La Trobe University

Masters Dissertation

Undecidability from First Principles

Candidate:
Yao Tang (Bachelor of Science)

Contents

Abstract iv
Statement of Authorship v
Introduction 1

1. Diagonal Arguments 2
2. Notions of Decidability 3
3. Essential Undecidability of TC 4
4. Other Models of TC 4
5. Notation 4
6. Overview 5
Chapter 1. The Elementary Theory of Concatenation 8
7. Defining the theory 8
8. Theorems of TC 10
Chapter 2. The standard model of TC 13
9. Properties of Tx 13
Chapter 3. Discussing elements of Tx in the context of TC 16
10. Properties of the naming map 16
Chapter 4. Discernibility of relations on Tx 21
11. Properties of GD relations and functions 23
Chapter 5. Equivalence of GD to Turing machine decidability 30
12. GD \Longrightarrow Recursive 30
13. Recursive \Longrightarrow GD: The Idea 34
14. Recursive \Longrightarrow GD: The Missing Details 36
Chapter 6. Representability of ED relations 42
15. Representability 42
16. ED Relations 45
Chapter 7. Representability of GD relations 56
17. Existential Quantifiers 56
18. GD Relations 58
Chapter 8. Discernibility of encoded classes 70
19. Definitions 70
20. Some lemmas 73
Chapter 9. Undecidability of $\mathrm{TC}, \mathrm{Th}(\mathbf{T} \mathbf{x})$ and everything in between 79
21. A few more results 79
22. The proof of undecidability 81
Future Directions 83
Bibliography 84

Abstract

In his 2005 paper "Undecidability without arithmetization", Andrzej Grzegorczyk proved an undecidability result for a theory of concatenation over an alphabet with at least two letters. His techniques can be likened to that of the proof of Gödel's first incompleteness theorem, but is a bit simpler.

In this thesis, we reformulate some of Grzegorczyk's results in a more clear and rigorous manner, correct some minor errors and connect some definitions he constructed from first principles to more standard definitions in the literature. Notably, Grzegorczyk relied on a notion of decidability he defined from first principles. The main result of this thesis is that we show Grzegorczyk's notion of decidability to be equivalent to decidability by a Turing machine, thereby showing that the theory of concatenation is undecidable in the sense we expect, rather than in some weaker sense.

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis accepted for the award of any other degree or diploma. No other person's work has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any degree or diploma in any other tertiary institution.

The core strategy for proving GD \Longrightarrow Recursive in Chapter 5 came out of joint discussions with my supervisors, Tomasz Kowalski and Marcel Jackson. The successful implementation of this approach is my own work.

This work was supported by an Australian Government Research Training Program Scholarship.

Yao Tang, 28 September 2020

Introduction

Roughly speaking, a theory is a set of statements, like " $1+1=2$ ", or "all primes are odd", or "Socrates was mortal". Given a context, each statement can be true or false; for instance, if " 1 ", " 2 ", "+" and "=" have their usual arithmetic meaning, then " $1+1=2$ " is true, whereas if we are looking at the 2 -element group $\left(\{1,2\} ;+, 1,{ }^{-1}\right)$ with $1+1=1$, $1+2=2=2+1$ and $2+2=1$, then " $1+1=2$ " is false. Regardless, each statement must always have a well-defined truth value in the context of a specific model.

A theory is decidable if there is an algorithm such that, given a statement (in a particular formal language), the algorithm tells us whether the statement is in the theory or not. In classical first order predicate logic, when a theory has a recursively enumerable axiomatization, then systematic application of a finite set of rules of logical deduction to these axioms is an algorithmic procedure. A consequence is then that if a theory is complete and is generated from a recursively enumerable set of axioms, it must be decidable. More generally, for each consistent theory T in classical first order predicate logic, at most two of the following are true:

- T is complete;
- T is undecidable;
- T has a recursively enumerable axiomatization.

For instance,

- The theory of $(\mathbb{R},+, \cdot, 0,1, \leq)$ was shown by Tarski to be decidable $[\mathbf{1 6}]$. Being the theory of a model, it is also complete, hence it must have a recursive axiomatisation.
- The theory of ($\mathbb{N},+, \cdot, 0,1, \leq$) is undecidable, by Gödel's first incompletness theorem [5]. Because it is complete and undecidable, it follows that any recursive set of formulae true in $(\mathbb{N},+, \cdot, 0,1, \leq)$ is not complete.

In this thesis, we consider two theories: a theory TC (for Theory of Concatenation) generated by a finite set of axioms, and a theory $\operatorname{Th}(\mathbf{T x})$ that contains precisely the statements that are true in an actual, concrete structure; the free semigroup on 2 generators (which we call $\mathbf{T x}$). We show that both of these theories are undecidable, but their undecidability says very different things about them:

- The theory TC is finitely axiomatizable, so if it is undecidable, it must be incomplete; there are some statements P (in the relevant formal language) such that neither P nor $\neg P$ are in TC. Informally, the axioms don't provide enough information to describe everything. As an analogy, you can't figure out whether or not $7+8=100$ if all you know is that " $1+1=2$ ".
- The theory $\operatorname{Th}(\mathbf{T} \mathbf{x})$ contains everything that is true in an actual, concrete structure, and everything must be either true or false in an actual, concrete structure, so it's complete. Thus, if it is undecidable, it follows that it has no recursively enumerable axiomatization. Informally, the theory is incredibly complicated; there is no easy way to describe all the information it contains.

1. Diagonal Arguments

This thesis is built around a proof due to Grzegorczyk [8]; it defines a predicate F such that $F(t)$ means " t is not the encoding of a one-argument predicate such that F holds of the encoding of the 'name' of t ". In short, the predicate F describes a self-referential statement; the property t has to satisfy depends on t itself. Grzegorczyk shows that if we assume TC or $\operatorname{Th}(\mathbf{T} \mathbf{x})$ (or anything in between) is decidable, then by applying F to an encoding of F, a contradiction emerges.

Gödel's First Incompleteness Theorem [5] was based around a similar argument about sufficiently rich theories of arithmetic. He did not specify a particular theory of arithmetic, but theories such as Peano Arithmetic ([11]; see [9]) and the later Robinson Arithmetic are amenable to his argument. This result, along with the Second Incompleteness Theorem, dealt a fatal blow to Hilbert's Program whose goal was to axiomatize all of mathematics, thereby marking Gödel's results as arguably some of the most notable discoveries in the $20^{\text {th }}$ century.

Note that Gödel's result showed incompleteness, but it is a sort of "essential incompleteness". That is, all theories containing such an "essentially incomplete" theory are incomplete. For first order theories with a recursively enumerable axiomatization, this is equivalent to essential undecidability, so theories such as Peano arithmetic and Robinson Arithmetic are also (essentially) undecidable. Hence a standard method of proving undecidability of other theories is to interpret one such arithmetic in that theory, then referring to its essential undecidability.

Theories whose undecidability has been shown in this way include the theory of:

- rings $[\mathbf{1 7}]$
- groups [17]
- finite graphs [3]
- distributive lattices [7]
- sets with two equivalence relations [14], and
- Tx [17]

For $\operatorname{Th}(\mathbf{T x})$, however, using a direct approach like Grzegorczyk's would seem more natural.

2. Notions of Decidability

Grzegorczyk defined his own notion of decidability from first principles which he called General Discernibility, or GD. He never claimed that a theory being GD was equivalent to being recursive; only that it was a notion of discernibility that seemed natural. A proof of this equivalence is given in Chapter 5 , and is the main original contribution of this thesis.

Showing that GD sets are recursive is a rather straightforward if cumbersome inductive argument; however, formulating an approach to prove the converse is less clear. The seed of an idea for the converse direction can be found in the earlier work of Quine [12] and Suvejdar [15]. Both these authors are concerned with the interpretation of multiplication within similar theories of concatenation. They introduce definitions that rely on constructing witnesses to a step by step unfolding of the process of multiplying. While both authors work in the full first order theory rather than in a restricted framework such as General Discernibility, there are elements of their approach that can be adapted. In particular, it suggests the idea of proving that recursive sets are GD by constructing a string that witnesses the acceptance of a string by a Turing machine, and show that it relates to the input relation in a GD way.

Grzegorczyk produced his undecidability result in order to argue that results like Gödel's First Incompleteness Theorem are linguistic in nature and should not fundamentally depend on arithmetic or the properties of numbers. After studying the constructions he defined, it seems that arithmetic is needed only if our theory is about a language on one letter; introduce a second letter and we can avoid using arithmetic. This is because with at least 2 distinct letters, we can encode expressions into one continuous string by using the first letter as an identifier for a symbol and the second letter as an indicator of when the symbol begins and ends. Without this second letter as a separator, we need another way to mark when a symbol begins or ends, so we are forced to use results about quantity; namely, that every number has a unique prime factorization.

Grzegorczyk and Zdanowski [6] later proved that everything that is GD can be constructed with at most one use of complementary projections; moreover, as the final step in the GD construction process.

3. Essential Undecidability of TC

Grzegorczyk proved undecidability but not essential undecidability of TC. He conjectured that Robinson Arithmetic (Q) [13] isn’t interpretable in TC, but Ganea [4] and Švejdar [15] have since (independently) proved that Q is interpretable in a variant of TC , which is in turn interpretable in TC since "all reasonable variants of TC are mutually interpretable." (Švejdar, 2009) [15].

Since Q is not only undecidable but essentially undecidable, a consequence of this is that TC is also essentially undecidable. Grzegorczyk mentioned the problem of the undecidability of extensions of TC that are consistent but not contained in $\mathrm{Th}(\mathbf{T x})$:
"The problem of the undecidability of the extensions of the theory TC, which are consistent but not true in (Tx,!, a,b), seems to be more difficult and till now remains open." (Grzegorczyk, 2005) [8].

We know now that such theories are undecidable due to the essential undecidability of TC. (Grzegorczyk himself also outlined a proof of essential undecidability of TC using his method in [6].)

4. Other Models of TC

TC was conceived as a theory of concatenation, but it's also a theory of decorated linear order types [2]. TC with a collection principle is also a theory of sets with adjunction [18].

5. Notation

In this thesis, we use notation from both Grzegorczyk's paper (which we will define) and the text A Course in Universal Algebra by Burris and Sankappanavar [1] (which we will not). We use the latter mostly when we speak of interpretations of terms/functions/predicates in models. The one exception to the above is how we denote substrings (by which we mean a contiguous block of letters; for instance, we allow $b b$ as a substring of $b b a$ but not a substring of $b a b)$. We define the following notations:
$s \sqsubset t \Longleftrightarrow s$ is a substring of $t ;$
$s \sqsubset_{p} t \Longleftrightarrow s$ is a prefix of $t ;$
$s \sqsubset_{s} t \Longleftrightarrow s$ is a suffix of t;

While some efforts towards self-containment have been made, the thesis will assume some low-level background knowledge of theories and models.

6. Overview

The following is an overview of a proof of undecidability from first principles. It is by no means universal; it makes a lot of assumptions that some first order theories (e.g. ZFC) may not satisfy. This thesis covers each step in this overview in detail for the special case of TC.

We take theories to be sets of sentences closed under logical consequence.
(i) Standard Model. Let T_{0} be a consistent first-order theory formalised as a set of strings over a finite alphabet Σ such that if S is the set of all instances of a particular syntactic category of T_{0} (i.e. formulae, terms, constants etc), then S is a recursively enumerable subset of Σ^{+}.

Assume T_{0} has at least one constant, and let C be a set of interpretations of the constants of T_{0}. Let \mathcal{M} be a structure freely generated by C with respect to the equalities true in T_{0}. This ensures that every element of \mathcal{M} is an interpretation of a definable constant. We assume the universe and all basic relations of \mathcal{M} are recursive sets, and that all basic operations of \mathcal{M} are computable functions.

Assume $\mathcal{M} \models T_{0}$. We call \mathcal{M} the standard model of T_{0}.

In chapters 1 and 2, we show that $T_{0}=T C$ and $\mathcal{M}=\mathbf{T x}$ satisfy these assumptions.
(ii) Naming. Let Cterm be the set of constant terms in the language of T_{0}. Define an equivalence relation on Cterm by $s \sim t$ iff $s \approx t \in T_{0}$. Let $N: M \rightarrow$ Cterm (where M is the domain of \mathcal{M}) be a map picking a representative from the equivalence class of constant terms whose interpretation is the input. For each $m \in M$, we call $N(m)$ the standard name of m.

In chapter 3, we define $N: T x \rightarrow$ Cterm. (In chapter 8 , we show that N is computable.)
(iii) Computability. In chapters 4 and 5, we characterize computability in a way that is easier for us to work with.
(iv) Coding. Assume there is an injective map $\left\urcorner: \Sigma^{+} \rightarrow M\right.$ which takes a string s to its code $\ulcorner s\urcorner$. (In particular, every formula φ and every term t in the language of T_{0} have their codes $\ulcorner\varphi\urcorner$ and $\ulcorner t\urcorner$, and each $m \in \mathcal{M}$ has its coded standard name $\ulcorner N(m)\urcorner$.) Assume the map $N^{\prime}: M \rightarrow M$ defined by $m \mapsto\ulcorner N(m)\urcorner$ is computable. Let $\ulcorner X\urcorner:=\{\ulcorner x\urcorner: x \in X\}$ for each $X \subseteq \Sigma^{+}$.

Assume there is a computable map deco: $M \rightarrow \Sigma^{+}$such that $\operatorname{deco}(\ulcorner s\urcorner)=s$ for any $s \in \Sigma^{+}$.

In chapter 8, we define a map $\langle\rangle$ and show that $\urcorner=\langle\langle \rangle$ satisfies these assumptions.
(v) Representability. Let T be a theory in the language of T_{0}. We say that an n-ary relation $R \subseteq M^{n}$ is representable in T if there is a formula $\rho\left(x_{1}, \ldots, x_{n}\right)$ such that for all $m_{1}, \ldots, m_{n} \in M$ we have

$$
R\left(m_{1}, \ldots, m_{n}\right) \quad \text { if and only if } \quad \rho\left(N\left(m_{1}\right), \ldots, N\left(m_{n}\right)\right) \in T .
$$

We assume that:
${ }^{(*)}$ every computable relation $R \subseteq M^{n}$ and every computable function $f: M^{n} \rightarrow M$ is representable in T.

In particular, this means every computable $X \subseteq M$ is representable in T. By a standard logical trick involving renaming variables, we can assume that every computable subset of M is represented by a formula with precisely one free variable.

In chapter 7, we show that consistent extensions T of TC that are contained in $\operatorname{Th}(\mathbf{T} \mathbf{x})$ satisfy these assumptions.
(vi) Substitution. We assume there exists a computable function Sub: $\mathcal{M}^{2} \rightarrow \mathcal{M}$, such that for each set S of formulae, constant term t and formula φ with precisely one free variable x which occurs only once in φ, we have:

$$
\operatorname{Sub}(\ulcorner\varphi\urcorner,\ulcorner\downarrow\urcorner) \in\ulcorner S\urcorner \text { if and only if } \varphi(t) \in S .
$$

In particular, $\operatorname{Sub}(\ulcorner\varphi\urcorner,\ulcorner t\urcorner)=\ulcorner\varphi(t)\urcorner$.

In chapter 6 , we define Sub: $T x^{2} \rightarrow T x$. (In chapter 9, we show that Sub is computable.)
(vii) Proof of undecidability. In chapter 9, we prove the following results for consistent extensions T of $T C$ that are contained in $\operatorname{Th}(\mathbf{T x})$.

Let T be a theory in the language of T_{0} satisfying (*).

Lemma 0.1 . Let $X \subseteq M$ be defined by

$$
m \in X \Leftrightarrow \operatorname{Sub}(m,\ulcorner N(m)\urcorner) \notin\ulcorner T\urcorner .
$$

Then, if $\ulcorner T\urcorner$ is computable, so is X.

Proof. Let $\psi(x):=\operatorname{Sub}(x,\ulcorner N(x)\urcorner)$. Then, ψ is a composition of computable functions, so ψ is computable.

Assume $\ulcorner T\urcorner$ is computable. Since the preimage of a computable set under a computable function is a computable set, this means $M \backslash\ulcorner T\urcorner$ is computable as well, and $X=\psi^{-1}(M \backslash$ $\ulcorner T\urcorner)$. Thus X is computable.

Lemma 0.2. The set $\ulcorner T\urcorner$ is not computable.

Proof. Suppose $\ulcorner T\urcorner$ is computable. Then X of Lemma 0.1 is also computable, and so it is represented in T by a formula $\rho(x)$ with precisely one free variable x. Thus, we have

$$
m \in X \Leftrightarrow \rho(N(m)) \in T
$$

for any $m \in M$. Consider $m=\ulcorner\rho\urcorner$. By the equivalence above and the properties of Sub we obtain

$$
\begin{aligned}
\ulcorner\rho\urcorner \in X & \Leftrightarrow \rho(N(\ulcorner\rho\urcorner)) \in T \\
& \Leftrightarrow \operatorname{Sub}(\ulcorner\rho\urcorner,\ulcorner N(\ulcorner\rho\urcorner)\urcorner) \in\ulcorner T\urcorner,
\end{aligned}
$$

which contradicts

$$
\ulcorner\rho\urcorner \in X \Leftrightarrow \operatorname{Sub}(\ulcorner\rho\urcorner,\ulcorner N(\ulcorner\rho\urcorner)\urcorner) \notin\ulcorner T\urcorner .
$$

which we have by definition of X. Hence $\ulcorner T\urcorner$ is not computable.

Theorem 0.1. T is undecidable.

Proof. For each $m \in M$, it is decidable whether $\operatorname{deco}(m)$ is a sentence in the language of T, since the language of T is the same as the language of T_{0}.

Suppose T is decidable. Then the following procedure decides membership in $\ulcorner T\urcorner$:

Let $m \in M$. If $\operatorname{deco}(m)$ is not a sentence, return NO. If $\operatorname{deco}(m)$ is a sentence and $\operatorname{deco}(m) \in T$, return YES, otherwise return NO.

But $\ulcorner T\urcorner$ is not computable by Lemma 0.2 , so T is not decidable.

CHAPTER 1

The Elementary Theory of Concatenation

In this chapter, we define a theory of concatenation which we will eventually prove to be undecidable. We also give some examples of theorems in this theory. This chapter is based on Sections 1 and 3 under Part One of 'Undecidability without Arithmetization' [8], and is referenced by part (i) of the overview.

1. Defining the theory

The Elementary Theory of Concatenation (TC) is the set of all sentences (in a particular first order language) provable from the following axioms:

$$
\begin{aligned}
& \text { (Associativity) }(\forall x, y, z) x *(y * z)=(x * y) * z \\
& \text { (Editor Axiom) }(\forall x, y, z, u) \\
& x * y=z * u \Longrightarrow((x=z \wedge y=u) \quad \text { or } \quad(\exists w)((x * w=z \wedge w * u=y) \\
& \quad \text { or } \quad(z * w=x \wedge w * y=u)))
\end{aligned}
$$

(Existence of 'atom' $a)(\forall x, y) \neg(\alpha=x * y)$
(Existence of 'atom' b) $(\forall x, y) \neg(\beta=x * y)$
(Non-equality of atoms) $\neg(\alpha=\beta)$
using a deduction system for first order logic. We leave the precise system unspecified; we only note that all logical tautologies (in the appropriate language) are provable and standard rules of proof (e.g., extensionality (which refers to the rule that if $x=y$ and $P(x)$, then $P(y)$), modus ponens, quantifier rules etc) apply. We may also think of TC as the set defined inductively with the axioms listed above as the initial cases and the laws of the deductive system as the inductive conditions.

We introduce such a language to express theorems in TC for two main reasons:

- We will often treat sentences in TC as objects in and of themselves, rather than statements. The notation of this language helps distinguish the sentences from (meta) statements written in more conventional mathematical notation.
- We will introduce an encoding scheme which requires the encoded sentences to be over a finite alphabet.

For our purposes, the particular language in question is the set of all well-formed formulae over the following 14 -symbol alphabet:

$$
A:=\{\alpha, \quad \beta, \quad[, \quad], \quad *, \quad x, \quad /, \quad \approx, \quad E, \quad \sqsubset, \quad \rightarrow, \quad \wedge, \quad \vee, \quad \neg\}
$$

which give us:

- The variables $x, x /, x / /, x / / / \ldots$
- The logical operators of conjunction (\wedge), disjunction (\vee), negation (\neg) and implication (\rightarrow)
- The nullary function symbols α and β
- The binary function symbol *
- The binary relation symbols \approx and \sqsubset, and
- The existential quantifier (E).

The universal quantifier is denoted by having a single variable in brackets; for instance, $[x]$ means $(\forall x)$. Furthermore, variables are quantified one by one; for instance, $(\exists x, y)$ would be written as $[E x][E x /]$.

For readability, we will often denote x as $x_{0}, x /$ as $x_{1}, x / /$ as x_{2}, etc. Furthermore, we will denote sentences of the form $[P \rightarrow Q] \wedge[Q \rightarrow P]$ as $P \leftrightarrow Q$.

Definition 1.1. TC is the set of all sentences provable from the following axioms:

$$
\begin{align*}
& {\left[x_{0}\right]\left[x_{1}\right]\left[x_{2}\right] x_{0} *\left[x_{1} * x_{2}\right] \approx\left[x_{0} * x_{1}\right] * x_{2}} \tag{A1}\\
& \begin{aligned}
& {\left[x_{0}\right]\left[x_{1}\right]\left[x_{2}\right]\left[x_{3}\right] x_{0} * x_{1} \approx x_{2} * x_{3} } \\
& \rightarrow {[} \\
& {\left[x_{0} \approx x_{2} \wedge x_{1} \approx x_{3}\right] \vee } \\
& {\left[E x_{4}\right]\left[\left[x_{0} * x_{4} \approx x_{2} \wedge x_{4} * x_{3} \approx x_{1}\right]\right.} \\
&\left.\left.\vee\left[x_{2} * x_{4} \approx x_{0} \wedge x_{4} * x_{1} \approx x_{3}\right]\right]\right] \\
& {\left[x_{0}\right]\left[x_{1}\right] \neg\left[\alpha \approx x_{0} * x_{1}\right] } \\
& {\left[x_{0}\right]\left[x_{1}\right] \neg\left[\beta \approx x_{0} * x_{1}\right] } \\
& \neg[\alpha \approx \beta] \\
& {\left[x_{0}\right]\left[x_{1}\right] x_{0} \sqsubset x_{1} \leftrightarrow } {\left[x_{0} \approx x_{1} \vee\right.} \\
& \quad\left[E x_{2}\right]\left[x_{1} \approx x_{0} * x_{2} \vee x_{1} \approx x_{2} * x_{0}\right] \\
&\left.\quad \vee\left[E x_{2}\right]\left[E x_{3}\right] x_{1} \approx x_{2} *\left[x_{0} * x_{3}\right]\right]
\end{aligned}
\end{align*}
$$

The axioms (A1)-(A5) are merely the five axioms at the beginning written in the introduced language, and (A6) is the definition of the substring relation \sqsubset, which can be expressed in the language without introducting the symbol \sqsubset, but is defined nonetheless for the sake of readability.

2. Theorems of TC

The following are some results that show certain theorems to belong in TC, by proving them from the axioms and other theorems in TC. When we cite a theorem in TC in these proofs, we shall simply cite them as if they were true; for example, instead of saying "since $p \in \mathrm{TC}$ ", we simply say "by p ". Hence when we conclude a theorem to be "true", we only conclude that it belongs in TC. We state the (meta)theorems in the form $p \in \mathrm{TC}$ to remind ourselves what we are really proving, and to prevent confusion when they are cited later in this thesis.

Lemma 1.1. The following are theorems of TC:
$\left(\mathbf{T 0}_{A}\right)\left[x_{0}\right]\left[x_{0} \sqsubset \alpha \leftrightarrow x_{0} \approx \alpha\right]$
$\left(\mathbf{T 0}_{B}\right)\left[x_{0}\right]\left[x_{0} \sqsubset \beta \leftrightarrow x_{0} \approx \beta\right]$
Proof. Let $x_{0} \sqsubset \alpha$. Then by (A6), we have

- $x_{0} \approx \alpha$, or
- $\left[E x_{1}\right]\left[\alpha \approx x_{0} * x_{1} \vee \alpha \approx x_{1} * x_{0}\right]$, or
- $\left[E x_{1}\right]\left[E x_{2}\right] \alpha \approx x_{1} *\left[x_{0} * x_{2}\right]$.

But by (A4), we have

- $\left[x_{1}\right]\left[\neg\left[\alpha \approx x_{0} * x_{1}\right] \wedge \neg\left[\alpha \approx x_{1} * x_{0}\right]\right]$, and
- $\left[x_{1}\right]\left[x_{2}\right] \neg\left[\alpha \approx x_{1} *\left[x_{0} * x_{2}\right]\right]$,
which contradict $\left[E x_{1}\right]\left[\alpha \approx x_{0} * x_{1} \vee \alpha \approx x_{1} * x_{0}\right]$ and $\left[E x_{1}\right]\left[E x_{2}\right] \alpha \approx x_{1} *\left[x_{0} * x_{2}\right]$.

Thus $\left[x_{0}\right]\left[x_{0} \sqsubset \alpha \rightarrow x_{0} \approx \alpha\right]$. By (A6), the converse is also true. Hence $\left[x_{0}\right]\left[x_{0} \sqsubset \alpha \leftrightarrow x_{0} \approx \alpha\right]$. By a similar argument, $\left[x_{0}\right]\left[x_{0} \sqsubset \beta \leftrightarrow x_{0} \approx \beta\right]$.

Lemma 1.2. The following is a theorem of TC:
(T1) $\left[x_{0}\right]\left[x_{1}\right]\left[x_{2}\right]\left[x_{0} \sqsubset\left[x_{1} * x_{2}\right]\right.$

$$
\left.\rightarrow\left[x_{0} \sqsubset x_{1} \vee x_{0} \sqsubset x_{2} \vee\left[E x_{3}\right]\left[E x_{4}\right]\left[x_{0} \approx x_{3} * x_{4} \wedge x_{3} \sqsubset x_{1} \wedge x_{4} \sqsubset x_{2}\right]\right]\right]
$$

Proof. Suppose $x_{0} \sqsubset\left[x_{1} * x_{2}\right]$. Then by (A6), either:

- $x_{0} \approx\left[x_{1} * x_{2}\right]$, in which case $\left.\left[E x_{3}\right]\left[E x_{4}\right]\left[x_{1} \approx x_{3} * x_{4} \wedge x_{3} \sqsubset x_{1} \wedge x_{4} \sqsubset x_{2}\right]\right]$ since $x_{0} \approx x_{1} * x_{2}, x_{1} \sqsubset x_{1}$ and $x_{2} \sqsubset x_{2}$, or
- $\left[E x_{3}\right] x_{1} * x_{2} \approx x_{3} * x_{0}$, in which case by (A2), either:
$-x_{1} \approx x_{3}$ and $x_{2} \approx x_{0}$ (and thus $x_{0} \sqsubset x_{2}$), or
$-\left[E x_{4}\right]\left[x_{1} * x_{4} \approx x_{3} \wedge x_{4} * x_{0} \approx x_{2}\right]$ (and thus $x_{0} \sqsubset x_{2}$), or
$-\left[E x_{4}\right]\left[x_{3} * x_{4} \approx x_{1} \wedge x_{4} * x_{2} \approx x_{0}\right]$ (and thus $x_{4} * x_{2} \approx x_{0}$ with $x_{4} \sqsubset x_{1}$ and $x_{2} \sqsubset x_{2}$), or
- $\left[E x_{3}\right] x_{1} * x_{2} \approx x_{0} * x_{3}$, in which case by (A2), either:
$-x_{1} \approx x_{0}$ and $x_{2} \approx x_{3}$ (and thus $x_{0} \sqsubset x_{1}$), or
$-\left[E x_{4}\right]\left[x_{1} * x_{4} \approx x_{0} \wedge x_{4} * x_{3} \approx x_{2}\right]$ (and thus $x_{1} * x_{4} \approx x_{0}$ with $x_{1} \sqsubset x_{1}$ and $x_{4} \sqsubset x_{2}$), or
$-\left[E x_{4}\right]\left[x_{0} * x_{4} \approx x_{1} \wedge x_{4} * x_{2} \approx x_{3}\right]$ (and thus $x_{0} \sqsubset x_{1}$), or
- $\left[E x_{3}\right]\left[E x_{4}\right] x_{1} * x_{2} \approx x_{3} *\left[x_{0} * x_{4}\right]$, in which case by (A2), either:
$-x_{1} \approx x_{3}$ and $x_{2} \approx x_{0} * x_{4}$ (and thus $x_{0} \sqsubset x_{2}$), or
$-\left[E x_{5}\right] x_{1} * x_{5} \approx x_{3} \wedge x_{5} *\left[x_{0} * x_{4}\right] \approx x_{2}$ (and thus $x_{0} \sqsubset x_{2}$), or
$-\left[E x_{5}\right] x_{3} * x_{5} \approx x_{1} \wedge x_{5} * x_{2} \approx x_{0} * x_{4}$, in which case by (A2), either:
* $x_{5} \approx x_{0}$ and $x_{2} \approx x_{4}$ (and thus $x_{0} \sqsubset x_{1}$), or
$*\left[E x_{6}\right] x_{5} * x_{6} \approx x_{0} \wedge x_{6} * x_{4} \approx x_{2}$ (and thus $x_{5} * x_{6} \approx x_{0}$ with $x_{5} \sqsubset x_{1}$ and $x_{6} \sqsubset x_{2}$), or
$*\left[E x_{6}\right] x_{0} * x_{6} \approx x_{5} \wedge x_{6} * x_{2} \approx x_{4}$ (and thus $x_{3} *\left[x_{0} * x_{6}\right] \approx x_{1}$, so $x_{0} \sqsubset x_{1}$).
In each case we have $x_{0} \sqsubset x_{1}$, or $x_{0} \sqsubset x_{2}$, or $\left[E x_{3}\right]\left[E x_{4}\right]\left[x_{0} \approx x_{3} * x_{4} \wedge x_{3} \sqsubset x_{1} \wedge x_{4} \sqsubset x_{2}\right]$.

Lemma 1.3. The following are theorems of TC:
$\left(\mathbf{T} 2_{A}\right)\left[x_{0}\right]\left[x_{1}\right]$

$$
x_{0} \sqsubset\left[x_{1} * \alpha\right] \leftrightarrow\left[x_{0} \sqsubset x_{1} \vee x_{0} \approx \alpha \vee\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{1} \approx x_{2} * x_{3} \wedge x_{0} \approx x_{2} * \alpha\right] \vee x_{0} \approx x_{1} * \alpha\right]
$$

$\left(\mathbf{T} \mathbf{2}_{B}\right)\left[x_{0}\right]\left[x_{1}\right]$
$x_{0} \sqsubset\left[x_{1} * \beta\right] \leftrightarrow\left[x_{0} \sqsubset x_{1} \vee x_{0} \approx \beta \vee\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{1} \approx x_{2} * x_{3} \wedge x_{0} \approx x_{2} * \beta\right] \vee x_{0} \approx x_{1} * \beta\right]$
Proof. (Sketch) By (T1), we have

$$
\left[x_{0}\right]\left[x_{1}\right] x_{0} \sqsubset\left[x_{1} * \alpha\right] \rightarrow\left[x_{0} \sqsubset x_{1} \vee x_{0} \sqsubset \alpha \vee\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{0} \approx x_{2} * x_{3} \wedge x_{2} \sqsubset x_{1} \wedge x_{3} \sqsubset \alpha\right]\right] .
$$

We can then use $\left(\mathrm{T} 0_{A}\right)$ to show that $\left[x_{0}\right] x_{0} \sqsubset \alpha \rightarrow x_{0} \approx \alpha$ and

$$
\begin{aligned}
& {\left[x_{0}\right]\left[x_{1}\right]\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{0} \approx x_{2} * x_{3} \wedge x_{2} \sqsubset x_{1} \wedge x_{3} \sqsubset \alpha\right]} \\
& \left.\quad \rightarrow\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{1} \approx x_{2} * x_{3} \wedge x_{0} \approx x_{2} * \alpha\right] \vee x_{0} \approx x_{1} * \alpha\right] .
\end{aligned}
$$

For the converse, we can check directly from the axioms that each of the conditions $x_{0} \sqsubset x_{1}, x_{0} \approx \alpha,\left[E x_{2}\right]\left[E x_{3}\right]\left[x_{1} \approx x_{2} * x_{3} \wedge x_{0} \approx x_{2} * \alpha\right]$ and $x_{0} \approx x_{1} * \alpha$ implies $x_{0} \sqsubset\left[x_{1} * \alpha\right]$.

The proof for $\left(\mathrm{T} 2_{B}\right)$ is analogous.

Lemma 1.4. The following is a theorem of TC:

$$
\text { (T3) }\left[x_{0}\right]\left[x_{1}\right] \neg\left[x_{0} * \alpha \approx x_{1} * \beta\right]
$$

Proof. Suppose $\left[E x_{0}\right]\left[E x_{1}\right]\left[x_{0} * \alpha \approx x_{1} * \beta\right]$. Then by (A2),
$\left[E x_{0}\right]\left[E x_{1}\right]\left[x_{0} \approx x_{1} \wedge \alpha \approx \beta\right] \vee\left[\left[E x_{2}\right]\left[x_{0} * x_{2} \approx x_{1} \wedge x_{2} * \beta \approx \alpha\right] \vee\left[x_{1} * x_{2} \approx x_{0} \wedge x_{2} * \alpha \approx \beta\right]\right]$.
But $\neg\left[x_{0} \approx x_{1} \wedge \alpha \approx \beta\right]$ by (A5) and
$\neg\left[\left[E x_{2}\right]\left[x_{0} * x_{2} \approx x_{1} \wedge x_{2} * \beta \approx \alpha\right] \vee\left[x_{1} * x_{2} \approx x_{0} \wedge x_{0} * \alpha \approx \beta\right]\right]$ by (A3) and (A4), so $\left[x_{0}\right]\left[x_{1}\right] \neg\left[x_{0} * \alpha \approx x_{1} * \beta\right]$.

Lemma 1.5. The following are theorems of TC:
$\left(\mathbf{T} 4_{A}\right)\left[x_{0}\right]\left[x_{1}\right]\left[\alpha * x_{0} \approx \alpha * x_{1}\right] \rightarrow\left[x_{0} \approx x_{1}\right]$
$\left(\mathbf{T} 4_{B}\right)\left[x_{0}\right]\left[x_{1}\right]\left[x_{0} * \alpha \approx x_{1} * \alpha\right] \rightarrow\left[x_{0} \approx x_{1}\right]$
(T4 ${ }_{C}$) $\left[x_{0}\right]\left[x_{1}\right]\left[\beta * x_{0} \approx \beta * x_{1}\right] \rightarrow\left[x_{0} \approx x_{1}\right]$
$\left(\mathbf{T} 4_{D}\right)\left[x_{0}\right]\left[x_{1}\right]\left[x_{0} * \beta \approx x_{1} * \beta\right] \rightarrow\left[x_{0} \approx x_{1}\right]$
Proof. Suppose $\alpha * x_{0} \approx \alpha * x_{1}$. Then by (A2),
$\left[\alpha \approx \alpha \wedge x_{0} \approx x_{1}\right] \vee\left[\left[E x_{2}\right]\left[\alpha * x_{2} \approx \alpha \wedge x_{2} * x_{1} \approx x_{0}\right] \vee\left[\alpha * x_{2} \approx \alpha \wedge x_{2} * x_{0} \approx x_{1}\right]\right]$.
But $\neg\left[\left[E x_{2}\right]\left[\alpha * x_{2} \approx \alpha \wedge x_{2} * x_{1} \approx x_{0}\right] \vee\left[\alpha * x_{2} \approx \alpha \wedge x_{2} * x_{0} \approx x_{1}\right]\right]$ by (A3), so $\alpha \approx \alpha \wedge x_{0} \approx x_{1}$, so $x_{0} \approx x_{1}$. Hence (a) holds. The proofs for (b), (c) and (d) use similar arguments.

CHAPTER 2

The standard model of TC

In this chapter, we introduce the standard model of TC, which we will use to prove undecidability of TC by encoding into it theorems of TC. This chapter is based on Section 5 under Part Two of 'Undecidability without Arithmetization' [8], and is referenced by part (i) of the overview.

Definition 2.1. Consider the set of strings $\{a, b\}$. We define the set $\mathrm{Tx}:=\bigcap \mathcal{A}$ where \mathcal{A} is the (class of (sets X of strings on any alphabet of any size)) which satisfies the following:

$$
\mathcal{A}:=\{X \mid a, b \in X \text { and }(\forall s, t \in X) \text { st } \in X\}
$$

We call $T x$ the set of standard texts. Note that $T x$, as well as all sets in \mathcal{A}, are just sets of strings on some alphabet $\Sigma \supseteq\{a, b\}$.

1. Properties of $T x$

Lemma 2.1. $\mathrm{Tx}=\bigcap \mathcal{B}=\bigcap \mathcal{C}=\{a, b\}^{+}$, where

$$
\begin{aligned}
\mathcal{B} & =\{X \mid a, b \in X \text { and }(\forall s \in X) s a, s b \in X\} \text { and } \\
\mathcal{C} & =\{X \mid a, b \in X \text { and }(\forall s \in X) a s, b s \in X\}
\end{aligned}
$$

Proof. Let $X \in \mathcal{A}$ and $s \in X$. Then $a, b, s \in X$. Then $s a, s b, a s, b s \in X$, since $t u \in X$ for all $t, u \in X$. Hence $X \in \mathcal{B}$ and $X \in \mathcal{C}$, so $\mathcal{A} \subseteq \mathcal{B}$ and $\mathcal{A} \subseteq \mathcal{C}$. Thus $\bigcap \mathcal{B} \subseteq \bigcap \mathcal{A}=\operatorname{Tx}$ and $\bigcap \mathcal{C} \subseteq \bigcap \mathcal{A}=\mathrm{Tx}$.

Now let $x \in \mathrm{Tx}, Y \in \mathcal{B}$ and $Z \in \mathcal{C}$. We will show that $x \in Y$ and $x \in Z$.

Let $T:=\{a, b\}^{+}$. Then $a, b \in T$. Furthermore, let $s, t \in T$. Then $s=s_{1} \ldots s_{n}$ and $t=t_{1} \ldots t_{m}$ for some $m, n \in \mathbb{N}$ and $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in\{a, b\}$. Then $s t=s_{1} \ldots s_{n} t_{1} \ldots t_{m} \in T$. Hence $T \in \mathcal{A}$.

Let $y \in T$. Then $y=t_{1} \ldots t_{n}$ for some $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in\{a, b\}$. Since $Y \in \mathcal{B}$, we have $a, b \in Y$, and thus $t_{1} \in Y$. Now suppose $t_{1} \ldots t_{i} \in Y$ for some $i \in\{1, \ldots, n-1\}$. Then $t_{1} \ldots t_{i} a, t_{1} \ldots t_{i} b \in Y$, since $Y \in \mathcal{B}$. Then $t_{1} \ldots t_{i+1} \in Y$, since $t_{i+1} \in\{a, b\}$. Hence by induction, $y=t_{1} \ldots t_{n} \in Y$. Similarly, since $Z \in \mathcal{C}$, we have $a, b \in Z$, and thus $t_{n} \in Z$. Now suppose $t_{i} \ldots t_{n} \in Z$ for some $i \in\{2, \ldots, n\}$. Then $a t_{i} \ldots t_{n}, b t_{i} \ldots t_{n} \in Z$, since $Z \in \mathcal{C}$.

Then $t_{i-1} \ldots t_{n} \in Y$, since $t_{i-1} \in\{a, b\}$. Hence by induction, $y=t_{1} \ldots t_{n} \in Z$. Hence $T \subseteq Y$ and $T \subseteq Z$, so $x \in Y$ and $x \in Z$ since $x \in \bigcap \mathcal{A} \subseteq T$.

Thus $x \in Y$ for all $Y \in \mathcal{B}$ and $x \in Z$ for all $Z \in \mathcal{C}$, so $x \in \bigcap \mathcal{B}$ and $x \in \bigcap \mathcal{C}$. Hence Tx $\subseteq \bigcap \mathcal{B}$ and $\mathrm{Tx} \subseteq \bigcap \mathcal{C}$.

Thus $\bigcap \mathcal{B}=\operatorname{Tx}=\bigcap \mathcal{C}$. Furthermore, we have shown above that $T \in \mathcal{A}$, so $\mathrm{Tx}=\bigcap \mathcal{A} \subseteq T$, but $T \subseteq Y$ for all $Y \in \mathcal{B}$, so $T \subseteq \bigcap \mathcal{B}$. Hence $T \mathrm{x}=T=\bigcap \mathcal{B}=\bigcap \mathcal{C}$, as required.

Note that it's not the case that $\mathcal{A}=\mathcal{B}=\mathcal{C}$; for instance, a set $\operatorname{Tx} \cup\{c x \mid x \in \operatorname{Tx}\}$ (where $\left.c \notin\{a, b\}^{*}\right)$ would belong to \mathcal{B} but not to \mathcal{A}. Also note that during the above proof, we have shown the following result:

Lemma 2.2. $\mathrm{Tx} \in \mathcal{A}$.

Furthermore, each member of \mathcal{A} is the universe of a model of TC:

Lemma 2.3. For all $X \in \mathcal{A}$, the structure $\left\langle X ; *^{\mathbf{X}}, \alpha^{\mathbf{x}}, \beta^{\mathbf{X}}, \sqsubset^{\mathbf{X}}\right\rangle$ where:

- $\alpha^{\mathbf{X}}=a$
- $\beta^{\mathbf{X}}=b$
- $x *^{\mathbf{X}} y=x y$ for all $x, y \in X$, and
- $x \sqsubset^{\mathbf{X}} y \Longleftrightarrow(\quad(x=y) \quad$ or $\quad((\exists z \in X) y=x z$ or $y=z x) \quad$ or $\quad((\exists z, w \in$ $X) y=z x w)$) for all $x, y \in X$
is a model of TC.

The proof of this lemma amounts to checking that (A1) - (A6) are satisfied, and we shall not include it here. We call the structure $\mathbf{T x}:=\left\langle\mathbf{T x} ; *^{\mathbf{T x}}, \alpha^{\mathbf{T x}}, \beta^{\mathbf{T x}}, \sqsubset^{\mathbf{T x}}\right\rangle$ the standard model of TC.

Conversely, if $\left\langle X ; *^{\mathbf{X}}, \alpha^{\mathbf{X}}, \beta^{\mathbf{X}}, \sqsubset^{\mathbf{X}}\right\rangle$ is a model of TC, there should be a renaming map $\varphi: X \rightarrow(X \cup\{a, b\})^{+}$with $\varphi\left(\alpha^{\mathbf{X}}\right)=a, \varphi\left(\beta^{\mathbf{X}}\right)=b$ and $\varphi\left(x *^{\mathbf{X}} y\right)=\varphi(x) \varphi(y)$ for all $x, y \in X$ such that $\varphi(X) \in \mathcal{A}$.
(Note that by Lemma 2.2, there are rather 'obvious' non-standard models of TC satisfying sentences false in the standard model; like the set of strings on a 3-letter alphabet $\{a, b, c\}$, which satisfies

$$
\left[E x_{2}\right]\left[x_{1}\right]\left[x_{0}\right] \neg[z \approx x y] \wedge \neg[x \approx a] \wedge \neg[x \approx b]
$$

Thus TC is incomplete. Decidability, on the other hand, can be slightly more complicated.)

Corollary 2.1. TC is consistent and $\mathrm{TC} \subseteq \mathrm{Th}(\mathbf{T x})$.

CHAPTER 3

Discussing elements of $T x$ in the context of TC

In this chapter, we introduce a "naming" map, which in effect lets us talk about elements of Tx in the context of TC. This chapter is based on Sections 6 and 7 under Part Two of 'Undecidability without Arithmetization' [8], and is referenced by part (ii) of the overview.

Definition 3.1. The map $N: \operatorname{Tx} \rightharpoonup A^{+}$is defined inductively as follows:

$$
\begin{equation*}
N(a)=\alpha \text { and } N(b)=\beta \tag{1}
\end{equation*}
$$

and if $s \in \mathrm{Tx}$ and $N(s)$ is well-defined, then

$$
\begin{equation*}
N(s a)=[N(s) * N(a)] \text { and } N(s b)=[N(s) * N(b)] \tag{2}
\end{equation*}
$$

Definition 3.2. The set Cterm $\subseteq A^{+}$is defined inductively as follows:

$$
\begin{align*}
& \alpha \in \text { Cterm and } \beta \in \text { Cterm } \tag{3}\\
& s, t \in \mathrm{Cterm} \Longrightarrow[s * t] \in \mathrm{Cterm} \tag{4}
\end{align*}
$$

1. Properties of the naming map

Lemma 3.1. N is well-defined on Tx , and for all $s \in \mathrm{Tx}, N(s) \in$ Cterm.

Proof. Let $x \in$ Tx. Then by Lemma 2.1, $x=t_{1} \ldots t_{n}$ for some $n \in \mathbb{N}$ and $t_{1}, \ldots, t_{n} \in$ $\{a, b\}$. Also by Lemma 2.1, we have $t_{1} \ldots t_{m} \in \operatorname{Tx}$ for all $m \in\{1, \ldots, n\}$. Now $N\left(t_{1}\right)$ is well-defined by (1), since $t_{1} \in\{a, b\}$. Furthermore, for all $m \in\{1, \ldots, n-1\}$, if $N\left(t_{1} \ldots t_{m}\right)$ is well-defined, then $N\left(t_{1} \ldots t_{m+1}\right)$ is well-defined by (2). Hence by induction, $N\left(t_{1} \ldots t_{n}\right)$ is well-defined.

Let $X:=\{x \in \operatorname{Tx} \mid N(x) \in \operatorname{Cterm}\}$. We have $N(a)=\alpha \in$ Cterm and $N(b)=\beta \in$ Cterm, so $a, b \in X$.

Let $s \in X$. Then $N(s) \in$ Cterm, so by (4), we have
$N(s a)=[N(s) * N(a)] \in$ Cterm and $N(s b)=[N(s) * N(b)] \in$ Cterm since $a, b \in X$ so $N(a), N(b) \in$ Cterm. Hence $s a, s b \in X$.

Thus $X \in \mathcal{B}:=\{X \mid a, b \in X$ and $(\forall s \in X) s a, s b \in X\}$, so by Lemma 2.1, we have Tx $=\bigcap \mathcal{B} \subseteq X$, so
$s \in \mathrm{Tx} \Longrightarrow s \in X \Longleftrightarrow N(s) \in$ Cterm, as required.

This basically shows that the naming map maps elements of $T x$ to terms in the language of TC , so statements like $N(s) \approx x_{0}$ or $N(s) \approx \alpha$ are syntactically valid sentences in the language of TC. In particular, the naming map maps elements of Tx to terms constructible from α and β from applying * a finite number of times.

Lemma 3.2. For all $s, t \in \mathrm{Tx}$, the sentence $N(s t) \approx[N(s) * N(t)]$ is in TC. In other words,

$$
N(s t) \approx[N(s) * N(t)] \in \mathrm{TC} .
$$

Proof. Let $X:=\{t \in \mathrm{Tx} \mid(\forall s \in \mathrm{Tx})(N(s t) \approx[N(s) * N(t)] \in \mathrm{TC})\}$.

Let $s \in \mathrm{Tx}$. By (2), we have $N(s a)=[N(s) * N(a)]$ and $N(s b)=[N(s) * N(b)]$. Now all tautologies in the appropriate language are contained in TC, so $(N(s a) \approx[N(s) * N(a)]) \in \mathrm{TC}$ and $(N(s b) \approx[N(s) * N(b)]) \in \mathrm{TC}$, since $N(s a) \approx[N(s) * N(a)]$ and $N(s b) \approx[N(s) * N(b)]$ are tautologies of the form $x \approx x$. Hence $a, b \in X$.

Now let $t \in X$. Then $(N(s t) \approx[N(s) * N(t)]) \in \mathrm{TC}$ for all $s \in \mathrm{Tx}$.

Let $s \in$ Tx. By (2), we have $N(s t a)=[N(s t) * N(a)]$. Then $N(s t a) \approx[N(s t) * N(a)]$ is a tautology of the form $x=x$, so

$$
\begin{equation*}
N(s t a) \approx[N(s t) * N(a)] \in \mathrm{TC} . \tag{f1}
\end{equation*}
$$

But $N(s t) \approx[N(s) * N(t)] \in \mathrm{TC}$, so

$$
\begin{equation*}
[N(s t) * N(a)] \approx[[N(s) * N(t)] * N(a)] \in \mathrm{TC}, \tag{f2}
\end{equation*}
$$

since concatenating on the right by the same thing on both sides of an equality preserves the equality in TC.

By the axiom (A1), we have

$$
\begin{equation*}
[[N(s) * N(t)] * N(a)] \approx[N(s) *[N(t) * N(a)]] \in \mathrm{TC} . \tag{f3}
\end{equation*}
$$

By (2), we have $N(t a)=[N(t) * N(a)]$. Then $N(t a) \approx[N(t) * N(a)]$ is a tautology of the form $x \approx x$, so $N(t a) \approx[N(t) * N(a)] \in \mathrm{TC}$, so we can substitute $N(t a)$ for $[N(t) * N(a)]$ in the tautology $[N(s) *[N(t) * N(a)]] \approx[N(s) *[N(t) * N(a)]]$ to get

$$
\begin{equation*}
[N(s) *[N(t) * N(a)]] \approx[N(s) * N(t a)] \in \mathrm{TC} . \tag{f4}
\end{equation*}
$$

Now $(f 1)-(f 4)$ form a chain of equalities in TC , so by transitivity of equality in TC,

$$
N(s t a) \approx[N(s) * N(t a)] \in \mathrm{TC} .
$$

By a similar argument,

$$
N(s t b) \approx[N(s) * N(t b)] \in \mathrm{TC} .
$$

Hence $t \in X \Longrightarrow t a, t b \in X$, so
$X \in \mathcal{B}=\{X \mid a, b \in X$ and $(\forall s \in X) s a, s b \in X\}$, so by Lemma 2.1, we have
$\mathrm{Tx}=\bigcap \mathcal{B} \subseteq X$, so
$t \in \mathrm{Tx} \Longrightarrow t \in X \Longleftrightarrow(\forall s \in \mathrm{Tx})(N(s t) \approx[N(s) * N(t)] \in \mathrm{TC})$.

Hence for all $t \in \mathrm{Tx}$, we have $(N(s t) \approx[N(s) * N(t)]) \in \mathrm{TC}$ for all $s \in \mathrm{Tx}$, so $N(s t) \approx[N(s) * N(t)] \in \mathrm{TC}$ for all $s, t \in \mathrm{Tx}$, as required.

Lemma 3.3. For all $t \in \mathrm{Tx}$, we have

$$
\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X_{t}\right\}\right] \in \mathrm{TC} .
$$

where $X_{t}:=\left\{s \in \mathrm{Tx} \mid s \sqsubset^{\mathbf{T x}} t\right\}$.

Note that when a set X is finite,
$\bigvee\left\{x_{0} \approx N(s) \mid s \in X\right\}=\left[x_{0} \approx N\left(s_{1}\right)\right] \vee \cdots \vee\left[x_{0} \approx N\left(s_{1}\right)\right]$ for some $s_{1}, \ldots, s_{n} \in \mathrm{Tx}$, so $\bigvee\left\{x_{0} \approx N(s) \mid s \in X\right\}$ is a valid first-order formula in the language of TC. From Lemma 2.1 and the definition of $\sqsubset^{\mathbf{T x}}$ in Lemma 2.3, we can see that X_{t} is finite for all $t \in \mathrm{Tx}$; in particular, if $t=t_{1} \ldots t_{n}$ with $t_{1}, \ldots, t_{n} \in\{a, b\}$, then $\left|X_{t}\right|=\frac{n(n+1)}{2}$.

Proof. (Sketch)
Let $Y:=\left\{t \in \mathrm{Tx} \mid\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X_{t}\right\}\right] \in \mathrm{TC}\right\}$.

By Theorem 1.1, we have
$\left[x_{0}\right]\left[x_{0} \sqsubset \alpha \leftrightarrow x_{0} \approx \alpha\right] \in \mathrm{TC}$ and $\left[x_{0}\right]\left[x_{0} \sqsubset \beta \leftrightarrow x_{0} \approx \beta\right] \in \mathrm{TC}$, so
$\left[x_{0}\right]\left[x_{0} \sqsubset N(a) \leftrightarrow x_{0} \approx N(a)\right] \in \mathrm{TC}$ and $\left[x_{0}\right]\left[x_{0} \sqsubset N(b) \leftrightarrow x_{0} \approx N(b)\right] \in \mathrm{TC}$ since $N(a)=\alpha$ and $N(b)=\beta$. Furthermore, $x_{0} \approx N(a)=\bigvee\{x \approx N(s) \mid s \in\{a\}\}$ and $x_{0} \approx N(b)=\bigvee\{x \approx N(s) \mid s \in\{b\}\}$, and $\{a\}=X_{a}$ and $\{b\}=X_{b}$, so $a, b \in Y$.

Suppose $t \in Y$. Then

$$
\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X_{t}\right\}\right] \in \mathrm{TC} .
$$

By Theorem 1.3(a), we have

$$
\begin{aligned}
{\left[x_{0}\right][} & x_{0} \sqsubset[N(t) * \alpha] \leftrightarrow \\
& {\left[x_{0} \sqsubset \sim(t) \vee\right.} \\
& x_{0} \approx \alpha \vee\left[E x_{1}\right]\left[E x_{2}\right]\left[N(t) \approx x_{1} * x_{2} \wedge x_{0} \approx x_{1} * \alpha\right] \vee \\
& x_{0} \approx N(t) * \alpha
\end{aligned}
$$

so

$$
\begin{aligned}
{\left[x_{0}\right][} & x_{0} \sqsubset[N(t) * \alpha] \leftrightarrow \\
& \bigvee \bigvee\left\{x_{0} \approx N(s) \mid s \in X\right\} \vee \\
& x_{0} \\
& \approx N(a) \vee\left[E x_{1}\right]\left[E x_{2}\right]\left[N(t) \approx x_{1} * x_{2} \wedge x_{0} \approx x_{1} * \alpha\right] \vee \\
& \left.\left.x_{0} \approx N(t a) \quad\right] \quad\right] \in \mathrm{TC},
\end{aligned}
$$

since $\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X\right\}\right] \in$ TC by assumption, $N(a)=\alpha$ and $N(s a)=[N(s) * N(a)]$ for all $s \in T x$. Furthermore,
$x_{0} \approx N(a)=\bigvee\{x \approx N(s) \mid s \in\{a\}\}$, and $x_{0} \approx N(t a)=\bigvee\{x \approx N(s) \mid s \in\{t a\}\}$, and

$$
\begin{aligned}
& {\left[\quad\left[E x_{1}\right]\left[E x_{2}\right]\left[N(t) \approx x_{1} * x_{2} \wedge x_{0} \approx x_{1} * \alpha\right]\right.} \\
& \left.\leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in\{s \in \mathrm{Tx} \mid(\exists u, w \in T x)(t=u w \wedge s=w a)\}\right\}\right] \in \mathrm{TC}
\end{aligned}
$$

$$
\left[x_{0}\right]\left[x_{0} \sqsubset[N(t a)] \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X^{\prime}\right\}\right] \in \mathrm{TC},
$$

with $X^{\prime}=X \cup\{a\} \cup\{s \in \operatorname{Tx} \mid(\exists u, w \in T x)(t=u w \wedge s=w a)\} \cup\{t a\}$. Now $X^{\prime}=X_{t a}$, so $t a \in Y$. By a similar argument, $t b \in Y$. Thus
$Y \in \mathcal{B}=\{X \mid a, b \in X$ and $(\forall s \in X) s a, s b \in X\}$, so by Lemma 2.1, we have
$\mathrm{Tx}=\bigcap \mathcal{B} \subseteq Y$, so

$$
t \in \mathrm{Tx} \Longrightarrow t \in Y \Longleftrightarrow\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X_{t}\right\}\right] \in \mathrm{TC}
$$

Hence for all $t \in \mathrm{Tx}$, we have $\left[x_{0}\right]\left[x_{0} \sqsubset N(t) \leftrightarrow \bigvee\left\{x_{0} \approx N(s) \mid s \in X_{t}\right\}\right] \in \mathrm{TC}$, as required.

In a sense, the map N is "bijective" with respect to TC. The following result shows the "surjectivity". The proof of "injectivity" won't be shown here, since a far simpler proof can be given later once we've constructed some more machinery.

Lemma 3.4. For all $c \in$ Cterm, there exists $s \in \mathrm{Tx}$ such that $N(s) \approx c \in \mathrm{TC}$.

Proof. We have $a, b \in \mathrm{Tx}, N(a)=\alpha$ and $N(b)=\beta$, so $N(a) \approx \alpha \in \mathrm{TC}$ and $N(b) \approx \beta \in \mathrm{TC}$ as $N(a) \approx \alpha$ and $N(b) \approx \beta$ are tautologies. Hence there exist $s, t \in \mathrm{Tx}$ such that $N(s) \approx \alpha \in \mathrm{TC}$ and $N(t) \approx \beta \in \mathrm{TC}$.

Let $c, d \in$ Cterm and suppose there exist $s, t \in \mathrm{Tx}$ such that

$$
\begin{align*}
N(s) & \approx c \in \mathrm{TC} \tag{*}\\
\text { and } N(t) & \approx d \in \mathrm{TC} . \tag{**}
\end{align*}
$$

By Lemma 2.2, we have $s t \in \mathrm{Tx}$, so by Lemma 3.2,

$$
\begin{equation*}
N(s t) \approx[N(s) * N(t)] \in \mathrm{TC} \tag{***}
\end{equation*}
$$

Now TC is closed under logical operations, so by $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we may substitute c for $N(s)$ and d for $N(t)$ in $(* * *)$ to get $N(s t) \approx[c * d] \in \mathrm{TC}$. Hence there exists $u=s t \in \mathrm{Tx}$ such that $N(u) \approx[c * d] \in \mathrm{TC}$.

Hence by induction, for all $c \in \mathrm{Cterm}$, there exists $s \in \mathrm{Tx}$ such that $N(s) \approx c \in \mathrm{TC}$.

CHAPTER 4

Discernibility of relations on Tx

In this chapter, we introduce a set $\mathbf{G D} \subseteq\left\{X \subseteq \operatorname{Tx}^{n} \mid n \in \mathbb{N}\right\}$, which we call the set of General Discernible relations. Membership of an n-ary relation R in $\mathbf{G D}$ is meant to be a way to define whether or not there is an algorithmic procedure that decides whether or not an arbitrary $t \in \mathrm{Tx}^{n}$ is in R. This chapter is based on Section 8 under Part Three of 'Undecidability without Arithmetization' [8], and is referenced by part (iii) of the overview.

Each $R \in \mathbf{G D}$ is an n-ary relation on $T \mathrm{x}$ for some $n \in \mathbb{N}$, and instead of writing $\left(t_{1}, \ldots, t_{n}\right) \in R$, we often write $R\left(t_{1}, \ldots, t_{n}\right)$. In addition, if R is an n-ary relation on Tx , then we denote $\neg R:=\operatorname{Tx}^{n} \backslash R$. Note that for all
$\left(t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n}$, we have $(\neg R)\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \neg\left(R\left(t_{1}, \ldots, t_{n}\right)\right)$, so the statement $\neg R\left(t_{1}, \ldots, t_{n}\right)$ is unambiguous.

Definition 4.1 (General Discernible (GD) Relations). A relation R on Tx is GD if and only if it can be constructed from the following base cases by applying the following inductive conditions a finite number of times. We denote the class of GD relations by GD.

Base cases:

(GD1) Letters

$$
\{t \in \mathrm{Tx} \mid t=a\} \in \mathbf{G} \mathbf{D} \text { and }\{t \in \mathrm{Tx} \mid t=b\} \in \mathbf{G} \mathbf{D}
$$

(GD2) Equality

$$
\left\{(t, y) \in \mathrm{Tx}^{2} \mid t=y\right\} \in \mathbf{G} \mathbf{D}
$$

(GD3) Concatenation

$$
\left\{(t, y, z) \in \mathrm{Tx}^{3} \mid t=y z\right\} \in \mathbf{G} \mathbf{D}
$$

Inductive conditions:

(GD4) Adding a parameter if $R \in \mathbf{G D}$, then $\left\{\left(y, t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n+1} \mid R\left(t_{1}, \ldots, t_{n}\right)\right\} \in \mathbf{G D}$
(GD5) Eliminating duplicates
if $R \in \mathbf{G D}$, then $\left\{\left(t_{1}, t_{3}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n-1} \mid R\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right)\right\} \in \mathbf{G D}$
(GD6) Swapping coordinates
if $R \in \mathbf{G D}$, then for all $k \in\{1, \ldots, n-1\}$, we have
$\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid R\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right)\right\} \in \mathbf{G D}$
(GD7) Relative complement
if $R \in \mathbf{G D}$, then $\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid \neg R\left(t_{1}, \ldots, t_{n}\right)\right\} \in \mathbf{G D}$
(GD8) Direct product
if $R, S \in \mathbf{G D}$, then
$\left\{\left(t_{1}, \ldots, t_{n+k}\right) \in \mathrm{Tx}^{n+k} \mid R\left(t_{1}, \ldots, t_{n}\right)\right.$ and $\left.S\left(t_{n+1}, \ldots, t_{n+k}\right)\right\} \in \mathbf{G D}$
(GD9) Substring-closed interior
if $R \in \mathbf{G D}$, then
$\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\forall t_{1} \in \mathrm{Tx}\right) t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow R\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right\} \in \mathbf{G D}$
(GD10) Complementary projections
if $R \subseteq \mathrm{Tx}^{n}$, and there exist $S, T \in \mathbf{G D}$ such that:
$R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \operatorname{Tx}\right) S\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right)$ and
$R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\forall t_{n+1}, \ldots, t_{n+l} \in \mathrm{Tx}\right) T\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right)$,
then $R \in \mathbf{G D}$.

Equivalently, by De Morgan's Laws and (GD7), we can state (GD10) as

- if $R \subseteq \mathrm{Tx}^{n}$, and there exist $S, T^{\prime} \in \mathbf{G D}$ such that:

$$
\begin{aligned}
& R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right) S\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right) \text { and } \\
& \neg R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+l} \in \mathrm{Tx}\right) T^{\prime}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right),
\end{aligned}
$$

then $R \in \mathbf{G D}$,
where we may think of T^{\prime} as $\neg T$ from the original statement of condition 10 .

We denote by ED the set generated from the initial elements (GD1)-(GD3) by the inductive conditions (GD4)-(GD9), but not (GD10). We call ED the set of Elementary Discernible relations.
(Note that in the definition of GD relations only the cases (GD3) and (GD9) make use of the fact that Tx is a set of strings. The other notions are purely logical.)

Definition 4.2. A function $f: \mathrm{Tx}^{n} \rightarrow \mathrm{Tx}$ is General Discernible (GD) if and only if there exists $R \in \mathbf{G D}$ such that the following hold:
(1) $\left(\forall s_{1}, \ldots, s_{n}, t, v \in \operatorname{Tx}\right)\left(R\left(s_{1}, \ldots, s_{n}, t\right)\right.$ and $\left.R\left(s_{1}, \ldots, s_{n}, v\right)\right) \Longrightarrow t=v$
(2) $\left(\forall s_{1}, \ldots, s_{n} \in \operatorname{Tx}\right)(\exists t \in \operatorname{Tx})\left(R\left(s_{1}, \ldots, s_{n}, t\right)\right.$
(3) $\left(\forall s_{1}, \ldots, s_{n}, t \in \operatorname{Tx}\right) f\left(s_{1}, \ldots, s_{n}\right)=t \Longleftrightarrow R\left(s_{1}, \ldots, s_{n}, t\right)$

For each GD function $f: \mathrm{Tx}^{n} \rightarrow \mathrm{Tx}$, we shall denote the corresponding $(n+1)$-ary relation satisfying the above conditions for f by R_{f}.

1. Properties of GD relations and functions

The preimage of a GD relation under a GD function is also GD:

Lemma 4.1. Suppose $f: \mathrm{Tx}^{n} \rightarrow \mathrm{Tx}$ is GD and $X \in \mathbf{G D}$. Then $f^{-1}(X) \in \mathbf{G D}$.

Proof. Let $Y=f^{-1}(X)$. Then for all $s_{1}, \ldots, s_{n} \in \mathrm{Tx}$,

$$
\left(s_{1}, \ldots, s_{n}\right) \in Y \Longleftrightarrow f\left(s_{1}, \ldots, s_{n}\right) \in X
$$

(by definition of Y)

$$
\Longleftrightarrow(\exists t \in \operatorname{Tx})\left(f\left(s_{1}, \ldots, s_{n}\right)=t \text { and } t \in X\right)
$$

(introducing $t:=f\left(s_{1}, \ldots, s_{n}\right)$ as a variable)
$\Longleftrightarrow(\exists t \in \mathrm{Tx})\left(R_{f}\left(s_{1}, \ldots, s_{n}, t\right)\right.$ and $\left.t \in X\right)$
(by condition 3 of Definition 4.2),
and $\left(s_{1}, \ldots, s_{n}\right) \notin Y \Longleftrightarrow f\left(s_{1}, \ldots, s_{n}\right) \notin X$
(by definition of Y)
$\Longleftrightarrow(\exists t \in \operatorname{Tx})\left(f\left(s_{1}, \ldots, s_{n}\right)=t\right.$ and $\left.t \notin X\right)$
(introducing $t:=f\left(s_{1}, \ldots, s_{n}\right)$ as a variable)
$\Longleftrightarrow(\exists t \in \operatorname{Tx})\left(R_{f}\left(s_{1}, \ldots, s_{n}, t\right)\right.$ and $\left.t \notin X\right)$
(by condition 3 of Definition 4.2).

Now $R_{f}, X \in \mathbf{G D}$ by assumption, so by condition 8 of Definition 4.1, we have

$$
S_{1}:=\left\{\left(t_{1}, \ldots, t_{n+2}\right) \in \mathrm{Tx}^{n+2} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } X\left(t_{n+2}\right)\right\} \in \mathbf{G D}
$$

Then by a finite number of applications of condition 6 of Definition 4.1, we have

$$
\begin{aligned}
S_{2}: & =\left\{\left(t_{n+1}, t_{n+2}, t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n+2} \mid S_{1}\left(t_{1}, \ldots, t_{n+2}\right)\right\} \\
& =\left\{\left(t_{n+1}, t_{n+2}, t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n+2} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } X\left(t_{n+2}\right)\right\} \in \mathbf{G D} .
\end{aligned}
$$

Then by condition 5 of Definition 4.1, we have

$$
\begin{aligned}
S_{3}: & =\left\{\left(t_{n+1}, t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n+1} \mid S_{2}\left(t_{n+1}, t_{n+1}, t_{1}, \ldots, t_{n}\right)\right\} \\
& =\left\{\left(t_{n+1}, t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n+1} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } X\left(t_{n+1}\right)\right\} \in \mathbf{G D}
\end{aligned}
$$

Then by a finite number of applications of condition 6 of Definition 4.1, we have

$$
\begin{aligned}
S_{4}: & =\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \operatorname{Tx}^{n+1} \mid S_{3}\left(t_{n+1}, t_{1}, \ldots, t_{n}\right)\right\} \\
& =\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \mathrm{Tx}^{n+1} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } X\left(t_{n+1}\right)\right\} \\
& =\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \operatorname{Tx}^{n+1} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } t_{n+1} \in X\right\} \in \mathbf{G D} .
\end{aligned}
$$

Furthermore, $\neg X \in \mathbf{G D}$ by condition 7 of Definition 4.1 , so by a similar argument,

$$
\begin{aligned}
T_{4}^{\prime} & =\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \operatorname{Tx}^{n+1} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } t_{n+1} \in \neg X\right\} \\
& =\left\{\left(t_{1}, \ldots, t_{n+1}\right) \in \operatorname{Tx}^{n+1} \mid R_{f}\left(t_{1}, \ldots, t_{n+1}\right) \text { and } t_{n+1} \notin X\right\} \in \mathbf{G D}
\end{aligned}
$$

Hence

$$
\begin{aligned}
Y\left(s_{1}, \ldots, s_{n}\right) & \Longleftrightarrow\left(s_{1}, \ldots, s_{n}\right) \in Y \\
\text { and } \neg Y\left(s_{1}, \ldots, s_{n}\right) & \Longleftrightarrow\left(s_{1}, \ldots, s_{n}\right) \notin Y
\end{aligned} \Longleftrightarrow(\exists t \in \operatorname{Tx}) S_{4}\left(s_{1}, \ldots, s_{n}, t\right), T_{4}^{\prime}\left(s_{1}, \ldots, s_{n}, t\right), ~ \$(\exists t)
$$

with $S_{4}, T_{4}^{\prime} \in \mathbf{G D}$, so by condition 10 of Definition $4.1, Y=f^{-1}(X) \in \mathbf{G D}$, as required.

When composing two GD functions in some way, the resulting function is also GD:

Lemma 4.2 ((SFF) Substituting Functions into Functions). Let $f: \mathrm{Tx}^{m} \rightarrow \mathrm{Tx}$ and $g: \mathrm{Tx}^{n} \rightarrow \mathrm{Tx}$ be GD functions. Then the function $h: \mathrm{Tx}^{m+n-1} \rightarrow \mathrm{Tx}$ defined by $h\left(t_{1}, \ldots, t_{m+n-1}\right)=f\left(g\left(t_{1}, \ldots, t_{n}\right), t_{n+1}, \ldots, t_{m+n-1}\right)$ is also a GD function.

Proof. Define $R \in \mathrm{Tx}^{m+n}$ by $R\left(t_{1}, \ldots, t_{m+n}\right) \Longleftrightarrow h\left(t_{1}, \ldots, t_{m+n-1}\right)=t_{m+n}$. Note that for all $t_{1}, \ldots, t_{m+n-1}, v \in \mathrm{Tx}$,

$$
\begin{aligned}
& h\left(t_{1}, \ldots, t_{m+n-1}\right)=v \Longleftrightarrow f\left(g\left(t_{1}, \ldots, t_{n}\right), t_{n+1}, \ldots, t_{m+n-1}\right)=v \quad(\text { by definition of } h) \\
& \Longleftrightarrow(\exists u \in \operatorname{Tx})\left(g\left(t_{1}, \ldots, t_{n}\right)=u \text { and } f\left(u, t_{n+1}, \ldots, t_{m+n-1}\right)=v\right) \\
&\left(\text { introducing } u:=g\left(t_{1}, \ldots, t_{n}\right) \text { as a variable }\right) \\
& \Longleftrightarrow(\exists u \in \operatorname{Tx})\left(R_{g}\left(t_{1}, \ldots, t_{n}, u\right) \text { and } R_{f}\left(u, t_{n+1}, \ldots, t_{m+n-1}, v\right)\right)
\end{aligned}
$$

(by definition of R_{f} and R_{g}).

Now $R_{f}, R_{g} \in \mathbf{G D}$ since f and g are GD by assumption, so by conditions 8,6 and 5 of Definition 4.1,

$$
\begin{aligned}
S:=\{ & \left(t_{1}, \ldots, t_{m+n+1}\right) \in \mathrm{Tx}^{m+n+1} \mid \\
& \left.R_{g}\left(t_{1}, \ldots, t_{n}, t_{m+n+1}\right) \text { and } R_{f}\left(t_{m+n+1}, t_{n+1}, \ldots, t_{m+n-1}, t_{m+n}\right)\right\} \in \mathbf{G D} .
\end{aligned}
$$

Then for all $t_{1}, \ldots, t_{m+n-1}, v \in \mathrm{Tx}$,

$$
\begin{equation*}
R\left(t_{1}, \ldots, t_{m+n-1}, v\right) \Longleftrightarrow h\left(t_{1}, \ldots, t_{m+n-1}\right)=v \Longleftrightarrow(\exists u \in \operatorname{Tx}) S\left(t_{1}, \ldots, t_{m+n-1}, v, u\right) \tag{*}
\end{equation*}
$$

with $S \in$ GD. Furthermore,

$$
\begin{aligned}
\neg R\left(t_{1}, \ldots, t_{m+n-1}, v\right) & \left.\Longleftrightarrow h\left(t_{1}, \ldots, t_{m+n-1}\right) \neq v \quad \text { (by definition of } R\right) \\
& \Longleftrightarrow\left(\exists v^{\prime} \in \mathrm{Tx}\right)\left(h\left(t_{1}, \ldots, t_{m+n-1}\right)=v^{\prime} \text { and } v \neq v^{\prime}\right) \\
& \text { (as } h \text { is a function) }
\end{aligned}
$$

$\Longleftrightarrow\left(\exists v^{\prime} \in \operatorname{Tx}\right)\left(\left((\exists u \in \operatorname{Tx}) S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right)\right)\right.$ and $\left.v \neq v^{\prime}\right)$
(by $(*))$
$\Longleftrightarrow\left(\exists u, v^{\prime} \in \operatorname{Tx}\right)\left(S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right)\right.$ and $\left.v \neq v^{\prime}\right)$.

Now for all $t_{1}, \ldots, t_{m+n-1}, v \in \mathrm{Tx}$,
$\left(\exists u, v^{\prime} \in \operatorname{Tx}\right)\left(S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right)\right.$ and $\left.v \neq v^{\prime}\right)$
$\Longleftrightarrow(\exists z \in \operatorname{Tx})\left(\exists u, v^{\prime} \in \operatorname{Tx}\right)\left(u \sqsubset^{\mathbf{T x}} z\right.$ and $v^{\prime} \sqsubset^{\mathbf{T x}} z$ and $S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right)$ and $\left.v \neq v^{\prime}\right)$.

The backward implication is trivial and the forward implication holds by taking z to be $u v^{\prime}$.

Now $S \in \mathbf{G D}$, and $\{(t, y) \in \mathrm{Tx} \mid t \neq y\} \in \mathbf{G D}$ by conditions 2 and 7 of Definition 4.1, so by conditions 8,6 and 5 of Definition 4.1,

$$
T_{1}^{\prime}:=\left\{\left(v^{\prime}, u, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{m+n+2} \mid S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right\} \in \mathbf{G D}
$$

By conditions 9 and 7 of Definition 4.1, for all $T \subseteq \mathrm{Tx}^{n}$,

$$
T \in \mathbf{G D} \Longrightarrow\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\exists t_{1} \in \mathrm{Tx}\right)\left(t_{1} \sqsubset^{\mathbf{T x}} y \text { and } \neg T\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)\right\} \in \mathbf{G D} . \quad(* *)
$$

As $\neg T_{1}^{\prime} \in \mathbf{G D}$ by condition 7 of Definition 4.1, we have

$$
T_{2}^{\prime}:=\left\{\left(z, u, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{n} \mid\left(\exists v^{\prime} \in \mathrm{Tx}\right)\left(v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } \neg\left(\neg T_{1}^{\prime}\right)\left(v^{\prime}, u, t_{1}, \ldots, t_{m+n-1}, v\right)\right)\right\}
$$

$$
(\text { by }(* *))
$$

$$
=\left\{\left(z, u, t_{1}, \ldots, t_{m+n-1}, v\right) \in \operatorname{Tx}^{n} \mid\left(\exists v^{\prime} \in \operatorname{Tx}\right)\left(v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } T_{1}^{\prime}\left(v^{\prime}, u, t_{1}, \ldots, t_{m+n-1}, v\right)\right)\right\}
$$

$$
=\left\{\left(z, u, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{n} \mid\left(\exists v^{\prime} \in \mathrm{Tx}\right)\left(v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right)\right\}
$$

$$
\in \mathbf{G} \mathbf{D} .
$$

By condition 6 of Definition 4.1,

$$
\begin{aligned}
T_{3}^{\prime}: & =\left\{\left(u, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \operatorname{Tx}^{n} \mid T_{2}^{\prime}\left(z, u, t_{1}, \ldots, t_{m+n-1}, v\right)\right\} \\
& =\left\{\left(u, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \operatorname{Tx}^{n} \mid\left(\exists v^{\prime} \in \mathrm{Tx}\right)\left(v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right\}\right. \\
& \in \mathbf{G D} .
\end{aligned}
$$

As $\neg T_{3}^{\prime} \in \mathbf{G D}$ by condition 7 of Definition 4.1, by ($* *$), we have

$$
\begin{aligned}
& T_{4}^{\prime}:=\left\{\left(z^{\prime}, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \operatorname{Tx}^{n} \mid(\exists u \in \mathrm{Tx})\left(u \sqsubset^{\mathbf{T x}} z^{\prime} \text { and } \neg\left(\neg T_{3}^{\prime}\right)\left(u, z, t_{1}, \ldots, t_{m+n-1}, v\right)\right)\right\} \\
&=\left\{\left(z^{\prime}, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{n} \mid(\exists u \in \mathrm{Tx})\left(u \sqsubset^{\mathbf{T x}} z^{\prime} \text { and } T_{3}^{\prime}\left(u, z, t_{1}, \ldots, t_{m+n-1}, v\right)\right)\right\} \\
&=\left\{\left(z^{\prime}, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{n} \mid\right. \\
&(\exists u \in \mathrm{Tx})\left(u \sqsubset^{\mathbf{T x}} z^{\prime} \text { and }\left(\exists v^{\prime} \in \mathrm{Tx}\right)\left(v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right)\right\} \\
&=\left\{\left(z^{\prime}, z, t_{1}, \ldots, t_{m+n-1}, v\right) \in \mathrm{Tx}^{n} \mid\right. \\
&\left.\left(\exists u, v^{\prime} \in \mathrm{Tx}\right)\left(u \sqsubset^{\mathbf{T x}} z^{\prime} \text { and } v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right)\right\}
\end{aligned}
$$

$$
\in \mathbf{G D} .
$$

By conditions 5 and 6 of Definition 4.1,

$$
\begin{aligned}
T_{5}^{\prime}:= & \left\{\left(t_{1}, \ldots, t_{m+n-1}, v, z\right) \in \operatorname{Tx}^{n} \mid T_{4}^{\prime}\left(z, z, t_{1}, \ldots, t_{m+n-1}, v\right)\right\} \\
= & \left\{\left(t_{1}, \ldots, t_{m+n-1}, v, z\right) \in \operatorname{Tx}^{n} \mid\right. \\
& \left.\quad\left(\exists u, v^{\prime} \in \operatorname{Tx}\right)\left(u \sqsubset^{\mathbf{T x}} z \text { and } v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right)\right\} \\
\in & \mathbf{G} \mathbf{D} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\neg R\left(t_{1}, \ldots, t_{m+n-1}, v\right) & \Longleftrightarrow\left(\exists u, v^{\prime} \in \mathrm{Tx}\right)\left(S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right) \\
& \Longleftrightarrow(\exists z \in \mathrm{Tx}) \\
& \left(\left(\exists u, v^{\prime} \in \mathrm{Tx}\right)\left(u \sqsubset^{\mathbf{T x}} z \text { and } v^{\prime} \sqsubset^{\mathbf{T x}} z \text { and } S\left(t_{1}, \ldots, t_{m+n-1}, v^{\prime}, u\right) \text { and } v \neq v^{\prime}\right)\right) \\
& \Longleftrightarrow(\exists z \in \mathrm{Tx}) T_{5}^{\prime}\left(t_{1}, \ldots, t_{m+n-1}, v, z\right)
\end{aligned}
$$

with $T_{5}^{\prime} \in \mathbf{G D}$. Hence by condition 10 of Definition $4.1, R \in \mathbf{G D}$.

Finally, $h\left(s_{1}, \ldots, s_{n}\right)=t \Longleftrightarrow R\left(s_{1}, \ldots, s_{n}, t\right)$ for all $s_{1}, \ldots, s_{n}, t \in T x$ by definition of R, and R satisfies conditions 1 and 2 of Definition 4.2 since h is a function. Thus h is a GD function.

Lemma 4.3 (Derived GD rule $\left(\mathrm{GD} 9_{5}\right)$). If $R \subseteq \mathrm{Tx}^{n+1}$ is GD , then $T:=\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid\left(\forall t_{0} \sqsubset^{\mathrm{Tx}} y\right) R\left(t_{0}, y, t_{2}, \ldots, t_{n}\right)\right\}$ is GD.

Proof. We have $S:=\left\{\left(y, t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\forall t_{0} \sqsubset^{\mathrm{Tx}} y\right) R\left(t_{0}, t_{1}, t_{2}, \ldots, t_{n}\right)\right\}$ is GD by (GD9).

Then $T\left(y, t_{2}, \ldots, t_{n}\right) \Longleftrightarrow S\left(y, y, t_{2}, \ldots, t_{n}\right)$, so T is GD by (GD5).

Lemma 4.4 (SPS GD). The substring, prefix and suffix relations are GD.

Proof. $s \sqsubset^{\mathrm{Tx}} t \Longleftrightarrow\left(\exists x \sqsubset^{\mathrm{Tx}} t\right) x=s$, so \sqsubset^{Tx} is GD by (GD6), ($\left.\overline{9}\right)$, (GD7) and (GD2).
$s \sqsubset_{p}^{\mathrm{Tx}} t \Longleftrightarrow\left(s=t \vee\left(\exists x \sqsubset^{\mathrm{Tx}} t\right) s x=t\right)$, so $\sqsubset_{p}^{\mathrm{Tx}}$ is GD by (GD7), (GD8), (GD6), ($\left.\overline{9}_{5}\right)$ and (GD2).
$s \sqsubset_{s}^{\mathrm{Tx}} t \Longleftrightarrow\left(s=t \vee\left(\exists x \sqsubset^{\mathrm{Tx}} t\right) x s=t\right)$, so $\sqsubset_{s}^{\mathrm{Tx}}$ is GD by (GD7), (GD8), (GD6), ($\overline{9}_{5}$) and (GD2).

Lemma $4.5(\mathrm{RGD} \Longleftrightarrow \mathrm{CFGD})$. Let R be an n-ary relation and let the characteristic function χ_{R} be defined by $\chi_{R}\left(x_{1}, \ldots, x_{n}\right)=a \Longleftrightarrow R\left(x_{1}, \ldots, x_{n}\right)$ and $\chi_{R}\left(x_{1}, \ldots, x_{n}\right)=$ $b \Longleftrightarrow \neg R\left(x_{1}, \ldots, x_{n}\right)$. Then R is GD iff χ_{R} is GD.

Proof. Suppose R is GD. Then $R_{\chi_{R}}=\left\{\left(x_{1}, \ldots, x_{n}, x_{0}\right) \in \operatorname{Tx}^{n+1} \mid\left(R\left(x_{1}, \ldots, x_{n}\right) \wedge x_{0}=\right.\right.$ a) $\left.\vee\left(\neg\left(R\left(x_{1}, \ldots, x_{n}\right)\right) \wedge x_{0}=b\right)\right\}$ is GD by (GD1), (GD7), (GD8), (GD6) and (GD5).

Conversely, suppose χ_{R} is GD. Then
$R_{1}=\left\{\left(x_{1}, \ldots, x_{n}, x_{0}\right) \in \operatorname{Tx}^{n+1} \mid R_{\chi_{R}}\left(x_{1}, \ldots, x_{n}, x_{0}\right) \wedge x_{0}=a\right\}$ and
$R_{2}=\left\{\left(x_{1}, \ldots, x_{n}, x_{0}\right) \in \operatorname{Tx}^{n+1} \mid R_{\chi_{R}}\left(x_{1}, \ldots, x_{n}, x_{0}\right) \wedge x_{0}=b\right\}$ are GD by (GD1), (GD8) and (GD5). Then for all $x_{1}, \ldots, x_{n} \in \operatorname{Tx}$, we have $R\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow(\exists x \in \operatorname{Tx}) R_{1}=$ $\left\{\left(x_{1}, \ldots, x_{n}, x\right)\right.$ and $\neg R\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow(\exists x \in \mathrm{Tx}) R_{2}=\left\{\left(x_{1}, \ldots, x_{n}, x\right)\right.$, so by (GD10), we have $R \in \mathrm{GD}$.

Lemma 4.6 ((SFR) Substituting Functions into Relations). Let R be an n-ary GD relation and f an m-ary GD function. Then the $(m+n-1)$-ary relation S defined by $S\left(x_{1}, \ldots, x_{m+n-1}\right) \Longleftrightarrow R\left(f\left(x_{1}, \ldots, x_{m}\right), x_{m+1}, \ldots, x_{m+n-1}\right)$ is GD.

Proof. Since R is GD, χ_{R} is GD by (RGD \Longleftrightarrow CFGD). By Lemma 4.2, the ($m+$ $n-1)$-ary function g defined by $g\left(x_{1}, \ldots, x_{m+n-1}\right)=\chi_{R}\left(f\left(x_{1}, \ldots, x_{m}\right), x_{m+1}, \ldots, x_{m+n-1}\right)$ is GD. Now $g=\chi_{S}$, so S is GD by (RGD $\Longleftrightarrow \mathbf{C F G D}$).

Lemma 4.7. By (GD2) and Lemma 4.2, $\varphi_{n}:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto x_{1} x_{2} \ldots x_{n}$ is GD for all $n \geqslant 2$.

Lemma 4.8 ((B) Strings of b are GD). Let $B(x):=\left\{x \in \operatorname{Tx} \mid(\forall t \in \operatorname{Tx}) t \sqsubset^{\mathrm{Tx}} x \Longrightarrow\right.$ $\left.b \sqsubset^{\mathrm{Tx}} t\right\}$. Then B is GD.

Proof. We have $b \sqsubset^{\mathrm{Tx}} t \Longleftrightarrow \neg\left((\forall s \in \mathrm{Tx}) s \sqsubset^{\mathrm{Tx}} t \Longrightarrow \neg(s=b)\right)$, so $B \in \mathbf{G D}$ by (GD1), (GD7) and (GD9) of Definition 4.1.

Lemma 4.9 (C). Constant functions are GD
Proof. By (GD1) and (GD4), constant functions of all arities that return a, b or c are all GD.

Suppose constant n-ary functions that return s or t are GD.

Then $S\left(x_{1}, \ldots, x_{n}, x_{0}\right):=\left\{\left(x_{1}, \ldots, x_{n}, x_{0}\right) \in \operatorname{Tx}^{n+1} \mid x_{0}=s\right\}$ and $T\left(x_{1}, \ldots, x_{n}, x_{0}\right):=$ $\left\{\left(x_{1}, \ldots, x_{n}, x_{0}\right) \in \mathrm{Tx}^{n+1} \mid x_{0}=t\right\}$ are GD.

Let f and g be functions such that $S=R_{f}$ and $T=R_{g}$.

Then by (GD3), (GD6), Lemma 4.2 and (GD5), the n-ary function h defined by

$$
h\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots,\right) g\left(x_{1}, \ldots, x_{n}\right)
$$

is GD, so the n-ary constant function returning st is GD.

Hence by induction, all constant functions are GD.
Lemma 4.10 (P). Projections are GD
Proof. Let the function f be the n-th projection on k coordinates. Then $R_{f}=$ $\left\{\left(s_{1}, \ldots, s_{k}, t\right) \in \mathrm{Tx}^{k+1} \mid s_{n}=t\right\}$, which is GD by (GD2), (GD4) and (GD6).

Lemma 4.11 (LSGD). Taking the longest substring of " b "s is GD.
Proof. Define the relation R by $R(w, z) \Longleftrightarrow\left(\forall v \sqsubset^{\mathrm{Tx}} w\right)\left(B(v) \Longleftrightarrow v \sqsubset^{\mathrm{Tx}} z\right)$. Then $R(w, z) \Longleftrightarrow z$ is the longest substring of w consisting only of " b "s, and R is GD by (GD9), (GD7), (GD8) and (B).

It may help to make this a total function so we can apply Lemma 4.2. Define the relation $L S_{b}$ by $\left.L S_{b}(w, z) \Longleftrightarrow\left(\neg\left(b \sqsubset^{\mathrm{Tx}} w\right) \wedge z=b\right) \vee R(w, z)\right)$. The $L S_{b}$ is GD by (GD8), (GD7), (C) and (SFR). For convenience, we denote $l s_{b}(w)=z \Longleftrightarrow L S_{b}(w, z)$.

CHAPTER 5

Equivalence of GD to Turing machine decidability

In this chapter, we prove that the GD relations are precisely the set of relations on Tx that are also recursive sets. This chapter is new material and does not correspond to any part of 'Undecidability without Arithmetization' [8]. This chapter is referenced by part (iii) of the overview.

Throughout this chapter we will frequently refer to the inductive defining conditions of GD relations from Definition 4.1, as well as to lemmas in Chapter 4, Section 1: "Properties of GD relations and functions".

1. $\mathbf{G D} \Longrightarrow$ Recursive

Theorem 5.1. For all $R \in \mathbf{G D}$, there exists a Turing machine that takes an input $x \in \Sigma^{*}$ (where Σ is some alphabet containing at least the symbols " a ", " b ", "", ",", " " and "\&") and halts, giving an output that indicates whether or not $x \in R$.

Proof. (Sketch) We give rough steps describing the functioning of a Turing machine recognizing each of the initial relations and preserving each of the conditions. Each of these steps should be a constructible Turing machine process. All except perhaps (GD9) and (GD10) are straightforwrd, but we give details for completeness.

To accommodate the processes specified, we assume each Turing machine constructed below has 3 tapes. This is an inessential modification, since multi-tape Turing machines are equivalent to single-tape Turing machines [10, Theorem 2.1].
(GD1) For $\{t \in \operatorname{Tx} \mid t=a\}$ and $\{t \in \operatorname{Tx} \mid t=b\}$:
(a) Check that input is of length 1 ; if not, reject.
(i) (For $\{t \in \operatorname{Tx} \mid t=a\}$.) Read starting letter of input; accept if " a " is read, reject otherwise; or
(ii) (For $\{t \in \operatorname{Tx} \mid t=b\}$.) Read starting letter of input; accept if " b " is read, reject otherwise.
(GD2) For $\left\{(t, y) \in \mathrm{Tx}^{2} \mid t=y\right\}$:
(a) Check that input is of the form $s_{i} \ldots s_{n}, t_{1} \ldots t_{n}$ for some $n \in \mathbb{N}$ and $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n} \in\{a, b\}$; if not, reject.
(b) Check that $s_{i}=t_{i}$ for all $i \in\{1, \ldots, n\}$; if not, reject, otherwise accept.
(GD3) For $\left\{(t, y, z) \in \mathrm{Tx}^{3} \mid t=y z\right\}$:
(a) Check that input is of the form $t_{i} \ldots t_{l}, y_{1} \ldots y_{m}, z_{1} \ldots z_{n}$ for some $l, m, n \in \mathbb{N}$ and

$$
t_{1}, \ldots, t_{n}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{n} \in\{a, b\} ; \text { if not, reject. }
$$

(b) Shift z_{1}, \ldots, z_{n} one space to the left, overwriting the "," after " y_{m} ".
(c) Run the machine for $\{(t, y) \mid t=y\}$ on the resultant string.
(GD4) Suppose there exists a machine determining membership in R. Then a machine for $\left\{\left(y, t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n+1} \mid R\left(t_{1}, \ldots, t_{n}\right)\right\}$ may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n+1} (where n is the arity of R and $\left.t_{1}, \ldots, t_{n+1} \in \mathrm{Tx}\right)$; if not, reject.
(b) Copy t_{2}, \ldots, t_{n+1} to the second tape.
(c) Run the machine for R on the string on the $2^{n d}$ tape.
(GD5) Suppose there exists a machine determining membership in R. Then a machine for $\left\{\left(t_{1}, t_{3}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n-1} \mid R\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right)\right\}$ may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{m-1} (where m is the arity of R and $\left.t_{1}, \ldots, t_{m-1} \in \mathrm{Tx}\right)$; if not, reject.
(b) Copy " t_{1}," to the second tape.
(c) Copy " t_{1}, \ldots, t_{m-1} " immediately after " t_{1}," on the second tape.
(d) Run the machine for R on the string on the $2^{n d}$ tape.
(GD6) Suppose there exists a machine determining membership in R. Then for all $k \in$ $\{1, \ldots, n-1\}$ (where n is the arity of R), a machine for $\left\{\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid R\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right)\right\}$ may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n} (with $t_{1}, \ldots, t_{n} \in T \mathrm{x}$); if not, reject.
(b) Move (the possibly empty) " t_{1}, \ldots, t_{k-1}," from the first tape to the second tape, and move " t_{k+1}," from the first tape to directly after it on the second tape.
(c) move " t_{k}," from the first tape to directly after " t_{k+1}," on the second tape.
(d) move the remainder of the first tape to directly after " t_{k}," it on the second tape.
(e) Run the machine for R on the string on the $2^{\text {nd }}$ tape.
(GD7) Suppose there exists a machine determining membership in R. Then a machine for $\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid \neg R\left(t_{1}, \ldots, t_{n}\right)\right\}$ may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n} (with $t_{1}, \ldots, t_{n} \in \mathrm{Tx}$); if not, reject.
(b) Run the machine for R on resultant string, but accept at the rejecting states and reject at the accepting states.
(GD8) Suppose there exists a machine determining membership in R, and there exists a machine determining membership in S. Then a machine for

$$
\left\{\left(t_{1}, \ldots, t_{n+k}\right) \in \mathrm{Tx}^{n+k} \mid R\left(t_{1}, \ldots, t_{n}\right) \text { and } S\left(t_{n+1}, \ldots, t_{n+k}\right)\right\}
$$

may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n+k} (where n is the arity of R, k is the arity of S and
$\left.t_{1}, \ldots, t_{n+k} \in \mathrm{Tx}\right)$; if not, reject.
(b) Copy " t_{n+1}, \ldots, t_{n+k} " to the second tape.
(c) Delete the rightmost "," on the first tape.
(d) Run the machine for R on the string on the first tape and the machine for S on the string on the second tape.
(e) If both machines reach an accepting state, accept. Otherwise, reject.
(GD9) Suppose there exists a machine determining membership in R. Then a machine for $\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\forall t_{1} \in \mathrm{Tx}\right) t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow R\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right\}$ may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n} (where n is the arity of R and $\left.t_{1}, \ldots, t_{n} \in \mathrm{Tx}\right)$; if not, reject.
(b) Suppose t_{1} is of length m. Enumerate all the substrings of t_{1} on the second tape; i.e., write $s_{1}, \ldots, s_{\frac{m(m+1)}{2}}$ (where $s_{i} \mathrm{C}^{\mathrm{T} \mathbf{x}} t_{1}$ for all $i \in\left\{1, \ldots, \frac{m(m+1)}{2}\right\}$ and $s_{i} \neq s_{j}$ for all $i \neq j$) on the second tape.
(c) For each $i \in\left\{1, \ldots, \frac{m(m+1)}{2}\right\}$,
(i) Clear the third tape.
(ii) Write " $s_{i}, t_{2}, \ldots, t_{n}$ " on the third tape.
(iii) Run the machine for R on the contents of the third tape, but instead of accepting, move onto the next pass of this loop.
(d) If the machine has not yet halted, accept.
(GD10) Let $R \subseteq \mathrm{Tx}^{n}$, and suppose there exist $S, T^{\prime} \in \mathbf{G D}$ such that:

$$
\begin{aligned}
& R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right) S\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right) \text { and } \\
& \neg R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+l} \in \operatorname{Tx}\right) T^{\prime}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right),
\end{aligned}
$$

Suppose there exists a machine determining membership in S, and there exists a machine determining membership in T^{\prime}. Then a machine for R may run as follows:
(a) Check that input is of the form t_{1}, \ldots, t_{n} (where n is the arity of R and $t_{1}, \ldots, t_{n} \in \mathrm{Tx}$); if not, reject.
(b) Let u_{1}, u_{2}, \ldots be an enumeration of all strings of the form " s_{1}, \ldots, s_{k} " (where k is the arity of S minus the arity of R, and $s_{1}, \ldots, s_{k} \in \mathrm{Tx}$).
Let v_{1}, v_{2}, \ldots be an enumeration of all strings of the form " s_{1}, \ldots, s_{l} " (where l is the arity of T^{\prime} minus the arity of R, and $s_{1}, \ldots, s_{l} \in \mathrm{Tx}$).
For each $i \in \mathbf{N}$,
(i) Clear the second and third tapes.
(ii) Write " $t_{1}, \ldots, t_{n}, u_{i}$ " on the second tape.
(iii) Write " $t_{1}, \ldots, t_{n}, v_{i}$ " on the third tape.
(iv) Simultaneously run the machine for S on the string on the first tape and run the machine for T^{\prime} on the string on the second tape. Instead of rejecting, move to a state that specifies that the relevant machine has reached a rejecting state. If the machine for T^{\prime} accepts, reject.
(v) If both machines have reached a rejecting state, move onto the next pass of this loop.

It is clear that the machines in 1-3 halt from their explicit constructions. Furthermore, the machines in 4-9 halt, providing the machines they are constructed from are halting. As for the machine in 10 , providing the machines it is constructed from are halting, there is only one scenario where it may not halt; when an input t_{1}, \ldots, t_{n} is given such that

$$
\left(\forall t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right) \neg S\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right)
$$

and

$$
\left(\forall t_{n+1}, \ldots, t_{n+l} \in \mathrm{Tx}\right) \neg T^{\prime}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right) .
$$

If this is the case, then $\neg R\left(t_{1}, \ldots, t_{n}\right)$ and $R\left(t_{1}, \ldots, t_{n}\right)$, which cannot happen. Hence this scenario cannot happen, and thus the machine in 10 always halts.

2. Recursive \Longrightarrow GD: The Idea

Suppose $R \subseteq \mathrm{Tx}^{n}$ is recursive. Then there exist Turing machines, M and N such that for all $x \in \mathrm{Tx}^{n}$:

- M accepts x if and only if $x \in R$, and
- N accepts x if and only if $x \notin R$.

If we show that the $(n+1)$-ary relations

- $S_{M}:=\left\{\left(x ; c_{M}\right) \mid c_{M}\right.$ is an accepting computation of x on $\left.M\right\}$ and
- $S_{N}:=\left\{\left(x ; c_{N}\right) \mid c_{N}\right.$ is an accepting computation of x on $\left.N\right\}$
are GD, then we can apply (GD10) of Definition 4.1 to S_{M} and S_{N} to obtain a GD relation. This relation is R.

In order for c_{M} and c_{N} to make sense, we need a way to encode computations (i.e. sequences of Turing machine configurations) as elements of Tx.

Definition 5.1. Given a Turing machine with a set $Q=\left\{q_{y}, q_{0}, q_{1}, \ldots, q_{n}\right\}$ of states (where q_{0} is the initial state and q_{Y} is the unique accepting state), and tape alphabet $\Gamma=\{a, b\lrcorner,\} \cup\{$,$\} (i.e., with \Gamma$ containing exactly the symbols ' a ', ' b ', ',' and 'ऽ'), we can define a function
$\varphi:(\Gamma \cup Q \cup\{\rightarrow\}) \rightarrow \mathrm{Tx}$ by

x	a	b	,	\ddots	$\%$	\rightarrow	q_{0}	q_{Y}	q_{i}
$\varphi(x)$	$a b a$	$a b b a$	$a b^{3} a$	$a b^{4} a$	$a b^{5} a$	$a b^{6} a$	$a b^{7} a$	$a b^{8} a$	$a b^{8+i} a$

The \% symbol denotes an infinite sequence of blank tape symbols.

If s is a Turing machine configuration depicted as a string of elements of $\Gamma \cup Q$, then we denote by $\varphi(s)$ the string with φ applied to each of the elements. For instance,

$$
\varphi\left(\% a q_{0} \%\right)=\varphi(\%) \varphi(a) \varphi\left(q_{0}\right) \varphi(\%)=a b^{5} a a b a a b^{6} a a b^{5} a
$$

We want to say that c_{M} is an accepting computation of x on machine M if and only if:
(i) c_{M} is of the form $\varphi\left(\rightarrow c_{1} \rightarrow c_{2} \rightarrow \cdots \rightarrow c_{k} \rightarrow\right)$, where c_{i} are Turing machine configurations,
(ii) $c_{1}=\varphi\left(\% q_{0} x \%\right)$
(iii) $c_{k}=\varphi\left(\% q_{Y} \%\right)$, and
(iv) each c_{i} is the configuration obtained by doing one step of computation on M with configuration c_{i-1}.

- Condition (ii) shows that we need the encoded version of x to construct c_{M}.
- We want a relation E such that $E(u, v)$ if and only if v is the encoding of u.
- In order for our "encoding relation" to be GD, we need another parameter w that witnesses the encoding of u as v.
- So we want instead a relation E such that $E(u, v, w)$ if and only if $v=\varphi(u)$ and w "describes" the steps taken to encode u.

We will not formally construct E just yet, but first give some idea of what we want E to be. For this, we need extra symbols (whose roles will ultimately be played by special strings in $\left.\{a, b\}^{*}\right)$; we use a "separator" σ and a "marker" δ.

Example: let $u=a b b$ and $v=a b a a b b a a b b a$. Then $v=\varphi(u)$, so there should be some $w \in$ Tx such that $E(u, v, w)$. We want $w=\sigma \delta a b b \sigma a b a \delta b b \sigma a b a a b b a \delta b \sigma a b a a b b a a b b a \delta \sigma$.

In general, for $E(u, v, w)$ to hold, we want

- $w=\sigma w_{0} \sigma w_{1} \sigma \ldots \sigma w_{k} \sigma$
- $w_{i}=w_{i}^{L} \delta w_{i}^{R}$ (for some w_{i}^{L} and w_{i}^{R} that avoid δ and σ)
- w_{i} is obtained from w_{i-1} by applying one of the following transformations: ($\delta a \mapsto$ $a b a \delta),(\delta b \mapsto a b b a \delta)$,
where σ acts as a "separator" and δ acts as a "marker". Note that $\delta=a l s_{b}(u) b b a$ and $\sigma=a l s_{b}(u) b b b a$ will always work, as the longest string of consecutive b 's in u is shorter, so a separator will never be confused with a substring of u.

Proposition 5.1 (E is GD).

Sketch. In essence, the construction of E relies only on the following:

- concatenating GD functions (GD by (GD2) and (SFF)):

$$
\begin{aligned}
& \text { - constants }(\mathrm{GD} \text { by }(\mathrm{C})) \\
& -l s_{b}(u)(\mathrm{GD} \text { by }(\mathrm{LSGD}))
\end{aligned}
$$

- substituting the above into GD relations (GD by (SFR))
- taking conjunctions (GD by (GD7) and (GD8))
- taking substrings, prefixes and suffixes (GD by (SPS GD))
- quantifying over substrings of w (GD by (GD9))

The n-ary case:

$$
\begin{aligned}
E_{n}:=\left\{\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v\right)\right. & \in \mathrm{Tx}^{3 n+1} \mid \\
& \left.\left(\bigwedge_{i=1^{n}} E\left(u_{i}, v_{i}, w_{(i)}\right)\right) \wedge\left(v=v_{1} \varphi(,) \ldots \varphi(,) v_{n}\right)\right\} \text { is GD. }
\end{aligned}
$$

(Recall that $\varphi()=,a b^{3} a$.)

If we already have $v:=\varphi(x)$, then its relation to its accepting computation c_{M} is analogous to the relation between u and w. We say $C_{M}\left(v, c_{M}\right)$ if and only if v and c_{M} have the following relationship (even if v is not the encoding of any word on $a, b *$).

- $c_{M}=\varphi(\rightarrow) c_{0} \varphi(\rightarrow) c_{1} \varphi(\rightarrow) \ldots \varphi(\rightarrow) c_{k} \varphi(\rightarrow)$
- $c_{i}=c_{i}^{L} \varphi\left(q_{i}\right) c_{i}^{R}$ (for some c_{i}^{L} and c_{i}^{R} that avoid $\varphi\left(q_{i}\right)$ and $\left.\varphi(\rightarrow)\right)$
- c_{i} is obtained from c_{i-1} by applying one of a finite list of transformations (determined by the transition function of M)

Example: A Turing machine transition $\left(q_{4}, a\right) \mapsto\left(q_{2}, b, L\right)$ would give a transformation $\varphi\left(\gamma q_{4} a\right) \mapsto \varphi\left(q_{2} \gamma b\right)$ for each $\gamma \in \Gamma$.
C_{M} is a GD relation by an argument analogous to the proof of $E \in G D$.

The proof of Recursive \Longrightarrow GD shown below relies on the following proposition, which will be proved formally in the remainder of the chapter.

Proposition 5.2. Given a Turing machine M on the requisite alphabet, the relation

$$
\begin{aligned}
& S_{M, n}:=\left\{\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v, c_{M}\right) \in \mathrm{Tx}^{3 n+2} \mid\right. \\
& \left.E_{n}\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v\right) \wedge C_{M}\left(v, c_{M}\right)\right\}
\end{aligned}
$$

is GD.

We have now (informally) introduced all the concepts we need to prove the main result.

Theorem 5.2. For all $n \in \mathbb{N}$, all recursive subsets of Tx^{n} are GD.

Proof. Suppose $R \subseteq \mathrm{Tx}^{n}$ is recursive. Then there exist Turing machines, M and N such that for all $x \in \mathrm{Tx}^{n}$:

- $\left(\exists\left(\varphi(x) ; w ; v, c_{M}\right) \in \mathrm{Tx}^{2 n+2}\right) S_{M, n}\left(x ; \varphi(x) ; w ; v, c_{M}\right)$
$\Longleftrightarrow x \in R$, and
- $\left(\exists\left(\varphi(x) ; w ; v, c_{N}\right) \in \mathrm{Tx}^{2 n+2}\right) S_{N, n}\left(x ; \varphi(x) ; w ; v, c_{N}\right)$
$\Longleftrightarrow x \notin R$.
Then R is GD by (GD10).

3. Recursive \Longrightarrow GD: The Missing Details

First, we need to show that the encoding and computation relations are GD. The proofs are recursive in style; we argue that one relation is GD because it can be obtained via GD axioms/rules from some simpler relations. Then we show these simpler relations are GD by obtaining them via GD rules from relations that are simpler still, and so on.

The GD axioms (GD6), (GD7) and (GD8) tell us that permuting coordinates and apply Boolean operators (conjunction, disjunction, negation, implication etc) preserve GD relations. To simplify the proof, we will perform these actions without reference to (GD6), (GD7) and (GD8).

Lemma 5.1 (Encoding is GD). There exists a GD relation $E \subseteq \mathrm{Tx}^{3}$ such that for all $u, v \in \mathrm{Tx}$, there exists $z \in \mathrm{Tx}$ such that $E(u, v, z)$ if and only if $v=\varphi(u)$, with φ being the encoding map from Definition 5.1.

Proof. Let $\sigma: \mathrm{Tx} \rightarrow \mathrm{Tx}$ and $\delta: \mathrm{Tx} \rightarrow \mathrm{Tx}$ be defined by $\delta(u)=a l s_{b}(u) b b a$ and $\sigma(u)=a l s_{b}(u) b b b a$. Then σ and δ are GD functions by (LSGD), (C), Lemma 4.7 and (SFF). Define the relation $E \subseteq \mathrm{Tx}^{3}$ by $E(u, v, z) \Longleftrightarrow S_{1}(u, v, z) \wedge S_{2}(u, v, z) \wedge S_{3}(u, v, z)$, with

- $S_{1}(u, v, z) \Longleftrightarrow \sigma(u) \delta(u) u \sigma(u) \sqsubset_{p}^{\mathrm{Tx}} z$ and
- $S_{2}(u, v, z) \Longleftrightarrow \sigma(u) v \delta(u) \sigma(u) \sqsubset_{s}^{\mathrm{Tx}} z$ and
- $S_{3}(u, v, z) \Longleftrightarrow\left(\forall w \sqsubset^{\mathrm{Tx}} z\right) T_{1}(w, u, v, z)$. (T_{1} will be defined later.)
(Recall that we want z to be a 'sequence' of words.
S_{1} says "the sequence starts with u (i.e. the original, completely unencoded word)".
S_{2} says "the sequence ends with v (i.e. the completely encoded word)".
S_{3} says "each word in the sequence can be obtained from the previous word by encoding one letter". Or in slightly more detail, if w is the word immediately after w_{-1} in the sequence, then there exist (possibly empty) strings x and y such that $w_{-1}=x u y$ and $w=x v y$ (where $u=\delta(u) a$ and $v=\varphi(a) \delta(u)$, or $u=\delta(u) b$ and $v=\varphi(b) \delta(u)$). Roughly speaking, $T_{1}-T_{3}$ introduce the fact that w is the word immediately after w_{-1} in the sequence, and $T_{4}-T_{6, i}$ introduce the fact that w can be obtained from w_{-1} by encoding one letter.)

Now S_{1} is GD since:

- $S_{1}(u, v, z) \Longleftrightarrow R_{1}(u, z)$, where $R_{1}(u, z) \Longleftrightarrow \sigma(u) \delta(u) u \sigma(u) \sqsubset_{p}^{\mathrm{Tx}} z$. Hence if R_{1} is GD, then S_{1} is GD by (GD4).
- The relation R_{2} defined by $R_{2}(x, z) \Longleftrightarrow x \sqsubset_{p}^{\mathrm{Tx}} z$ is GD by (SPS GD).
- The function $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{1} x_{2} x_{3} x_{4}$ is GD by Lemma 4.7.
- Hence the function $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto \sigma\left(x_{1}\right) \delta\left(x_{2}\right) x_{3} \sigma\left(x_{4}\right)$ is GD by (SFF).
- The relation R_{3} defined by $R_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}, z\right) \Longleftrightarrow \sigma\left(x_{1}\right) \delta\left(x_{2}\right) x_{3} \sigma\left(x_{4}\right) \sqsubset_{p}^{\mathrm{Tx}} z$ is GD by (SFR).
- The relation R_{4} defined by $R_{4}(u, z) \Longleftrightarrow R_{3}(u, u, u, u, z)$ os GD by repeated application of (GD5).
- Now $R_{4}=R_{1}$, so R_{1} is GD (and hence S_{1} is GD as mentioned above).

Similarly, S_{2} is GD by (GD4), (SPS GD), Lemma 4.7, (SFF) (SFR), and (GD5). If T_{1} is GD, then S_{3} will be GD by (GD95), which in turn makes E GD by (GD8). (We will go through the rest of the proof in less granular detail, and instead refer to a list of results needed like we have done with S_{2}.)

$$
T_{1}(w, u, v, z) \Longleftrightarrow\left(\neg\left(l s_{b}(u) b b b \sqsubset^{\mathrm{Tx}} w\right) \Longrightarrow\left(\forall s \sqsubset^{\mathrm{Tx}} z\right) T_{2}(s, w, u, v, z)\right) \text {. If } T_{2} \text { is GD, }
$$ then T_{1} will be GD by (LSGD), (C), Lemma 4.7, (GD5), (SPS GD), (SFR), (SFF), (GD1) and (GD95).

$$
T_{2}(s, w, u, v, z) \Longleftrightarrow\left(s \sigma(u) w \sigma(u) \sqsubset_{p}^{\mathrm{Tx}} z \Longrightarrow\left(\exists w_{-1} \sqsubset^{\mathrm{Tx}} z\right) T_{3}\left(w_{-1}, s, w, u, v, z\right)\right) \text {. If }
$$ T_{3} is GD, then T_{2} will be GD by (GD5), (SPS GD), (SFR), (SFF), (GD3), (GD1) and (GD95).

$$
\begin{aligned}
& T_{3}\left(w_{-1}, s, w, u, v, z\right) \Longleftrightarrow \\
& \quad\left(\neg\left(l s_{b}(u) b b b \sqsubset^{\mathrm{Tx}} w_{-1}\right) \wedge \sigma(u) w_{-1} \sigma(u) \sqsubset_{s}^{\mathrm{Tx}} s \sigma(u) \wedge T_{4}\left(w_{-1}, s, w, u, v, z\right)\right) .
\end{aligned}
$$

If T_{4} is GD, then T_{3} will be GD by (LSGD), (C), Lemma 4.7, (GD5), (SPS GD), (SFR), (SFF), (GD3) and (GD1).
$T_{4}\left(w_{-1}, s, w, u, v, z\right) \Longleftrightarrow \bigvee_{i=1}^{2}\left(\exists x \sqsubset^{\mathrm{Tx}} z\right) T_{5, i}\left(x, w_{-1}, s, w, u, v, z\right)$ with $T_{5, i}\left(x, w_{-1}, s, w, u, v, z\right) \Longleftrightarrow\left(\exists y \sqsubset^{T x} z\right) T_{6, i}\left(y, x, w_{-1}, s, w, u, v, z\right)$. If $T_{6, i}$ is GD for all $i \in\{1,2\}$, then T_{4} will be GD by (GD95).

$$
T_{6, i}\left(y, x, w_{-1}, s, w, u, v, z\right) \Longleftrightarrow
$$

$$
\left(w_{-1}=u_{i} \wedge w=v_{i}\right) \vee\left(w_{-1}=x u_{i} \wedge w=x v_{i}\right) \vee\left(w_{-1}=u_{i} y \wedge w=v_{i} y\right) \vee\left(w_{-1}=x u_{i} y \wedge w=x v_{i} y\right) .
$$

with $u_{1}=\delta(u) a, v_{1}=a b a \delta(u), u_{2}=\delta(u) b$ and $v_{2}=a b b a \delta(u)$.

For all $i \in\{1,2\}, T_{6, i}$ is GD by (GD5), (SFR), (SFF), (GD3) and (C).

Hence E is a GD relation such that for all $u, v \in \mathrm{Tx}$, there exists $z \in \mathrm{Tx}$ such that $E(u, v, z)$ if and only if $v=\varphi(u)$, with φ being the encoding map from Definition 5.1.

Lemma 5.2 (Computation is GD). Let M be a Turing machine and $\varphi: \mathrm{Tx} \rightarrow \mathrm{Tx}$ be the corresponding encoding map from Definition 5.1. There exists a relation $C_{M} \subseteq \mathrm{Tx}^{2}$ such that for all $u \in \operatorname{Tx}$ with $u=\varphi(x)$ for some $x \in \Gamma^{+}$, there exists $c_{u} \in \operatorname{Tx}$ such that $C_{M}\left(u, c_{u}\right)$ if and only if x is accepted by M.

Proof. Define the relation $C_{M} \subseteq \mathrm{Tx}^{2}$ by $C\left(u, c_{u}\right) \Longleftrightarrow S_{1}\left(u, c_{u}\right) \wedge S_{2}\left(u, c_{u}\right) \wedge S_{3}\left(u, c_{u}\right)$, with

- $S_{1}\left(u, c_{u}\right) \Longleftrightarrow \varphi(\rightarrow) \varphi(\%) u \varphi(\%) \varphi(\rightarrow) \sqsubset_{p}^{\mathrm{Tx}} z$ and
- $S_{2}\left(u, c_{u}\right) \Longleftrightarrow \varphi(\rightarrow) \varphi\left(\% q_{Y} \%\right) \varphi(\rightarrow) \sqsubset_{s}^{\mathrm{Tx}} z$.
- $S_{3}\left(u, c_{u}\right) \Longleftrightarrow\left(\forall w \sqsubset^{\mathrm{Tx}} z\right) T_{1}\left(w, u, c_{u}\right)$. (T_{1} will be defined later.)
(Recall that we want c_{u} to be a 'sequence' of Turing machine configurations.
S_{1} says "the sequence starts with u (i.e. the input)".
S_{2} says "the sequence ends with the accepting state".
S_{3} says "each configuration in the sequence can be obtained from the previous configuration by performing one step of computation". Or in slightly more detail, if w is the configuration immediately after w_{-1} in the sequence, then there exist (possibly empty) strings x and y such that $w_{-1}=x u y$ and $w=x v y$, where u and v are the local changes caused by some particular Turing machine transition. (For instance, the Turing machine transition $\left(q_{4}, a\right) \mapsto\left(q_{2}, b, R\right)$ would give $u=\varphi\left(q_{4} a\right)$ and $v=\varphi\left(b q_{2}\right)$.) Roughly speaking, $T_{1}-T_{3}$ introduce the fact that w is the configuration immediately after w_{-1} in the sequence, and $T_{4}-T_{6, i}$ introduce the fact that w can be obtained from w_{-1} by doing one step of computation.)
S_{1} and S_{2} are GD by (GD4), (SPS GD), (SFR), (GD5), (SFF) and (GD1). If T_{1} is GD, then S_{3} will be GD by (GD95), which in turn makes C GD by (GD8).

$$
T_{1}\left(w, u, c_{u}\right) \Longleftrightarrow\left(\neg\left(b^{6} \sqsubset^{\mathrm{Tx}} w\right) \Longrightarrow\left(\forall s \sqsubset^{\mathrm{Tx}} z\right) T_{2}\left(s, w, u, c_{u}\right)\right) \text {. If } T_{2} \text { is GD, then } T_{1}
$$ will be GD by (C), (GD5), (SPS GD), (SFR), (GD1) and (GD9 5_{5}).

$$
T_{2}\left(s, w, u, c_{u}\right) \Longleftrightarrow\left(s \varphi(\rightarrow) w \varphi(\rightarrow) \sqsubset_{p}^{\mathrm{Tx}} z \Longrightarrow\left(\exists w_{-1} \sqsubset^{\mathrm{Tx}} z\right) T_{3}\left(w_{-1}, s, w, u, c_{u}\right)\right) \text {. If }
$$ T_{3} is GD, then T_{2} will be GD by (GD5), (SPS GD), (SFR), (SFF), (GD3), (GD1) and $\left(\mathrm{GD} 9_{5}\right)$.

$$
T_{3}\left(w_{-1}, s, w, u, c_{u}\right) \Longleftrightarrow\left(\neg\left(b^{6} \sqsubset^{\mathrm{Tx}} w_{-1}\right) \wedge \varphi(\rightarrow) w_{-1} \varphi(\rightarrow) \sqsubset_{s}^{\mathrm{Tx}} s \varphi(\rightarrow) \wedge T_{4}\left(w_{-1}, s, w, u, c_{u}\right)\right)
$$

If T_{4} is GD, then T_{3} will be GD by (C), (GD5), (SPS GD), (SFR), (SFF), (GD3) and (GD1).

The Turing machine M has $|Q \times \Gamma|=4|Q|$ transitions. We assume $q_{i}, q_{k} \in Q$ and $\left.\gamma_{j}, \gamma_{l} \in \Gamma \backslash\{ \lrcorner\right\}$. For each transition, we assign to it some number of ordered pairs $(u, v) \in$ Tx^{2} as follows:

- If the transition is of the form $\left(q_{i}, \gamma_{j}\right) \mapsto\left(q_{k}, \gamma_{l}, R\right)$, we assign to it the ordered pair $\left(\varphi\left(q_{i} \gamma_{j}\right), \varphi\left(\gamma_{l} q_{k}\right)\right)$.
- If the transition is of the form $\left.\left(q_{i},\right\lrcorner\right) \mapsto\left(q_{k}, \gamma_{l}, R\right)$, we assign to it 2 ordered pairs: $\left(\varphi\left(q_{i\lrcorner}\right), \varphi\left(\gamma_{l} q_{k}\right)\right)$ and $\left(\varphi\left(q_{i} \%\right), \varphi\left(\gamma_{l} q_{k} \%\right)\right)$.
- If the transition is of the form $\left.\left(q_{i}, \gamma_{j}\right) \mapsto\left(q_{k},\right\lrcorner, R\right)$, we assign to it 5 ordered pairs: $\left(\varphi\left(\% q_{i} \gamma_{j}\right), \varphi\left(\% q_{k}\right)\right)$, and $\left(\varphi\left(\gamma q_{i} \gamma_{j}\right), \varphi\left(\gamma_{\llcorner } q_{k}\right)\right)$ for each $\gamma \in \Gamma$.
- If the transition is of the form $\left(q_{i}, \iota\right) \mapsto\left(q_{k}, \sqcup, R\right)$, we assign to it 13 ordered pairs: $\left(\varphi\left(\% q_{i} \%\right), \varphi\left(\% q_{k} \%\right)\right)$, and $\left.\left(\varphi\left(\gamma q_{i} \%\right), \varphi(\gamma\lrcorner q_{k} \%\right)\right),\left(\varphi\left(\% q_{i}\right), \varphi\left(\% q_{k}\right)\right)$ and $\left.\left(\varphi\left(\gamma q_{i}\right), \varphi(\gamma\lrcorner q_{k}\right)\right)$ for each $\gamma \in \Gamma$.
- If the transition is of the form $\left(q_{i}, \gamma_{j}\right) \mapsto\left(q_{k}, \gamma_{l}, L\right)$, we assign to it 5 ordered pairs: $\left(\varphi\left(\% q_{i} \gamma_{j}\right), \varphi\left(q_{k} \gamma_{l}\right)\right)$ and $\left(\varphi\left(\gamma q_{i} \gamma_{j}\right), \varphi\left(q_{k} \gamma \gamma_{l}\right)\right)$ for each $\gamma \in \Gamma$.
- If the transition is of the form $\left.\left(q_{i},\right\lrcorner\right) \mapsto\left(q_{k}, \gamma_{l}, L\right)$, we assign to it 16 ordered pairs: $\left.\left(\varphi\left(\gamma q_{i}\right\lrcorner\right), \varphi\left(q_{k} \gamma \gamma_{l}\right)\right),\left(\varphi\left(\% q_{i\lrcorner}\right), \varphi\left(\% q_{k\lrcorner} \gamma_{l}\right)\right),\left(\varphi\left(\gamma q_{i} \%\right), \varphi\left(q_{k} \gamma \gamma_{l} \%\right)\right)$ and $\left(\varphi\left(\% q_{i} \%\right), \varphi\left(\% q_{k\lrcorner} \gamma_{l} \%\right)\right)$ for each $\gamma \in \Gamma$.
- If the transition is of the form $\left(q_{i}, \gamma_{j}\right) \mapsto\left(q_{k},\llcorner, L)\right.$, we assign to it 5 ordered pairs: $\left(\varphi\left(\% q_{i} \gamma_{j}\right), \varphi\left(\% q_{k\lrcorner\lrcorner}\right)\right)$ and $\left(\varphi\left(\gamma q_{i} \gamma_{j}\right), \varphi\left(q_{k} \gamma_{\iota}\right)\right)$ for each $\gamma \in \Gamma$.
- If the transition is of the form $\left.\left(q_{i},\right\lrcorner\right) \mapsto\left(q_{k}, \sqcup, L\right)$, we assign to it 13 ordered pairs: $\left(\varphi\left(\% q_{i} \%\right), \varphi\left(\% q_{k} \%\right)\right.$), and $\left.\left(\varphi\left(\gamma q_{i} \%\right), \varphi\left(q_{k} \gamma \%\right)\right),\left(\varphi\left(\% q_{i}\right)\right), \varphi\left(\% q_{k\lrcorner\lrcorner}\right)\right)$ and $\left(\varphi\left(\gamma q_{i} \sqcup\right), \varphi\left(q_{k} \gamma \sqcup\right)\right)$ for each $\gamma \in \Gamma$.

The total number of ordered pairs assigned to the transitions is at most $64|Q|$. Let n be the total number of ordered pairs assigned to transitions of M, and let $\left\{\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right\}$ be the set of all such ordered pairs.

Now $T_{4}\left(w_{-1}, s, w, u, c_{u}\right) \Longleftrightarrow \bigvee_{i=1}^{n}\left(\exists x \sqsubset^{\mathrm{Tx}} z\right) T_{5, i}\left(x, w_{-1}, s, w, u, c_{u}\right)$ with $T_{5, i}\left(x, w_{-1}, s, w, u, c_{u}\right) \Longleftrightarrow\left(\exists y \sqsubset^{\mathrm{Tx}} z\right) T_{6, i}\left(y, x, w_{-1}, s, w, u, c_{u}\right)$. If $T_{6, i}$ is GD for all $i \in$ $\{1, \ldots, n\}$, then T_{4} will be GD by $\left(\mathrm{GD}_{5}\right)$.

$$
\begin{aligned}
& T_{6, i}\left(y, x, w_{-1}, s, w, u, c_{u}\right) \Longleftrightarrow \\
& \left(w_{-1}=u_{i} \wedge w=v_{i}\right) \vee\left(w_{-1}=x u_{i} \wedge w=x v_{i}\right) \vee\left(w_{-1}=u_{i} y \wedge w=v_{i} y\right) \vee\left(w_{-1}=x u_{i} y \wedge w=x v_{i} y\right)
\end{aligned}
$$

For all $i \in\{1, \ldots, n\}, T_{6, i}$ is GD by (GD5), (SFR), (SFF), (GD3) and (C).

Hence C_{M} is a GD relation such that for all $u, c_{u} \in \operatorname{Tx}$ with $u=\varphi(x)$ for some $x \in \Gamma^{+}$, $C_{M}\left(u, c_{u}\right)$ if and only if c_{u} is an accepting computation of x in machine M; and thus, for all $u, c_{u} \in \operatorname{Tx}$ with $u=\varphi(x)$ for some $x \in \Gamma^{+}$, there exists $c_{u} \in \mathrm{Tx}$ such that $C_{M}\left(u, c_{u}\right)$ if and only if x is accepted by M.

Now $S_{M, n}$ being GD follows easily, which completes the proof of Theorem 5.2.

Lemma 5.3 (S_{M} is GD). Let M be a Turing machine and $n \in \mathbb{N}$. Then the relation

$$
\begin{aligned}
& S_{M}:=\left\{\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v, c_{M}\right) \in \mathrm{Tx}^{3 n+2} \mid\right. \\
& \left.E_{n}\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v\right) \wedge C_{M}\left(v, c_{M}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
E_{n}:=\left\{\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v\right)\right. & \in \mathrm{Tx}^{3 n+1} \mid \\
& \left.\left(\bigwedge_{i=1^{n}} E\left(u_{i}, v_{i}, w_{(i)}\right)\right) \wedge\left(v=v_{1} \varphi(,) \ldots \varphi(,) v_{n}\right)\right\},
\end{aligned}
$$

is GD .
Proof. Since E is GD by Lemma 5.1, equality is GD by (GD2) and

$$
\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}, w_{(1)}, \ldots, w_{(n)}, v\right) \mapsto v_{1} \varphi(,) \ldots \varphi(,) v_{n}
$$

is a GD function by Lemma 4.7, (GD4) and (C), it follows that E_{n} is GD by (GD8), (GD5) and (SFR).

Then $S_{M, n}$ is GD by Lemma 5.2, (GD8) and (GD5).

CHAPTER 6

Representability of ED relations

In this chapter, we introduce the notion of representability, which describes whether or not a predicate relating elements of Tx is 'simple' enough to be described (i.e. represented) in a theory. One can also fix a relation on Tx and think of representability of that relation in a theory as describing whether the theory is rich enough to capture what that relation is saying.

Furthermore, we show that all ED relations are 'strongly represented' in theories that contain TC. This will be useful for the main result of the next chapter, which concerns representability of GD relations. This chapter is based on Section 9 under Part Three of 'Undecidability without Arithmetization' [8], and is referenced by part (vi) of the overview.

1. Representability

We denote the set of all well-formed formulae in the language of TC by wff, and the set of all sentences in the language of TC by Sent. From here on, when we discuss formulae, sentences, theories etc, we refer to those in the language of TC unless explicitly stated otherwise.

Definition 6.1. If t_{0}, \ldots, t_{n} are terms in the language of TC and $F \in \mathrm{wff}$ is a formula with at least the free variables x_{0}, \ldots, x_{n}, we denote by

$$
\operatorname{sub}\left[F ; x_{0} / t_{0}, \ldots, x_{n} / t_{n}\right]
$$

the formula obtained by (simultaneously) substituting all instances of x_{i} with the term t_{i} for all $i \in\{0, \ldots, n\}$. (For instance, $\left[\operatorname{sub}\left[x_{0} \approx x_{1} ; x_{0} / x_{1}, x_{1} / x_{2}\right]\right]=\left[x_{1} \approx x_{2}\right]$, as opposed to $\left[x_{2} \approx x_{2}\right.$] (which one would obtain via substituting x_{1} for x_{0} then substituting x_{2} for all instances of x_{1} in the result).)

In particular, we often have some $c_{0}, \ldots, c_{n} \in \mathrm{Tx}$ and denote by $\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]$ the formula obtained by substituting all instances of x_{i} with the constant term $N\left(c_{i}\right)$ for all $i \in\{0, \ldots, n\}$. In general, however, the terms t_{0}, \ldots, t_{n} are not necessarily constant, and may in fact be variables themselves.

Definition 6.2. A relation $R \subseteq \mathrm{Tx}^{n}$ is represented in a set $T \subseteq$ wff by some $F \in$ wff with at least n free variables x_{0}, \ldots, x_{n-1} if and only if for all $c_{0}, \ldots, c_{n-1} \in \mathrm{Tx}$,

$$
R\left(c_{0}, \ldots, c_{n-1}\right) \Longleftrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)
$$

A relation $R \subseteq \mathrm{Tx}^{n}$ is strongly represented in a set $T \subseteq$ wff by some $F \in$ wff with at least n free variables x_{0}, \ldots, x_{n-1} if and only if R and $\neg R$ are represented in T by F and $\neg F$ respectively.

The formula F itself need not be in T, and is in fact most often not, since we often take T to be a theory.

We have $\neg \operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right]=\operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right]$ for all $F \in$ wff and $c_{0}, \ldots, c_{n-1} \in \mathrm{Tx}$, but be wary that

$$
\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \notin T
$$

does not imply

$$
\operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T
$$

for incomplete theories T. Hence being represented is most often a strictly weaker property than being strongly represented.

Lemma 6.1. Let $T \subseteq$ wff be a consistent theory which is closed under logical operations, $F, G \in \mathrm{wff}$ be formulae with precisely the free variables x_{0}, \ldots, x_{n-1} and $R \in \mathrm{Tx}^{n}$. Suppose for all $c_{0}, \ldots, c_{n-1} \in \mathrm{Tx}$, we have the following:
(1) $R\left(c_{0}, \ldots, c_{n-1}\right) \Longrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$
(2) $\neg R\left(c_{0}, \ldots, c_{n-1}\right) \Longrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$
(3) $\left[x_{0}\right] \ldots\left[x_{n-1}\right][G \leftrightarrow \neg F] \in T$

Then for all $c_{0}, \ldots, c_{n-1} \in \mathrm{Tx}$,

- $R\left(c_{0}, \ldots, c_{n-1}\right) \Longleftrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$ and
- $\neg R\left(c_{0}, \ldots, c_{n-1}\right) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$
(Because T is closed under logical operations and we have assumption 3, this means R is strongly represented in T by F.)

Proof. By assumption 3, we have

$$
\begin{equation*}
\left[\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \leftrightarrow \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]\right] \in T \tag{*}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& \operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T \\
\Longrightarrow & \neg \operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T \\
\Longleftrightarrow & \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T \\
& \quad\left(\text { as } \neg \operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]=\operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]\right) \\
\Longrightarrow & \operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T,
\end{aligned}
$$

since if $\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \in T$, then by $(*)$,
$\operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \in T$ as T is closed under logical operations. This contradicts sub $\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T$, hence $\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T$. Furthermore,

$$
\left(\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T\right) \Longrightarrow \neg\left(\neg R\left(c_{0}, \ldots, c_{n-1}\right)\right) \Longleftrightarrow R\left(c_{0}, \ldots, c_{n-1}\right)
$$

by assumption 2 , so $\left(\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right) \Longrightarrow R\left(c_{0}, \ldots, c_{n-1}\right)$. The converse is true by assumption 1 .

Now

$$
\begin{aligned}
& \operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T \\
\Longrightarrow & \neg \operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T \\
\Longrightarrow & \neg \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T,
\end{aligned} \quad \text { (as } T \text { is consistent) }
$$

since if $\neg \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \in T$, then by $(*)$, $\neg \operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \in T$ as T is closed under logical operations. This contradicts $\neg \operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T$,
hence $\neg \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T$. Furthermore,

$$
\left.\begin{array}{rl}
\neg \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T & \\
\Longleftrightarrow \operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \notin T \quad & \left(\text { as } \neg \operatorname{sub}\left[\neg F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]\right. \\
& =\operatorname{sub}\left[\neg(\neg F) ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right] \\
& =\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n} / N\left(c_{n}\right)\right]
\end{array}\right)
$$

$$
\Longrightarrow \neg R\left(c_{0}, \ldots, c_{n-1}\right)
$$ by assumption 1 ,

$$
\text { so }\left(\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right) \Longrightarrow \neg R\left(c_{0}, \ldots, c_{n-1}\right) \text {. The converse is }
$$ true by assumption 2 .

Hence $R\left(c_{0}, \ldots, c_{n-1}\right) \Longleftrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$ and $\neg R\left(c_{0}, \ldots, c_{n-1}\right) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(c_{0}\right), \ldots, x_{n-1} / N\left(c_{n-1}\right)\right] \in T\right)$, as required.

2. ED Relations

Lemma 6.2. Let $T \subseteq$ wff be a consistent theory which is closed under logical operations with $\mathrm{TC} \subseteq T$. Then for all $R \in \mathbf{E D}, R$ is strongly represented in T by some $F \in$ wff.

Proof. As T is a consistent theory which is closed under logical operations, Lemma 6.1 can be applied if assumptions 1,2 and 3 are shown to hold. Furthermore, since T contains TC and is closed under logical operations, we can cite results about formulae in TC (which will also be in T) and deduce from them formulae in T.
(GD1) For $A:=\{t \in \operatorname{Tx} \mid t=a\}$ and $B:=\{t \in \operatorname{Tx} \mid t=b\}:$
Let $t \in \operatorname{Tx}$ and $F_{A}=\left[x_{0} \approx \alpha\right]$. Suppose $A(t)$. Then $t=a$. Then

$$
\begin{array}{rlrl}
\operatorname{sub}\left[F_{A} ; x_{0} / N(t)\right] & =[N(t) \approx \alpha] & \left(\text { as } F_{A}=\left[x_{0} \approx \alpha\right]\right) \\
& =[N(a) \approx \alpha] & (\text { as } t=a) \\
& =[\alpha \approx \alpha] & (\text { as } N(a)=\alpha) \\
& \in T
\end{array}
$$

as T is closed under logical operations, and thus contains all tautologies.

Now suppose $\neg A(t)$. Then $t \neq a$. By Lemma $2.1, t=t_{1} \ldots t_{n}$ for some $n \in \mathbf{N}$ and $t_{1}, \ldots, t_{n} \in\{a, b\}$, so $n>1$ or $t=t_{1}=b$.

Suppose $t=b$. Then

$$
\begin{array}{rlr}
\operatorname{sub}\left[\neg F_{A} ; x_{0} / N(t)\right] & =\neg[N(t) \approx \alpha] & \left(\text { as } \neg F_{A}=\neg\left[x_{0} \approx \alpha\right]\right) \\
& =\neg[N(b) \approx \alpha] & (\text { as } t=b) \\
& =\neg[\beta \approx \alpha] & (\text { as } N(b)=\beta) \\
& \in T & \text { (by the axiom A5 of TC) }
\end{array}
$$

Suppose $n>1$. Then $t=u v$ for some $u=t_{1} \ldots t_{m}$ and $v=t_{m+1} \ldots t_{n}$ with $m \in\{1, \ldots, n-1\}$ and $t_{1}, \ldots, t_{n} \in\{a, b\}$. By Lemma 2.1, $u, v \in$ Tx. Then

$$
\begin{aligned}
\operatorname{sub}\left[\neg F_{A} ; x_{0} / N(t)\right] & =\neg[N(u v) \approx \alpha] \\
& =\neg[[N(u) * N(v)] \approx \alpha]
\end{aligned}
$$

$$
\left(\text { as } \neg F_{A}=\neg\left[x_{0} \approx \alpha\right]\right)
$$

(by Lemma 3.2)

Let $G_{A}=\neg F_{A}$. Then for all $t \in \mathrm{Tx}$,

- $A(t) \Longrightarrow\left(\operatorname{sub}\left[F_{A} ; x_{0} / N(t)\right] \in T\right)$,
- $\neg A(t) \Longrightarrow\left(\operatorname{sub}\left[G_{A} ; x_{0} / N(t)\right] \in T\right)$ and
- $\left[x_{0}\right]\left[G_{A} \leftrightarrow \neg F_{A}\right] \in T$.

Hence by Lemma 6.1, A is strongly repersented in T by $F_{A}=\left[x_{0} \approx \alpha\right]$. By a similar argument, B is strongly repersented in T by $F_{B}=\left[x_{0} \approx \beta\right]$.
(GD2) For $R_{2}:=\left\{(t, y) \in \mathrm{Tx}^{2} \mid t=y\right\}$:
Let $t, y \in \operatorname{Tx}$ and $F_{2}=\left[x_{0} \approx x_{1}\right]$. Suppose $R_{2}(t, y)$. Then $t=y$. Then

$$
\begin{array}{rlr}
\operatorname{sub}\left[F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] & =[N(t) \approx N(y)] \quad\left(\text { as } F_{2}=\left[x_{0} \approx x_{1}\right]\right) \\
& =[N(y) \approx N(y)] \quad(\text { as } t=y) \\
& \in T &
\end{array}
$$

as T is closed under logical operations, and thus contains all tautologies.

We now define a set $X:=$
$\left\{y \in \operatorname{Tx} \mid(\forall t \in \operatorname{Tx})\left(\neg R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)\right)\right\}$.

Let $t \in \mathrm{Tx}$ and suppose $\neg R_{2}(t, a)$. Then $t \neq a$, so $\neg A(t)$. Then

$$
\begin{array}{rlrl}
\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(a)\right] & =\neg[N(t) \approx N(a)] & & \left(\text { as } \neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right) \\
& =\neg[N(t) \approx \alpha] & (\text { as } N(a)=\alpha) \\
& =\neg \operatorname{sub}\left[F_{A} ; x_{0} / N(t)\right] & \left(\text { as } \neg F_{A}=\neg\left[x_{0} \approx \alpha\right]\right) \\
& \in T &
\end{array}
$$

since $\neg A(t)$, and A is strongly represented in T by F_{A}.

By a similar argument, if we suppose $\neg R_{2}(t, b)$, then
$\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(b)\right] \in T$. Hence $a, b \in X$.

Now let $y \in X$. Then for all $t \in \mathrm{Tx}$, we have

$$
\neg R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)
$$

Let $t \in \operatorname{Tx}$ and suppose $\neg R_{2}(t, y a)$. Then $t \neq y a$. By Lemma $2.1, t=t_{1} \ldots t_{n}$ for some $n \in \mathbf{N}$ and $t_{1}, \ldots, t_{n} \in\{a, b\}$, so $n=1$, or ($n>1$ and $t_{n}=b$) or ($n>1$ and $t_{n}=a$ and $\left.u:=t_{1} \ldots t_{n-1} \neq y\right)$.

Suppose $n=1$. Then $t=t_{1} \in\{a, b\}$, so

$$
\begin{array}{rlr}
\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y a)\right] & =\neg[N(t) \approx N(y a)] & \left(\text { as } \neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right) \\
& =\neg[N(t) \approx[N(y) * N(a)]] & \text { (by Definition 3.1 (GD2)) } \\
& =\neg[N(t) \approx[N(y) * \alpha]] & (\text { as } N(a)=\alpha) \\
& \in T & \text { (by the axioms A3 and A4 } \\
& & \text { of TC, as } t \in\{a, b\}, \text { so } \\
& N(t)=\alpha \text { or } N(t)=\beta) .
\end{array}
$$

Suppose $n>1$ and $t_{n}=b$. Then $t=v b$ for some $v=t_{1} \ldots t_{n-1}$ with $t_{1}, \ldots, t_{n-1} \in\{a, b\}$.
By Lemma 2.1, $v \in \mathrm{Tx}$. Then

$$
\begin{array}{rlr}
& \operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y a)\right] & \left(\text { as } \neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right) \\
= & \neg[N(t) \approx N(y a)] & \text { (as } t=v b) \\
= & \neg[N(v b) \approx N(y a)] & \text { (by Definition 3.1 (2)) } \\
= & \neg[[N(v) * N(b)] \approx[N(y) * N(a)]] & (\text { as } N(a)=\alpha \text { and } N(b)=\beta) \\
= & \neg[[N(v) * \beta] \approx[N(y) * \alpha]] & \text { (by Theorem 1.4). } \\
\in T &
\end{array}
$$

Suppose $n>1$ and $t_{n}=a$ and $u:=t_{1} \ldots t_{n-1} \neq y$. Then $t=u a$. As $t_{1}, \ldots, t_{n-1} \in\{a, b\}$, we have $u \in$ Tx by Lemma 2.1. Then

$$
\begin{array}{rrr}
& \operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y a)\right] & \\
= & \neg[N(t) \approx N(y a)] & \left(\text { as } \neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right) \\
= & \neg[N(u a) \approx N(y a)] & \text { (as } t=u a) \\
= & \neg[[N(u) * N(a)] \approx[N(y) * N(a)]] & \text { (by Definition 3.1 (2)) } \\
= & \neg[[N(u) * \alpha] \approx[N(y) * \alpha]] & (\text { as } N(a)=\alpha) .
\end{array}
$$

By Theorem 1.5(b), we have
$[[N(u) * \alpha] \approx[N(y) * \alpha]] \rightarrow[N(u) \approx N(y)] \in T$, so the contrapositive $\neg[N(u) \approx N(y)] \rightarrow \neg[[N(u) * \alpha] \approx[N(y) * \alpha]]$ is also in T. Now $u \neq y$, so $\neg R_{2}(u, y)$, so we have

$$
\neg[N(u) \approx N(y)]=\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \quad\left(\text { as } \neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right)
$$

(by inductive assumption).

Thus $\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y a)\right]=\neg[[N(u) * \alpha] \approx[N(y) * \alpha]] \in T$.

Hence $y a \in X$. By a similar argument, $y b \in X$.

Thus $X \in \mathcal{B}=\{X \mid a, b \in X$ and $(\forall s \in X) s a, s b \in X\}$, so by Lemma 2.1, we have $\operatorname{Tx}=\bigcap \mathcal{B} \subseteq X$, so

$$
\begin{aligned}
& y \in \mathrm{Tx} \\
\Longrightarrow & y \in X \\
\Longleftrightarrow & (\forall t \in \mathrm{Tx})\left(\neg R_{2}(t, y)\right. \\
\Longrightarrow & \left.\left(\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)\right)
\end{aligned}
$$

Hence for all $y \in T x$, we have
$\neg R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)$ for all $t \in \mathrm{Tx}$, so
$\neg R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)$ for all $t, y \in \mathrm{Tx}$.

Let $G_{2}=\neg F_{2}$. Then for all $t, y \in \mathrm{Tx}$,

- $R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[F_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)$,
- $\neg R_{2}(t, y) \Longrightarrow\left(\operatorname{sub}\left[G_{2} ; x_{0} / N(t), x_{1} / N(y)\right] \in T\right)$ and
- $\left[x_{0}\right]\left[x_{1}\right]\left[G_{2} \leftrightarrow \neg F_{2}\right] \in T$.

Hence by Lemma $6.1, R_{2}$ is strongly repersented in T by $F_{2}=\left[x_{0} \approx x_{1}\right]$.
(GD3) For $R_{3}:=\left\{(t, y, z) \in \mathrm{Tx}^{3} \mid t=y z\right\}$:
Let $t, y, z \in \operatorname{Tx}$ and $F_{3}=\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]$. Suppose $R_{3}(t, y, z)$. Then $t=y z$. Then

$$
\begin{aligned}
\operatorname{sub}\left[F_{3} ; x_{0} / N(t), x_{1} / N(y), x_{2} / N(z)\right] & =[N(t) \approx[N(y) * N(z)]] & \left(\text { as } F_{3}=\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\right) \\
& =[N(t) \approx N(y z)] & (\text { by Lemma } 3.2) \\
& =[N(y z) \approx N(y z)] & (\text { as } t=y z) \\
& \in T &
\end{aligned}
$$

as T is closed under logical operations, and thus contains all tautologies.

Now suppose $\neg R_{3}(t, y, z)$. Then $t \neq y z$. Then $\neg R_{2}(t, y z)$, so

$$
\begin{aligned}
& \operatorname{sub}\left[\neg F_{3} ; x_{0} / N(t), x_{1} / N(y), x_{2} / N(z)\right] \\
= & \neg[N(t) \approx[N(y) * N(z)]] \\
= & \neg[N(t) \approx N(y z)] \\
= & \operatorname{sub}\left[\neg F_{2} ; x_{0} / N(t), x_{1} / N(y z)\right] \\
\in & T
\end{aligned}
$$

(as $\left.\neg F_{3}=\neg\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\right)$
(by Lemma 3.2)
$\left(\right.$ as $\left.\neg F_{2}=\neg\left[x_{0} \approx x_{1}\right]\right)$
(since $\neg R_{2}(t, y z)$, and R_{2}
is strongly represented in T by F_{2}).

Let $G_{3}=\neg F_{3}$. Then for all $t, y, z \in \mathrm{Tx}$,

- $R_{3}(t, y, z) \Longrightarrow\left(\operatorname{sub}\left[F_{3} ; x_{0} / N(t), x_{1} / N(y), x_{2} / N(z)\right] \in T\right)$,
- $\neg R_{3}(t, y, z) \Longrightarrow\left(\operatorname{sub}\left[F_{3} ; x_{0} / N(t), x_{1} / N(y), x_{2} / N(z)\right] \in T\right)$ and
- $\left[x_{0}\right]\left[x_{1}\right]\left[x_{2}\right]\left[G_{3} \leftrightarrow \neg F_{3}\right] \in T$.

Hence by Lemma $6.1, R_{3}$ is strongly repersented in T by $F_{3}=\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]$.
(GD4) Suppose R is strongly represented by F in T. Let

$$
S:=\left\{\left(y, t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n+1} \mid R\left(t_{1}, \ldots, t_{n}\right)\right\}
$$

and

$$
G:=\left[x_{0} \approx x_{0}\right] \wedge \operatorname{sub}\left[F ; x_{0} / x_{1}, \ldots, x_{n-1} / x_{n}\right]
$$

Then for all $y, t_{1}, \ldots, t_{n} \in \mathrm{Tx}$,

$$
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{1}\right), \ldots, x_{n} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left([N(y) \approx N(y)] \wedge \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow S\left(y, t_{1}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[\neg G ; x_{0} / N(y), x_{1} / N\left(t_{1}\right), \ldots, x_{n} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\neg[N(y) \approx N(y)] \vee \neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \Longleftrightarrow \neg S\left(y, t_{1}, \ldots, t_{n}\right),
\end{aligned}
$$

and
so S is strongly represented in T by G.
(GD5) Suppose R is strongly represented by F in T.
Let $S:=\left\{\left(t_{1}, t_{3}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n-1} \mid R\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right)\right\}$ and
$G:=\operatorname{sub}\left[F ; x_{0} / x_{0}, x_{1} / x_{0}, x_{2} / x_{1}, \ldots, x_{n-1} / x_{n-2}\right]$. Then for all $y, t_{1}, \ldots, t_{n} \in \operatorname{Tx}$,

$$
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{3}\right), \ldots, x_{n-2} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{1}\right), x_{2} / N\left(t_{3}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, t_{3}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{3}\right), \ldots, x_{n-2} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{1}\right), x_{2} / N\left(t_{3}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{1}\right), x_{2} / N\left(t_{3}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right) \Longleftrightarrow \neg S\left(t_{1}, t_{3}, \ldots, t_{n}\right),
\end{aligned}
$$

and
so S is strongly represented in T by G.
(GD6) Suppose R is strongly represented by F in T and let $k \in\{1, \ldots, n-1\}$ (where n is the arity of $R)$. Let $S:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid R\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right)\right\}$ and $G:=\operatorname{sub}\left[F ; x_{0} / x_{0}, \ldots, x_{k-1} / x_{k}, x_{k} / x_{k-1}, \ldots, x_{n-1} / x_{n-1}\right]$. Then for all $t_{1}, \ldots, t_{n} \in$ Tx

$$
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{k-1} / N\left(t_{k+1}\right), x_{k} / N\left(t_{k}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{k-1} / N\left(t_{k+1}\right), x_{k} / N\left(t_{k}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), \ldots, x_{k-1} / N\left(t_{k+1}\right), x_{k} / N\left(t_{k}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
$$

and
so S is strongly represented in T by G.
(GD7) Suppose R is strongly represented by F in T. Let $S:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid \neg R\left(t_{1}, \ldots, t_{n}\right)\right\}$ and $G:=\neg F$.

Then for all $t_{1}, \ldots, t_{n} \in \mathrm{Tx}$,
and

$$
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[\neg(\neg F) ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \neg\left(\neg R\left(t_{1}, \ldots, t_{n}\right)\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
$$

so S is strongly represented in T by G.
(GD8) Suppose R is strongly represented by F and R^{\prime} is strongly represented by F^{\prime} and in T. Let $S:=\left\{\left(t_{1}, \ldots, t_{n+k}\right) \in \operatorname{Tx}^{n+k} \mid R\left(t_{1}, \ldots, t_{n}\right)\right.$ and $\left.R^{\prime}\left(t_{n+1}, \ldots, t_{n+k}\right)\right\}$ and $G:=\left[F \wedge \operatorname{sub}\left[F^{\prime} ; x_{0} / x_{n}, \ldots, x_{k-1} / x_{n+k-1}\right]\right]$. Then for all $t_{1}, \ldots, t_{n+k} \in \mathrm{Tx}$,

$$
S\left(t_{1}, \ldots, t_{n+k}\right)
$$

$\Longleftrightarrow\left(R\left(t_{1}, \ldots, t_{n}\right)\right.$ and $\left.R^{\prime}\left(t_{n+1}, \ldots, t_{n+k}\right)\right)$
$\Longleftrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)$ and $\left(\operatorname{sub}\left[F^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right)$
$\Longrightarrow\left(\left[\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \wedge \operatorname{sub}\left[F^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right)$
$\Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right)$
and
$\neg S\left(t_{1}, \ldots, t_{n+k}\right)$
$\Longleftrightarrow \neg\left(R\left(t_{1}, \ldots, t_{n}\right)\right.$ and $\left.R^{\prime}\left(t_{n+1}, \ldots, t_{n+k}\right)\right)$
$\Longleftrightarrow \neg R\left(t_{1}, \ldots, t_{n}\right)$ or $\neg R^{\prime}\left(t_{n+1}, \ldots, t_{n+k}\right)$
$\Longleftrightarrow\left(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)$ or
$\left(\operatorname{sub}\left[\neg F^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right)$
$\Longleftrightarrow\left(\neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)$ or
$\left(\neg \operatorname{sub}\left[F^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right)$
$\Longrightarrow\left(\left[\neg \operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \vee \neg \operatorname{sub}\left[F^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right)$
$\Longleftrightarrow\left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right)$.

$$
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longrightarrow & \left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \notin T\right) \\
\Longrightarrow & \neg\left(\neg S\left(t_{1}, \ldots, t_{n+k}\right)\right) \Longrightarrow S\left(t_{1}, \ldots, t_{n+k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longrightarrow & \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \notin T\right) \\
\Longrightarrow & \neg S\left(t_{1}, \ldots, t_{n+k}\right),
\end{aligned}
$$

so $\left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n+k}\right)$ and $\left(\operatorname{sub}\left[\neg G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n+k}\right)$.

Hence S is strongly represented in T by G.
(GD9) Suppose R is strongly represented by F in T.
Let $S:=\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\forall t_{1} \in \mathrm{Tx}\right) t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow R\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right\}$, and let $G:=\left[x_{n}\right]\left[x_{n} \sqsubset x_{0} \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / x_{1}, \ldots, x_{n-1} / x_{n-1}\right]\right]$.

Let $y, t_{2}, \ldots, t_{n} \in \mathrm{Tx}$ and suppose $S\left(y, t_{2}, \ldots, t_{n}\right)$.
Then $\left(\forall t_{1} \in \mathrm{Tx}\right)\left(t_{1} \sqsubset^{\mathbf{T} \mathbf{x}} y \Longrightarrow R\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)$. Then
$\left(\forall t_{1} \in \operatorname{Tx}\right)\left(t_{1} \sqsubset^{\mathbf{T} \mathbf{x}} y \Longrightarrow\left(\operatorname{sub}\left[F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\right)$.

Then

$$
\begin{aligned}
X_{y} & :=\left\{s \in \mathrm{Tx} \mid s \sqsubset^{\mathbf{T} \mathbf{x}} y\right\} \\
& \subseteq\left\{s \in \mathrm{Tx} \mid \operatorname{sub}\left[F ; x_{0} / N(s), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
N\left(X_{y}\right) & \subseteq N\left(\left\{s \in \mathrm{Tx} \mid \operatorname{sub}\left[F ; x_{0} / N(s), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\}\right) \\
& =\left\{c \in \mathrm{Cterm} \mid \operatorname{sub}\left[F ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\} .
\end{aligned}
$$

by Lemma 3.1.

In particular, for every $c \in N\left(X_{y}\right)$, the sentence $\operatorname{sub}\left[F ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]$ is in T.

Now T is closed under logical operations, so for every $c \in N\left(X_{y}\right)$, the sentence $\left[x_{n}\right]\left[x_{n} \approx c \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right.$ is in T.

Then the (finite) conjunction of all such sentences is in T, which implies

$$
\begin{aligned}
& \left.\qquad x_{n}\right]\left[\bigvee\left\{x_{n} \approx c \mid c \in N\left(X_{y}\right)\right\} \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .\right. \\
& \text { But }\left\{x_{n} \approx c \mid c \in N\left(X_{y}\right)\right\}=\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\}, \text { so } \\
& \qquad\left[x_{n}\right]\left[\bigvee\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\} \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T,\right. \\
& \text { so }\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right. \\
& \text { as }\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \leftrightarrow \bigvee\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\} \in T\right. \text { by Lemma 3.3. }
\end{aligned}
$$

But

$$
\begin{aligned}
& {\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right.} \\
= & \operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right],
\end{aligned}
$$

so $\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T$.

Now suppose $\neg S\left(y, t_{2}, \ldots, t_{n}\right)$. Then there exists $t_{1} \in T \mathrm{x}$ such that $t_{1} \sqsubset^{\mathbf{T x}} y$ and $\neg R\left(t_{1}, t_{2}, \ldots, t_{n}\right)$.

We have $t_{1} \sqsubset^{\mathbf{T x}} y \Longleftrightarrow\left(t_{1}=y\right.$ or $(\exists z \in \mathrm{Tx})\left(y=t_{1} z\right.$ or $\left.y=z t_{1}\right)$ or $\left.(\exists z, w \in \mathrm{Tx})\left(y=z t_{1} w\right)\right)$, by definition of $\sqsubset^{\mathbf{T x}}$.

We have

$$
\begin{aligned}
t_{1}=y & \left.\Longleftrightarrow R_{2}\left(t_{1}, y\right) \quad \quad\left(\text { by definition of } R_{2}\right)\right) \\
& \Longleftrightarrow\left(\left[N\left(t_{1}\right) \approx N(y)\right] \in T\right)
\end{aligned}
$$

(since R_{2} is strongly represented in T by $\left[x_{0} \approx x_{1}\right]$).

We have

```
    \((\exists z \in \mathrm{Tx})\left(y=t_{1} z\right.\) or \(\left.y=z t_{1}\right)\)
\(\Longleftrightarrow(\exists z \in \mathrm{Tx})\left(R_{3}\left(y, t_{1}, z\right)\right.\) or \(\left.R_{3}\left(y, z, t_{1}\right)\right) \quad\) (by definition of \(\left.\left.R_{3}\right)\right)\)
\(\Longleftrightarrow(\exists z \in \mathrm{Tx})\left(\left[N(y) \approx N\left(t_{1}\right) * N(z)\right] \in T\right.\) or \(\left.\left[N(y) \approx N(z) * N\left(t_{1}\right)\right] \in T\right)\)
``` (since \(R_{3}\) is strongly represented in \(T\) by \(\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\) )
\(\Longrightarrow(\exists z \in \mathrm{Tx})\left(\left[N(y) \approx N\left(t_{1}\right) * N(z)\right] \vee\left[N(y) \approx N(z) * N\left(t_{1}\right)\right] \in T\right)\)
(since \(T\) is closed under logical operations)
\(\Longrightarrow\left(\left[E x_{0}\right]\left[N(y) \approx N\left(t_{1}\right) * x_{0}\right] \vee\left[N(y) \approx x_{0} * N\left(t_{1}\right)\right] \in T\right)\),
by quantifier rules in \(T\), since there exists \(c=N(z) \in\) Cterm such that
\(\left[N(y) \approx N\left(t_{1}\right) * c\right] \vee\left[N(y) \approx c * N\left(t_{1}\right)\right] \in T\).

We have
\((\exists z, w \in \operatorname{Tx})\left(y=z t_{1} w\right)\)
\(\Longleftrightarrow(\exists z, w \in \operatorname{Tx}) R_{3}\left(y, z, t_{1} w\right) \quad\) (by definition of \(\left.R_{3}\right)\))
\(\Longleftrightarrow(\exists z, w \in \mathrm{Tx})\left(\left[N(y) \approx N(z) * N\left(t_{1} w\right)\right] \in T\right)\)
(since \(R_{3}\) is strongly represented in \(T\) by \(\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\))
\(\Longleftrightarrow(\exists z, w \in \operatorname{Tx})\left(\left[N(y) \approx N(z) *\left[N\left(t_{1}\right) * N(w)\right]\right] \in T\right)\)
\[
\left(\text { since } N\left(t_{1} w\right)=\left[N\left(t_{1}\right) * N(w)\right]\right)
\]
\(\Longrightarrow\left(\left[E x_{0}\right]\left[E x_{1}\right]\left[N(y) \approx x_{0} *\left[N\left(t_{1}\right) * x_{1}\right]\right] \in T\right)\),
by quantifier rules in \(T\), since there exist \(c, d \in\) Cterm (with \(c=N(z)\) and \(d=N(w))\) such that \(\left[N(y) \approx c *\left[N\left(t_{1}\right) * d\right]\right] \in T\).

Thus \(\left[N\left(t_{1}\right) \approx N(y)\right] \in T\), or
\(\left[E x_{0}\right]\left[N(y) \approx N\left(t_{1}\right) * x_{0}\right] \vee\left[N(y) \approx x_{0} * N\left(t_{1}\right)\right] \in T\), or
\(\left[E x_{0}\right]\left[E x_{1}\right]\left[N(y) \approx x_{0} *\left[N\left(t_{1}\right) * x_{1}\right]\right] \in T\), so their disjunction is in \(T\), as \(T\) is closed under logical operations. Hence by (A6), N(t) \(t_{1} \sqsubset N(y) \in T\).

Furthermore, since \(\neg R\left(t_{1}, t_{2}, \ldots, t_{n}\right)\), we have
\(\operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\) as \(R\) is strongly represented by \(F\) in \(T\). Hence
\(\left[N\left(t_{1}\right) \sqsubset N(y) \wedge \operatorname{sub}\left[\neg F ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T\), as \(T\) is closed under logical operations.

Then
\[
\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[\neg F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T,
\]
by quantifier rules in \(T\), since there exists \(c=N\left(t_{1}\right) \in\) Cterm such that
\[
\left[c \sqsubset N(y) \wedge \operatorname{sub}\left[\neg F ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T .
\]

But
\[
\begin{aligned}
& {\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[\neg F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] } \\
&= {\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \neg \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] } \\
&= \operatorname{sub}\left[\neg G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right], \\
& \operatorname{sosub}\left[\neg G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .
\end{aligned}
\]

Let \(G^{\prime}=\neg G\). Then for all \(y, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\),
- \(S\left(y, t_{2}, \ldots, t_{n}\right) \Longrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\),
- \(\neg S\left(y, t_{2}, \ldots, t_{n}\right) \Longrightarrow\left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\) and
- \(\left[x_{0}\right] \ldots\left[x_{n-1}\right]\left[G^{\prime} \leftrightarrow \neg G\right] \in T\).

Hence by Lemma 6.1, \(S\) is strongly repersented in \(T\) by \(G=\left[x_{n}\right]\left[x_{n} \sqsubset x_{0} \rightarrow \operatorname{sub}\left[F ; x_{0} / x_{n}, x_{1} / x_{1}, \ldots, x_{n-1} / x_{n-1}\right]\right]\).

Hence by induction, each \(R \in \mathbf{E D}\) is strongly represented in \(T\) by some \(F \in\) wff.

Lemma 6.3. Let \(T \subseteq\) wff be a consistent theory which is closed under logical operations with \(\mathrm{TC} \subseteq T\). Then the relation \(\left\{(s, t) \in \mathrm{Tx}^{2} \mid s \sqsubset^{\mathbf{T x}} t\right\}\) is strongly represented in \(T\) by the formula \(\left[x_{0} \sqsubset x_{1}\right]\).

The proof of this result is similar to parts 1,2 and 3 of the proof of Lemma 6.2 , and we shall not include it here.

\section*{CHAPTER 7}

\section*{Representability of GD relations}

In this chapter, we show that all GD relations are represented in theories T that contain TC and are contained in \(\mathrm{Th}(\mathbf{T x})\). This is a key result that will be used in the proof of undecidability of T , which means the undecidability result depends on T being rich enough to describe recursive relations. This chapter is based on Sections 10 and 11 under Part Three of 'Undecidability without Arithmetization' [8], and is referenced by part (v) of the overview.

\section*{1. Existential Quantifiers}

Using the notion of representability of relations, we now have a shortcut for proving the "injectivity" of the map \(N: \mathrm{Tx} \rightarrow\) Cterm with respect to TC:

Lemma 7.1. For all \(s, t \in \mathrm{Tx}\), if \(N(s) \approx N(t) \in \mathrm{TC}\), then \(s=t\).

Proof. Let \(s, t \in \mathrm{Tx}\) and suppose \(N(s) \approx N(t) \in \mathrm{TC}\). As TC is closed under logical operations and \(\mathrm{TC} \subseteq \mathrm{TC}\), by part 2 of the proof of Lemma 6.2, the relation \(R:=\) \(\left\{(s, t) \in \mathrm{Tx}^{2} \mid s=t\right\}\) is strongly represented in TC by \(F:=\left[x_{0} \approx x_{1}\right]\). Now \(N(s) \approx\) \(N(t)=\operatorname{sub}\left[F ; x_{0} / N(s), x_{1} / N(t)\right]\), so \(\operatorname{sub}\left[F ; x_{0} / N(s), x_{1} / N(t)\right] \in \mathrm{TC}\), so \(R(s, t)\), so \(s=t\), as required.

Definition 7.1. Let \(c \in\) Cterm. Then
\[
\operatorname{De}(c)=t \Longleftrightarrow(c \approx N(t) \in \mathrm{TC}) .
\]

By Lemma 3.4 and Lemma 7.1, De: Cterm \(\rightarrow \mathrm{Tx}\) is a well-defined function.

Lemma 7.2. The map De has the following properties:
(1) \((\forall t \in \mathrm{Tx}) t=\operatorname{De}(N(t))\)
(2) \((\forall c \in \operatorname{Cterm})(c \approx N(\operatorname{De}(c)) \in \mathrm{TC})\)

The above properties can be obtained from the definition in a straightforward way.

Lemma 7.3. For all \(c \in \operatorname{Cterm}, \operatorname{De}(c)=c^{\mathbf{T x}}\).

Proof. We have \(N(a)=\alpha\) and \(N(b)=\beta\), so \(\operatorname{De}(\alpha)=a\) and \(\operatorname{De}(\beta)=b\). By the definitions of \(\alpha^{\mathbf{T x}}\) and \(\beta^{\mathbf{T x}}\) listed in Lemma 2.3, we have \(\alpha^{\mathbf{T x}}=a\) and \(\beta^{\mathbf{T x}}=b\). Hence \(\operatorname{De}(\alpha)=\alpha^{\mathbf{T x}}\) and \(\operatorname{De}(\beta)=\beta^{\mathbf{T x}}\).

Let \(c, d \in\) Cterm and suppose \(\operatorname{De}(c)=s=c^{\mathbf{T} \mathbf{x}}\) and \(\operatorname{De}(d)=t=d^{\mathbf{T x}}\). Then \(N(s) \approx c \in\) TC and \(N(t) \approx d \in\) TC. By Lemma 3.2, we have \(N(s t) \approx[N(s) * N(t)] \in \mathrm{TC}\), so by substituting \(c\) for \(N(s)\) and \(d\) for \(N(t)\) we can get \(N(s t) \approx[c * d] \in \mathrm{TC}\), so \(\operatorname{De}([c * d])=s t\). Now \([c * d]^{\mathbf{T} \mathbf{x}}=\left(c^{\mathbf{T} \mathbf{x}} *^{\mathbf{T} \mathbf{x}} d^{\mathbf{T} \mathbf{x}}\right)=\left(s *^{\mathbf{T} \mathbf{x}} t\right)=s t\), \(\operatorname{so} \operatorname{De}([c * d])=[c * d]^{\mathbf{T} \mathbf{x}}\).

Hence by induction, \(\operatorname{De}(c)=c^{\mathbf{T x}}\) for all \(c \in\) Cterm.

Recall that for all \(F \in\) Sent, we have \(F \in \operatorname{Th}(\mathbf{T} \mathbf{x}) \Longleftrightarrow \mathbf{T x} \models F\). So for all \(c, d \in\) Cterm,
\[
c \approx d \in \operatorname{Th}(\mathbf{T} \mathbf{x}) \Longleftrightarrow c^{\mathbf{T x}}=d^{\mathbf{T} \mathbf{x}} \Longleftrightarrow \operatorname{De}(c)=\operatorname{De}(d)
\]
by Lemma 7.2.

Lemma 7.4. If \(F \in \mathrm{wff}\) has precisely \(n\) free variables \(x_{0}, \ldots, x_{n-1}\), then
\[
\begin{aligned}
& \left(\left[E x_{0}\right] \ldots\left[E x_{n-1}\right] F \in \operatorname{Th}(\mathbf{T} \mathbf{x})\right) \\
\Longleftrightarrow & \left(\exists c_{0}, \ldots, c_{n-1} \in \operatorname{Cterm}\right)\left(\operatorname{sub}\left[F ; x_{0} / c_{0}, \ldots, x_{n-1} / c_{n-1}\right] \in \operatorname{Th}(\mathbf{T x})\right) .
\end{aligned}
\]

Proof. The backward implication holds due to by quantifier rules in \(\mathrm{Th}(\mathbf{T x})\). We shall now prove the forward implication:

Suppose \(\left[E x_{0}\right] \ldots\left[E x_{n-1}\right] F \in \operatorname{Th}(\mathbf{T x})\). Then \(\mathbf{T} \mathbf{x}=\left[E x_{0}\right] \ldots\left[E x_{n-1}\right] F\), so \(\left(\exists t_{0}, \ldots, t_{n-1} \in \mathrm{Tx}\right) F^{\mathbf{T x}}\left(t_{0}, \ldots, t_{n-1}\right)\).

By Lemma 3.4, there exist \(c_{0}, \ldots, c_{n-1} \in\) Cterm such that \(N\left(t_{i}\right)=c_{i}\) for all \(i \in\) \(\{0, \ldots, n-1\}\). Then \(\left(\exists c_{0}, \ldots, c_{n-1} \in \operatorname{Cterm}\right) F^{\mathbf{T x}}\left(\operatorname{De}\left(c_{0}\right), \ldots, \operatorname{De}\left(c_{n-1}\right)\right)\), so \(\left(\exists c_{0}, \ldots, c_{n-1} \in \mathrm{Cterm}\right) F^{\mathbf{T x}}\left(c_{0}^{\mathbf{T x}}, \ldots, c_{n-1}^{\mathbf{T x}}\right)\) by Lemma 7.2.

But
\[
\begin{aligned}
& F^{\mathbf{T} \mathbf{x}}\left(c_{0}^{\mathbf{T} \mathbf{x}}, \ldots, c_{n-1}^{\mathbf{T} \mathbf{x}}\right) \\
\Longleftrightarrow & \mathbf{T} \mathbf{x} \models \operatorname{sub}\left[F ; x_{0} / c_{0}, \ldots, x_{n-1} / c_{n-1}\right] \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F ; x_{0} / c_{0}, \ldots, x_{n-1} / c_{n-1}\right] \in \operatorname{Th}(\mathbf{T} \mathbf{x})\right),
\end{aligned}
\]
so \(\left(\exists c_{0}, \ldots, c_{n-1} \in \operatorname{Cterm}\right)\left(\operatorname{sub}\left[F ; x_{0} / c_{0}, \ldots, x_{n-1} / c_{n-1}\right] \in \operatorname{Th}(\mathbf{T x})\right)\), as required.

\section*{2. GD Relations}

Lemma 7.5. For all \(R \in \mathbf{G D}\), there exists \(F \in\) wff such that for all theories \(T \subseteq \mathrm{wff}\) such that \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations, \(R\) is represented in \(T\) by \(F\).

Proof. We shall prove by induction the seemingly stronger property that for all \(R \in\) GD, there exist \(F, G \in \mathrm{wff}\) such that for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(R\) is represented by \(F\) in \(T\), and
(2) \(\neg R\) is represented by \(G\) in \(T\).

Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Then we may cite results about formulae in TC (which will also be in \(T\)) and deduce from them formulae in \(T\). Furthermore, \(T\) is consistent since \(T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(\operatorname{Th}(\mathbf{T x})\) is consistent.

Base cases: Since \(T\) contains TC, is consistent and is closed under logical operations, by Lemma 6.2,
- \(A:=\{t \in \mathrm{Tx} \mid t=a\}\) is represented by \(\left[x_{0} \approx \alpha\right]\) in \(T\),
- \(\neg A\) is represented by \(\neg\left[x_{0} \approx \alpha\right]\) in \(T\),
- \(B:=\{t \in \mathrm{Tx} \mid t=b\}\) is represented by \(\left[x_{0} \approx \beta\right]\) in \(T\),
- \(\neg B\) is represented by \(\neg\left[x_{0} \approx \beta\right]\) in \(T\),
- \(R_{2}:=\left\{(t, y) \in \mathrm{Tx}^{2} \mid t=y\right\}\) is represented by \(\left[x_{0} \approx x_{1}\right]\) in \(T\),
- \(\neg R_{2}\) is represented by \(\neg\left[x_{0} \approx x_{1}\right]\) in \(T\),
- \(R_{3}:=\left\{(t, y, z) \in \mathrm{Tx}^{3} \mid t=y z\right\}\) is represented by \(\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\) in \(T\), and
- \(\neg R_{3}\) is represented by \(\neg\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\) in \(T\).

Hence if \(R\) is one of the initial relations, then there exist \(F, G \in\) wff such that for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(R\) is represented by \(F\) in \(T\), and
(2) \(\neg R\) is represented by \(G\) in \(T\).

Inductive conditions: Let \(R_{1}\) and \(R_{2}\) be relations in \(T \mathrm{Tx}\) and let \(F_{1}, F_{1}^{\prime}, F_{2}, F_{2}^{\prime} \in\) wff. Suppose for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
- \(R_{1}\) is represented by \(F_{1}\) in \(T\) and in \(\operatorname{Th}(\mathbf{T x})\),
- \(\neg R_{1}\) is represented by \(F_{1}^{\prime}\) in \(T\) and in \(\operatorname{Th}(\mathbf{T x})\),
- \(R_{2}\) is represented by \(F_{2}\) in \(T\) and in \(\operatorname{Th}(\mathbf{T x})\), and
- \(\neg R_{2}\) is represented by \(F_{2}^{\prime}\) in \(T\) and in \(\operatorname{Th}(\mathbf{T x})\).
(GD4). Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Let
- \(S:=\left\{\left(y, t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n+1} \mid R_{1}\left(t_{1}, \ldots, t_{n}\right)\right\}\),
- \(G:=\left[x_{0} \approx x_{0}\right] \wedge \operatorname{sub}\left[F_{1} ; x_{0} / x_{1}, \ldots, x_{n-1} / x_{n}\right]\) and
- \(G^{\prime}:=\left[x_{0} \approx x_{0}\right] \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{1}, \ldots, x_{n-1} / x_{n}\right]\).

Then for all \(y, t_{1}, \ldots, t_{n} \in \mathrm{Tx}\),
\[
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{1}\right), \ldots, x_{n} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left([N(y) \approx N(y)] \wedge \operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R_{1}\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow S\left(y, t_{1}, \ldots, t_{n}\right), \\
\text { and } & \left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{1}\right), \ldots, x_{n} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left([N(y) \approx N(y)] \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R_{1}\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \neg S\left(y, t_{1}, \ldots, t_{n}\right)
\end{aligned}
\]
so for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \mathrm{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).
(GD5). Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Let
- \(S:=\left\{\left(t_{1}, t_{3}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n-1} \mid R_{1}\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right)\right\}\),
- \(G:=\operatorname{sub}\left[F_{1} ; x_{0} / x_{0}, x_{1} / x_{0}, x_{2} / x_{1}, \ldots, x_{n-1} / x_{n-2}\right]\) and
- \(G^{\prime}:=\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{0}, x_{1} / x_{0}, x_{2} / x_{1}, \ldots, x_{n-1} / x_{n-2}\right]\).

Then for all \(t_{1}, t_{3}, \ldots, t_{n} \in \mathrm{Tx}\),
\[
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{3}\right), \ldots, x_{n-2} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{1}\right), x_{2} / N\left(t_{3}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R_{1}\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, t_{3}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{3}\right), \ldots, x_{n-2} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{1}\right), x_{2} / N\left(t_{3}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R_{1}\left(t_{1}, t_{1}, t_{3}, \ldots, t_{n}\right) \Longleftrightarrow \neg S\left(t_{1}, t_{3}, \ldots, t_{n}\right)
\end{aligned}
\]
and
so for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).
(GD6). Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Let
- \(k \in\{1, \ldots, n-1\}\) (where \(n\) is the arity of \(R_{1}\)),
- \(S:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid R_{1}\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right)\right\}\),
- \(G:=\operatorname{sub}\left[F_{1} ; x_{0} / x_{0}, \ldots, x_{k-1} / x_{k}, x_{k} / x_{k-1}, \ldots, x_{n-1} / x_{n-1}\right]\) and
- \(G^{\prime}:=\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{0}, \ldots, x_{k-1} / x_{k}, x_{k} / x_{k-1}, \ldots, x_{n-1} / x_{n-1}\right]\).

Then for all \(t_{1}, \ldots, t_{n} \in \mathrm{Tx}\),
\[
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{k-1} / N\left(t_{k+1}\right), x_{k} / N\left(t_{k}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R_{1}\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n}\right) \\
& \left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{k-1} / N\left(t_{k+1}\right), x_{k} / N\left(t_{k}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R_{1}\left(t_{1}, \ldots, t_{k+1}, t_{k}, \ldots, t_{n}\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
\]
and
so for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).
(GD7). Let \(T \subseteq\) wff be a theory closed under logical operations with
\(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\). Let \(S:=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \operatorname{Tx}^{n} \mid \neg R_{1}\left(t_{1}, \ldots, t_{n}\right)\right\}\). Then for all \(t_{1}, \ldots, t_{n} \in\)

Tx,
\[
\begin{aligned}
& \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R_{1}\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n}\right), \\
& \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
\Longleftrightarrow & R_{1}\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow \neg\left(\neg R_{1}\left(t_{1}, \ldots, t_{n}\right)\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n}\right),
\end{aligned}
\]
and
so for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(F_{1}^{\prime}\) in \(T\), and
(2) \(\neg S\) is represented by \(F_{1}\) in \(T\).
(GD8). Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\). Suppose \(R_{1} \subseteq \mathrm{Tx}^{n}\) and \(R_{2} \subseteq \mathrm{Tx}^{k}\) for some \(n \in \mathbb{N}\) and \(k \in\{1, \ldots, n-1\}\).

Now the theories \(T\) and \(\operatorname{Th}(\mathbf{T} \mathbf{x})\) both satisfy the properties of containing TC, being closed under logical operations and being contained by \(\operatorname{Th}(\mathbf{T x})\), so for all \(t_{1}, \ldots, t_{n+k} \in \mathrm{Tx}\), we have
- \(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\)
\(\Longleftrightarrow \neg R_{1}\left(t_{1}, \ldots, t_{n}\right)\)
\(\Longleftrightarrow \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in \operatorname{Th}(\mathbf{T x})\), and
- \(\operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\)
\(\Longleftrightarrow \neg R_{2}\left(t_{n+1}, \ldots, t_{n+k}\right)\)
\(\Longleftrightarrow \operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in \operatorname{Th}(\mathbf{T x})\) by assumption.
Hence
\[
\begin{aligned}
& \left(\left[\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \vee \operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right) \\
\Longleftrightarrow & \left(\left[\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \vee \operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in \operatorname{Th}(\mathbf{T x})\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in \operatorname{Th}(\mathbf{T x})\right) \\
& \text { or }\left(\operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in \operatorname{Th}(\mathbf{T x})\right)(\text { as } \operatorname{Th}(\mathbf{T} \mathbf{x}) \text { is complete }) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
& \text { or }\left(\operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right) .
\end{aligned}
\]

On the other hand,
\[
\begin{aligned}
& \left(\left[\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \wedge \operatorname{sub}\left[F_{2} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
& \quad \text { and }\left(\operatorname{sub}\left[F_{2} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right)
\end{aligned}
\]
holds for all theories \(T\) of interest.
Now let
- \(S:=\left\{\left(t_{1}, \ldots, t_{n+k}\right) \in \mathrm{Tx}^{n+k} \mid R_{1}\left(t_{1}, \ldots, t_{n}\right)\right.\) and \(\left.R_{2}\left(t_{n+1}, \ldots, t_{n+k}\right)\right\}\),
- \(G:=\left[F_{1} \wedge \operatorname{sub}\left[F_{2} ; x_{0} / x_{n}, \ldots, x_{k-1} / x_{n+k-1}\right]\right]\) and
- \(G^{\prime}:=\left[F_{1}^{\prime} \vee \operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / x_{n}, \ldots, x_{k-1} / x_{n+k-1}\right]\right]\).

Then for all \(t_{1}, \ldots, t_{n+k} \in \mathrm{Tx}\),
\[
\begin{aligned}
& \left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\left[\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \wedge \operatorname{sub}\left[F_{2} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
& \quad \text { and }\left(\operatorname{sub}\left[F_{2} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(R_{1}\left(t_{1}, \ldots, t_{n}\right) \text { and } R_{2}\left(t_{n+1}, \ldots, t_{n+k}\right)\right) \Longleftrightarrow S\left(t_{1}, \ldots, t_{n+k}\right),
\end{aligned}
\]
and
\[
\begin{aligned}
& \left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longleftrightarrow & \left(\left[\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \vee \operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right]\right] \in T\right) \\
\Longleftrightarrow & \left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \\
& \text { or }\left(\operatorname{sub}\left[F_{2}^{\prime} ; x_{0} / N\left(t_{n+1}\right), \ldots, x_{k-1} / N\left(t_{n+k}\right)\right] \in T\right) \\
\Longleftrightarrow & \neg R_{1}\left(t_{1}, \ldots, t_{n}\right) \text { or } \neg R_{2}\left(t_{n+1}, \ldots, t_{n+k}\right) \\
\Longleftrightarrow & \neg\left(R_{1}\left(t_{1}, \ldots, t_{n}\right) \text { and } R_{2}\left(t_{n+1}, \ldots, t_{n+k}\right)\right) \Longleftrightarrow \neg S\left(t_{1}, \ldots, t_{n+k}\right),
\end{aligned}
\]
so for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \mathrm{Th}(\mathbf{T} \mathbf{x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).
(GD9). Let \(T \subseteq \mathrm{wff}\) be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\). Suppose \(R_{1} \subseteq \mathrm{Tx}^{n}\) and \(R_{2} \subseteq \mathrm{Tx}^{k}\). Let
- \(S:=\left\{\left(y, t_{2}, \ldots, t_{n}\right) \in \mathrm{Tx}^{n} \mid\left(\forall t_{1} \in \mathrm{Tx}\right) t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow R_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right\}\),
- \(G:=\left[x_{n}\right]\left[x_{n} \sqsubset x_{0} \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / x_{1}, \ldots, x_{n-1} / x_{n-1}\right]\right]\) and
- \(G^{\prime}:=\left[E x_{n}\right]\left[x_{n} \sqsubset x_{0} \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{n}, x_{1} / x_{1}, \ldots, x_{n-1} / x_{n-1}\right]\right]\).

Let \(y, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\) and suppose \(S\left(y, t_{2}, \ldots, t_{n}\right)\). Then \(\left(\forall t_{1} \in \mathrm{Tx}\right)\left(t_{1} \sqsubset^{\mathrm{Tx}} y \Longrightarrow R_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\right)\). Then \(\left(\forall t_{1} \in \operatorname{Tx}\right)\left(t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\right)\).

Then
\[
\begin{aligned}
X_{y} & :=\left\{s \in \operatorname{Tx} \mid s \sqsubset^{\mathbf{T x}} y\right\} \\
& \subseteq\left\{s \in \operatorname{Tx} \mid \operatorname{sub}\left[F_{1} ; x_{0} / N(s), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\} .
\end{aligned}
\]

Then
\[
\begin{aligned}
N\left(X_{y}\right) & \subseteq N\left(\left\{s \in \mathrm{Tx} \mid \operatorname{sub}\left[F_{1} ; x_{0} / N(s), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\}\right) \\
& =\left\{c \in \operatorname{Cterm} \mid \operatorname{sub}\left[F_{1} ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right\}
\end{aligned}
\]
by Lemma 3.1.

In particular, for every \(c \in N\left(X_{y}\right)\), the sentence \(\operatorname{sub}\left[F_{1} ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\) is in \(T\).

Now \(T\) is closed under logical operations, so for every \(c \in N\left(X_{y}\right)\), the sentence \(\left[x_{n}\right]\left[x_{n} \approx c \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right.\) is in \(T\).

Then the (finite) conjunction of all such sentences is in \(T\), which implies
\[
\left[x_{n}\right]\left[\bigvee\left\{x_{n} \approx c \mid c \in N\left(X_{y}\right)\right\} \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .\right.
\]

But \(\left\{x_{n} \approx c \mid c \in N\left(X_{y}\right)\right\}=\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\}\), so
\[
\left[x_{n}\right] \backslash \bigvee\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\} \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T,
\] so \(\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right.\) as
\[
\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \leftrightarrow \bigvee\left\{x_{n} \approx N\left(t_{1}\right) \mid t_{1} \in X_{y}\right\}\right] \in T
\]
by Lemma 3.3.

But
\[
\begin{aligned}
& \quad\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right. \\
& =\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right], \\
& \text { so } \operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .
\end{aligned}
\]

Conversely, suppose \(\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\). Then
\[
\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .\right.
\]

By quantifier rules in \(T\), this implies
\[
\left[c \sqsubset N(y) \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .\right.
\]
for all \(c \in\) Cterm. By Lemma 3.1, \(N\left(t_{1}\right) \in\) Cterm for all \(t_{1} \in X_{y}\), so in particular,
\[
\begin{equation*}
\left[N\left(t_{1}\right) \sqsubset N(y) \rightarrow \operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T .\right. \tag{*}
\end{equation*}
\]
for all \(t_{1} \in X_{y}\).

Furthermore, for all \(t_{1} \in X_{y}\), we have \(\left[N\left(t_{1}\right) \approx N\left(t_{1}\right)\right] \in T\), as \(\left[N\left(t_{1}\right) \approx N\left(t_{1}\right)\right]\) is a tautology. Then \(\bigvee\left\{\left[N\left(t_{1}\right) \approx N(t)\right] \mid t \in X_{y}\right\} \in T\), since \(\left[N\left(t_{1}\right) \approx N\left(t_{1}\right)\right] \in\left\{N\left(t_{1}\right) \approx N(t) \mid t \in X_{y}\right\}\).

Now \(\left[x_{n}\right]\left[x_{n} \sqsubset N(y) \leftrightarrow \bigvee\left\{\left[x_{n} \approx N(t)\right] \mid t \in X_{y}\right\}\right] \in T\) by Lemma 3.3, so
\[
\begin{equation*}
N\left(t_{1}\right) \sqsubset N(y) \in T \tag{**}
\end{equation*}
\]

By (*) and (**),
\[
\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T
\]
for all \(t_{1} \in X_{y}\), by modus pollens in \(T\). Hence for all \(t_{1} \in T \mathrm{x}\),
\[
t_{1} \in X_{y} \Longrightarrow\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)
\]

Now for all \(t_{1} \in \mathrm{Tx}\), we have \(t_{1} \in X_{y} \Longleftrightarrow t_{1} \sqsubset^{\mathbf{T x}} y\) by definition of \(X_{y}\). Hence
\[
\left(\forall t_{1} \in \mathrm{Tx}\right) t_{1} \sqsubset^{\mathbf{T x}} y \Longrightarrow\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right),
\]
and so \(S\left(y, t_{2}, \ldots, t_{n}\right)\) by definition of \(S\).

Hence \(S\left(y, t_{2}, \ldots, t_{n}\right) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\) for all \(y, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\), so \(S\) is represented in \(T\) by \(G\).

Now suppose \(\neg S\left(y, t_{2}, \ldots, t_{n}\right)\). Then there exists \(t_{1} \in T x\) such that \(t_{1} \sqsubset^{\mathbf{T x}} y\) and \(\neg R_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\).
We have \(t_{1} \sqsubset^{\mathbf{T x}} y \Longleftrightarrow\left(t_{1}=y\right.\) or \((\exists z \in \mathrm{Tx})\left(y=t_{1} z\right.\) or \(\left.y=z t_{1}\right)\) or \(\left.(\exists z, w \in \mathrm{Tx})\left(y=z t_{1} w\right)\right)\), by definition of \(\sqsubset^{\mathbf{T x}}\).

We have
\[
\begin{aligned}
t_{1}=y & \left.\left.\Longleftrightarrow R_{2}\left(t_{1}, y\right) \quad \text { (by definition of } R_{2}\right)\right) \\
& \Longleftrightarrow\left(\left[N\left(t_{1}\right) \approx N(y)\right] \in T\right)
\end{aligned}
\]
since \(R_{2}\) is strongly represented in \(T\) by \(\left[x_{0} \approx x_{1}\right]\).

We have
\[
\begin{aligned}
& (\exists z \in \operatorname{Tx})\left(y=t_{1} z \text { or } y=z t_{1}\right) \\
\Longleftrightarrow & \left.\left.(\exists z \in \operatorname{Tx})\left(R_{3}\left(y, t_{1}, z\right) \text { or } R_{3}\left(y, z, t_{1}\right)\right) \quad \text { (by definition of } R_{3}\right)\right) \\
\Longleftrightarrow & (\exists z \in \operatorname{Tx})\left(\left[N(y) \approx N\left(t_{1}\right) * N(z)\right] \in T \text { or }\left[N(y) \approx N(z) * N\left(t_{1}\right)\right] \in T\right)
\end{aligned}
\]
(since \(R_{3}\) is strongly represented in \(T\) by \(\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\))
\(\Longrightarrow(\exists z \in \mathrm{Tx})\left(\left[N(y) \approx N\left(t_{1}\right) * N(z)\right] \vee\left[N(y) \approx N(z) * N\left(t_{1}\right)\right] \in T\right)\)
(since \(T\) is closed under logical operations)
\(\Longrightarrow\left(\left[E x_{0}\right]\left[N(y) \approx N\left(t_{1}\right) * x_{0}\right] \vee\left[N(y) \approx x_{0} * N\left(t_{1}\right)\right] \in T\right)\),
by quantifier rules in \(T\), since there exists \(c=N(z) \in\) Cterm such that \(\left[N(y) \approx N\left(t_{1}\right) * c\right] \vee\) \(\left[N(y) \approx c * N\left(t_{1}\right)\right] \in T\).

We have
\[
\left.\left.\begin{array}{rl}
& (\exists z, w \in \operatorname{Tx})\left(y=z t_{1} w\right) \\
\Longleftrightarrow & (\exists z, w \in \operatorname{Tx}) R_{3}\left(y, z, t_{1} w\right) \\
\Longleftrightarrow & (\exists z, w \in \operatorname{Tx})\left(\left[N(y) \approx N(z) * N\left(t_{1} w\right)\right] \in T\right)
\end{array} \quad \text { (by definition of } R_{3}\right)\right)
\]
(since \(R_{3}\) is strongly represented in \(T\) by \(\left[x_{0} \approx\left[x_{1} * x_{2}\right]\right]\))
\(\Longleftrightarrow(\exists z, w \in \mathrm{Tx})\left(\left[N(y) \approx N(z) *\left[N\left(t_{1}\right) * N(w)\right]\right] \in T\right)\)
\(\left(\right.\) since \(\left.N\left(t_{1} w\right)=\left[N\left(t_{1}\right) * N(w)\right]\right)\)
\(\Longrightarrow\left(\left[E x_{0}\right]\left[E x_{1}\right]\left[N(y) \approx x_{0} *\left[N\left(t_{1}\right) * x_{1}\right]\right] \in T\right)\),
by quantifier rules in \(T\), since there exist \(c, d \in \operatorname{Cterm}\) (with \(c=N(z)\) and \(d=N(w)\)) such that \(\left[N(y) \approx c *\left[N\left(t_{1}\right) * d\right]\right] \in T\).

Thus \(\left[N\left(t_{1}\right) \approx N(y)\right] \in T\), or
\(\left[E x_{0}\right]\left[N(y) \approx N\left(t_{1}\right) * x_{0}\right] \vee\left[N(y) \approx x_{0} * N\left(t_{1}\right)\right] \in T\), or
\(\left[E x_{0}\right]\left[E x_{1}\right]\left[N(y) \approx x_{0} *\left[N\left(t_{1}\right) * x_{1}\right]\right] \in T\), so their disjunction is in \(T\), as \(T\) is closed under
logical operations. Hence by \((\mathrm{A} 6), N\left(t_{1}\right) \sqsubset N(y) \in T\).

Furthermore, since \(\neg R_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)\), we have
\(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\) as \(\neg R\) is represented by \(F_{1}^{\prime}\) in \(T\). Hence \(\left[N\left(t_{1}\right) \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T\), as \(T\) is closed under logical operations.

Then
\[
\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T
\]
by quantifier rules in \(T\), since there exists \(c=N\left(t_{1}\right) \in\) Cterm such that \(\left[c \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T\).

But
\[
\begin{aligned}
& {\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] } \\
= & \operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right],
\end{aligned}
\]
so \(\operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\).

Conversely, suppose \(\operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\). Then
\[
\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in T,
\]

So
\[
\left[E x_{n}\right]\left[x_{n} \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / x_{n}, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in \operatorname{Th}(\mathbf{T x}),
\]
since \(T \subseteq \operatorname{Th}(\mathbf{T x})\). Then
\[
(\exists c \in \operatorname{Cterm})\left(\left[c \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / c, x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in \operatorname{Th}(\mathbf{T} \mathbf{x})\right)
\]
by Lemma 7.4. Now \(c \approx N(\operatorname{De}(c)) \in \mathrm{TC}\) by Lemma \(7.2(2)\), so \(c \approx N(\operatorname{De}(c)) \in \operatorname{Th}(\mathbf{T} \mathbf{x})\) as \(\mathrm{TC} \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Then
\((\exists c \in\) Cterm \()\)
\(\left(\left[N(\operatorname{De}(c)) \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N(\operatorname{De}(c)), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in \operatorname{Th}(\mathbf{T x})\right)\), by extensionality in \(\operatorname{Th}(\mathbf{T x})\). Then
\[
\begin{aligned}
& (\exists t \in \mathrm{Tx}) \\
& \left(\left[N(t) \sqsubset N(y) \wedge \operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N(t), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right]\right] \in \operatorname{Th}(\mathbf{T} \mathbf{x})\right) .
\end{aligned}
\]

Then
\[
\begin{aligned}
& \quad(\exists t \in \mathrm{Tx})(N(t) \sqsubset N(y) \in \operatorname{Th}(\mathbf{T x})) \\
& \text { and }\left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N(t), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in \operatorname{Th}(\mathbf{T x})\right),
\end{aligned}
\]
as \(\operatorname{Th}(\mathbf{T} \mathbf{x})\) is complete. Then
\[
(\exists t \in \operatorname{Tx}) t \sqsubset^{\mathbf{T x}} y \text { and }\left(\operatorname{sub}\left[F_{1}^{\prime} ; x_{0} / N(t), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in \operatorname{Th}(\mathbf{T} \mathbf{x})\right)
\]
by Lemma 6.3. Then
\[
(\exists t \in \mathrm{Tx}) t \sqsubset^{\mathbf{T} \mathbf{x}} y \text { and } \neg R_{1}\left(t_{1}, t_{2}, \ldots, t_{n}\right)
\]
since \(\operatorname{Th}(\mathbf{T} \mathbf{x}) \subseteq\) wff is a theory closed under logical operations and \(\mathrm{TC} \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x}) \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\), so \(\neg R_{1}\) is represented by \(F_{1}^{\prime}\) in \(\operatorname{Th}(\mathbf{T x})\). Then
\[
\neg S\left(y, t_{2}, \ldots, t_{n}\right)
\]
by definition of \(S\).
Hence \(\neg S\left(y, t_{2}, \ldots, t_{n}\right) \Longleftrightarrow\left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N(y), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\) for all \(y, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\), so \(\neg S\) is represented in \(T\) by \(G^{\prime}\).

Hence for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).
(GD10). Let \(T \subseteq\) wff be a theory closed under logical operations with
\[
\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})
\]

Suppose \(R_{1} \subseteq \mathrm{Tx}^{n+k}\) and \(R_{2} \subseteq \mathrm{Tx}^{n+l}\). Let \(S \subseteq \mathrm{Tx}^{n}\) and suppose that:
\[
\begin{aligned}
& S\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \operatorname{Tx}\right) R_{1}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right) \text { and } \\
& \neg S\left(t_{1}, \ldots, t_{n}\right) \Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+l} \in \operatorname{Tx}\right) R_{2}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+l}\right) .
\end{aligned}
\]

Let \(G:=\left[E x_{n}\right] \ldots\left[E x_{n+k-1}\right] F_{1}\) and \(G^{\prime}:=\left[E x_{n}\right] \ldots\left[E x_{n+l-1}\right] F_{2}\). Then for all \(t_{1}, \ldots, t_{n} \in \mathrm{Tx}\),
```

        \(S\left(t_{1}, \ldots, t_{n}\right)\)
    $\Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right) R_{1}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right) \quad$ (by definition of $S$ )
$\Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right)$
$\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / N\left(t_{n+1}\right), \ldots, x_{n+k-1} / N\left(t_{n+k}\right)\right] \in T\right)$

``` (as \(R_{1}\) is represented in \(T\) by \(F_{1}\) )
\(\Longrightarrow\left(\left[E x_{n}\right] \ldots\left[E x_{n+k-1}\right]\right.\)
 \(\left.\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / x_{n}, \ldots, x_{n+k-1} / x_{n+k-1}\right] \in T\right)\)
(by quantifier rules in \(T\))
\(\Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right) \quad\) (by definition of \(\left.G\right)\).

Conversely,
\[
\left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)
\]
\(\Longleftrightarrow\left(\left[E x_{n}\right] \ldots\left[E x_{n+k-1}\right]\right.\)
\(\left.\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / x_{n}, \ldots, x_{n+k-1} / x_{n+k-1}\right] \in T\right)\)
(by definition of \(G\))
\(\Longrightarrow\left(\left[E x_{n}\right] \ldots\left[E x_{n+k-1}\right]\right.\)
\(\left.\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / x_{n}, \ldots, x_{n+k-1} / x_{n+k-1}\right] \in \operatorname{Th}(\mathbf{T x})\right)\)
\((\) as \(T \subseteq \operatorname{Th}(\mathbf{T x}))\)
\(\Longrightarrow\left(\exists c_{1}, \ldots, c_{k} \in \mathrm{Cterm}\right)\)
\(\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / c_{1}, \ldots, x_{n+k-1} / c_{k}\right] \in \operatorname{Th}(\mathbf{T x})\right)\)
(by Lemma 7.4).

Now \(c_{i} \approx N\left(\operatorname{De}\left(c_{i}\right)\right) \in \mathrm{TC}\) for all \(i \in\{1, \ldots, k\}\) by Lemma \(7.2(2)\), so \(c_{i} \approx N\left(\operatorname{De}\left(c_{i}\right)\right) \in \operatorname{Th}(\mathbf{T x})\) for all \(i \in\{1, \ldots, k\}\) as \(\mathrm{TC} \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Then
\[
\begin{aligned}
& \left(\exists c_{1}, \ldots, c_{k} \in \mathrm{Cterm}\right) \\
& \left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / c_{1}, \ldots, x_{n+k-1} / c_{k}\right] \in \operatorname{Th}(\mathbf{T x})\right) \\
\Longleftrightarrow & \left(\exists c_{1}, \ldots, c_{k} \in \mathrm{Cterm}\right) \\
& \left(\operatorname { s u b } \left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / N\left(\operatorname{De}\left(c_{1}\right), \ldots, x_{n+k-1} / N\left(\operatorname{De}\left(c_{k}\right)\right]\right.\right.\right. \\
& \in \operatorname{Th}(\mathbf{T x}))
\end{aligned}
\]
(by extensionality in \(T\))
\(\Longrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right)\)
\(\left(\operatorname{sub}\left[F_{1} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right), x_{n} / t_{n+1}, \ldots, x_{n+k-1} / t_{n+k}\right] \in \operatorname{Th}(\mathbf{T x})\right)\) \(\Longleftrightarrow\left(\exists t_{n+1}, \ldots, t_{n+k} \in \mathrm{Tx}\right) R_{1}\left(t_{1}, \ldots, t_{n}, t_{n+1}, \ldots, t_{n+k}\right)\left(\right.\) as \(R_{1}\) is represented in \(T\) by \(\left.F_{1}\right)\) \(\Longleftrightarrow S\left(t_{1}, \ldots, t_{n}\right) \quad\) (by definition of \(S\)).

Hence \(S\left(t_{1}, t_{2}, \ldots, t_{n}\right) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\) for all \(t_{1}, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\), so \(S\) is represented in \(T\) by \(G\). By a similar argument, \(\neg S\left(t_{1}, t_{2}, \ldots, t_{n}\right) \Longleftrightarrow\) \(\left(\operatorname{sub}\left[G^{\prime} ; x_{0} / N\left(t_{1}\right), x_{1} / N\left(t_{2}\right), \ldots, x_{n-1} / N\left(t_{n}\right)\right] \in T\right)\) for all \(t_{1}, t_{2}, \ldots, t_{n} \in \mathrm{Tx}\), so \(\neg S\) is represented in \(T\) by \(G^{\prime}\).

Hence for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\) and \(T\) is closed under logical operations,
(1) \(S\) is represented by \(G\) in \(T\), and
(2) \(\neg S\) is represented by \(G^{\prime}\) in \(T\).

Thus for all \(R \in \mathbf{G D}\), there exist \(F, G \in\) wff such that for all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\) and \(T\) is closed under logical operations,
(1) \(R\) is represented by \(F\) in \(T\), and
(2) \(\neg R\) is represented by \(G\) in \(T\).

In particular, for all \(R \in \mathbf{G D}\), there exists \(F \in\) wff such that \(R\) is represented by \(F\) in all theories \(T \subseteq\) wff where \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\) and \(T\) is closed under logical operations.

\section*{CHAPTER 8}

\section*{Discernibility of encoded classes}

In this chapter, we introduce an encoding map (distinct from the one in Chapter 5), which lets us speak of conceptions in the language of TC with only elements of Tx. This involves encoding strings on the alphabet \(A\) (defined in Section 1) plus a few additional symbols into elements of Tx. In particular, this lets us represent theories such as TC and \(\mathrm{Th}(\mathbf{T} \mathbf{x})\) as subsets of Tx , which are also unary relations on Tx . We want to do this so that it makes sense to talk about whether or not a theory is GD. This chapter is based on Section 12 under Part Four of 'Undecidability without Arithmetization' [8], and is referenced by part (iv) of the overview.

\section*{1. Definitions}

Definition 8.1. Let \(S\) be the alphabet containing precisely the following symbols:

The map \(\langle\cdot\rangle\rangle:(A \cup S)^{+} \rightarrow \mathrm{Tx}\) is defined by
\[
\langle\lambda\rangle\rangle=b \underbrace{a \ldots a}_{n \text { times }} b
\]
where \(\lambda\) is the \(n\)-th element of \((A \cup S)\) when written in this order:
\[
\alpha \beta[\quad] \quad * \quad x / \approx E E \subset \quad \rightarrow \quad \wedge \vee \vee, \quad\langle\quad\rangle \quad \backslash
\]

For instance, \(\left\langle\langle *\rangle=\right.\) baaaaab, since \(*\) was the \(5^{\text {th }}\) symbol on that list. Furthermore, if \(\eta, \rho \in(A \cup S)^{+}\), then \(\left.\langle\eta \rho\rangle\right\rangle=\langle\langle\eta\rangle\langle\langle\rho\rangle\rangle\).

For the sake of readability, we shall denote \(\langle\eta \eta\rangle\) by \(\underline{\eta}\) for all \(\eta \in(A \cup S)^{+}\). Then for all \(\eta, \rho \in(A \cup S)^{+}\), we have \(\left.\left.\langle\eta \rho\rangle\right\rangle=\underline{\eta}=\langle\eta \eta\rangle\langle\rho\rangle\right\rangle\), but since \(\langle\eta \rho \rho\rangle=\langle\langle\eta\rangle\rangle\langle\rho\rangle\), this notation is unambiguous. It should be straightforward to show that \(\langle\cdot\rangle\rangle\) is injective. We denote the image of a set \(X\) under \(\langle\langle\cdot\rangle\) by \(\langle\langle X\rangle\).

Definition 8.2. It may be helpful to define the following relations in Tx. Roughly speaking,
- \(\operatorname{Symb}(t) \Longleftrightarrow t\) is the encoding of some symbol in \(A \cup S\)
- \(\operatorname{Form}(t) \Longleftrightarrow t\) is the encoding of some string in \((A \cup S)^{+}\)(i.e. a (not necessarily well-formed) formula)
- \(\operatorname{Var}(t) \Longleftrightarrow t\) is the encoding of a variable \(x_{n}\) for some \(n \in \mathbf{N} \cup\{0\}\)
- \(\operatorname{Seq}(t) \Longleftrightarrow t\) is the encoding of some sequence of strings in \((A \cup S \backslash\{,\})^{+}\)
- \(\mathrm{Mb}(s, t) \Longleftrightarrow s\) is the encoding of some sequence and \(t\) is the encoding of a member of that sequence
- \(\operatorname{Dgr}(s, t) \Longleftrightarrow t=t_{1} \ldots t_{n}\) for some \(t_{1}, \ldots, t_{n} \in\{a, b\}\) and \(s\) is the chain
\[
\left.\underline{\langle } t_{1} ; N\left(t_{1}\right)\right\rangle,\left\langle t_{1} t_{2} ; \underline{\left.N\left(t_{1} t_{2}\right)\right\rangle, \ldots,\left\langle t_{1} \ldots t_{n} ; N\left(t_{1} \ldots t_{n}\right)\right\rangle .}\right.
\]
(1) Unary relations: For all \(t \in \mathrm{Tx}\),
(a) \(\operatorname{Symb}(t) \Longleftrightarrow(\exists s \in \operatorname{Tx})\left(t=b s b\right.\) and \(\left((\forall u \in \operatorname{Tx}) u \sqsubset^{\mathrm{Tx}} s \Longrightarrow a \sqsubset^{\mathrm{Tx}} u\right)\)
\[
\text { and } \neg(\underbrace{a \ldots a}_{20 \text { times }} \sqsubset^{\mathrm{Tx}} s)
\]
(b) \(\operatorname{Form}(t) \Longleftrightarrow\)
- \(\operatorname{Symb}(t)\) or
- (\(((\exists z \in \mathrm{Tx}) t=b a z a b)\) and
\((\forall u, v \in \mathrm{Tx})\)
\((t=u b v \Longrightarrow(\exists w, s \in \mathrm{Tx})\)
\(((u=w a b\) and \(v=a s)\) or \((u=w a\) and \(v=b a s))))\)
(c) \(\operatorname{Var}(t) \Longleftrightarrow\)
- \((t=\underline{x})\) or
- \((\exists z \in \operatorname{Tx})(\operatorname{Form}(z)\) and \(t=\underline{x} z\) and
\[
\left.(\forall u \in \operatorname{Tx})\left(\left(u \sqsubset^{\mathrm{Tx}} z \text { and } \operatorname{Symb}(u)\right) \Longrightarrow u=/\right)\right)
\]
(d) \(\operatorname{Seq}(t) \Longleftrightarrow(\forall s \in \operatorname{Tx})\left(t \neq{ }_{2} s\right.\) and \(\left.t \neq s,\right)\) and
\[
(\forall u, w, z \in \operatorname{Tx})(t=u, w \Longrightarrow(u \neq z, \text { and } w \neq, z))
\]
(2) Binary relations: For all \(s, t \in \mathrm{Tx}\),
(a) \(\mathrm{Mb}(s, t) \Longleftrightarrow\)
- \(\operatorname{Seq}(t)\) and
- \(\neg\left(,\left\llcorner^{\mathrm{Tx}} s\right)\right.\) and
- \(f=s\) or \((\exists u, w \in \operatorname{Tx})\left(t=s, u\right.\) or \(t=w_{\underline{2}} s\) or \(\left.t=w_{\underline{2}} s_{2} u\right)\)
(b) \(\operatorname{Dgr}(s, t) \Longleftrightarrow\)
(i) \(\operatorname{Seq}(s)\) and
(ii) \((\forall k \in \mathrm{Tx})(\operatorname{Mb}(k, s) \Longrightarrow\)
\[
(\exists u, v \in \mathrm{Tx})
\]
\((k=\langle u ; v\rangle\) and \((u=t\) or \(((\exists q \in \operatorname{Tx}) u q=t))))\) and
(iii) \((t=a \Longleftrightarrow s=\underline{\langle a ; \alpha\rangle})\) and \((t=b \Longleftrightarrow s=\underline{\langle b ; \beta\rangle})\) and
(iv) \(((\exists q \in \mathrm{Tx}) t=a q) \Longrightarrow((\exists r \in \mathrm{Tx}) s=\underline{\langle } a ; \alpha\rangle, r)\) and
(v) \(((\exists q \in \mathrm{Tx}) t=b q) \Longrightarrow((\exists r \in \mathrm{Tx}) s=\langle\underline{\langle b} ; \beta\rangle, r)\) and
(vi) \(\left(\forall m, n, r, r^{\prime} \in \mathrm{Tx}\right)\)
\(((\operatorname{Mb}(m, s)\) and \(\operatorname{Mb}(n, s)\) and
\[
\begin{aligned}
& \left.\left(s=m, n \text { or } s=r m, n \text { or } s=m, n r^{\prime} \text { or } s=r m, n r^{\prime}\right)\right) \\
& \Longrightarrow(\exists u, w \in \mathrm{Tx}) \\
& \text { (}(m=\underline{\langle } u ; \underline{w}\rangle \text { and } n=\underline{\langle } u a ; \underline{[w * \alpha]\rangle}) \text { or } \\
& (m=\underline{\langle u} \underline{\underline{w}} \underline{\underline{2}} \text { and } n=\underline{\langle u b} \underline{[} w \underline{*}]\rangle)) \\
& \text { and } \\
& \text { (vii) }(\forall m, n, r, u, w, v \in \operatorname{Tx}) \\
& ((\operatorname{Mb}(m, s) \text { and } \operatorname{Mb}(n, s) \\
& \text { and }(s=m, n \text { or } s=r m, n) \text { and } t=u a \text { and } m=\langle u ; w\rangle) \\
& \text { and } \\
& \text { (viii) }(\forall m, n, r, u, w, v \in \operatorname{Tx}) \\
& ((\operatorname{Mb}(m, s) \text { and } \operatorname{Mb}(n, s) \\
& \text { and }(s=m, \underline{\underline{2}} \text { or } s=r m, n) \text { and } t=u b \text { and } m=\underline{\langle } u ; w \underline{ }) \\
& \Longrightarrow n=\langle t ;[w * \beta]\rangle) .
\end{aligned}
\]

It should be straightforward, if tedious, to prove by construction that all of the above relations are ED from the explicit definitions given in Definition 7.2.

Lemma 8.1. For all \(s, t \in \mathrm{Tx}\),
\[
\begin{aligned}
(\operatorname{Form}(s) \text { and } \operatorname{Form}(t)) & \Longleftrightarrow \operatorname{Form}(s t) \text { and } \\
(\operatorname{Seq}(s) \text { and } \operatorname{Seq}(t)) & \Longleftrightarrow \operatorname{Seq}(s, t)
\end{aligned}
\]

It should be straightforward to check this from the explicit definitions given in Definition 7.2 , and we shall not do it here.

Definition 8.3. The map Deco : Form \(\rightarrow A \cup S\) is defined by
\[
\operatorname{Deco}(b \underbrace{a \ldots a}_{n \text { times }} b)=\lambda
\]
where \(\lambda\) is the \(n\)-th element of \((A \cup S)\) when written in this order:

For instance, \(\operatorname{Deco}(b \underbrace{a \ldots a}_{17 \text { times }} b)=\); , since ; was the \(17^{\text {th }}\) symbol on that list. Furthermore, if \(\eta, \rho \in\) Form, then \(\operatorname{Deco}(\eta \rho)=\operatorname{Deco}(\eta) \operatorname{Deco}(\rho)\).

It should be straightforward to show that Deco \(=\langle\langle\cdot\rangle\rangle^{-1}\) (technically \(f^{-1}\) where \(f\) is \(\langle\langle\cdot\rangle\rangle\) with codomain restricted to \(\left.\left\langle\left\langle(A \cup S)^{+}\right\rangle\right\rangle\right)\).

\section*{2. Some lemmas}

Lemma 8.2. For all \(t \in \mathrm{Tx}\), there exists \(s \in \mathrm{Tx}\) such that \(\operatorname{Dgr}(s, t)\) and
\[
s=\underline{\langle t} ; \underline{N(t)\rangle} \text { or }(\exists r \in \mathrm{Tx}) s=r,\langle t ; N(t)\rangle .
\]

Proof. Let
\(X:=\{t \in \operatorname{Tx} \mid(\exists s \in \operatorname{Tx})(\operatorname{Dgr}(s, t)\) and \((\underline{\langle } ; \underline{N(t)\rangle}\) or \((\exists r \in \operatorname{Tx}) s=r \underline{,\langle t} ; \underline{N(t)\rangle}))\}\).

Let \(s=\langle t ; \alpha\rangle\). Now \(N(a)=\alpha\), so \(s=\langle t ; N(a)\rangle\). Furthermore, we can see that \(\operatorname{Dgr}(s, a)\); conditions (i-iii) are satisfied and the conditions in front of the implications for (iv-viii) are not satisfied, and thus (iv-viii) are satisfied vacuously. Hence \(a \in X\). By a similar argument, \(b \in X\).

Now suppose \(t \in X\). Then there exists \(s \in \operatorname{Tx}\) such that \(\operatorname{Dgr}(s, t)\) and
\[
s=\underline{\langle t} ; \underline{N(t)\rangle} \text { or }(\exists r \in \mathrm{Tx}) s=r, \underline{\langle } \underline{\underline{2} ; N(t)\rangle}
\]
 exists \(r=v \in \mathrm{Tx}\) such that \(s^{\prime}=r \underline{,}\left\langle t a ; \underline{N(t a)\rangle}=r \underline{,\left\langle t^{\prime} ; ~ N\left(t^{\prime}\right)\right\rangle}\right.\). We now show that \(\operatorname{Dgr}\left(s^{\prime}, t^{\prime}\right)\).
i. Since \(\operatorname{Dgr}(s, t)\), by (i), we have \(\operatorname{Seq}(s)\), and we can see from the definition of Seq that \(\operatorname{Seq}(\langle t a ;[N(t) * \alpha]\rangle)\). Hence by Lemma 8.1, \(\operatorname{Seq}(s,\langle t a ;[N(t) * \alpha]\rangle)\), so \(\operatorname{Seq}\left(s^{\prime}\right)\).
ii. For all \(k \in \mathrm{Tx}\), if \(\operatorname{Mb}\left(k, s^{\prime}\right)\), then either
- \(\operatorname{Mb}(k, s)\), in which case
\[
\begin{aligned}
& (\exists u, v \in \mathrm{Tx}) \\
& (k=\underline{\langle } u ; v\rangle \text { and }(u=t \text { or }(\exists q \in \mathrm{Tx}) u q=t)) \quad \quad(\text { by }(\text { ii }), \text { since } \operatorname{Dgr}(s, t)),
\end{aligned}
\]
so \((\exists u, v \in \mathrm{Tx})\)
\[
\left(k=\underline{\langle } u ; \underline{v} \underline{\text { and }}\left(u a=t a=t^{\prime} \text { or }(\exists q \in \mathrm{Tx}) u q a=t a=t^{\prime}\right)\right) \quad(\text { since } t=u a)
\]
so \((\exists u, v \in \operatorname{Tx})(k=\underline{\langle } u ; v\rangle\) and \(\left.(\exists q \in \operatorname{Tx}) u q=t^{\prime}\right)\), or
- \(k=\left\langle t a ; \underline{[N(t) * \alpha]\rangle}\right.\), in which case there exist \(u=t a=t^{\prime} \in \mathrm{Tx}\) and \(v=\underline{[N(t) * \alpha]} \in \mathrm{Tx}\) such that
\[
k=\left\langle\underline{u} \underline{\underline{2}}, \underline{\underline{2}} \text { and } u=t^{\prime} .\right.
\]
iii. We have \(b \neq t a=t^{\prime}=t a \neq a\) and \(\underline{\langle a ; \alpha\rangle} \neq s^{\prime} \neq \underline{\langle b ;} \underline{\beta\rangle}\), so
\[
\left(t^{\prime}=a \Longleftrightarrow s^{\prime}=\langle a ; \alpha\rangle\right) \text { and }\left(t^{\prime}=b \Longleftrightarrow s^{\prime}=\langle b ; \beta\rangle\right)
\]
iv and v. Suppose there exists \(q \in \operatorname{Tx}\) such that \(t^{\prime}=t a=a q\). Then either
- \(t=a\), in which case
\[
s=\underline{\langle a ; \alpha\rangle} \quad(\text { by }(\mathrm{iii}), \text { since } \operatorname{Dgr}(s, t))
\]
so there exists \(r=\underline{\langle t a ;} \underline{[N(t) * \alpha]\rangle} \in \operatorname{Tx}\) such that \(s^{\prime}=\underline{\langle a ; \alpha\rangle, r}\), or
- there exists \(p \in \mathrm{Tx}\) such that \(t=a p\), in which case there exists \(r \in \operatorname{Tx}\) such that
\[
s=\underline{\langle a ; \alpha\rangle, r} \quad(\text { by (iv) }, \text { since } \operatorname{Dgr}(s, t))
\]
so there exists \(\left.r^{\prime}=r \underline{,\langle t a ;}[N(t) * \alpha]\right\rangle \in \operatorname{Tx}\) such that \(s^{\prime}=\underline{\langle a ; \alpha\rangle}, r^{\prime}\).
By a similar argument, if \(t^{\prime}=t a=b q\), then there exists \(r^{\prime} \in \mathrm{Tx}\) such that \(s^{\prime}=\underline{\langle b ; \beta\rangle, r^{\prime}}\) (where \(r^{\prime}=\underline{\langle t a ;} \underline{[N(t) * \alpha]\rangle}\) or \(r^{\prime}=r,\langle t a ; \underline{[N(t) * \alpha]\rangle}\) for some \(r \in \operatorname{Tx}\) such that \(s=\langle b ; \underline{\beta}\rangle, r)\).
vi. Let \(m, n, r, r^{\prime} \in \operatorname{Tx}\) and suppose \(\operatorname{Mb}\left(m, s^{\prime}\right)\) and \(\operatorname{Mb}\left(n, s^{\prime}\right)\).
- Suppose \(s^{\prime}=m, n\). Then \(s=m\) and \(n=\langle t a ;[N(t) * \alpha]\rangle\).

Suppose \(a \neq t \neq b\). Since \(\operatorname{Dgr}(s, t)\), by (iv) and (v), we have (\(\left.\underline{\varepsilon}^{\mathrm{Tx}} s\right)\) and thus \(\left(, \sqsubset^{\mathrm{Tx}} m\right)\), which contradicts \(\operatorname{Mb}\left(m, s^{\prime}\right)\). Hence \(t=a\) (in which case
 (iii)).

Hence \(m=\underline{\langle t} ; \underline{N(t)\rangle}\) and \(n=\underline{\langle t a ;} \underline{[N(t) * \alpha]\rangle}\), so there exist \(u=t \in \mathrm{Tx}\) and \(w=\underline{N(t)} \in \operatorname{Tx}\) such that \(m=\underline{\langle u ; w\rangle}\) and \(n=\underline{\langle u a} ; \underline{w * \alpha]\rangle}\).
- Suppose \(s^{\prime}=r m, n\). Then \(s=r m\) and \(n=\langle t a ;[N(t) * \alpha]\rangle\). Since \(\operatorname{Mb}\left(m, s^{\prime}\right)\), we have \(\left(, \sqsubset^{\mathrm{Tx}} r\right)\), so \(\left(\underline{\unrhd^{\mathrm{Tx}}} s\right)\). Thus \(s \neq \underline{\langle t ; ~ N(t)\rangle}\), so \((\exists q \in \mathrm{Tx}) s=q, \underline{\langle t} \underline{, N(t)\rangle}\) by our inductive assumption. Then \(m=\langle t ; N(t)\rangle\).

Hence \(m=\underline{\langle } \underline{t} ; \underline{N(t)\rangle}\) and \(n=\underline{\langle t a} \underline{[N(t) * \alpha]}\rangle\), so there exist \(u=t \in \mathrm{Tx}\) and \(w=N(t) \in \operatorname{Tx}\) such that \(m=\langle u ; w\rangle\) and \(n=\langle u a ;[w * \alpha]\rangle\).
- Suppose \(s^{\prime}=m, n r^{\prime}\) or \(s^{\prime}=r m, n r^{\prime}\). \(\operatorname{As} \operatorname{Mb}\left(n, s^{\prime}\right)\), we have \(\left(, \sqsubset^{\mathrm{Tx}} r^{\prime}\right)\), so \(\mathrm{Mb}(m, s)\) and \(\operatorname{Mb}(n, s)\) and \(\left(s=m, n\right.\) or \(s=r m, n\) or \(s=m, n r^{\prime \prime}\) or \(s=r m, n r^{\prime \prime}\) for some \(\left.r^{\prime \prime} \sqsubset^{\mathrm{Tx}} r\right)\). Then there exist \(u, w \in \mathrm{Tx}\) such that \(m=\langle u \underline{w} \underline{\underline{\prime}}\) and \(n=\underline{\langle u a} ; \underline{[w * \alpha]\rangle}\) by (vi), since \(\operatorname{Dgr}(s, t)\).
vii. Let \(m, n, r, u, w, v \in \operatorname{Tx}\) and suppose \(\operatorname{Mb}\left(m, s^{\prime}\right), \operatorname{Mb}\left(n, s^{\prime}\right), t^{\prime}=u a\) and \(m=\langle u ; w\rangle\).

If \(s^{\prime}=m, n\), then \(s=m\) and \(n=\underline{\langle t a ;} \underline{[N(t) * \alpha]\rangle}\). Then \(\neg\left(\underline{\sqsubset^{T x}} s\right)\), so \(s \neq q, \underline{\langle t} \underline{N(t)\rangle}\) for all \(q \in \mathrm{Tx}\), so \(s=\underline{\langle t ; N(t)\rangle}\) by our inductive assumption, so \(m=\underline{\langle t ; ~ N(t)\rangle}\). On the other hand, if \(s^{\prime}=r m, n\), then \(s=r m\) and \(n=\langle t a ;[N(t) * \alpha]\rangle\). Since \(\operatorname{Mb}\left(m, s^{\prime}\right)\), we have \(\left(\underline{L^{2}} \sqsubset^{\mathrm{Tx}} r\right)\), so \(\left(\underline{L^{\mathrm{Tx}}} s\right)\). Thus \(s \neq \underline{\langle t} \underline{N(t)\rangle}\), so \(\left.(\exists q \in \mathrm{Tx}) s=q \underline{\langle } \underline{\langle } \underline{\sim} N(t)\right\rangle\) by our inductive assumption. Then \(m=\underline{\langle t} ; \underline{N(t)\rangle}\). In either case, we have \(m=\underline{\langle t ; ~ N(t)\rangle}\) and \(n=\underline{\langle t a} ;[N(t) * \alpha]\rangle\).

viii. Let \(m, n, r, u, w, v \in \mathrm{Tx}\). Then \(t^{\prime} \neq u b\), since \(t^{\prime}=t a\). Hence (viii) is vacuously satisfied.

Thus \(\operatorname{Dgr}\left(s^{\prime}, t^{\prime}\right)\), so there exists \(s^{\prime}=s \underline{,\langle t a ;[N(t) * \alpha]\rangle} \in \operatorname{Tx}\) such that \(\operatorname{Dgr}\left(s^{\prime}, t^{\prime}\right)\) and
\[
s^{\prime}=\underline{\left\langle t^{\prime}\right.} \underline{\left.N\left(t^{\prime}\right)\right\rangle} \text { or }(\exists r \in \mathrm{Tx}) s^{\prime}=r \underline{,\left\langle t^{\prime}\right.} \underline{\left.N\left(t^{\prime}\right)\right\rangle} .
\]

By similar arguments, if \(t^{\prime}=t b\), then there exists \(s^{\prime}=s,\langle t b ; \underline{[N(t) * \beta]\rangle} \in\) Tx such that \(\operatorname{Dgr}\left(s^{\prime}, t^{\prime}\right)\) and
\[
s^{\prime}=\underline{\left\langle t^{\prime}\right.} \underline{\left.N\left(t^{\prime}\right)\right\rangle} \text { or }(\exists r \in \mathrm{Tx}) s^{\prime}=r,\left\langle t^{\prime} ; N\left(t^{\prime}\right)\right\rangle .
\]

Hence \(t a, t b \in X\), so \(X \in \mathcal{B}=\{X \mid a, b \in X\) and \((\forall s \in X) s a, s b \in X\}\), so by Lemma 2.1, we have \(\operatorname{Tx}=\bigcap \mathcal{B} \subseteq X\), so
\[
\begin{aligned}
t \in \operatorname{Tx} & \Longleftrightarrow t \in X \\
& \Longleftrightarrow(\exists s \in \operatorname{Tx})(\operatorname{Dgr}(s, t) \text { and }(\underline{\langle t ; ~ N(t)\rangle} \text { or }(\exists r \in \operatorname{Tx}) s=r \underline{,\langle t ; N(t)\rangle}) .
\end{aligned}
\]

Hence \((\exists s \in \operatorname{Tx})(\operatorname{Dgr}(s, t)\) and \((\underline{\langle t ; ~ N(t)\rangle}\) or \((\exists r \in \operatorname{Tx}) s=r \underline{\langle } \underline{\langle } ; \underline{N(t)\rangle})\) for all \(t \in \mathrm{Tx}\), as required.

Lemma 8.3. For all \(s^{\prime}, t^{\prime} \in \mathrm{Tx}\), if
- \(s^{\prime}=s, n\) for some \(s, n \in \operatorname{Tx}\) with \(\operatorname{Mb}(n, s)\),
- \(t^{\prime}=t c\) for some \(t, c \in \mathrm{Tx}\) with \(c \in\{a, b\}\) and
- \(\operatorname{Dgr}\left(s^{\prime}, t^{\prime}\right)\),
then \(\operatorname{Dgr}(s, t)\).

This result may be slightly less trivial than Lemma 8.1, but we shall skip the proof for now regardless. We nonetheless mention it since it is used in the proof of the following result; a fact that appears to be overlooked in Grzegorcyzk's paper.

Lemma 8.4. For all \(s, s^{\prime}, t \in \operatorname{Tx}\), if \(\operatorname{Dgr}(s, t)\) and \(\operatorname{Dgr}\left(s^{\prime}, t\right)\), then \(s=s^{\prime}\).

Proof. (Sketch)
Let \(X:=\left\{t \in \operatorname{Tx} \mid\left(\forall s, s^{\prime} \in \operatorname{Tx}\right)\left(\operatorname{Dgr}(s, t)\right.\right.\) and \(\left.\left.\operatorname{Dgr}\left(s^{\prime}, t\right)\right) \Longrightarrow s=s^{\prime}\right\}\).

Let \(s, s^{\prime} \in \mathrm{Tx}\) and suppose \(\operatorname{Dgr}(s, a)\) and \(\operatorname{Dgr}\left(s^{\prime}, a\right)\). Then by Definition \(7.2(2)(\mathrm{b})(\mathrm{iii})\), we have \(s=\underline{\langle a ; \alpha\rangle}=s^{\prime}\). Similarly, if \(\operatorname{Dgr}(s, b)\) and \(\operatorname{Dgr}\left(s^{\prime}, b\right)\), then \(s=\underline{\langle b ;} \underline{\beta\rangle}=s^{\prime}\). Hence \(a, b \in X\).

Now let \(t \in \operatorname{Tx}\) and suppose for all \(s, s^{\prime} \in \operatorname{Tx}\), if \(\operatorname{Dgr}(s, t)\) and \(\operatorname{Dgr}\left(s^{\prime}, t\right)\), then \(s=s^{\prime}\).

Let \(s, s^{\prime} \in \operatorname{Tx}\) and suppose \(\operatorname{Dgr}(s, t a)\) and \(\operatorname{Dgr}\left(s^{\prime}, t a\right)\). Now \(a \neq t a \neq b\), so there exists \(q \in \mathrm{Tx}\) such that \(t a=a q\) or \(t a=b q\). Then by (iv) and (v), we have \(\left(\underline{L}^{\mathrm{Tx}} s\right)\) and \(\left(\underline{L^{2}} \sqsubset^{\mathrm{Tx}} s^{\prime}\right)\).

Then there exist some \(r, r^{\prime}, n, n^{\prime} \in \operatorname{Tx}\) such that \(s=r, n\) and \(\mathrm{Mb}(n, s)\) and \(s^{\prime}=r_{2}^{\prime}{ }_{2} n^{\prime}\) and \(\operatorname{Mb}\left(n^{\prime}, s^{\prime}\right)\). Then by Lemma 8.3, we have \(\operatorname{Dgr}(r, t)\) and \(\operatorname{Dgr}\left(r^{\prime}, t\right)\). Hence \(r=r^{\prime}\) by our inductive assumption.

Now \(\operatorname{Dgr}(s, t a)\) and \(\operatorname{Dgr}\left(s^{\prime}, t a\right)\), so \(n\) and \(n^{\prime}\) are determined by the last member of \(r\) and \(r^{\prime}\) respectively. But \(r=r^{\prime}\), so in particular, their last members are equal. Thus \(n=n^{\prime}\), and so \(s=r, n=r_{\underline{2}}{ }_{2} n^{\prime}=s^{\prime}\).

By a similar argument, if \(\operatorname{Dgr}(s, t b)\) and \(\operatorname{Dgr}\left(s^{\prime}, t b\right)\), then \(s=s^{\prime}\).

Hence \(t \in X \Longrightarrow t a, t b \in X\), so
\(X \in \mathcal{B}=\{X \mid a, b \in X\) and \((\forall s \in X) s a, s b \in X\}\), so by Lemma 2.1, we have
\(\mathrm{Tx}=\bigcap \mathcal{B} \subseteq X\), so
\(t \in \operatorname{Tx} \Longrightarrow t \in X \Longleftrightarrow\left(\forall s, s^{\prime} \in \operatorname{Tx}\right)\left(\operatorname{Dgr}(s, t)\right.\) and \(\left.\operatorname{Dgr}\left(s^{\prime}, t\right)\right) \Longrightarrow s=s^{\prime}\). Hence for all \(t \in \mathrm{Tx}\), we have \(\left(\operatorname{Dgr}(s, t)\right.\) and \(\left.\operatorname{Dgr}\left(s^{\prime}, t\right)\right) \Longrightarrow s=s^{\prime}\) for all \(s, s^{\prime} \in \operatorname{Tx}\), so \(\left(\operatorname{Dgr}(s, t)\right.\) and \(\left.\operatorname{Dgr}\left(s^{\prime}, t\right)\right) \Longrightarrow s=s^{\prime}\) for all \(s, s^{\prime}, t \in \operatorname{Tx}\), as required.

Lemma 8.5. The function \(N^{\prime}: \mathrm{Tx} \rightarrow \mathrm{Tx}\) defined by \(N^{\prime}(t)=N(t)\) is GD.
Proof. Let \(S \in \mathrm{Tx}^{2}\) be defined by \(S(t, u) \Longleftrightarrow N^{\prime}(t):=N(t)=u\). Then \(S\) satisfies condition 3 of Definition 4.2 by construction, and \(S\) satisfies conditions 1 and 2 due to \(N^{\prime}\) being a well-defined function. Hence it suffices to show that \(S \in \mathbf{G D}\).

Let \(R_{1} \in \mathrm{Tx}^{3}\) and \(R_{2} \in \mathrm{Tx}^{4}\) be defined by
- \(R_{1}(u, t, k) \Longleftrightarrow \operatorname{Dgr}(k, t)\) and \((k=\langle t \underline{-} u \underline{\underline{p}}\) or \((\exists r \in \operatorname{Tx}) k=r,\langle t ; \underline{-} u\rangle)\)
- \(R_{1}(u, t, v, k) \Longleftrightarrow\)
\(\operatorname{Dgr}(k, t)\) and \((k=\underline{\langle } \underline{-} ; v\rangle\) or \((\exists r \in \mathrm{Tx}) k=r,\langle\underline{\langle } ; \underline{v})\)) and \(u \neq v\)
It should be straightforward, if tedious, to prove by construction that \(R_{1}, R_{2} \in \mathbf{E D}\).

Let \(t, u \in \mathrm{Tx}\). By Lemma 8.2, there exists \(s \in \mathrm{Tx}\) such that \(\operatorname{Dgr}(s, t)\) and
\[
s=\underline{\langle t ; N(t)\rangle} \text { or }(\exists r \in \mathrm{Tx}) s=r \underline{,\langle t ; N(t)\rangle}
\]

Suppose \(S(t, u)\). Then \(u=\underline{N(t)}\). Then \(\operatorname{Dgr}(s, t)\) and \((s=\underline{\langle } ; \underline{\underline{t}} \underline{\underline{\sim}}\) or \((\exists r \in \operatorname{Tx}) s=r, \underline{\langle } \underline{\underline{L}} \underline{u} \underline{\underline{2}})\), so there exists \(k=s \in \operatorname{Tx}\) such that \(\operatorname{Dgr}(k, t)\) and

Conversely, suppose \((\exists k \in \operatorname{Tx}) R_{1}(u, t, k)\). Then there exists \(k \in \operatorname{Tx}\) such that \(\operatorname{Dgr}(k, t)\) and \((k=\underline{\langle } ; \underline{\underline{2}} u \underline{\rangle}\) or \((\exists r \in \mathrm{Tx}) k=r,\langle t \underline{\underline{p}} \underline{\underline{y}})\). Then \(k=s\) by Lemma 8.4 , so we have
(1) \(\underline{\langle t ; N(t)\rangle}=\langle t ; u \underline{\nu}\), or
(2) \((\exists r \in \mathrm{Tx}) \underline{\langle t} \underline{N(t)\rangle}=r \underline{,}\langle t ; \underline{u} \underline{)}\), or
(3) \((\exists r \in \mathrm{Tx}) r,\langle t ; N(t)\rangle=\langle t ; u\rangle\), or
(4) \(\left(\exists r, r^{\prime} \in \mathrm{Tx}\right)=r,\langle t ; N(t)\rangle=r^{\prime},\langle t ; \underline{u} \underline{)})\).

Note that (2) and (3) are impossible, while (1) and (4) imply that \(u=\underline{N(t)}\). Thus \(S(t, u)\), by definition of \(S\).

Hence \(S(t, u) \Longleftrightarrow(\exists k \in \mathrm{Tx}) R_{1}(u, t, k)\).

Now suppose \(\neg S(t, u)\). Then \(u \neq N(t)\). By definition of \(S\), we have \(S(N(t)\), \(t)\), so
\[
(\exists k \in \mathrm{Tx}) \operatorname{Dgr}(k, t) \text { and }(k=\underline{\langle t} ; \underline{N(t)\rangle} \text { or }(\exists r \in \mathrm{Tx}) k=r,\langle t ; N(t)\rangle),
\]
as \(S(\underline{N(t)}, t) \Longleftrightarrow(\exists k \in \operatorname{Tx}) R_{1}(\underline{N(t)}, t, k)\). Then
\((\exists k \in \operatorname{Tx}) \operatorname{Dgr}(k, t)\) and \((k=\langle t ; \underline{N(t)}\rangle\) or \((\exists r \in \operatorname{Tx}) k=r \underline{\langle t ; N(t)\rangle})\) and \(u \neq N(t)\),
as \(u \neq \underline{N(t)}\). Then there exists \(v=\underline{N(t)} \in \mathrm{Tx}\) such that
\[
(\exists k \in \operatorname{Tx}) \operatorname{Dgr}(k, t) \text { and }(k=\langle\underline{\langle } ; v \underline{\rangle} \text { or }(\exists r \in \mathrm{Tx}) k=r,\langle t ; v\rangle) \text { and } u \neq v .
\]

Hence \((\exists v, k \in \mathrm{Tx}) R_{2}(u, t, v, k)\), by definition of \(R_{2}\).

Conversely, suppose (\(\exists v, k \in \mathrm{Tx}) R_{2}(u, t, v, k)\). Then there exist \(v, k \in \mathrm{Tx}\) such that
\[
\operatorname{Dgr}(k, t) \text { and }(k=\underline{\langle } t ; v\rangle \text { or }(\exists r \in \mathrm{Tx}) k=r,\langle t ; v\rangle) \text { and } u \neq v \text {. }
\]

In particular, \((\exists k \in \operatorname{Tx}) \operatorname{Dgr}(k, t)\) and \((k=\underline{\langle } ; \underline{\underline{v}} \underline{\underline{\gamma}}\) or \((\exists r \in \operatorname{Tx}) k=r,\langle t ; \underline{v}\rangle)\), so \((\exists k \in\) \(\mathrm{Tx}) R_{1}(v, t, k)\), so \(S(v, t)\), since \(S(t, u) \Longleftrightarrow(\exists k \in \mathrm{Tx}) R_{1}(u, t, k)\).

Thus \(v=\underline{N(t)}\), by definition of \(S\). But \(u \neq v\), so \(u \neq \underline{N(t)}\), so \(\neg S(t, u)\), by definition of \(S\).

Hence \(\neg S(t, u) \Longleftrightarrow(\exists v, k \in \mathrm{Tx}) R_{2}(u, t, v, k)\).

Hence there exist \(R_{1}, R_{2} \in \mathbf{E D} \subseteq \mathbf{G D}\) such that
\[
\begin{aligned}
& S(t, u) \Longleftrightarrow(\exists k \in \mathrm{Tx}) R_{1}(u, t, k) \text { and } \\
& \neg S(t, u) \Longleftrightarrow(\exists v, k \in \mathrm{Tx}) R_{2}(u, t, v, k),
\end{aligned}
\]
so by inductive condition 10 of Definition \(4.1, S \in \mathbf{G D}\). Hence \(N^{\prime}\) is a GD function.

\section*{CHAPTER 9}

\section*{Undecidability of \(\mathrm{TC}, \mathrm{Th}(\mathrm{Tx})\) and everything in between}

In this chapter, we prove the undecidability of TC and \(\operatorname{Th}(\mathbf{T} \mathbf{x})\). This chapter is based on Section 13 under Part Four of 'Undecidability without Arithmetization' [8], and is referenced by part (vii) of the overview.

\section*{1. A few more results}

Lemma 9.1. Let \(G \in\) wff such that \(G\) contains exactly one free variable \(x_{n}\). Then there exists some \(F \in \mathrm{wff}\) which contains precisely one free variable \(x_{0}\), which occurs in \(F\) once only such that for all \(c \in\) Cterm,
\[
\operatorname{sub}\left[F ; x_{0} / c\right] \leftrightarrow \operatorname{sub}\left[G ; x_{n} / c\right] \in \mathrm{TC} .
\]

Proof. Let \(F=\left[E x_{1}\right]\left[x_{0} \approx x_{1} \wedge \operatorname{sub}\left[G ; x_{n} / x_{1}\right]\right]\). Then the required result holds since TC is closed under logical operations.

Lemma 9.2. For all unary \(X \in \mathbf{G D}\), there exists \(F \in\) wff such that
(1) \(X\) is represented by \(F\) in all theories \(T \subseteq\) wff which are closed under logical operations, contains TC and is contained in \(\mathrm{Th}(\mathbf{T x})\).
(2) \(F\) contains precisely one free variable \(x_{0}\), which occurs in \(F\) once only.

Proof. Let \(X \in \mathbf{G D}\) be unary. By Lemma 7.5, there exists \(G \in\) wff which represents \(X\) in all theories \(T \subseteq\) wff which are closed under logical operations, contains TC and is contained in \(\operatorname{Th}(\mathbf{T x})\).

Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T x})\). Then for all \(t \in \mathrm{Tx}\),
\[
X(t) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N(t)\right] \in T\right)
\]

As \(T\) is a theory, \(\operatorname{sub}\left[G ; x_{0} / N(t)\right]\) is a sentence so \(G\) contains exactly one free variable \(x_{0}\). But by Lemma 9.1, there exists \(F \in\) wff which contains precisely one free variable \(x_{0}\), which occurs in \(F\) once only such that for all \(c \in\) Cterm,
\[
\operatorname{sub}\left[F ; x_{0} / c\right] \leftrightarrow \operatorname{sub}\left[G ; x_{0} / c\right] \in \mathrm{TC}
\]

Then \(\operatorname{sub}\left[F ; x_{0} / N(t)\right] \leftrightarrow \operatorname{sub}\left[G ; x_{0} / N(t)\right] \in \mathrm{TC}\), as \(N(t) \in\) Cterm.

Then \(\operatorname{sub}\left[F ; x_{0} / N(t)\right] \leftrightarrow \operatorname{sub}\left[G ; x_{0} / N(t)\right] \in T\), as \(\mathrm{TC} \subseteq T\).

Then \(\left(\operatorname{sub}\left[F ; x_{0} / N(t)\right] \in T\right) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N(t)\right] \in T\right)\), as \(T\) is closed under logical operations.

Thus \(X(t) \Longleftrightarrow\left(\operatorname{sub}\left[G ; x_{0} / N(t)\right] \in T\right)\), so \(X\) is represented by \(F\) in \(T\).

Lemma 9.3. The function Sub: \(\mathbf{T x}^{2} \rightarrow \mathbf{T} \mathbf{x}\) defined by
\(\operatorname{Sub}(s, t)= \begin{cases}u t v \quad & \text { when }(\exists u, v \in \operatorname{Tx}) \\ & \left(s=u \underline{x_{0}} v \text { and }(\forall w, z \in \operatorname{Tx})\left(s=w \underline{x_{0}} z \Longrightarrow(u=w \text { and } v=z)\right)\right) \\ a \quad \text { otherwise }\end{cases}\)
is GD, and for all
- \(F \in\) wff such that \(F\) contains precisely one free variable \(x_{0}\) which occurs in \(F\) once only,
- \(c \in\) Cterm, and
- \(T \subseteq\) wff, we have
\[
\operatorname{Sub}(\underline{F}, \underline{c}) \in\langle\langle T\rangle\rangle \Longleftrightarrow \operatorname{sub}\left[F, x_{0} / c\right] \in T .
\]

Proof. Let \(R \subseteq \mathrm{Tx}^{3}\) be defined as follows:
\(R(s, t, q) \Longleftrightarrow\)
- \((\exists u, v \in \operatorname{Tx})\left(s=u \underline{x_{0}} v\right.\) and \((\forall w, z \in \operatorname{Tx})\left(s=w \underline{x_{0}} z \Longrightarrow(u=w\right.\) and \(\left.v=z)\right)\)
and \(q=u t v\), or
- \(\left(\neg\left((\exists u, v \in \mathrm{Tx})\left(s=u \underline{x_{0} v}\right.\right.\right.\) and
\[
\left.(\forall w, z \in \operatorname{Tx})\left(s=w \underline{x_{0}} z \Longrightarrow(u=w \text { and } v=z)\right)\right)
\]
and \(q=a\).

It should be straightforward, if tedious, to prove by construction that \(R \in \mathbf{E D} \subseteq \mathbf{G D}\). Furthermore,
(1) \((\forall s, t \in \mathrm{Tx})(R(s, t, q)\) and \(R(s, t, r)) \Longrightarrow q=r\),
(2) \((\forall s, t \in \mathrm{Tx}) \exists q \in \mathrm{Tx})(R(s, t, q)\) and
(3) \((\forall s, t, q \in \operatorname{Tx}) \operatorname{Sub}(s, t)=q \Longleftrightarrow(R(s, t, q)\)
by construction. Hence by Definition 4.2, Sub is a GD function.

Now let
- \(F \in\) wff such that \(F\) contains precisely one free variable \(x_{0}\) which occurs in \(F\) once only,
- \(c \in\) Cterm, and
- \(T \subseteq \mathrm{wff}\).

Since \(F\) contains precisely one free variable \(x_{0}\) which occurs in \(F\) once only, there exist some \(u, v \in \operatorname{Tx}\) such that \(\underline{F}=u \underline{x_{0}} v\) and for all \(w, z \in \mathrm{Tx}\), we have \(s=w \underline{x_{0}} z \Longrightarrow \quad(u=\) \(w\) and \(v=z)\). Then \(\operatorname{Sub}(\underline{F}, \underline{c})=u \underline{c} v\), by definition of Sub.

Now \(\operatorname{Form}(\underline{F})\), so by Lemma 8.1, we have \(\operatorname{Form}(u)\) and \(\operatorname{Form}(v)\). Then \(\operatorname{Deco}(u)\) and \(\operatorname{Deco}(v)\) are well-defined. Then
\(\operatorname{Deco}(\operatorname{Sub}(\underline{F}, \underline{c}))=\operatorname{Deco}(u \underline{c} v)=\operatorname{Deco}(u) \operatorname{Deco}(\underline{c}) \operatorname{Deco}(v)=\operatorname{Deco}(u) c \operatorname{Deco}(v)\). But \(F=\operatorname{Deco}(\underline{F})=\operatorname{Deco}\left(u \underline{x_{0}} v\right)=\operatorname{Deco}(u) \operatorname{Deco}\left(\underline{x_{0}}\right) \operatorname{Deco}(v)=\operatorname{Deco}(u) x_{0} \operatorname{Deco}(v)\), so
\[
\operatorname{Deco}(\operatorname{Sub}(\underline{F}, \underline{c}))=\operatorname{sub}\left[F ; x_{0} / c\right] .
\]

Suppose \(\operatorname{Sub}(\underline{F}, \underline{c}) \in\langle\langle T\rangle\rangle\). Since \(\operatorname{Sub}(\underline{F}, \underline{c}) \in\langle\langle T\rangle\rangle \Longleftrightarrow \operatorname{Deco}(\operatorname{Sub}(\underline{F}, \underline{c})) \in T\), we have \(\operatorname{sub}\left[F ; x_{0} / c\right] \in T\).

Conversely, suppose \(\operatorname{sub}\left[F ; x_{0} / c\right] \in T\). Then \(\operatorname{Deco}(\operatorname{Sub}(\underline{F}, \underline{c})) \in T\).
Since \(\operatorname{Sub}(\underline{F}, \underline{c}) \in\langle\langle T\rangle\rangle \Longleftrightarrow \operatorname{Deco}(\operatorname{Sub}(\underline{F}, \underline{c})) \in T\), we have \(\operatorname{Sub}(\underline{F}, \underline{c}) \in\langle\langle T\rangle\rangle\).

Hence \(\operatorname{Sub}(\underline{F}, \underline{c}) \in\left\langle\langle T\rangle \Longleftrightarrow \operatorname{sub}\left[F, x_{0} / c\right] \in T\right.\).

\section*{2. The proof of undecidability}

Theorem 9.1. Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\). Then \(\langle\langle T\rangle \notin \mathbf{G D}\).

Proof. Let \(T \subseteq\) wff be a theory closed under logical operations with \(\mathrm{TC} \subseteq T \subseteq \operatorname{Th}(\mathbf{T} \mathbf{x})\) and let \(X \subseteq \mathrm{Tx}\) be defined by
\[
\begin{equation*}
X(t) \Longleftrightarrow \operatorname{Sub}\left(t, N^{\prime}(t)\right) \notin\langle\langle T\rangle\rangle \tag{*}
\end{equation*}
\]

Now Sub is GD by Lemma 9.3 and \(N^{\prime}\) is GD by Lemma 8.5, so by Definition 4.2, Lemma 4.2 and inductive conditions 6 and 5 of Definiton 4.1, the function \(\varphi: \mathrm{Tx} \rightarrow \mathrm{Tx}\) defined by \(\varphi(t)=\operatorname{Sub}\left(t, N^{\prime}(t)\right)\) is GD. Then
\[
X=\varphi^{-1}(\neg\langle\langle T\rangle),
\]
where \(\neg\langle\langle T\rangle\rangle:=(\mathrm{Tx} \backslash\langle\langle T\rangle\rangle)\).

Suppose \(\langle\langle T\rangle\rangle \in \mathbf{G D}\). Then \(\neg\langle\langle T\rangle\rangle \in \mathbf{G D}\), by inductive property 10 of Definition 4.1. Then by Lemma 4.1, we have \(X \in \mathbf{G D}\).

Then by Lemma 9.2, there exists \(F \in\) wff such that
(1) \(X\) is represented by \(F\) in \(T\) and
(2) \(F\) contains precisely one free variable \(x_{0}\), which occurs in \(F\) once only.

Then for all \(t \in \mathrm{Tx}\),
\[
\begin{array}{rlr}
t \in X \Longleftrightarrow X(t) & \Longleftrightarrow\left(\operatorname{sub}\left[F, x_{0} / N(t)\right] \in T\right) \quad \text { (by definition of representability) } \\
& \Longleftrightarrow \operatorname{Sub}(\underline{F}, \underline{N(t)}) \in\langle\langle T\rangle \\
& \Longleftrightarrow \operatorname{Sub}\left(\underline{F}, N^{\prime}(t)\right) \in\langle\langle T\rangle\rangle & \text { (by Lemma } 9.3 \text {) } \\
& \Longleftrightarrow \text { (by definition of } N^{\prime} \text {). }
\end{array}
\]

In particular, \(\underline{F} \in X \Longleftrightarrow \operatorname{Sub}\left(\underline{F}, N^{\prime}(\underline{F})\right) \in\langle\langle T\rangle\), which contradicts \(\underline{F} \in X \Longleftrightarrow \operatorname{Sub}\left(\underline{F}, N^{\prime}(\underline{F})\right) \notin\langle\langle T\rangle\) from definition \((*)\) of \(X\). Hence \(\langle\langle T\rangle \notin \mathbf{G D}\).

\section*{Future Directions}

Going forward, it may be helpful to investigate the converse to Lemma 6.2; that if a relation \(R\) is is strongly represented in all consistent extensions of TC , then \(R \in \mathbf{E D}\). If this is true, then we know for sure that relations that can be constructed from the elementary operations and relations in any way are ED without performing a tedious construction or handwaving it by saying such a construction should be "straightforward". It may also be worthwhile to generalize this to arbitrary theories with finite axioms in arbitrary languages, which would most likely necessitate a general definition of a "standard" model for a given set of axioms.

\section*{Bibliography}
[1] Burris, S. and Sankappanavar, H.P., "A Course in Universal Algebra", http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html (2012)
[2] Cacic, V., Pudlák, P., Restall, G., Urquhart, A. and Visser, A., "Decorated linear order types and the theory of concatenation", pp. 1-13 in Logic Colloquium 2007, ed. F. Delon, U. Kohlenbach, P. Maddy and F. Stephan, Cambridge University Press, 2010.
[3] Ershov, Ju. L., Lavrov, I.A., Taŭmanov, A.D., and Tă̆clin, M.A., "Elementary theories", Russian Math. Surveys, vol 20 (1965), pp. 35-105.
[4] Ganea, M., "Arithmetic on semigroups," The Journal of Symbolic Logic, vol. 74 (2009), pp. 265-78.
[5] Gödel, K., "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I", Monatshefte für Mathematik und Physik, vol 38 (1931), pp. 173-198, DOI 10.1007/BF01700692
[6] Grzegorczyk, A. and K. Zdanowski, "Undecidability and concatenation", pp. 72-91 in Andrzej Mostowski and Moundational Studies, ed. A. Ehrenfeucht, V. W. Marek, and M. Srebrny, IOS, Amsterdam, 2008.
[7] Grzegorczyk, A., "Undecidability of some topological theories", Fund. Math, vol 38 (1951), pp. 137-152.
[8] Grzegorczyk, A., "Undecidability without arithmetization", Studia Logica. An International Journal for Symbolic Logic, vol. 79 (2005), pp. 163-230.
[9] Kennedy, H.C, "The principles of arithmetic, presented by a new method (1889)", Selected Works of Giuseppe Peano, University of Toronto Press (1973), pp. 101-134.
[10] Papadimitriou, C., "Computational Complexity", Addison-Wesley, (1994), pp. 53. ISBN 0-201-53082-1.
[11] Peano, G,. "Arithmetices principia, nova methodo exposita", Bocca, Torino (1889)
[12] Quine, W.V., "Concatenation as a basis for arithmetic", The Journal of Symbolic Logic, vol. (1946), pp. 105-114.
[13] Robinson, R.M., "An Essentially Undecidable Axiom System", Proceedings of the International Congress of Mathematics (1950), pp. 729-730.
[14] Rogers, H., "Certain logical reduction and decision problems", Ann. of Math, vol 64 (1956), pp. 264-284.
[15] S̆vejdar, V., "On interpretability in the theory of concatenation", Notre Dame Journal of Formal Logic, vol. 50 (2009), pp. 87-95.
[16] Tarski, A., "A decision method for elementary algebra and geometry", The Rand Corporation, Santa Monica, California (1948), U. S. Air Force Project Rand, R-109. Prepared for publication by J. C. C. McKinsey.
[17] Tarski, A., Undecidable Theories, Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1953. In collaboration with A. Mostowski and R. M. Robinson.
[18] Visser, A., "Growing commas: a study of sequentiality and concatenation", Notre Dame Journal of Formal Logic, vol. 50 (2009), pp. 61-85. 88, 89```

