection, it is an automatic selection of characteristics that are most relevant

to the prediction problem in question. It acts as a filter, aims to reduce the number of attributes by

muting attributes that are not useful as some machine learning algorithms do not perform well in

high dimensional spaces. This creates a simpler model that is easy to understand, is fast and has

improved performance. The aim of feature selection is to aid in developing an accurate

classification machine learning model for prediction. For the text categorisation problem, the most

common features are characters, words and strings that convey a meaningful message.

Model Generation and Parameter Selection: This step involves the selection of a suitable model

and associated parameters. There is no guidance for the choice of machine learning algorithm to

build the model and so far, there is no machine learning algorithm that has been identified as

superior. Some algorithms are more powerful than others, non-parametric, flexible as well as self-

tuning but may be difficult to implement especially for large datasets where simpler models scale

and perform better. In practice, that means that many algorithms need to be tested to select those

that work for the problem in question with acceptable speed, performance, reliability and accuracy

(Brownie, 2018).

AS for machine learning algorithms, there are no best machine learning algorithm parameters

either. This means, the same approach needs to be applied to grid search and select the parameters

that provide acceptable output for performance, reliability and accuracy.

Model Deployment and Training: Any algorithm needs to be trained to create the model. In this

step, the model is initialised with features and corresponding labels, where the model identifies the

patters in the example data that map these features onto the label. During this stage, the user may

define the control parameters which can be adjusted by optimising performance using cross

validation.

Model Evaluation: The model is evaluated to find the best performing algorithm and parameters.

Finally, the accuracy of the learnt function is evaluated using the test dataset which is distinctively

different from the dataset used for training this model.

The architecture for the Dynamic Multi-Layer Model (DMLM) is shown in Figure 4.4

 102

Figure 4.4: Architecture of DMLM

4.3 Semantic Feature Selection
Text Features help the user make sense of what they are reading. They generally consist of the

actual text in the document that contributes to content comprehension and the context of the

document - building blocks of the document that enhance comprehension.

In machine learning, ‘feature selection’ is a way to choose which parts of a message are relevant

for analysis, also known as ‘feature reduction’ or ‘feature extraction’. For email spam filtering, it

is the selection of variable subsets that provide the most relevant features for the development of

robust learning models for classification. Email spam classification systems deploy feature

techniques for feature selection that process data, reduce the number of features, and remove

irrelevant, redundant and noisy data from datasets. Feature selection in the simplest way is achieved

using ‘Bag-of-Words’ (BoW), These represent the message as an unstructured set of tokens,

sequence of characters that are separated by spaces and punctuation marks, which can be used to

characterise the entire or part of the message. For example, the entire email message includes

header and body while parts may be the body only, body and subject, the subject only or the header

only. For greater sophistication, the occurrence of the same word in different parts of the message

considers each event as different feature. This approach makes use of the structure of the email

New email

Mail Server

Bayesian Classifier

Semantic and Syntactic Features

Inbox Grey Mail

Junk Mail

Spam
Folder

Model Generation and Training

Classification
Spam Ham

 103

message; however, it does differentiate between the token present in the text of the body from the

technical information in the header. Our Bayesian classifier (Chapter 3) uses this approach.

There are four types of feature selection methods - filter, wrapper, embedded and hybrid. The

wrapper method starts with a set of all features, performs the classification using a learning

algorithm and evaluates the performance of a feature subset. It performs cross validation to find

the optimum feature set based on the gain in accuracy of the classification. This makes the wrapper

method computationally expensive and does not work well with large datasets that contain large

sets of features. The filter method is a correlation-based approach for the selection of features, is

fast but is not capable of minimising the generalisation error. The embedded methods consist of

algorithms that use feature selection and model fitting simultaneously using a sparsity regularizer

and making the weights of some features zero. Another option to overcome the shortcomings of

both, the filter and wrapper, methods is to use the fourth approach , hybrid, where some features

of the wrapper method are used together with the filter method for feature selection (Guyon &

Elisseeff, 2003).

Method of Semantic Feature Selection in DMLM:
To extract text features from the training data, the BoW approach has been applied to transforms

data into numerical features that can be used for machine learning techniques. A BoW variant is

useful where features are not just considered as binary but are regarded as weights based on the

number of occurrences of the token in the message. The basic BoW can be enhanced by utilising

alternative ways of feature selection such as stemming (removal of affixes), stopping (disregarding

frequently occurring words) and lemmatisation (to reduce the word to its root form).

Our proposed model incorporates this enhanced BoW vector space model for selecting the best

features; it uses term frequency to attach weights to the tokens to then store the features as a

document term matrix and chi square test. ‘Term frequency’ is a feature extraction method where

it transforms a text corpus into the vector of token counts and n-grams. This makes it easy to

directly use this representation as features (signals) in machine learning tasks such as for email

spam classification. This method has been selected as it provides a way by which collection of

email messages are tokenised, bigrams have been selected to be used to build tokens and a

vocabulary of known words is developed. Here, the number of times each token is present in an

email is counted and this count is used to determine the weight of that token. Then, feature vectors

are developed that are used to build the feature space and to be converted into a sparse matrix

which stores the features identified from the email training corpora. This is followed by encoding

of the new email message using the vocabulary developed from the training email dataset. For this

study, this method is used to tokenise the spam and ham emails from the training datasets and

develop the sparse matrix.

4.3The process of building the feature space is shown in Figure 4.5

 104

Figure 4.5: Building feature space using Semantic Features

This provides a sparse Document-Term Matrix M with a high number of columns. To apply

machine learning algorithms to such a matrix, there is need to filter these columns. Different

methods such as sparse latent special analysis, mutual information and chi-square test were tried

for filtering, from which the chi-square test chosen due to its superior performance.

Chi square is another feature selection method for text categorisation which measures the lack

of independence between the feature and output class (ham and spam) by computing the chi-

squared statistics between each non-negative feature and the class. It assigns a value of zero if there

is independence between the feature and the output class as those features are irrelevant for the

task of classification. The score is used to select the n features with the highest value of the chi-

squared statistic score. The selected features must contain a term count and be related to the output

classes of ham or spam. This gives a feature space with n significant features that are used for

training the classifier. The process flow model for feature selection is shown in Figure 4.6.

Training
dataset

Pre-processing Extract All
features

Feature
Selection

Feature
Vector

Feature
Space/Matrix

 105

Figure 4.6: Process Flow model for Semantic Feature Selection

4.4 Syntactic Feature selection

It is easy to deceive learning techniques focused only on textual attributes in an email making

it highly desirable to consider available additional features. This module analyses non-textual

attributes and is of high importance as it selects features that provide additional, significant

characteristics of ham and spam emails that impact the classification. Spam emails are highly

diverse in topic and in nature with some having only content while others may be a mix of content

and links or only links. They may also link directly to the web pages of spammers. Some spam

Total Features > Pre-set
number

Select n as most significant features

Begin

Extract and select features

Calculate the Document Term Matrix

Discard the features using Chi-Square test
and keep the most significant features

End

Obtain the most significant n semantic
features

 106

messages contain only graphics (pictures, or animations, embedded or as an attachment) and some

contain a mix of graphics and content. In many cases, graphics point to hidden links on the webpage

of spammers. The difficulty is that the genres of spam emails match closely those of ham emails

(letters, invitations, account summaries, notifications, order confirmations, offers, etc.) All these

factors together produce high complexity and diversity which make the spam filtering process

extremely challenging.

Spam filtering is further complicated by the complex nature of email spam data as spam topics

range from pharmaceuticals, porn, shares and stock exchange to medicines and drugs, hardware

and software, dating, online banking, healthcare, tax office refunds, account credential updates,

online courses, workshop registrations, software updates, getting a degree, religious events, travel

packages, holidays, gifts, job offers, threats, conference calls and more.

As discussed earlier in Chapter 3 (see learning email filter model), the learning capacity of a

filter is highly dependent upon the email corpus used to train the model and is impacted by the shift

in the nature of email spam. This section aims to analyse another facet of email spam to address

this problem - anti-spam techniques - especially the filtering of technological endorsements

through capability enhancement designed to prevent email spam from entrenching itself. In

addition to applying another layer of anti-spam technique at the client level, training the spam

classifier with relevant user data to act as control tool, concept drift, and identifying poison attacks

can reduce the chances of FP and FN. The case that training the classifier with user data leads to

reduced FP and FN has been proven in Chapter 3.

A possible solution, in this case, is to make the filters more efficient by adapting to user

preferences, user behaviour, including syntactic structural features such as times of the day the

spam email is received, and the dates/periods during which spam email is received. Such fine

tuning could potentially further reduce the number of FP and FN. The introduction of non-textual

features is also testified by the spam reports published by Kaspersky labs for Quarter 2, 2015

(Shcherbakova et al., 2015) which highlighted the variation in features identified in spam emails

used by spammers to deceive the filtering solutions. These features are modified IP addresses,

presence of upper case and lower-case letters, special characters, number symbols, mis-spelt words,

and the number of links used to go to spam resources.

Method for syntactic feature selection:

Once the most significant semantic features have been selected, the syntactic features are

extracted from the training dataset. This section focuses on listing which syntactic features are

added to the feature set in order to distinguish between ham and spam emails. Syntactic features

provide information about the document in terms of size, structure, illustrations, labels, subtitles,

table of contents, glossary, maps, index, comparisons etc. as shown in Figure 4.7. In the case of

 107

emails, non-text information could include date and time of an email, subject field, hyperlinks,

numeric digits, word count, use of special characters, etc.

Figure 4.7: Non-Fiction Text Features for a document

A series of small experiments were conducted to determine which syntactic features to include

as described in the following sub-sections.

4.4.1 Experiment 3.1- Filtering based on time period
An interesting aspect is to focus on the time of the day email spam is received by the user to

identify a correlation between the two although it is necessary to consider global time zone

differences between the sender and receiver.

Method: A small experiment was conducted to gather data on timings of the spam emails received

by a user and identify a pattern which can be used to enhance the classification model. In this

experiment, a sample of email spam data of 463 emails was collected. The following business rules

were developed for time-based filtering

• peak business hours-10am-4pm

• business hours-7am-6pm

• out of business hours-6-10pm

• late night hours-10 pm-7 am

An analysis was carried out to identify patterns in spam emails based on the time the email was

received.

Results: The results of the analysis of email spam data indicated that 30 % of spam emails were

received during peak business hours, 49% during business hours, 14% during out of business hours

and 37% during late night hours. Hence, 51% spam emails arrived out of typical business hours of

7 am – 6 pm. This figure is high enough to determine that time-based filtering is an important

feature in classifying an email as spam or ham.

 108

4.4.2 Experiment 3.2- Concept drift – Temporal Filtering
Data changes with time. With this shift in the nature of data, data models also need to change

to re-envision the conceptual model that may introduce instability in the system. Email spam

filtering using machine learning algorithms is particularly challenging in the dynamic environment

that email spam exists in as relearning is time consuming. Spammers continue to develop new

methods to circumvent filters with learnt knowledge which leads to changes in data distribution

and the concepts learnt by the filter changes over time. This causes ‘concept drift’ leading to expiry

of concept patterns learnt from data samples that were up to date at the time. Furthermore, ‘concept

drift’ brings about changes in the hidden concepts for which features are not shown explicitly but

which are, nevertheless, needed for prediction; together, this leads to changes in the target concept

(Koychev, 2006, 534). For example, sudden changes in the buying behaviour of customers. This

causes samples to become outdated and no longer capable of correct prediction and classification.

Effective machine learning should be able to adapt to these changes quickly; however, in the case

of spam filtering, for concept shifts, the correct sample data for training are needed.

For spam emails, concept drift may be further divided into two types, sudden and gradual

change, whereby email spam filtering is a victim of the former for which research for email spam

filtering is underdeveloped. One of the few studies carried out in this area are from Delany,

Cunningham, Tsymbal, and Coyle (2005) who developed a lazy learning case-based technique for

dynamic learning. Their system uses kNN to retrieve k cases most relevant to the target case. No

stop word removal or lemmatization is performed. A similarity retrieval algorithm Case Retrieval

Nets (CRN) is used for flexible retrial of cases. However, this approach does not include any

domain specific features. Fdez-Riverola, Iglesias, Díaz, Méndez, and Corchado (2007) present an

instance-based reasoning model for detection of email spam also using a lazy learning algorithm.

Here key terms and up to date email samples were the base data; however, classification accuracy

is low, and the percentages of FP and FN are relatively high.

Sheu et al. (2017) proposed a method whereby the problem of concept drift for email spam

filtering is addressed via a window-based approach. However, this method only considers the

header section of the emails to reduce the computation cost which does not represent a

comprehensive measure to address the issue of concept drift. Furthermore, none of the proposed

techniques consider that concept drift affects individual users differently and no research at the

user level has been presented so far.

Method: In order to verify the impact of concept drift on email spam, email spam attack data from

2013, 2015 and then from 2019 was collected for this experiment. A data analysis was conducted

that focused on identifying the emails belonging to the identified ontological spread. The aim is to

determine email spam attacks belonging to the identified ontologies in the said times.

 109

Results: The following chart reports the results of the experiment showing the percentage of

organizations affected by email spam attacks related to each topic.

Figure 4.8: Distribution of data showing Concept drift from 2013 to 2019

It is evident from the statistics shown in Figure 4.8 that the topics of the email spam attack

change with time. For example, the topic of Email and Internet Messaging System (IMS) was

17.61% in 2013 whereas it became negligible in 2019, which is similar in the case of Telephone

and ISPs whereas attacks on Financial Organizations and Banks have gained momentum from

14.02% 2013 to 22.76% 2019. Therefore, incorporating filtering rules around such topics would

increase the capability of the spam classification filters to identify spam. Hence, these topics were

included in the DMLM syntactic features as ‘abnormal’ keywords.

4.4.4 Ontologies
Due to the fact that email spam is user dependent, there is a need for the filter to be user defined.

The efficiency of user-based classification can be improved by using ontology-based concept

definitions. Ontology plays an important role in defining the semantics of concepts and information

for an adaptive and automated system like learning spam filter. It is defined as the representation

of vocabulary of primitives, information, concepts, constraints and relationships. In database terms,

these primitives can be entities, attributes or relationships between them. In email spam filtering,

ontology can be used to define different categories to capture user preferences and build user

profiles. Each of these categories may contain keywords, which are instances in an ontological

language. Balakumar (2008) proposed an ontology for understanding the content of the email based

on a white list and user defined categories. They performed user preference-based classification of

spam and categorization of ham emails using a Bayesian approach. (Caruana et al., 2011) employed

ontology-based concepts to minimize the impact of degradation of accuracy in email spam filtering

when training data distribution using multiple SVM classifiers. Pham (2011) built an ontological

0
5

10
15
20
25
30
35

So
cia

l N
et

w
ork

in
g…

Em
ail

 an
d IM

S

Se
ar

ch
 En

gin
e

Fin
an

cia
l a

nd
 e

-p
ay

…

IT
 V

en
dor

s

Te
lep

hone
 an

d IS
P

Onlin
e s

to
re

s-…

Onlin
e g

am
es

Pay
m

ent
 S

ys
te

m
s

Glob
al In

te
rn

et
 P

orta
ls

Clo
ud

 D
at

aS
to

ra
ge

Oth
er

s

Concept drift over time

2013 2015 2019

 110

knowledgebase to improve the performance of spam filtering at the server side using semantic

information from the ontology. DMLM includes ontologies to improve the classification accuracy

as a syntactic feature, ‘keywords’, where several categories and the corresponding keywords are

defined. For experimental and testing purposes three spam ontologies were defined as “Sexual”,

“Finance” and “Marketing”. For email spam classification, the model identifies spam keywords

from spam emails; however, for ham categorization, this model requires user involvement. Hence,

for minimal user involvement goal, this was ignored, and results were found to be promising.

4.4.5 Content and Word Obfuscation
Content obscuring is a common technique invented by spammers in response to rule-based

filters where the rules are defined by users based on presence of certain words in headers or/and

body of an email that are indications of spam.

 A sample spam email that the Bayesian classifier can successfully classify is given in Table 4.1.

Identification occurs through words such as ‘information’, ‘$2’, ‘1-800’ as spam words from which

the email is classified as spam.

Table 4.1 Sample Spam email with Text Features

Spammers continue to develop new ways to deceive the filters. The content of spam has evolved

to contain more than just words such as links, numeric digits, special characters, etc. to substitute

the text characters in an email to bypass the effectiveness of classification of email spam. These

substitutions are generally not found in the ham emails and hence can be used as sign of low

credibility of an email. Most of these features are syntactic such as grammatical errors as shown in

the sample spam (Table 4.2 (a), numeric digits and are unlikely to be identified by the Bayesian

classifier or any other text-based filtering mechanism.

Subject: dental - optical plan

hello , work group local doctors dentists offer dental - optical
plan runs approximately $ 2 week individual $ 3 week entire
family . further details please call : 1-800 - 463-6021 toll
free please refer id code emjc56 p . s . call details before 13
, 1998 dental plan receive optical plan free ! thank .

 111

Table 4.2 (a) Sample Spam email with Numeric digits

A deliberate use of grammatical errors in the words as shown in the email message body of

sample email spam in Table 4.2 (b), this is designed in this manner to deceive text-based filters

such as Bayesian classifier. Here, the aim of spammers is to introduce words that are not accounted

for in the features used to calculate the spam score of an email message, as only the correct version

of these known ‘spam’ words is identifiable by the content-based filters.

Table 4.2 (b) Sample Spam email with Mis-spelt words

Table 4.2 (c) shows the presence of links/URLs to obfuscate the textual part of the email

message body. These words are not accounted for by the text-based filters. Another common

spammer tactic is to obscure the words in the email content by including punctuation symbols,

html tags and html comments in the middle of the words (Stern, 2008). Therefore, a mechanism to

deal with such factors is required.

Subject: returned mail : host unknown (name server : - - -
- - - . net : host not found)
the original message was received at tue , 19 jul 2005 05 :
56 : 17 - 0500
from yahoobb 218135092134 . bbtec . net [218 . 135 . 92 .
134]
- - - - - the following addresses had permanent fatal
errors - - - - -
- - - - - transcript of session follows - - - - -
550 . . . host unknown (name server : - - - - - - . net :
host not found)

Subject: new offrr
want to know ho liberalize w to save over 60 % on your me
northward dlcatlons ?
http : / / www . centr compassion alpan . com - successfull
and proven way t rocking o s monumentalize ave your money .
be splash st prlces .
high qua homophone iity .
w grundyism orldwide shlpplng .
total confidenti despoil aiity .
more than 200 appeasement popular medlcatlons
have a nice da upheave y !

 112

Table 4.2 (c) Sample Spam email with links as content

Therefore, as suggested by Bajaj & Pieprzyk (2013), to improve the performance of the

Bayesian classifier, several non-textual syntactic features identified in this research (shown in

Table 4.3) were included in DMLM. To extract all important syntactic features for inclusion in the

DMLM, an analysis of spam datasets was carried out to identify characteristics that are distinctly

different from legitimate emails to find an optimum list of attributes as potential features.

Table 4.3: Syntactic Features

To select the relevant features, a manual cross validation was carried out with the classifier.

Once the syntactic features were selected, parsing of the text data was performed with removal of

encoded text and html tags to include those words for semantic features. A relevant feature is one

that enables the classifier to improve its performance. To determine the best performing features,

the F1 score was used as a metric.

0: email header and body lengths,
1: number of abnormal symbols,
2: number of numeric characters,
3: number of punctuation symbols,
4: number of links symbols,
5: 'number of keywords',
6: number of keyword ‘unsubscribe’
7: 'send time in 8:00:00 - 18:59:59,
8: length of subject field,
9: mis-spelt word count
10: similar to abnormal words
11: maximum run length of capitals
12: average run length of capitals

 113

The F1 score, also known as the F-score is the measure of accuracy of a test. It is the balance

between precision and recall. It is an appropriate measure to use when the actual negatives are

larger than the actual positives. In our case, the number of ham emails in the samples was larger

than that of the spam samples; hence, the F1 score was used for selecting features as it enables

further classification. The F1 score is shows a satisfactory result when it is high and close to 1,

perfect when it is 1 and at 0, the model is at its worst performance. Good F1 scores mean there are

low FP and low FN, indicating that detection is being carried out correctly and was not polluted by

false alarms. To determine the appropriate features, the classifier’s F1 score without feature was

recorded as F_without and the F1-score with feature recorded as F_with, then the feature is the

“right” feature if F_with > F_without with statistical significance.

All of the features selected were put together into a feature set as shown in Table 4.1 that shows

13 syntactic features used in DMLM. As discussed earlier, there is limited research into the use of

syntactic features for email spam detection at the client side. Gargiulo (2009) developed a personal

anti-spam system at the server level where an architecture based on semantic and syntactic features

from text and image spam was used for classification to overcome the problems inherent in the

state-of-the-art spam classification filtering systems. However, the syntactic features included in

that model were limited. Hence, this research is a novel contribution in this field.

4.5 Model Generation method
Once feature extraction and selection are complete, these features are used as attributes for

training and classification via the model which is utilised to detect the similarity between ham/spam

emails in a new email. It is developed by using the selected significant feature set and training

samples. In this section, the process of the model generation is explained.

The value of the most significant features from all ham and spam training samples, the training

samples detection threshold values and the machine learning algorithm/s are the basic components

needed to generate the model. A set of training samples from ham and spam X,Y = {x1,x2,….xi}

{y1, y2,…yj}, given at the feature selection stage, and the most significant features F = [f(h1), f(s1),

f(s2), f(h2),….,f(sn),f(hm)] where f(h1), f(s1), f(s2), f(h2),….,f(sn),f(hm)] are the combined features to

detect spam and ham in emails used to train the model.

The model is generated using an ensemble of linear combination of 200 CART trees which is a

boosting decision tree ensemble. An ensemble is a collection of combined outcomes to give a final

outcome as prediction. The purpose of ensemble learning is to combine the predictions from several

classification models with an aim to minimise the generalization error and the variance in

predictions made by different models. The main cause of variations is noise, variance and bias.

Ensembles can be formed through the application of different methods for combining

predictions. Research has verified that ensembles perform better than individual classification

models (Chinavle, Kolari, Oates, & Finin, 2009; W. Wang, 2010). Ensembles can be formed using

 114

one of three techniques - bagging, boosting or stacking. Bagging develops multiple independent

models and combines them using an averaging technique. Most commonly, independent models

are built based on sub samples of data from training data; models developed from each sub sample

would be little different from each other. Predictions from each of the models is combined using

normal/weighted averaging or majority voting, such as decision trees or random forest algorithms.

Stacking is an ensemble which takes the output from collections of other models as input and then

produces predictions. The main aim here is to reduce overfitting and improve accuracy. The third

technique, boosting is an ensemble technique that does not make independent predictions but rather

sequential ones. It converts weak learners to strong learners by passing the learning from the errors

made by previous predictors to the subsequent predictors. Due to this technique of learning from

previous predictors, the iterations/time taken to reach the actual correct predictions is low although

it still reduces bias and improves accuracy. Typical examples of the latter technique are

Classification and Regression Trees (CART), gradient boosting, XGBoost or AdaBoost.

The model chosen is a boosting ensemble of classification and regression decision trees.

Classification and Regression Trees (CART) algorithm, based on work by Breiman et al (1984), is

a supervised learning technique for prediction, and classification.

The model initially takes the feature set F defined from the training samples for the ham and spam

classes as described in the previous section. To this, it adds the two output classes ham and spam

as starting point and builds decision trees based on the attributes of the feature set. It then constructs

the rules to make progressive hierarchical decisions about the new email as ham or spam.

The algorithm identifies the class attributes from the training data and constructs decision trees

based on those identified attributes, which requires compilation of the attribute list and definition

of the number of output classes. Subsequently, CART constructs the rules via the decision trees

from the training data with the assigned classes. These decision trees are then used for classification

of new data. It is a binary decision tree developed by repeatedly splitting nodes into their child

nodes representing the entire training data and refers to the two types of trees - classification trees

and regression trees (Marsland, 2014). Based on existing features, the decision tree makes

progressive, hierarchical decisions about the outcome. The algorithm is structured as a series of

questions that result in a tree-like structure based on further questions about answers to the previous

set of questions. The aim of this process is the development of a prediction model. The three

important components of CART are: the splitting and stopping criteria and prediction.

The aim of tree growing is to identify the univariate split of every node so that impurities in

child nodes are reduced as much as possible. The splitting criteria represented by ∆(x,:) are

maximised by the split s at each node n. Ginni’s coefficient is used as the splitting criteria which

is an index of impurity for every node, with the aim of progressively minimising it until the node

is pure. Ginni’s impurity index for sample data D with x classes is defined as

𝐺𝑖𝑛𝑛𝑖(𝑛𝐷) = 	�𝑃27
2

j�5

 115

Calculating Gini’s coefficient is the most time-consuming part of the CART algorithm and is

used to simplify the model rather than information gain ratio to identity the features (Zhu, 2018).

The quality of the features is determined by the lower value of the Ginni coefficient, which means

this index is calculated for all features and the ones with lower values are selected.

The stopping rule defines at which point the node cannot be split any further. The following

cases aid in stopping the split: when all cases in a node have identical values for each feature or its

dependent variable, when the node size is smaller than the user defined minimum node size, or

when the tree depth has reached the user defined maximum depth. The quality of the learnt tree

can be improved by pruning which involves removing those parts of the tree that do not contribute

correctly to classification. Since decision tress are prone to overfitting, pruning can lower this

likelihood.

The next component involves prediction, given that a novel input CART traverses the

constructed decision binary tree to make predictions. In CART, the leaf only contains the decision

values which sets it apart from other decision trees and allows rich interpretations for optimisation.

The algorithm for generating the model for classification is based on a machine learning process

as described in the previous section:

• Read email from training set samples
• Perform pre-processing
• Develop Semantic features using modified BoW model
• Select n significant features and develop a feature document term matrix
• Develop syntactic features
• Combine all features
• Build the classification model
• Train the model using training samples and store for later use
• Perform classification using the stored trained model

Classification is done using the generated model.

4.6 Classification Results and discussion

In this section, the results of the experiments are presented and analysed. The evaluation of the

feature selection approach is carried out using several datasets, each divided into two subsets in a

70:30 ratio, where 70% is used for training and 30% for evaluation. The training subset consists of

sample ham and spam email messages. The BoW approach using a Term Frequency method is

used on each dataset of training samples to extract significant features for training the model to be

used for the classification process. Term frequency is useful for eliminating noisy tokens since they

present insignificant information for classification; hence, their removal has little influence on the

overall performance. The computation complexity of term frequency rises linearly with the

increase in the number of training messages. Therefore, the method is reasonable inexpensive in

terms of computation cost.

 116

The experiments are performed in three steps:

• The first step involves iterative feature selection. A heuristic search method using a BoW

approach is used to select the number of tokens and n-grams as a starting point and then

the Term Frequency method is used to add weights to tokens to create a sparse matrix.

THE Chi-square test is used subsequently to obtain the optimal features set.

• The second step involves selecting the syntactic features from the training samples as

shown in Table 4.4.

• In the third step of the experiment, the selected feature set is used to develop the model

trained on the training samples using an optimal feature set, which is then used to

classify new, incoming emails as ham or spam. In this case, the test set was used as new

emails for experimental purposes to measure the performance of the DMLM.

Table 4.4: Syntactic features list during the Feature selection Step

4.6.1 Experiment Results

To verify the performance of the proposed algorithm for the DMLM, the training and evaluation

was carried out using five datasets listed in Table 4.2., executed with each of the datasets. The

description for all datasets except CSDMC 2010 is given in Chapter 3.

CSDMC2010: This dataset resulted from a data mining competition held under ICONIP 2010.

Available on GitHub, the dataset size is 8619 which is split into 4,327 messages for training of

which 2,949 are legitimate and 1378 are spam email messages. 4,292 unlabelled messages are

available to be used for testing. The last update on the dataset was done in 2014. In this research

all labelled samples, 4,327, are used for training and testing to enable the performance

measurement of the models.

In Table 4.5, the column Number-Training shows the training samples for each dataset, i.e., the

number of ham email as h and spam email as s messages in the training samples. All datasets have

a balance of training samples belonging to each of the output classes. Hence, the issue of imbalance

in the datasets is addressed since the number of samples of each class type i.e., ham and spam are

well represented and not out of proportion.

 117

The training samples were used to identify first, the most important semantic features and then

the syntactic features.

Table 4.5: Number of Training and Testing Emails for each Dataset used

Dataset Name Total Emails Number - Training Number –
Testing

PU1 1,100 770(426h+344s) 330
Ling-spam 2,893 2,025(1727h+342s) 868
TREC07 4155 2355(1095h+1260s) 1800

CSDMC2010 4327 3052(2086h+966s) 1275
Enron1 5172 3666(2600h+1066s) 1506
Enron2 5857 4044(3006h+1038s) 1813
Enron3 5512 3868(2840h+1028s) 1644
Enron4 6000 4214(1060h+3154s) 1786
Enron5 5175 3632(1072h+2560s) 1543
Enron6 6000 4173(1049h+3124s) 1827

To select the important features, experiments were conducted to choose n-gram for iterative

feature selection. The candidate n-grams were unigrams and bigrams. Out of 10 datasets, 3 datasets

were randomly chosen, an initial feature set was created using unigrams and bigrams. The total

number of features identified using BoW, time taken to identify the features for each of bigrams

for the Enron 6 dataset with sample size of 3868 is shown in Table 4.6 below.

Table 4.6: Semantic Feature Extraction using n-grams

n-grams Features

extracted
Time taken
(seconds)

Processing
Speed MB/s

Training F1
score)

Test F1
score

Unigrams 46206 1.846 5.483 98.9 98.4
Bigrams 470345 7.939 1.275 99.4 98.6

The term frequencies of the features were calculated and the features with smaller value of term

frequency were neglected. It was assumed that these features had little influence on the

classification process and performance. The weights were attached to the remaining features. As a

starting point, 1000 features were selected as significant features and the chi-square test was used

to identify the most significant features to be used for training and classification of the model.

Evaluation of the model was carried out using first unigrams and then bigrams with results of the

classification reported in Figure 4.9 where ‘without new factors’ refers to unigrams and ‘with new

factors’ to bigrams.

 118

Figure 4.9: The classification accuracy using unigrams and bigrams as features.

The blue line represents accuracy for unigrams and the green line for bigrams. The F1 score for

training and testing of unigrams and bigrams are shown in Table 4.6. It can be observed from these

figures that bigrams perform better than unigrams. To validate the results, several experiments with

additional datasets were conducted. It was observed that optimal results were achieved for bigrams

for our iterative feature selection using semantic and syntactic features. All the selected features

were integrated into one feature vector. Hence, bigrams were used for semantic feature selection,

model training and classification. For each dataset, the number of features extracted, training time

taken, and evaluation time is shown in Table 4.7 below:

Table 4.7: Semantic Feature Selection, Training and Test times

Dataset

Number of
Sementic
eatures

(bigrams)

Feature
extraction
duratiom
(seconds)

Significant
Feature

selection
duratiom
(seconds)

Speed
(MB/sec)

DMLM Train
time

DMLM Test
Time

CSDMC2010 728598 15 0.91 1.27 53 17
ENRON1 247949 3.84 0.28 1.13 58 24
ENRON2 318353 5.8 0.32 1.1 64 21
ENRON3 470345 9.1 0.43 1.1 69 25
ENRON4 329480 4.7 0.26 1 72 22
ENRON5 272177 4.5 0.27 1.1 72 28
ENRON6 368384 5.9 0.33 1.05 66 25
LINGSPAM 419467 6.2 0.31 0.9 65 19

PU1 152526 2.6 0.14 0.75 13 15
TREC07 599843 18.2 0.96 1.03 72 24

 119

During the evaluation stage, the performance of selected features and models is evaluated on

the test data subset containing ham and spam emails for each of the datasets in Table 4.5. The

results are presented for the FP and FN rate and accuracy. For each of the datasets, the results are

shown in the tables to follow.

Table 4.8: a) False positive and b) false negative rate for all 10 datasets for Bayesian classifier
and DMLM

Table 4.8 a) shows the comparison of the FP rate and Table 4.8 b) for the FN rate for the

Bayesian classifier at a threshold value of 0.9 for spam cut off and 0.15 for ham cut off. It also

shows the threshold values of 0.5 for both spam and ham cut off against the FP and FN rates for

the proposed dynamic multi-layer model with one classification machine learning algorithm using

CART. Here two threshold values for the Bayesian classifier are included for comparison since the

performance of the classifier at 0.5 threshold values is comparable to the DMLM. At threshold

values of 0.9-0.19, the classifier generates a substantial number of ‘grey’ verdicts which are left

unclassified.

Figure 4.10: Graph showing a) False positive rate and b) False Negative for all 10 datasets for
Bayesian classifier and DMLM

DATASET METRIC
BAYESIAN CLASSIFIER
0.15-0.9 Threshold

BAYESIAN CLASSIFIER
0.5-0.5 Threshold

DMLM
CLASSIFER

CSDMC2010 FP RATE 0 0.23 0

ENRON1 FP RATE 1.3 2.7 1

ENRON2 FP RATE 0 1.1 0.2

ENRON3 FP RATE 0.1 1.36 0

ENRON4 FP RATE 0.1 4.7 0.1

ENRON5 FP RATE 0.1 7.2 0.4

ENRON6 FP RATE 0.2 8.8 0.7

lingspam FP RATE 0 0.72 0.1

PU1 FP RATE 0.9 3.09 1.2

TREC07 FP RATE 0 1.1 0

DATASET METRIC BAYESIAN CLASSIFIER
0.15-0.9 Threshold

BAYESIAN CLASSIFIER
0.5-0.5 Threshold

DMLM
CLASSIFER

CSDMC2010 FN RATE 0 1.69 0.7

ENRON1 FN RATE 0 3.9 1.4

ENRON2 FN RATE 0.1 5.02 1.4

ENRON3 FN RATE 0.1 5.7 1.3

ENRON4 FN RATE 0.3 0 0.3

ENRON5 FN RATE 0.2 0.89 0.2

ENRON6 FN RATE 0.3 0.07 0.3

LINGSPAM FN RATE 0 9.3 1.3

PU1 FN RATE 0 2.16 1.2

TREC07 FN RATE 2.9 0 2.9

0

1

2

3

4

5

6

7

8

9

10

C
SD

M
C
2
01

0

EN
R
O

N
1

EN
R
O

N
2

EN
R
O

N
3

EN
R
O

N
4

EN
R
O

N
5

EN
R
O

N
6

LI
N

G
SP

A
M

P
U
1

TR
E
C0

7

False Positive Rate-BC, DMLM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER

0
1
2
3
4
5
6
7
8
9

10

CSD
MC201

0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSPA

M PU1

TR
EC0

7

False Negative rate- BC, DMLM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER

 120

Graphs in Figures 4.10 a) and 4.10 b) show the performance of the Bayesian classifier and the

proposed DMLM model on the evaluation test datasets.

Table 4.9: Accuracy for all 10 datasets for Bayesian classifier and DMLM

Table 4.9 presents a comparison of the accuracy measure for the classifiers. Accuracy, a metric

for evaluating classification models, is also known as Accuracy Classification Score (ACS).

Accuracy is a measure of closeness of predicted value and actual value which is determined by the

total number of predicted outcomes against actual outcomes. ACS measures the number of correct

predictions as a proportion of the total predictions made for the test data. Performance of the

classifiers in question - Bayesian classifier with DMLM is shown in Figure 4.11. The analysis of

the results is discussed in the next section.

4.6.2 Analysis of Results of Experiment

The performance of two-layer model for email spam detection has been evaluated. The

detection rate, FP rate and FN rate are presented in Tables 4.5 and 4.6. For different datasets, the

proposed model was able to detect 97.1-99.6% spam email messages correctly with a low FP rate

of maximum 1.2% and as low as zero; the FN rate ranged between 0.2-2.9%. The FP rate for the

proposed model improved significantly as compared to the Bayesian classifier - visualized through

Figure 4.10 a).

DATASET METRIC BAYESIAN CLASSIFIER
0.15-0.9 Threshold

BAYESIAN CLASSIFIER
0.5-0.5 Threshold

DMLM
CLASSIFER

CSDMC2010 ACCURACY 100 98.08 99.3

ENRON1 ACCURACY 98.7 93.4 97.6

ENRON2 ACCURACY 99.9 93.88 98.4

ENRON3 ACCURACY 99.8 92.94 98.7

ENRON4 ACCURACY 99.6 95.3 99.6

ENRON5 ACCURACY 99.7 91.91 99.4

ENRON6 ACCURACY 99.5 91.13 99

LINGSPAM ACCURACY 100 89.98 98.6

PU1 ACCURACY 99.1 94.75 97.6

TREC07 ACCURACY 97.1 98.9 97.1

 121

Figure 4.11: Graph showing accuracy for all 10 datasets for Bayesian classifier and DMLM

From Figure 4.11, it is clear that the DMLM outperforms the Bayesian classifier in accuracy

and Figure 4.10 confirms that the proposed model performs better in terms of FP and FN rates.

With this new classification model acting as another layer of filtering in addition to the proposed

Bayesian classifier as explained in Chapter 3, it is evident that the DMLM performance is efficient.

For four out of ten datasets, the proposed model performed more than 99% of correct predictions

for email spam detection. From Table 4.6, it shows that the performance of the model in terms of

computation complexity and time has been proven to be efficient.

Since there is no evidence found for any other multi-layer model to detect and filter email spam

at the client side, a direct comparison with similar models cannot be presented in this section.

However, a comparison of the performance with other machine learning based models can be found

in Table 4.10 where data demonstrate that the DMLM outperforms other classifiers in accuracy

and coverage of features including text (semantic) and structural (non-text) features. For Gomez

& Moens (2010) and S. K. Trivedi & Dey (2013) results are acceptable in terms of accuracy

although their feature selection depends on text features from only the body and header or just the

body.

84
86
88
90
92
94
96
98

100
102

CSD
M

C201
0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSP

AM PU1

TR
EC0

7

Accuracy - BC, DMLM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER

 122

Table 4.10: Comparison of performance of DMLM with other machine learning classifiers

Paper
Reference

Machine Learning
method(s) Used Dataset Used Accuracy Features

1
(Sheu et al.,
2017)

C4.5 TREC07 95.5 non text from header
only

2
(M. Sharma &
Kaur, 2015)

AdaBoost,
Random Forest

Spam
Assassin

93.6,
93.3

Text features from
body only

3
(Shrawan
Kumar Trivedi
& Dey, 2014)

Genetic Algorithm,
Genetic Programming

Spam
Assassin

93.2,
97.8

Text features from
header and body

4
(Khater, 2012) Random Forest CSDMC2010 95.8 Text features from

header only
5
(Karthika
Renuka,
Hamsapriya,
Raja
Chakkaravarthi,
& Lakshmi
Surya, 2011)

Multilayer Perceptron,
J48,
Naïve Bayesian
classifier

UCI
repository

93,
92,
89

Text (5 features) +
Non-text-(3
features) from whole
email

6
(Xiao et al.,
2010)

Decision Tree Chinese
emails 96.5 Non-Text from

header only

7
(Gomez &
Moens, 2010)

C4.5 Ling-spam,
TREC07 98, 99 Text features from

body only

DMLM CART

Enron,
CSDMS2010,
TRCE07,
PU1, Ling-
spam

99,
99.3,
97.1,
97.6,
98.6

Text (1000 features)
+ Non-text-(26
features) from whole
email

The FN rate represents a misclassification of spam emails as ham. From Figure 4.12 a), it can

be observed that the FN rate has improved with the addition of the DMLM; however, there is scope

for reducing the FN rate further and, thus, reduce email spam in users’ inbox. To achieve this an

optimum FN rate needs to be determined that keeps the detection rate high while reducing the FN

rate to an acceptable level. To further improve the performance of the model, it is proposed to use

an ensemble of bagging classifiers as spam detection system called dynamic multi-layer ensemble

model (DMLEM). The detailed description of the model is given in the next section.

 123

4.7 Experiment 4-DMLEM - Dynamic Multi-Layer
Ensemble Model

The DMLM discussed in Section 4.6 has been proven efficient in increasing the spam detection

rate while reducing the computation time and complexity. However, the results presented in

Section 4.6 indicate that there is room to improve the DMLM performance due to its detection rate

for some datasets such as TREC07 and PU1 being lower than others. The FN rate for the DMLM

was also noted to be somewhat higher than the Bayesian classifier at its best performance of

thresholds 0.9-.015. High FN rates mean more email spam.

To further enhance the performance of the DMLM, this section proposes to build a bagging

ensemble of machine learning classifiers. The rationale for including a bagging ensemble instead

of using a single classifier is twofold: (1) to improve the classification performance and (2) to

collate different outputs produced under varying conditions by different classification algorithms

into a single output. As the nature of email spam content continues to change, bias is introduced

when using a single classifier which impacts detection performance and increases the FP and

negative alarm rates. Ensembles have proven to outperform single classifiers (Beigy, 2012;

Rayana & Akoglu, 2016). Hence, it is intended to replace the CART classifier with the bagging

ensemble CLKS to change the DMLM into a Dynamic Multi-Layer Ensemble Model (DMLEM)

to perform classification of emails into spam and ham. In this section, experiments are carried out

using the proposed CLKS ensemble to determine if the DMLEM outperforms the DMLM. The aim

is to improve the performance of FN rates while maintaining low FP rates.

Dynamic Multi-Layer-Ensemble Model Description

While the proposed DMLM multi-layer model enhanced the classification performance, a

hybrid classifier is based on supervised alternative machine learning techniques applied to the

selected features using the semantic and syntactic components of an email. This classifier carries

out supervised learning, extracts text as well as non-text features from training data and applies

that learning to detect and classify new email documents.

The proposed ensemble model modifies Layer 2 of the DMLM to increase the FN rate and accuracy

of classification - the architecture of the DMLEM is shown in Figure 4.12. It is of high importance

that this model achieves a high level of performance for correct classification of spam and ham (or

least FN) while keeping accuracy and FP rate constant at the rates achieved in Section 4.6. In the

DMLEM, the methodology for feature selection (to extract significant features) is preserved as for

the DMLM initially (as explained in earlier sections). The feature selection methodology may be

modified based upon the results of the experiments with the DMLEM model, in case the model

deteriorates in performance as compared to the DMLM. The following sub-sections explain the

 124

selection of machine learning algorithms and how they were combined to build the multi-layer

ensemble model.

This model includes the following supervised machine learning algorithms: CART from

DMLM, Support Vector Machine, k nearest neighbour and Logistic regression for classification

(Chao & Yiming, 2007; Drucker et al., 1999). For sparse data or matrices commonly used machine

learning techniques are SVM, Naive Bayes, XGBoost and Logistic Regression, applied with

satisfactory results and speed of execution.

These methods utilize the decision boundaries that they identify from the training data and apply

them for classification. The detailed description of how these methods are applied has been

provided further. Each of these methods individually classifies the spam and grey emails

categorized by the Bayesian Classifier into spam and ham. The multi-layer model further uses rules

on these classifications to predict an email as spam or ham.

Figure 4.12: Architecture of DMLEM

A description and justification of these algorithms is given below:

A Support Vector Machine (SVM) is a non-parametric supervised machine learning algorithm

developed by Vapnik (1998) with a strong theoretical foundation based on Statistical learning

Theory. SVM, highly efficient on small datasets, is a non-probabilistic algorithm that analyses

data for classification, regression and outliers (Cristianini, Nello, & Shawe-Taylor, 2001). It

provides the probability distribution of a dataset given a finite set of parameters. It requires labelled

data for training itself (Drucker et al., 1999). In this case the labelled data consists of the training

email messages identified with the label spam or ham.

New email

Mail Server

Bayesian Classifier

Inbox

Junk
Mail

Grey
Mail

Spam
Folder

Semantic and Syntactic Features

Ensemble Model Generation and Training

Classification
Spam Ham

 125

The SVM uses support vectors - a small group of data points identified from a collection of

training points. It aims to solve the optimization problem by finding boundaries with maximum

margin and maximum distance between the data points. The goal is to find a hyperplane in a multi-

dimensional space with n features for distinct data point classification. A hyperplane is a decision

boundary that segregates the data points into n classes. Many hyperplanes of dimension up to n-1

are possible. For binary classification, the objective is to find a hyperplane with maximum distance

between the groups of data points with each group belonging to one of the two classes.

Reinforcement of data points as belonging to a particular class occurs with increased margin

distance from the hyperplane which leads to increased confidence for new data point classification

in future.

The position and orientation of the hyperplane is influenced by the data points closest to it. These

data points, called support vectors, facilitate building of the SVM as shown in Figure 4.13. Support

vectors are coordinates of an individual data point. Hence, classification is performed by finding

that hyperplane to differentiate the two sets of data points from common features.

Figure 4.13: A One-Dimensional Hyperplane Separating the Data Points

Depending on the number of features, the hyperplane can be one-dimensional with 2 features

or two-dimensional with 3 features. Although commonly used for linear classification, the SVM

can also be applied to non-linear classification with kernel trick to map inputs to high dimensional

feature spaces.

Assuming we have a hyperplane of the form 𝑤𝑥 + 𝑏 = 0 with an aim to divide the training data

x into two classes, where the vectors w and b are determined using x and are the same size as x.

Ideally, there should be two hyperplanes with maximum possible distance and no data points

between them to be represented as 𝑤𝑥 + 𝑏 = +1 and 𝑤𝑥 + 𝑏 = −1

 In Figure 4.13, the aim is to find 𝑎, 𝑏, 𝑐 such that 𝑎𝑥 + 𝑏𝑦 ≥ 𝑐 for all cube points and 𝑎𝑥 +

𝑏𝑦 < 	𝑐 for all dot points. A significant number of solutions are possible for finding 𝑎, 𝑏 and 𝑐;

however, it is important to note the points that just touch the boundary of the hyperplane and

influence optimal values - circles in this case. There are four data points: two above the hyperplane,

say 𝑣1, 𝑣2 and two below, say 𝑣3, 𝑣4.

 126

To find the optimum solution, Figure 4.14 shows the two hyperplanes H1 and H2 represented as

dashed lines defined as shown such that

𝑤𝑥 + 𝑏 ≥ +1 when 𝑦 = +1

and

𝑤𝑥 + 𝑏 < −1 when 𝑦 = −1

the points on these two planes are the tips of support vectors – and + as shown.

Figure 4.14: Support Vector Machine showing one dimensional hyperplane

The hyperplane (solid line) shown in Figure 4.14 is the median between H1 and H2 where 𝑤𝑥 +

𝑏 = 0. The purpose of defining these two hyperplanes is to maximise the distance between the data

points (Kala, 2016). The SVM classifies by finding a hyperplane that separates labelled data while

maximizing the margin. Margin is the gap between the two categories of labelled data. Choosing

a hyperplane that maximizes margin gives us a natural boundary for separating the data points. In

total, there are 1026 features, each of which is a numerical value. So, each email is represented by

a vector of dimension 1026. All training emails can be considered as points in a 1026-dimensional

space with the spams and the hams as data points. In such a space separating data points on either

side a plane would be called the classifier boundary, also known as a hyperplane.

Since most problems are non-linear when the data points cannot be separated by a plane, there

is a need to make them linearly separable. Hence, a transformation function ∅ is required for

mapping to high dimensional space. Here, the kernel trick function is used for transforming data

points into a higher dimensional space so that they become linearly separably. To improve the

performance of the SVM, Radial Basis Function (RBF), a kernel function, was used which can

transform low dimensional spaces to higher dimensions for non-linear classifiers.

 The SVM is typically selected for two group classification problems such as text classification.

It produces accurate outcomes with lower cost in terms of computational power. It has been used

in its original form and with kernel tricks such as distance-based kernel, linear kernel and Gaussian

kernel to improve performance and also as part of an ensemble model (Amari & Bouguila, 2010;

 127

Krawczyk, Minku, Gama, Stefanowski & Wolnik, 2017; Singh, Pamula, & Shekhar, 2018;

Mellampati, Shekar, & Ravikanth, 2019).

 K-Nearest Neighbors (kNN) is a non-parametric lazy learning supervised learning algorithm

applied for statistical estimation since the 1970’s. It is a feature similarity density estimation

approach, as the name suggest, uses the labels of k-nearest training data points - also known as

observation or collection - in the feature space to identify the label of the test data point under

consideration. These k training data points form an input set which is used by the algorithm to

determine the label of the test data point under consideration, based on its similarity measure to

those labelled k data points. Here, k is the number of nearest neighbours. The output depends on

whether the algorithm is used for classification or regression. Classification has a discrete value as

output whereas regression shows a real number. It is called ‘lazy’ as it makes no generalisations,

which means it does not generate models from training data, all of which is used within the test

space. Hence, only the function approximation is performed locally, and all computation takes

place at the time of classification. While this makes training faster, the testing becomes

cumbersome and expensive in terms of time and memory.

 K-NN can be used for both classification and regression. In case of classification, we take

the majority vote of k-nearest neighbours to find the label of a test data point. This is a lazy

machine learning model in the sense that it defers all the work to the actual classification phase.

During the training, only the feature vectors of the training emails are stored with their

corresponding labels. All the vectors are imagined as points in a space with the distance being

Euclidean distance.

Based on the assumption that similar things exist in proximity, all data points are assumed to

be points in a space where similar data points with the least distance between them appear close to

each other. Examples are shown below with red stars and green triangles in Figure 4.15. kNN

implementation follows the steps: loading data, initialising k, transforming data points, calculating

the similarity measure or distance of a novel input to the training data points, finding the close by

neighbours and finally voting for the label. The labels are combined using a simple majority vote.

For classification, this label is the mode (the label with high a number of occurrences) of k labels

and for regression it is the mean of the k labels.

Figure 4.15: k-Nearest Neighbors algorithm with k=1 (Navlani, 2018)

 128

The nearest neighbour k is a hyperparameter that must be defined at the time of model

development. For even numbers of labels, also known as class values, an odd value of k is chosen

based on the majority vote of its neighbours for the case of classification. For example, in Figure

4.15, for even label = 2, k holds an odd value = 1 in this example. To select the correct value of k,

one method is to run the algorithm multiple times with different values of k and chose the one with

the best performance. Research has demonstrated that there is no optimal number of neighbours -

it depends on the dataset distribution and size. If the number of neighbours is too low, this

influences results by introducing noise. For example, for k=1, the prediction is always accurate as

the closest point to the training datapoint is the test point itself which is overfitting the boundary

as in Figure 4.15. On the contrary, large numbers of neighbours as in Figure 4.16 make the

computation expensive. However, the large number of votes makes the prediction more stable and

it is more likely to be correct, although this starts to show errors as the value of k becomes larger,

indicating that k has been stretched.

Figure 4.16: k-Nearest Neighbour algorithm with multiple higher values of k (Navlani, 2018)

The next step in kNN involves transforming data points into feature vectors followed by the

calculation of distance between the mathematical value of these data points via a distance measure,

a common one being the Euclidean distance function which is defined as

𝑑(𝑥, 𝑦) = 	��(𝑥j − 𝑦j)7
�

j�5

where (𝑥5, 𝑦5), (𝑥7, 𝑦7), … . (𝑥�, 𝑦�) are the sample space and 𝑦 is the class label for 𝑥.

The visual representation of Euclidean distance is shown in Figure 4.17. Other distance

measures, such as Hamming, Manhattan and Minkowski distance, can also be used. It is useful to

assign weights to neighbour contributions to ensure closer neighbours contribute more than those

further away. The kNN further calculates the probability of these data points based on their

similarity to the novel data and uses the highest probabilities for prediction.

 129

Figure 4.17: Euclidean distance representation

In the case of classification, the majority vote of k-nearest neighbors is considered to find the

label for a test data point. For regression, the average of the values for k-nearest neighbours of a

point are considered to find the label for a new test point. To make regression more accurate, the

response of the nearest neighbour is given more weight than those further away. Thus, point weight

decreases inversely with their distance from the test point.

When a new email is to be classified as ham or spam, first the K-nearest neighbors of this new

email in the feature space is identified and then a majority vote is taken, i.e., the most frequent

label (ham or spam) among the neighbours is used to label the new data point.

 In case of text classification, sometimes a better choice of the distance metric would be

Hamming distance rather than Euclidean distance. The hamming distance between two strings is

the number of positions at which the two strings differ from each other.

Nearest Neighbors is a common clustering technique. Based on a set of data points, groups/clusters

of points that go together are identified, i.e., appear in close proximity of each other as if they are

forming a community. So, in this particular case, the two clusters that are expected to form from

the points in the feature space of the emails are the spam and ham categories.

 The K-Nearest Neighbors problem is NP-Hard and, hence, requires excessive amounts of

computational resources for the absolute solution. In consequence, an approximation algorithm is

used to find a solution for which Llyod's algorithm is commonly used for solving K-Nearest

Neighbors. For this algorithm, the starting point is an initial assignment of points. Each point in

assigned to a cluster, either spam or ham after which the centroid of the clusters is computed. With

this new centre, the points are re-assigned to the clusters. This process is carried out iteratively to

improve the cluster assignments. With convergence achieved when the newly computed centroids

for the ham and spam clusters are the same as the previous. Hence, a limit is assigned on the number

of iterations although that may mean the algorithm may never converge. kNN is one of the simpler

techniques for prediction and is used for email spam filtering due to its low calculation time and

ease of interpretation. Firte, Lemnaru, and Potolea (2010) and Chakrabarty and Roy, (2014)

promote the use of kNN for email spam detection.

 130

 Logistic regression (LR) is one of the most commonly used supervised machine learning

classification algorithms for discrete binary classification situations that works by maximizing

likelihood, i.e., maximizing P[y|X] where X is the feature matrix (document term matrix) where

each row is a feature vector and y is the vector of labels, one element for each row in X. Since the

probability function is continuous and real as opposed to discrete, it is labelled logistic regression.

The model is trained to learn probability distribution of the ham and spam over the set of attributes

in the feature set.

LR is somewhat misnamed as it is used for classification. However, this statistical model builds a

real continuous function with real valued attributes to predict the probability of data membership,

in this case of a class. This function is also called the sigmoid function and is the probability of

getting a label. Sigmoid is an S shaped curve that works by taking a real value as input and mapping

it to any discrete value between 0 and 1 which then can be transformed to 0 or 1 depending upon

the chosen threshold. LR uses a linear equation to represent the input values linearly combined

with the weights to produce a binary output as prediction (Aggarwal, 2012). This is called logistic

regression because the probability function is continuous and real as opposed to discrete as in the

case of linear regression. The concepts learned in LR can be useful for deep learning using neural

networks.

 Training the model for logistic regression involves defining an error measure, in this case it

is ‘likelihood’, i.e., how likely is it that to generate the training responses as spam and ham from

the training features. Once the error measure is defined, learning the model is translated into an

optimization problem wherein the error measure is to be reduced while changing the variables that

it depends upon.

Suppose 𝑋 is the input real value represented as linear equation in the form of 𝑋 = 𝑎𝑥 + 𝑏, with

coefficients b as bias and a as the constant, then the sigmoid (logistic) function to map the

prediction to probability is represented as

𝑆(𝑥) = 	
1

1 +	𝑒�2

where 𝑆(𝑥)	 is the output between he values of 0 and 1 shown in Figure 4.18 and e is the natural

log base. For positive values of x, the logistic function becomes asymptote to output as 1 and to 0

for negative values.

 131

Figure 4.18: A Typical logistic(sigmoid) function

LR predicts probabilities by modelling the probability of the default label; the coefficients for

the input values are determined from the training data. This is achieved through maximization of

the likelihood that a novel data point is classified correctly, i.e., maximizing 𝑃[𝑦|𝑋] where 𝑋 is the

feature matrix, each row of which is a feature vector and y is the vector of labels, with one element

for each row in 𝑋. This is called maximum likelihood estimation which is an approach for

parametric estimation in statistical methods. Methods such as Newtons method or Gradient

boosting can be used for maximising likelihood. The model is trained for learning the probability

distribution of labels over the set of attributes. Training a model for logistic regression involves

defining an error measure. An error is a value where magnitude identifies how far it deviates from

the learned model that would predict correctly from the training data. For email spam filtering

problems, given the output classes are 2, logistic regression is binomial, with y holding two labels,

1 for email as spam and 0 for legitimate emails. Given that LR is capable of binary classification,

it is used in this thesis. Thus, the two probabilities can be defined as

𝑃(𝑦 = 1|𝑋) = 𝑆(𝑣)

𝑃(𝑦 = 0|𝑋) = 1 − 𝑆(𝑣)

The chosen threshold value acts as a decision boundary above which the value belonging to one

label and below to the other. For example, if the threshold value were .5, and the prediction function

returned a value of more than .5, the novel input email would be classified as spam.

The error measure in LR is defined as a cost function which is created and minimised in order

to develop an accurate model with minimal error. The cost function is defined as

−𝑙𝑜𝑔(ℎ(𝑥))	𝑖𝑓	𝑦 = 1

−𝑙𝑜𝑔(1 − ℎ(𝑥))	𝑖𝑓	𝑦 = 0

where h is the hypothesis that probabilities lie between 0 and 1. The two can be compressed into

one overall cost function J(q) as

 132

𝐽(q) = 	−
1
2
�[𝑦		𝑙𝑜𝑔(ℎ�(𝑥) + (1 − 𝑦)	𝑙𝑜𝑔(1 − ℎ�(𝑥))]

To minimise the cost value, gradient descent is used on each parameter to minimise 𝐽(q).

Logistic Regression has been used individually and as part of hybrid and ensemble models for

email spam detection with accuracy between 91-98% (W.Wang, 2010; Wijaya & Bisri, 2016;

Yang, Liu, Zhou & Luo, 2019).

A Bagging Ensemble of CART, LR kNN, and SVM (CLKS):
Bagging ensemble use mean, weighted average or majority vote to combine the output of the

independent predictions made by different classification algorithms as shown in Figure 4.19.

Figure 4.19: Bagging Classifier Ensemble

This bagging ensemble combines output of CART, kNN, SVM and LR, and produces single

prediction output using a voting mechanism.

M. Iqbal, Shoukat, Khan, and Iqbal (2011) which presents a performance analysis of k-Nearest

Neighbour and Naïve Bayes algorithm classifiers for email spam filtering. Design aspects of both

classifiers have been presented in terms of computational complexity and accuracy of

classification. SVM are an example of the kernel method which can be applied as linear or gaussian

kernel method, which are important areas of machine learning theory. Its accuracy can be further

improved by using it with bagging and boosting as an ensemble. Suryawanshi, Goswami, and Patil

(2019) present an ensemble classifier based on Naïve Bayes, Support Vector machine, k-Nearest

neighbour and Bagging & Boosting machine learning algorithms. The results show high

performance in low false positive rate and high accuracy using dataset from UCI machine learning

repository.

Object

Classifier1

Classifier1

Classifier1

Classifier1

Output Rule Outcom
e

 133

Harisinghaney, Dixit, Gupta, and Arora (2014) used Naïve Bayes, Support Vector Machine and

density-based spatial clustering of applications (DBSCAN) algorithm to with an aim to detect

email spam based on text as well as image. Pre-processing of the email datasets prior to

classification is performed to increase the prediction capability. S. Ali (2019) developed a model

with SVM and k-NN to maximise the benefits from the differing characteristics of the two. Where

SVM prepares the features to learn from the examples from the information set during training and

in case an example is not selected, kNN has a different strategy for example determination based

on similarity and proximity estimation. Hence, kNN discovers close neighbours to question set and

SVM jellies the separation on gathering those neighbours, results showed 98% correct prediction

on image spam.

Gashti (2017) carried out a comparative analysis for email spam detection using a combination

of Harmony Search algorithm and Decision Trees for feature engineering on Spambase dataset

using models Bayesian Additive Regression Trees (BART)(Abu-Nimeh, Nappa, Xinlei, & Nair,

2008), Random Forest, Classification and Regression Trees (CART), SVM, NB and Logistic

Regression (LR). Datasets Ling-spam and PU1 were used for assessment, evaluation and

comparison, the results showed that accuracy for Random Forest at 98.61% was highest on Spam

Base dataset whereas accuracy was 99.8% on Ling-spam and 97.12% PU1 datasets, the maximum

error rate reduction was shown by CART decision tree algorithm at 2.2% in comparison with

BART. It is noticed that with appropriate feature engineering, LR performs accurately as shown in

this case.

The rules are defined by the following voting system to classify a new email message:

[all four methods agree] : outcome is the agreed classification decision

[Three methods agree]: outcome is the agreed classification decision

[Two methods agree]: outcome is Ham. This outcome has been chosen with an aim to reduce FP

as some degree of FN is acceptable whereas FP is not acceptable

4.8 Experimental Results – Dynamic Multi-Layer
Ensemble Model

To evaluate the performance of the dynamic multi-layer ensemble model, a series of

experiments were conducted on the datasets identified in Table 4.2 and compared with the

outcomes of the dynamic multi-layer model. The experiments were conducted to test the multi-

layer model at two levels. At the first level, experiments were conducted to test the performance

of the multi-later ensemble model using the datasets. At the second level, after integrating the

multi-layer model with the Bayesian classifier, the greys are classified and the ‘spams’ reclassified

and moved to the appropriate folder by the Bayesian classifier. Once a satisfactory level of

 134

performance was achieved with the multi-layer model on its own, the integrated DMLEM

Framework (Figure 4.12) was evaluated.

The feature selection was carried out for semantic features using BoW with term frequency and

for syntactic features using the same methods described in Section 5.4 for all 13 features. A Chi-

square test was employed to select the most significant features. In addition, a document term

matrix containing feature vectors was developed. The models were generated iteratively to identify

the best parameters for performance of each of the models using the training samples. Once trained,

the evaluation of each of the models in CLKS ensemble was performed using the test samples for

all datasets. Each dataset contained samples of emails belonging to the two output classes of spam

and ham. The datasets were divided into training and testing samples at a 70:30 ration respectively.

The 70 % training samples were selected randomly and the remaining 30% were left for testing.

The datasets were chosen to belong to different times and sizes of the datasets differed. The final

prediction for the email message as spam or ham was then recorded as the outcome of DMLEM.

Experiments were conducted to extract the selected optimum number of 1000 semantic features

from the training samples for each of the datasets. From the same training samples syntactic

features for all 13 elements determined in Section 4.4 were selected. Then, the model was generated

and trained using a total of 1026 features which were developed based on selected features from

header and body of the email samples.

In the testing stage, CLKS and DMLEM were evaluated on the test samples containing both

spam and ham emails. Table 4.11 shows the features initially extracted as bigrams from the training

samples, the time taken for extracting those features, the speed for initial feature selection, time

taken to extract the most significant features using the chi-square test, training and testing times

for the DMLM model. From these statistics it is evident that by choosing bigrams it has not

increased computational complexity or time. The time taken to train and test the model on semantic

and syntactic features has also not impacted the performance time of the classification model. The

time durations for training and testing for the DMELM with ensemble of CLSK was efficient in

terms of computation time.

 135

Table 4.11: Comparison of DMLM and DMLEM for computation complexity

Evaluating the performance of the machine learning algorithm is an essential part of successful

classification. Most existing experiments have used accuracy of classification as the indicator of

performance. However, measuring accuracy in isolation may be misleading and evaluation of the

classification model is more reliable when assessed through a range of performance measurements

such as false positive and false negative rates, precision and recall. Earlier section used accuracy,

FP rate, and FN rate for performance evaluation. These measures have a technical interpretation

associated with the outcome values obtained (Flach, 2019). For classification, there are two types

of outputs generated: class output and probability output. For binary classification, the class outputs

can be either 1 or 0. Example algorithms that produce a class output are SVM and kNN. Probability

outputs are given by algorithms such as logistic Regression, Naïve Bayes, these probabilities can

be converted into classes by defining threshold probability values for the output classes.

The performance of the DMLEM was measured for accuracy, precision, recall, FP and FN. The

results from the DMLEM are compared with those of the DMLM and the Bayesian classifier to

determine which classifier showed superior performance. In terms of the FP and FN rates and

accuracy between Bayesian classifier (at two threshold value sets), DMLM and DMLEM for all

datasets is presented in tables and graphs in this section while the analysis of the results is presented

in next section in ‘Analysis of results and Discussion’

Experimental results are shown in Table 4.12 presenting FP and FN rates and accuracy

measures for the DMLEM from the results obtained from classification for the test samples of the

datasets. The table also offers a comparison between the results obtained from the experiments for

Bayesian classifier and DMLM.

Dataset

Number of
Sementic
eatures

(bigrams)

Feature
extraction
duratiom
(seconds)

Significant
Feature

selection
duratiom
(seconds)

Speed
(MB/sec)

DMLM Train
time

DMLEM
Train Time

DMLM Test
Time

DMLEM Test
time

CSDMC2010 728598 15 0.91 1.27 53 83.6 17 20
ENRON1 247949 3.84 0.28 1.13 58 95.2 24 26
ENRON2 318353 5.8 0.32 1.1 64 102.2 21 24
ENRON3 470345 9.1 0.43 1.1 69 107.2 25 30
ENRON4 329480 4.7 0.26 1 72 102.8 22 31
ENRON5 272177 4.5 0.27 1.1 72 98.57 28 36
ENRON6 368384 5.9 0.33 1.05 66 111.3 25 30
LINGSPAM 419467 6.2 0.31 0.9 65 56.1 19 23

PU1 152526 2.6 0.14 0.75 13 21.5 15 20
TREC07 599843 18.2 0.96 1.03 72 80.8 24 29

 136

Table 4.12: Table showing False Positive rate, false negative rate and accuracy figures for
Bayesian classifier 0.15-0.09 threshold, Bayesian classifier 0.5-.5 threshold, DMLM and

DMLEM all 10 datasets

As can be seen from the table the percentage of correct classification for DMLEM has improved

by including the CLSK ensemble for classification.

A comparative graphical representation of the FP and FN rates are shown in Figure 4.20. For

the FP rate, the performance of DMLEM was superior to all other classifiers while for the FP rate,

the DMLEM accounted for some improvement for some datasets, but had no impact on some others

and deteriorated in terms of the PU1 dataset.

Figure 4.20: Graph showing a) false positive and b) false negative rate for all 10 datasets for
Bayesian classifier 0.5-.5 threshold, DMLM and DMLEM

DATASET METRIC BAYESIAN CLASSIFIER
0.15-0.9 Threshold

BAYESIAN CLASSIFIER
0.5-0.5 Threshold

DMLM
CLASSIFER

DMLEM
CLASSIFER

FP RATE 0 0.23 0 0
FN RATE 0 1.69 0.7 0.3

ACCURACY 100 98.08 99.3 99.7
FP RATE 1.3 2.7 1 0.9
FN RATE 0 3.9 1.4 0.2

ACCURACY 98.7 93.4 97.6 98.9
FP RATE 0 1.1 0.2 0.2
FN RATE 0.1 5.02 1.4 0.3

ACCURACY 99.9 93.88 98.4 99.5
FP RATE 0.1 1.36 0 0.06
FN RATE 0.1 5.7 1.3 0.6

ACCURACY 99.8 92.94 98.7 99.34
FP RATE 0.1 4.7 0.1 0.1
FN RATE 0.3 0 0.3 0.3

ACCURACY 99.6 95.3 99.6 99.6
FP RATE 0.1 7.2 0.4 0.4
FN RATE 0.2 0.89 0.2 0.1

ACCURACY 99.7 91.91 99.4 99.5
FP RATE 0.2 8.8 0.7 0.6
FN RATE 0.3 0.07 0.3 0.2

ACCURACY 99.5 91.13 99 99.2
FP RATE 0 0.72 0.1 0.1
FN RATE 0 9.3 1.3 0.1

ACCURACY 100 89.98 98.6 99.8
FP RATE 0.9 3.09 1.2 1.5
FN RATE 0 2.16 1.2 0.3

ACCURACY 99.1 94.75 97.6 98.2
FP RATE 0 1.1 0 0
FN RATE 2.9 0 2.9 2.9

ACCURACY 97.1 98.9 97.1 97.1

ENRON6

LINGSPAM

PU1

TREC07

CSDMC2010

ENRON1

ENRON2

ENRON3

ENRON4

ENRON5

0

1

2

3

4

5

6

7

8

9

10

C
SD

M
C
2
01

0

EN
R
O

N
1

EN
R
O

N
2

EN
R
O

N
3

EN
R
O

N
4

EN
R
O

N
5

EN
R
O

N
6

LI
N

G
SP

A
M

P
U
1

TR
E
C0

7

False Positive Rate-BC,DMLM,DMLEM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER DMLEM CLASSIFER

0

1

2

3

4

5

6

7

8

9

10

C
SD

M
C
2
01

0

EN
R
O

N
1

EN
R
O

N
2

EN
R
O

N
3

EN
R
O

N
4

EN
R
O

N
5

EN
R
O

N
6

LI
N

G
SP

A
M

P
U
1

TR
E
C0

7

False Negative Rate - BC, DMLM, DMLEM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER DMLEM CLASSIFER

 137

The classifiers were measured for the detection rate - Figure 4.21 shows a comparative

representation of the three models. It is evident that the accuracy of the DMLEM is always higher

than that of the Bayesian classifier and higher than the DMLM, except for the ENRON datasets.

Figure 4.21: Graph showing accuracy comparison for Bayesian classifier 0.5-.5 threshold,
DMLM and DMLEM for all 10 datasets

4.9 Analysis of Experimental Results and Discussion

The results in Table 4.12 reveal that semantic and syntactic features provide sufficient

knowledge to the CLSK ensemble and the proposed DMLEM model to achieve satisfactory overall

detection performance. In this section, the information presented in the tables is further analysed.

Table 4.13 shows the comparison of accuracy for Bayesian classifier at the two threshold levels

with DMLM and DMLEM.

Table 4.13: Comparison of Accuracy

 Figure 4.22: Accuracy comparison among
different models

84
86
88
90
92
94
96
98

100
102

CSD
M

C201
0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSP

AM
PU1

TR
EC0

7

Accuracy - BC, DMLM, DMLEM

BAYESIAN CLASSIFIER 0.5-0.5 Threshold DMLM CLASSIFER DMLEM CLASSIFER

DATASET
BAYESIAN
CLASSIFIER

0.15-0.9

BAYESIAN
CLASSIFIER

0.5-0.5

DMLM
CLASSIFE

R

DMLEM
CLASSIFE

R
Accuracy Accuracy Accuracy Accuracy

CSDMC2010 100 98.08 99.3 99.7
ENRON1 98.7 93.4 97.6 98.9
ENRON2 99.9 93.88 98.4 99.5
ENRON3 99.8 92.94 98.7 99.34
ENRON4 99.6 95.3 99.6 99.6
ENRON5 99.7 91.91 99.4 99.5
ENRON6 99.5 91.13 99 99.2
LINGSPAM 100 89.98 98.6 99.8

PU1 99.1 94.75 97.6 98.2
TREC07 97.1 98.9 97.1 97.1

84
86
88
90
92
94
96
98

100
102

CSD
M

C201
0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSP

AM
PU1

TR
EC0

7

Accuracy- All 4

BAYESIAN CLASSIFIER 0.15-0.9 Threshold BAYESIAN CLASSIFIER 0.5-0.5 Threshold

DMLM CLASSIFER DMLEM CLASSIFER

 138

The results show that DMLEM outperforms the other two classifiers at the same threshold levels

except for the TREC07 dataset where the accuracy is 98.9% whereas both DMLM and DMLEM

have 97.1%. It is important to note that TREC07 dataset size is much larger; however, only a

smaller portion of this dataset was chosen for these experiments so that the difference in dataset

size does not create a bias in the experiments. Nevertheless, reducing the dataset size through

random selection of samples, may well have caused the loss of some samples with syntactic

attributes impacted the feature selection for the DMLM and DMLEM models.

Compared with the Bayesian classifier at 0.5-0.5 threshold, both the DMLM and DMLEM have

significantly improved accuracy for all datasets with a mean difference of 5% increase in accuracy

except for CSDMC2010 and TREC07 dataset. This is interesting since both of CSDMC2010 and

TREC07 datasets belong to similar time periods.

The size of the original Enron dataset is large; thus, as for TREC07, subsets were extracted from

the Enron dataset to keep all dataset to a comparable size. The performance of the DMLM model

on the Enron dataset significantly improved compared to the Bayesian classifier. The feature

selection in the Bayesian classifier is achieved using a basic BoW whereas for the DMLM, an

improved BoW selected semantic and syntactic features. The detection rate for the DMLEM

improved compared to the DMLM for all datasets except for TREC07 dataset which means that

use of a bagging ensemble has proven efficient.

The performance results for the Bayesian classifier with far apart thresholds for its best

performance have been included in this analysis to determine if the performance of the proposed

model is better or worse in comparison. Figure 4.23 shows that the performance of the DMLM and

DMLEM is comparable to that of Bayesian classifier with 0.15-.09 thresholds; it is important to

note, however, that at those threshold values, the Bayesian classifier leaves significant amounts of

unclassified emails which include misclassifications. Hence, overall, the DMLEM proved to be

have the highest detection rate.

Compared to the DMLM, the CLSK ensemble does improve the FP rate of the DMLEM slightly

for some datasets as shown in Table 4.14 but remains constant with the DMLM for many others

and for PU1, it is slightly higher for the DMLEM compared to the DMLM but much lower than

compared to Bayesian classifier at the same threshold value. Figure 4.23 shows the efficiency in

FP rates for the DMLEM.

 139

Table 4.14: Comparison of rate of False Positive

 Figure 4.23: False Positive rate comparison

One of the concerns in terms of the DMLM, were slightly higher FN rates which was one of the

motivating factors for introducing the CLSK ensemble in the DMLM. The results in Table 4.15

show improved rates for FN rates for all datasets except for TREC07.

Table 4.15: Comparison of rate of False Negative

 Figure 4.24: False Negative rate
comparison

Compared with the Bayesian Classifier, the multi-layer models achieved significantly higher

detection rates as well as lower FP and FN rates. Hence, it can be concluded that the improved

feature selection methods were efficient in improving the classification performance.

The % improvement for each of the datasets was calculated for overall spam detection which

includes ham and greys for the Bayesian classifier that contributes towards FP. DMLEM has shown

1.65-11% improvement from over the Bayesian classifier model and up to 1.3% improvement in

performance for the spam detection rate.

To further compare these results of multi-layer ensemble model, a comparison to other models

was carried out and presented in Table 4.16. Based on this evaluation, it is clear that the DMLEM

is efficient in performance when compared to other ensemble classifiers. The number of features

DATASET

BAYESIAN
CLASSIFIER
0.15-0.9
Threshold

BAYESIAN
CLASSIFIER
0.5-0.5
Threshold

DMLM
CLASSIFER

DMLEM
CLASSIFER

FP RATE FP RATE FP RATE FP RATE
CSDMC2010 0 0.23 0 0
ENRON1 1.3 2.7 1 0.9
ENRON2 0 1.1 0.2 0.2
ENRON3 0.1 1.36 0 0.06
ENRON4 0.1 4.7 0.1 0.1
ENRON5 0.1 7.2 0.4 0.4
ENRON6 0.2 8.8 0.7 0.6
LINGSPAM 0 0.72 0.1 0.1
PU1 0.9 3.09 1.2 1.5
TREC07 0 1.1 0 0

0

2

4

6

8

10

CSD
MC201

0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSPA

M PU1

TR
EC0

7

FP RATE - ALL 4

BAYESIAN CLASSIFIER 0.15-0.9 Threshold BAYESIAN CLASSIFIER 0.5-0.5 Threshold

DMLM CLASSIFER DMLEM CLASSIFER

DATASET

BAYESIAN
CLASSIFIER
0.15-0.9
Threshold

BAYESIAN
CLASSIFIER
0.5-0.5
Threshold

DMLM
CLASSIFER

DMLEM
CLASSIFER

FN RATE FN RATE FN RATE FN RATE
CSDMC2010 0 1.69 0.7 0.3
ENRON1 0 3.9 1.4 0.2
ENRON2 0.1 5.02 1.4 0.3
ENRON3 0.1 5.7 1.3 0.6
ENRON4 0.3 0 0.3 0.3
ENRON5 0.2 0.89 0.2 0.1
ENRON6 0.3 0.07 0.3 0.2
LINGSPAM 0 9.3 1.3 0.1
PU1 0 2.16 1.2 0.3
TREC07 2.9 0 2.9 2.9

0

2

4

6

8

10

CSD
MC201

0

EN
RON1

EN
RON2

EN
RON3

EN
RON4

EN
RON5

EN
RON6

LIN
GSPA

M PU1

TR
EC0

7

FN RATE- ALL 4

BAYESIAN CLASSIFIER 0.15-0.9 Threshold BAYESIAN CLASSIFIER 0.5-0.5 Threshold

DMLM CLASSIFER DMLEM CLASSIFER

 140

that were included in the DMLEM cover a great variety inclusive of spammer technique, at the

same time not compromising on computational complexity and cost as shown on Table 4.11.

Table 4.16: Comparison of detection rate for DMLEM with other Ensemble models

Ensemble
Reference

Machine Learning
methods Used Dataset Used Accuracy Features

1

(Anandita et
al., 2017)

Bernoulli Naïve Bayes,
Random Forest,
k Nearest neighbour,
Support vector machine Spam Assassin 96%

Text from body and
header

2
(Varghese &

Dhanya,
2017)

AdaBoost,
Random Forest, Support
vector machine Enron 93.60% text from body only

3
(A. Wijaya,
& Bisri, A.,

2016)
Logistic Regression,
Decision Tree Spam Base 91.67 Text features only

4
(Chharia &

Gupta, 2013)

Naïve Bayes, CART,
C4.5, ADT, Random
Forest,

Enron Spam
Assassin

96.4.
98.6

Text (5 features) +
Non-text-(5 features)

5
(S. K.

Trivedi &
Dey, 2013)

Genetic Programming,
Adaptive Boosting

Enron Spam
Assassin

94.1.
98.6

Text from body and
header

DMLEM

CART, Support vector
machine, Logistic
Regression, k Nearest
neighbour

Enron,
CSDMS2010,
TRCE07,
PU1,
Ling-spam

99,
99.3,
97.1,
98.2,
99.8

Text (1000 features) +
Non-text-(26 features)
from header and body

The results showed that the multi-layer ensemble model improves the performance of email

spam classification and detection by reducing the overall % of FP and FN. This means that THE

model is performing at 99.8% which is an encouraging improvement.

 141

Chapter 5

User Profiling for User Preferences to
Personalise Email Classification

I use Spam Arrest because of the amount of junk mail I get. Any legitimate person who

wants to send me a message has to jump through hoops before they can be added to my
opt-in list.

-Kevin Mitnick

5.1 Overview
From the previous Chapters 3 and 4, it is evident that individual user preferences differ which

is an important factor to consider while filtering email spam. The key issue in email spam filtering

is the high number of false alarms, especially FP due to the fact that the employed classification

models consider unfamiliar normal behaviour as spam. If a user does not normally get emails of a

kind and now such emails are being received, then these may perhaps be spam (unwanted) for

them. The quality of training data plays a vital role in teaching filters what spam and ham are for a

user. In Chapter 4, experiments were conducted with context and user specific data for training of

the Bayesian filter with results showing that such training of the classification models does

significantly improve the classification detection rate. In Chapter 4, a framework was developed

to add additional layers of filtering at the client side to provide high classification accuracy for

email spam for the user.

One step further from the context are a user’s individual interests and preferences. Clearly filters

need instructions to identify which email is spam and which is ham, in particular for a user. In

some mail clients, such as Gmail, users can exercise their preference through a setting that allows

them to choose the area of interest which the filter uses to classify incoming emails. This is time-

consuming for the user and requires continuous updating of preferences as users’ interests change

frequently. Hence, there is a need for a filter to learn and use this learning to change the

classification of emails according to the interest of the user. Little research has been devoted to

considering specific user preferences while designing anti-spam filters. H.-J. Kim, Shrestha, Kim,

and Jo (2006) suggest user action based adaptive learning where they attach weights to Bayesian

classification on the basis of user actions. Jongwan Kim, Dou, Liu, and Kwak (2007) constructed

 142

a user preference ontology on the basis of user profile and user actions and trained the filter on the

basis of that ontology. All of these suggested models are based on user actions related to emails

and email spam for classification. However, none of the works has so far addressed user context

and preferences.

The filter takes user data as input to be fed into the email spam filter model for training and

model development. Such a model would be productive for the users, improve the performance of

the filter and cater for user specific needs.

User profiling aims to understand the preferences of a user by applying machine learning

techniques to learn from the users’ data. This is achieved through feature extraction from the data

of an individual user and building models and training them using appropriate samples. Then,

when a new email arrives, the features extracted for that email are matched with the features

identified for that user to classify it as ham or spam. So, if a user likes romance and animation

movies and receives emails related to war movies then it is potentially spam (unwanted) for that

user.

Another benefit of user profiling is that most content-based filters at organisational level are

generic and are applied to all the users. These filters remove some emails that are mass sent;

however, they may be ham (wanted) for a particular user but may be allocated to ‘junk’ because

the mail server filter identified it as spam. To avoid such occurrences, user profiling may include

a step where the spam folder at the client side is re-classified to bring those FP back into inbox.

An important consideration is that the filter training should not require minimal manual input

from the user.

5.2 User Profiling for User Preferences - User
Behaviours and Actions?

Content-based email spam filters are employed at the mail server of organizations and the rules

of filtering are applied to emails for all different users irrespective of their interest. However, as

discussed earlier, individual users have different preferences in terms of what they want to receive

in their mailboxes. The same email that may be classified as spam by one user, may be ham for

another and vice versa. An example comes from academics at a university who may be interested

in different topic areas. A book publisher emailing academics about newly published titles may be

seen as useful by an academic who works in that area whereas it is spam to another who does not.

Hence, to address individual needs of users, there is need to update the email spam filter to

incorporate the user’s preferences.

Over the last few years, this area of research has come to be of interest as personalized spam

filtering where filters adapt to individual user preferences (Cheng & Li, 2006; K. N. Junejo, &

Karim, A., 2013; Li & Shen, 2011; X. Liu et al., 2017; Zhijun, Weili, Na, & Lee, 2005).

Personalized filters can be deployed at the server or client side. Yue, Abraham, Chi, Hao, & Mo

 143

(2007) presented a user feedback-based artificial immune system at the server level, whereby

servers dynamically adapt to behaviour-based patterns of individual users within the same email

server. This method uses a clustering-based approach in conjunction with other filtering systems

for error minimization in email spam classification. This study bridged the gap between global

filtering systems and individual user preferences. The main issue with this technique is that it

requires users to provide feedback and secondly, the model is dependent on the accuracy and

correctness of this feedback.

Literature suggests that most of the proposed solutions are at the server side (Cheng & Li, 2006;

K. N. Junejo, & Karim, A., 2013; Li & Shen, 2011; X. Liu et al., 2017; Zhijun et al., 2005).

However, these solutions cannot be effectively implemented for the following reasons. Firstly,

these solutions have to be robust and lightweight since it is to be deployed for thousands or millions

of users by email service providers, else it is not practical to implement it. Secondly, it requires a

significant amount of organizational, human and technical resources to implement and maintain

such solutions. Thirdly, the computational cost associated with personalized filters is extremely

high at the server side and may make the filtering process slower.

A solution would, therefore, be to shift the fine-grained filtering process to the user where cost

is confined to adjustments needed for one user. Kim et al. (2007) have argued for considering the

user’s behaviour as the basis for any action taken on email spam such as determining the destination

of an email. However, so far, limited effort has gone into user behaviour-based email spam filtering

although some studies exist. One of these comes from Alsowail and Batarfi (2011) who studied

the use of an adaptive email filtering learning system based on user behaviour and a rating system

that allocates rates to user actions carried out on an email. A similar weighted system was proposed

by Han et al. (2008) for detecting email spam based on user actions, where weights were allocated

to each user action. Viewing Grey lists was identified by Isacenkova and Balzarotti (2014) as user

behaviour in the sense that the users viewing grey emails was considered as whitelisting them. The

statistics presented indicated that on average 3.9 emails from a legitimate email campaign were

contained in the grey lists compared to 1.1 emails from a spam campaign. The limitations in this

case concern the bias introduced due to the possibility that a user accidentally views a spam emails

which would impact classification.

This research argues that user actions cannot be taken as a determining factor to decide whether

an email is spam or ham. To argue this point, user actions associated with ham and spam emails

are presented in Table 5.1 and 5.2 respectively.

 144

Table 5.1: User Behaviour Associated with Ham Emails

1. Open, Read and Delete some emails are opened, read and delete as they are not

needed for later use.

2. Open, Read and Save some emails are read and saved for later use.

3. Open, Read, Reply and Delete some emails are read, replied and deleted as not needed

for later reference.

4. Open, Read, Reply and Save some emails are read, replied and save for later

reference.

5. Delete user deletes the email without opening, it is not relevant

to the user.

Table 5.2: User Behaviour Associated with Spam Emails

1. No Action user ignores the email, and it stays in the user inbox as

spam

2. Open and Delete user opens and then deletes the email.

3. Open, Read and move to Spam

folder

 user opens, evaluates and then moves the email to

Spam folder.

4. Move to spam folder user moves the email to spam folder without opening it

5. Blocked. User blocks the email to spam folder without opening it

6. Open, Read and Blocks user opens, evaluates and then blocks the email.

7. Delete user deletes the evident spam email

A deeper analysis of user actions from the Tables 5.1 and 5.2 reveals that a user may carry out

a mix of similar actions on several emails sent by the same sender. The emerging picture, however,

is not comprehensive as these actions are invariably carried out on ham and spam emails. Hence,

user behaviour via user actions associated with an email is not a clear indicator of users’

preferences in terms of email spam as suggested by most of the research papers.

Pham et al. (2011) developed an architecture for proxy servers for collaborative spam filtering

that improves the performance of SMTP servers. This is based on feedback received from the users’

email clients from collecting user feedback when an email is incorrectly classified by the filter at

the server level and monitoring the actions of the users. The agent extracts the terms from the

emails deleted by the user without reading and the user profile is updated based on such user action.

From Table 5.1, it is clear that a user might Delete an email from a sender without opening in the

case when it is not relevant to them at that time and hence this action is not a correct indicator of

an email as spam. If based on action, the content-based filter is updated with the words found in

 145

that email as indicators of spam which would mislead the content filter and may lead to increasing

the FP loss of information that is important for the user.

Analysing the user behaviour from the data logs of the user emails and social networking terms

of user interactions would allow a reasonable insight of user preferences (Jiang, Jin, Yuanyuan,

and Guandong, 2016). Such analysis of the interactions of a user with several other users and

sender/receivers of emails could provide useful information about the users’ preferences.

Knowledge of these preferences can clearly increase the performance of email spam filters.

None of these current solutions, however, are comprehensive, leaving a gap between what is

offered and what could be achieved by other means. There is a need, therefore, to modify the email

filter to incorporate user profiling – for instance, if the mailbox is the university mail, then any

email about sex change, selling drugs, advertising porn sites, etc. is spam (with 100% certainty).

Also, any email about invitation to be a referee, to sit on PC of a conference, etc. is not spam (with

100% certainty). Hence, with user profiling, the FN (spam) that escape the mail servers would be

filtered at the client end according to user preferences.

As discussed earlier, filters used to filter spam emails can be located at the sender server,

receiver server or email client of the receiver. From the analysis above, there is justification to

assume that filtering email with user preferences at the email client would yield better results,

which justifies the research in later chapters of this thesis.

5.3 Methodology:
An iterative learning algorithm has been adapted for developing user profiling, purely

developed based on the user data requiring no input from the user. Hence, no user logs or actions

were included in the experiment. As a first step, a knowledge set is developed by identifying

significant features from the user data in the form of significant phrases that provide meaningful

information. It has been first assumed and then proven in Chapter 4 and 5 that multi words provide

more accurate evidence rather than a single keyword. The frequency of a single keyword may be

high, but when combined with another word they convey meaningful information pointing to a

concept. Hence, it was decided that for user profiling significant phrases would be used, formed

by locating the phrases around the keywords from the predefined keyword sets. A collection of

significant phrases was developed through semantic analysis of the training samples of ham and

spam emails.

It is assumed that each of these significant phrases express an opinion about the output

class/label of an email as ham or spam. It is further assumed that significant phrases for different

users differ based upon their preferences. This can be quantified by discrimination information

measures.

For example, sample from two users spam emails is shown as ith email for user 1and jth email

for user 2 in figure 5.1 a) and 5.1 b) respectively., after pre-processing and cleaning of data

 146

following phrases would be selected, for ith email - ‘prescription ready’, ‘low cost’, prescription

medication’, etc. and for jth email – ‘major stock play’, ‘contract announcement’, ‘huge newsletter

coverage’, etc.

a) Significant phrases from emails

b) ith email from user 1

c)

Figure 5.1: Significant phrases from emails and sample emails

If the ith email is defined by the feature vector 𝑣j 	= 	 {	𝑓𝑣j5, 𝑓𝑣j7, … 𝑓𝑣j:) with 𝑓𝑣j� >	= 	0 is

the jth attribute value and n is the size of the feature vector space. A significant phrase i in the

knowledge-set is likely to be a spam term in a feature vector, if its probability in email spam

training samples 𝑝(𝑓𝑣j/𝑦	 = 	+) is more than its corresponding probability value in ham email

training samples 𝑝(𝑓𝑣j/𝑦	 = 	−). It is a significant feature if

Keywords Email
samples

Significant
Phrases

Knowledge set Keyword set

 147

𝑝(𝑓𝑣j/𝑦	 = 	+)/	𝑝(𝑓𝑣j/𝑦	 = 	−) 	> pf for spam and (5.1)

𝑝(𝑓𝑣j/𝑦	 = 	−)/	𝑝(𝑓𝑣j/𝑦	 = 	+) 	> pf for ham, (5.2)

where pf is the parameter for feature selection.

Feature selection methods were employed to extract the significant features based on the

identified significant phrases from the training samples which was then converted to feature

vectors. A feature vector space of size n was selected from each sample set.

The process followed in terms of methodology to profile users is as below.

1. Loading Data (Retrieving File for spam/ham mails): This step retrieved the spam and ham

emails from the dataset, loaded the file for each mail and stored them as an array.

2. Pre-processing and representing Data (Data Cleaning): Here the cleaning of the data was

performed in preparation for training. It involved removing punctuation marks, stop words that do

not contribute much to classification, common words and white spaces etc. Contents were then

reconstructed after all the above steps satisfactorily clean the data in preparation for training.

3. Feature Extraction (Tokenizing Data): This step involves breaking up the text of an email into

words, performing stemming and lemmatisation to bring the derived or infected words to their stem

or root forms. Based on the keyword sets, all possible combinations of phrases are found from the

emails based on the keywords present in the training samples. The value of phrases is determined

by using word embedding techniques such as term frequency, term frequency inverse document

frequency and word2vec embedding where all of them convert phrases to feature vectors of

numbers.

Term frequency is calculated by dividing the number of occurrences of a phrase or word in a

document by the total phrases/words in that document, TF-IDF stands for “term frequency-inverse

document frequency”, is a term weighting scheme that reflects the significance of a token in a

document contained in a corpus; word2vec is a shallow neural net that is used to produce word

embeddings from text as input and feature vectors as output that present words in that input text.

The features with the highest score are chosen as sample features for training and classification.

Once phrases are ordered, the highly ranked ones are significant phrases selected as features.

A phrase is a spam phrase if its probability in the training samples of spam emails 𝑝(𝑓𝑣j/𝑦	 =

	+) is higher than its probability in ham training samples 𝑝(𝑓𝑣j/𝑦	 = 	−). A phrase is a significant

spam phrase if it satisfies equations 5.1 and 5.2.

4. Model selection and Training on User Data: In order to find a suitable model for user profiling,

several machine learning and deep learning models were developed, trained and evaluated. The

following Machine and deep learning models were analysed - Logistic Regression, Support Vector

Machine, Naïve Bayes, Random Forest, Dense Neural Network, and Convolutional Neural

Networks. During training, these models were evaluated for different hyperparameters to find the

best fitting parameters. The parameter pf is a feature selection parameter and can be used to tune

 148

the size of feature vector space used for the model generation; if its value is less than total phrases

found, then all phrases are selected as significant phrases. As the value of pf increases, the less

significant phrases are removed from the model.

5. Evaluating models on Test Data: Each of the models developed and trained were evaluated on

the test data containing ham and spam samples for performance.

6. Calculating Various Metrics and Plotting Visualizations: During evaluation, to measure the

performance of the models for each user, several metrics like accuracy, log loss, confusion matrix,

precision, recall, and f1 score were calculated and recorded. Visualisations were plotting confusion

matrix, receiver operating characteristic (ROC)/ area under the curve (AUC)curve, and precision

recall curve (PRC) explained below.

The classification report represents the classification metrics for each class. The report allows

detailed investigation of the performance of the classifier beyond the overall accuracy which can

be biased due to inaccuracies in the data. Suryawanshi et al. (2019) used the classification report

as a measure of performance evaluation using the metrics precision, recall, F1 score ad ROC-AUC

curve. The metrics included in a classification report are presented and discussed below:

Accuracy

This is a metric for evaluating classification models, also known as Accuracy Classification

Score (ACS), a measure of closeness of predicted value and actual value which is determined by

the total number of predicted outcomes against actual outcomes. ACS measure the total number of

predictions made correctly as a proportion of the total predictions made for the test data.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑆𝑐𝑜𝑟𝑒 = 	 -z y
 -z yz¡-z¡y

𝑥	100

A higher accuracy score is not a direct determinant for the selection of a model, as in many

cases a model with a lower accuracy may have a higher predictive power. This can be illustrated

on the case of datasets with large class imbalance where a classification model may achieve a high

classification accuracy by correctly predicting the value of the majority class for all the predictions

but not for the minority class. Using this model based on an accuracy score would not be useful in

the actual domain.

Precision

Precision, also known as positive predicted outcome, is a measure of the exactness of the

classification model. It is referred to as measure of closeness of two or more values and means that

every time it is measured, the value is the same. It is the fraction of relevant outcomes among the

predicted outcomes and is calculated as the number of positive predictions made divided by the

total number of positive class labels predicted by the model.

It measures the proportion of positive outcomes predicted correctly.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	 -

 -z¡-
∗ 100 = -

 ¢s£¤	-¥¦§j¨s¦§	-¢xjsj©¦
∗ 100

 149

If the precision score is 90%, the classification model will make correct predictions for 90% of

all predictions. The precision score is 100% if the classification model produces no FP in the

confusion matrix.

Where the cost of False Positives is high, Precision is a good measure to determine. In case of

email spam classification, the user might lose important emails if the precision score is low for the

spam filtering classification model.

Recall

Recall, also known as sensitivity, is a measure of completeness of the classification model. It is

the fraction of relevant predicted outcomes among the total relevant outcomes and is calculated as

the number of positive predictions among the total number of positive class labels. It measures the

proportion of actual positive outcomes predicted correctly.

Recall calculates the total number of the actual positives the classification model captures by

labelling them as positive. This means True Positives among actual positives; hence. recall is also

known as true positive rate (TPR).

 𝑅𝑒𝑐𝑎𝑙𝑙	𝑜𝑟	𝑇𝑃𝑅 = 	 -

 -z¡y
∗ 100 = -

 ¢s£¤	«¨s¬£¤	-¢xjsj©¦
∗ 100

The higher the value of recall, the lower the number of FN. A low recall indicates many False

Negatives.

Recall is a good measure for selecting the best classification model when the cost associated

with FN is high. For email spam filtering, a significant number of emails would be received as

spam if the recall score is low for the spam classification model which defeats the purpose of the

filtering model.

FI score

The F1 score is a function of Precision and Recall, balanced between precision and recall. It is

measured as harmonic mean of the two and is calculated as

F1	score = 2 ∗	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑥	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

∗ 100

For a dataset with class imbalance with high occurrences of a class label, there is a need to

balance Precision and Recall. In such a case, the F1 score is a good measure as it takes both FP and

FN into account. The F1 score shows perfect balance between precision and recall if the value is 1

whereas high imbalance has a value of 0.

AUC/ROC curve

AUC is the area under the ROC curve and ROC is the receiver operating characteristics curve

which represents the performance of the classification model for different threshold values and

summarizes the capability of the classification models to differentiate between class labels. ROC

 150

is the probability curve that is plotted between the true positive rate (recall or sensitivity) on the y-

axis and false positive rate on the x-axis of the classification model for different probability

threshold values between 0 and 1.

AUC, the area under the ROC curve, represents the entire 2D area under the ROC curve. It

shows the aggregate performance of the classification model for all values of the threshold from

(0,0) to (1,1) as shown in Figure 5.2.

Figure 5.2: AUC ROC curve

AUC can be interpreted as the probability that the classification model will assign a higher rank

to a positive than to a negative example, selected randomly. AUC is a scale as well as a threshold

invariant.

The value of AUC lies between 0 to 1; the higher the value, the better is the performance of the

classification model in classifying spam as spam and legitimate as legitimate. For example, if the

AUC value is .96, the model makes 96% correct predictions but if the value is close to 0, This

means the model is making high number of incorrect class predictions by classifying spam as

legitimate and vice versa.

PRC curve

A precision-recall curve is a trade-off between precision and recall by plotting them as y and x

axes for different threshold values between 0 and 1, similar to the ROC curve. PRC measure the

performance of the classification model as it evaluates the fractions of true positives amid all

positive predictions and hence provides a good measure of future classification performance.

The PRC curve is a straight line at 0.5 which means the dataset contains an equal number of

positive and negative instances. The skill of the model is demonstrated by the points above this

line. At points (1,1), the models perform efficiently, predicting spam as spam and legitimate as

legitimate which means that a curve bowing towards (1,1) is an example of a skilful model. ROC

and PRC curves are proportional to each other and have a 1:1 relationship at a certain point.

 151

5.4 Experimental Results
In this section, the details of the experiment and the results are presented. The feature selection

approach to develop user profiles was evaluated on the Enron dataset. The Enron has user data for

ham and spam emails from 6 users. The dataset size is about 33,716 spam and ham emails for all

6 users. Each of the individual user dataset was divided for training and testing in 70:30 ratios as

shown in Table 5.3.

Table 5.3 User datasets for training and testing

User: 1 Train (X, Y): 3666 Test (X, Y): 1506 Train: 70.88 %, Test: 29.12 %
User: 2 Train (X, Y): 4044 Test (X, Y): 1813 Train: 69.05 %, Test: 30.95 %
User: 3 Train (X, Y): 3868 Test (X, Y): 1644 Train: 70.17 %, Test: 29.83 %
User: 4 Train (X, Y): 4214 Test (X, Y): 1786 Train: 70.23 %, Test: 29.77 %
User: 5 Train (X, Y): 3632 Test (X, Y): 1543 Train: 70.18 %, Test: 29.82 %
User: 6 Train (X, Y): 4173 Test (X, Y): 1827 Train: 69.55 %, Test: 30.45 %

(X, Y) represent ham and spam emails in the training and testing samples. The profiles of 6

users were developed from this labelled dataset using the significant phrase approach and evaluated

using 3 feature selection methods and multiple classification models. Since the feature set for each

user is different, several machine learning and deep learning models were evaluated to determine

which one demonstrates superior performance. Each feature selection method was evaluated

through two experiments, one with each of the three machine learning classification algorithms,

Logistic Regression (LR), Support Vector Machine (SVM), and Naïve Bayes (NB). These

algorithms have been detailed in Chapter 4. The second experiment was carried out using the deep

learning algorithms Dense nets (Dense Neural Networks, DNN) and Convolution neural networks

(CNN) with two different sets of parameters for the size of the input layer.

For evaluation of the performance of models, all metrics, accuracy, precision, recall, and the F1

score were included in the results for these experiments as the inclusion of only one metric may

not have provided reliable results, particularly for imbalanced class distributions. Table 5.4 present

the class distribution for training and test samples for all user data.

 152

Table 5.4: Class distribution data for all users

Most research on data evaluations relies on accuracy; however, accuracy is effective for

prediction when the values of FP and false FN are very close as was the case for the DMLM and

the DMLEM in Chapter 4. For this experiment, however, as can be seen from Table 5.6, the values

for FP and FN are somewhat imbalanced and inclusion of other metrics provides better prediction

performance evaluation.

Once the profiles for all users were developed, cross verification of each user’s preferences for

each model with every other user was performed using a random sample of 3,5, and 320 samples

from each of the user’s test data. These are fed into the trained models for each user and the

preferences recorded to note if the user’s preferences differ. This is determined by the outcome

produced by each model on other users’ data.

Table 5.5 reports the results of classification using three machine learning algorithms and the

term frequency feature selection method called countvectoriser whereby phrases are converted into

vectors to count the occurrences of each in the email training samples. The concept as has been

discussed in Chapter 4, Section 4.3 and is designed to count the occurrences of phrases and present

them in a matrix with columns as features (significant phrases) and rows as emails.

Table 5.5: Results of classification using term frequency feature selection method

Train Test
User1- Spam 1066, Ham- 2600 User1- Spam 434, Ham- 1072
User2- Spam 1038, Ham- 3006 User2- Spam 458, Ham- 1355
User3- Spam 1028, Ham 2840 User3- Spam 472, Ham 1172
User4- Spam 3154, Ham- 1060 User4- Spam 1346, Ham- 440
User5- Spam 2560, Ham- 1072 User5- Spam 1115, Ham- 428
User6- Spam 3124, Ham- 1049 User6- Spam 1376, Ham- 451

Metric-> Accuracy Precision Recall F1 score ROC/AUC PRC
Model -> LR SVM NB LR SVM NB LR SVM NB LR SVM NB LR SVM NB LR SVM NB

User
User 1 97 97 97 99 99 98 97 97 97 98 98 98 100 100 100 99 99 99
User 2 97 97 97 98 97 97 99 99 99 98 98 98 100 100 100 99 99 99
User 3 97 97 98 97 97 98 99 99 100 98 98 99 100 100 100 99 99 100
User 4 97 97 99 98 100 99 90 89 97 94 94 98 99 100 100 100 100 100
User 5 97 97 98 98 98 97 91 93 96 94 95 97 100 100 100 100 100 100
User 6 97 96 98 99 98 94 90 86 96 94 92 95 99 99 100 100 100 100

Term Frequency

 153

 From Table 5.5, it is evident that on an average the values of all the measures are above 97%,

which is a high detection rate. The high value of precision for this method for all three

classification models indicates that there is little loss of important emails as FP. High values for

recall indicate that a model is efficient in the case of low FN, which indicates low email spam for

the user. Recall values are slightly low compared to precision; however, performance is high. The

F1 score measures a balance between precision and recall and is of particular concern with

imbalanced class distribution; value of >96% on average indicates satisfactory performance.

Table 5.6 FP and FN for each user using term frequency method

The number of FP and FN show a similar trend for all classification models with respect to the

size of test datasets as shown in Table 5.6. However, there is a difference in the number of FP and

FN. Hence, different metrics were considered to evaluate the performance of classifiers using the

countvectorising method. Figure 5.3 shows the confusion matrix, ROC/AUC curve and PRC curve

for term frequency (countvectorising) method for all six users. The ROC curve is beneficial for

evaluating the new tests at an early stage, while the AUC is an effective way of showing overall

accuracy which takes the form of a value between 0 and 1. As the value of AUC is approaching 1

for this method, this indicates high accuracy of the outcome from the experiment. Higher values of

the PRC curve indicate low FP and FN.

User LR SVM NB LR SVM NB
User 1 36 32 28 10 14 22
User 2 14 8 7 14 42 40
User 3 7 10 4 37 38 28
User 4 44 49 13 9 1 4
User 5 40 29 15 8 10 12
User 6 47 63 17 6 6 26

FP FN
Term Frequency

 154

Figure 5.3: Confusion Matrix, ROC/AUC curve and PRC curve for using term frequency method

Table 5.7 shows the results of applying feature selection using tf-idf which reflects the

importance of each feature related to each email message in the training set.

Table 5.7: Classification results using TF-IDF

The value of tf-idf increases proportionate to the recurring appearances of the features

(significant phrase) in an email message and also in the entire corpus of email datasets. This value

is offset by the recurrence of the token in the emails contained in that training corpora, which

adjusts for the fact that some words appear more frequently in general in the training email set.

TF-IDF is a numerical statistic which is a product of two statistics namely term frequency and

inverse document frequency and is defined as

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑, 𝐶) = 	𝑡𝑓(𝑡, 𝑑) ∗ 	𝑖𝑑𝑓(𝑡, 𝐶)

Metric->
Model -> LR SVM NB LR SVM NB LR SVM NB LR SVM NB LR SVM NB LR SVM NB

User
User 1 97 97 100 97 97 97 98 98 92 98 98 94 100 100 100 99 99 99
User 2 97 97 96 97 97 96 99 100 100 98 98 98 100 100 100 99 99 99
User 3 98 98 97 97 97 96 99 100 100 98 98 98 100 100 100 99 100 100
User 4 98 99 99 100 99 100 93 95 95 96 97 97 100 100 100 100 100 100
User 5 98 99 99 98 98 97 96 97 97 97 97 97 100 100 100 100 100 100
User 6 97 97 98 98 97 97 90 92 93 94 95 95 99 99 100 100 100 100

TFIDF vectoriser
ROC/AUC PRCAccuracy Precision Recall F1 score

Logistic Regression

Support Vector Machine

Logistic

Naïve Bayes

 155

where tf(t,d) is the raw count of the feature t in an email message d which is 1 if the feature exists

in an email message and 0 if otherwise; idf(t,C) is the amount of information provided by the

feature in the email corpus, i.e. it is recurring or not in the entire email corpora. It is calculated by

log of inverse fraction of emails that contain that feature obtained by dividing the total number of

emails N by the number of emails that contain the token t shown as

𝑖𝑑𝑓(𝑡, 𝐶) = 	𝑙𝑜𝑔	
𝑁
𝑑(𝑡)

Hence,

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐶) = 	𝑡𝑓(𝑡, 𝑑) ∗ 𝑙𝑜𝑔	
𝑁
𝑑(𝑡)

The value of tfidf is high if the token frequency in an email is high and low in the entire corpus

of emails; the values tend to filter out common features. The ratio of N to the email containing the

feature is always >= 1; therefore, the idf value and hence tfidf value is >=0. IF the recurring feature

is in a great number of emails, the ratio y
§(s)

 approaches 1, resulting in the tfidf to approach 0. This

way the number of elements in the matrix reduce iteratively by determining the tfidf and removing

the lower contribution features. This whole process is carried out until the matrix contains only the

high scoring features. It can be clearly inferred from the performance shown in Table 5.7 that all

classification methods for tf-idf have performed comparative to term frequency method.

Accuracy and precision values are high at around 97-98% for all users for all classification

methods indicating high detection rates. High values of recall also indicate reduction in email spam.

Given the class distribution is somewhat uneven, the value of the F1 score is significant, which is

averaging at 96-97%. This means the models are performing well. A high value ROC measures

how well the models are classifying ham and spam for each user; from Figure 5.4 AUC values

indicate high accuracy of outcomes given by the models for all users.

Figure 5.4 shows the confusion matrix, ROC/AUC and PRC curve, and the high value under

the curve indicates high precision and a high recall rate pointing to low values of FP and FN rates.

 156

Figure 5.4: Confusion Matrix, ROC/AUC curve and PRC curve for using tf-idf method

The third feature selection method used is word embedding, a feature learning and selection

technique where words/phrases from the vocabulary are mapped to vectors analysing its context.

Here, glove embeddings (Wikipedia Embeddings (https://nlp.stanford.edu/projects/glove/) have

been used for the feature selection. Glove files have been loaded and an embeddings dictionary is

maintained which keeps mapping from words to embedding vectors of length 300. Then, for each

feature in the mail, it aims to locate embeddings from the embedding dictionary. Vectors of each

feature are then normalised to create one vector which represents the selected contents of that email

message.

The results for LR and SVM are presented in Table 5.8; the Naïve Bayes is not included in this

experiment since embedding produces negative values whereas Naïve Bayes requires all input

values to be positive. Hence NB cannot be used for this method.

The overall detection rate using word embeddings is lower for both LR and SVM compared to

other methods for all the users. For users 1 and 2 the detection rate with precision and recall and

hence F1 score is comparable to other methods. The F1 score at close to 100 indicates low FP and

low FN which point to high prediction and low false alarms. However, other metrics have

performed at a lower rate.

Logistic Regression Support Vector Machine Naïve Bayes

 157

Table 5.8: Classification Results using Word Embedding

As shown in Figure 5.5, the ROC/AUC curve performance is good for all users except user 4

indicating lower accuracy. Hence, the overall accuracy is acceptable for both classification

methods though SVM outperforms LR for word embeddings.

Figure 5.5: Confusion Matrix, ROC/AUC curve and PRC curve for using tf-idf method

Use of Deep learning Algorithms and the Rationale

The next experiment uses deep learning algorithms, Dense Neural Networks also called Dense

Nets, and Convolutional Neural Networks with two different input sizes of 300 and 100 referred

to as CNN version 1 (CNNv1) and CNN version 2 (CNNv2) in the experimental results. These

techniques are explained as follows:

Convolutional Neural Networks (CNN), a type of deep learning algorithm, are specialised types

of neural networks introduced in 2012 by Geoffrey Hinton (Krizhevsky, Sutskever, & Hinton,

2012) which are commonly applied to visual data such as audio, images and video in one, two and

three dimensions respectively. Lately, CNN have also had significant success with text

Metric->
Model -> LR SVM LR SVM LR SVM LR SVM LR SVM LR SVM

User
User 1 94.2 95.5 96 97 96 97 96 97 98.4 98.9 96.2 97.3

User 2 94.04 96.1 95 97 97 98 96 97 98 99 95.1 97.7

User 3 93.2 96.2 94 97 96 98 95 97 97.9 99 95.6 97.9

User 4 95.1 96.6 92 95 88 91 90 93 90.5 99 99.4 99.7

User 5 93.5 96.1 89 93 87 93 88 93 97.9 99 99.1 99.5

User 6 93.6 95.7 90 94 83 88 86 91 97.3 98.5 98.9 99.4

PRCROC/AUCF1 score

Word Embeddings

Accuracy Precision Recall

Logistic Regression Support Vector Machine

 158

classification (Bai, Kolter, & Koltun, 2018; P. Wang et al., 2015). CNN convolute several adjacent

inputs (known as layer 1) with an activation function applied to each unit which gives an output

that forms the next layer (known as output layer 2), and this function is applied to all adjacent

input. Next, pooling is performed where the results of output layer 2 are pooled into the next later

known as layer 3). This layer consists of fewer units as it averages the results of the units from the

previous layer (layer 2). CNN architectures are designed for 2D input data structures, although they

can also be used for 1D and 3 D inputs as they offer regularisation of multilayer perceptron’s which

means, they are fully connected networks where neurons in each layer have a connection with the

neurons in the following layer. They consist of several convolutional layers with non-linear

activation functions such as ReLU or tanh applied to the output of each convolutional layer

followed by fully connected layers. These networks involve two operations, convolution and

pooling which leads to feature extraction. Convolution is performed by a convolution layer, a linear

operation that involves application of a filter or kernel to an input by multiplying an array of

weights to the input data that results in activation. The filter slides over the input multiple times,

resulting in a matrix of output maps of activations, a convoluted feature or input feature map, which

develops local connections where each region of the input is connected to a neuron in the output.

This identifies the features of an input. The value of the filters is automatically learned by CNN

depending on the nature of the task and each layer applies different filters which may vary in

number and could be hundreds or even thousands. The size of the convolutional features is reduced

by pooling layers in order to reduce the computational cost of data processing. Pooling operates

on each feature map independently and consists of the application of a certain operation to the

feature map to extract a representative output value. Its function is to reduce the spatial size of

representation for parameter reduction. It provides a fixed size output matrix that reduces the output

dimensions while retaining the salient features that are useful for classification. There are two

pooling operations: one is max-pooling that selects maximum value in each selected region of the

map and the second is average-pooling that selects the average value resulting in a singular scalar

output which significantly reduces the output size. The features identified from all convolutional

and pooling layers are passed on to the last fully connected layer, e.g. a multilayer perceptron with

dropout and softmax output that uses high-level features for development of the training model to

be used for classification.

 159

Figure 5.6: Layers of a Convolutional Neural Network (CNN) for text classification

While applying CNN in Natural Language Processing for text classification problems, text is

represented as a 1D array as shown in Figure 5.6. This means the CNN architecture consists of 1D

convolutions and max pooling (Jacovi, Shalom, & Goldberg, 2018). It considers words as n-grams

which is used to classify a document to a predefined category as in the case of email spam filtering

where each email is classified as spam or legitimate. Filters with width usually of the size of an

input matrix slide over the rows of the matrix of words to develop feature maps; the height of the

filter or region of the input matrix covered by the filter may vary.

Given a set of inputs 𝑥j and outputs as 𝑦j belonging to a one-dimensional convolutional layer

where N is a neuron (though it can be multiple neurons as described above), then, output is

𝑦j = 𝑁(𝑥j,			𝑥jz5,𝑥jz7, ….)

and Neuron N is described as

𝜎(𝑤°𝑥°,			𝑤5𝑥5,𝑤7𝑥7, ….)

with weights 𝑤°,𝑤5, 𝑤7, … and activation function 𝜎 that control the behaviour of neurons and

may hold positive or negative values. Neurons with the same weight are identical and are handled

by convolution. All neurons in a layer are described at once. If W is the weight matrix then

𝑊 =	²

𝑊°,° 𝑊°,5	 𝑊°,7 …
𝑊5,° 𝑊5,5 𝑊5,7 …
𝑊7,° 𝑊7,5 𝑊7,7 …
… … … …

³

and

𝑦° = 	𝜎(𝑊°,°𝑥°,			𝑊°,5𝑥5,𝑊°,7𝑥7, ….)

𝑦5 = 	𝜎(𝑊5,°𝑥°,			𝑊5,5𝑥5,𝑊5,7𝑥7, ….)

𝑦7 = 	𝜎(𝑊7,°𝑥°,			𝑊7,5𝑥5,𝑊7,7𝑥7, ….)

 160

Though the weight matrix connects every input to every neuron with varying weights, it is

possible that the same weights appear multiple times and neurons may not connect to all inputs. In

that case, the weight matrix may change with some values as zero.

The pooling layer uses max or average operation to combine the output of all the convolution

windows into a vector of predefined dimension. This output vector is then fed to the follow-on

layers and finally into the fully connected layer for classification. An example of CNN of text

classification (Ye Zhang & Wallace, 2015) is shown in Figure 5.7.

Figure 5.7: Architecture of a CNN for text classification.

Here, the input matrix has dimensions of size five with three filter regions of sizes 2, 3 and 4

with two filters each making a total of six filters. Each filter slides over the sentence matrix to

perform convolution and generates two feature maps for each region. The feature maps vary in size

for each of the three regions. Each of the 6 feature maps is applied with 1-max pooling in order to

obtain the largest number from each feature map to generate 6 univariate feature vectors. These

vectors are concatenated to form a single feature vector to be fed into the final layer to be used for

binary classification with 2 output labels.

There is no evidence of use of CNN for user profiling though it has been used for text and

sentence classification in the following examples. P. Wang et al. (2015) proposed a hierarchical

semantic model using clustering and CNN for classification of short texts. This novel method used

a fast clustering algorithm for introducing additional knowledge using word embeddings which

was followed by detection of multi-scale sematic units (SU), fed into the CNN model as features.

The model was tested and validated for effectiveness on text snippets obtained from Google

snippets and TREC datasets. Jacovi, Sar Shalom, et al. (2018) also worked with details for applying

CNN to processing of text for classification. The authors carried out a hypothesis examination that

 161

global max-pooling support filters in detection of n-grams in CNN and showed that using distinct

activation patterns, filters may capture multiple semantic classes of n-grams. Important n-grams

can be separated by global max-pooling. Hence, filters are not homogenous and capture linguistic

patterns which can be detected by clustering high scoring n-grams according to their activation

patterns. Based on this paper, it is evident that model-based as well as prediction-based

interpretability of CNN can be improved. Ye Zhang and Wallace (2016) conducted a sensitivity

analysis to determine the effects of hyperparameters for model architecture of CNN on the

performance of the model. The baseline configuration used was Google word2vec word vectors,

region size of 3,4,5, with 100 feature maps, and ReLU activation function, 1-max pooling, and a

dropout rate of 0.5. The effect of this configuration on nine selected datasets was observed and the

authors concluded that hyperparameters can be effectively used with CNN for sentence

classification.

Dense Neural Networks (DNN) is a supervised deep learning algorithm that develops neural

networks where the layers are fully connected by the neurons. Each individual neuron in a layer

receives input from all neurons in the preceding layer causing the layers to be densely connected

(hence the name DNN). Dense layer is another name for fully connected layers where all neurons

in a layer are fully connected to all neurons in the following layer. Dense layers are also referred

to as hidden layers and use a ReLu activation function. Thus, a dense layer is a linear operation

where every input is connected to every output by weights and is generally followed by a non-

linear activation function. For binary classification, sigmoid is used as final activation function for

the output layer. Output, O of the dense layer with input X is implemented as

𝑂 = 𝜎(𝑑𝑜𝑡(𝑋,𝑊) + 𝑏)

Where 𝜎, the activation function is ReLU for each of the hidden layers and sigmoid for the output

layer, W is the weight matrix created by the layer and b is the bias vector created by the layer.

Figure 5.8: Fully connected layers of Dense Neural Network

 162

After defining the layers, the neural network is compiled and the loss function between actual

and predicted output is calculated. The performance of the dense neural network is evaluated using

metrics such as accuracy, precision, recall or confusion matrix.

The layers in DNN provide features from all combinations of features from the preceding and

subsequent layers for learning whereas CNN relies on consistent features. DNN has been used for

image and audio classification whereas their applications for text classification is limited.

Volz et al. (2016) conducted a comparative study of performance of data-driven architectures

based on SVM and dense neural networks for time series classification of the intention of

pedestrian to cross the street. The model was evaluated for several time horizons and result

demonstrated promising accuracy for pedestrians’ intent of crossing. Even long-time, the accuracy

of the DNN proposed in this architecture is consistently above 80% for the time horizon of 6 secs.

Brun, Yin, and Gelenbe (2018) presented a methodology using dense neural networks for

detection of network attacks in an online setup. The proposed methodology detected the attacks

against IoT gateways from the packet capture metrics by predicting the probability of an attack.

For evaluation of the method, the attacks were inserted into packet captures and results show

correct detection of attacks by DNN. Further evaluation of the model using the same dataset using

a threshold showed comparable accuracy values.

M. Du et al. (2019) took a novel network structure approach based on fully dense neural

networks (DNN) to reduce the pre-processing difficulty and high memory consumption associated

with CNN. The proposed DNN model performs feature extraction using network blocks and

reduces the model size with dense connect. The evaluation results show that by using dense

connections, features are extracted efficiently while reducing the model’s parameters and

delivering high recognition rates.

The performance of the three classification models is presented in Table 5.9 where DNN

outperforms both versions of CNN in terms of the overall detection rate as well as precision and

recall, indicating low FP and FN rates.

Table 5.9: Classification results using deep learning models

Metric->
Model -> DNN CNNv1 CNNv2 DNN CNNv1 CNNv2 DNN CNNv1 CNNv2 DNN CNNv1 CNNv2 DNN CNNv1 CNNv2 DNN CNNv1 CNNv2

User
User 1 96.48 93.7 88.6 99 97 94 96 94 89 97 96 92 0.987 97.9 89.4 0.969 93.6 76.2
User 2 97.5 94.8 92.1 98 97 95 99 96 94 98 97 95 99.3 94.8 92.2 98.8 95.1 79.2
User 3 97.32 95.5 71.2 97 96 71 99 98 100 98 97 83 99.5 98.9 50 99.2 97.2 64.4
User 4 96.36 75.34 92.2 100 75 98 85 100 70 92 86 82 97 50 92.5 99 87.7 96
User 5 96.89 72.26 91.25 97 72 95 91 100 73 94 84 82 99.6 50 94.1 99.8 86.1 96.3
User 6 95.13 88.7 75.3 97 96 75 83 57 100 89 71 86 95.7 90.5 50 98.5 95 87.7

Deep Learning
ROC/AUC PRCAccuracy Precision Recall F1 score

 163

The ROC/AUC and PRC curves show a similar trend where DN performs better than CNN.

5.5 Cross Verification of User Preferences

In this section, a cross check of user preferences was performed to determine the applicability

of a classification model developed for one user for the data for another. Since the feature set for

each user is individual and different to another user in principle, this experiment is conducted to

see how different the classification outcome for several users would be. This is to check if spam

mail for one user might be ham for another user.

This done by selecting random samples of data from user test data samples provided as input to

the classification model for prediction (for user 1). Subsequently, the same samples were fed into

classification models developed for 5 other users and the outcome recorded. This experiment was

conducted using deep learning methods and outcomes were compared with the true values of those

test samples. The configuration chosen were 3, 5 and 20 random samples from the test samples for

each user.

 The experimental results indicated that sample size of 3 was too small and did not produce any

deterministic results. Hence, this sample size was discarded. For the sample sizes 5 and 20,

predictions made by the classification model for all 5 users are compared against the true values of

those test samples. The value ‘0’ means ham and ‘1’ indicates spam in the results tables. Table

5.10 shows the evaluation results for the 5 test samples belonging to User 1 provided as input to

all 5 users to individual DNN models for classification. It shows that the ‘True’ label was the same

as the prediction label for users 1, 4, 5 and 6; however, the prediction is different for user 2 and 3.

Table 5.10: Comparison of user preference of User 1 with other users using 5 samples

Table 5.11 reports results for the same user and 20 user data samples. Here, the DNN model for

each user loads 20 randomly taken spam emails from the test data of User1 and then evaluates

these using the DNN model for all users. The prediction made by the model showed that the DNN

performance for User 1 was the same as the true value for those samples. The predictions made by

the models for other users recorded the difference in preferences for different users as their model

predicted the same samples differently.

 164

Table 5.11: User preference Comparison of User 1 with other users using 20 samples with DNN
model

Tables 5.12 and 5.13 show the results for the same User1 sample test data of 5 and 20 using

CNN version 1. The prediction results by the CNNv1 model for users indicate that similarity in

preferences for users 1, 4, 5 and 6; however, they are different for users 2 and 3.

Table 5.12: Comparison of user preference using 5 samples with CNNv1

The prediction results for 20 samples from all 6 users using CNNv1 indicate that user 1 does

have some level of similarity of preference to users 4, 5 and 6, but variations are visible when the

sample size is larger. There is about 50% commonality in prediction between user 1 and 2 from

this sample of 20.

Table 5.13: Comparison of user preference using 20 samples with CNNv1

For the same sample sizes for User 1 tested through CNN version 2 (shown in Table 6.14), the

prediction made by the classifier and true values vary for User1, which signifies a low detection

rate performance by CNNv2. This performance of CNNv2 is reflected in experiments while

developing user profiles as well. The preferences of users 4, 5, and 6 were predicted to be the same

as the true value of the samples but varied for users 2 and 3.

Evaluating them on all users model using CNNv1 for User 1
enron1 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]
enron2 Model Predictions : [0 1 1 0 1], True : [1. 1. 1. 1. 1.]
enron3 Model Predictions : [0 1 0 1 0], True : [1. 1. 1. 1. 1.]
enron4 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]
enron5 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]
enron6 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]

Evaluating them on all users model using CNNv1 for User1
enron1 Model Predictions : [1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
enron2 Model Predictions : [0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
enron3 Model Predictions : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
enron4 Model Predictions : [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
enron5 Model Predictions : [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]
enron6 Model Predictions : [1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1], True : [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 0. 1.]

 165

Table 5.14: Comparison of user preference using 5 samples with CNNv2

Contrary to low detection performance for sample size 5, CNNv2 performed accurately for

sample size 20 where predictions made by the model were the same as the true value of the samples

for User1 as shown in Table 5.15. The preferences indicated by this model for all other 5 users are

different to user 1 as prediction value and true values are different.

Table 5.15: Comparison of user preference using 20 samples with CNNv2

Similarly, comparative evaluation of user preferences for users 2-6 indicates patterns that show the

difference in user taste for emails.

5.6 Analysis of Results and Discussion:
Experiments have been carried out using three feature selection methods on the significant

phrases selected from the datasets for the 6 users from the Enron dataset using machine learning

and deep learning algorithms to determine which model to select for user profiling.

From the results, it transpires that though performance is comparable, the Naïve Bayes

classification algorithm performs better than LR and SVM for term frequency and tf-idf methods.

For word embeddings, SVM performs better than LR.

For deep learning methods, DNN performs better than any of the selected versions of CNN.

Hence, the recommended model with significant phrases as feature for developing user profiling

can be implemented with any of the machine learning or deep learning models suggested.

For cross verification of user preferences, the experiment compared the prediction values for

the samples for all 6 users to identify the variation in user preferences in terms of receiving emails

in their inbox. The same email is classified spam to one and ham to another. Sample sizes of 5 and

20 emails were randomly selected from the test data samples and given as input to classification

Evaluating them on all users model using CNNv2 for User 1
enron1 Model Predictions : [1 1 1 1 0], True : [1. 1. 1. 1. 1.]
enron2 Model Predictions : [0 0 1 0 1], True : [1. 1. 1. 1. 1.]
enron3 Model Predictions : [0 0 0 0 0], True : [1. 1. 1. 1. 1.]
enron4 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]
enron5 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]
enron6 Model Predictions : [1 1 1 1 1], True : [1. 1. 1. 1. 1.]

Evaluating them on all users model using CNNv2 for User 1
enron1 Model Predictions : [1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]
enron2 Model Predictions : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]
enron3 Model Predictions : [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]
enron4 Model Predictions : [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]
enron5 Model Predictions : [1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]
enron6 Model Predictions : [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1], True : [1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 0.]

 166

models of DNN, CNNv1 and CNNv2 for training and then evaluation. The evaluation results show

a similar pattern for user preferences for all 6 users for DNN and CNNv1 for both sample sizes.

This indicates for all three models using sample size of 5 that there are similar preferences for users

1, 4, 5 and 6; however, for large samples of 20, some differences could be discerned among these

users. The results for CNNv2 show difference in predicted and true values for users 2 to 6 for 20

samples indicating a different pattern as compared to DNN and CNNv1. Tables 5.10-5.15 show

the experimental results for User 1, similar comparisons were performed for all other users to find

the differences in predicted and true values for the same email due to differing user preferences.

Hence, it can be deduced that user preferences differ and do play an important role in email

spam classification and detection.

 167

Chapter 6

Hunting Random Strings and Topic-
based Detection Methods

Spam filters are supposed to block e-mail scams from ever reaching us, but criminals have
learned to circumvent them by personalizing their notes with information gleaned from the

Internet and by grooming victims over time.
-Maria Konnikova

6.1 Overview

The previous two chapters focused on techniques for increasing the performance of email spam

classification at the client side. A dynamic multi-layer model (DMLM) using a novel technique for

feature selection filters was proposed in Chapter 4 and evaluated using CART machine learning

ensemble of decision trees. The results showed high detection rates for email spam. An

enhancement of this model was proposed in Chapter 5 where a bagging ensemble of classifiers was

proposed. The models were evaluated and validated for performance with five different datasets.

Preference of individual users differ; this was demonstrated in Chapter 6. Through experiments

and results it was seen that email spam detection improves when performed by profiling users.

Experimental results also showed that user tastes differ, and the same email may be classified

differently by different users.

It has been established that spammers continue to introduce new techniques for deceiving the

efforts of email spam filtering mechanisms. One of the latest techniques involves injection of good

text into email spam. The purpose of such injection is to confuse the filters since most of the feature

selection techniques rely of the frequency of words. Hence, the performance of content-based email

spam filters deteriorates. Phishing is one type of email spam that leads recipients of email to click

on a link and compromise their identity; if successful, this may lead to financial and non-financial

losses to users. An injection of random good text into spam emails also impacts the capability of

 168

phishing email filters. Hence, it has a wide range of impacts. There is no evidence from research

to determine the impact of random text injection on classification filters. This chapter proposes to

fill this gap through an entropy method for random string detection to identify email spam based

on experiments where random good text is first injected into sample spam email datasets followed

by an application of the proposed entropy method.

Email spam has been addressed in this thesis and in other existing literature whereby most of

the features for spam filtering are extracted from either the body or header of the email messages

or the entire email message content. Little attention had been given to the topic/subject of the email

spam. Topics of emails are crafted to lure users to open, read and react to the emails. Most of the

email spam filters focus on the body of the email content and only a small portion consider the

subject field for classification. So far, this research has proposed techniques based on the entire

email, per se header, subject and body of the email and no close attention has been paid to the

subject field. This chapter has one set of experiments focused just on subject field incorporating

the topic of the emails as a feature into the email spam classification framework. Feature selection

is carried out using GloVe word embeddings and a range of machine and deep learning models

were developed for classification and their performance measured and evaluated. These proposed

models are validated using four datasets with sample sizes ranging from approx. 3000 to 75000

emails. The results were recorded and compared for each of the proposed classification models.

In this chapter, four datasets - TREC07, Enron CSDMC2010, and Ling-spam, of varying sizes

were used for training and evaluation purposes. Each dataset was divided randomly in a ratio of

70:30; 70% was used for training and 30% for testing. Due to the shortcomings of the holdout

method, where the emails may be unevenly divided as per the split percentage k-fold, cross

validation was used in the experiments where the entire dataset was divided into k times. With a

70:30 split, the model was trained with 70% of the data and tested on 30% - performed k times

with for each operation.

The dataset sizes for each were as follows, TREC07 (75419), Enron (33716), CSDMC2010

(4327), Ling-spam (2893). The breakdown of ham and spam divided into training and testing at a

70:30 ratio is shown is Figure 6.1.

Figure 6.1: Datasets with their ham/spam training and test split

 169

The datasets are described below in ascending order of size; the original dataset size is used for

experiments in this chapter:

TREC07: This email dataset consists of total 75,419 messages out of which 25,220 are legitimate

emails and 50199 are spam messages.

Enron: The labelled email dataset size is 33,716 messages with 16,545 ham and 17,171 spam email

messages.

CSDMC2010: This dataset has 4327 labelled messages where 2949 are legitimate and 1378 are

spam email messages.

Ling-spam: The dataset consists of a total of 2893 email messages, of which 2412 are legitimate

and 481 are spam messages.

Performance Evaluation Metrics
For classification, there are two types of outputs generated: class output and probability output.

For binary classification, such as email spam detection, the class outputs can be either 1(spam) or

0(ham). SVM produces a class output. Logistic Regression, Naïve Bayes, Random Forest and

XGBoost produce probability outputs which can be converted into classes by defining threshold

probability values for the output classes. This chapter uses seven metrices – confusion, accuracy,

precision, recall, F1 score, ROC/AUC curve and PRC curve to evaluate the machine learning

classification algorithms used for email spam detection. Chapters 4 and 5 have description of all

metrices except the confusion matrix which is described a below:

Confusion matrix-

A confusion matrix records predicted results versus actual values in an 𝑛	by	𝑛 matrix where 𝑛

= the number of predicted classes. This explicit arrangement provides visual representation of the

performance of a classification model on a specific test data; one side of the matrix displays the

predicted results, and the other side displays the actual data provided the actual values are known.

Table 6.1 presents a sample confusion matrix for binary class outputs (negative and positive). The

predicted labels are presented horizontally, and the actual labels are shown along the side of the

matrix. Each of the cells holds the total number of predictions made by the classifier. The cell

values in the matrix are ‘True’ if the actual is as predicted and ‘False’ if is not. A confusion matrix

is an effective measure to determine the classifier’s capability to make correct predictions.

For binary classification problems as is the case for email spam, classification with class outputs

as spam and ham, 𝑛 = 2, the matrix is of the size 2 x 2. If spam = positive and ham = negative then

True negative means the email message is ham and the classifier correctly predicted it as ham, True

positive means the email message is spam and the classifier correctly predicted it as spam. Incorrect

classification made by the classifier model are recorded as False positive and False negative. M.

Iqbal et al. (2011) used a confusion matrix to evaluate the performance of the Naive Bayes classifier

against the k-NN classifier for email spam filtering.

 170

Table 6.1 Confusion Matrix

Visualisation of the performance of the classifier model through the confusion matrix shows

that the class distribution for the actual test data counts and the classifiers’ predicted data counts

for each of the cells. The confusion matrix is also known as error matrix where the cells of Table

6.1 represent the breakdown of error types as true positive (TP), true negative (TN), false positive

(FP) and false negative (FN) defined as

FP- False positive means that a legitimate email which is negative in actual data, has been

incorrectly predicted as spam email by the classifier model

FN- False negative means that an email spam which is positive in actual data has been incorrectly

predicted as legitimate by the classifier model

TP- True positive means that an email spam which is positive in actual data, has been correctly

predicted as spam by the classifier model

TN- True positive means that a legitimate email which is negative has been correctly predicted as

legitimate by the classifier model

The chapter is structured as follows: Section 6.2 introduces methodology for the proposed

method of email spam detection for the case of random string injection in email spam, Section 6.3

reports experimental results and analysis followed by discussion in Section 6.4. Topic-based

classification is described in Section 6.5 along with experimental results and analysis. The final

Section 6.7 is the conclusion of the chapter.

6.2 Random String Injection- Using Entropy for
Classification at Client Side

Statistics-based techniques have been effective for email spam filtering; however, spammers

constantly find techniques to make these filters less effective by modifying the content of email

spam. They identify the probabilities associated with spam words and either obfuscate them or

introduce words with ham probability to reduce the ‘spammy’ character of the emails. This

technique is called ‘good word attacks’ where spammers inject good words into email spam (Y.

Zhou, Jorgensen, & Inge, 2007). Some research has gone into finding solutions to this problem

(Xiao-wei & Zhong-feng, 2012; Yan Zhou, Jorgensen, & Inge, 2008). Lowd and Meek (2005)

 171

found that the Naïve Bayes filter was extremely vulnerable to attacks where spammers inserted

words indicative of ham emails into spam emails and suggested re-training the filter to minimise

the effectiveness of such attacks. However, none of these solutions address if the problem is

transformed from injection of good words to spammers injecting random pieces of valid text rather

than just words in the spam email to confuse the filters. Such text has low spam probability hence

adding it to email spam reduce the overall spam probability of the message. This makes signature-

based techniques ineffective and also changes the digital signature of an email. Pelletier et al.

(2004) referred to the addition of random text but did not address the issue or suggest a solution.

Furthermore, so far there has been no evidence of research into this problem.

In this work, this problem is first validated and then a solution suggested. To validate the

problem, two sets of experiments were conducted. First, random valid pieces of text representing

20% of the size of an email was injected into email spam datasets. Secondly, this same 20% text

was scrambled before injection. The entropy measure was then used to identify if this injection

introduces adversity in email spam classification.

Accuracy and precision of segregating ham and spam emails using machine learning algorithms

is heavily dependent on the features selected for classification. These mathematical models lack a

deep understanding of the problem domain and rely on parameters estimated form the training

samples. Chapters 3-4 have suggested techniques for improving feature sets to improve the

performance of email spam detection methods. This chapter proposes another method to further

improve the technique to detect and classify spam and ham. A machine learning model may

perform well on one dataset, but if the characteristics of another dataset are significantly different,

the same model may perform badly. To maximise the email spam detection rate, it is proposed to

use an entropy method which brings statistical and probability theories together for decision

making. To measure the effectiveness of the proposed approach, combinational tests were

performed with machine and deep learning algorithms on several datasets listed in earlier sections.

6.2.1: Methodology
The methodology used in this experiment involves the following steps

• Data Pre-processing

Here data sample are taken from all datasets and below mentioned steps are performed

• Loops through each file

• Tokenize file contents ignoring unwanted characters using ISO-8859-1 encoding

• Remove stop words which are commonly occurring words in a sentence and does not

contribute much to classification.

• Reconstruct text contents after all above steps have cleaned the data samples.

• Feature selection

Feature extraction and selection is performed with the following methods: Every email is

represented as a word vector of dimension N where each dimension of the vector relates to a certain

 172

weight of the term resulting in a Vector Space Model. This weight can be the term frequency. The

sample data is represented in a sparse matrix of dimension M x N where M is the number of emails

in a sample set.

• Model building and parameter selection

Once feature selection is performed, this step involves building models and selection of

optimum hyper parameters to train it for classification. A grid search through each of the models

is performed to find the best parameters.

There are classification algorithms available that are suitable to be used as models for email

spam filtering. The sheer volume of available machine learning algorithms is overwhelming, and

it is important to know the ones suitable for the task in-hand based on research. In previous

chapters, the following machine learning algorithms - CART, NB, SVM, kNN, LR and deep

learning algorithms - DNN and CNN have been described and used for classification.

This section discusses the classification algorithms presented in this chapter which are used in

the proposed framework for this research. Each of the algorithms can be matched with the most

appropriate classifier and can learn to perform the classification task. Instance representation is

required by all machine learning algorithms for training and evaluation. Email spam is an instance

which is transformed into a vector (x1, . . . , xm), where x1, . . . , xm are attribute values for X1, . . .

,Xm, similar to the vector space model in information retrieval (I. Androutsopoulos et al., 2000).

The reason for this transformation is the limitation of most machine learning algorithms, namely

that they can only classify numerical objects like vectors.

This chapter uses the following machine learning algorithms: Logistic Regression, Support

Vector Machine, Naïve Bayes, Random Forest and Extreme Gradient Boosting, and deep learning

(CNN and DNN) to build models for classification. A brief description of the layers of DNN and

CNN is provided later in this section.

The arguments for the choice of these algorithms, and example instances where they have

proven effective for classification, are discussed as follows: Naïve Bayes is the simplest and most

widely used algorithm for classification. Studies published over the last two decades that carried

out a comprehensive comparison of Naïve Bayes with other classification methods, show that

Naïve Bayes classification is outperformed by more recent approaches (Chakrabarty & Roy, 2014).

However, Naïve Bayes requires only small amounts of data for parameter estimation and, due to

the assumption of independent variables, variable variance for each class is to be determined as

variation in each variable which contributes to variation in each class. Hence, Naïve Bayes is

included in the classification method of this chapter.

Support vector machines (SVM) have proven to be more effective than the benchmarks of

effectiveness set by machine learning algorithms and hence are the method of choice for data

scientists as they are considered advanced machine learning algorithms for binary classification

such as email spam detection. The machine learning algorithms namely, Naïve Bayes, and Support

vector machine are being used for classification in several datasets as they provide quality

 173

classification results (Youn & McLeod, 2007). A comparison of performance of NB and SVM

algorithms is presented in Harisinghaney et al. (2014) where both algorithms show acceptable

accuracy for Enron dataset. Logistic regression is useful for reducing noise in the training data

before preparing for classification (Wijaya & Bisri, 2016; Yang, Liu, Zhou, and Luo 2019), is

easy to implement and efficient in terms of training. XGBoost implements optimisation of gradient

boosting trees as an ensemble and has many strengths such as regularisation and parallelisation

that reduces overfitting, has high speed, and handles missing values. These attributes and its

evaluation in terms of accuracy makes it a preferred choice in data science and machine learning;

however, its ensemble structure can increase the computation time. Random forest as another

ensemble of decision trees shows good performance for accuracy and computation time. A study

by Hajara et al. (2019), trained, tested and evaluated XGBoost and RF using the same metrics on

the same datasets for phishing detection. XGBoost proved to be robust and outperformed RF for

some of the problems whereas RF handled overfitting better than XGBoost, reduced variance and

is a collection of independent classifiers as it is an example of a bagging ensemble of decisions

trees. Hence, these algorithms are selected for use in the model for classification.

The deep learning algorithms have been described in detail in Chapter 5, the argument for their

choice here is explained as follows: Dense Neural Networks (DNN) consist of significant numbers

of linear neural net layers - models earlier known a Neural Networks (now DNN).

 Convolutional Neural Networks (CNN) are deep forward feeding artificial neural networks

where the connections between nodes are not cyclic. Though DNN and CNN are conceptually and

intuitively applied for image classification, their quick model development and their high speed is

an advantage also for text classification as messages contain large numbers of features although

M. Du et al. (2019) have argued that DNN proved more efficient than CNN for their case study.

Ho, Baharim, Abdulsalam, and Alias (2017) carried out a review of deep learning methods and

their application for text categorisation. The authors discussed and compared dense verses

convolutional layers in neural networks. For DNN, the input neurons are fully connected to the

neurons in the next layer whereas in CNN, convolution is performed on the input layer where

multiple filters, used for text categorisation, glide over each row of the matrix containing layers

between the input and output layers from which the output is calculated. As DNN are distinct from

CNN in terms of fully connected layers and application in natural language processing, both

methods are chosen as deep learning models for email spam filtering in this thesis.

Random Forest and Extreme Gradient Boosting are two machine learning algorithms that

are introduced in this chapter. The description of these algorithms and the example instances where

they have proven effective are presented as follows:

Random forest (RF), a non-parametric supervised machine learning algorithm proposed by

Breiman, (2001), is a combination of a large number of individual decision trees – a forest - which

 174

can be used for classification and regression and to build a model with reliable prediction outcomes.

It is based on the bagging method that collective learning improves the outcome. The model

collects output from each individual tree and uses a voting mechanism as aggregation of votes to

decide the final outcome (Goel, 2017). As the size of the trees grow, the algorithm searches for the

best features among those collected. However, this does not increase complexity as

hyperparameters have few requirements. Each tree in RF is trained with a subset of the training

data and depends on the independently selected random vector with the same distribution for all

trees within the forest (Figure 6.2).

Figure 6.2: Random Forest Prediction Model

It is important to note that each training sample is chosen from the original dataset and is

replaced back into the dataset after being chosen, so the training samples are not unique. This

technique leads to different trees but with the same input size. The training sample pool was not

broken into smaller pieces to train each tree with a different piece. The sample size for training

each tree remains the same but the features may be different. This is called bagging. An example

is shown in Figure 6.2. If the sample size for training sample 1 is n, then each tree is fed with

training sets of size n containing different features. RF uses a probabilistic entropy calculation

approach and hence, automatically reduces the number of features. It is considered robust due to

the number of decision trees and does not suffer from the problem of overfitting since it averages

individual predictions made from the set of trees which leads to minimal bias. Hence, RF have

been found to be effective for solving statistical classification problems. However, it has so far not

been applied to non-linear regression.

The predictor variables for RF may be numerical, categorical, continuous or discrete and output

variables are either categorical or real numbers. In the case of email spam filtering, output is

categorical. Suppose the input variable is vector 𝑋 and output label is Y, then random forest is a

classifier that learns the relationship between X and Y such that the forest (of decision trees) can

make the prediction Y for the given input X. While each individual tree can be a weak learner and

sensitive to noisy data, under the hypothesis that they are independent, the ensemble of trees will

not be and should prove to be a strong classifier to predict the output Y.

 175

The process of tree generation is the same as stated for CART; once each tree predicts an output,

RF votes for each predicted result and prediction with the most votes is selected as the final

prediction as shown in Figure 6.3.

Figure 6.3: Visualisation of Random Forest prediction (Yiu, 2019)

RF has been selected for the classification of email spam due to its ease of parameterisation,

robustness against overfitting, accuracy, non-sensitivity to noisy data, as well as speed and

performance. It does not require pre-processing such as noise removal or scale reduction as it is

not affected by scale factors due to being purely based on probability.

Akinyelu and Adewumi (2014) studied detection of phishing emails, investigating the use of

Random forest machine learning algorithms to improve the accuracy of classification with a

minimal number of features. RF was used on a dataset of 2000 emails from which features were

extracted and utilised by the algorithm achieving high accuracy at 99.7% with very low false

positives of 0.06%. Similarly, Dada and Joseph (2018b) developed a classification model based on

Random Forest to increase the accuracy of prediction whole reducing the features required to

achieve it. An Enron dataset of spam and ham emails of 5180 was used, prominent features were

extracted and applied to an RF algorithm using a WEKA simulation environment. The result was

efficient classification performance with an accuracy of 99.92% with a very low false positives

rate of 0.01% and a true positive rate of 0.999%. A highly successful model was proposed by Devi

(2018) who developed an attribute based random forest model as part of a framework developed

for email spam detection and classification. The framework first calculated the probability of each

token being spam using a Bayesian theorem, calculated the weight of each token and then the email

Term Frequency Inverse Document Frequency (TFIDF) The email spam score was calculated next

using genetic fitness based on which classification of emails was carried out with a random forest

algorithm. On this basis, evaluation results for accuracy, weighted accuracy and the f1 score were

 176

calculated. The resultant classification shows that this proposed novel framework outperforms

other existing email classification methods.

eXtreme Gradient Boosting (XGBoost)

XGBoost, a gradient boosting decision tree-based ensemble supervised machine learning

algorithm developed by Chen and Guestrin (2016), was designed for classification and regression.

It is a gradient boosting decision tree designed for the efficient use of computation time and

memory resources and has been a recent popular choice as it has won many competitions on Kaggle

and has been used in industry applications. XGBoost is a library of gradient boosting algorithms

that are optimised for scalability, parallelizability, portability, quick execution and accuracy.

Boosting is a method of converting weak learners into strong learners, typically applied to

decision trees and weak learners with minimum correlation between them. Boosting algorithms are

Adaptive Boosting (AdaBoost), Gradient Boosting and eXtreme Gradient Boosting. AdaBoost’s

performance is impacted by noisy data and outliers, and the algorithm tries to overfit. Gradient

boosting visualises the boosting issue as an optimisation issue by optimising the loss function based

on an idea by Leo Breiman (2001). The objective is to define a loss function and minimise it. It

iteratively adds each model and computes the loss which represents the residual error. This loss

value is used to minimise the residual and update the final prediction label based on this learning.

Suppose for the output label Y, 𝑦j is the target label, 𝑦j
¶ is the predicted label then the loss function

is

	

𝐿𝑜𝑠𝑠 = 𝐿.𝑦j, 𝑦j
¶	0 = 	�(𝑦j −	𝑦j

¶)7	

then ∑(𝑦j −	𝑦j

¶)7 is the sum of residual errors. The aim is to minimise the loss for the predictions

by using gradient descent and updating predictions based in learning rate r, the predicted value

with minimum error is

𝑦j
¶ = 	𝑦j

¶ + r ∗ 	
δ ∑.𝑦j −	𝑦j

¶	07

δ𝑦j
¶ = 	𝑦j

¶ − 𝑟 ∗ 2 ∗�.𝑦j −	𝑦j
¶	07	

XGBoost applies the gradient boosting framework using gradient descent architecture with

enhanced algorithms and system optimisation with the base gradient boosting framework as its

core. It performs system optimisation by parallelisation, which means it performs sequential tree

development using parallelised implementation with multiple CPU cores for faster computing

during training. XGBoost uses backward tree pruning called ‘depth first approach’ to improve

computing time. This is necessary as the stopping criteria for tree splitting are greedy and use

negative loss criteria at the point of split. The algorithm performs cache optimisation of data

structures by internal buffer allocation for gradient statistics storage in order to make efficient use

 177

of hardware resources (Brownlee, 2016). It achieves algorithmic enhancements via tuning

parameters such as regularisation by penalising complex models to avoid overfitting. XGBoost

automatically handles missing values by learning best missing value based on training loss

(‘sparsity awareness’). Sparse aware implementation of XGBoost efficient handles different types

of sparse patterns in the data. It uses block structures to support tree construction using

parallelisation implementation. It limits parallelisation by loop nesting by interchanging the loops

for base learning where the outer loop lists the leaf node, and the inner loop determines features.

A weighted quantile sketch algorithm is used for split point identification in weighted datasets and

each iteration in the algorithm has a cross validation method built into it (Chen and Guestrin,

2016). It is easily integrated with GPU machines to train models with large datasets to improve

performance in terms of running time. Hence, XGBoost is a tree boosting algorithm that is scalable

and provides state of the art solutions for classification problems. It uses an effective combination

of software and hardware methods to minimise errors and provide exceptional results in short

computational time. These features make XGBoost suitable for application to email spam filtering.

Chen and Guestrin (2016) proposed XGBoost as scalable machine learning method for tree

boosting. A sparsity-aware algorithm is proposed for approximate tree learning, to sparse data and

build a weighted quantile sketch which enables handling weights of the instances in approximate

tree learning. This system increases the speed of classification tenfold and enhances scalability

memory limited settings. The results show that XGBoost is able to exploit computation and

processing capabilities as well as improve speed.

Hazim, Anuar, Ab Razak, and Abdullah (2018) used Extreme Gradient Boosting (XGBoost)

and a Generalized Boosting Regression method (GBM) in a supervised boosting approach on two

multilingual datasets to improve the detection of spam in the mobile application marketplace.

Statistics-based features were proposed and then tested on English and Malay datasets with

accuracies of 87.43% and 86.13% respectively. XGBoost was found to be suitable for spam

detection on the English dataset whereas GBM was more suitable for the Malay dataset. (Mussa

and M. Jameel, 2019) proposed an Xtreme Gradient Boosting method for detection of SMS spam

where two types of wrapper feature selection methods were used for optimal feature selection. Nine

features were considered a good representation of the content of messages and the accuracy of the

XGboost classifier obtained with 10-fold cross validation was 98.64%.

Dense Neural Network
This model contains Dense layers with activation as relu. The last layer has activation as sigmoid

which outputs a probability between 0 and 1 with samples as spam/ham based on its confidence.

To avoid overfitting, a dropout of 0.2 between layers is used. The algorithm for the DNN model is

shown in Figure 6.4 below:

 178

def get_dense_model(num_max):
 model = Sequential()
 model.add(Dense(2048, activation='relu', input_shape=(num_max,)))
 model.add(Dropout(0.2))
 model.add(Dense(1024, activation='relu'))
 model.add(Dropout(0.2))
 model.add(Dense(512, activation='relu'))
 model.add(Dropout(0.2))
 model.add(Dense(256, activation='relu'))
 model.add(Dropout(0.2))
 model.add(Dense(128, activation='relu'))
 model.add(Dropout(0.2))
 model.add(Dense(64, activation='relu'))
 model.add(Dropout(0.2))
 model.add(Dense(1, activation='sigmoid'))
 #model.summary()
 model.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['acc'])
 print('compile done')
 return model

Figure 6.4: Algorithm for Dense Neural Network

Convolutional Neural Network version 1 (CNNv1)

For CNN, Keras sequential model with multiple layers is used. The input into the model is the

pre-processed data for which embedding vectors have been developed. It starts with an embedding

layer of a vocabulary size of 1000 and embedding vector of 50 per word.

Embedding output is fed into the convolution layer with size of 64 filters and 3 channels along

with activation as relu. The output of the convolution layer is fed to the GlobalMaxPooling layer

to average the output of the convolution layer of 3 channels into one channel to feed it into the

dense layer of size 256 and activation as relu. The output of this dense layer is fed into another

dense layer of size 1 which has an activation function as sigmoid which outputs the probability of

the sample email being spam or not. A dropout of size 0.2 intermediate in layers is used.

A different set of parameter values of the CNN model was used for classification to check whether

it performed better or worse. It is described below.

Convolutional Neural Network version 2 (CNNv2)

Similar to CNNv1, it starts with an embedding layer of a vocabulary size of 1000; however, an

embedding vector of 20 per word is used. The embedding output is fed into the convolutional layer

with a size of 256 filters and 3 channels along with activation relu for this version.

• Entropy Calculation and visualisation

 179

Shannon and relative entropies are calculated for each sample of ham and spam email test data.

Entropy in the context of information especially which is a measure of randomness or uncertainty

in data and is used in information security (L. Du, Song, and Jia, 2014).

Here two entropy-based methods, Shannon and Relative entropies are used for detection of

spam emails where spammers have injected spam emails with random valid strings of text to

confuse the filtering algorithms. In information theory, entropy is the amount of information

required to represent the outcome of a random variable. This concept of information entropy was

introduced by Claude Shannon in 1948. Shannon entropy measures the uncertainly of a random

variable or distribution and is calculated using the formula:

𝐻(𝑋) = 	�𝑥j	𝑙𝑜𝑔	(𝑥j)
:

j�5

Here, 𝐻(𝑋) is entropy of distribution X, 𝑥j	is proportion of each unique i in distribution X or simply

probability of event I and n is total number of observed events or size of distribution

Relative entropy, also called as Kullback-Leibler divergence was introduced in 1951 by

Solomon Kullback and Richard Leibler. It is a measure in an information theory context that

compares two distributions; it is a measure of how one distribution differs from another. In this

case, it is the distribution of malicious spam emails and ham emails. It is referred to as divergency

for the same reason as it measures how two distributions diverge. Relative entropy for two

distributions, X and Y is calculated as

𝐷º» = 	�𝑥j
j

	𝐿𝑜𝑔 ¼
𝑥j
𝑦j
	½

Here 𝑥j and 𝑦j are corresponding proportions of X and Y. One of the disadvantages of relative

entropy is that it is asymmetric.

• Classification

Email spam classification is performed on the test data with the chosen models by machine

learning algorithms. The performance of each of the models is recorded using the metrics of

confusion matrix, ROC/AUC curve, and the Precision Recall curve.

• Random String Injection

The valid text piece is taken form William Shakespeare’s play, The tragedy of Macbeth.

Random text from Macbeth of size 20% of the size of an email text is added to all datasets.

Next the steps of entropy calculation, visualisation and classification are performed. The outcome

metrics are recorded.

• Random Scrambled String Injection

The valid text piece from Macbeth of the same size 20% of the size of email is scrambled and

added to the sample test data in this part of the experiment. Entropy calculation and visualisation

 180

is performed on this test data, followed by classification of email datasets into spam and ham and

performance metrics are recorded.

• Word Cloud Generation

Once data pre-processing of the test data was completed, word clouds were generated to identify

the impact of adding valid random text to the test data. Word clouds are generated

after adding random and scrambled random strings, both from Macbeth, for each dataset and then

compared. The size of the words in the word cloud is indicative of the high frequency associated

with those words in the dataset. Figure 6.5 shows the word clouds for the Enron test dataset for

sample spam emails of size 5201. Next to each sub-figure is shown the list of words with higher

frequency. The frequency of words changed with the addition of random valid text and is further

changed with scrambling the added valid text.

a) b) c)
Figure 6.5: Word cloud tests for Enron dataset a) and test data b) test data with random good text

c) test data with random good scrambled text.

Figure 6.6 shows the word clouds for the Ling-spam test dataset where the sample spam email size

is 139. This is the smallest dataset used in this research.

a) b) c)

Figure 6.6: Word cloud tests for Ling-spam dataset a) test data b) test data with random good text

c) test data with random good scrambled text.

In both Figures 6.5 and 6.6, the frequency of word occurrence changed significantly from Figure

a) to b) and c) though the top two words with higher frequency which are common in b) and c).

 181

Similar trends were noticed for word clouds generated for two other datasets - CSDMC2010 and

TREC07.

6.3 Experimental Results and Analysis
In this section, first the experimental results for the proposed novel method for detecting email

spam and ham – the entropy method - are presented. This is followed by an analysis of these

results.

After feature extraction and selection was complete, for each generated model, a grid search

through list of hyper parameters was performed. From the grid search, the best performing

parameters for each model were recorded and the remainder discarded. For example, the following

approach was taken for selecting hyper-parameters. Thus, for the model developed from the SVM,

a grid search for parameter C with values [0.1, 1.0,10,100] is performed. From this grid search, it

was found that 1.0 is giving superior results. Several other parameters around this value of 1.0,

such as [0.5,1.0,2,5], were also tested to determine the optimal performing parameters. The results

showed that 1.0 produces the best values for parameter C based on the SVM model. 3-fold cross

validation was performed to remove the bias of the model, being trained by samples containing

certain characteristics. The training dataset was divided into train and test sets 3 times by randomly

choosing samples for each and the best performing score i recorded. The best score represents the

best score of 3 folds, and weights of that results are used in the model. The best params are the

ones selected after trying all parameters with 3 folds above and identifying the one which yielded

the best score.

Then, probabilities for each sample of test sets were calculated used to calculate Shannon

entropy and relative entropy for all selected machine learning and deep learning models. Outcomes

for both entropies are shown as histogram, as distribution of entropies.

Next, random strings (Shakespeare's Macbeth text) of size 20% of the size of the email were added

to each email in the test spam dataset, both types of entropies were calculated followed by

visualisation as histograms. Subsequently, Shakespeare’s Macbeth text was scrambled and random

strings of size 20% of the size of the email were added to each email in the test spam dataset

followed by entropy calculations and visualisation.

The step by step algorithm of the approach

Þ For each dataset from datasets:
Þ Data Pre-processing
Þ Machine learning model generation and parametrisation
Þ Report Entropy (log-loss)
Þ calculate probabilities for each sample (before probabilities)
Þ Classification on test dataset
Þ Add random strings to test datasets.
Þ Classification on this modified test set using above models.

 182

Þ Report Entropy (log-loss)
Þ Calculate probabilities for each test samples (After probabilities)
Þ Calculate relative entropy using before and after probabilities
Þ Add scrambled random strings to test sets.
Þ Classification on this modified test set using above models.
Þ Report Entropy (log-loss)
Þ Calculate probabilities for each test samples (After probabilities)
Þ Calculate relative entropy using before and after probabilities

The results of the experiments are presented as follows. For each dataset, in order starting from

the smallest dataset Ling-spam, relative and Shannon entropies for each machine learning model

is shown which is followed by the visualisation of entropies for ham (green) and spam (red)

distributions. Next, the performance metrics showing accuracy, precision, recall and the F1 score

is documented in tabular form for each model followed by ROC/AUC and PRC curves. The results

are as follows.

For Ling-spam dataset, Table 6.2 shows the Shannon and relative entropies before and after

random strings and after scrambled random strings, using a) machine learning models and b) deep

learning models.

Table 6.2: Shannon and relative entropy for Ling-spam dataset for a) machine learning models b)

deep learning models

a)

b)

Results show that Relative and Shannon entropies are not significantly different for before and

after adding random strings, but both are significant after adding scrambled random strings in the

test spam emails. This means that email spam detection performance of the models is significantly

impacted by adding scrambled random strings.

Entropy ShannonRelativeShannonRelativeShannonRelativeShannonRelativeShannonRelative
BeforeString 0.06 0.116 0.062 0.101 0.185 0.166 0.025 0.094 0.17 0.1643
AfterString 0.059 0.123 0.067 0.103 0.185 0.166 0.021 0.094 0.169 0.1644
AfterScrambledString 0.167 0.578 0.008 1.013 0.431 0.455 0.448 0.454 0 1.0121

LR SVM XGB NB RF

Entropy ShannonRelativeShannonRelativeShannonRelative
BeforeString 0.035 0.156 0.037 0.206 0.037 0.184
AfterString 0.032 0.215 0.046 0.332 0.036 0.508
AfterScrambledString 0.537 1.273 0.238 2.294 0.306 2.005

DNN CNNV1 CNNV2

 183

a)

b)

Figure 6.7: Shannon entropy for Ling-spam dataset for Logistic regression machine learning

model

Figure 6.7 and 6.8 show the visual representation of histograms for Shannon and relative

entropies for Ling-spam a) after random strings and b) scrambled random strings.

a)

b)

Figure 6.8: Relative entropy for Ling-spam dataset for Logistic regression machine learning
models

 184

It is noticed that in case of relative entropy, spam and ham are distinct from each other in

histograms but in case of Shannon entropy they overlap. Hence, it is deduced that relative entropy

better separates spam and ham emails in comparison to Shannon entropy.

Table 6.3: Performance metrics for Ling-spam dataset for a) machine learning models b) deep
learning models

a)

b)

From Table 6.3, performance metrics, it becomes clear that spam detection capability of the

models significantly deteriorates with scrambled random strings and not significantly with the

addition of random strings. Among the machine learning models, Naïve Bayes performed best for

this dataset among all the metrics used, further values of FP, FN, TP and TN in confusion matrix

in Table 6.4 a) supports that NB performs the best for Ling-spam dataset.

Table 6.4: Confusion matrix for Ling-spam dataset for a) machine learning models b) deep learning
models

a)

b)

Among the deep learning models used, DNN outperforms both versions of CNN for all metrics

as shown in Table 6.3 b). The confusion matrix for DNN in Table 6.4 b) shows significant

performance for FP and TN but the values for FN and TP are slightly lower than for CNN.

Metric->Spam
Model -> LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF

Data
BeforeString 96 95 93 98 94 97 99 91 93 99 80 73 67 93 63 87 84 77 93 77
AfterString 96 94 93 98 94 96 100 91 95 99 79 68 67 90 63 87 81 77 93 77
AfterScrambledString 83 83 83 83 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Accuracy Precision Recall F1 score

Metric->spam
Model -> DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2

BeforeString 95.5 94 94 90 81 81 82 85 96 86 83 83 98.5 98 98 94 92 93
AfterString 94.4 91 88 96 99 100 70 49 100 81 65 47 98.5 97.6 98 94 92 91
AfterScrambledString 16.9 16.9 16.8 17 17 17 100 100 0 29 29 29 50 50 50 58 58 58

PRCAccuracy Precision Recall F1 score ROC/AUC

LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF
BeforeString 4 1 9 10 1 28 38 46 10 51 111 101 93 129 88 681 684 676 675 684
AfterString 4 0 9 6 1 28 44 46 14 51 110 95 93 125 88 681 685 676 679 684
AfterScrambledString 0 0 0 0 0 139 139 139 139 139 0 0 0 0 0 685 685 685 685 685

FP FN TP TN

User DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2
BeforeString 12 28 28 25 21 21 114 118 118 673 657 657
AfterString 4 1 0 42 71 96 97 68 43 681 684 684
AfterScrambledString 685 685 685 0 0 0 139 139 139 0 0 0

FP FN TP TN

 185

a) b) c)

Figure 6.9: ROC/AUC curve a) before strings b) after strings c) after scrambled strings for Ling-
spam dataset -Naive Bayes machine learning model

The ROC/AUC curves in Figures 6.9 a) and b) show that the NB models performs well at ROC

with accuracy of 99% and the area under the curve at 98% for both, before and after adding random

strings; however, after adding scrambled strings, performance is not equally satisfactory with

accuracy of 83% and AUC at 58%.

There has been similar performance for other machine learning models as evident from Tables

6.3 and 6.4. Given the small size of the dataset, performance of deep learning models cannot be

validated satisfactorily.

The next set of figures shows the performance for dataset CSDMC2010. Table 6.5 presents

Shannon and Relative entropy for machine learning and deep learning models.

Table 6.5: Shannon and relative entropy for CSDMC2010 dataset for a) machine learning models
b) deep learning models

a)

b)

The entropy values show a similar trend to the Ling-spam dataset, where both Shannon and

Relative entropy values are similar before and after adding strings but are higher after adding

random scrambled strings for all models.

Entropy ShannonRelativeShannonRelativeShannonRelativeShannonRelativeShannonRelative
BeforeString 0.045 0.062 0.058 0.079 0.092 0.821 0.003 0.187 0.111 0.083
AfterString 0.045 0.062 0.082 0.077 0.092 0.821 0.005 0.161 0.111 0.083
AfterScrambledString 0.679 0.767 0.657 0.826 0.237 1.887 0.624 0.629 0.638 0.872

LR SVM XGB NB RF

ShannonRelativeShannonRelativeShannonRelative
BeforeString 0.031 0.097 0.069 0.074 0.056 0.078
AfterString 0.037 0.1 0.079 0.076 0.067 0.08
AfterScrambledString 0.509 1.282 0.657 0.852 0.652 0.853

DNN CNNV1 CNNV2

 186

a)

b)

Figure 6.10: Shannon entropy for CSDMC2010 dataset for Naïve Bayes machine learning model

a) after adding strings b) after adding scrambled strings

From Figure 6.10, Shannon entropy after adding random strings shows that entropy value for

spam is lower than ham; however, they overlap, hence are not well suited for classification. The

Shannon entropy value for ham after adding scrambled strings is significantly higher than spam

which is almost 0.

a)

b)

Figure 6.11: Relative entropy for CSDMC2010 dataset for Naïve Bayes machine learning model
a) after adding strings b) after adding scrambled strings

 187

Relative entropy values for ham are higher than spam values for both, after strings and after

scrambled strings are added and for spam are distinctly lower for both. There is a clear distinction

between spam and ham in both cases for relative entropy values as shown in histograms in Figures

6.11 a) and b) for the NB model for the CSDMC dataset.

Using deep learning models, the Shannon entropy values for ham are higher than spam values for

both after strings and after scrambled strings; however, spam is not efficiently separated from ham

as shown in Figure 6.12.

a)

b)

Figure 6.12: Shannon entropy for CSDMC2010 dataset for DNN deep learning model a) after
adding strings b) after adding scrambled strings

Shannon entropy values for ham and spam using the deep learning model (DNN) shows better

distinction than machine learning models, evident from Figures 6.10 and 6.12.

a)

 188

b)

Figure 6.13: Relative entropy for CSDMC2010 dataset for DNN deep learning model a) after
adding strings b) after adding scrambled strings

Relative entropy values for CSDMS2010 dataset using deep learning model (DNN) in Figure

6.13 show a similar trend to the NB machine learning model in Figure 6.11; however, the

distinction between ham and spam is clearer using DNN.

Table 6.6: Performance metrics for CSDMC2010 dataset for a) machine learning models b) deep
learning models

a)

b)

Spam detection performance for all machine learning models is closely comparable except NB

which is not performing well for this dataset as shown in Table 6.6 a). For deep learning models,

CNNv2 outperforms the other two models though it is close to CNNv1 shown in Table 6.6 b).

However, the confusion matrix reflects high false positives for CNNv2 after adding scrambled

random strings as in Table 6.7 b).

Table 6.7: Confusion matrix for CSDMC2010 dataset for a) machine learning models b) deep
learning models

a)

b)

Metric->Spam
Model -> LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF

Data
BeforeString 98 98 97 96 97 99 99 96 99 97 96 96 95 90 96 97 97 96 94 97

AfterString 98 98 97 96 97 99 99 96 99 97 96 96 95 91 96 97 97 96 95 97

AfterScrambledString 32 32 32 67 32 32 32 32 0 32 100 100 100 0 100 49 49 49 0 49

Accuracy Precision Recall F1 score

Metric->spam
Model -> DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2

BeforeString 97.5 97 96.7 98 96 995 94 95 94 96 95 95
AfterString 97.5 97 99.5 97 96 95 95 95 95 96 95 95
AfterScrambledString 25.3 31.5 32.3 26 31 32 72 92 100 38 47 49

Accuracy Precision Recall F1 score

LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF
BeforeString 6 5 15 4 12 16 18 20 41 15 396 384 392 371 397 857 858 848 859 851
AfterString 6 6 15 4 12 16 17 20 36 15 396 385 392 376 397 857 857 848 859 851
AfterScrambledString 6 5 15 0 11 22 18 0 40 0 390 412 412 372 412 857 858 848 853 852

FP FN TP TN

 189

Although the NB did not return high performance for some metrics, the ROC/AUC curve shows

accuracy of 96% and AUC of 98% f before and after the addition of random strings as shown in

Figure 6.14 a) and b). However, the performance is significantly impacted after adding scrambled

random strings.

a) b) c)

Figure 6.14: ROC/AUC curve CSDMC2010 dataset for a) before strings b) after strings c) after
scrambled strings NB machine learning model

Figure 6.15 - PRC curve performance - shows trends similar to the ROC/AUC curve with 96%

accuracy and AUC 98% for before strings, 97% accuracy and AUC 98% for after adding random

strings and only 68% accuracy and AUC 66% for after adding random scrambled strings.

a) b) c)

Figure 6.15: PRC curve CSDMC2010 dataset for a) before strings b) after strings c) after
scrambled strings NB machine learning model

For the Enron dataset, relative entropy shows an increasing trend in values, being lowest before

strings are added, slightly higher after adding random strings and highest after adding scrambled

random strings for all models as presented in Table 6.8.

User DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2
BeforeString 8 16 19 24 22 23 388 390 389 855 847 844
AfterString 12 16 20 20 22 21 392 390 391 851 847 843
AfterScrambledString 837 842 862 115 32 1 297 390 411 26 21 1

FP FN TP TN

 190

Table 6.8: Shannon and relative entropy for Enron dataset for a) machine learning models b) deep
learning models

a)

b)

The best performance is by the SVM for the machine leaning models and CNNv1 for the deep

learning models. Figure 6.16 shows the histograms for Shannon entropy values for ham and spam

emails.

a)

b)
Figure 6.16: Shannon entropy for Enron dataset for XGB machine learning model a) after adding
strings b) after adding scrambled strings

For the Enron dataset, the Shannon entropy values in Figure 6.16 do not contribute significantly

to separating the ham and spam emails in both cases of a) after adding random strings and b) after

adding scrambled random strings to the test data samples.

ShannonRelativeShannonRelativeShannonRelativeShannonRelativeShannonRelative
BeforeString 0.06 0.055 0.052 0.055 0.23 0.139 0.012 0.06 0.248 0.132
AfterString 0.061 0.054 0.088 0.063 0.23 0.139 0.012 0.061 0.258 0.135
AfterScrambledString 0.034 1.146 0.028 2.635 0.543 0.844 0.693 0.693 0 2.916

LR SVM XGB NB RF

Enron
ShannonRelativeShannonRelativeShannonRelative

BeforeString 0.002 0.378 0.042 0.712 0.624 0.852
AfterString 8E-04 0.378 0.04 0.734 0.624 0.852
AfterScrambledString 0.68 0.711 0.523 0.868 0.679 0.703

DNN CNNV1 CNNV2

 191

a)

b)

Figure 6.17: Relative entropy for Enron dataset for XGB machine learning model a) after adding
strings b) after adding scrambled strings

Figure 6.17 a) shows an overlap of ham and spam values for relative entropies whereas Figure

6.17 b) values show clear distinctions between spam and ham emails for the XGBoost machine

learning model. This trend is similar for other models.

a)

b)

Figure 6.18: Relative entropy for Enron dataset for CNNv2 deep learning model a) after adding
strings b) after adding scrambled strings

 192

Contrary to machine learning models performance, deep learning model performance in Figure

6.18 highlights that relative entropy values separate ham and spam emails efficiently for a) after

adding random valid strings and b) after adding scrambled random valid strings.

Table 6.9: Performance metrics for Enron dataset for a) machine learning models b) deep learning
models

a)

b)

For the Enron dataset, all machine learning models show comparable performance for

classification metrics (Table 6.9 a) though the SVM outperformed others in relative entropy. For

deep learning models, the CNN outperformed the DNN as shown in Figure 6.9 b) with added

scrambled random strings; however, overall the DNN performed better than CNN versions.

Table 6.10: Confusion matrix for Enron dataset for a) machine learning models b) deep learning
models

a)

b)

Table 6.10 reports that adding scrambled random strings significantly increases the false

positives in turn reducing the true negative values for all machine learning models and for CNN

deep learning models. This means that adding such strings impact the performance of the models.

Metric->
Model -> LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF

Data
BeforeString 98 98 96 98 97 97 98 94 99 97 99 99 98 98 97 98 98 96 98 97
AfterString 98 98 96 98 97 98 98 94 99 97 99 98 98 98 97 98 98 96 98 97
AfterScrambledString 51 51 51 51 51 51 51 51 51 51 100 100 100 100 100 68 68 68 68 68

Accuracy Precision Recall F1 score

Metric->forSpam
Model -> DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2

BeforeString 93.5 85 52 90 83 51 98 91 100 94 87 68
AfterString 93.5 85 52 90 83 52 98 91 100 94 87 68
AfterScrambledString 0.49 51 51 0 51 51 0 100 100 0 68 68

Accuracy Precision Recall F1 score

LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF
BeforeString 133 122 328 64 162 63 73 107 108 161 5183 5128 5094 5093 5040 4785 4796 4590 4854 4756
AfterString 109 100 328 63 156 76 103 108 109 162 5125 5098 5093 5092 5039 4809 4918 4590 4854 4762
AfterScrambledString 4918 4918 4918 4918 4918 0 0 0 0 0 5201 5201 5201 5201 5201 0 0 0 0 0

TNFP FN TP

DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2
BeforeString 560 969 4893 91 458 9 5110 4743 5192 4385 3949 25
AfterString 541 963 4889 109 480 9 5092 4721 5192 4377 3935 29
AfterScrambledString 0 4918 4918 5201 0 0 0 5201 5201 4918 0 0

FP FN TP TN

 193

a) b) c)

Figure 6.19: Confusion matrix for Enron dataset for XGB machine learning model for a) before
strings b) after strings c) after scrambled strings

Figure 6.19 is a visual representation of the confusion matrix for the XGboost machine learning

model where c) shows the high false positives leading to zero true negatives. The ROC/AUC curve

for the DNN shown in Figure 6.20 support the performance noted from other metrics for all cases.

a) b) c)

Figure 6.20: ROC/AUC curve for Enron dataset for DNN deep learning model a) before strings
b) after strings c) after scrambled strings

The PRC curve (Figure 6.21) for the DNN for Enron shows an accuracy of 94% and an AUC

of 97% before and after strings but just 49% accuracy after adding random strings, with an AUC

of 76%.

 194

a) b) c)

Figure 6.21: PRC curve for Enron dataset for DNN deep learning model a) before strings b) after
strings c) after scrambled strings

The following set of figures show the results of the TREC07 dataset which is the largest dataset

containing >75,000 emails with test data containing 10040 spam and 5044 ham emails.

Table 6.11: Shannon and relative entropy for TREC07 dataset for a) machine learning models b)
deep learning models

a)

b)

Entropy values for the TREC07 dataset show an interesting change where Shannon entropy

values are similar to Relative entropies as shown in Table 6.11. Similar to random entropies, the

Shannon entropy values are lowest before adding strings, slightly higher after adding random

strings and highest once scrambled random strings have been added. The values of random

entropies for the data with scrambled random strings added are significantly higher which is same

as the pattern for other datasets.

entropy ShannonRelativeShannonRelativeShannonRelativeShannonRelativeShannonRelative
BeforeString 0.01 0.016 0.011 0.013 0.018 0.031 0.007 0.037 0.103 0.045
AfterString 0.01 0.016 0.018 0.015 0.018 0.031 0.004 0.035 0.109 0.048
AfterScrambledString 0.463 0.712 0.671 0.645 0.558 1.027 0.637 0.637 0.688 0.731

LR SVM XGB NB RF

TREC07
ShannonRelativeShannonRelativeShannonRelative

BeforeString 0.002 0.03 0.005 0.921 0 0.079
AfterString 0.001 0.034 0.005 0.922 0 0.076

AfterScrambledString 0.044 1.978 0.005 0.922 0.041 2.534

DNN CNNV1 CNNV2

 195

a)

b)

Figure 6.22: Shannon entropy for TREC07 dataset for SVM machine learning model a) after
adding strings b) after adding scrambled strings

Shannon entropy values for ham and spam are again overlapping in Figure 6.22 for both a) after

adding random strings and b) after adding scrambled random strings and they do not effectively

separate these for the TREC07 dataset.

a)

b)

 196

Figure 6.23: Relative entropy for TREC07 dataset for SVM machine learning model a) after
adding strings b) after adding scrambled strings

Figure 6.23 a) demonstrates that the SVM machine learning model returns results where the

distributions are placed close to each other after adding random strings to the dataset, although

relative entropies for spam emails are higher than for ham emails. When adding scrambled random

strings to the dataset, however, (Figure 6.23 b)) relative entropy values show clear separation

between the two distributions with low entropy values for ham and high ones for spam.

a)

b)

Figure 6.24: Shannon entropy for TREC07 dataset for CNNv1 deep learning model a) after
adding strings b) after adding scrambled strings

Using the DNN, Shannon entropy values for the distributions of ham and spam for the TREC07

dataset has higher overlap than machine learning methods for both scenarios – adding random

strings to the dataset as in Figure 6.24 a) and adding scrambled random strings (Figure 6.24 b).

 197

a)

b)

Figure 6.25: Relative entropy for TREC07 dataset for CNNv1 deep learning model a) after

adding strings b) after adding scrambled strings

Relative entropies for ham and spam distributions still show overlap for adding random strings

to the dataset as in Figure 6.25 a) though some ham emails are far apart from spam distribution.

For the case of adding scrambled random strings as shown in Figure 6.25 b), the relative entropy

separates the two distributions with little overlap where ham emails have similar entropy values to

spam emails.

Table 6.12: Performance metrics for TREC07 dataset for a) machine learning models b) deep
learning models

a)

b)

Metric->
Model -> LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF

Data
BeforeString 99.4 99.4 99 99.9 99.9 99 99 99 99 100 100 100 100 99 100 100 100 99 99 100

AfterString 99 99 99 99 99.7 99 99 98 99 100 100 100 100 99 100 100 100 99 99 100

AfterScrambledString 66 67 33 67 33.5 67 67 0 67 0 100 100 0 100 0 80 80 0 80 0

Accuracy Precision Recall F1 score

Metric->
Model -> DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2

BeforeString 99 84 98.6 99 81 99 99 100 99 100 89 99
AfterString 99 84 98.7 99 81 99 99 100 99 100 89 99
AfterScrambledString 63 63 50 66 65 60 91 95 73 76 77 66

Accuracy Precision Recall F1 score

 198

For the TREC07 dataset, machine leaning as well as deep learning models have a comparable

performance. LR, SVM and NB among machine learning models perform well with 99% rates for

before and after adding random strings; however, the performance drops by about 30% by adding

scrambled strings. This is similar to the DNN and both versions of CNN with 25% lower

performance after adding scrambled strings to the TREC07 dataset as shown in Table 6.12.

 Table 6.13: Confusion matrix for TREC07 dataset for a) machine learning models b) deep learning
models

a)

b)

The confusion matrices for all models show that the performance declines with adding

scrambled strings to the TREC07 dataset as there are high numbers of false positives shown in

Table 6.13.

Among the deep learning models, CNNv1 performed least well; Figure 6.26 shows its

ROC/AUC curve for a) before valid strings b) after adding random strings and c) after adding

scrambled strings. We chose to show the curves for this model as the DNN and CNNv2 curves are

similar to Figure 6.29 a) and b).

a) b) c)

Figure 6.26: ROC/AUC curve for TREC07 dataset for CNNv1 deep learning model a) before
valid strings b) after adding random strings c) after adding scrambled strings

The PRC curve for machine learning models is similar to Figure 6.15; Figure 6.27 shows the

PRC curve for CNNv1 with an AUC of 64% for a) before valid strings and b) after adding random

strings and AUC of 60% c) after adding scrambled strings.

LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF LR SVM XGB NB RF
BeforeString 37 34 79 36 42 8 8 35 67 7 5012 5012 4985 4953 7 2485 2488 2443 2486 2480
AfterString 40 36 145 40 73 6 7 25 27 6 5014 5012 4995 4993 6 2482 2486 2377 2482 2449
AfterScrambledString 2522 2522 2522 2522 2522 0 0 0 0 0 5020 5020 5020 5020 0 0 0 0 0 0

FP FN TP TN

DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2DNNCNNv1CNNv2
BeforeString 43 1171 41 8 16 58 5012 5004 4962 2479 1351 2481
AfterString 44 1173 41 4 15 55 5016 5005 4965 2478 1349 2481
AfterScrambledString 2392 2521 2418 429 273 1369 4591 4747 3651 130 1 104

FP FN TP TN

 199

a) b) c)

Figure 6.27: PRC curve for TREC07 dataset for CNNv1 deep learning model a) before valid
strings b) after adding random strings c) after adding scrambled strings

From the results presented above, it can be concluded that spammers can successfully deceive

email spam classification filters by injecting random scrambled valid strings into email spam.

Relative entropy distributions using machine and deep learning models can be used to detect such

injections though here deep learning models are outperformed by machine learning models unless

the dataset size is large. This is in line with the characteristic for deep learning techniques as they

require large dataset to produce quality performance.

6.4 Topic-based Classification at Client Side
Feature selection is one of the most important steps of email spam filtering where the content

of the email message is examined to identify the features that make substantial contributions to

making a decision whether a certain email is ham or spam. An email message typically consists of

header and body. The majority of the literature has focused on the body of the email message to

identify such features. The header field has also gathered some attention in detecting email spam

(Isacenkova & Balzarotti, 2014; Khamis et al., 2020; Z. Yang et al., 2006). The rationale for

filtering email spam using the header is to reduce computational complexity. The basic attributes

of the header field are the sender’s name, sender’s email address and IP (if available), sending date,

return path, received, x-mailer, number of receivers (in some cases) and subject. Sometimes, it is

easy to pick out email spam by merely checking a few keywords in the subject of the email rather

than scanning the header or the full content of the email body. However, there is no evidence from

literature that the subject field has been used as a feature in email spam filtering. (Takesue, 2010)

has considered the subject header of an email message as part of a cascading filter where body and

header fields are also considered.

In this section, an email spam filter is proposed that considers features in the subject header of

an email message. Once the feature extraction is done, selection is performed using GloVe

embeddings. Model generation is performed using a series of machine and deep learning models

explained in Chapter 4/5 and Section 6.2. The evaluation of the model and classification od test

data is done using all four datasets explained in Section 6.1.

Methodology:

 200

The steps listed and explained below are performed. Figure 6.28 shows the overall architecture

for topic-based classification

Figure 6.28: Overall architecture of topic-based classification

Pre-processing

The words from the subject field are parsed and cleaned using tokenisation and lemmatisation,

brought to their root forms, punctuation marks, symbols and stop words are removed. The word

‘subject’ is removed as it is a frequently occurring word and would impact the total spam

probability especially if the number of words in each email feature set is small.

Generate word clouds
Word clouds are generated for training samples and test samples. Further word clouds are

generated for the ham and spam for each of the training and test samples to visualise the distinction

of words in each of them.

Feature selection
Feature extraction and selection is performed with global vectors for word representation

(GloVe) and for word embeddings which is a weighted least squares model which performs

training based on global word to word co-occurrence and builds a meaningful substructure of word

vector spaces. Here, this method is using a glove dataset with a dimension of 300 resulting in

40,000-word vectors. GloVe embeddings from (Pennington, Socher, & Manning, 2014) are used

by first loading glove files from the GloVe Dataset and then maintaining an embeddings dictionary

that maps from words to embedding vectors of length 300. Next, the email text is converted to

embedding vectors. To do so, for each word in the email, an embedding from the embedding

dictionary is found and then vectors of each word are normalised to create one vector which

represents the contents of that mail text.

Model generation
Classification models are generated using the chosen machine and deep learning algorithms.

For each model, hyper parameters are selected by performing a grid search to find the optimum

performing parameters.

Classification
Classification of the training samples is performed using the selected parameters for all of the

models and performance of each of the model is recorded.

Evaluation

Import
Data

Stop Words
Removal

Symbols
Removal

Tokenisatio
n

Word Cloud
Generation

Feature
Selection

Model
Classification

Pre-Processing

Learning

 201

Evaluation
The generated models are evaluated on the test samples for each of the four datasets and the

performance metrics recorded and presented in the next section.

For each dataset:

Þ Pre-processing to Clean Data
Þ Create word clouds
Þ Transform data using word embeddings
Þ Try various machine learning models namely SVC, Random Forest, Gradient Boosting,

XGBoost and deep learning models namely DNN and CNN.
Þ Classification on train data
Þ Evaluation and Classification on test data
Þ Record Performance metrics

6.5 Experiment Results and Analysis on Topic-based
Classification

In this section the experimental results are presented. Which are followed by an analysis of the

results. It was found that the GloVe models outperforms other baseline models that often have

smaller vector sizes and smaller datasets. For each dataset, GloVe embeddings of dimension 300

provided by (Pennington et al., 2014) were loaded, although dimensions of 50,100 and 200 are also

available. After training several models, it was found that GloVe provides superior embeddings for

words. Embedding of size 300 means that the Glove file has a vector of size 300 for the most

common words. Each vector has floats of a length of 300. The total number of words found in the

dictionary of the datasets is shown in Table 6.14.

Table 6.14: Total number of Words in dictionary found from the Subject Field

Next, word clouds were generated for each dataset. Figure 6.29 shows the word clouds for

training samples for a) ham and b) spam. It is noted that the words in ham cloud (Figure 6.29 a)

show ‘conference’, language, workshop, ‘linguistic’ and similarly acceptable words whereas

Figure 6.29 b) shows the words such as ‘free’, ‘million’, ‘adult’, ‘business’, ‘sex’, ‘internet’ etc.

TREC07 19661
Enron 12248

CSDMS2010 3721
LingSpam 2332

 202

a) b)

Figure 6.29: Ling-spam Subject Field Word Clouds for Train Data

Figure 6.30 show the word clouds for test data of Ling-spam dataset with similar trends of ham

and spam words in Figure a) and b) respectively.

a) b)

Figure 6.30: Ling-spam Subject Field Word Clouds for Test Data

Two datasets were chosen for the word cloud presentation. Since Ling-spam is the smallest

dataset of the four. Next Enron dataset word clouds are presented in Figures 6.31 and 6.32.

Ham word cloud for Enron dataset shows words such as ‘hour’, ‘ahead’, ‘date’, ‘meeting in

Figure 6.31 a) which is distinctly different to words found in spam word cloud in Figure 6.31 b)

for the training samples.

a) b)

Figure 6.31: Enron Subject Field Word clouds for Train Data

 203

In the test samples of Enron, similar distinction in ham and spam words is noticed as shown in

Figure 6.32.

a) b)

Figure 6.32: Enron Subject Field Word Clouds for Test Data

The performance of the machine learning models logistic regression, support vector machine,

XGboost and random forest are recorded via the metrics of accuracy, precision, recall, F1 score,

ROC/AUC and PRC curve. The classification reports for each model are compared in Table 6.15.

For the Ling-spam dataset, SVM demonstrates outstanding performance with XGboost coming

second whereas for the TREC07 dataset the XGBoost outperforms SVM in some metrics.

Table 6.15: Classification Report comparison for Machine Learning Models

The metrics shown in the confusion matrix support the performance of SVM better than all

other models though XGBoost comes close; however, the false positive and false negative rates for

XGboost for the TREC07 dataset are higher (Table 6.16) reducing the spam detection performance

of the model.

Table 6.16: Confusion Matrix for Machine Learning Models

Metric->Spam
Model -> LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF

Lingspam 91.7 93.3 92 90.5 81 89 86 96 67 69 64 46 73 78 74 62 95.5 94.9 95.8 94.2 81.6 84.1 84.2 83.7

CSDMC2010 87 91.6 90.6 88.3 82 90 89 93 76 83 80 69 79 86 85 79 92.6 95.3 95.6 95.5 88.2 92.9 92.2 91.5

Enron 84.8 92.7 91.9 91.9 84 92 91 91 87 94 93 93 86 93 92 92 92.6 97.3 97.6 97.6 92.8 97.3 97.7 97.7

TREC07 91.9 97.2 97.2 96.2 93 97 97 95 95 98 99 99 94 98 98 97 96.8 98.1 99.4 99.2 96.8 99.5 99.7 99.5

ROC/AUC PRCAccuracy Precision Recall F1 score

Metric
Model LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF LR SVM XGB RF
Lingspam 22 12 14 3 46 43 50 75 93 96 89 64 663 673 671 682
CSDMC2010 68 36 39 23 99 71 81 126 313 331 286 795 827 824 840
Enron 862 436 463 503 673 303 357 414 4528 4898 4844 4787 4056 4482 4455 4415
TREC07 670 133 285 501 541 77 125 76 9499 4943 9915 9964 4374 2389 4759 4543

FP FN TP TN

 204

Deep learning models, DNN and CNN (version 1 and 2) as explained in Section 6.2 are trained

and then evaluated on the test data for all four datasets. The classification reports are shown in

Tables 6.17-6.20.

Table 6.17: Classification Report comparison for Deep Learning Models for TREC07 dataset

Table 6.18: Classification Report comparison for Deep Learning Models for Enron dataset

Table 6.19: Classification Report comparison for Deep Learning Models for CSDMC2010
dataset

Table 6.20: Classification Report comparison for Deep Learning Models for Ling-spam dataset

The performance metrics in the results in Tables 6.17-6.20 show that DNN outperforms both

versions of CNN for all four datasets. CNN has the best performance for TREC07 dataset. The

confusion matrix for all four datasets were recorded and compared.

Metric-> Accuracy Precision Recall F1 score ROC/AUC PRC
Model
DNN 98.4 98 99 99 99 99.5
CNNv1 94.3 92 100 96 98.6 99.2
CNNv2 95.3 94 100 97 98.9 99.3

Metric-> Accuracy Precision Recall F1 score ROC/AUC PRC
Model
DNN 91 88 95 92 96.5 96.7
CNNv1 84 78 96 86 93.1 93.2
CNNv2 83 77 96 86 92.7 92.8

Metric->spam Accuracy Precision Recall F1 score ROC/AUC PRC

DNN 91.4 88 85 86 97 94
CNNv1 87.5 81 80 80 94 89.6
CNNv2 88.2 82 82 82 94 90.4

Metric->spam Accuracy Precision Recall F1 score ROC/AUC PRC

DNN 91.3 87 58 69 96.5 85.3
CNNv1 87 64 53 58 92.5 72.3
CNNv2 90 78 55 65 92.5 74

 205

Table 6.21: Confusion Report comparison for Deep Learning Models for TREC07 dataset

From Table 6.21 it is noticed DNN has the best performance with the least number of FP and

FN, indicating that the model has a high spam detection rate.

6.6 Discussion:
The performance of entropy methods is evaluated to determine if they can be used to detect

email spam when random strings are intentionally injected into email spam. Two entropy types,

Shannon and random entropy values were calculated. To determine the entropy values, output

probabilities for each sample of the test data is calculated resulting in two main outcomes: Entropy

values can validate that the model prediction rate is impacted by introducing random scrambled

strings into the emails spam. Relative entropy can be used to detect email spam from ham.

From that, Shannon entropy and Relative entropies for each sample were calculated. The tables

in Section 6.5 show that Relative entropy is higher than the Shannon entropy values for all datasets

which do not show an identifiable trend before and after adding random strings of data to the dataset

used for classification.

These Relative entropy values are then plotted using a histogram chart for example Figure 6.24

to show that the distribution of spam relative entropy (in red) is distinguishable on the graph from

ham relative entropy (in green). Next, the Shannon histogram is plotted onto a histogram chart, for

example Figure 6.25 to determine that there is no identifiable difference between spam and ham

distributions based on Shannon entropy.

From the results, it is evident that incorrect prediction with high probability lead to high relative

entropy with confidence whereas the Shannon entropy is not much affected as shown in Figure

6.33.

TREC07 FP FN TP TN
DNN 119 78 9962 4879
CNNv1 842 25 10015 4202
CNNv2 677 36 10004 4367

 206

Figure 6.33: Sample Shannon and Relative entropy values with their Prediction Probability for
XGBoost model

In Figure 6.33, Shannon and Relative entropy values for the XGboost model applied to the

TREC07 dataset are shown which indicate that the higher the probability of incorrect prediction,

the high Relative entropy will be. In the Figure, Head 5 means, 5 samples from the top of the spam

dataset and Tail 5 means 5 randomly selected samples from the bottom part of the ham dataset.

The table underneath shows first column as the sequential number of the selected email, and their

entropy values and prediction probability are displayed. Here, Y True is true value (class) of the

sample email, Y Pred is the predicted value (class) of the sample email, Y Preds (0) is the

probability of the prediction 0 (ham) made by the classifier, also known as confidence and Y Preds

(1) is the probability of prediction made by the classifier as 1. For row 38, the true value of the

email is spam: however, the model has predicted it as ham with a 0.96 confidence level while the

relative entropy for this is 3.210. In contrast, Shannon entropy is 0.169. For row 562, the model

again made an incorrect prediction for spam as ham with 0.537 confidence level, and the relative

entropy is 0.769. Similarly, for row 7455, a ham email is predicted as spam with a probability of

0.997 and a relative entropy of 5.935 whereas for row 7522, the incorrect prediction is made again

with a confidence level of 0.724 and a relative entropy of 1.289. No such trend is noticed for the

Shannon entropy. Hence, it is clear that Relative entropy increases if the model makes an erroneous

prediction with high confidence.

In order to determine the spam classification performance, histograms showing Shannon and

Relative entropies were generated. It is evident that Shannon entropy does not make a clear

distinction between ham and spam distributions; however, for each dataset, the entropy values

presented in the histograms for ham and spam distribution based on Relative entropy demonstrate

that this type of entropy can be used to show classification between spam/ham.

 207

From the research presented in Sections 6.6 and 6.7, an efficient spam filtering technique has

been presented based on the subject header of emails. The word vector for the words found in the

subject header of emails in said datasets are formed using GloVe embeddings. Models using

machine and deep learning algorithms are developed, trained and evaluated on datasets of varying

sizes to determine the performance. The dataset sizes range from the smallest dataset Ling-spam

(2893) to the largest TREC07(75419) which was selected to determine the comparative

performance of deep learning models as these need large dataset to perform at their best. This was

evident from the results where both deep learning models produced superior performance for

TREC07 dataset. This method of topic-based classification provided the following advantages: 1.

Checking only the subject header of the emails in order to increase the executive efficiency and

reduce computational complexity. 2. Used a weighted least squared model of embedding for

constructing the word vectors as features. 3. Strengthened the ability of email spam detection with

this learning mechanism. From the experimental results, precision, recall and F1 score of the

proposed method reached 97, 98, and 99 for the best performing model for machine learning and

98, 99, and 99 for the deep learning models. The least scores for Deep learning models were 77,

96, and 86 for CNNv2 using Enron. These performance results for datasets should be ignored due

to the relevance of the size of the datasets. The least scores for machine learning models are 86.64

and 74. This means that this method can filter spam effectively without high resource consumption

and calculation cost.

With the experimental results in this chapter, the research of thesis concludes. The next chapter

will present the conclusion and future work.

 208

Chapter 7

Conclusion and Future Work
In 2004, Bill Gates predicted that “spam will soon be a thing of the past”

 7.1 Overview
Email spam has been intimidating users of emails for decades. The increase in the usage of

emails has led to, first, emergence and then escalation of emails as spam used for phishing, hacking,

malware spread, identity theft, scams related to online shopping, dating, remote access investment,

income tax and threats to life. In recent years, email spam filtering tools have become a necessity

for internet service providers and organisations to tackle the phenomenon of continuous increase

in sophistication of email spam. Filtering tools are made up of one or more modules focused on

detecting different features of such spam. The most common filters investigated by researchers rely

on list-based, rule-based or text categorisation techniques for analysis of semantic features of

emails – using one or a combination of features.

Significant research effort has gone into this area with considerable success; nonetheless. the

problem of email spam persists, despite numerous existing methods to detect email spam. The

volume of undetected spam has continued to stay consistent at unacceptable levels and these

intrusive and dangerous messages continue to land in user inboxes. Thus, an optimal solution has

yet to be created, especially that each user’s needs are different. Planting an email spam filter at

the server-side offers a ‘one size fits all’ solution which does not apply to individual user as user

email spam is in the ‘eye of the beholder’. To protect a user’s inbox from email spam and offer a

customised solution, a client-side filter is required.

 209

For complete protection from the threat email spam poses, a customised filter needs to be

developed for a user, which is difficult. Even with such measures, it is still not possible to

guarantee an inbox free of email spam as vulnerabilities exist and spammers keep developing with

new ways to circumvent some processes. With significant input from research studies, content-

based filters are believed to provide a practical solution for identifying email spam. Such filters

develop a statistical model of ham email characteristics from a set of training samples. If new email

characteristics deviate significantly from the pre-developed model, then it generates an alarm and

classifies the email as spam. However, existing content filtering approaches suffer from significant

weaknesses as email spam contains attributes beyond the text content and spammers play with

textual features to confuse filters. Hence, an inbox protected by a content-based filter dependent

only on text features cannot completely eliminate all email spam.

This thesis highlights a need for further refinement of the approaches used for spam control.

Most importantly, the thesis identifies and implements techniques to neutralize spammers’

techniques. In this chapter, the thesis is summarized in Section 7.2, contributions are reviewed in

Section 7.3, and possible future work is explored in Section 7.4.

7.2 Summary
Email spam has been the focus of studies for decades. Though there are many different

techniques to block spam email messages from reaching users’ inboxes, filtering is the most

commonly used mechanism and has had some success levels of email spam are still unacceptably

high. Researchers and organisations create filters that are smart and self-learning, but spammers

are generally one step ahead. They continue to develop new techniques to deceive filters and their

learning mechanisms. Hence, the problem still remains and with it scope for research in this area.

In this thesis, the problem of detecting email spam at the client-side is addressed. In particular,

novel frameworks are introduced and models are developed which address critical issues that

severely impact the success rate for email spam detection. These issues are

• Limited coverage of email spam detection through server-side filtering

• Variations in user preferences for email spam

• Limitation of text only features

• Large number of false alarms as FP and FN

• Changing spammer techniques

This current work is an effort in the same field to reduce false negatives/spam in the inbox of

users which has deceived organisational filters. This research applies further filtering by training

the filter with user specific data which, as results demonstrate is effective in reducing the volume

of false positives.

As a base point, in Chapter 3, we tested the performance of a Bayesian classifier with a range of

parameters. These included different settings for thresholds and token sizes as well as

 210

characteristics of feature sets such as unigrams, bigrams and trigrams of different sizes ranging

from 75 to 20000; it was noted that there is room for improvement. The Bayesian algorithm

classifies a new email as spam, ham or grey. Greys are isolated in an area that the user has to

manually classify to eliminate the false positives and false negatives. Results demonstrated that,

when parameters are optimised, the least amount of FP and FN occurs, but the volume of greys

still needs to be reduced.

Email spam is annoying and causes financial loss to organizations and individual users. This

thesis in chapter 4, focused on improving classification rates using semantic and syntactic features,

bigrams, improved feature selection methods and a supervised machine learning-based ensemble.

The performance of the feature selection techniques and implementation was presented. A dynamic

multi-layer ensemble model (DMLEM) was proposed to eliminate greys from the Bayesian

classifier and tested on 10 datasets; results showed that 99+% correct classification was achieved,

with FP as low as 0%, the highest being 0.9% and averaging 0.3-0.4%.

In chapter 5, it was hypothesised that user profiling plays an impotent role in email spam

classification. User profiles were developed using significant phrases identified from the content

of emails as part of feature extraction. Feature selection was performed using three methods to

determine optimal performance and evaluated using machine learning and deep learning

techniques. Overall, machine learning techniques resulted in higher performance compared to deep

learning methods. However, the performance of deep learning algorithms was high. Results

showed competitive performance by the three methods used for feature selection. It was proven

that precision of phrase-based filtering is high; this has been evaluated through several

classification algorithms and thus can be considered reliable for user profiling for email

classification and is more accurate than just keyword-based models.

To confirm that information categorisation based on user preferences is required for email spam

filtering, several experiments were conducted for all user data using machine learning and deep

learning methods. Depending on user preferences, it was possible to significantly reduce the error

rate while filtering emails for different users.

As future work for user profiling, clustering needs to be investigated to determine the impact

on categorisation and user profiling to increase the classification detection rate and accuracy of

user preferences.

It is challenging to maintain the efficiency of the email spam classification filters even without

constantly changing spammer methods which complicate this process further. A recently

introduced spamming method is the injection of random valid strings into email spam to deceive

the filters. Such injection poisons the feature sets used to learn the filters with respect to spam and

ham emails. This poses a significant challenge to architects of email spam classification filters as

this increasing language variety in email spam makes it difficult to build filters with acceptable

performance and reliability.

 211

Hence, chapter 6 introduced methods that contribute to the robustness of email spam detection.

First, a new entropy-based email spam detection method was proposed for the case of random

string injection and for efficiently detecting email spam where random valid text is injected into

the spam emails. A series of experiments were carried out for identifying entropy values before

and after the addition of valid random strings and again after scrambled random strings were

injected into email spam. The results demonstrated that the presence of such random valid strings

does impact the detection capability of email spam filters and that Relative entropy can successfully

differentiate spam from ham emails.

Second, attention has been given to the subject field of the emails. Recently, spammers have

focused on the topics of email spam to lure users to read and respond to those emails. In this

chapter, topic-based email spam classification is proposed. The results show that this classification

method is a low cost, high detection mechanism to classify email spam.

7.3 Thesis Contribution
This thesis contribution involved the development of a recursive multistage classifier for email

spam classifier at the client-side (AREMUCCS) with low computation cost and constitutes of the

following stages:

• Identified and addressed critical issues that impact the successful classification of email spam

for a user and email spam detection filters at the server-side.

• Developed a user profiling system that models user profiles statistically based on keyword

phrases in the user data and collects individual user preferences. The effectiveness based on

such profiles has been demonstrated using machine learning and deep learning models which

showed that email classification performance was high using Enron datasets containing email

ham and spam from real users.

• Introduced a Bayesian Classifier that acts as another layer of filtering (stage 2) at the client-

side to 1. Provide user specific filtering with a context specific dataset to filter emails into

three categories - ham, spam and grey 2. refilter email spam classified by server-side filters to

identify false alarms.

• Developed a novel, proficient multi-layer (stage 3) dynamic ensemble model based on a

bagging technique using BoW, term frequency document and chi square approaches to extract,

select and order features for email feature selection. This model incorporates novel semantic

and syntactic features that include the structural characteristics of an email to distinguish ham

and spam emails for a user at the email client.

• Identified a new spammer method of random string injection to deceive the learning-based

filters and developed an efficient entropy-based email spam detection system to detect injected

random valid strings as well as strings that are injected scrambled to confuse filters. The

 212

proposed model has been implemented using machine and deep learning algorithms. The

models have been evaluated using TREC07, Enron, CSDMC2010 and Ling-spam datasets.

• Developed an efficient, low computation cost and precise model for email spam detection

based on the topic of emails using GloVE embeddings for feature selection. The topic-based

email spam detection method is capable of discriminating between spam and ham in real time.

7.4 Future Work
Studies reported by Nucleus research in 2020 indicate that the cost to organisations of email

spam per employee is $1934.00, and predictions are not promising in relation to future cost of

email spam. In studies conducted by the Radicati Research Group Inc., a research firm based in

Palo Alto, California, spam costs businesses $20.5 billion annually in implementing technical

solutions and in decreased productivity. Spam Laws suggest that if spam continues to grow at its

current rate, future cost to businesses may be far more substantial (Laws, 2020).

This confirms that even though email spam detection has been the focus of research for more

than a decade, it is not going to lose traction anytime soon. Hence, further contribution to this area

is inevitable. Some interesting avenues for future research are:

• User profiling has been developed using user data provided by Enron dataset; this method needs

to be evaluated in real time with real users.

• Although the DMLEM classifier is an ‘email’ spam detection system, it has, through its

syntactic features, the capability to effectively also detect ‘review’ spam (a different type of

spam).

• The stages in AREMUCCS have been evaluated using four datasets; to further test the

effectiveness and performance of this classifier, it would be useful to test it with real users.

• Different stages of the AREMUCCS classifier lends itself to consolidation into one single

software application that can be installed on the email client of a user.

• Topic-based classification using GloVe embeddings is an email spam detection system; it can

be extended to other types of spam such as web-based spam attacks or industry-specific spam.

• Deep learning models such as DNN and CNN have been trained and evaluated with large

datasets such as TREC07 which contains 75,000 emails. This needs to be tested with even larger

datasets to make the best use of deep learning methods and measure their effectiveness for email

spam detection.

• The number of datasets containing email spam and ham is limited and the latest available is

from 2015. As future work, development of email spam and ham dataset would be useful to

help the research community.

 213

Bibliography:

Abu-Nimeh, S., Nappa, D., Xinlei, W., & Nair, S. (2008). Bayesian Additive Regression

Trees-Based Spam Detection for Enhanced Email Privacy. In (pp. 1044-1051).
Aggarwal, C. Z., ChengXiang. (2012). A Survey of Text Classification Algorithms. In C. C.

Aggarwal & C. Zhai (Eds.), Mining Text Data (pp. 163-222): Springer US.
Akinyelu, A., & Adewumi, A. (2014). Classification of Phishing Email Using Random

Forest Machine Learning Technique. Journal of Applied Mathematics,
2014(2014). doi:10.1155/2014/425731

Aldwairi, M., & Flaifel, Y. (2012, 18-20 Sept. 2012). Baeza-Yates and Navarro
approximate string matching for spam filtering. Paper presented at the
Innovative Computing Technology (INTECH), 2012 Second International
Conference on.

Ali, A. B. M. S., & Xiang, Y. (2007). Spam Classification Using Adaptive Boosting
Algorithm. Paper presented at the Computer and Information Science, 2007. ICIS
2007. 6th IEEE/ACIS International Conference on.

Ali Elsiddig, A. O., Elhadi, A. A. E., & Ahmed, A. (2017). Features Reweighting and
Similarity Coefficient Based Method for Email Spam Filtering. American Journal
of Applied Sciences, 14(10), 983-993. doi:10.3844/ajassp.2017.983.993

Ali, S. (2019). Spam image email filtering using K-NN and SVM. International Journal of
Electrical and Computer Engineering, 9(1), 245-254.
doi:10.11591/ijece.v9i1.pp245-254

Alsowail, M., & Batarfi, O. (2011). Filtering spam emails based on user behaviors.
International Journal of Advanced Research in Computer Science, 2(5).

Anandita, Yadav, D. P., Paliwal, P., Kumar, D., & Tripathi, R. (2017). A Novel Ensemble
Based Identification of Phishing E-Mails. Paper presented at the Proceedings of
the 9th International Conference on Machine Learning and Computing,
Singapore, Singapore.

Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C., &
Stamatopoulos, P. (2000). Learning to Filter Spam E-Mail: A Comparison of a
Naive Bayesian and a Memory-Based Approach. arXiv.org.

Androutsopoulos, I., Paliouras, G., & Michelakis, E. (2006). Learning to Filter Unsolicited
Commercial E-Mail.

Androutsopoulos, J. K., Chandrinos, K.V. Paliouras,G and Spyropoulos, C.D. . (2000a). An
Evaluation of Naive Bayesian Anti-Spam Filtering. Paper presented at the 11th
European Conference on Machine Learning, Barcelona, Spain.

Androutsopoulos, J. K., Chandrinos, K.V. Paliouras,G and Spyropoulos, C.D. . (2000b). An
Experimental Comparison of Naive Bayesian and Keyword-Based Anti-Spam
Filtering with Personal E-mail Messages. Paper presented at the 23rd Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval(SIGIR2000), Athens, Greece.

Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010). Building a
dynamic reputation system for DNS. Paper presented at the Proceedings of the
19th USENIX conference on Security, Washington, DC.

Aradhye, H. B., Myers, G. K., & Herson, J. A. (2005, 29 Aug.-1 Sept. 2005). Image analysis
for efficient categorization of image-based spam e-mail. Paper presented at the
Document Analysis and Recognition, 2005. Proceedings. Eighth International
Conference on.

 214

Bai, S., Kolter, J., & Koltun, V. (2018). An Empirical Evaluation of Generic Convolutional
and Recurrent Networks for Sequence Modeling.

Bajaj, K. (2017). A Multi-layer Model to Detect Spam Email at Client Side, Cham.
Bajaj, K., & Pieprzyk, J. (2014). A case study of user-level spam filtering. Paper presented

at the Proceedings of the Twelfth Australasian Information Security Conference -
Volume 149, Auckland, New Zealand.

Bajaj, K. S. (2016). A Multi-layer Model to Detect Spam Email at Client Side. Paper
presented at the SecureComm 2016, China.

Bajaj, S. K., & Pieprzyk, J. (2013, 21-22 Nov. 2013). Can We CAN the Email Spam. Paper
presented at the Cybercrime and Trustworthy Computing Workshop (CTC), 2013
Fourth.

Balakumar, M., & Vaidehi, V. (2008, 4-6 Jan. 2008). Ontology based classification and
categorization of email. Paper presented at the Signal Processing,
Communications and Networking, 2008. ICSCN '08. International Conference on.

Barushka, A., & Hajek, P. (2018). Spam filtering using integrated distribution-based
balancing approach and regularized deep neural networks. Applied Intelligence.
doi:10.1007/s10489-018-1161-y

Beigy, M. F. S. a. H. (2012). Learning to filter spam emails: An ensemble learning
approach. International Journal of Hybrid Intelligent Systems, 9, 27-43.
doi:10.3233/HIS-2011-0145

Bhowmick, A., & Hazarika, S. M. (2018, 2018//). E-Mail Spam Filtering: A Review of
Techniques and Trends. Paper presented at the Advances in Electronics,
Communication and Computing, Singapore.

Blanzieri, E., & Bryl, A. (2008). A survey of learning-based techniques of email spam
filtering. Artificial Intelligence Review, 29(1), 63-92. doi:10.1007/s10462-009-
9109-6

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
doi:10.1023/a:1010933404324

Brewer, D., Thirumalai, S., Gomadam, K., & Kang Li, A. K. L. (2006). Towards an Ontology
Driven Spam Filter. Paper presented at the Data Engineering Workshops, 2006.
Proceedings. 22nd International Conference on.

Brownie, J. (2018). A Data-Driven Approach to Choosing Machine Learning Algorithms.
Start Machine Learning. Retrieved from https://machinelearningmastery.com/a-
data-driven-approach-to-machine-learning/

Brownlee, J. (2016). A Gentle Introduction to XGBoost for Applied Machine Learning.
XGBoost. Retrieved from https://machinelearningmastery.com/gentle-
introduction-xgboost-applied-machine-learning/

Brun, O., Yin, Y., & Gelenbe, E. (2018). Deep Learning with Dense Random Neural
Network for Detecting Attacks against IoT-connected Home Environments. In
(Vol. 134, pp. 458-463).

Caruana, G., & Li, M. (2008). A survey of emerging approaches to spam filtering. ACM
Comput. Surv., 44(2), 1-27. doi:10.1145/2089125.2089129

Caruana, G., & Li, M. (2012). A survey of emerging approaches to spam filtering. ACM
Comput. Surv., 44(2), 1-27. doi:10.1145/2089125.2089129

Caruana, G., Maozhen, L., & Man, Q. (2011, 26-28 July 2011). A MapReduce based
parallel SVM for large scale spam filtering. Paper presented at the Fuzzy Systems
and Knowledge Discovery (FSKD), 2011 Eighth International Conference on.

Chakrabarty, A., & Roy, S. (2014). An optimized k-NN classifier based on minimum
spanning tree for email filtering. In (pp. 47-52).

 215

Chao, X., & Yiming, Z. (2007, 15-19 Dec. 2007). Transductive Support Vector Machine for
Personal Inboxes Spam Categorization. Paper presented at the Computational
Intelligence and Security Workshops, 2007. CISW 2007. International Conference
on.

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In (Vol. 13-
17-, pp. 785-794).

Cheng, V., & Li, C. h. (2006, 18-22 Dec. 2006). Personalized Spam Filtering with Semi-
supervised Classifier Ensemble. Paper presented at the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2006 Main Conference
Proceedings)(WI'06).

Chhabra, S., Yerazunis, W. S., & Siefkes, C. (2004). Spam filtering using a Markov
random field model with variable weighting schemas. Paper presented at the
Data Mining, 2004. ICDM '04. Fourth IEEE International Conference on.

Chharia, A., & Gupta, R. K. (2013, 8-10 Aug. 2013). Email classifier: An ensemble using
probability and rules. Paper presented at the 2013 Sixth International
Conference on Contemporary Computing (IC3).

Chih-Chin, L., & Ming-Chi, T. (2004, 5-8 Dec. 2004). An empirical performance
comparison of machine learning methods for spam e-mail categorization. Paper
presented at the Hybrid Intelligent Systems, 2004. HIS '04. Fourth International
Conference on.

Chinavle, D., Kolari, P., Oates, T., & Finin, T. (2009). Ensembles in adversarial
classification for spam. Paper presented at the Proceedings of the 18th ACM
conference on Information and knowledge management, Hong Kong, China.

Ching-Tung, W., Kwang-Ting, C., Qiang, Z., & Yi-Leh, W. (2005, 11-14 Sept. 2005). Using
visual features for anti-spam filtering. Paper presented at the IEEE International
Conference on Image Processing 2005.

Clement, J. (2019). Spam: share of global email traffic 2014-2019. Cyber
Crime/Statistics. Retrieved from
https://www.statista.com/statistics/420391/spam-email-traffic-share/

Clifford, M., Faigin, D., Bishop, M., & Brutch, T. (2003). Miracle Cures and Toner
Cartridges: Finding Solutions to the Spam Problem. Paper presented at the 19th
annual computer security applications conference (ACSAC 2003).

Cormack G V., L. R. T. (2007). 2007 TREC Public Spam Corpus. TREC07. Retrieved from:
https://plg.uwaterloo.ca/~gvcormac/treccorpus07/about.html

Cormack, G. V., & Cruz, J.-M. M. d. (2009). On the relative age of spam and ham training
samples for email filtering. Paper presented at the Proceedings of the 32nd
international ACM SIGIR conference on Research and development in
information retrieval, Boston, MA, USA.

Cormack, G. V., & Lynam, T. R. (2007). Online supervised spam filter evaluation. ACM
Trans. Inf. Syst., 25(3), 11. doi:10.1145/1247715.1247717

Cristianini, Nello, & Shawe-Taylor, J. (2001). An introduction to support vector machines
and other kernel-based learning methods. Repr. Introduction to Support Vector
Machines and other Kernel-Based Learning Methods, 22.
doi:10.1017/CBO9780511801389

Dada, E., & Joseph, S. (2018a). Logistic Model Tree Induction Machine Learning
Technique for Email Spam Filtering. 19, 96-102.

Dada, E., & Joseph, S. (2018b). Random Forests Machine Learning Technique for Email
Spam Filtering.

 216

Dada, E., Joseph, S., Chiroma, H., Abdulhamid, S. i., Adetunmbi, A., Opeyemi, E., &
Ajibuwa. (2019). Machine learning for email spam filtering: review, approaches
and open research problems. Heliyon, 5, 1-23.
doi:10.1016/j.heliyon.2019.e01802

De, W., Irani, D., & Pu, C. (2013). A study on evolution of email spam over fifteen years.
In (pp. 1-10).

Deepak, P., & Sandeep, P. (2005). Spam filtering using spam mail communities. Paper
presented at the Applications and the Internet, 2005. Proceedings. The 2005
Symposium on.

Deffree, S. (2019). 1st spam email is sent, May 3, 1978. EDN Moments. Retrieved from
https://www.edn.com/1st-spam-email-is-sent-may-3-1978/

Delany, S. J., Cunningham, P., Tsymbal, A., & Coyle, L. (2005). A Case-Based Technique
for Tracking Concept Drift in Spam Filtering. In Applications and Innovations in
Intelligent Systems XII (pp. 3-16).

Denning, P. (1982). ACM president's letter: electronic junk. Communications of the
ACM, 25(3), 163-165. doi:10.1145/358453.358454

Deshpande, V. P., Erbacher, R. F., & Harris, C. (2007, 20-22 June 2007). An Evaluation of
Naïve Bayesian Anti-Spam Filtering Techniques. Paper presented at the 2007
IEEE SMC Information Assurance and Security Workshop.

Devi, K. (2018). Random Forests Spam Email Classification System. Journal of Computer
Engineering & Information Technology, 07(1). doi:10.4172/2324-9307.1000190

Dhinakaran, C., Chae, C.-J., & Lee, J.-K. (2007). An Empirical Study of Spam and Spam
Vulnerable email Accounts. Paper presented at the Future generation
communication and networking (fgcn 2007).

Diale, M., Celik, T., & Van Der Walt, C. (2019). Unsupervised feature learning for spam
email filtering. Computers & Electrical Engineering, 74, 89-104.
doi:https://doi.org/10.1016/j.compeleceng.2019.01.004

Drucker, H., Donghui, W., & Vapnik, V. N. (1999). Support vector machines for spam
categorization. Neural Networks, IEEE Transactions on, 10(5), 1048-1054.

Du, L., Song, Q., & Jia, X. L. (2014). Detecting concept drift: An information entropy
based method using an adaptive sliding window. Intelligent Data Analysis, 18(3),
337-364. doi:10.3233/IDA-140645

Du, M., Yu, Q., Fei, S., Wang, C., Gong, X., & Luo, R. (2019). Fully Dense Neural Network
for the Automatic Modulation Recognition.

du Toit, T., & Kruger, H. (2012, 15-17 Aug. 2012). Filtering spam e-mail with Generalized
Additive Neural Networks. Paper presented at the Information Security for South
Africa (ISSA), 2012.

Esquivel, H., Akella, A., & Mori, T. (2010). On the effectiveness of IP reputation for spam
filtering. In (pp. 1-10).

Fahad, S. (2015). Developing a spam Email Detector.
Fdez-Riverola, F., Iglesias, E. L., DÃaz, F., MÃ©ndez, J. R., & Corchado, J. M. (2007).

SpamHunting: An instance-based reasoning system for spam labelling and
filtering. Decision Support Systems, 43(3), 722-736. Retrieved from
riverola@uvigo.es

10.1016/j.dss.2006.11.012
http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2007-05229-

004&site=ehost-live

 217

Fdez-Riverola, F., Iglesias, E. L., Díaz, F., Méndez, J. R., & Corchado, J. M. (2007).
Applying lazy learning algorithms to tackle concept drift in spam filtering. Expert
Systems with Applications, 33(1), 36-48. doi:10.1016/j.eswa.2006.04.011

Ferris_Research. (2007). Spam Control: The Current Landscape. Retrieved from
http://www.ferris.com/2007/01/02/the-commodity-status-of-spam-control/

Firte, L., Lemnaru, C., & Potolea, R. (2010). Spam detection filter using KNN algorithm
and resampling.

Flach, P. (2019). Performance Evaluation in Machine Learning: The Good, the Bad, the
Ugly, and the Way Forward. Proceedings of the AAAI Conference on Artificial
Intelligence, 33, 9808-9814. doi:10.1609/aaai.v33i01.33019808

Ford, R., & Spattord, E. H. (2007). Happy Birthday, Dear Viruses. Science, 317(5835),
210-211. Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=pbh&AN=25917610&si
te=ehost-live

Garg, A., Battiti, R., & Cascella, R. G. (2006). "May I borrow your filter?" Exchanging
filters to combat spam in a community. Paper presented at the Advanced
Information Networking and Applications, 2006. AINA 2006. 20th International
Conference on.

Gargiulo, F., Penta, A., Picariello, A., & Sansone, C. (2009). A Personal Antispam System
Based on a Behaviour-Knowledge Space Approach. In O. Okun & G. Valentini
(Eds.), Applications of Supervised and Unsupervised Ensemble Methods (pp. 39-
57). Berlin, Heidelberg: Springer Berlin Heidelberg.

Gashti, M. Z. (2017). Detection of Spam Email by Combining Harmony Search Algorithm
and Decision Tree. Engineering, Technology & Applied Science Research, 7(3),
1713-1718. doi:10.5281/zenodo.809513

George, P., & Vinod, P. (2015). Machine learning approach for filtering spam emails.
Paper presented at the Proceedings of the 8th International Conference on
Security of Information and Networks, Sochi, Russia.

Goel, E., Abhilasha. (2017). Random Forest: A Review. International Journal of Advanced
Research in Computer Science and Software Engineering, 7(1), 251-257. doi:
10.23956/ijarcsse/V7I1/01113

Gomez, J., & Moens, M.-F. (2010). Using Biased Discriminant Analysis for Email Filtering.
In R. Setchi, I. Jordanov, R. Howlett, & L. Jain (Eds.), Knowledge-Based and
Intelligent Information and Engineering Systems (Vol. 6276, pp. 566-575):
Springer Berlin Heidelberg.

Graham, P. (2002). A Plan for Spam. Retrieved from
http://www.paulgraham.com/spam.html

Grimes, G. A. (2007). Compliance with the CAN-SPAM Act of 2003. Commun. ACM,
50(2), 56–62. doi:10.1145/1216016.1216021

Grobelnik, M., Mladenić, D., & Fortuna, B. (2009). Ontology Generation from Social
Networks. In J. Davies, M. Grobelnik, & D. Mladenić (Eds.), Semantic Knowledge
Management (pp. 129-139): Springer Berlin Heidelberg.

Gudkova, D., & Namestnikova, M. (2011). Spam in the First Quarter of 2011. (April
2011). Retrieved from
http://www.securelist.com/en/analysis/204792175/Spam_in_the_First_Quarter
_of_2011

Guoqing, M., Wei, Z., Haixia, C., & Jianshe Dong, A. J. D. (2006). Multi-agent Interaction
Based Collaborative P2P System for Fighting Spam. Paper presented at the

 218

Intelligent Agent Technology, 2006. IAT '06. IEEE/WIC/ACM International
Conference on.

Guoyang, S., Bin, G., Tie-Yan, L., Guang Feng, A. G. F., Shiji Song, A. S. S., & Hang Li, A. H.
L. (2006). Detecting Link Spam Using Temporal Information. Paper presented at
the Data Mining, 2006. ICDM '06. Sixth International Conference on.

Gupta, R., Kumar, K. V., & Mohandas, R. (2011, 22-24 April 2011). Spam control by
source throttling using integer factorization. Paper presented at the 2011
International Conference on Emerging Trends in Networks and Computer
Communications (ETNCC).

Guyon, I., & Elisseeff, A. (2003). An Introduction of Variable and Feature Selection. J.
Machine Learning Research Special Issue on Variable and Feature Selection, 3,
1157-1182. doi:10.1162/153244303322753616

Guzella, T. S., & Caminhas, W. M. (2009). A review of machine learning approaches to
Spam filtering. Expert Systems with Applications, 36(7), 10206-10222.
doi:10.1016/j.eswa.2009.02.037

Gyöngyi, Zoltán, Garcia, M., & Hector, H. (2005). Web Spam Taxonomy.
Hajara, M., Gital, A. Y., Zambuk, F. U., Umar, A., Umar, A. Y., & Waziri, J. U. (2019). A

comparative analysis of phishing website detection using XGBOOST algorithm.
Journal of Theoretical and Applied Information Technology, 97, 1434-1443.

Han, A., Kim, H., Ha, I., & Jo, G. (2008, 10-11 July 2008). Semantic Analysis of User
Behaviors for Detecting Spam Mail. Paper presented at the 2008 IEEE
International Workshop on Semantic Computing and Applications.

Harisinghaney, A., Dixit, A., Gupta, S., & Arora, A. (2014, 6-8 Feb. 2014). Text and image
based spam email classification using KNN, Naïve Bayes and Reverse DBSCAN
algorithm. Paper presented at the 2014 International Conference on Reliability
Optimization and Information Technology (ICROIT).

Hazim, M., Anuar, N. B., Ab Razak, M. F., & Abdullah, N. A. (2018). Detecting opinion
spams through supervised boosting approach. PLOS ONE, 13(6), e0198884.
doi:10.1371/journal.pone.0198884

Ho, C. C., Baharim, K. N., Abdulsalam, A., & Alias, M. S. (2017). Deep Neural Networks
for Text: A Review.

Hoanca, B. (2006). How good are our weapons in the spam wars? Technology and
Society Magazine, IEEE, 25(1), 22-30.

Horie, M., & Neville, S. W. (2008). Addressing Spam at the Systems-level through a
Peered Overlay Network-Based Approach. In Novel Algorithms and Techniques In
Telecommunications, Automation and Industrial Electronics (pp. 449-453).

Huai-bin, W., Ying, Y., & Zhen, L. (2005). SVM Classifier Incorporating Feature Selection
Using GA for Spam Detection. In Embedded and Ubiquitous Computing (pp.
1147-1154).

Huang, G., & Xu, Y. (2013). Hybrid spam filtering method based on users' feedback.
Jisuanji Yingyong / Journal of Computer Applications, 33(7), 1861-1865.
doi:10.11772/j.issn.1001-9081.2013.07.1861

Iqbal, M., Muneeb Abid, M., Ahmad, M., & Khurshid, F. (2016). Study on the
Effectiveness of Spam Detection Technologies. International Journal of
Information Technology and Computer Science, 8, 11-21.
doi:10.5815/ijitcs.2016.01.02

Iqbal, M., Shoukat, A., Khan, S., & Iqbal, S. (2011). Performance Analysis of K-NN and
Naïve Bayes Classifiers for Spam Filtering Application. International Journal of
Advanced Research in Computer Science, 2(2).

 219

Isacenkova, J., & Balzarotti, D. (2011). Measurement and Evaluation of a Real World
Deployment of a Challenge-Response Spam Filter.

Isacenkova, J., & Balzarotti, D. (2014). Shades of gray: a closer look at emails in the gray
area. Paper presented at the Proceedings of the 9th ACM symposium on
Information, computer and communications security, Kyoto, Japan.

Islam, M., & Zhou, W. (2007). Architecture of Adaptive Spam Filtering Based on Machine
Learning Algorithms

Algorithms and Architectures for Parallel Processing. In H. Jin, O. Rana, Y. Pan, & V.
Prasanna (Eds.), (Vol. 4494, pp. 458-469): Springer Berlin / Heidelberg.

Islam, M. R., Wanlei, Z., & Chowdhury, M. U. (2008, 14-16 May 2008). Email
Categorization Using (2+1)-Tier Classification Algorithms. Paper presented at the
Computer and Information Science, 2008. ICIS 08. Seventh IEEE/ACIS
International Conference on.

Islam, R., & Wanlei, Z. (2007, 3-6 Dec. 2007). Email Categorization Using Multi-stage
Classification Technique. Paper presented at the Parallel and Distributed
Computing, Applications and Technologies, 2007. PDCAT '07. Eighth
International Conference on.

Jacovi, A., Sar Shalom, O., & Goldberg, Y. (2018). Understanding Convolutional Neural
Networks for Text Classification.

Jacovi, A., Shalom, O., & Goldberg, Y. (2018). Understanding Convolutional Neural
Networks for Text Classification.

Jaeyeon, J., & Emil, S. (2004). An empirical study of spam traffic and the use of DNS
black lists. Paper presented at the Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, Taormina, Sicily, Italy.

Jiang, F., Jin, G., Yuanyuan, X., & Guandong, X. (2016). Coupled behavioral analysis for
user preference-based email spamming. In (pp. 1-5).

Jindal, N., & Liu, B. (2007). Analyzing and Detecting Review Spam. Paper presented at
the Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on.

Junejo, K., & Karim, A. (2013). Robust personalizable spam filtering via local and global
discrimination modeling. Knowledge and Information Systems, 34(2), 299-334.
doi:10.1007/s10115-012-0477-x

Junejo, K. N., & Karim, A. (2013). Robust personalizable spam filtering via local and
global discrimination modeling.

Kala, R. (2016). 3 - Perception in Autonomous Vehicles. In R. Kala (Ed.), On-Road
Intelligent Vehicles (pp. 36-58): Butterworth-Heinemann.

Karthika Renuka, D., Hamsapriya, T., Raja Chakkaravarthi, M., & Lakshmi Surya, P. (2011,
20-22 July 2011). Spam Classification Based on Supervised Learning Using
Machine Learning Techniques. Paper presented at the Process Automation,
Control and Computing (PACC), 2011 International Conference on.

Khamis, S., Mohd Foozy, C. F., Aziz, M., & Rahim, N. (2020). Header Based Email Spam
Detection Framework Using Support Vector Machine (SVM) Technique. In (pp.
57-65).

Khater, I. (2012). Identifying Potentially Useful Email Header Features for Email Spam
Filtering. Paper presented at the CDS 2012 : The Sixth International Conference
on Digital Society, Valencia, Spain.

Kholghi, R., Roudsari, S. B., & Pour, A. N. (2011). An efficient spam mail detection by
counter technique. World Academy of Science, Engineering and Technology, 74,
579-582.

 220

Kigerl, A. (2009). CAN SPAM Act: An Empirical analysis. International Journal of Cyber
Criminology (IJCC), 3, 974-2891.

Kim, H.-J., Shrestha, J., Kim, H.-N., & Jo, G.-S. (2006). User Action Based Adaptive
Learning with Weighted Bayesian Classification for Filtering Spam Mail. In A.
Sattar & B.-h. Kang (Eds.), AI 2006: Advances in Artificial Intelligence (Vol. 4304,
pp. 790-798): Springer Berlin Heidelberg.

Kim, J., Chung, K., & Choi, K. (2007). Spam Filtering With Dynamically Updated URL
Statistics. IEEE Security & Privacy, 5(4), 33-39. doi:10.1109/MSP.2007.95

Kim, J., Dou, D., Liu, H., & Kwak, D. (2007). Constructing a User Preference Ontology for
Anti-spam Mail Systems. In Z. Kobti & D. Wu (Eds.), Advances in Artificial
Intelligence (Vol. 4509, pp. 272-283): Springer Berlin Heidelberg.

Klimt, B., & Yang, Y. (2004). Introducing the Enron Corpus.
Klonowski, M., & Strumiński, T. (2008). Proofs of Communication and Its Application for

Fighting Spam. In SOFSEM 2008: Theory and Practice of Computer Science (pp.
720-730).

Kolcz, A., Bond, M., & Sargent, J. (2006). The challenges of service-side personalized
spam filtering: scalability and beyond. Paper presented at the Proceedings of the
1st international conference on Scalable information systems, Hong Kong.
https://doi-org.ezproxy.uws.edu.au/10.1145/1146847.1146868

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems, 25.
doi:10.1145/3065386

Kuipers, B. J., Liu, A. X., Gautam, A., & Gouda, M. G. (2005). Zmail: zero-sum free market
control of spam. In (pp. 20-26).

Kun-Lun, L., Kai, L., Hou-Kuan, H., & Sheng-Feng, T. (2002, 2002). Active learning with
simplified SVMs for spam categorization. Paper presented at the Machine
Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on.

Lai, C.-C. (2007). An empirical study of three machine learning methods for spam
filtering. Knowledge-Based Systems, 20(3), 249-254. Retrieved from
cclai@mail.nutn.edu.tw

10.1016/j.knosys.2006.05.016
http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2007-05169-

003&site=ehost-live
Laws, S. (2020). Spam Statistics and Facts. Retrieved from

https://www.spamlaws.com/spam-stats.html
Leavitt, N. (2007). Vendors Fight Spam's Sudden Rise. Computer, 40(3), 16-19.
Levenstein, J. (2013). Email statistics report, 2013-2017. Retrieved from 1900

EMBARCADERO ROAD, SUITE 206. • PALO ALTO, CA 94303:
http://www.radicati.com/?p=9659

Levine, J. (2005). Experiences with Greylisting.
Li, Z., & Shen, H. (2011, 10-15 April 2011). SOAP: A Social network Aided Personalized

and effective spam filter to clean your e-mail box. Paper presented at the 2011
Proceedings IEEE INFOCOM.

Liang, T., & Yu, Q. (2012, 2-4 Nov. 2012). Spam Feature Selection Based on the Improved
Mutual Information Algorithm. Paper presented at the Multimedia Information
Networking and Security (MINES), 2012 Fourth International Conference on.

Liu, P., Dong, J.-s., & Zhao, W. (2007). A Statistical Spam Filtering Scheme Based on Grid
Platform. In Theoretical Advances and Applications of Fuzzy Logic and Soft
Computing (pp. 527-534).

 221

Liu, X., Zou, P., Zhang, W., Zhou, J., Dai, C., Wang, F., & Zhang, X. (2017). CPSFS: A
Credible Personalized Spam Filtering Scheme by Crowdsourcing. Wireless
Communications and Mobile Computing, 2017, 1-9. doi:10.1155/2017/1457870

Lowd, D., & Meek, C. (2005). Good Word Attacks on Statistical Spam Filters.
Maria Vergelis, T. S., Tatyana Shcherbakova. (2019). Spam and phishing in Q3 2019.

SPAM AND PHISHING REPORTS, Q3, 2019(Q3, 2019). Retrieved from
https://securelist.com/spam-report-q3-2019/95177/

Marsland, S. (2014). Machine Learning : An Algorithmic Perspective, Second Edition.
Bosa Roca: Bosa Roca: CRC Press LLC.

McDowell, M. (2006). Defending Cell Phones and PDAs Against Attack. USA: National
Cyber Alert System Retrieved from http://www.us-cert.gov/cas/tips/ST06-
007.html

McGibney, J., & Botvich, D. (2007). Establishing Trust Between Mail Servers to Improve
Spam Filtering. In Autonomic and Trusted Computing (pp. 146-155).

Meyer , T. A., & Whateley, B. (2004). SpamBayes: Effective open-source, Bayesian based,
email classification system. . Paper presented at the First Conference on Email
and Anti-Spam (CEAS) Mountain View, CA

Ming, L., Yunchun, L., & Wei, L. (2007). Spam Filtering by Stages. Paper presented at the
Convergence Information Technology, 2007. International Conference on.

Mir, A. F., & Banday, T. M. (2010). Control of spam: a comparative approach with special
reference to India. Information & Communications Technology Law, 19(1), 27-
59. doi:10.1080/13600831003589350

Mojdeh, M., & Cormack, G. V. (2010). Semi-supervised spam filtering using aggressive
consistency learning. Paper presented at the Proceedings of the 33rd
international ACM SIGIR conference on Research and development in
information retrieval, Geneva, Switzerland.

Moon, J., Shon, T., Seo, J., Kim, J., & Seo, J. (2004). An Approach for Spam E-mail
Detection with Support Vector Machine and n-Gram Indexing. In Computer and
Information Sciences - ISCIS 2004 (pp. 351-362).

Mussa, D., & M. Jameel, N. (2019). Relevant SMS Spam Feature Selection Using
Wrapper Approach and XGBoost Algorithm. Kurdistan Journal of Applied
Research, 4, 110-120. doi:10.24017/science.2019.2.11

Nagamalai, D., Dhinakaran, C., & Lee, J. K. (2007). Multi Layer Approach to Defend DDoS
Attacks Caused by Spam. Paper presented at the Multimedia and Ubiquitous
Engineering, 2007. MUE '07. International Conference on.

Nakulas, A., Ekonomou, L., Kourtesi, S., Fotis, G., & Zoulias, E. (2009). A Review of
Techniques to Counter Spam and Spit. In N. Mastorakis, V. Mladenov, & V. T.
Kontargyri (Eds.), Proceedings of the European Computing Conference (Vol. 27,
pp. 501-510): Springer US.

Namestnikova, M. (2012). Spam in July 2012. Analysis, (July 2012). Retrieved from
http://www.securelist.com/en/analysis/204792243/Spam_in_July_2012

Navlani, A. (2018). KNN Classification using Scikit-learn. Tutorials. Retrieved from
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-
classification-scikit-learn

Nazirova, S. (2011). Survey on spam filtering techniques. Communications and Network,
3, 153+. Retrieved from
http://go.galegroup.com/ps/i.do?id=GALE%7CA281789914&v=2.1&u=uwsydney
&it=r&p=AONE&sw=w

 222

Nelson, B., Barreno, M., Jack Chi, F., Joseph, A. D., Rubinstein, B. I. P., Saini, U., . . . Xia,
K. (2009). Misleading Learners: Co-opting Your Spam Filter. In Machine Learning
in Cyber Trust (pp. 17-51).

Nhung, N., & Phuong, T. (2007). An Efficient Method for Filtering Image-Based Spam E-
mail. In Computer Analysis of Images and Patterns (pp. 945-953).

OECD, & Ahn, S.-i. (2004). Background Paper For The OECD Workshop On Spam
[unclassfied]. doi:DSTI/ICCP(2003)10/FINAL

OstermanResearch. (2011). Spam Morphs from a Nuisance to a Threat [WHITE Paper].
Osterman Research Security White papers, (Dec 2011), 12. Retrieved from
http://www.ostermanresearch.com/whitepapers/orwp_0153.pdf

Paswan, M. K., Bala, P. S., & Aghila, G. (2012, 30-31 March 2012). Spam filtering:
Comparative analysis of filtering techniques. Paper presented at the Advances in
Engineering, Science and Management (ICAESM), 2012 International Conference
on.

Patidar, V., Singh, D., & Singh, A. (2013). A Novel Technique of Email Classification for
Spam Detection. International Journal of Applied Information Systems, 5, 15-19.
doi:10.5120/ijais13-450976

Pelletier, L., Almhana, J., & Choulakian, V. (2004). Adaptive filtering of spam. Paper
presented at the Communication Networks and Services Research, 2004.
Proceedings. Second Annual Conference on.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word
Representation (Vol. 14).

Pham, X., Lee, N.-H., Jung, J., & Sadeghi-Niaraki, A. (2011). Collaborative spam filtering
based on incremental ontology learning. Telecommunication Systems, 1-8.
doi:10.1007/s11235-011-9513-5

Pitsillidis, A., Kanich, C., Voelker, G. M., Levchenko, K., & Savage, S. (2012). Taster's
choice: a comparative analysis of spam feeds. Paper presented at the
Proceedings of the 2012 ACM conference on Internet measurement conference,
Boston, Massachusetts, USA.

Pour, A., & Kholghi, R. (2012). Minimizing the Time of Spam Mail Detection by
Relocating Filtering System to the Sender Mail Server. arXiv.org, 4(2).
doi:10.5121/ijnsa.2012.4204

Qiu, X., Hao, J., & Chen, M. (2004). Flow-based anti-spam. Paper presented at the IP
Operations and Management, 2004. Proceedings IEEE Workshop on.

Quinten, V., van de Meent, R., & Pras, A. (2007). Analysis of Techniques for Protection
Against Spam over Internet Telephony. In Dependable and Adaptable Networks
and Services (pp. 70-77).

Radicati. (2017). Email Statistics Report, 2017-2021. Retrieved from
http://www.radicati.com/wp/wp-content/uploads/2017/01/Email-Statistics-
Report-2017-2021-Executive-Summary.pdf

Radicati. (2018). Email Statistics Report, 2018-2022. Retrieved from
https://www.radicati.com/wp/wp-
content/uploads/2018/01/Email_Statistics_Report,_2018-
2022_Executive_Summary.pdf

Radicati. (2019). Email Statistics Report, 2019-2023. Retrieved from
https://www.radicati.com/wp/wp-content/uploads/2018/12/Email-Statistics-
Report-2019-2023-Executive-Summary.pdf

Rajendran, B., & Pandey, A. K. (2012). Contextual Strategies for Detecting Spam in
Academic Portals

 223

Advances in Computer Science and Information Technology. Computer Science and
Engineering. In N. Meghanathan, N. Chaki, & D. Nagamalai (Eds.), (Vol. 85, pp.
250-256): Springer Berlin Heidelberg.

Rao, J. M., & Reiley, D. H. (2012). The Economics of Spam. Journal of Economic
Perspectives, 26(3), 87-110. doi:10.1257/jep.26.3.87

Rayana, S., & Akoglu, L. (2016). Less is More: Building Selective Anomaly Ensembles.
ACM Trans. Knowl. Discov. Data, 10(4), 1-33. doi:10.1145/2890508

Ridzuan, F., Potdar, V., & Talevski, A. (2010). Factors Involved in Estimating Cost of Email
Spam, Berlin, Heidelberg.

Robinson, G. (2003). A Statistical Approach to the Spam Problem. Retrieved from
http://www.linuxjournal.com/article/6467

saeedian, M. F., & Beigy, H. (2009, March 30 2009-April 2 2009). Dynamic classifier
selection using clustering for spam detection. Paper presented at the 2009 IEEE
Symposium on Computational Intelligence and Data Mining.

Sanz, E. P., Gómez Hidalgo, J. M., & Cortizo Pérez, J. C. (2008). Chapter 3 Email Spam
Filtering. In Advances in Computers (Vol. 74, pp. 45-114): Elsevier.

Schryen, G. (2007). Anti-spam measures: Analysis and design.
Shajideen, N. M., & Bindu, V. (2018). Conventional and Ontology Based Spam Filtering.

In (pp. 1-3).
Sharma, A. K., & Yadav, R. (2015, 4-6 April 2015). Spam Mails Filtering Using Different

Classifiers with Feature Selection and Reduction Technique. Paper presented at
the 2015 Fifth International Conference on Communication Systems and
Network Technologies.

Sharma, M., & Kaur, J. (2015). A Novel Data Mining Approach for Detecting Spam Emails
using Robust Chi-Square Features. Paper presented at the Proceedings of the
Third International Symposium on Women in Computing and Informatics, Kochi,
India.

Sheu, J.-J., Chu, K.-T., Li, N.-F., & Lee, C.-C. (2017). An efficient incremental learning
mechanism for tracking concept drift in spam filtering (Vol. 12).

Singh, A., & Batra, S. (2018). Ensemble based spam detection in social IoT using
probabilistic data structures. Future Generation Computer Systems, 81, 359-371.
doi:https://doi.org/10.1016/j.future.2017.09.072

Siponen, M., & Stucke, C. (2006). Effective Anti Spam Strategies in Companies: An
International Study. Paper presented at the 39th Hawaiia International
Conference on System Sciences.

Sirisanyalak, B., & Somit, O. (2007). An artificial immunity-based spam detection system.
Paper presented at the Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on.

Smith, R. (2016). 40 years on from the first spam email, what have we learned? Here are
5 things you should know about junk mail. Formative Content. Retrieved from
World Economic forum

So Young, P., & Shin Gak, K. (2008, 17-20 Feb. 2008). Labeling System for Countering SIP
spam. Paper presented at the Advanced Communication Technology, 2008.
ICACT 2008. 10th International Conference on.

Sophos. (2013). Security Threat Report. Retrieved from
SpiderLabs. (2013). Spam Types. Retrieved from

https://www.trustwave.com/support/labs/spam_types.asp
Stern, H. (2008). A Survey of Modern Spam Tools.

 224

Suryawanshi, S., Goswami, A., & Patil, P. (2019, 13-14 Dec. 2019). Email Spam Detection
: An Empirical Comparative Study of Different ML and Ensemble Classifiers. Paper
presented at the 2019 IEEE 9th International Conference on Advanced
Computing (IACC).

Symantec. (2016). Internet Security Threat Report. Retrieved from
Takemura, T., & Ebara, H. (2008). Spam Mail Reduces Economic Effects. Paper presented

at the Second International Conference on the Digital Society, Sainte Luce,
Martinique

Takesue, M. (2010, 18-25 July 2010). Cascaded Simple Filters for Accurate and
Lightweight Email-Spam Detection. Paper presented at the 2010 Fourth
International Conference on Emerging Security Information, Systems and
Technologies.

Takumi, I., Akira, H., Yoshiaki, K., Ichimura, T. A. I. T., Hara, A. A. H. A., & Kurosawa, Y. A.
K. Y. (2007). A classification method for spam e-mail by Self-Organizing Map and
automatically defined groups. Paper presented at the Systems, Man and
Cybernetics, 2007. ISIC. IEEE International Conference on.

Tatyana Shcherbakova, Maria Vergelis, & Demidova, N. (2015). Spam and phishing in Q2
2015. Quaterly Spam Reports, (Q2, 2015). Retrieved from
https://securelist.com/files/2015/08/KL_Q2_2015_SPAM_REPORT_ENG.pdf

https://securelist.com/analysis/quarterly-spam-reports/71759/spam-and-phishing-in-
q2-of-2015/

Thornton, C. J. (1992). Techniques in computational learning : an introduction. London:
London : Chapman & Hall Computing.

Tretyakov, K. (2004). Machine Learning Techniques in Spam Filtering. InData Mining
Problem-oriented Seminar MTAT, 3.

Trivedi, S. K., & Dey, S. (2013, 3-5 Dec. 2013). An Enhanced Genetic Programming
Approach for Detecting Unsolicited Emails. Paper presented at the 2013 IEEE
16th International Conference on Computational Science and Engineering.

Trivedi, S. K., & Dey, S. (2014). A study of ensemble based evolutionary classifiers for
detecting unsolicited emails. Paper presented at the Proceedings of the 2014
Conference on Research in Adaptive and Convergent Systems, Towson,
Maryland.

V. Metsis, I. A. a. G. P. (2006). Spam Filtering with Naive Bayes - Which Naive Bayes?
Paper presented at the 3rd Conference on Email and Anti-Spam (CEAS 2006),
Mountain View, CA, USA.

Vapnik, V. (1998). The Support Vector Method of Function Estimation. In J. A. K. Suykens
& J. Vandewalle (Eds.), Nonlinear Modeling: Advanced Black-Box Techniques (pp.
55-85). Boston, MA: Springer US.

Varghese, R., & Dhanya, K. A. (2017, 5-7 Jan. 2017). Efficient Feature Set for Spam Email
Filtering. Paper presented at the 2017 IEEE 7th International Advance Computing
Conference (IACC).

Volz, B., Behrendt, K., Mielenz, H., Gilitschenski, I., Siegwart, R., & Nieto, J. (2016). A
data-driven approach for pedestrian intention estimation.

Vu Duc, L., & Truong Nguyen, V. (2012, 12-14 June 2012). Bayesian spam filtering for
Vietnamese emails. Paper presented at the Computer & Information Science
(ICCIS), 2012 International Conference on.

Wang, P., Xu, J., Xu, B., Liu, C., Zhang, H., Wang, F., & Hao, H. (2015). Semantic
Clustering and Convolutional Neural Network for Short Text Categorization.

 225

Wang, W. (2010, 18-23 July 2010). Heterogeneous Bayesian ensembles for classifying
spam emails. Paper presented at the The 2010 International Joint Conference on
Neural Networks (IJCNN).

Wei, Z., Feng, G., Di, L., & Feng, X. (2010, 7-9 July 2010). Active learning based spam
filtering method. Paper presented at the Intelligent Control and Automation
(WCICA), 2010 8th World Congress on.

Wijaya, A., & Bisri, A. (2016). Hybrid Decision Tree and Logistic Regression Classifier for
Email Spam Detection.

Wijaya, A., & Bisri, A. (2016). Hybrid Decision Tree and Logistic Regression Classifier for
Email Spam Detection.

Wu, C.-H., & Tsai, C.-H. (2008). Robust classification for spam filtering by back-
propagation neural networks using behavior-based features. Applied
Intelligence. Retrieved from http://dx.doi.org/10.1007/s10489-008-0116-0

Xiao, L., Junyong, L., & Meijuan, Y. (2010, 22-23 May 2010). E-Mail Filtering Based on
Analysis of Structural Features and Text Classification. Paper presented at the
Intelligent Systems and Applications (ISA), 2010 2nd International Workshop on.

Xiao-wei, W., & Zhong-feng, W. (2012, 3-5 March 2012). Good word attack spam
filtering model based on artificial immune system. Paper presented at the
Automatic Control and Artificial Intelligence (ACAI 2012), International
Conference on.

Yang, L., Bin-Xing, F., & Li, G. (2006). TTSF: A Novel Two-Tier Spam Filter. Paper
presented at the Parallel and Distributed Computing, Applications and
Technologies, 2006. PDCAT '06. Seventh International Conference on.

Yang, Z., Nie, X., Xu, W., & Guo, J. (2006, 16-18 Oct. 2006). An Approach to Spam
Detection by Naive Bayes Ensemble Based on Decision Induction. Paper
presented at the Sixth International Conference on Intelligent Systems Design
and Applications.

Yiu, T. (2019). Understanding Random Forest-How the Algorithm Works and Why it Is So
Effective. Towards Data Sceince. Retrieved from
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

Youn, S., & McLeod, D. (2007). A Comparative Study for Email Classification. In K.
Elleithy (Ed.), Advances and Innovations in Systems, Computing Sciences and
Software Engineering (pp. 387-391): Springer Netherlands.

Yu, B., & Xu, Z.-b. (2008). A comparative study for content-based dynamic spam
classification using four machine learning algorithms. Knowledge-Based Systems,
21(4), 355-362. doi:10.1016/j.knosys.2008.01.001

Yue, X., Abraham, A., Chi, Z.-X., Hao, Y.-Y., & Mo, H. (2007). Artificial immune system
inspired behavior-based anti-spam filter. Soft Computing - A Fusion of
Foundations, Methodologies and Applications, 11(8), 729-740.
doi:10.1007/s00500-006-0116-0

Zhang, Y., Liu, P., & Yao, J. (2019). Three-way Email Spam Filtering with Game-theoretic
Rough Sets. In (pp. 552-556).

Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of (and Practitioners' Guide to)
Convolutional Neural Networks for Sentence Classification.

Zhang, Y., & Wallace, B. (2016). A Sensitivity Analysis of (and Practitioners' Guide to)
Convolutional Neural Networks for Sentence Classification. arXiv.org.

Zhang, Y., Yang, X., & Liu, Y. (2012, 29-31 Dec. 2012). Improvement and optimization of
spam text filtering system. Paper presented at the Computer Science and
Network Technology (ICCSNT), 2012 2nd International Conference on.

 226

Zheleva, E., Kolcz, A., & Getoor, L. (2008). Trusting spam reporters: A reporter-based
reputation system for email filtering. ACM Trans. Inf. Syst., 27(1), 1-27.
doi:10.1145/1416950.1416953

Zhen, Y., Xiangfei, N., Weiran, X., & Jun, G. (2006, 3-6 Nov. 2006). Application of the
Character-Level Statistical Method in Text Categorization. Paper presented at
the Computational Intelligence and Security, 2006 International Conference on.

Zhijun, L., Weili, L., Na, L., & Lee, D. A. L. D. (2005). Detecting and filtering instant
messaging spam - a global and personalized approach. Paper presented at the
Secure Network Protocols, 2005. (NPSec). 1st IEEE ICNP Workshop on.

Zhou, B., Yao, Y., & Luo, J. (2014). Cost-sensitive three-way email spam filtering. J Intell
Inf Syst, 42(1), 19-45. doi:10.1007/s10844-013-0254-7

Zhou, Y., Jorgensen, Z., & Inge, M. (2007, 29-31 Oct. 2007). Combating Good Word
Attacks on Statistical Spam Filters with Multiple Instance Learning. Paper
presented at the 19th IEEE International Conference on Tools with Artificial
Intelligence(ICTAI 2007).

Zhou, Y., Jorgensen, Z., & Inge, M. (2008). Countering Good Word Attacks on Statistical
Spam Filters with Instance Differentiation and Multiple Instance Learning. In.

Zhu, F. (2018). A Classification Algorithm of CART Decision Tree based on MapReduce
Attribute Weights. International Journal of Performability Engineering, 14.
doi:10.23940/ijpe.18.01.p3.1725

