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Towards a Measure of code::proof

A toolchain walkthrough for computationally developing a statistical estimator

Charles T. Gray

Abstract

Methods for generating and sharing data herald a technological revolution in scientific prac-
tice. The study of statistical methodology is increasingly steeped in simulation of random data
with particular characteristics of interest to the scientist. Various broad statements about better
data management and code curation emphasising transparency, accessibility, and extensibility
are surfacing. However, how to implement these best practices are left to the researcher to
determine for their discipline, and with their chosen scientific tools. This toolchain gap is the
study of this dissertation, a contribution to the emerging literature addressing computational
practice in the age of data. Taking a case study of developing a statistical estimator for meta-
analysis of medians, this manuscript provides a toolchain walkthrough, from the computational
structure, to simulation algorithms and data visualisation.



She sang, of course, “M’ama!” and not “he loves me,” since an unalterable and un-
questioned law of the musical world required that the German text of French operas
sung by Swedish artists should be translated into Italian for the clearer understand-
ing of English-speaking audiences. – The Age of Innocence, Edith Wharton, 1920.
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Chapter 1

Preface
Towards a measure of code::proof

1.1 Structure of this manuscript

This doctoral project is not a conclusion, but an apprenticeship in computational science. This
collection of five published or potential manuscripts demonstrate apprenticeship in the relat-
ively new fields of research data engineering and interdisciplinary computational metascience.
The first two chapters were published in the proceedings of the La Trobe Research School of
Statistics and Data Science [38, 39] and are presented as published. The subsequent chapters
are close to publication and sufficient to form the overarching story of this manuscript, a tool-
chain walkthrough for computationally developing a statistical estimator. The penultimate
Chapter 6, is an example of metascientific questions that arise from doing interdisciplinary
work. The final chapter, Foibles and Limitations, reflects on the strengths and weaknesses of
this interdisciplinary undertaking.

Chapters 2 to 5 comprise the main content of the thesis, a collection of published or po-
tentially publishable scientific essays. Chapters 2 and 3 explain why we should, and how to do
so, adopt a computationally reproducible research workflow. The next two chapters provide an
example research compendia of code, analysis, and mathematical statistics. Chapter 5 is them-
atically corollary, and extends into logic and philosophy of science to ask what other questions
arise from interdisciplinary work such as this.
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1.2 Nomenclature

As a dissertation on, amongst other things, research software engineering, there is much dis-
cussion of code and programming. Packages and the functions they contain are distinguished
thus:

• code

• package::

• ::function

• package::function

1.3 Assumed knowledge

This manuscript is accessible to any graduate-level student in data science. In the interests of
brevity, and wishing to dive deep into discussion of reproducibility and simulations, there is
much that is taken as given knowledge. There is an assumed understanding of the fundamental
principles of mathematical statistics, such as found in [4]. Code examples begin from a working
understanding of fundamental data science tools and tidyverse:: syntax [40]. Finally, an
understanding of meta-analysis [10] and metafor:: [99].

1.4 Code suppression

In effort to stay true to the spirit of toolchain walkthrough, the theme of opinionated documenta-
tion of scientific workflow, central to this thesis, an effort has been made to present reproducible
code.

However, in the interests of brevity, code is at times hidden from output, and only for the
purposes of document formatting. For example, column header strings to be parsed by R into
TeX are routinely omitted.

All code, including that which generates the formatting can be found on the associated
GitHub repository1.

1https://github.com/softloud/measureofcodeproof
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1.5 Open source code

McElreath’s rethinking::2 package is not published on The Comprehensive R Archive Net-
work (CRAN). His comments in Statistical Rethinking, serve just as well for the source code
accompanying this dissertation.

‘Note that rethinking:: is not on the CRAN package archive, at least not yet.
You’ll always be able to perform a simple internet search and figure out the current
installation instructions for the most recent version of the rethinking:: package.
If you encounter any bugs while using the package, you can check

github.com/rmcelreath/rethinking

to see if a solution is already posted. If not, you can leave a bug report and be
notified when a solution becomes available. In addition, all of the source code for
the package is found there, in case you aspire to do some tinkering of your own.
Feel free to ‘fork’ the package and bend it to your will.’

Publishing on CRAN is a worthy goal, however, producing software is a different gambit to
producing research software. All code accompanying this dissertation is provided in various
open source repositories. Publication of software in and of itself, as distinct from the software
created for analysis is not the focus of this manuscript. Rather, the focus here is to provide
reproducible, accessible, and (aspirationally) interoperable code for data analysis.

To this latter aims, the R scripts supporting the work in this manuscript, are provided in
packaged format (as described in Chapters 2 and 3), via online repositories:

• simeta:: (https://github.com/softloud/simeta)

• varameta:: (https://github.com/softloud/varameta)

• parameterpal::(https://softloud.github.io/parameterpal/)

This dissertation is positioned at the intersection of software engineering, computational
research, and mathematical science. The code is offered in much the same spirit as McElreath’s
rethinking::. The software here does not necessarily meet all requirements for CRAN, demon-
strative of a running theme of this dissertation is that computational research has different en-
gineering requirements than commercial software. The purpose of packaging the code is not to
create software, but to provide accessible, interoperable, and reproducible research compendia.

2https://github.com/rmcelreath/rethinking
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Thus this software is provided open source, and as is, to be forked and explored for solving
different problems by other scientists, as well as my future self.

1.6 Authorship

Required statement of authorship: Except where reference is made in the text of the thesis, this
thesis contains no material published elsewhere or extracted in whole or in part from a thesis
accepted for the award of any other degree or diploma. No other person’s work has been used
without due acknowledgment in the main text of the thesis. This thesis has not been submitted
for the award of any degree or diploma in any other tertiary institution. This work was supported
by an Australian Government Research Training Program Scholarship.

November 15, 2020.

This dissertation was written, researched, with analyses coded by myself, Charles T. Gray.
Many chapters list co-authors, who have provided guidenace or insight. However, the writing
and code was primarily, or entirely, produced by myself.

For example, Hannah Fraser was asked to read the Mathematistry chapter, that is, Chapter
6 and edit for framing of questionable research practices in ecology. However, she did not
contribute to the mathematical arguments. Hien Nguyen and Dani Navarro provided sounding
boards for the mathematical arguments, thus earning their co-authorships, however, all proofs
and arguments were written by myself.

The most notable point of another’s contribution to this dissertation is the concept of deriv-
ing the parameter for meta-analysis medians, presented in Chapter 4, provided by my advisor
Luke Prendergast. He suggested exploring a estimator for the variance of the sample median,
where quartiles are derived as described. Luke provided an example coverage probability sim-
ulation, from which the resulting analysis software was modelled.

Aside from this, co-authorship indicates minor editing and comments, not writing or pro-
gramming. Thus, whilst others have contributed, I am first author on all manuscripts contained
herein.

1.7 Acknowledgements

First, foremost, and above all, I thank my husband, Dr Alexander C. Gray, for his unwavering
support in my career transition from piano teacher to whatever I am now.
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Particular thanks, too, to Dr Matthew Grainger, my academic compass, thank you for
always being available to help me find north.

There have been many in the academic community that I have consulted in the making
of this interdisciplinary dissertation; I appreciate the time taken by Kerrie Mengersen, Kate
Smith-Miles, Mark Padgham, Gavin Stewart, W. Kyle Hamilton, Emily Riederer, and others
in the open science community in consultation on particular sections in this manuscript.

Thanks, too, to the code reviewers I’ve consulted along the way: Adam Gruer, J. D. Long,
James Goldie, and Heather Turner. It is the nature of open science that I may well have failed
to acknowledge someone’s contribution in code review, trust that this is inadvertent, a hazard
of open science that we share, have conversations at unconferences, code together, and forget
who suggested what where. Through the open science community, I’ve learned many skills, and
believe that sharing research code as reproducible and extensible, is an important component
of any research pipeline.
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Danielle Navarro. No power in the ’verse can stop you 3, fierce ladies. Thank you for lending
your fire when I needed it.

3In the space western Firefly (aired 2002-2003), River foreshadows her gifts by prodigiously gunning down
her foes, remarking, ‘No power in the ’verse can stop me’ [29].
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Chapter 2

Truth, Proof, and Reproducibility
There’s no counter-attack for the codeless

Charles T. Gray and Ben Marwick

Abstract

Current concerns about reproducibility in many research communities can be traced back
to a high value placed on empirical reproducibility of the physical details of scientific experi-
ments and observations. For example, the detailed descriptions by 17th century scientist Robert
Boyle of his vacuum pump experiments are often held to be the ideal of reproducibility as a
cornerstone of scientific practice. Victoria Stodden has claimed that the computer is an ana-
log for Boyle’s pump – another kind of scientific instrument that needs detailed descriptions
of how it generates results. In the place of Boyle’s hand-written notes, we now expect code in
open source programming languages to be available to enable others to reproduce and extend
computational experiments. In this paper we show that there is another genealogy for reprodu-
cibility, starting at least from Euclid, in the production of proofs in mathematics. Proofs have
a distinctive quality of being necessarily reproducible, and are the cornerstone of mathemat-
ical science. However, the task of the modern mathematical scientist has drifted from that of
blackboard rhetorician, where the craft of proof reigned, to a scientific workflow that now more
closely resembles that of an experimental scientist. So, what is proof in modern mathematics?
And, if proof is unattainable in other fields, what is due scientific diligence in a computational
experimental environment? How do we measure truth in the context of uncertainty? Adopting
a manner of Lakatosian conversant conjecture between two mathematicians, we examine how
proof informs our practice of computational statistical inquiry. We propose that a reorientation
of mathematical science is necessary so that its reproducibility can be readily assessed.

Keywords: Meta-research ·Reproducibility ·Mathematics.

In David Auburn’s Pulitzer prize-winning 2000 play Proof, a young mathematician, Cather-
ine, struggles to prove to another mathematician, Hal, that her argument is not a reproduction
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of the intellectual work of her deceased father, a professor [2]. Her handwriting similar to her
father’s, there is no way to discern her proof from his. But if Catherine were a computational
scientist, we would have a very different story. We reimagine Hal challenging Catherine for
different mathematical questions and the reproducibility of her solutions. We consider simple
to complex mathematical questions that can be answered at the blackboard, and then consider
the scenario where Catherine must use a combination of mathematical and computational tools
to answer a question in mathematical science. Via these scenarios, we question to what extent
proof methodology continues to inform our choices as mathematical scientists become as much
research software engineers1 as they are mathematicians.

Mathematical science is the compendium of research that binds the Catherine’s methodology
of work indistinguishably from her father’s. However, in computational science, we not only
do not have a common language in the traditional sense, with programming languages such as
Python, R, and C++ performing overlapping tasks, but our research workflows comprise tools
and platforms and operating systems, such as Linux or Windows, as well. Many inadvertent
reasons conspire so that scientists are arriving at similar problems with different approaches to
data management and version control. Code scripts, arguably the most immediately analogous
to mathematical proof, are but one of the many components that make up the outputs of
computational science.

If Catherine were a contemporary computational mathematician, she would not only struggle
to reproduce another person’s work, but she would likely struggle to reproduce her own. She
may be overwhelmed by the diversity of research outputs [15], and find that she needs to rewrite
her work to unpick what she did with specific computational functions under specific software
package releases. The language of mathematical science has changed from something we write,
to something we collect. In order to diligently answer scientific questions computationally,
the mathematician must now consider her work within that of a research compendium. In
this paper we ask: how can we extend the certainty afforded by a mathematical proof further
down the research workflow into the ‘mangle of practice’ [81]? We show that communities of
researchers in many scientific disciplines have converged on a toolkit that borrows heavily from
software engineering to robustly provides many points to verify certainty, from transparency
via version control, to stress testing of algorithms. We focus on unit testing as a strong measure

1We might argue here we employ the term research software engineer (RSE) as Katz and McHenry would
define Super RSEs, developers who ‘work with and support researchers, and also work in teams of RSEs who
research and develop their own software, support it, grow it, sustain it, etc.’ [53]. Or choose the more ambiguous
Research Software Engineers Association definition of RSEs as people in academia who ‘combine expertise in
programming with an intricate understanding of research’ [113].
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of certainty.

2.1 The technological shift in mathematical inquiry

The task of a mathematical scientist in the pre-computer age was largely that of a blackboard
rhetorician, where the craft of proof reigned. For a proof such as that featured in Auburn’s play,
the argument can often be included in the article, or as a supplementary file. This allows the
reader to fully reproduce the author’s reasoning, by tracing the flow of argument through the
notation. As computers have become ubiquitous in research, mathematical scientists have seen
their workflow shift to one that now more closely resembles that of a generic scientist, concerned
with diligent analysis of observational and experimental data, mediated by computers [80]. But
the answer to the question of what constitutes a diligent attempt to answer a scientific question
examined in a computationally intensive analysis, is unclear, and remains defined by the era of
the blackboard mathematician.

So, what is proof in mathematics, when experimental and computer-assisted methods are
common? And, beyond mathematics, in fields where literal proofs are unattainable, what counts
as an equivalent form of scientific certainty in a computational experimental environment? How
do we measure truth in the context of uncertainty? Among the histories of science we can trace
three efforts to tackle these questions. First is the empirical effort, most prominently rep-
resented by Robert Boyle (1627-1691), known for his vacuum pump experiments [88]. Boyle
documented his experiments in such detail and to an extent that was uncommon at the time. He
was motivated by a rejection of the secrecy common in science at his time, and by a belief in the
importance of written communication of experimental expertise (as a supplement to direct wit-
nessing of experimental procedures). Boyle’s distinctive approach of extensive documentation is
often cited by modern advocates of computational reproducibility [93]. Making computer code
openly available to the research community is argued to be the modern equivalent of Boyle’s
exhaustive reporting of his equipment, materials, and procedures [59].

A second effort to firming up certainty in scientific work, concerned with statistical integrity,
can be traced at least as far back as Charles Babbage (1791-1871), mathematician and inventor
of some of the first mechanical computers. In his 1830 book ‘Reflections on the Decline of
Science in England, and on Some of Its Causes’ he criticised some of his contemporaries, char-
acterising them as ‘trimmers’ and ‘cooks’ [41]. Trimmers, he wrote, were guilty of smoothing
of irregularities to make the data look extremely accurate and precise. Cooks retained only
those results that fit their theory and discarded the rest [70]. These practices are now called
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data-dredging, or p-hacking, where data are manipulated or removed from an analysis until a
desirable effect or p-value is obtained [44].

A third effort follows the history of formal logic through to the time when an equival-
ence between philosophical logic and computation was noted. This observation is called the
Curry-Howard isomorphism or the proofs-as-programs interpretation. First stated in 1959, this
correspondence proposed that proofs in some areas of mathematics, such as type theory, are
exactly programs from a particular programming language [92]. The bridging concepts come
from intuitionistic logic and typed lambda calculi, which have lead to the design of computa-
tional formal proof management systems such as the Coq language. This language is designed
to write mathematical definitions, execute algorithms and theorems, and check proofs [6]. This
correspondence has not been extensively discussed in the context of reproducibility, but we
believe it has relevance and is motivating beyond mathematics. Our view is that this logic-
programming correspondence can be extended in a relaxed way beyond mathematics in proofs
to scientific claims in general, such that computational languages can express those claims in
ways that can establish a high degree of certainty.

Questions of confidence in scientific results are far from restricted to the domains of mathem-
atics or computers; indeed, science is undergoing a broad reexamination under what is categor-
ised as a crisis of inference [28]. How we reproduce scientific results is being examined across
a range of disciplines [16, 101]. An early answer to some of these questions is that authors
should make available the code that generated the results in their paper [27, 94]. These recom-
mendations mark the emergence of a concern for computational reproducibility in mathematics.
This paper extends this argument for computational reproducibility further into the workflow
of modern statistical inquiry, expanding and drawing on solutions proposed by methods that
privilege computational reproducibility.

Systemic problems are now being recognised in the practice of conventional applied statistics,
with a tendency towards dichotomania [1] that reduces complex and nuanced questions to
Boolean statements of TRUE or FALSE. This has diluted the trust the can be placed in scientific
results, and led to a crisis of replication, where results can not easily be reproduced [28] and
questionable research practices [31] proliferate.

As the conventions of statistics are called into question, it stands to reason that the research
practices of the discipline of statistics itself require examination. For those practicing statist-
ical computing, a conversation is emerging about what constitutes best practice [110]. But
best practice may be unrealistic, especially for those applying statistics from fields where their
background has afforded limited computational training. And thus the question is becoming

17



Truth, Proof, and Reproducibility

Figure 2.1: We propose updating this spectrum of reproducibility [66] with unit tests for data
analysis. In addition to the advertising, the formal scientific argument put forward, many
informal and traditionally hidden scientific outputs comprise the compendium of research that
produces the results. Given the underutilised nature of unit tests, we suggest there is further
work to be done to facilitate the adoption of good enough [111] research software engineering
practices for answering mathematical questions computationally. The informal components
of mathematical research compendium are shaded grey. This figure has been adapted with
permission [86] and is licensed under CC-BY 2.0.

reframed in terms of good enough standards [111] we can reasonably request of statistical prac-
titioners. By extension, we must reconsider how we prepare students in data-analytic degree
programs.

Proofs, derivations, verification, all form the work of mathematics. How do we make math-
ematical arguments in a computational2 environment? In constructing mathematical argu-
ments, we posit that we require an additional core element: unit testing for data analysis. We
propose an expansion of the spectrum of reproducibility, Figure 2.1, to include unit testing for
data analytic algorithms facilitated by a tool such as testthat:: [106], for answering math-
ematical research questions computationally. In order to motivate this practice, we turn to the
purest of sciences, mathematical proof.

2We focus in this manuscript on R packages, but the reader is invited to consider these as examples rather
than definitive guidance. The same arguments hold for other languages, such as Python, and associated tools.
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2.2 Truth in mathematics

The titular proof [2] of Auburn’s play is a mathematical argument, a formalised essay in math-
ematical science. The creator of the proof, Catherine, is questioned by Hal, who is capable
of following the argument; that is, Hal can replicate an approximation of the type of thought
process that leads to a reproduction of the argument presented in the proof.

In Figure 2.1, we have coloured the components, black formal argument, and grey informal
work, of mathematics Hal would need to reproduce the proof. In order to verify the results,
Hal would need to follow the formal argument, to understand what was written in the proof,
but also need to do informal work, to understand the links between concepts for verification.

Hal would come to the problem with a different background and education to Catherine.
Although work is necessary for the verification of the results, the reproduction of the reasoning,
the work required would be different for Hal and Catherine, based on their respective relevant
preparation. However, the language of mathematics carries enough uniformity that Hal can fill
in the work he requires to understand the result, from reasoning and mathematical texts. If
Catherine were asking a mathematical question computationally, the presentation of the results
carries not millennia of development of methodology, as does the noble craft of mathematics, but
less than a century of frequently disconnected developments separated by disparate disciplines.

We begin with traditional mathematics and end with answering questions in computational
mathematics. To this aim, we adopt, in the manner of Lakatos’ Proofs and Refutations’ con-
versant conjecture, scenarios between Hal and Catherine, where Hal challenges Catherine over
her authorship of the proof. In each scenario, we imagine the challenge would play out for dif-
ferent ways of answering mathematical questions. We argue the thinking work of mathematical
science is not as immediately inferable in a computational experimental environment, and that
the roots of mathematical science in proof lead to an overconfidence that science is as readily
reproducible as a proof.

2.2.1 Prove it!

Let us suppose Catherine claimed she could demonstrate a property about the order3 on natural
numbers, N = {1, 2, 3, . . . }, the counting numbers.

The order on a set of numbers is dense if, for any two numbers we can find a number in
3Let P be a set. An order on P is a binary relation ⩽ on P such that, for all x, y, z ∈ P : we have x ⩽ x;

with x ⩽ y and y ⩽ x imply x = y; and, finally, x ⩽ y and y ⩽ z imply x ⩽ z. We then say ⩽ is reflexive,
antisymmetric, and transitive, for each of these properties, respectively [22].
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between. More formally, we say an ordered set P is dense if, for all x < y in P , there exists z

in P such that x < z < y.
Catherine presents the following argument that the order on N is not dense. In this case she

chooses a type of indirect proof, an existence proof [14], where she presents a counterexample
demonstrating that the density property is not true for all cases for N.

Proof. The order on N is not dense. Let us, in the spirit of Lewis Carroll4, be contrary and
suppose, by way of contradiction, that the order on N, is dense. Then for any two numbers, x
and y, in N such that x < y, I should be able to find a distinct number z in N between them,
that is x < z < y. But, consider the numbers 3 and 4. Let x = 3 and y = 4, then x < y. There
is no distinct number, z, that exists between x and y. Since this rule must be true for any two
numbers x < y in the order to be dense, we have shown the order on natural numbers N is not
dense.

A standard way to prove something is not true, is to assume it is true, and derive a con-
tradiction [23]. Arguably, this reasoning goes to the heart of the problem of dichotomania
lamented by 800 scientists in a recent protest paper about the misinterpretation of statistics in
Nature [1]. A null hypothesis test of a difference between two groups will assume the opposite
of what we suspect is true; we believe there to be a difference between two groups and take a
sample from each of the groups and perform a test. This test assumes there is no difference,
null, between the two groups and that any observed differences in sampling are due to random
chance. The calculation returned, the p-value, is the likelihood we would observe the difference
under those null assumptions. Crucially, the calculation returned is probabilistic, a number
between 0 and 1, not a TRUE or FALSE, the logic of a proof by contradiction. The logic does not
apply to a situation where, within a single group of people, some people might be resistant to
treatment, and some might not be, say, and we have estimated a likelihood of the efficacy of
the treatment. Dichotomania is the common misinterpretation of a probabilistic response in a
dichotomous framework; scientists are unwittingly framing null hypothesis significance testing
in terms of a proof by contradiction.

In order to illustrate our central point, we now turn to a direct argument, rather than the
indirect approach of contradiction, in order to examine the process of the making of a proof.
In both the case of the direct, and indirect proofs, however, Hal could challenge Catherine, as
he did in the play.

4Lewis Carroll, author of Alice in Wonderland, is a writing pseudonym used by Charles Lutwidge Dogson,
born in 1832, who taught mathematics at Christ Church, Oxford [17].
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“Your dad might have written it and explained it to you later. I’m not saying he
did, I’m just saying there’s no proof that you wrote this” [2].

2.2.2 The steps in the making of a proof

Let us now suppose Catherine’s proof instead demonstrated a density property on the order on
the real numbers,

R = {. . . ,−3, . . . ,−3.3, . . . , 0, . . . , 1, . . . , 100.23, . . . },

i.e., the whole numbers, and the decimals between them. Catherine claims the order on R is
dense, which is to say, if we choose any two distinct numbers in the real numbers, we can find
a distinct number between them.

Catherine would construct her proof in the manner laid out in the introductory monograph
When is a Proof? [23], in Table 2.1, provided to undergraduate mathematics majors at La
Trobe University. These steps comprise formal and informal mathematical work, showing that
mathematical work comprises more than the advertising, as it is labelled in the reproducibility
spectrum presented in Figure 2.1. In the case of pure mathematics, the advertising would be
the paper that outlines the proof, the formal mathematical argument, but the informal work is
left out.

Catherine presents the following proof to Hal to show the order on real numbers, R, is dense.

Proof. The order on R is dense. Let x < y in R. Let5 z := (x + y)/2. To see that x < z < y,
we begin with x < y, so, x+ x < x+ y and x+ y < y + y, which gives,

5In mathematics, we read := as ‘be defined as’, =⇒ as ‘implies’, and < as ‘less than but not equal to’.
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Table 2.1: The steps in the making of a proof from Brian A. Davey’s primer, When is a
Proof? [23]. The formal steps that contribute to the final proof are in bold, the hidden informal
work, in italics. These steps are summarised in terms of p =⇒ q in the final column of the
table.

Step -1 Translate the statement to be proved into ordinary
English and look up appropriate definitions.

Step 0 Write down what you are asked to prove. Where
appropriate, isolate the assumptions, p, and the
conclusion, q.

p =⇒ q

Step 1 Write down the assumptions, p: “Let . . . ” Assume p.
Step 2 Expand Step 1 by writing out definitions: “i.e., . . .

”
Define p.

Step 3 Write down the conclusion, q, which is to be proved: “To
prove: . . . ”

State q.

Step 4 Expand Step 3 by writing out definitions: “i.e., . . . ” Define q.
Step 5 Use your head: do some algebraic manipulations, draw a

diagram, try to find the relationship between the assump-
tions and the conclusion.

Work.

Step 6 Rewrite your exploration from Steps 3, 4 and 5
into a proof. Justify each statement in your proof.

Formalise work

Step 7 The last line of the proof. “Hence q.”

x+ x < x+ y < y + y

=⇒ x+ x

2
<

x+ y

2
<

y + y

2

=⇒ 2x

2
<

x+ y

2
<

2y

2

=⇒ x <
x+ y

2
< y

=⇒ x < z < y,

since z = (x+ y)/2, as required.

Catherine presents the formal proof, the science that in Figure 2.1 is described as the
advertising, a subcomponent, of the compendium of research she created in order to arrive
at this argument. Hal wishes to verify the results and investigate whether Catherine merely
reproduced her father’s reasoning. In the case of proof, what is published is the formal argument,
but as the steps in Table 2.1, this is not all of what makes a proof. We could think of the steps
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Figure 2.2: On the left, Hal might begin to verify his understanding of + by first considering
the case where both numbers are negative, x, y < 0. In this case, we might think of + as
combining x steps to the left with y steps to the left. The halfway point (x+ y)/2, falls in the
middle of the two arrows laid side by side, which also falls between where the two ends of the
arrows fall. On the right, Hal considers the case where x < 0, y > 0 and |x| < |y|. Here x+ y
can be thought of as y steps to the right and then x steps to the left. Again, the halfway point
(x+ y)/2 falls halfway between the tips of the two arrows above.

presented in Table 2.1 in terms of a mathematical statement p =⇒ q, which we read as p

implies q, as given in the final column of the table. We now revisit the proof Catherine offered
in terms of these steps.

We begin, step 0; we state what we wish to prove, p =⇒ q, in plain English. We wish to
show the real numbers, R, are dense; i.e., for all x < y in R, there exists z such that x < z < y.

Step 1, we assume p is true. We assume we have two distinct numbers x and y in R with
x < y; i.e., x is less than y, and x is not equal to y. Step 2, nothing to define as we are familiar
with < and R.

Step 3, we state what we wish to prove, q; the order on R is dense. Step 4, i.e., we need
to show there exists z in R such that x < z < y. Now, Catherine has offered a solution
z := (x+ y)/2 that Hal wishes to verify.

Step 5, Suppose Hal asks, what if both x and y are negative numbers? Is it still true that
x < z < y? Hal might verify his understanding of + by thinking about positive and negative
numbers as steps taken to the left or the right. In Figure 2.2, Hal considers the case where
both numbers are negative, x, y < 0. In this case, we have x steps to left, and y steps to the
left, which we imagine as arrows of appropriate length. If we lay both arrows end to end, we
see the number of combined steps to the left. If we consider the half-way point of x and y laid
beside each other, (x+ y)/2, we see this falls between where the arrow heads of x and y fall.

Now Hal can flip the arrows in the opposite directions to construct an argument for if both
numbers were positive, x, y > 0.
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But then Hal asks in Figure 2.2, what if one number were positive and one number were
negative? Is (x + y)/2 still halfway between? Let us assume, as mathematicians say, without
loss of generality that the magnitude of x is strictly less than y, that is |x| < |y|, the number
of steps in x is less than the number of steps of y. Hal now considered where one would end
up if one took y steps to the right and then x steps to left. He checks that he does not need to
consider two cases, as he would end up in the same place if he took x steps to the left and then
y steps to the right. Again, (x+ y)/2 falls between where he would start and where he would
end.

Now Hal has verified his understanding of +, which may or may not be the way that
Catherine arrived at her result, but after this work he is capable of fully reproducing the
mathematical result presented. He reads the proof Catherine has provided, and verifies Steps
6, and Step 7. Catherine has proved that the order on R is dense. With this proof, as with the
proof presented in Section 2.2.1, Hal cannot disqualify the possibility that Catherine merely
reproduced her father’s work.

Even in these relatively simple proofs, Step 5, the informal work of verification and un-
derstanding vastly outweighs what goes into the formal proof. But these toy examples belie a
process of redefinition and re-examination, as illustrated in the discussion within a hypothetical
mathematics classroom that forms the narrative of Lakatos’ Proofs and Refutations [58]. We
now move to a recently published proof to illustrate this process of redefinition.

In the combat conditions of new mathematics

Suppose, now, that Catherine’s proof were for the theorem pertaining to quasi-primal algebras,
presented in the recent publication ‘The homomorphism lattice induced by a finite algebra’ [24]
in Order, a mathematics journal devoted to ‘original research on the theory and application of
ordered sets’. In addition to the informal work demonstrated by the proof that the order on R
is dense, the making of this proof involved a redefinition of the result proved, through a process
writing several proofs. In terms of Table 2.1, initially a result was considered, p =⇒ q. A
proof was written for this result. At this point the mathematicians realised, however, that the
converse could be shown, that is, q =⇒ p. And so, a proof was generated for a new result,
p ⇐⇒ q. In the case of this proof, the act of writing the proof itself redefined the result in
question. In the combat conditions of new mathematics, the process of writing a proof is doing
mathematical science, and involves a great deal more work than is presented in the advertising
of the science.
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Hal may require graduate-level knowledge of abstract algebra to reproduce this proof, but
as a professional mathematician, this is not a great leap. More challenging the proof may be,
but the process of reproduction would be similar. Even if this were the proof, Hal would not
know if Catherine merely reproduced, as he did, her father’s proof.

But what if Catherine were posing her mathematical question computationally? Would Hal
be able to reproduce her results?

2.2.3 Is computational mathematics mired in proof methodology?

When we are exploring and answering mathematical questions in a computational environment,
we consider some aspects of our work to be formal and some informal. But in omitting the
greyed informal work in Figure 2.1, are we still approaching compendia of research from the
perspective of a blackboard mathematician?

Given we use statistics in most science, arguably most scientific questions are posed, to some
extent, mathematically. The output format, a published paper, remains similar to mathematics
of the pre-computer age. But the informal work of answering mathematical questions has
changed significantly. Now that much work is done computationally, there are multiple research
outputs that comprise the compendium of science that produces the published paper.

Let us now suppose that Catherine had a statistical estimator for a population parameter
of interest. That is, Catherine has an equation that, given some data, she can approximate
some value about the population, such as an overall average. Let us further suppose, as is
increasingly common, that she does not have a closed-form solution, meaning she cannot write
out a mathematical argument in the traditional sense. Instead, she demonstrates the estimator’s
performance through simulation studies.

Now suppose Hal challenges Catherine to prove that she created the science that produced
the paper. Given what is on the piece of paper, how can Hal know that Catherine’s code does
what she said it does? It is unclear what assumptions were made, about, say, sample size and
distribution. How can Hal verify her results? Through adopting research software engineering
principles, Catherine can facilitate a process akin to proofs and refutations, the redefinition
described in the Section 2.2.2, The combat conditions of new mathematics. The process of
redefinition is transcribed by version control, but further to this, the software itself provides a
modular framework, such as a theorem in mathematics, for future work to scaffold and extend.
New software can be developed that either extends, or redefines the existing software. One
analogous way this is occurring is in the rise of metapackages, such as tidyverse:: [107] and
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metaverse:: [103], that collect software to solve particular problems in an opinionated [79]
manner, that guide the end-user to what the creators consider to be good enough practice.
This is analogous to classes of mathematics, such as group theory or analysis, that collect
results, theorems, that rely upon each other, and where certain underlying assumptions, such
as the Axiom of Choice6, are made. Indeed, as Martin-Löf proposed a shift in terminology from
computer science to computing science, they make the following remark.

It has made programming an activity akin in rigour and beauty to that of proving
mathematical theorems [64].

How are contemporary researchers answering mathematical questions? Alex Hayes, current
maintainer and one of the many authors of broom:: [85], an open source R package that
amalgamates hundreds of contributions towards providing a suite of tools that tidily7 [42] extract
statistical model information from R algorithms, recently noted the underdeveloped nature of
the implementation of statistical algorithms [43]:

In practice, most people end up writing a reference implementation and checking
that the reference implementation closely matches the pseudocode of their algorithm.
Then they declare this implementation correct. How trustworthy this approach is
depends on the clarity of the connection between the algorithm pseudocode and the
reference implementation.

This is not to carp upon diligent scientists; we need to do far more to support the software
engineering principles we expect from those who answer mathematical questions computation-
ally [76]. Mathematicians are trained to provide enough work such that the hidden steps
illustrated in italics in Table 2.1 can be reproduced by their target audience. The detail of
mathematical work shown is tempered for level of the audience, but the same process described
in bold in Table 2.1 is the same. But, does the workflow Alex describes above equip the target
audience with enough information such that they can understand all the details of the entire
argument put forward?

6Turning to the bible of algebra, Lattices and Order [22], we learn the Axiom of Choice ‘asserts that it is
possible to find a map which picks one element from each member of a family of non-empty sets’.

7From Wickham’s Tidy data [42], we describe data as tidy if
1. Each variable forms a column.
2. Each observation forms a row.
3. Each type of observational unit forms a table.
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Table 2.2: Percentage of R packages in repositories that have unit tests included. These results
are from Jim Hester’s presentation on covr:: in September 2016 [46].

Repository Tests Total

CRAN 2091 9772 21%
Bioconductor 449 1258 36%

rOpenSci 84 146 58%

2624 11,176 24%

Code has the appearance of being highly logical, it’s easy to assume it’s infallible; and whilst
the logic of the code is robust, the pipeline that carries the algorithm to implementation may
be susceptible to compromising factors, with typos being just one example of inadvertent error.

Because code appears so logical, we assume it is analogous to proof for our intended audience
to follow. But we were trained to leave out the informal messy thinking work associated with
mathematics; trusting the formal argument provides enough information to verify and reproduce
the mathematics. Does our code do what we think it does? In addition to providing the research
outputs in the spectrum of reproducibility, Figure 2.1, we posit mathematical science should
adopt the software development practice of unit testing, to ensure the mathematical results can
be verified and reproduced.

2.3 Testing

Testing is the software engineering tool that is provides a key piece of the correspondence
between scientific claim and programming. Just as the Curry-Howard isomorphism expresses
proofs-as-programs to link mathematics and programming, we argue that tests are are the link
between scientific claims more generally and programming. In a test the researcher isolates
a scientifically meaningful part of their code, and creates a witness so that others can easily
see that the code does what the researcher intends it to do. In this section we consider a
‘vital’ [104] research output, testing, that it is unlikely the mathematical scientist has been
trained in. There are many such under-formalised skills represented in Figure 2.18. In 2016, a
quarter of packages on R package archives CRAN, Bioconducter, and rOpenSci, included tests,
a repository by repository breakdown of this is shown in Table 2.2.

Now, Hayes advises people against using untested software [43]. It is alarming that, by this
8Indeed, the natural consequence of questioning how we practice mathematical science is how we train the

next generation of practitioners. Important, however this may be, this is beyond the scope of this manuscript.
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logic, we would be insane to use three quarters of packages available. But Hayes continues, ‘You
have two jobs. The first job is to write correct code. The second job is to convince users that you
have written correct code’ [43]. The disconnect here suggests a failure to communicate broadly
the importance of testing of algorithms in the dissemination of research. As researchers, we
believe our science is as reproducible as a traditional mathematical proof; however, the growing
literature of the replication crisis demonstrates we have not succeeded in rendering our science
reproducible.

rOpenSci’s review system recommends using the covr:: [47] package to measure how the
code behaves with different expected outputs. From the creator of covr::, we obtain the
following definition of test coverage.

Test coverage is the proportion of the source code that is executed when running
these tests [47].

2.3.1 What is a test?

Tests demonstrations that a given input produces an expected output. They are grouped
contextually in a file; the context being a certain aspect of the algorithm that should be tested
[104]. An example of a context for a test is the question, does a given function return the
expected result for different inputs? Each test comprises a collection of expectations. Each
expectation runs a function or functions from the package, and checks the returned output is as
expected. In this case, we have a test for the expect_equal function: one expectation checks
the function successfully runs when given equal inputs, and another expectation checks that
the function fails when passed two non-equal inputs.

An example test from the testthat:: [106] contains two expectations.

test_that("basically principles of equality hold", {
expect_success(expect_equal(1, 1))
expect_failure(expect_equal(1, 2))

})

2.3.2 How good are we at good enough testing?

A response to the replication crisis has been to examine questionable research practices [31],
frequently borne of tradition and convention within different disciplines, deviate from evidence-
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based best-practice research methodology. We suggest it is a questionable research practice to
draw conclusions about the efficacy of statistical estimators from untested code.

Given only a quarter of R packages have unit tests associated with them, we are falling
short of best practice in scientific computing [110]. In a recent assessment of what constitutes
good enough practice in scientific computing [111], unit testing was not included. However,
for mathematical science, where the algorithms implemented and the code written is often
complex, we suggest that unit testing should be considered good enough practice, in spite of
the additional learning curve. With the backdrop of the replication crisis, it is crucial we have
confidence in the algorithms we implement.

2.3.3 Analysis of testing code in R packages

So, what packages have tests? We provide a preliminary analysis of tests in CRAN packages in
Figure 2.3. The code and data used to generate the results presented here are openly available
at https://github.com/softloud/proof.

We provide analysis for packages associated with CRAN task view [114], opinionated [79]
collections of R packages that are relevant to a particular type of statistical analysis, maintained
voluntarily by experts in their respective fields [114]. CRAN task views provide a convenient
taxonomy of R packages for a preliminary exploratory analysis of patterns of test use among R
package authors.

Packages listed in a task view are may be interpreted by users as more stable and trustworthy
than other packages, because they have passed some kind of inspection by maintainer of the
task view who listed the package (however the review and curation process is not open or
documented). And yet, even amongst the 4105 packages associated with task views, 1524
packages were without tests; 37 per cent of packages associated with CRAN task view were
without tests.

The proportion of task view packages with tests has fallen over the last decade. This does not
seem surprising given the uptake of R amongst communities of researchers in applied sciences
with little formal programming and computer science training, such as psychology and ecology.

Figure 2.4 shows that there is wide variation in test coverage. Even the largest and fastest
growing CRAN task views have very different proportions of packages with tests (Survival,
about 0.23, compared to Web Technologies about 0.66). We find few clear patterns in the
presence of tests over time, between different CRAN task views, and with metadata such as the
number of authors, the size of the package and the centrality of the package (as measured by
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Figure 2.3: This panel shows some basic details of tests in R packages listed in CRAN task
views [114]. The measure of interest, test size ratio, was calculated by dividing the test file size
with the overall package source file size from the unofficial CRAN mirror on GitHub. This is
a rough indicator of test coverage, future work should consider more precise metrics such as
those produced by the covr:: package. a) the distribution of the ratio of test file size to total
package size, test size ratio. b) scatter plots demonstrate the relationship between test size ratio
and number of authors, overall package size, and number of packages imported and calling the
package, respectively. c) the proportion of all task view packages that contain tests over time.
d) boxplot detailing the distribution of file size ratio over time.

30



Truth, Proof, and Reproducibility

the union of the number of reverse dependencies and reverse imports). Based on these data, we
suggest there is much work to be done in developing methods and opinionated tools that guide
users towards good enough practices.

2.4 Tempered uncertainty and computational proof

It’s easy to lie with statistics, but it’s even easier without them [71]. In a computational
experimental setting, we often cannot achieve the satisfying precision offered by a proof. We
can, however, adopt good enough practices in sharing and testing code to increase confidence
in our scientific conclusions. Given the prevalence of generalised linear models, we can think of
the practice of much science as the interpretation of

y ≈ bx,

where: x represents what we know about the data; y, the observed response of interest that we
wish to investigate how it responds to x; and b, the how it responds, approximated unknown.
It may not be possible to provide the rigour of a closed-form mathematical solution, but we
can aim to temper the uncertainty, and bolster confidence, in computational arguments via
automated testing, version control, and other computational outputs.

We suggest there is much work to be done in developing good enough practices [111] we
can ask mathematical scientists to adopt. For example, we do not have a chance to discuss in
this manuscript the role of markdown and html reporting in reproducible science. Indeed, the
question of good enough practice can be posed for each research output. Less than offering
answers, this manuscript seeks more to suggest there is a rich line of inquiry [76] in the rela-
tionship between scientific truth, mathematical proof, and computational reproducibility and
rigour.

2.4.1 Coda

Returning to Catherine and Hal from Auburn’s Proof [2], we can now imagine her as compu-
tational mathematician who provides a compendium of reproducible research. To demonstrate
the rigour of her computational work, she would provide unit tests for the algorithms she had
implemented. Catherine would share her work openly via her GitHub or similar repository,
where the development of her ideas would be timestamped and recorded. The structure of her
research compendium of would be automatically standardised via a tool such as rrtools:: [65].
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Figure 2.4: a) shows the change in the number of packages in each CRAN task view over time.
b) shows the proportion of packages in each CRAN task view that have tests.
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At publication, her compendium would be deposited on a trustworthy, DOI-issuing repository
for others to link to and cite.

And she would feel safe asking questions about good enough practice [111], and how to
avoid questionable research practices [31], because there is an understanding in the community
that no one is trained in all these things, so we are all always learning.

There would be no struggle, as there was in Auburn’s play, to show that the mathematician
who created these research outputs was Catherine. But that wouldn’t matter - she and Hal
would be having far too much fun collaborating on the next question.
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Prepare for most weather conditions

Charles T. Gray

Abstract

Computational tools for data analysis are being released daily on repositories such as the
Comprehensive R Archive Network. How we integrate these tools to solve a problem in research
is increasingly complex and requiring frequent updates. To mitigate these Kafkaesque compu-
tational challenges in research, this manuscript proposes toolchain walkthrough, an opinionated
documentation of a scientific workflow. As a practical complement to our proof-based argument
for reproducible data analysis, here we focus on the practicality of setting up reproducible re-
search compendia, with unit tests, as a measure of code::proof, confidence in computational
algorithms.

Keywords: Meta-research ·Metaprogramming ·Statistical computing.

3.1 The Kafkaesque dystopia of DevOps

In Franz Kafka’s 1925 novel The Trial [52], the fictional character Josef K. is prosecuted for
crimes that are not clear, in proceedings brought forth by an unidentified authority. For the di-
ligent scientist attempting to answer a mathematical question computationally, such as measur-
ing the efficacy of a statistical estimator via simulation, the process of implementing a scientific
workflow to achieve this aim can be a Kafkaesque tour of computational tools and systems.
The scientist may feel as if they are locked in a dystopia, tested repeatedly for practices in
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which they have not been trained, such as shell scripts and computational architecture. Whilst
there are detailed guides for specific computational tools, it is hard to tell what is still relevant,
as code frequently slides into obsolescence [83], and identify the optimal place to begin [111].
Significant cultural barriers continue to exist in programming fora; for example, only one in
seventeen contributors to Stack Overflow1 identify as women [30].

For many an unfortunate scientist, the dystopian experience is not confined to the DevOps,
the developmental operations of preparation for the implementation of an algorithm [50]. Just
as Josef K. was tried multiple times, the labours of the scientist attempting to answer a math-
ematical question computationally have only just begun. Analogous to how a string will knot
with mathematical predictability when jostled [5], an algorithm will reliably require debugging,
the process of identifying and correcting code, either to incorporate a new feature, or to correct
an error. This scientist finds themselves part of the first generation of research software en-
gineers (RSEs), who use computational tools in discipline-specific research practices [113]. By
virtue of pioneering, RSEs are inadvertently cast as meta-researchers2, developing new method-
ologies for scientific technologies that hitherto did not exist [53]. With the aim of mitigating the
dystopia of DevOps and debugging for RSEs, this manuscript proposes a toolchain walkthrough,
an opinionated [79] documentation of a scientific workflow, towards a measure of code::proof,
a good enough [111] effort to provide computational confidence through reproducible research
compendia with unit tests.

3.2 Toolchain walkthrough

We define a toolchain as a collection of computational tools and commands that forms a scientific
workflow to achieve a specific research objective, such as test the efficacy of a statistical estimator
in a particular context. The term walkthrough, we borrow from video game terminology [20],
and is defined as a guide for other players of the game. Various walkthrough formats exist to
optimise the narrative enjoyment of the gamer. For example, the Universal Hint System [98]
interface provides the gamer with ever more revealing hints without spoiling other parts of
the game. Next generation walkthroughs see in-game modifiers, in games such as World of

1Stack Overflow (https://stackoverflow.com/) is forum for asking tightly scoped programming questions.
2Visit the discussion on meta-research and RSEs on the research compendium associated with this manuscript

as an example of why this paper, and its companion [39], have so many acknowledgements. Canonical literature
is not yet established in the field of RSE, and thus leaders of RSE projects, such as Alex Hayes’ maintenance of
the broom:: [85]. This has propelled Hayes rapidly to the level of expert, by virtue of the pioneering collaborative
structure of the package, where hundreds of statistical modellers contribute integrated code.
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Warcraft, where these provide an option for on-screen boss-specific warnings [91].
We define toolchain walkthrough as an opinionated [79] documentation of a scientific work-

flow, where opinionated is a term appropriated from software engineering that acknowledges
that software guides the user to certain choices. In this manuscript, we describe a workflow for
building a research compendium that is opinionated in privileging reproducibility. As with the
hint systems of gaming, a workflow can and must be tailored to the skill and background of the
user. Thus toolchain walkthroughs can be extended and adapted for different disciplines.

Toolchain walkthroughs have not only intrinsic value in terms of solving the intended re-
search problem, but also extrinsic value, pedagogically and from a developmental perspective.
Frequently those who are undertaking research software engineering on statistical projects are
not the most senior member of the team; in the case of university faculty, these are often also
lecturers and service teachers. There is value in seeing the minutiae of what the footsoldiers
of research development undertake and how they instruct others. This can inform as to what
skillsets are required in graduate courses, or are required for those who wish to optimise sci-
entific workflow for researchers. Much of what is being implemented right now, in workflows
recommended in texts3 such as R Packages [104] and Advanced R [105], is being adopted from
existing software engineering principles. Toolchain walkthroughs can contribute to the literat-
ure on the adoption of these procedures in a research context, in addition to programming fora
and blog posts.

Blog posts and programming fora, as well as printed texts, are inevitably bound for ob-
solescence [83]. Vignettes, tool-specific long-form documentation [104], focus on one tool in
the chain. As a counterpoint to the inadvertently implied redundancy of the academic ma-
nuscript in the theoretical companion manuscript [39], here we consider if the ephemerality of
most-recent publications, and the chronological nature of academic publishing, may serve the
breakneck speed of research development. The toolchain walkthrough provides a documenta-
tion of a specific scientific workflow constructed by an expert, or expert in training, in the field.
Indeed an expert in training is perhaps best placed, as by virtue of inexperience must research
in order to solve the problem. The challenge above, say, the standard one might expect from a
blog post, is to provide a good enough4 [111] effort to avoid questionable research practices [31]
that privilege, say, convention over optimal scientific methodology.

3As in the companion manuscript [39], we focus on R packages, but the reader is invited to consider these as
examples rather than definitive guidance. The same arguments hold for other languages, such as Python, and
associated tools.

4As opposed to ofttimes unattainable or impractical best practices [110] in scientific computing.
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3.3 Two research compendia case studies

For concrete examples of the benefits of adopting software research engineering principals in
mathematical science, we consider two in-development research compendia, varameta:: and
simeta::. The primary purpose of these packages is to provide a comparative analysis of
estimators for the variance of the sample median when quartiles are provided, rather than
a measure of standard deviation, within the meta-analytic context. However, by structuring
the packages as such, rather than within a single script file, there is scope for solving similar
problems.

3.3.1 The varameta:: package; a comparative analysis

In contemporary meta-analytic computational tools, such as the R package metafor:: [99], a
measure of both an effect and its variance are required to estimate the population parameters
of interest.

However, not all studies report a variance of effect; particularly when scientists suspect
an underlying asymmetry in the distribution of the observed data, prompting them to report
quartiles, rather than sample standard deviations. One solution to this is to approximate
estimators for mean and variance from quartiles [7, 49, 102]. We wish to explore the comparative
efficacy of an estimator for the variance of the sample median derived from the estimator of
[87]:

var(m) ≈ 1

4nf(ν)2

where m denotes the sample median, n the sample size, ν the population median, and f the
population probability density function.

However, in an experimental setting, we do not know the true distribution, nor the true
population median. Thu, our method proposes that we assume a distribution, and estimate
the parameters of that characterized the assumed distribution from the sample size and sample
quartiles. We provide estimators derived for different distributions, to assess the efficacy of this
analysis framework. One of which is the exponential distribution, which this manuscript will
focus on.

If we assume that f is an exponential probability density function, with unknown rate
parameter λ, then we can estimate this rate parameter via the sample median. Since the true
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median is given by log 2/λ, we can estimate the rate parameter,

λ ≈ log 2/m, (3.1)

via the sample median, m.
Each proposed estimator requires a different set of reported values as inputs and different

calculations. It is notable that a most optimal estimation method for the problem above is
generally unknown. For example, in the comparative analysis Wan et al. [102], it was shown
that the performance of different estimators varied with the simulated sample sizes.

Thus, there is merit to providing not only the practical functionality of our proposed solu-
tion, but also the existing solutions. By structuring this comparative analysis as a reproducible
research compendium we achieve practical improvements on a self-contained computational
script file. Via roxygen::ised [109] documentation, estimators are provided in a modular
fashion, with a devoted script file for each estimator that is easily sourced from the package
environment. In addition to the advantage of debugging a single script file, the comparative
analysis also serves a practical purpose, providing a characterisation of the functionality of each
estimator.

To compare these estimators for the variance of the sample median, we undertook coverage
probability simulations. Here, the coverage probability refers to the probability that the true
parameter of interest falls within its constructed confidence interval. In order to do so, we
require simulated meta-analytic data, which has the added complexity of a random effect that
governs the variation between studies. To solve this with confidence in the implementation
of computational algorithms and mathematical derivations, we structure this as a package. In
addition to building code::proof, by separating the simulation component, we begin to develop
a computational solution to not only solving this problem, but the testing of any estimator for
the variance of the sample mean or median.

3.3.2 The simeta:: package

A coverage probability simulation repeats several trials with the same simulation meta-parameters
where the differing factor is the random sampling of data. In order to separate simulation meta-
parameters from trial-level parameters, and delineate this algorithm, we begin by considering
a single trial from a standard coverage probability simulation.
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3.3.3 Coverage probability simulation

Each trial draws a random sample, for example rnorm(n = 100, mean = 3, sd = 0.2) will
produce 100 values drawn randomly from a normal distribution with mean 3 and standard
deviation 0.2. From this sample, we calculate summary statistics. Using these summary stat-
istics, we can compute an estimate of the parameter of interest ν̂, and its variance γ̂. With
these estimates, we can produce a (1 − α) × 100% confidence interval ν̂ ± z1−α/2

√
γ̂, where

za = Φ−1 (a) is the ath quantile of the standard normal distribution, and Φ is the standard nor-
mal distribution function. Given we set the parameters for the random sample drawn, we know
the true parameter, ν. Thus we can ask, does ν fall within the confidence interval produced?
We summarise the steps of a trial as an algorithm:

1. Draw a random sample from the distribution that is characterised by the parameter of
interest, ν;

2. Calculate summary statistics from the random sample;

3. Calculate an estimate of ν from the summary statistics;

4. Construct a confidence interval using the parameter estimate;

5. Check if ν falls within the confidence interval.

A coverage probability simulation performs multiple trials and returns the proportion p ∈
[0, 1] of confidence intervals for ν that contain the generative parameter value.

3.3.4 Simulating meta-analysis data

For a meta-analysis simulation, however, these steps are significantly more involved. And
with this complexity, as we shall see, nesting, of the algorithm, the advantages of the package
structure begin to become apparent. In a single script file, it is hard to find at which step of
the algorithm that the code has failed. In addition to human error introduced into code, there
are also practical considerations. For example, the random effects maximum likelihood model,
method = REML, employed by metafor::rma [99] does not always converge on estimates for the
effect and its variance, in which case a fixed effects model, method = FE, can be employed to
produce parameter estimates.
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The other point of complexity is in the sampling of meta-analytic data. As meta-analytic
data is a collection of summary statistics for K studies of control and intervention samples, the
first step of a coverage probability simulation trial,

1. Draw a random sample from the distribution that is characterised by the parameter of
interest, ν,

requires several substeps. For the kth (k ∈ {1, . . . ,K}) study, we assume there is variation γk

associated with that study, and, in particular, the control, with parameter νCk , and intervention,
with parameter νIk , samples with ratio, ρ = νCk /ν

I
k .

Let us consider a practical example from the estimators provided in the comparative analysis,
varameta::. Our estimator of interest is the variance of the log-ratio of sample medians for
control, νC , and intervention, νI groups. Since our focus is on building the research compendium
to undertake this analysis, rather than the estimators in question, we will take the simplest case,
where there is one parameter λ associated with the distribution of interest. Let us assume an
underlying exponential distribution: Exponential(λ).

At the simulation level, which is to say, across all trials, we set λ, the parameter of the
distribution of interest. Also at the simulation level, we define a ratio ρ := νC/νI of interest
for the population medians, where ρ = 1 would indicate no true difference between control and
intervention groups. We assume that the log-ratio of sample medians log(mI

k/m
C
k ) for the kth

study, can be characterised in terms of the log-ratio of populations medians log(νC/νI), with
some error γ ∼ N(0, τ2) association with that study, as well as sampling error, ε ∼ N(0, σ2),

log(mI
k/m

C
k ) = log(νI/νC) + γk + εk.

Since the underlying distribution is exponential, we need to find λJ
k for J ∈ {C, I} in order

to sample n values x1, . . . , xn ∼ Exponential(λJ
k ). We also know the median of the exponential

distribution with rate parameter λ is given by log 2/λ. Then, assuming the sampling error will
be attained through the random computational process, we have

log(mI
k/m

C
k ) = log(νI/νC) + γk

=⇒ log(λC
k )− log(λI

k) = log(λC)− log(λI) + γk

=⇒ log(λC
k )− log(λI

k) = (log(λC) + γk/2)− (log(λI
k)− γk/2)

If we then split the random effect associated with the variation between studies γk equally,
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and divide the terms by experimental group J ∈ {C, I}, we obtain the following system for the
control C and intervention I groups’ kth parameter, λJ

k .

λC
k = λC exp(γk/2)

λI
k = λI exp(−γk/2)

1. Draw a measure of variation for the kth study from N(0, τ2) and calculate λI from fixed
values, the ratio of medians, ρ, and the control group’s rate parameter λC ;

2. Calculate the rate parameters for the control, λC
k , and intervention, λI

k, groups for the
kth study;

3. Draw a random samples of size nJ
k from Exponential(λJ

k ), for J ∈ {C, I}.

The sample size nJ
k for the Jth group of the kth study can also be sampled, by assuming

Nk := nC
k +nI

k and drawing Nk from a uniform distribution Uniform(a, b), where the minimum
a, and maximum b, reflect knowledge about the domain of interest. The proportion of Nk

given to nI
k can be drawn from a beta distribution. But we shall omit the derivations of these

sampling distributions, in the interests of brevity.
In the sampling steps that have been outlined, there are random values drawn, but there

are also set simulation-level parameters. We may wish to see how our estimator performs for
different numbers of studies, K, different expected variability between the studies, τ2, and
whether or not there is a difference between the control and intervention groups, ρ.

And finally, if we consider other distributions, with a mix of symmetric, say, normal or
Cauchy distribution, and asymmetric, say, exponential or log-normal, we require different de-
rivations for the sampling parameters.

3.3.5 Complexity and formalised analysis structures

Via the modular nature of a research compendium R package, we can separate each layer of
the algorithm into functions. We can produce automated unit tests for these functions that, at
the very least, check that each component of the algorithm returns an output of expected type.
We cannot automate the mathematical derivations, but we can produce an algorithm structure
that provides far more computational confidence in implementation than a single script file in
which the entire algorithm is nested.
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However, structuring an analyses in research compendia is more challenging than simply
coding directly into a .R script. Thus, there is benefit to outlining the computational workflow.
We now turn to the practical toolchain walkthrough for establishing these analyses as research
compendia. We may not be able to prepare for all errors, but we can aim to weather most
problems that arise in the computational implementation of mathematical algorithms.

3.4 Research compendia toolchain walkthrough

We now aim to provide a practical guide to computational research compendia for the compar-
ative analysis, varameta::, and the simulation algorithm, simeta::, that supports it. As this
is a first effort at a toolchain walkthrough, there will likely be aspects that are overlooked or
underdeveloped.

3.4.1 DevOps

The DevOps section of this toolchain walkthrough aims to cover computational tools, why they
were chosen, as well as some guidance as to how to source them.

Intended audience.

A toolchain walkthrough is a documentation of a specific scientific workflow created by a sci-
entist who utilised this workflow for research. We begin by identifying the audience targeted
who may benefit from detailing the minutiae of this process. We do not seek to generalise, but
rather to provide a workflow that reflects the author’s knowledge of good enough practices in
scientific computing for this task, optimised for efficiency, scientific rigour, and, in the spirit of
the gaming walkthrough: fun.

This toolchain walkthrough assumes an R user whose expertise is not primarily in com-
puting, but rather a researcher who employs R for analysis in a discipline such as statistics,
psychology, archaeology, or ecology. We make an effort to cover some of the less familiar as-
pects of computational workflow, such as shell commands, that might be considered trivial to
a formally trained computer scientist.

Although many R users have gaps in their formal computational science education, research-
ers who utilise R are often implementing complex algorithms, such as the one outlined in Section
3.3.2, which describes the simulation of meta-analysis data for coverage probability simulation.
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Burn it down.

This section only applies for work that has already begun. However, this is often the case for
the development of a scientific project. We frequently have work that begin as small scripts,
that develop in complexity and requirements.

In recognition of the ofttimes overwhelming density of resources, we list a few bash shell
commands here that are particularly useful for moving files around when setting up an analysis
as a research compendium. We enclose user input in <> and describe the utility of the command
after \#. A directory is colloquially referred to as a folder. These can be executed from a
terminal.

. # here

.. # up one
cd <directory path> # change location of .
ls -a # list files in .
cp <file> <toplace> # copy
mv <file> <toplace> # move or rename
rm -rf <directory> # remove directory and its contents
locate <partoffilename> # find a file
mkdir <directory> # create a directory

How to code.

The R software environment can be downloaded from R: The R Project for Statistical Comput-
ing. There are several excellent resources for getting started with programming with R. We list
an opinionated selection here, chosen for clarity and enjoyment, all of which are freely available
online:

• Learning Statistics with R by Danielle Navarro [73],

• R for Data Science by Grolemund Garrett and Hadley Wickham [40],

• R Cookbook by J.D. Long and Paul Teetor [60].

We now assume a working knowledge of the R programming language, as the intended
audience of this toolchain workflow are researchers who have a working level of programming
proficiency in R.
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Where to code.

In this toolchain walkthrough, we emphasise cross-platform open-source software. There is, of
course, the immediate benefit of accessibility. Furthermore, open-source invites an evolutionary
development community where many can contribute small solutions that integrate to solve
larger problems. RStudio is an integrated development environment for writing in the statistical
language R. RStudio is cross-platform in that it can be installed on Windows, Macintosh, and
Linux operating systems. There are many further advantages to this widely-used environment.
For example, the citr:: add-in [3] modifies RStudio to enable a connection to the open-
source reference manager Zotero. Another example is the datapasta:: [68] add-in that enables
copy-paste of tables into R-formatted script.

3.4.2 Create compendium architecture

As varameta:: is a research compendium containing comparative analyses and simeta:: a
package to provide simulation tools, the creation process for these two compendia are different.

We make use of two R packages, rrtools:: [65] and usethis:: [108], to assist in automating
these tasks.

Compendiumise varameta::.

1. Open RStudio and close project via the toolbar File menu,

2. In the Console, set the working directory to desired location; e.g.,

> getwd()
[1] "/home/charles"
> setwd("Documents/repos/")
> getwd()
[1] "/home/charles/Documents/repos",

3. and rrtools::use\_compendium("varameta"),

4. and update DESCRIPTION file with author, title, etc.,

5. Create analysis file structure with rrtools::use\_analysis().
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For varameta::, we will have several reproducible documents that will form the basis of
the analysis, as well as figures to contribute to the associated publication. The final step above
automates the creation of a directory structure for a paper, figures, data, and templates.

Compendiumise simeta::.

In this case, the file structure is less involved, however the testing structure will be need to be
considerably more robust because of the complexity of the simulation algorithm described in
Section 3.3.2:

1. Create a package with usethis::create\_package(),

2. Switch to the package directory with usethis::project\_activate().

3.4.3 Common steps across both packages

1. Set open source licence, with

usethis::use\_mit\_license(name = "Charles Gray");

this ‘simple and permissive’ choice of licence [108] serves the purpose of a comparative
analysis of estimators,

2. Set up documentation for functions with usethis::use\_roxygen\_md(),

3. Set up data for internal datasets and examples with usethis::use\_data().

Connecting to GitHub.

There are benefits to implementing a version control system, such as via the Git language
and GitHub online repository archive, beyond the ability to trace work back to an earlier
iteration [15]. The added benefit, arguably even greater benefit, is that of collaborative science.
Storing work on GitHub allows for instantaneous sharing of code and analyses, and collaborative
work with advanced project planning features, enabling other scientists to make very specific
comments on work in progress.
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Data ethics and further considerations.

In the case of varameta::’s estimators for meta-analysing medians, and simeta:: for sim-
ulating meta-analysis estimators, there are no ethics in data considerations beyond ensuring
contributors are recognised and credited for their work by time of publication. For some discip-
lines, sharing geographic locations might be an ethical consideration, say, in preventing fossil
hunters from exploiting palaeontology sites [48]. Personal details, must, too be considered, that
might inadvertently identify people and violate privacy considerations. Furthermore, various
allowances might need to be made for institutional workflow. We note these here as a possible
considerations, but as our case studies do not have such requirements, we now consider our
research compendia instantiated.

However, as this algorithm has significant complexity, we need to include unit tests to provide
confidence in our results , as we argue in the companion computational metamathematics
manuscript [39], which motivates the practical steps laid out here.

3.5 Testing

We now expand in a practical sense on unit testing, which, in the theoretical companion manu-
script, we describe ‘the software engineering tool that provides a key piece of the correspondence
between scientific claim and programming’ [39]. It is in this manuscript that we sought to an-
swer the question: why test? In this toolchain walkthrough, we will focus on the practical
implementation of first unit tests.

3.5.1 What is a test?

Tests are collected in contexts. Each test comprises congruous expectation functions.
In the head of the ‘bug hunt’ context (under context("bug hunt")), we find the loading

of packages. A seed is then set for reproducibility of errors. The first test, "metasim runs
for different n", tests the simeta::metasim() function for different orders of magnitude of
trials. As each trial samples new data, this is the most direct way to test the scalability of
the function for large datasets. We then follow up with a test that checks that the exponential
distribution can be passed to all levels in the algorithm.

context("bug hunt")
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set.seed(38)
library(tidyverse)
library(metasim)

test_that("metasim runs for different n", {
expect_is(metasim(), 'data.frame')
expect_is(metasim(trials = 100) , "data.frame")
# expect_is(metasim(trials = 1000) , "data.frame")

})

test_that("exponential is parsed throughout", {

# check sample
expect_equal(
sim_sample(10, rdist = "exp",

par = list(rate = 3)) %>% length, 10)
# check samples
...

3.5.2 Non-empty thing of expected type

Simply asking ‘does a function produce the expected output?’, induces a surprising number of
considerations. To illustrate this, we return to our case studies.

Testing a collection of estimators in varameta::.

In the interests of mathematical and computational brevity, we focus on one distributional
example: the simple case of the exponential distribution, which is characterised by a single
parameter. We return to the estimator of the rate λ̂ := log 2/m derived for the exponential
distribution, as discussed in Section 3.3.4 and defined in Equation (3.1), explicitly coded in R.

function(n, median) {

# Estimate parameters.
lambda <- log(2) / median
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# Approximate the standard error of the sample median.
1 / (2 * sqrt(n) * dexp(median, rate = lambda))

}

We create a context file, tests/testthat/test-exponential.R and provide a short context
description in the first line of the script.

context("exponential estimator")

As a starting point, we can write unit tests to automate a check that this function returns
non-empty thing of expected type. We arbitrarily choose values, a sample size of 10, and a
proposed sample median of 4, for instance. The function should return a numeric double
value, and should be positive.

test_that("non-empty thing of expected type, for fixed values", {

# returns numeric
expect_type(g_exp(10, 4), "double")

# returns positive number
expect_gt(g_exp(10, 4), 0)

})

In addition to choosing explicit values, we can also randomly sample the sample size n, and
sample median m. To ensure reproducibility of these testing results on any machine, we set a
random seed, passing set.seed an arbitrary numeric value.

set.seed(39) # ensures reproducibility of test results

# sample fuzz testing parameters
n <- sample(seq(2, 100), 1)
m <- runif(1, 1, 100)
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We can then use these random fuzz values [55] to produce analogous unit tests for non-empty
thing of expected type.

test_that("non-empty thing of expected type, for random values", {
expect_type(g_exp(n, m), "double")
expect_gt(g_exp(n, m), 0)

})

We can extend these tests to cover expected input errors. For example, we wish this function
to fail when passed negative numbers. The sample size cannot be less than or equal to 0, and
due to the logarithm, the function only works for positive sample medians. Here, we include
the fixed and randomised values in the same test.

test_that("negative numbers throw an error", {
expect_error(g_exp(-3, 4))
expect_error(g_exp(3, -4))
# with fuzz testing
expect_error(g_exp(-n, m))
expect_error(g_exp(n, -m))

})

Running all tests in a context tells us if the function is behaving as expected. The more
tests we write, the more confidence we will have that our function behaves as we intended it to.

==> Testing R file using 'testthat'

Loading varameta
� | OK F W S | Context
� | 8 | exponential estimator

�� Results �������������������������������������������������
OK: 8
Failed: 0
Warnings: 0
Skipped: 0
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Test complete

There is a tradeoff with tests, in terms of time taken by updating the tests themselves. Here
a test requires updating from an expected output of a numeric vector, to a dataframe. The
function that is being tested.

==> Testing R file using 'testthat'

Loading simeta
� | OK F W S | Context
� | 6 1 | bug hunt [7.1 s]
������������������������������������������������������������������������������������������������������
test-bug-hunt.R:21: failure: exponential is parsed throughout
sim_stats(rdist = "exp", par = list(rate = 3)) inherits from
`tbl_df/tbl/data.frame` not `numeric`.
������������������������������������������������������������������������������������������������������

�� Results �������������������������������������������������������������������������������������������
Duration: 7.1 s

OK: 6
Failed: 1
Warnings: 0
Skipped: 0

Test complete

Testing a nested algorithm in simeta::.

Our other case study provides an example of a nested algorithm. In addition to ensuring each
function returns a non-empty thing of expected type, we can automate checks that the functions
form a toolchain. In the first place, it is helpful to know that our functions continue to form a
toolchain under default settings.

We begin by setting our context. In this case, as we are running our functions on default
settings, we do not require randomly sampled fuzz parmeters.
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context("default pipeline")

We now check that the algorithm runs ‘upwards’, by running a test from most granular
function in the algorithm to most nested. We could write a similiarly inverted test, from most
nested function, downwards to most granular.

test_that("work upwards through algorithm", {
expect_is(sim_n(), "data.frame")
expect_gt(sim_n() %>% nrow(), 1)
# sim_df calls sim_n
expect_is(sim_df(), "data.frame")
expect_is(sim_stats(), "data.frame")
# metasim calls metatrial
expect_is(metatrial(), "data.frame")
expect_is(singletrial(), "data.frame") # alternate trial
expect_is(metasim(trials = 3), "data.frame")
# metasims calls sim_df & metasim
expect_is(metasims(
single_study = FALSE,
trials = 3,
progress = FALSE

),
"sim_ma")

})

Now, if this test fails, we will know the combination of functions fails at some point in the
nested algorithm. We follow this upwards test with a series of small tests for each function
set to defaults to identify at which point in the pipeline where the algorithm fails, if the ‘work
upwards’ test fails.

# test each component on defaults

test_that("sim_n", {
expect_is(sim_n(), "data.frame")

})
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test_that("sim_df", {
expect_is(sim_df(), "data.frame")

})

test_that("metatrial", {
# metasim calls metatrial
expect_is(metatrial(), "data.frame")

})

test_that("singletrial", {
expect_is(singletrial(), "data.frame") # alternate trial

})

test_that("metasim", {
expect_is(metasim(trials = 3), "data.frame")

})

test_that("metasims", {
expect_is(metasims(
single_study = FALSE,
trials = 3,
progress = FALSE

),
"list")

})

And we can now run all tests, for a starting point of automating checks that our algorithm
runs on default settings.

==> Testing R file using 'testthat'

Loading simeta
� | OK F W S | Context
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� | 14 | default pipeline [28.7 s]

�� Results �������������������������������������������������
Duration: 28.7 s

OK: 14
Failed: 0
Warnings: 0
Skipped: 0

Test complete

To demonstrate how informative testing can be in identifying where an algorithm breaks,
we now modify the simeta::metasim function to return a character string, "error". Testing
the default pipeline reveals where the algorithm is broken. Debugging is where the advantage
of testing is exposed, and thus, arguably the requirement for testing increases with complexity
of algorithm. Detailed output have been omitted for brevity.

==> Testing R file using 'testthat'

Loading simeta
� | OK F W S | Context
� | 10 4 | default pipeline [32.3 s]
������������������������������������������������������������������������������������������������������
test-default-pipeline.R:12: failure: work upwards through algorithm
metasim(trials = 3) inherits from `character` not `data.frame`.

test-default-pipeline.R:14: error: work upwards through algorithm
Argument 1 must have names
...

test-default-pipeline.R:43: failure: metasim
metasim(trials = 3) inherits from `character` not `data.frame`.

test-default-pipeline.R:47: error: metasims
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Argument 1 must have names
...
������������������������������������������������������������������������������������������������������

�� Results �������������������������������������������������������������������������������������������
Duration: 32.3 s

OK: 10
Failed: 4
Warnings: 0
Skipped: 0

Test complete

From this output, we can see not only where the algorithm fails, but also what other
functions fail because of a reliance on the elements that have failed.

3.5.3 Test-driven development

As we build new features into our package, such as checking that the single-trial setting works
in the simulation function from simeta::, we can focus on a writing new tests that ensure our
feature works within the ecosystem of our algorithm as expected. We can develop our algorithm
from a testing setting, rather than focusing on rewriting functions and script files.

Another overview check that we can incorporate is from the covr:: package [47]. Using
covr::package\_coverage(), we can check what proportion of lines of code have been tested
in each function.

For the varmeta:: package, at the time of writing, we have the following test coverage.

varameta Coverage: 90.00%
R/g_cauchy.R: 44.44%
R/g_norm.R: 71.43%
R/hozo_se.R: 92.31%
R/bland_mean.R: 100.00%
R/bland_se.R: 100.00%
R/effect_se.R: 100.00%
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R/g_exp.R: 100.00%
R/g_lnorm.R: 100.00%
R/hozo_mean.R: 100.00%
R/wan_mean_C1.R: 100.00%
R/wan_mean_C2.R: 100.00%
R/wan_mean_C3.R: 100.00%
R/wan_se_C1.R: 100.00%
R/wan_se_C2.R: 100.00%
R/wan_se_C3.R: 100.00%

This is enables us to target specific functions that may require further testing. Testing lines
of code is somewhat a blunt instrument, as we are not ensuring tests for every combination
of inputs. However, test coverage is still an informative measure of software reliability. For
example, here we see not all code in the g\_* estimators have been checked.

These notes on testing are not intended to be comprehensive, but only aim to give the user
an starting point for the initialisation of summarising an analysis in a reproducible research
compendia, with an informative level of automated checks. Given only one quarter of packages
on the largest R package repository CRAN have unit tests at all [39], it is arguable that there is
much further scope for discussion and development with respect to the adoption of automated
tests in reproducible research compendia.

3.6 Prepare for most weather conditions

Computational proof may be unachievable, however, a measure of code::proof can be attained
by structuring research compendia in a standardised reproducible format, such as produced
by rrtools:: [65]. Perhaps we cannot prove our software in the traditional mathematical
sense [39]. However, we could consider building confidence in the mathematics that we imple-
ment computationally, like waterproofing our shoes. If we step in a big enough puddle, our
feet are still going to get wet, but at least we have prepared to weather most of the problems
associated with the implementation of statistical algorithms.

55



Chapter 4

Meta-analysis of Medians
Estimating the variance of the sample median

Charles T. Gray, Luke Prendergast, Emily Kothe, and Hien Nguyen

4.1 Medians pose a problem in meta-analyses

Software tools for meta-analysis, such as Cochrane’s RevMan [62], newly superseded by the
cloud-based RevMan Web [63] or the R package metafor:: [99], require estimates of both effect
and variance of that effect. However, the sample variance for the reported effect of interest is
not always available. When the reported statistics are medians, with the measure of spread
commonly provided in the form of quartiles, as opposed to the required variance of the effect of
interest. This leads to the omission of studies that report medians from the meta-analysis. In
this manuscript we present a method for estimating the variance of the sample median so that
studies reporting medians may be included in meta-analyses.

This manuscript is a component of the research compendium created to solve this problem.
In this case, the research compendium comprises not just a manuscript, but a pair of software
packages, varameta::, which translates estimators presented in this manuscript to code, and
simeta::, for simulating meta-analysis data, to see how the estimators in varameta:: perform.

Chapter 5 breaks down the computational components of the simulation, as well as the
underlying derivations. In this chapter, we explore the theoretical underpinnings of the estim-
ators provided in varameta::. The lens through which we discuss the problem of medians in
this dissertation is reproducible computation, so, in addition to intrinsic questions regarding
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meta-analysing medians, this manuscript considers on the ideas presented in the companion
papers [39, 38] that ruminate, with this analysis as a case study, on why and how we may build
reproducible research compendia.

4.1.1 What’s the problem?

Skewed data is often summarised by reporting the median and either the interquartile range or
range. Quartiles might be provided as an interval of two measures or a difference of quartiles.
While this may be useful in a descriptive single-study sense, the lack of reported estimator
variability poses a challenge in the context of meta-analysis. Software for performing meta-
analyses, such as the widely-used R package metafor:: [99], require an estimate of the variance
of the reported effects to conduct the meta-analysis under the assumed model

δ̂k = δ + γk + εk, (4.1)

where δ̂k is the estimated effect from the kth study, δ is the population effect of interest, εk is
the error allowing for sampling variability and γk ∼ N(0, τ2) is the random effect to allow for
differences in the true effects between studies. Given the estimated effects for K studies, all
assumed to be normally distributed with a known (or estimated) variance, a meta-analysis can
be carried out to estimate δ and the random effect variance τ2. Our focus is on meta-analysis
of three different effects involving the median. The first is simply the median itself when there
is only one group of interest in each study. The second is the difference of two medians when
there is two groups to be compared within each study (such as a case and control group). The
third, which may be more suitable than the difference in medians when measurements of scale
differ between studies, is the ratio of medians. For more on meta-analysis see, e.g., [9] and [56].

4.1.2 Why propose a new method?

In this paper we propose a method for meta-analyses of studies whose effects are reported in the
form of median and interquartile range or range, that is, in the form of quartiles. The previously
proposed method of [49], and extensions by [7, 102], solve this problem by estimating the mean
and standard deviation from the provided summary statistics. For some applications there may
be two noticeable drawbacks to this approach.

Disadvantage 1. The methods to convert to a mean and standard deviation perform well
when the underlying distribution is symmetric, and in some cases more specifically when it is
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normal. However, results have shown that performance can be poor in the presence of skew
(e.g., see [89]).

Disadvantage 2. Those who initially published the summary measures, may have chosen to
report medians and ranges because they had decided that moment-based measures such as the
mean were not suitable descriptors.

In the presence of underlying skewed distributions, both Disadvantages 1 and 2 may cause a
real threat to the validity of any inference following conversion from medians to means. Indeed,
and the choice of whether to report mean or median is both random and not independent
of the data. Meta-regression is one possibility for combining means and medians, however,
the robustness of this approach would require consideration that is beyond the scope of this
manuscript. This underscores the arguments made in Chapters 2 and 3, if the raw data for each
study were available, the meta-analyst could extract whatever sample statistics they consider
best to answer the question at hand.

The method that we propose can be easily adapted to both single-study and meta-analysis
contexts. To illustrate this problem, we begin with an example meta-analysis from medical
research. We then briefly touch on how our method contributes to the existing solutions for
this problem. In Section 4.4, we define our estimator for the variance of the sample median and
consider alternatives. We show how this estimator can be used in meta-analysis. Simulation
results are provided in Section 4.5.1 that assess the performance of our estimator in both the
single-study and meta-analysis setting. Finally, in Section 4.6.1, we return to the motivating
example, discussed in Section 4.2, to demonstrate how our method can be applied. Concluding
remarks are provided in Section 4.6.1.

4.2 A motivating example

To motivate our method, we detail an example of the variety of summary statistics that can
arise in meta-analyses. We shall return to this example in Section 4.6.1 to see how our method
facilitates meta-analysis of all studies, rather than just the three studies originally included,
which reported means and standard deviations.

We choose notations similar to those used by Wan et al. [102]. Define: a, the minimum
value; q1, the first quartile; m, the median; q3, the third quartile; b, the maximum value; n, the
sample size. IQR denotes the interquantile range and this may be reported as an interval, i.e.
(q1, q3), or a width, i.e. q3−q1. We also let x and s denote the sample mean and sample standard
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deviation, respectively. Later, we either subscript or superscript such measures appropriately
to identify different groups within studies, and in the example below this equates to, e.g., mC

denoting the median for a control group and mI for the intervention group.
As an example of how studies collated in meta-analyses report these summary statistics

differently, consider the dataset presented in Table 4.1, taken from a systematic review of d-
dimer in pre-eclampsia [82]. Ideally, one would want to perform a meta-analysis using the effects
from all studies. However, estimator variance is only reported for three of the seven studies
presented with the remaining studies reporting medians and ranges.

Table 4.1: Data from a meta-analysis of d-dimer levels in pre-eclampsia presented by [82],
measures of location and scale are varied: there are means and standard deviations; medians
and interquartile ranges; quartiles; and medians and ranges. The types of estimates reported
are listed in the final column denoted ‘reported’.

Control group Intervention group

study year location scale nC location scale nI reported
Dusse 2003 1146.6 311.2 28 1263.8 411.9 43 x, s

Schjtlein 1997 1390.0 559.0 97 1545.0 849.5 200 x, s
Terao 1991 221.52 179.9 80 347.87 460.5 13 x, s

Catarino 2008 538.2 (391.2, 822.8) 42 448.5 (313.0, 1091.3) 44 m, (q1, q3)
Bellart 1998 545.0 225.0 65 2090.0 1800.0 12 m, IQR

Heilmann 2007 1149.0 456.0 33 1623.6 932.9 111 m, IQR
He 1997 183.0 (110.0, 340.0) 24 315.0 (145.0, 1150.0) 30 m, (a, b)

Three studies (first authors Dusse, Schjtlein, and Terao) detailed in the table provide the
sample mean, x, and standard deviation, s. Two studies (Bellart and Heilmann) provide the
sample median, m, and interquartile range, IQR. One study (Catrino) provides the sample
median, as well as the first and third quartiles, q1 and q3. Finally, one more study (He) provides
the sample median and the minimum a and maximum b observed values. All studies provide
the sample size n and their respective estimates of location and scale for both the control and
the pre-eclamptic groups.

In order to perform a meta-analysis via conventional methods, we require, at minimum,
the studies’ effect estimates, associated variances, and sample sizes. In the original analysis,
replicated in Figure 4.1, the study’s authors omitted the four studies that reported medians,
providing an incomplete summary of the available evidence.

While full access to the raw data of each study would enable researchers to calculate the
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Figure 4.1: A replication of a meta-analysis [82] of studies in Table 4.1 that report the mean
and standard deviation.

necessary sample variance for each study, there are many practical reasons, such as the time it
would take to gather the data, that reduce the practicality of this approach, a point that is well
made by others [7, e.g., p. 57]. Since only three studies presented in Table 4.1 report sample
variance, Pinheiro et al.’s meta-analysis was restricted to these three datasets [82]. This paper
provides a method that allows meta-analyses to be performed over studies reporting a variety
of summary statistics, such as those outlined in Table 4.1.

4.3 Existing solutions to this problem

A potential solution is offered by Hozo et al. [49], who suggest estimating the mean and standard
deviation from a reported median, minimum and maximum, as well as sample size, denoted
C1 := {a,m, b;n} in Table 4.2. This provides a way to calculate the variance of the effect,
as required by contemporary meta-analysis tools, although there are some limitations. For
example, C1 does not cover all cases of reported medians. In the example meta-analysis given
in Table 4.1, there is only applicable study (He 1997) for this method.

Bland extends on Hozo et al.’s solution, but for the set C2 := {a, q1,m, q2, b;n} where
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the minimum, maximum, median, as well as first and third quartiles are reported [7]. Wan
et al. improve on Hozo and Bland’s solutions, as well as providing a solution for the set
C3 := {q1,m, q3;n} where the interquartile range is provided as an interval along with the
median [102]. A nice review of the methods, including an improvement, can be found in [89].
However, it is noted that underlying normality appears to be the motivation for all methods
and below we detail some limitations.

Table 4.2: This table is a rephrasing and detail of Table 3 from Wan et al. [102], and guides the
simulation discussed in Section 4.5.1. Here we have details of various estimators for the sample
mean and sample standard deviation, for different data sets. These estimators are defined in
terms of sample summary statistics: minimum a, maximum b, median m, first quartile q1, third
quartile q3, and sample size n. Source indicates the first author of the paper the equations
are found in. The sample mean and sample standard deviation estimators are presented by
columns X and S, respectively. The column C presents the sample summary statistics required
as parameters in the coupled estimators.

Source X S C

Hozo [49] a+ 2m+ b/4 S ≈


[
(b− a)2 + (a− 2m+ b)2/4

] 1
2 /

√
12 n ⩽ 15

b− a/4 15 < n ⩽ 70

b− a/6 n > 70.

C1 = {a,m, b;n}

Bland [7] (a+ 2q1 + 2m+ 2q3 + b)/8 [(a2 + 2q21 + 2m2 + 2q3 + b2)/16+ C2 = {a, q1,m, q3, b;n}
(aq1 + q1m+mq3 + q3b)/8−
(q + 2q1 + 2m+ 2q3 + b)2/64]

1
2

Wan [102] (a+ 2m+ b)/4 b− a/2Φ−1 (n− 0.375/n+ 0.25) C1 = {a,m, b;n}
Wan [102] (a+ 2q1 + 2m+ 2q3 + b)/8 (b− a)/4Φ−1 (n− 0.375/n+ 0.25)+ C2 = {a, q1,m, q3, b;n}

(q3 − q1)/[4Φ
−1 (0.75n− 0.1215/n+ 0.25)]

Wan [102] (q1 +m+ q3)/3 (q3 − q1)/[2Φ
−1(0.75n− 0.125)/(n+ 0.25)] C3 = {q1,m, q3;n}

Firstly, note that the summary statistics sets {a,m, b;n}, {a, q1,m, q2, b;n}, and {q1,m, q3;n}
do not cover all of the presentations of summary statistics seen in Table 4.1. Thus, even if Pin-
heiro et al. had access to all methods, the meta-analysers would still have work ahead of them
to include all studies presented here.

Secondly, and more importantly, to convert medians and interquartile ranges (or ranges)
to means and standard deviations ignores the implicit information conveyed by the reported
summary statistics; that is, that the study’s authors perceived asymmetry in the data, given
the median was chosen as the measure of interest. Our motivation is to provide a solution
that enables meta-analyses to retain this information and, in addition, provide a method of
comparing the studies that reported means with the studies that reported medians.
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4.4 Estimating the variance of the sample median

Before detailing our proposed solution for estimating the variance of the sample median under
meta-anlaytic conditions, we provide expressions for approximations of the variance of a single
median, a difference in two independent median estimators and the log ratio of two medians,
when the underlying distribution and true median is known. It is these expressions we adapt
in order to estimate these approximations.

Consider a population median denoted ν with corresponding estimator M , taken to be the
middle order statistic from a sample with n observations. Let f denote the probability density
function for the underlying population. Then the median estimator, M , is asymptotically
normal with approximate variance (see, e.g. Ch.7 of [21])

Var(M) ≈ 1

n
· 1

4 [f(ν)]2
. (4.2)

With this approximated variance, we can then extend to the variance of the difference and
the variance of the ratio of two sample medians. For the difference of two sample medians, we
have, assuming that the estimators are independent,

Var(M1 −M2) = Var(M1) + Var(M2). (4.3)

Using the delta method [77], the variance of the log ratio of two sample medians is given by

Var

[
log

(
M1

M2

)]
≈ Var(M1)

ν21
+

Var(M2)

ν22
. (4.4)

In practice we do not know the true population median ν, nor the true population density
f , so estimates are required. It is common to only have access to the sample median and
interquartile range (or range) from a single study. Or, in the case of the comparison of two
samples, we may have two sample medians and associated interquartile ranges (or ranges).

However, as we shall explore in Section 4.4.2, both the log-normal and the normal densities
provide surprisingly close approximations of the true densities evaluated at the median. In this
paper, we propose the following adaptation of Equation (4.2)

V(M) :=
1

4n
[
g
(
M ; θ̂

)]2 , (4.5)
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where g is a pre-specified density and θ̂ is a vector of parameter estimates for g where the
estimates arise from the limited information in the reported median and interquartile range (or
range).

Remark 1. The choice of g does not need to be similar to the true underlying distribution.
Instead, it only need be close to the density evaluated at the median. It turns out that there are
excellent choices for g that approximate many unimodal densities evaluated at the median; that
is, for appropriately chosen θ, g(ν;θ) ≈ f(ν) for many unimodal densities, f .

We now derive each of these parameter sets, for the normal, log-normal, exponential, and
Cauchy distributions, before comparing the estimators derived in Section 4.4.2.

4.4.1 Approximating the variance of the median from limited information

Given that the true population density f of Equation (4.2) is unknown, we propose replacing f

with a nominated density g whose parameters are estimated, θ̂, from the information available,
evaluated at the sample median, M . In doing so we obtain our approximated variance in (4.5)
by choosing a suitable g

(
M ; θ̂

)
.

Using the normal distribution

For the normal density with parameters µ and σ, the quantile function is G−1(p) = µ +

σΦ−1(p) where Φ is the standard normal cumulative distribution function. Using the symmetry
of Φ and assuming the interquartile range has been reported, we know that the true interquartile
range is given by 2σΦ−1 (0.25). Thus we have estimators µ̂ := M and

σ̂(1) :=
IQR

2Φ−1 (0.25)
.

If the sample range is reported, as was the case with one study in the motivating example
provided in Table 4.1 then we need a different estimate of σ. For x[i] denoting the ith order
statistic for a sample of size n, x[i] is an estimate to approximately the n−1(i−0.5)th population
quantile. In particular, the maximum, or nth order statistic x[n], is an estimate to approximately
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the [(n− 0.5)/n]th population quantile. Thus, by a similar argument, we have

σ̂(2) :=
x[n] − x[1]

2Φ−1 [(n− 0.5)/n]
,

where x[n] − x[1] is simply the reported range.
From above, if we choose the normal density for g, then θ̂ = [µ̂, σ̂(i)] (i = 1, 2) depending

on whether the interquartile range or range is reported.

Using the log-normal distribution

If we were to choose the log-normal density with parameters µ and σ, then since the true median
of a log-normal density is given by eµ, we have an estimator for µ, given by

µ̂ := log(M).

We obtain our estimator for σ similarly when the interquartile range is reported. We know
that the true interquartile range of the log-normal density is given by G−1

(
3
4

)
−G−1

(
1
4

)
where

G is the cumulative distribution function for the log-normal density. We have the associated
quantile function

G−1(p;µ, σ) = exp(σΦ−1(p) + µ).

Using this information, along with the symmetry of Φ and our estimate µ̂, we have

σ̂(1) :=
1

Φ−1
(
3
4

) log( IQRe−µ̂ ±
√
IQR2e−2µ̂ + 4

2

)
.

By similar argument to the derivations for the normal density in Section 4.4.1, if the range
is reported then our estimate to σ is

σ̂(2) :=
1

Φ−1
(
n− 1

2
n

) log

(x[n] − x[1])e
−µ̂ ±

√
(x[n] − x[1])2e−2µ̂ + 4

2

 .

Again, if we choose the log-normal density for g, then θ̂ = [µ̂, σ̂(i)] (i = 1, 2) depending on
whether the interquartile range or range is reported.
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Using the exponential distribution

For the exponential density, we need only to estimate the rate parameter λ. Since the true
median of the exponential density is given by log(2)/λ, we can estimate λ̂ := log(2)/M . Here,
θ̂ takes the single parameter estimate λ̂.

Using the Cauchy distribution

We need to estimate two parameters for the Cauchy density: a location parameter η and
a scale parameter θ. From the quantile function for the Cauchy distribution G−1(p) = η +

θ tan [π (p− 0.5)], we know that the true median is the location parameter η and that the
interquartile range is equal to 2θ. Hence, we can estimate η̂ := M and if the interquartile range
is reported θ̂(1) := IQR/2. If the range is reported then similar to previous arguments, we can
estimate

θ̂(2) =
x[n] − x[1]

2 tan
[
π
(
n−0.5

n − 1
2

)] .
When using the Cauchy, we then have θ̂ = [η̂, θ̂(i)] (i = 1, 2) depending on which range is
reported.

4.4.2 Comparison between the four choices of g

To choose a distribution to inform g in Equation (4.5), we compared various choices of g for
Equation (4.5). For the true median, ν, and true distribution f , we calculated the ratio of
the approximated variance, given by Equation (4.5) with Equation (4.2) the true median ν

evaluated by the true distribution f ,

ρ :=
V(ν; g)
V̂ar(ν; f)

(4.5)

(4.2)
.

This was calculated for various distributions, visualised in Figure 4.2. The ratios for a choice of
exponential for g in V were omitted as ρ took values greater than 3, in some cases, performing
far worse than the other choices for g explored.
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Figure 4.2: Each point represents a precision measure of approximated variance of the sample
median: the ratio, ρ := V(ν; g)/V̂ar(ν; f), of approximated variances of the sample median. This
is calculated for various distributions, indicated by colour and shape. The numerator, V(ν; g),
evaluates the median, ν, with the density, g, indicated by the x axis, into Equation (4.5),
and approximates the parameters of g, as described Section 4.4. The denominator, V̂ar(ν; f),
evaluates the true density, f , at the median, ν, with true parameters, as given by Equation (4.2).
The parameters in the distribution labels have been rounded. In this horizontally-jittered plot,
a small amount of horizontal random displacement is applied, so that points with the same
value of ρ are easily discerned. Colours and shapes have been applied to facilitate between and
within distributional family comparisons.
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Using a Cauchy substitution as a choice of g underestimates V̂ar, and the normal dens-
ity overestimates. The log-normal sits between these results with most V within (0.95, 1) of
V̂ar; for this reason, the log-normal is chosen, and the variance of the sample median may be
defined, adapting Equation (4.2) using the log-normal, so that V(M ; log-normal) provides the
best estimator for an estimate for the approximation of the variance of the sample median.

Definition 1 (An estimator for the variance of the sample median). We define an estimator V
for the variance of the sample median M in terms of M , the quartiles reported, S, and sample
size n,

V(M,S, n) :=


1

Φ−1( 3
4)

log

[
IQRe−

ˆlog(M)±
√

IQR2e−2 ˆlog(M)+4
2

]
S = IQR,

1

Φ−1

(
n− 1

2
n

) log

[
(x[n]−x[1])e

− ˆlog(M)±
√

(x[n]−x[1])
2e−2 ˆlog(M)+4

2

]
S = {x[1], x[n]},

where IQR denotes the interquartile range, and {x[1], x[n]} denotes the minimum and maximum
values, the range, reported as an interval or a difference.

4.5 Performance of estimator in coverage probability simula-
tions

Now that we have defined an estimator for meta-analysing medians, we explore the efficacy of
this estimator under simulation, for different numbers of studies, distributions, and different
assumptions about variation between studies and efficacy of intervention.

4.5.1 Coverage probability simulation

The approach we adopt for exploring the efficacy of a statistical estimator is to simulate cov-
erage probabilities. In a coverage probability simulation, each trial randomly generates data
from known parameters, calculates estimates of interest, and then produces a confidence inter-
val based on that estimator. The trial is recorded as successful if the true parameter of interest
falls within the confidence interval.

Enumerating these steps provides an algorithm for performing a coverage probability trial,
one instance of a simulation.

1. Draw a random sample from the distribution that is characterised by the parameter of
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interest, ν;

2. Calculate summary statistics from the random sample;

3. Calculate an estimate of ν from the summary statistics;

4. Construct a confidence interval using the parameter estimate;

5. Check if ν falls within the confidence interval.

In particular, we calculate a (1− α)× 100% confidence interval ν̂ ± z1−α/2

√
γ̂, where za =

Φ−1 (a) is the ath quantile of the standard normal distribution, and Φ is the standard normal
distribution function

We intend simulation to be understood as the results of all trials. The coverage of
the simulation is the proportion of trials for which the confidence interval contains the true
parameter value.

The derivation of simulation meta-parameters and details of computational implementation
are provided in Chapter 5.

4.5.2 Simulation results

Figures 4.3 and 4.4 summarise the results of simulations comprising 1000 trials, for different
values of study heterogeneity, equal or unequal ratios between intervention and control, with
data sampled from symmetric and asymmetric distributions.

Figure 4.3 shows desirable coverage for the estimator for several symmetric and asymmetric
distributions. As the number of studies increase, the coverage increases. The coverage is
comparable for no study heterogeneity, up to 0.4 study heterogeneity. Not surprisingly, the
confidence intervals for log-normal estimates are outliers, as they are measured on a different
scale. Mean confidence interval is reasonably consistent for all meta-parameters. In conclusion,
we believe these simulation results demonstrate this is an effective estimator for the variance of
the sample median for meta-analysis.

4.6 Meta-analysis of medians

For our motivating problem, meta-analysis of medians, we have followed a toolchain walk-
through [38] for computationally developing a statistical estimator. This process took us from
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Figure 4.3: Simulation results presented as a coverage probability plot.
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Figure 4.4: Bias of estimator by confidence interval width.
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Figure 4.5: Using the estimator for the variance of the sample median, we can meta-analyse
the median difference in the studies omitted (Table 4.1) from Pinheiro et al.’s meta-analysis of
means, replicated in Figure 4.1

mathematical derivations, to estimator functions provided by research compendia [39] in-
cluding analysis software varameta:: and coverage probability simulations provided by the
package simeta:: to explore the efficacy of this estimator under different sampling conditions.

Through a case study, this manuscript raises the question of the value of examining research
software engineering methodology. Beyond exploring the efficacy of an estimator for use in
meta-analysis of medians, this dissertation has extrinsic value in the context of rapidly evolving
statistical tools for simulation and analysis; structure of the analysis, the workflow, is of research
merit in its own right [34]. We begin by revisiting our motivating example, and turn to meta-
research observations from this analysis.

4.6.1 Revisiting the motivating example

With a method for incorporating medians, we revisit the motivating example discussed in
Section 4.2. We can now compare the results of Figure 4.5’s meta-analysis of means with
meta-analysis of studies that reported means, shown in Figure 4.5.

This approach could potentially be extended to meta-regression of means and medians,
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however this was not included as it seems inadvisable for asymmetric data.

4.6.2 Components of research for computational science

This manuscript derives mathematical estimators and presents simulation results of programmed
instantiations of the algorithmic solution to the meta-analysis of medians. Rapid advances in
the adoption software engineering provide an auxiliary context of meta-research; these are ex-
plored in companion manuscripts that describe the theoretical underpinnings of reproducible
computing [39] and the practical steps in preparing this analysis as a reproducible research
compendium [38]. Which is to say, meta-research questions from this project have generated
more products of research than the question of meta-analysing medians itself.

This manuscript is one product of a research question. However, against the backdrop of
technological revolutions in data collection and code sharing, contemporary researchers face
a constant challenge of upskilling in computational tools, in addition to the challenges of the
discipline in which the researcher is working. This manuscript used two packages, varameta::
and simeta:: to perform analysis; it is but one research component of the compendium of
research to assess estimators for meta-analysis of medians. This splintered approach has the
advantage that each component can exist for a different utility, individually, but together form
a compendium of research.

We next derive the calculations and code required to produce Figures 4.3 and 4.4, before
extending on meta-research questions.
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The simeta:: Package
Extensible meta-analysis simulation

5.1 Basic usage

The simeta:: package is an extensible set of tools for producing the simulations provided
shown in Chapter 4, Figures 4.3 and 4.4. These tools are modularised, so that solutions are
readily extractable and code accessible for extension and adaptation. It is this structure we
explore in this chapter.

Install simeta:: from GitHub.

# install simeta from gh
devtools::install_github("softloud/simeta")

We now load the package and run ::metasims to computationally produce the simula-
tion results presented in Chapter 4. The summary results of these simulations is provided
by ::coverage_plot, shown in Figure 4.3, providing a scatterplot of coverage probability,
the number of trials in which the confidence interval produced by meta-analysis on randomly-
generated data contain the true value. These are calculated for a variety of distributions,
number of studies, ratio of true effects, and variation between studies. The code for this is
shown in Figure 5.1. In this section, we will explore the code and derivations underpinning the
code provided in the wrapper function ::metasims.

In an effort to achieve some degree of computational reproducibility described in the opening
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# packages
library(simeta)

## Loading required package: actuar
##
## Attaching package: 'actuar'
## The following object is masked from 'package:grDevices':
##
## cm

# so these results are reproducible
set.seed(40)

# create coverage figure
cov_plot <-
sims %>% # produced by default ::metasims
coverage_plot()

# save figure
ggsave("coverage.png", plot = cov_plot)

## Saving 7 x 6 in image

# create bias figure
bias_plot <-
sims %>%
variance_plot()

# save bias figure
ggsave("bias.png", plot = bias_plot)

## Saving 7 x 6 in image

Figure 5.1: This code generates Figures 4.3 and 4.4 in Chapter 4.
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chapters, this chapter is a reproducible .Rnw document that comprises code chunks and text
that produces the exact same results when recompiled.

We now describe the motivation for this software, and the modularised elements, along with
the underpinning mathematical derivations.

5.2 Motivation

This software was developed to support the analysis of the estimator for the variance of the
sample median explored in Chapter 4. As the analysis developed, however, opportunities for
developing the code to answer other questions presented themselves. Thus this software has
been created with a particular focus on the extensibility [95], that is, how well code provided for
a scientific analysis can be extended and adapted for other scientific questions. In this chapter,
we explore the modularised components that produce the simulation results of Chapter 4.

5.3 Overview of codeflow

The codeflow underpinning simeta:: comprises several modular components for simulation of
meta-analysis data, from sample size generation, to meta-analysis, and summary visualisations.
The code is modularised such that each piece of code performs one specific task. This section
describes the way these components fit together. This is particularly important for the extens-
ibility of this code, so that other researcher-developers can make use of any of the solutions
provided in this collection of scripts. As a doctoral thesis, this is the work of an apprentice
scientist. Arguably, demonstrating extensibility is now a core component of any computational
doctoral work, as this is now considered best practice in scientific programming [95]. In addi-
tion, and not least, is the debugging benefit of testing to see if each code component performs
the task assigned. The core function of simeta:: is ::metasims, which is the bridge between
the back end (that is, not intended for the end user) of the code, and the reporting functions.

This is a tidy-structured algorithm [42], wherein each row denotes a simulation, and each
column denotes a simulation meta-parameter. ::metasims begins by using ::sim_df (Table
5.1) to produce a table of simulation metaparameters, differentiated from parameters applied
in each simulation. Based on user-chosen inputs, or, if the user defines no inputs, on the default
metaparameters, ::metasims constructs a table of simulation metaparameters, wherein each
row denotes a simulation. And where by simulation, we mean randomly generating data and
performing statistical analyses thereon, reproducing this trials (a user-specified input) times.
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In Section 5.4, the derivations and codeflow for generating sample sizes are provided, and for
sampling data in Section 5.5.

::sim_df generates sample sizes for each study, and allocates a proportion of the total
sample sizes for the intervention group. Section 5.4 provides a toolchain walkthrough and
derivation of how the sample sizes are arrived at.

::metatrial generates a sample meta-analaysis dataset, produces meta-analysis results and
checks to see if the true log-ratio of intervention and control median fall within the estimated
confidence interval for the log-ratio of medians. Section 5.5 provides a toolchain walkthrough
and derivation of how the meta-analysis samples are generated.

With each row of the simulation metaparameters produced by ::sim_df, a simulation of
the specified number of trials (1000 trials in Figure 4.3), with ::metasim, shown in Table 5.2,
which runs ::metatrial for the number of specified trials and summarises what proportion
of trials were successful, that is, whose confidence interavals contained the true log-ratio of
medians.

Summary statistics are produced to inform on the results and reported back in a table. This
table is then appended with the simulation results, shown in Table 5.3, and visualised using
::coverage_plot, as shown in Figure 4.3.

5.4 Simulating meta-analysis sample sizes

Meta-analytic samples vary in different ways. There are the number of studies, K, and variation
τ2 between them. There are small cohorts and large cohorts. And the intervention groups vary
in proportion of total sample size. In this section, we focus on sample size generation for
meta-analysis studies with control and intervention cohorts.

5.4.1 Codeflow

The simeta:: package provides a means of producing a randomly-generated dataset of sample
sizes. The ::sim_n provides a method of producing a dataset of meta-analysis sample sizes,
based on a user’s expectations of minimum, maximum, and proportion of intervention cohort
from the total in the control and intervention groups.

The software defaults to 3 studies, a minimum sample size of 20, a maximum sample size
of 200. As a default, equal intervention and control groups are expected, with some allowance
made for small variations, for, say, if a few people drop out of a study. Using ::fn_fmls from
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Table 5.1: Simulation metaparameters, where each row is a simulation, and each column is a
parameter option for that column-header’s variable. The first column, k, denotes the number
of studies and τ2 the variation between studies. The distribution and distributional parameters
are provided in the next two columns, a simulation id, and finally, the true value of interest, in
this case, the median. For example, note that where the mean of the normal distribution is 2,
the median is 2, as expected. The parameters with one decimal place were fixed and the others
were randomly sampled.

sim_df() %>%
# select first 30 rows
head(15) %>%
# sample size dataframe variable omitted for brevity
select(-n, -sim_id) %>%
# format for pdf
simeta_table_tex(

col.names = cnames_simdf,
escape = FALSE

)

k τ2 ρ distribution parameters
3 0 1 pareto 2, 1
3 0 1 norm 50, 17
3 0 1 lnorm 4.0, 0.3
3 0 1 exp 10
3 0 1 pareto 3.576119, 2.745808
3 0 1 norm 75.209383, 6.739041
3 0 1 lnorm 2.3900182, 0.3383603
3 0 1 exp 4.86717
7 0 1 pareto 2, 1
7 0 1 norm 50, 17
7 0 1 lnorm 4.0, 0.3
7 0 1 exp 10
7 0 1 pareto 3.576119, 2.745808
7 0 1 norm 75.209383, 6.739041
7 0 1 lnorm 2.3900182, 0.3383603
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Table 5.2: This simulation function takes the arguments of the rows of the simulation
metaparameter dataframe produced by ::sim_df within the wrapper metasimulation function
::metasims.

metasim(
tau_sq = 0.2,
effect_ratio = 1.1,
rdist = "lnorm",
par = list(1,2),
trials = 100

) %>%
simeta_table_tex(

col.names = cnames_metasim,
escape = FALSE

)

τ2 width bias coverage successful id
0.15 1.12 0.24 0.82 100 simulation1

rlang::, we can extract the default values and display in Table 5.4.
In keeping with tidy data principles [42], the dataset is produced with one observation, that

is, sample size, per row. However, meta-analyses conducted in R frequently make use of the
metafor:: package, and a wide format, shown in Table 5.5, where each row is a study with
intervention and control listed in columns, may be easier to work with for this context.

Smaller cohorts may be assumed. Here we will generate a five-study dataset of sample
sizes that are small cohorts, say, less than 30, and an expected cohort of ten per cent for the
intervention group. In Table 5.6, small data are generated in long form.

beta_par(
proportion = 0.7,
error = 0.2

)

## $alpha
## [1] 36.05
##
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Table 5.3: Simulation results, by simulation metaparameters. Each row is a simulation, wherein
the columns denote metaparameters (distribution, variation between studies, etc.), and simu-
lation results associated with those metaparameters.

sims %>%
# choose simulation results table
pluck("results") %>%
head(20) %>%
# sample size dataframe variable omitted for brevity
select(-n,-sim_results) %>%
simeta_table_tex(

col.names = sims_results_cols,
escape = FALSE)

τ̂2 ci width bias coverage success id k τ2 ρ dist’n parameters
0.07 0.77 0.18 0.82 1000 sim 1 3 0 1 pareto 2, 1
0.00 0.17 0.04 0.80 1000 sim 2 3 0 1 norm 50, 17
0.00 0.14 0.03 0.82 1000 sim 3 3 0 1 lnorm 4.0, 0.3
0.05 0.65 0.14 0.84 1000 sim 4 3 0 1 exp 10
0.03 0.52 0.12 0.81 1000 sim 5 3 0 1 pareto 3.576119, 2.745808
0.00 0.05 0.01 0.80 1000 sim 6 3 0 1 norm 75.209383, 6.739041
0.00 0.19 0.04 0.82 1000 sim 7 3 0 1 lnorm 2.3900182, 0.3383603
0.05 0.68 0.15 0.83 998 sim 8 3 0 1 exp 4.86717
0.05 0.57 0.13 0.89 996 sim 9 7 0 1 pareto 2, 1
0.00 0.11 0.02 0.92 1000 sim 10 7 0 1 norm 50, 17
0.00 0.11 0.02 0.91 1000 sim 11 7 0 1 lnorm 4.0, 0.3
0.02 0.39 0.08 0.89 1000 sim 12 7 0 1 exp 10
0.03 0.47 0.10 0.90 996 sim 13 7 0 1 pareto 3.576119, 2.745808
0.00 0.03 0.01 0.91 1000 sim 14 7 0 1 norm 75.209383, 6.739041
0.00 0.11 0.02 0.88 1000 sim 15 7 0 1 lnorm 2.3900182, 0.3383603
0.03 0.43 0.09 0.90 1000 sim 16 7 0 1 exp 4.86717
0.03 0.42 0.08 0.91 1000 sim 17 10 0 1 pareto 2, 1
0.00 0.11 0.02 0.92 1000 sim 18 10 0 1 norm 50, 17
0.00 0.08 0.02 0.92 1000 sim 19 10 0 1 lnorm 4.0, 0.3
0.02 0.37 0.08 0.91 998 sim 20 10 0 1 exp 10
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Table 5.4: The arguments of ::sim_n and their defaults. These are the values a user can
change: the number of studies, k, is set to 3; the minimum sample size min_n is set to 20;
the maximum sample size defaults to 200; the proportion of total sample size allocated to the
intervention group is assumed to be 0.5 with 90 per cent of sample sizes falling within 0.1. The
wide function toggles whether the control and intervention arms are columns or in separate
rows.

# extract the arguments of sim_n
(fn_fmls(sim_n)) %>%

# converts to list
map(1) %>% {

# construct a table of args
tibble(argument = names(.),

default = .)
} %>%
mutate(# convert list variable to string

default = map_chr(default, toString)) %>%
# display as table
simeta_table_tex()

argument default
k 3
min_n 20
max_n 200
prop 0.5
prop_error 0.1
wide FALSE

Table 5.5: Wide format of simulated meta-analysis sample sizes.

sim_n(wide = TRUE) %>%
simeta_table_tex()

study intervention control
Vëantur_1982 33 34
Déagol_1998 39 33
Amarië_1960 75 75
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Table 5.6: Example of a randomly-generated small-cohort dataset.

# generate table
sim_n(

k = 5,
min_n = 4,
max_n = 30,
prop = 0.1,
prop_error = 0.01,
wide = FALSE

) %>%
simeta_table_tex()

study group n
rimë_1977 control 9
Lóni_1954 control 12
Gwindor_1969 control 24
Hundad_2013 control 26
Nob_1999 control 11
rimë_1977 intervention 1
Lóni_1954 intervention 1
Gwindor_1969 intervention 3
Hundad_2013 intervention 3
Nob_1999 intervention 1
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zeta_plot(0.3,0.1)

0.00 0.25 0.50 0.75 1.00

ζ

Distribution of expected proportion of intervention cohort

We assume a beta distribution with expected centre 0.3 and 90% of
values falling within 0.1; i.e, within the interval [0.2,0.4]

Figure 5.2: Plot of the distribution of proportion allocated to intervention from a total sample
size comprising control and intervention groups.

## $beta
## [1] 15.45

Equipped with code the provides the beta parameters, we the call this, in a function that
generates an intervention proportion based on sample sized, expected value and standard de-
viance of the proportion.

intervention_proportion(
n = 5,
proportion = 0.1,
error = 0.005

)

## [1] 0.09965155 0.09926290 0.09902813 0.10151700 0.10059654

::zeta_plot, shown in Figure 5.2, shows the distribution of the proportion allocated to
intervention group.

The next section provides the derivation that underlie this code.
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5.4.2 Derivations for generating sample sizes

Total sample sizes, of control and treatment groups are generated from user-defined parameters:
minimum, a, and maximum, b; and k, the number of studies. k total sample sizes, Nk, are ran-
domly sampled from uniform(a, b). For each Nk, a proportion is allocated to the intervention
group, and the rest to control. The user specifies the expected proportion of the intervention
cohort, ζ, and the error associated, expressed in terms of an expection of 90 per cent of propor-
tions falling within θ. ζ is sampled from a beta distribution, with the distributional parameters
α and β derived as follows.

We assume the proportion ζ follows a beta distribution, that is, ζ ∼ beta(α, β), with
expected value, E(ζ) = ζ̃, and that ninety per cent of ζ falling within τ of ζ. Then, Chebyshev’s
inequality 1 provides

P (|ζ − ζ̃| ⩾ τ) ⩽ 0.1

where τ = kσ, and σ denotes the standard deviation of ζ, and k > 0 [4]. Furthermore, the
righthand side of the inequality is given in terms of k, so we have k−2 = 0.1. This gives

τ̃ =
√
10σ.

We now apply these assumptions to the definitions of the mean and variance of the beta
distribution to obtain the parameters required to randomly sample the proportion of the total
sample size given to the intervention cohort.

Since ζ ∼ beta(α, β), we have

ζ̃ =
α

α+ β
=⇒ β = α/ζ̃ − α.

and, to find α, we combine this with the variance,

τ̃2

10 = αβ
(α+β)2(α+β+1)

as σ = τ̃ /
√
10

=⇒ τ̃2

10 = α(α/ζ̃−α)

(α+α/ζ̃−α)2(α+α/ζ̃−α+1)
as β = α/ζ̃ − α

=⇒ τ̃2

10 = (1/ζ̃−1)ζ2

α/ζ̃+1

=⇒ α/ζ + 1 = 10ζ̃2/τ̃2(1/ζ̃ − 1)

=⇒ α = ζ̃[10ζ̃2/τ̃2[1/ζ̃ − 1]− 1] ,

1This calculation relies on the questionable assumption that the inequality can be simplified to an equality.
Through sharing this work open source an improved solution was created for specific software for this calculation,
parameterpal::(https://softloud.github.io/parameterpal/).
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if we assume we may divide the random effect for the study γk equally between both arms.
And this is in a form that is relatively easy to program. Leaving it in this format, meant that

upon returning to code, it was relatively straightforward to rederive the result for transcription
into the manuscript, from this piece of code.

beta_par(
proportion = 0.4,
error = 0.05

)

## $alpha
## [1] 383.6
##
## $beta
## [1] 575.4

5.5 Simulating meta-analysis data

This section mirrors the structure of Section 5.4, in first outlining the codeflow, that is, the
toolchain walkthrough, of simulating meta-analysis data, and then delving into the theory
underpinning these simulations.

5.5.1 Codeflow

Once we have sample sizes, we can randomly sample data from distributions specified by the
user, currently implemented for the normal, exponential, Pareto, and log-normal distributions,
and provide sample effect measures, with variance.

::sim_stats provides a means of randomly generating a meta-analysis dataset of effect,
sample sizes, and effect spread, shown in Table 5.7. This piece of code extends directly from
::sim_n, discussed in Section 5.7. For purely aesthetic reasons, we round the digits in Table
5.7 to two decimal places.

This function creates a random effect for each study in the dataset, and samples with
::sim_sample from the distribution adjusted via that parameter. Here it is a sample of 18
values from a normal distribution with mean 20 and standard deviation 0.2. This study deviates
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Table 5.7: Default output of ::sim_stats, assuming: an underlying normal distribution with
mean 50 and standard deviation 0.2; variation of 0.4 between studies; and a true effect ratio,
intervention over control, of 1.2.

sim_stats() %>%
simeta_table_tex(digits = 2)

study group effect effect_spread n
Argonui_2000 control 39.43 0.31 75
Argonui_2000 intervention 76.07 0.28 70
Elfwine_2013 control 77.26 0.20 12
Elfwine_2013 intervention 38.78 0.37 10
Yavanna_1970 control 57.12 0.31 69
Yavanna_1970 intervention 52.53 0.25 61

by 0.2 from the overall true effect across all studies. In this case, a control (unadjusted) sample
is provided.

sim_sample(
n = 18,
this_study_error = 0.2,
rdist = "norm",
par = list(mean = 20, sd = 0.2),
control = TRUE

)

## [1] 15.97560 16.11579 16.72661 16.10583 16.54135 16.45139 16.27503 16.36559
## [9] 16.63843 16.15508 16.22943 16.29320 16.26190 16.32932 16.59718 16.35684
## [17] 16.23745 16.25456

To sample from the intervention group of a study, we set the control argument to FALSE,
and provide a ratio of intervention true effect, effect_ratio, to control of 1.2, so that

intervention true effect
control true effect = 1.2.
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sim_sample(
n = 18,
this_study_error = 0.2,
rdist = "norm",
par = list(mean = 20, sd = 0.2),
control = FALSE,
effect_ratio = 1.2

)

## [1] 29.26291 29.33009 29.41119 29.18646 29.19458 29.31168 29.35614 29.40245
## [9] 29.18717 29.54784 29.34734 29.44249 29.45987 29.74727 29.71541 29.51767
## [17] 28.91137 29.23608

For each study, these samples are summarised in quartiles. The this_study_error is
sampled as a metaparemeter set in ::sim_stats, Table 5.7 which generates each study’s error
by sampling from a normal distribution with variance τ2.

::sim_stats calls ::sim_sample, which produces a sample for each arm of each study,
and returns the effect of interest, the sample median, and the effect_spread. So that each
number in the corresponding columns of Table 5.7.

sim_sample(
n = 5,
this_study_error = 0.4,
rdist = "pareto",
par = list(2, 3),
control = FALSE,
effect_ratio = 1.4

)

## [1] 0.1026971 4.2486377 0.8726473 1.4324320 1.0580498

For four distributions, log-normal, normal, Pareto, and exponential, data can be sampled
with the parameters for the sampling derived in the following section.
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5.5.2 Derivations for meta-analysis data generation

We wish to generate data that mimic the structure of meta-analysis observations. In this
section, we extend in detail on the method described briefly in Section 3.3.3.

Assumption 1. We assume the log-ratio of sample medians log(mI
k/m

C
k ) for the kth study

can be expressed in terms of the log-ratio of population median, log(νIk/ν
C
k ), with normally

distributed variation associated with the kth study, and sampling error. So,

log(mI
k/m

C
k ) = log(νI/νC) + γk + εk (5.1)

where γk ∼ normal(0, τ2) denotes variation associated with the kth study and εk ∼ normal(0, σ2)

denotes the sampling error.

We take as known the ratio, ρ, of intervention, νI , and control median, νC . And thus we
have νI = ρ/νC .

The first derivation is a restatement of the result provided in Chapter 3, which is then
expanded to other distributions of interest.

For simplicity, and arguably a limitation of this analysis, we shall assume one parameter
is dependent on the study, and all other parameters are fixed across all studies. We take the
parameter for the control group and other parameters as known.

Another limitation is the following assumption, made for purely technical reasons, to make
the sampling code easier to write, and the derivations simpler.

Assumption 2. The random effect γk may be divided evenly between both arms.

Assuming an exponential distribution

If we wish to sample x1, . . . , xn ∼ exponential(λJ
k ), for k ∈ K studies and J ∈ {C, I} arms of

each study, we must derive the rate parameter, λJ
k . We take as given values, λC , and νI = ρ/νC ,

the ratio of the intervention and control median.
The median ν of an exponential distribution with rate parameter λ is log 2/λ. So, we have

νI = ρνC =⇒ log 2/λI = ρ log 2/λC =⇒ λI = λC/ρ. (5.2)

Now, taking our assumption about the log-ratio of sample medians, we have
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log(mI
k/m

C
k ) = log(νI/νC) + γk Assumption 1

=⇒ log((log 2/λI
k)/(log 2/λ

C
k )) = log((log 2/λI)/(log 2/λC)) + γk/2 · 2

as νJ = log 2/λJ for J ∈ {C, I}
=⇒ log λC

k − log λI
k = log λC − log λI + γk/2 · 2

=⇒ λC
k = λC exp(γk/2) and
λI
k = λI exp(−γk/2) v

=⇒ λC
k = λC exp(γk/2) and
λI
k = λC/ρ exp(−γk/2). (5.2)

Assuming a log-normal distribution

If we wish to sample x1, . . . , xn ∼ log-normal(µJ
k , σ

2), for k ∈ K studies and J ∈ {C, I} arms
of each study, we must derive parameters µJ

k and σJ
k .

We fix three simulation metaparameters. The second parameter of the log-normal distribu-
tion, σ, is assumed to be the same across all studies, and arms, such that σJ

k = σJ . The first
parameter for the control arm is fixed, so we take µC

k as known, and we make an assumption
ρ := νI/νC about the ratio of the true intervention median, νI , and control median, νC .

From Equation (1), we have,

log(mI
k/m

C
k ) = log(νI/νC) + γk,

which is in terms of the true medians of the control and arm distributions. Since we are assuming
a log-normal distribution, we know the median is provided in terms of the first rate parameter,
µ, such that ν = exp(µ). Thus to find µI in terms of known values µC and ρ, we have,

ρ = νI/νC =⇒ νI = ρνC =⇒ exp(µI) = exp(µC)ρ =⇒ µI = µC + log(ρ), (5.3)
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which we can use to find the parameters of interest, µJ
k .

log(mI
k/m

C
k ) = log(νI/νC) + γk Assumption 1

log(µI
k/µ

C
k ) = log(µI/µC) + γk as mJ

k = µJ
k and νJ = µJ

=⇒ logµI
k − logµC

k = logµI − logµC + 2γk/2

=⇒ logµI
k = logµI + γk/2

logµC
k = logµC − γk/2 Assumption 2

=⇒ µI
k = µI exp(γk/2) and

µC
k = µC exp(−γk/2)

=⇒ µI
k = (µC + log ρ) exp(γk/2) (5.3), and

µC
k = µC exp(−γk/2)

Assuming a normal distribution

If we wish to sample x1, . . . , xn ∼ normal(µJ
k , σ

2), then we need to find µJ
k for J ∈ {C, I} arms

of the study, and k ∈ K number of studies. We begin with known values, σ, the same variance
across all studies, µC the centre parameter of the control arm, and ρ := νI/νC , the ratio of
the intervention median and the control median. The random effect associated with the kth
study’s error, γk ∼ normal(0, τ2), is sampled for a given value of the simulation metaparmeter,
τ2.

Now, the median of the normal distribution is the parameter of centrality, that is, for a
normal distribution with measure of centrality, µ, the median is µ. Then,

νI = ρνC =⇒ µI = ρµC , (5.4)

as νC = µC . Then,

log(mI
k/m

C
k ) = log(νI/νC) + γk Assumption 1

=⇒ log(µI
k/µ

C
k ) = log(µI/µC) + 2 · γk/2

=⇒ logµI
k − logµC

k = log µI − logµC + 2 · γk/2
=⇒ logµI

k = log µI + γk/2 and
logµC

k = log µC + γk/2 Assumption 2

=⇒ µI
k = ρµC exp(γk/2) (5.4), and

µC
k = µC exp(−γk/2).
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Assuming a Pareto distribution

If we assume a Pareto II distribution, such that, for α > 0, σ > 0, and x > 0, we have

f(x) = α/σ(1 + x/σ)−1(α+1).

We write x1, . . . xn ∼ ParetoII(α, σJ
k), with shape parameter α, and scale parameter σ, for the

kth study and J ∈ {C, I}.
We take as user-defined input, the shape parameter, α, and the control group’s scale para-

meter, σC , and the ratio between intervention and control medians. We need to find the kth
study’s, Jth group’s, scale parameter σJ

k .
Since x ∼ ParetoII(α, σJ

k ), we have the median νJ for the arm J ∈ {C, I},

νJ = σJ(
α
√
2− 1), (5.5)

So,

ρ = νI/νC =⇒ νI = ρνC =⇒ σI(
α
√
2− 1) = ρσC(

α
√
2− 1) =⇒ σI = ρσC . (5.6)

Then,

log(mI
k/m

C
k ) = log(νI/νC) + γk Assumption 1

log
(

σI
k(

α√2−1)

σC
k ( α√2−1)

)
= log

(
σI( α√2−1)

σC( α√2−1)

)
+ γk/2 (5.5)

=⇒ log σI
k − log σC

k = log σI − log σC + γk/2

=⇒ log σI
k = log σI + γk/2 and

log σC
k = log σC − γk/2 Assumption 2

=⇒ σI
k = σI exp(γk/2) and

σC
k = σC exp(−γk/2)

=⇒ σI
k = ρσC exp(γk/2) (5.6), and

σC
k = σC exp(−γk/2).

5.6 Coverage probability simulation

The ::metasims function provides a means of performing trials, specified by user, number of
simulations. Each simulation fixes a set of meta-analysis sample sizes as described in Section
5.5. For a chosen distribution, data are randomly sampled and summary statistics calculated.
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A meta-analysis is conducted via metafor::rma, which yields a confidence interval for the effect
and its variance. The coverage probaiblity is proportion of trials for which the true effect
falls within the confidence interval.

Each row of the output coverage probability summary table represents a simulation, shown
in Table 5.3. In this tidy format [42], where each row is a simulation’s observed summary
statistics, and each column represents a simulation metaparameter, the output lends itself well
to tidyverse:: visualisation.

In Figure 4.3 we show one way to summarise these data, faceted by variation between
studies, number of studies.

5.7 Extensibility

A key feature of the structure of this collection of analysis code, and, indeed, this manuscript, is
its modularity. Perhaps not all of the code is useful for another researcher, perhaps, for example,
the sample size generation is useful for simulation analyses with more covariates of interest.
Extensibility is now being recognised as an integral component of scientific computation [95].
Analogous to scope in replication, researchers can take a more active role in future usage their
algorithms, by providing accessible, reproducible, and extensible code.

Fraser et al. discuss how replication relies on clearly defining the conditions under which it
would be expected a subsequent experiment to yield the same results [32]. Thus, the onus of
replication is not only on those who perform the secondary experiment, but also on the initial
researchers to make the scope of the experiment explicit, to inform subsequent replication.

Similarly, in scientific computation, if we do not provide extensible, accessible code, we
make it more difficult for future research to expand on and investigate our findings. Lengthy
script files with hidden package dependencies can be a headache for those attempting to make
use of our computational work. By providing transparent, reproducible code, in a modularised
format, we facilitate extending on our scientific work. Beyond reproducibility, there is much to
be gained from structuring and documenting analysis code.
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Chapter 6

The Order of Mathematistry
Queering metascience with mathematics

Charles T. Gray, Hien Nguyen, Hannah Fraser, and Danielle Navarro

Abstract

Out of the set of reasonable pairings between methodologies and the scientific claims that
they assess, what proportion of claims and methodology pairings are sufficiently strongly linked
so as to provide a meaningful scientific answer to the claim? What is the scientific benefit
in a methodological intervention, such as preregistration or reproducible computing, when the
link between method and claim posed is weak? This manuscript constructs an order on the
set of partitions of reasonable pairings of scientific claim and methodology to queer questions
about psychological methodology, through a lens of mathematics. Within an order-theoretic
framework, cardinality and density formalise scientific methodology so that we may discuss in
which context specific methodological tools, such as preregistration or reproducible computing,
provide meaningful evidence of the quality of scientific claims.

Keywords: Meta-research ·Reproducibility ·Mathematics

In the 1966 novel Wide Sargasso Sea [84], Jean Rhys retells Charlotte Brontë’s Jane Eyre [13]
from the point of view of the seemingly-mad woman in the attic [35]. By re-examining the
narrative from the perspective of the woman silenced in Brontë’s text, confronting questions are
raised about the conventions of society. Rhys makes a compelling case for structural inequities
and oppression, not madness, driving the character’s actions; she queers the lens of the narrative
from a white, patriarchal perspective, to the lived experience of a woman of the colonies in
nineteenth-century British society. Rhys’ text reveals the intersectionality of minoritised people,
and we employ the term queer in this, rather than the explicit sexual orientation sense.
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Phrases such as science has shown imply a certainty we are rarely afforded in the practice
of science. Closer perhaps, to say science provides evidence of. The language that science uses
to make these statements is statistics, and by its very nature, inference involves a degree of
uncertainty. Although mathematics follows logic as no other science does, the application of
mathematical calculataions are not necessarily so robust. Box’s term mathematistry [12] can
be adapted for model selection procedures to ‘describe using formal tools to define a statistical
problem that differs from the scientific one, solving the redefined problem, and declaring the
scientific concern addressed’ [72]. Arguably, all inferential statistics involves a degree of math-
ematistry, but the better applications seek to minimise the mathematistry of the calculations.
In this manuscript, we shall use order theory to formalise a question from psychological science,
posed in the manuscript, ‘Is Preregistration Worthwhile?’. To this end, we construct an order
of mathematistry.

By queering, instead of reinventing the wheel, we aim to further metascientific objectives,
that is, to evolve and develop by learning from other disciplines. We confront questions about
the limitations of conventional discipline-specific methodology, that so easily trap us in ques-
tionable practice [31]. One such example of evolution is the adoption of software engineering
practices in research for scientific reproducibility1. The implicit politics and ethics of data sci-
ence are poorly articulated [54]; metascientific queerings provide one means by which we may
explore the intersectionality of computational science.

6.1 An order-theoretic approach to the question: ‘Is Preregis-
tration Worthwhile?’

A recent publication, ‘Is Preregistration Worthwhile?’, raised the question of the efficacy of
preregistration when there is weak link between the statistical methodology to the scientific
question of interest [97]. The Centre for Open Science (COS) defines preregistration as
‘specifying’ the research plan in advance [78]. That is, establish the manner in which data will
be collected, what statistical models will be used, etc., before the experiment is undertaken.
The benefit argued is that preregistration promotes transparaency and restricts the ability of
researchers to engage in inadvertent methodological errors, frequently borne of discipline-specific
convention, questionable research practices [31, 61], and delineates between confirmatory
and exploratory research.

1The topic of which this manuscript forms a doctoral oeuvre [38, 39] thereof.
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As COS produced the Reproducibility Project in psychology, which brought much-needed
exposure to the lack of trustworthiness in scientific results [19], we might consider their resources
as canonical current metascience practice. In what Makel describes as the ‘most telling example
of the lack of replicability’ in science [61], the Reproducibility Project coordinated replications
by 270 researchers, who found that out of 100 studies published in major psychological journals,
only 39 per cent of these studies replicated their (mostly) significant results [19]. The push for
preregistration is a direct response to this abysmal replication rate. Nosek, from the Centre for
Open Science, with others, argue that ‘Preregistration is Hard, And Worthwhile’ [75], from a
psychology metascience perspective.

Rethinking the conceptual framework of preregistration through a lens of mathematics, as
opposed to psychology, raises questions about the space for which preregistration is defined,
and draws parallels with other methodological interventions advocated to address the problems
identified by COS’ Reproducibility Project, such as computational reproducibility. For which
statistical methodologies is preregistration worthwhile? Is the approach restricted to psycho-
logy? What about other sciences that share similar methodological practices? How should this
be adopted in the craft of statistical computing and software design?

We begin with a brief overview of a recent publication in psychological science, ‘Is Prereg-
istration Worthwhile?’, highlighting what is of specific interest to this manuscript, and follow
with the meta-research objectives of this application of a conceptual framework from discrete
mathematics in the context of psychological methodology.

6.1.1 Is preregistration redundant, at best?

Szollosi et al.’s manuscript questions the utility of preregistration, in the context of weak stat-
istical inference, as opposed to other considerations, such as transparency in science [97]. They
identify and respond to two arguments commonly put forward by proponents of preregistration.

Firstly, that preregistration reduces the potential for selectively including covariates to
maximise statistical significance. This is but one of the many statistical model modifications
sometimes referred to as p-hacking, cherry-picking, or more generally and collectively as
questionable research practice (QRP) [31, 51, 61]. Questionable research practice is a
family of activities that increase the chances of reporting spurious results and make research
appear more reliable than is warranted.

In a modelling context, this includes changing modeling approach, model structure, para-
meterisation, or evaluation motivated by influencing the results of the model (either what it

94



The Order of Mathematistry

finds or how informative it appears), rather than producing a model that is most appropriate
for the dataset [36]. These practices are incentivised by an entrenched system of publish or
perish in academia. Researchers are placed under enormous pressure to engage in QRP in order
to maximise scientific successes and inflate publication records.

Like airbrushing a photograph, QRPs may smooth unsightly blemishes to create a
false sense of desirable appearance [61].

The prevalence of QRP is more about our scientific values as a culture, than calling out
individual researchers for following long-standing conventions diligently. The second argument,
advanced by proponents of preregistration, according to Szollosi et al., is a weaker argument
than the first: that preregistration encourages more reflective statistical choices in model selec-
tion and construction. The authors contend neither of these arguments hold when there is a
weak link between the theory and practice:

The diagonisticity of statistical tests depend entirely on how well statistical models
map onto underlying theories, and so improving statistical techniques does little
improve theories when the mapping is weak [97].

If we put aside the question as to whether preregistration is, itself, worthwhile, which is to say,
despite the ‘firestorm’ that erupted when ‘Is Preregistration Worthwhile?’ was preprinted [74],
we observe all are in agreement that methodological problems are widespread, and that we need
to develop more robust scientific practices, particularly in an age of big data.

There is more that unites metascience than divides.

We aim to consider the statements above in the lingua franca of science: mathematics. From
the perspective of mathematical science, if we are speaking of unity, it leads directly, as we shall
explore in Section 6.4, to a union of sets.

There are many readings and possible responses to Szollosi et al.’s paper, even if only to
expand on the ideas. In this manuscript, we shall restrict ourselves to an examination of how
we might mathematically define what the authors mean when they say, ‘when the mapping
is weak’.

Figure 6.1, reproduced from Wagenmakers’ ‘Breakdown’ of Szollosi et al.’s paper, presents
a nuanced way of thinking about bad, wonky, statistics and good enough practices in inference,
that is, sound statistics. Instead of a dichotomy, crudely categorising scientific practice as
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exploratory research confirmatory research

sound statistics wonky statistics

Figure 6.1: This is a reproduction of a detail from an image by Dirk-Jan Hoek in the blog post,
‘A Breakdown of ‘Preregistregration is Redundant, at Best”2 [100]. It suggests we can think of
weak and strong science applications of methodology as a spectrum. Also, a similar continuum
between exploratory and confirmatory claims. It a visual representation of how informative
statistical practice is, as not binary, but a continuous variable. However, by overlaying the
two spectra, an implicit link is made between exploratory and weak application which does not
allow for good methodology within exploratory research. By using the language of mathematics
to describe the problem, we allow for more nuance, and capture more possibilities, than can be
described in a two-dimensional figure.

arbitrarily good and bad, let us, as suggested in Figure 6.1, think of good enough scientific
practice on a spectrum.

The conclusion of this manuscript takes us to Wagenmakers’ observation that there are
many methodological interventions to consider, in addition to preregistration, many of which
may be at least as important.

I view preregistration as one possible crutch (there are others) that fixes a small but
essential part of the complete statistical inference process [100].

Disciplines use different approaches and have different intentions and it shouldn’t be sur-
prising when the solutions they offer to methodological problems also differ. Here we focus on
defining a nomenclature to describe the relative merits of research methods that may or may
not be relevant across many disciplines.

6.1.2 Questions about ‘Is Preregistration Worthwhile?’

In this manuscript we use order theory to formalise the difference, described in ‘Is Preregistration
Worthwhile?’, between the intrinsic measure of a mathematical estimator’s efficacy, and it’s
value and trustworthiness in answering the scientific question of interest. In particular, how
this is measured; how can we compare the utility of methodological interventions? How might
we describe ‘when the mapping is weak’ mathematically? In other words, an estimator
may be nothing but mathematistry, obscuring the weakness of the statistical procedure behind
mathematical complexity, and not furthering our understanding of the scientific question at
hand.
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There is a growth in the literature regarding preregistration, as there is emergence in repro-
ducible computing in research, suggesting that these methodological interventions have great
impact in particular contexts. But what are those contexts?

In Section 6.2, we question how we might measure how well methodologies answer scientific
questions. Section 6.3 then uses the measure defined for the order of mathematistry so that
we can compare the utility of different scientific methodologies under said measure, by class of
measure. The first question posed is one of cardinality, in Section 6.4; how many pairings of
claim and methodology are impacted in a scientifically meaningful way by preregistration? The
second question posed, in Section 6.5, asks about how blurry the boundary, that is, mathem-
atically continuous, as opposed to discrete, between how well methodologies inform scientific
claims.

Perhaps heuristics are only effective at measuring the utility of a scientific methodology for
a small subset of possible pairings of claim and methodology. Section 6.6 poses questions the
self-limiting of any given heuristic of good enough [110], that is, realistically implementable best
practices in science, as well as non-trivial cases. In Section 6.7, we consider other ways that
we might have approached queering this particular question. In Section 6.8, we conclude by
reflecting on the role queered scientific manuscripts across disciplines might play in furthering
open metascience.

6.1.3 Why choose order theory?

Regardless of heuristic, we are discussing a value judgement of good enough practices [111] in
science. We are considering which scientific practices are better, or greater, which is to say, >,
mathematically. We ascribe a value to the efficacy of a scientific methodology when we say its
output furthers, to borrow the parlance of Devezer et al.’s mathematical model, the ‘process of
scientific discovery’ [26], or if the methodology is nothing more than mathematistry.

We shall formalise this in Section 6.3, so, for now, we foreshadow what we mean by order
in this manuscript, intuitively in Figure 6.2.

Our purpose is to formalise a value judgement, a measure of from pure mathematistry to
provable mathematical truths.

And a value judgement is, at heart, an order.
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6

2 3

1

{a, b}

{a} {b}

{∅}

Figure 6.2: Order theorists study and describe the structure of ordering systems. Yes, the
numbers 1, 2, 3, and so on, are ordered. But there are more complex ordering systems possible.
On the left, we have the numbers that divide six in a Hasse diagram (where we read order
ascending) [22]. In this order, x ⩽ y if and only if x divides y. On the righthand side, we
have the powerset (the set of all subsets) of two elments, ordered by subset. In the centre, we
have the structure as an order theorist might think of it; the numbers that divide 6, ordered
by division, is isomorphic (the same, up to a change of labels) to the powerset of two elements,
ordered by subset. Note that in both cases, we have two elements that are in parallel, they are
neither less than nor greater than the other, but do have relationships to the same elements: 2
does not divide 3, nor 3 divide 2; and {a} is not a subset of {b}, nor vice versa. The central
nodes are below the top, and above the bottom, in all three diagrams.

6.2 Measuring mathematistry

Let C denote the set of all possible scientific claims for which we might provide evidence of,
using a scientific method or procedure.

Let M denote the set of all possible scientific methods that can be used to provide evidence of
scientific claims. We are deliberately vague here, where scientific method may comprise a model,
a method, such as preregistration, or a combination of statistical and procedural interventions.
Any procedure that, at least in some contexts, furthers what Devezer et al. describe as the
‘process of scientific discovery’ [26]. We may consider statistical models in this nomenclature,
at any time, by taking the subset S of methodologies that involve a statistical procedure. In
this manuscript, we take reproducible computing and preregistration, in particular, and touch
on the more complex case of questionable research practices in ecological models, in Section
6.6.2, to demonstrate the challenges of modelling through mathematistry.

Consider the set of ordered pairs (c,m) ∈ C × M , that each describe a scientific claim
presented in a published manuscript, thought of in terms of claim c ∈ C and method m ∈ M .
Let X ⊆ C ×M denote the subset X of reasonable pairings C ×M of claims and methods.

The measure of mathematistry can be thought of as a perfect truth or not, as in a mathem-
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atical proof, or a spectrum, as illustrated in Figure 6.1, or ordering more complex, from weak to
strong applications. In the latter, the weakest applications are nothing but mathematistry, and
in the strongest, the mathematics does not obscure the truth with mathematistry. Indeed, as we
shall explore in Section 6.6.2, we may construct yet more complex orderings of mathematistry.
First, however, we must define both the measure of mathematistry and its order.

6.2.1 Heuristics of mathematistry

It is worth pausing to question what characterises a strong application of method m from
possible methods, M , to further, to borrow Devezer et al.’s terminology [26], the process of
scientific discovery of claim c from possible claims, C. We will not seek to argue the merits of
any particular measure, but to allow our heuristic to follow any possible ordering system. We
consider h(c,m) to be a measure of the strength of the mapping between method m and the
scientific claim c; a measure from nonsense and mathematistry, obscuring of the results posed
by answering a seemingly similar question, at one end, to truth at the other. All statistical
inference has, arguably, a measure of mathematistry; thus it is what lies between nonsense and
truth that is the study of this manuscript.

There are many interpretations of the term heuristic [18], and here we invoke it to represent
the rule of thumb by which we denote science as good or bad. In particular, we might extend
on the spectrum suggested in Figure 6.1, as opposed to a reductive dichotomy of good or bad
science. Thus, we might think of four cases of how a heuristic might behave:

h : C ×M →



{0, 1} if heuristic categorises as effective or not;

[0, 1] if heuristic measures efficacy on a spectrum;

H if heuristic categorises efficacy otherwise,

∅ if the heuristic does not apply to the pairing.

where h is some categorisation of C ×M ordered by ⩾ under h in some way from not effective,
an abundance of mathematistry, to effective, very little mathematistry. A visual interpretation
of these is shown in Figure 6.3 using Hasse diagrams, read from bottom to top, from minimal
elements, uninformative mathematistry, to maximal elements, no mathematistry. From the left,
we have the dichotomous case, then the spectrum, and, on the right, a more complex set of
relationships.

We define our heuristic according to the commonalities we identify between all types of
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Figure 6.3: We can think of heuristics of mathematistry in terms of three forms: dichotom-
ous, as Wagenmakers observes is too reductive; spectrum, as suggested by Wagenmakers [100];
or some combination of continuous or categorical value systems that allow comparison systems.
In the language or order theory, we can abstract and describe all cases. The solid lines sym-
bolise a covering connection, where the element is immediately above or below the connected
element under heuristic h; think the natural numbers, 1, 2, 3, . . . , which we denote N. The dot-
ted lines indicate a continuum upon which there are infinitely many points; think real numbers
...,−π, · · · − 1, . . . , 0, . . . e, ..., which we denote R. We allow systems that have a true top ⊤
and bottom ⊥, such as the interval [0, 1]. Also allowed are those that have theoretical limits
not included in the order, coloured in grey, such as (0, 1), as illustrated in the central Hasse
diagram. Mathematics provides us with tools to ask questions of all possible heuristics.

heuristics.

Definition 2. Heuristic of mathematistry. A heuristic h of mathematistry measures the
degree to which a method m ∈ M obscures, through calculations and scientific procedure, the
process of furthering scientific discovery towards claim c ∈ C. We denote H to be the set
of all possible heuristics of mathematistry. We define the value h(c,m) as the measure of
mathematistry of pairing (c,m) under heuristic h.

6.2.2 Characterising heuristics of mathematistry

We are interested in heuristics that measure how well a method furthers what Devezer et al.
describe as a process of scientific discovery [26]. The integrity of the design of a statistical
model will impact on how much it furthers the process of scientific discovery. However, it is
yet more nuanced still. A study may be perfectly designed and still not further the process of
scientific discovery to the claim or question of interest.

In Grainger et al.’s recent paper on research waste [37], cumulative meta-analysis, assess-
ing meta-analyses over time to see if further research will make a difference to the estimation of
effect, is suggested to assess if conducting a study will contribute meaningfully to the field, or
if it will be a waste of research resources. In this case, we may have an experiment performed
rigorously, but if this does not further scientific discovery to the population effect, based on
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the existing literature, then we arguably have close to the greatest measure of mathematistry.
Mathematical calculations have been performed, but they do nought to further the process of
scientific discovery.

Another concern may be the required computational power. Kwisthout et al., point out
that, for scientific claims c1, c2 ∈ C, an algorithm m ∈ M may be computationally feasible for
c1, but not c2 [57]. Another consideration is the limitations of computation in the questions that
can be effectively asked computationally [8]. These are but examples of confounding factors
that might affect the efficacy with which a given method might further the process of scientific
discovery towards a claim.

Let us consider an example measure to see how its mathematistry changes when the claim
paired to it is changed. Suppose a data scientist at a school wished to know how many autistic
students n are in their cohort N , to inform how resources should be allocated. We will denote
this question c1.

They may extract the students’ files as a table and filter on an autism indicator counting
how many rows they have n, compared to how many rows total N . We will denote this method
m ∈ M .

What is the mathematistry of this calculation? It is ⊤, with no mathematistry. The
population the data scientist wished to know about was entirely known.

Now suppose the principal asked the data scientist to project what the proportion of the
cohort will be autistic students over the next ten years. We denote this question as c2. In this
case, the method employed can only approximate the parameter of interest.

Does method m carry as much certainty for question c1 and c2? No, (c1,m) is a population
parameter, so is truth, ⊤h, the minimum measure of h. In the other case, (c2,m), it is an
uncertain estimate of a parameter. Which is to say, under some heuristic h, we must have

⊤h = 0 = h(c1,m) < h(c2,m).

A heuristic must differentiate pairings of claims and methods by how well the method
furthers the process of scientific discovery. With this, we now extend on Definition 2 to clarify
the set of possible heuristics, H.

Definition 3. Let H denote the set of all heuristics of mathematistry. For a heuristic h to be
a member of H there must exist a scientific method m, and two distinct scientific claims we

101



The Order of Mathematistry

might reasonably pair m with, c1 and c2, such that

h(c1,m) > h(c2,m)

or, conversely, there must exist distinct methods, m1 and m2, such that, for a claim c, we have

h(c,m1) > h(c,m2).

6.3 The order of mathematistry

In this section we define a binary relation →h and show it is a quasi-order on pairings of claim
and methodology, and that →h is an order when we partition the reasonable pairings X of claim
and method, C × M , by the same relation →h. This construction follows Hell and Nešetřil’s
methodology for ordering of equivalence classes of the category of directed graphs [45], which
was recently extended to the category of finite algebras [24].

Definition 4. Let (c1,m1) →h (c2,m2) if and only if h(c1,m1) ⩾ h(c2,m2) under heuristic h

of mathematistry.

So, we consider (c1,m1) to be less than (c2,m2) if the measure of mathematistry of (c1,m1)

is greater than (c2,m2). To be considered an order, →h must satisfy three properties [22].

Definition 5. A binary relation → on set P is an order if, for all x, y, z ∈ P , we have

(i) x → x,

(ii) x → y and y → x implies x = y,

(iii) x → y and y → z imply x → z.

We refer to these properties as (i) reflexivity, (ii), antisymmetry, and (iii) transitivity,
respectively.

When a binary relation satisfies (i) reflexivity and (iii) transivity, but not (ii) antisymmetry,
we say it is a quasi-order.

Lemma 1. The relation →h is a quasi-order on X .

Proof. We will show the relation →h satisfies reflexivity and transitivity, but not antisymmetry.
Let (c1,m1), (c2,m2), (c3,m3) denote paired claims and methodologies from reasonable pairings,
X , of scientific claim and methodology to assess that claim, a subset of C ×M .
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To show reflexivity, we observe (c1,m1) →h (c1,m1), as h(c1,m1) = h(c1,m1), so h(c1,m1) ⩾
h(c1,m1).

For transitivity, let us assume (c1,m1) →h (c2,m2) and (c2,m2) →h (c3,m3). Then, we have
(c1,m1) ⩾ (c2,m2) and h(c2,m2) ⩾ h(c3,m3. Which gives h(c1,m1) ⩾ h(c3,m3) (⋆). Thus,
(c1,m1) →h (c3,m3).

But if we assume (c1,m1) →h (c2,m2) and (c2,m2) →h (c1,m1), we cannot assume c1 = c2

and m1 = m2, as more than one paired claim and methodology may have the same measure
under the heuristic h.

Since we have satisfied reflexivity and transitivity, but not antisymmetry, we conclude →h

is a quasi-order on X .

Note that in the above proof we require, at (⋆), the heuristic h to be ordered by ⩾.

Corollary 1. The heuristic h of mathematistry is an ordered set on the universe, that is, the
set that is ordered, H,

h := ⟨H;⩾⟩.

If, however, we define an equivalence class, and partitioning of X by that equivalence rela-
tion, then we shall see →h is an order relation in that space.

Definition 6. We define the equivalence class [[c,m]]h on X ⊆ C × M under h, a measure
of the mathematistry of method, m, from possible methods, M , in furthering the process of
scientific discovery towards the claim c, from possible heuristics H of mathematistry,

[[c,m]]h := {(x, y) ∈ X | h(x, y) = h(c,m)}

Which is to say, we consider [[c,m]]h to be the equivalence class of things that take the value
h(c,m) under heuristic h ∈ H of mathematistry.

Definition 7. Let Xh := X/→h
denote the set of equivalence classes [[c,m]]h of X partitioned by

heuristic h of mathematistry, chosen from possible heuristics of mathematistry, H, of strength
of evidence in scientific claim c ∈ C provided by procedure m in M , which includes all statistical
forms of estimation.

When we consider the application of the relation →h in the space Xh, we can now more
fully characterise the relation.

Theorem 1. The relation →h is an order on Xh.
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Proof. Let [[c1,m1]], [[c2,m2]], [[c3,m3]] in Xh. According to Definition 5, we must show toh

satisfies reflexivity, transitivity, and antisymmetry.
Since (c1,m1) →h (c1,m1), by Lemma 1, we have [[c1,m1]]h →h [[c1,m1]]h. So, →h is

reflexive.
For transitivity, let us assume [[c1,m1]]h →h [[c2,m2]]h and [[c2,m2]]h →h [[c3,m3]]h. We

wish to show [[c1,m1]] → [[c3,m3]]. Then (c1,m1) →h (c2,m2) and (c2,m2) →h (c3,m3), so
(c1,m1) →h (c3,m3, by Lemma 1. So, we have [[c1,m1]]h →h [[c3,m3]]h, as required.

Finally, we show that when considered acting on equivalence classes, →h satisfies antisym-
metry. Let us assume [[c1,m1]]h →h [[c2,m2]]h and [[c2,m2]]h →h [[c1,m1]]h, then we have
h(c1,m1) ⩾ h(c2,m2) and h(c2,m2) ⩾ h(c1,m1). Since h is antisymmetric, by Corollary 1, we
have h(c1,m1) = h(c2,m2). Thus [[c1,m1]]h ≡ [[c2,m2]]h.

And so we may define our order of interest.

Definition 8. We refer to
⟨X;→⟩h := ⟨X/ →h;→h⟩

as the order of mathematistry under heurisic h ∈ H.

6.4 A question of cardinality

Figure 6.4 attempts, if a trifle ambitiously, to summarise the motivating question of this ma-
nuscript. Consider the pairings of claim and scientific method, where the method includes a
given intervention, say, preregistration or reproducible computing. What proportion of these
pairings furthers the process of scientific discovery such that the pairing’s mathematistry is
lifted above some predefined optimal level h̃ of mathematistry? This question motivated the
order theoretic constructed provided in Definition 8; that is, the order of mathematistry was
created to articulate this question.

In this section, we attempt to articulate, using the order of mathematistry, this motivating
question of cardinality. That is to say, what is the size of the set of paired claim and method-
ologies for which preregistration, or reproducible computing, will make a meaningful scientific
difference?

Figure 6.4 provides a Hassse diagram of the central question of the manuscript ‘Is Prereg-
istration Worthwhile?’ [97]. We now present this claim mathematically.
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[[⊤]]h

[[⊥]]h

[[∅]]h

h̃

⟨C ×M ;→⟩h

⟨X;→⟩h

⟨P;→⟩h

⟨W;→⟩h

Figure 6.4: We use to depict with the order of mathematistry, ⟨C × M ;→⟩h, on all
pairings of claim and methodology. The order on reasonable pairings, ⟨X;→⟩h, depicted by

, are a proper subset of possible pairings, as there are combinations that are nonsensical,
such as applying longitudinal methodology to data that has no properties of longitudinal data.
We highlight two suborders of mathematistry in black. We use to show the order of
mathematistry on pairings whose methodology contains an intervention of interest, ⟨P;→⟩h,
say, reproducible computing or preregistration. And for the order of mathematistry where
there is a weak application of theory to the given scientific question, ⟨W;→⟩h. An arbitrary
band represents the measure, h̃, above which is considered an acceptable measure of
mathematistry under heuristic h. Not all preregistered scientific endeavours have a strong link
between theory and application [97], so ⟨W;→⟩h overlaps ⟨P;→⟩h. Is the proportion of ⟨P;→⟩h
that does not overlap ⟨W;→⟩h so small that most of ⟨P;→⟩h does not achieve h̃?
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Claim 1. Let h be a heuristic of mathematistry, chosen from possible heuristics of mathem-
atistry, H. Let ⟨P;→⟩h denote the order of mathematistry on reasonable pairings of claim and
methodology whose methodology include an intervention of interest, for example, reproducible
computing or preregistration. That is, if P := C×P , where P ⊂ M , denotes the methodologies
with the intervention of interest, paired reasonably with appropriate claims. Then the pairings
considered in P ⊂ X ⊂ C ×M generate the suborder ⟨P;→⟩h. Let ⟨W;→⟩h denote the order
of mathematistry where there is a weak application of theory to the claim in question. These
are both suborders in the order of mathematistry on reasonable pairings, ⟨X;→⟩h. Let h̃ denote
the measure of mathematistry under h above which the pairing sufficiently furthers scientific
discovery.

We then ask if the proportion of ⟨P;→⟩h that overlaps, that is, intersects, with ⟨W;→⟩h is
much greater than ⟨P;→⟩h where there is a strong application of theory to claim. That is,

⟨P;→⟩h ∩ ⟨W;→⟩h ≫ ⟨P;→⟩h\⟨W;→⟩h

and, as such, leads to a larger set of pairings for which the minimal heuristic of mathematistry
is not achieved. That is, if we assume that by weakly applied, we mean sufficiently minimal
mathematistry to further the process of scientific discovery, we have

(c,m) ∈ [[c,m]]h and [[c,m]]h ∈ W =⇒ h(c,m) > h̃.

Then only a small proportion of pairings of claim and methodology will further the process
of scientific discovery by imposing this intervention. So, for any heuristic, h ∈ H, and any
methodological intervention P ⊂ M , ordered by heuristic h, we have,

{(c,m) ∈ ⟨P;→⟩h | h(c,m) > h̃} ≫ {(c,m) ∈ ⟨P;→⟩h | h(c,m) ⩽ h̃}.

in the order of mathematistry ⟨P;→⟩h induced by h on the methodological intervention that
defines ⟨P;→⟩h.

6.5 A question of density

In addition to asking what subspaces affected meaningfully by methodological intervention,
such as reproducible computing, or preregistration, as discussed in the previous section, we
might also ask if this space is finite or contains infinite subspaces. Which we might ask, in the
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context of mathematistry, is there a clear delineation between two classes of models where one
has a greater order of mathematistry than the other? More formally, we might ask if the order
of mathematistry is dense.

Definition 9. An ordered set P is dense if, for x < y in P , there exists z such that x < z <

y [22].

One observation we might make is that there is a strict delineation between [[⊥]]h and [[∅]]h;
which is to say, [[⊥]]h covers [[∅]]h, as shown in Figure 6.5.

[[⊥]]h

[[∅]]h

Figure 6.5: Detail from Figure 6.4 showing the set of pairings from C×M that have measure 0
under heuristic h ∈ H covering (with nothing between) the set of pairings from C ×M that are
not contained in the domain of heuristic h, i.e., not assigned a measure. Both are grey, as it is
possible that the set is empty; i.e., the heuristic always has non-zero measure, or the heuristic
measures to all possible pairings.

Definition 10. We say x is covered by y (or y covers x), if x < y and x ⩽ z < y implies
z = x [22].

We will now use our observation, along with Definitions 9 and 10, to formally characterise
Figure 6.5 as a covering relation.

We make the assumption there is at least one possible pairing for which a given heuristic
does not apply. For surely there is some analogue of the No Free Lunch Theorem [112] for
heuristics that finds no heuristic optimally measures all pairings of claim and methodology.

Theorem 2. Assuming that there is at least one pairing (c,m) ∈ X , in reasonable pairings of
claim and methodology, for which the heuristic of mathematistry does not apply, the order of
mathematistry induced by heuristic h ∈ H is not dense everywhere.

Proof. To show that the order of mathematistry is not dense everywhere, we will demonstrate
that [[⊥]]h covers [[∅]]h, as described by Definition 10.

Assume there is at least one pairing (c1,m1), from reasonable pairings X , of claim and
methodology, for which the heuristic of mathematistry does not apply, under some heuristic h
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from the heuristics H of mathematistry. That is, the pairing (c1,m1) cannot be found in the
domain of h. Thus we have [[∅]]h exists and [[c1,m1]]h ≡ [[∅]]h in ⟨X;→⟩h.

Now take any other pairing (c2,m2) from minima measures of mathematistry under h. That
is, (c2,m2) ∈ min(h).

Any other pairing must be in one of three states. We will consider each to show there is
no distinct element between [[c1,m1]]h and [[c2,m2]]h, as required by Definition 9 to satisfy
density, between these equivalence classes.

If the pairing has no measure of mathematistry under h, then it is a member of [[∅]]h.
Since [[∅]]h ≡ [[c1,m1]]h, we have not found a distinct element with measure of mathematistry
between [[c1,m1]]h and [[c2,m2]]h.

If the pairing has a measure of mathematistry, then either its measure is the same as c2,m2

or greater, as c2,m2 is a member of the minima of h. If its measure is the same then it is in
[[c1,m1]]h, and not distinct.

And, finally, if the measure is greater than the minima, then its equivalence class is distinct
but above the minima of h, and thus not between the equivalence class of null measure under
h and those of the minima, as required. Hence, we may conclude, by Definition 10, that [[⊥]]h

covers [[∅]]h in ⟨X;→⟩h.

By finding one example of a covering relation, we have shown that the order of mathematistry
is not dense everywhere. But we have considered a specific case. Any number of further
questions of density could be asked of the Order on any subset. One might be interested in
delineating between classes of models, for example. But, as our intention is to provide examples
of metascience questions posed in an order theoretic language, we now consider a different aspect
of the order of mathematistry.

6.6 The utility of heuristics

This manuscript has, thus far, questioned the utility afforded in using an order-theoretic frame-
work to formalise questions about the practice of science. It is, however, certainly worth posing
the counter question, that is, consider where there is little utility afforded. In mathematical
parlance, we might say we are questioning under what conditions this order-theoretic construc-
tion is trivial. As demonstrated by Theorem 2, for any given h, if we agree that for any heuristic
there must be claims and methodological pairings for which h does not apply, then the con-
struction is non entirely trivial, that is it does not comprise a single equivalence class. We
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now question to what extent the structure is uninformative or trivial, as well as the potential
complexity of the construction.

At first blush, to consider this might seem lacking in purpose. However, a cautionary tale
emerges in the application of heuristics, and the limitations inevitably afforded by the domain
for which the heuristic was initially conceived. For example, we might question the extent to
which preregistration translates to scientific methodology outside of social science. Similarly,
reproducibility may be unfeasible in medical or political settings, for example, the research on
the COVID-19 pandemic is necessarily irreproducible, for we cannot, and would not wish to,
recreate the exact circumstances of this global event. Computational reproducibility may, too,
be unattainable where datasets contain sensitive information.

6.6.1 The limitations of a heuristic

Perhaps any given heuristic is necessarily biased by the the conceptual framework from which
it began existence. When considering the collection X of reasonably paired claims C and meth-
odologies M for assessing these claim, we might question for which pairings does the heuristic
apply. We might ask if, for any heuristic, its utility of measuring how well a methodology fur-
thers the process of scientific development is limited to a small, albeit arguably interdisciplinary,
domain.

Claim 2. Let h ∈ H. Then

[[0]]h ∪ [[∅]]h ≫ ⟨X;→⟩h\([[0]]h ∪ [[∅]]h).

Informally, by Claim 2, we are asking, for any heurisitic, are there many more pairings
heuristic h does not provide a measure of mathematistry for than there are pairings for which
a heuristic provides a measure of mathematistry? Despite possible limitations or inherent bias
of any formalism applied to metascience, this manuscript suggests there is yet utility.

What is the purpose of formalism? To define things. In metascience, where conventions are
liable to be deeply ingrained in any given discipline, it is worth asking if we may serve ourselves
better by first agreeing on what it is we are discussing. Formalism via mathematics provides
us with a vehicle to fix components, vary other components, and speak in the abstract about
what does and does not serve the pursuit of good enough practices in science. However, we
know from Theorem 2, that this nomenclature describes non-trivial spaces. We now consider
two such non-trivial constructions, one that is at least five levels, and one that demonstrates
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the combinatorial complexity that can occur, providing the heuristic differentiates thus.

6.6.2 Non-trivial applications of the order of mathematistry

In particular, the order of pairings that involve methodologies with a statistical intervention,
that is, a mathematical calculation, is non-trivial. We consider statistical interventions in the
first, and, in the second, we turn to a conceptualisation of building ecological models [36].

The order of mathematistry on statistical models

For our first example of a non-trivial order of mathematistry, we consider a heuristic, h that
allows differentiation between completely informative, an approximation, somewhat informat-
ive, and not at all informative application of a method m, involving a statistical calculation,
to a scientific claim c. That is, we consider cases where there is a mathematical calculation
embedded in the methodology. Then this heuristic will have at least five levels, providing a
simple example of a non-trivial application of the order of mathematistry.

Theorem 3. Let h be a heuristic of mathematistry, chosen from possible heuristics H of math-
ematistry and ⟨S;→⟩h be the order of mathematistry induced by h on the subset S of meth-
odologies M where the procedure involves a statistical calculation, where h allows for at least
five levels. Then ⟨S;→⟩h has five levels.

Proof. Let us assume claim 2 holds, and that under heuristic h we have pairings with both 0
and ∅ measures in C × S.

From Lemma 2, we know ⟨S;→⟩h has a distinct bottom [[∅]]h, covered by [[⊥]]h. Where
the correct statistical calculation is applied to a population’s data for question of interest, say,
a proportion n/N of a group, n, from a larger population, N , we have the precise result for the
population of interest, ⊤, truth. Thus, ⟨S;→⟩h, has a top, [[⊤]]h. It remains to show there are
two levels between the bottom, [[⊥]]h, and the top, [[⊤]]h.

Below a population stastistic, we have a sample statistic, say, n̂/N̂ , from which we might
draw inference about the true proportion n/N , where the calculation has been performed cor-
rectly. Below this we have an incorrect calculation, say, N/n, which, although incorrect, may
still be more informative than an application of the statistical method that produces a ⊥ meas-
ure of mathematistry under h.

We represent the structure described in Lemma 3 as a Hasse diagram in Figure 6.6. When
viewed this way, we see why representations such as Figure 6.1, arise, to combat the lamented

110



The Order of Mathematistry

[[⊤]]h

[[(c, m̂)]]h

[[c, m̃]]h

[[⊥]]h

[[∅]]h

Figure 6.6: If we take a heursitic h that allows for at least five levels of distinction for stat-
istical calculations, a subset of possible methodologies, then the suborder of mathematistry on
statistical calculations ⟨S;→⟩h has at least five levels. Those levels are the equivalence classes
generated by: the top, ⊤, the population summary statistic, m̂; the statistical calculations that
estimate population parameters, m̂; an incorrect computation of a population estimator, m̃;
pairings that have a measure of 0 under heurstic h; and pairings for which the heuristic does
not apply, generated by ∅.

rise of dichotomania, an overemphasis on dichotomising scientific questions to true or false [1].
As we shall further explore in the next section, a mathematical calculation that is a statistical
model is a Borgesian3 garden of forking data in which there are many opportunities, research
degrees of freedom, in which the model may be compromised or robustified [33].

The mathematistry of QRP in ecological models

For our final application of the order of mathematistry, we turn to Gould’s conceptual framework
for questionable research practices in ecological models [36]. This is an extension of Gelman and
Loken’s conceptualisation of ‘researcher degrees of freedom’ in null hypothesis significance tests,
which recognises that researchers must make several decisions when performing a statistical
analysis [33]. Within these degrees of freedom, lie many pitfalls where the researcher may
inadvertently engage in QRP [31]. With Gould’s adaptation of Gelman and Loken’s conceptual
framework for statistical inference, that is, inference that does not fall into the family of null
hypothesis significance testing, the order of mathematistry is non-trivial.

Gould identifies a six-phase model development process:
3The Garden of Forking Paths is 1941 short story by Jorge Borges in which the multitudinous possibilities

that arise from each decision made are conceptualised as a labrynthine garden of bifurcating paths [11].
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1. Determine model.

2. Collect data.

3. Algorithm selection.

4. Model predictions.

5. Model assessment.

6. Submit for publication or not.

At each stage, Gould identifies questionable research practices, cherry picking, p-hacking,
etc., that adversely affect the methodology’s ability to further the process of scientific discovery.

To conceptualise this, somewhat crudely, let us restrict ourselves to whether the step in
the model development process sufficiently furthers the process of scientific discovery, where we
denote m(s1) as the presence of QRP at step 1., m(s1, s2) as the presence of QRP at steps 1.
and 2., and so forth.

Given that QRP can occur at any of the six model development steps, the order of mathem-
atistry, even crudely partitioned by meeting the heuristic or not, is a complex structure. Per-
haps one QRP affects the mathematistry of the model less than another, so that h(c,m(s1)) <

h(c,m(s3)), for example. Furthermore, multiple QRPs will likely affect a model’s ability to
inform on the ecological problem in question, so that h(c,m(s1, s2)) > h(c,m(s1)).

In Figure 6.7, we construct a crude ordering on the set of ecological models and questions
they might answer, which is detailed in the caption. Despite fairly crude simplifications made
within the heuristic, the resulting construction is complex. And now that we have defined and
constructed the order of mathematistry, as well explored its limitations, and non-trivial cases,
we pause to note what is not discussed in this manuscript, before concluding with a note on
communication across disciplines.

6.7 Other queerings

We have described how our definition of a heuristic h, from possible heuristics, H, may be
drawn from not only mathematics, but metascience literature on questionable research practices,
that indicate issues, e.g., experimental design [31] or the literature on the application and
interpretation of regression models [69], a statistical modelling tool common to many disciplines,
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[[⊤]]h

[[(c,m)]]h

[[(c,m(s3))]]h[[(c,m(s2))]]h[[(c,m(s1))]]h [[(c,m(s4))]]h [[(c,m(s5))]]h [[(c,m(s6))]]h

[[(c,m(s3, s4))]]h[[(c,m(s2, s3))]]h[[(c,m(s1, s3))]]h

[[⊥]]h

[[∅]]h

Figure 6.7: Let us, somewhat crudely, suppose the heuristic h assigns a different but equal value
to the presence of a QRP at one step in the algorithm, and for two steps, and so forth. Let
[[c,m(sn)]] denote the equivalence class of ecological models and things to model, such there
exists a QRP at the nth step. This is crude on two counts: firstly that there is an equivalence
class of one or more QRPs at Step 1. in Gould’s six phases of building an ecological model; and
furthermore, the ordering is parallel for QRP at each step. But, even with crudely simplifying
the problem thus, the order of mathematistry on ecological models is complex.
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or the literature on misapplication, such as the use of exploratory data analysis statistical
techniques in confirmatory research [96]. As our focus was to construct an order-theoretic
conceptual framework, this literature is given only shallow measure.

Indeed, there is much not discussed in this manuscript, as well, from within mathematics. Is
mathematistry a category? What benefits might be leveraged from measure theory, the study
of measures? Perhaps measure theory is even better adapted to this problem than order theory.
Another mathematical approach might be a directed graph where we allow all edge-relations
→h to exist for all h ∈ H. Which is to say, consider the space where all heuristics of good and
bad science are allowed.

Statistical meta-researchers present a different perspective of conceptualising metascience,
and in each case, we might queer the conceptualisation through order theory. For example, it
would be interesting to explore an the order of mathematistry on Devezer et al.’s mathematical
model of scientific discovery, which provides a framework to study reproducibility [26].

If nothing else, this manuscript observes there is much work that can be done in construct-
ing a discipline-agnostic metascience formalism that facilitates friendly, positive collaboration
between scientific fields.

6.8 Scientific ways to discuss how to science

It’s tempting to dismiss good enough scientific practice of strongly linking a methodology to a
claim, in order to elucidate a meaningful scientific result that furthers the process of scientific
discovery, as not that hard. Especially from the perspective of a well-established discipline with
widely agreed-upon conventions.

But what is important, or a pitfall, in one discipline may be irrelevant or trivial to avoid in
another. What comprises the process of preregistration in the context of statistical simulations?
To learn from each other, we require standardised ways of talking about what types of scientific
claims particular methodologies are appropriate for.

The cardinality question presented in Figure 6.4, along with the other questions posed in
Sections 6.5 and 6.6, provide a framework for how we can avoid an overemphasis on specific
scientific methodologies in our canon of good enough [111] (i.e., realistic) research practices,
such as preregistration [97] or reproducible computing [39], to the detriment of scientific claims
for which these specific methodologies are, at best, redundant [97].

To learn from and improve each others’ science, we need to ‘queer,’ as Simpson argues,
‘rather than invert the existing structures and build a more equitable version of the world’ [90].
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The Order of Mathematistry

By posing questions about metascience through the language of mathematics, we queer our
understanding of methodologies of the sciences of uncertainties, where inference is practiced
but mathematics frequently avoided, or applied with an overenthusiastic and unnuanced fervor.
Rather than seek to reinvent new mathematics, this manuscript aims to queer the questions of
psychological science through the language of mathematics. If some progress towards a inform-
ative discipline-agnostic nomenclature for metascience has been achieved, then this manuscript
has achieved its aim.
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Chapter 7

Foibles & Limitations
The nature of interdisciplinary work

7.1 A dissertation is never completed

A dissertation of mathematical computation is an apprenticeship in science; a dissertation is
never completed, it is ended. As with apprenticeship in anything, there are many things I’d
do differently now, given a do over. And, as a work of apprenticeship, it is unlikely to define
any field; at best, this intrepid graduate student endeavours to faithfully record my thoughts
on these scientific questions at this time1.

I’ll ruminate briefly on but a few examples of the many flaws and things I would now do
in another way. The time to end a doctorate is when sufficient work has been completed that
the scientist is ready to move onto a new project. Despite the following foibles and limita-
tions, this dissertation is demonstrative of an apprenticeship in interdisciplinary computational
metascience.

1I am already at the point where a part of me wants to submerge this dissertation in the bathtub, “Shh shh
it’ll all be over soon”, until it stops kicking. It’s been a daily struggle not to attach a stickynote to the title page,
I pity the poor fool that must needs read this here screed. But I will only learn to write good essays by writing
bad essays, then better essays; at some point rewriting the same essays does not serve to render me a better
scientist. I am confident I am at this point where my development as a scientist will be best served by moving
on to my next project, a Bayesian network meta-analysis for a Cochrane study. Do get in touch if you wish to
contribute to nmareporting::, for reporting network meta-analyses according to open science protocols.
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7.2 Meta-analysis of medians

One limitation of this chapter is there is more work that would be required to bring this chapter
to publication. There have likely been advances in this problem during the disrupted progress
on this manuscript.

7.3 Testing and code

One of the major limitations of this thesis is a lack of depth of inquiry into the practice of
automated testing. This dissertation does not develop the ideas beyond practices described in
the Testing chapter in R Packages [104]. There are many such coding limitations in this work,
in addition to testing. Functional programming is only engaged with at a cursory level, too.

Whilst this is a limitation, this is not the focus of the mansuscript. instead, this dissertation
is an exploration of the minimal tools required for reproducible computing for scientific research.
Rather than a comprehensive dive of computational tools and techniques, the manuscripts in
this thesis are largely driven by the following question.

How to practice good enough computational science?

Here we invoke the idea of good enough scientific computing [111], as opposed to aiming for an
unattainable best practice. After all, researchers are, by and large, not experts in computer
science, but those from other domains who wish to practice computing to futher, to borrow
from Devezer et al., the process of scientific discovery [26].

There is a seemingly infinite world of programming resources, but a research software engin-
eer is not a software developer in the conventional sense. Some aspects, such as data handling,
need to be especially robust, but other aspects of quality assurance, for example, the extent of
unit tests, are arguably lower for a research context.

7.4 Mathematistry

There are a couple of examples in this manuscript that I believe need to be reworked before
publication. Also, I believe there’s a fundamental conflation of the ideas of order and heuristic,
and that both would require further clarification.
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7.5 Reproducibility and the nature of interdisciplinary work

Limitations in this dissertation abound. Less consideration is given to mathematical statistics
than to a single-disciplinary manuscript of mathematical statistics; this is an inevitable con-
sequence of interdisciplinary work. With this in mind, this dissertation has endeavoured to
avoid engaging with the more complex offerings of any one discipline, but to explore an achiev-
able, for any mathematical scientist, workflow for answering questions. There are many things
to learn, in each of the disciplines engaged with. However, this dissertation is also representat-
ive of the first generation of researchers where software engineering has increasingly dominated
research practice across a multitude of disciplines, such as archaeology [67], or, for a specific ex-
ample of interdisciplinary computational work, faux:: [25], for simulating data with particular
structures, such as factorial designs, which are common in experimental psychology.

Here is what I learnt.
Open scientific practice facilitates a shift of emphasis from solution to framing. It is arguably

more useful to provide a protocol by which scientists may understand the problem (with, say,
a package website with vignette), such as provided by parameterpal::, and contribute to the
solution, via a GitHub online code repository2. Given a goal and a specific set of conditions
and experience, it is easy to discern a problem. Via open science practice, one can crowd
source a solution efficiently. This framing has scientific utility, but comes at a cost of time and
education, just as with clarity of mathematical argument. If this dissertation convinces the
reader that the cost, that is to say, investing in education and valuing time spent on research
software engineering is worthwhile for the practitioner, and for furthering the process of scientific
discovery, then this manuscript has achieved its aim.

In Chapter 5, a somewhat incorrect, but functionally adequate, solution is provided for
simulating the proportion allocated to intervention group in a study. As noted in Section
5.4.2, after sharing parameterpal:: openly, an incorrect assumption was picked up by Daniel
Oberski, an academic in the Netherlands. Via gist, he provided an improved mathematical
solution, which was incorporated into the code. Yanina Saibene, an agricultural academic in
Argentina, further developed the package by converting the vignette an interactive tutorial.
Framing the question clearly, how it was solved, and facilitating others’ solutions is arguably
an essential skill for contemporary computational research.

From different perspectives, this dissertation advocates for a reorientation of mathemat-
ical science such that we recognise the challenge and time consuming nature of reproducible

2https://github.com/softloud/parameterpal
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computation, as well as the value of research software engineering for good enough scientific
practice.
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