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Abstract
Mathematical optimization has and continues to fuel much of the success
in many engineering disciplines. More specifically, it is behind a significant
portion of the success in signal processing, image processing, computer vi-
sion and machine learning in general. The research behind this thesis aims
at investigating important problems and developing effective optimization
models and algorithms in the areas of digital signal and image processing.
The important problems studied in this thesis include denoising signals de-
fined on graphs and image filtering.

Denoising signals defined on graphs is the first problem studied in this
thesis. Classic digital signal processing is concerned with signals defined at
equally distanced discrete time steps which is a restricting assumption. A
more recent advancement in the field of signal processing is the extension of
classical signal processing techniques to the signals residing on the nodes of
an irregular graph. An interesting problem is how to denoise signals defined
on such irregular graphs. In this thesis, an efficient algorithm for denoising
signals defined on irregular and directed graphs is developed.

Edge-aware image smoothing is the second problem studied in this the-
sis. Standard linear time invariant (LTI) filters are very efficient but lack the
discriminative power between the different regions of the image, a desir-
able property of image filters. In particular, it is an important property for
smoothing filters to respect the edges image and stop smoothing across sig-
nificant edges. To that end, this thesis proposes a technique that can turn
the results of any non edge-aware filter to an edge-aware filtered image. The
proposed technique is formulated as a patch level optimization problem.

Applications of the fractional Laplacian operator to signal and image pro-
cessing is the third problem investigated in this thesis. The Laplacian oper-
ator is a ubiquitous tool in the applied mathematics, in general, and in the
signal and image processing literature, in particular. The utility of the Lapla-
cian operator has fostered many generalizations, one such generalization is
the fractional order Laplacian. In this thesis, a technique for the easy con-
struction of the discrete fractional Laplacian operator is developed. The de-
veloped technique makes it easier to formulate signal and image processing
algorithms that utilize the fractional Laplacian operator.
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Chapter 1

Introduction

1.1 Motivation and objective

Mathematical optimization has fuelled success in numerous fields with ap-
plications in engineering (e.g. control engineering [1], antenna design [2]),
computer science (e.g. machine learning [3], computer vision [4, 5], signal [6]
and image processing [7]), operations research [8] (e.g. logistics, scheduling
and planning), economics [9], etc. Mathematical optimization is a wide field
that is generally divided into a number of sub-fields based on the properties
of the objectives and constrains.

The work in this thesis is mainly focused around a specific category of
optimization problems, problems that are continuous, linear or non-linear,
and convex in nature. What is interesting about this family of objective func-
tions is twofold: firstly, they represent a wide range of objective functions
which translates to a large number of applications. Secondly, convex ob-
jective functions are provably tractable, in other words, they have globally
unique solutions.

Convex optimization is a rich area of research however, the interest in this
thesis can be summarized as follows:

1. Developing, computationally efficient, and approximate, solutions to
signal and image processing optimization problems.

2. Utilizing convex optimization as a mathematical modelling technique
for solving signal and image processing problems
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1.2 More formal introduction

To formally introduce the mathematical optimization of interest to this work,
the main concepts are broken down into the following subsections.

1.2.1 Optimization definition

1.2.2 Convex optimization

Generally, a function f : Rn → R is said to be convex if

f (εx + (1− ε)y) ≤ ε f (x) + (1− ε) f (y), ∀x, y ∈ Rn, ∀ε[0, 1] (1.1)

For scalar and 2D functions, a visualization can be attained as shown in Fig-
ure 1.1

FIGURE 1.1: Example 2D convex functions

The functions of interest in this thesis take the form

E(x, y) = argmin
x
{D(x, y) +R(x)} , (1.2)

where D(x, y) is known as the data term, which is a distance measure be-
tween the observed signal y and the reconstructed signal x, and R(x) is a
regularizer which avoids the optimization algorithm from taking up trivial
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solutions and encodes our knowledge about the solution x. A parallel in-
terpretation to the function in (1.2) comes from Bayesian inference perspec-
tive [10], particularly, minimizing the function E(x, y) is equivalent to maxi-
mizing the log of the posterior function, while D(x, y) corresponds to the log
likelihood and R(x) corresponds to the log prior of x which is summarized
as follows

− log(P(x|y)) = − log(P(y|x))− log(P(x)). (1.3)

The model (1.2) is very general and applies to convex and non-convex
optimization problems but, in this thesis, the model is assumed to be con-
vex. What makes convex optimization interesting is that there is a theory
behind it which guarantees that any local minima is also a global minima [8].
Additionally, convex problems can always be solved with polynomial time
algorithms [8].

1.2.3 Solutions to smooth convex problems

The function in (1.2) is known by different names such as objective function,
energy function and loss function to name the most common. An import prop-
erty of the objective function is its differentiability which is related to the
smoothness of the function. Quadratic functions are differentiable and admit
closed-form solutions. Differentiable functions can also be solved by first-
order or second-order methods which require knowledge of the gradient or
Hessian of the objective function respectively [8].

The focus in this thesis is mainly on first order methods, in other words,
methods that require knowledge of the gradient of a function. In the general
case and more formally, it is important to introduce the idea of subgradi-
ent [11]

Definition 1.2.1. (subgradient). A vector g ∈ Rn is a subgradient of f : Rn → R

at x ∈ dom f if

f (z) ≥ f (x) + gT(z− x), ∀z ∈ dom f . (1.4)

The set of the subgradients of f at a point x are referred to as the subdif-
ferential of f and denoted by ∂ f (x). The concept of subgradients leads to the
idea of subdifferentiable functions which are defined as follows:

Definition 1.2.2. (subdifferential).
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• A function f is called subdifferentiable at x if there exists at least one subgra-
dient of f at x.

• A function f is called subdifferentiable if it is subdifferentiable at all x ∈
dom f .

The subdifferential generalizes the gradient and when the function is dif-
ferentiable, the subdifferential reduces to the gradient (∂ f (x) = {∇ f (x)}) of
the function and the relation in (1.4) reduces to

f (z) ≥ f (x) +∇ f (x)T(z− x), ∀z ∈ dom f , (1.5)

which is exploited in the pursuit of the global minimum through the use of
the classic method of gradient descent as follows:

xk+1 = xk − τ∇ f (xk), (1.6)

where τ is a step size.

1.2.4 Non-smooth problems

A more recent trend in optimization-based modelling has been the use of
non-smooth convex objective functions where the function is not differen-
tiable at all points such as the function in Figure 1.2. The interest in these ob-

FIGURE 1.2: Example 2D non-smooth convex function

jective function comes mainly from the total variation [12] and related mod-
els, and from sparse modelling [13, 14].
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1.2.5 Algorithms for non-smooth convex problems

Optimising non-smooth functions usually relies on the subdifferentials through
the use of proximal operators [15, 16].

Definition 1.2.3. (proximal operator). The proximal operator proxproxprox f : Rn → Rn

of the function f (.) is defined by

proxproxproxλ f (x) = argmin
y

(
f (y) +

1
2λ
‖x− y‖2

2

)
, (1.7)

where the optimal value for the optimization problem is arrived at by iteratively
evaluating the proximal operator as follows:

xk+1 = proxproxproxλ f (xk). (1.8)

the role of λ in (1.7) is to trade-off the two terms. The connection be-
tween the subdifferential and proximal operator is through the following re-
lation [16]:

proxproxproxλ f (x) = (I + λ∂ f )−1, (1.9)

which is known as the resolvent of the subdifferential operator ∂ f .
In the general case, objective functions of interest have multiple terms

some of which are smooth while others are non-smooth. To approach such
problems, the alternating direction method of multipliers (ADMM) algorithm [17]
can be used. The ADMM algorithm decouples the terms of the problem as
follows:

minimize f (x) + g(y) (1.10)

subject to Ax + By = c (1.11)

which is solved by iteratively alternating between solving for x and solving
for y as follows:

xk+1 := argmin
x

(
f (x) + (ρ/2)‖Ax + Byk − c + zk‖2

2

)
(1.12)

yk+1 := argmin
y

(
g(y) + (ρ/2)‖Axk+1 + By− c + zk‖2

2

)
(1.13)

zk+1 := zk + Axk+1 + Byk+1 − c (1.14)
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where the x and y sub-problems could be solved using either a gradient-
based algorithm or a proximal operator-based algorithm based on the smooth-
ness of f (.) and g(.) respectively.

1.3 Overview of research outcomes

In this thesis, convex optimization was utilized as a tool to formulate and
solve signal and image processing problems. The models developed are fil-
ters of signals or images. The goals of the developed filters range from de-
noising signals defined on graphs in Chapter 2, edge-aware smoothing im-
ages as fundamental tool for further image processing applications in Chap-
ter 3, avoiding blocking artefacts in total variation based filtering in Chap-
ter 4, and utilizing a discrete fractional Laplacian as a regularizer in signal
and image filtering tasks in Chapter 5.

1.4 Summary of contributions

The thesis is composed of six chapters, including this Chapter. Chapters 2
to 5, present the contributions of this thesis. Related literature to each chapter
is presented within the corresponding chapter. The last chapter (Chapter 6),
contains the conclusions and future directions.

The contributions of the thesis are summarized as follows:

1.4.1 Graph polynomial filter for signal denoising (Chapter 2)

A technique for denoising signals defined over graphs was recently proposed
in [18]. The technique is based on a regularization framework and denoising
is achieved by solving an optimization problem. Matrix inversion is required
and an approximate solution that avoids the direct calculation of the inverse,
by using a graph filter, was proposed in [18]. The technique however, re-
quires an eigendecomposition and the degree of the resulting filter is high.
In Chapter 2, we propose a computationally efficient technique that is based
on a least squares approximation of the eigenvalues of the inverse. We show
that a good approximation can be achieved with a low degree graph polyno-
mial filter without the need for any eigendecomposition. Low degree filters
also have the desirable property of vertex localization (analogous to time lo-
calization). The filter gives denoising results that are very similar to that
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using the exact solution and can be implemented using distributed process-
ing.

1.4.2 Guided adaptive interpolation filter (Chapter 3)

Edge-aware smoothing has proved to be a fundamental technique for various
image processing and computer vision tasks. In Chapter 3, we introduce a
local, non-iterative and effective edge-preserving filter namely guided adap-
tive interpolation filter (GAIF). GAIF can be used as a post-processing step af-
ter any smoothing filter to improve its edge preservation performance with-
out reformulation. GAIF has an O(N) computation complexity where N be-
ing the total number of pixels in the image. To further increase the efficiency
of GAIF at edge-preservation, two techniques are introduced and demon-
strated. GAIF efficiency is demonstrated and compared to state-of-the-art
techniques on a number of tasks including image smoothing, flash/no-flash
image denoising/fusion, single image dehazing and image details enhance-
ment.

1.4.3 High-pass filter generalization of the total variation model

and its performance (Chapter 4)

The difference operator in the total-variation (TV) model can be regarded as
the simplest half band high pass filter. Chapter 4 presents a new generaliza-
tion of the TV model by replacing the difference operator with a high pass
filter which has a user specified bandwidth. The new TV model can be ef-
ficiently implemented using the ADMM algorithm. Results from extensive
experiments on six typical classes of signals show that the proposed model:

• Does not generate staircase artefacts which is problematic in the classi-
cal TV model.

• It achieves better denoising performance for particular signal classes.
Especially for smooth signals with limited discontinuities.
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1.4.4 Discrete Laplacian operator and its applications in sig-

nal processing (Chapter 5)

Fractional calculus has increased in popularity in recent years, as the num-
ber of its applications in different fields has increased. Compared to the
traditional operations in calculus (integration and differentiation) which are
uniquely defined, the fractional-order operators have numerous definitions.
Furthermore, a consensus on the most suitable definition for a given task is
yet to be reached. Fractional operators are defined as continuous operators
and their implementation requires a discretization step. Chapter 5 presents a
discrete fractional Laplacian as a matrix operator. The proposed operator is
real (non-complex) which makes it computationally efficient. The construc-
tion of the proposed fractional Laplacian utilizes the DCT transform avoid-
ing the complexity associated with the discretization step which is typical in
the constructions based on signal processing. We demonstrate the utility of
the proposed operator on a number of data modelling and image processing
tasks.
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Chapter 2

Graph Polynomial Filter for Signal
Denoising

2.1 Introduction

The processing of signals defined on irregular domains is a problem faced
in numerous fields such as biomedical imaging and social science. Irregu-
lar domains can be modelled effectively using techniques from graph theory.
In some cases, the native domain is inherently irregular such as in sensor
or transportation networks. In other cases, such as in images, even though
the domain is inherently regular, a graph model can potentially capture the
signal statistics enhancing the performance of filtering algorithms [19, 20].
Two frameworks have emerged recently for processing signals defined on
graphs. The first framework is based on spectral graph theory [21] and is
applicable for undirected graphs. The second framework is called DSPG

(Discrete-Signal-Processing on Graphs) [22, 23, 24] and is applicable for both
directed and undirected graphs. Several classical signal processing notions
and techniques, such as filtering [25, 26], prediction, frequency analysis [27,
23], wavelets and filter banks [28, 29, 30, 31, 32, 33, 34, 35], have been ex-
tended to signals defined on graph.

Denoising is a classical problem in signal processing and there is a plethora
of techniques, such as low-pass filtering and wavelet thresholding, for de-
noising regular domain signals. A class of techniques, which has its roots in
the Tikhonov regularization method, is very popular for denoising regular
domain signals. Recently, a technique that is based on the DSPG framework
for denoising graph signals was proposed by Chen et al. [18]. The technique
uses a quadratic form regularized formulation and is applicable for both di-
rected and undirected graph signals. A regularization technique that is based
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on the graph Laplacian was proposed [36] but it is applicable for undirected
graphs only.

The solution with the regularized formulation in [18] requires the inver-
sion of a potentially large matrix. To avoid direct inversion, a graph fil-
tering method was proposed to approximate the inverse [18]. The tech-
nique however requires an eigendecomposition which can be computation-
ally expensive. The degree of the graph filter is also large. In this chap-
ter, an alternative technique is proposed to approximate the matrix inverse
using a graph polynomial filter. The proposed technique avoids the need
for an eigendecomposition, and the approximate filter is a low degree re-
sulting in good vertex localization. Although the techniques proposed here
and in [18] utilize matrix polynomials, the types of polynomials used are
different. Experiments demonstrate that the proposed approximate tech-
nique yields similar denoising results to the exact method (direct inverse).
An overview of this chapter is as follows. Basic concepts of graph signal
processing are reviewed in Section 2.2. The problem of denoising signals
defined over graphs using a variational regularized framework and previ-
ously proposed solutions are discussed in Section 2.3. In Section 2.4 a graph
polynomial filter solution is presented together with relevant theoretical re-
sults. It is also shown how distributed processing can be used to efficiently
implement the filter. Experimental results on denoising graph signals are
presented in Section 2.5. Comparisons with other techniques are presented
in Section 2.6. The chapter concludes in Section 2.7.

2.2 Discrete signal processing on graphs

A brief review of relevant concepts from DSPG is presented here. More de-
tails are found in [22, 23, 24]. A graph G consists of a set of vertices V and a set
of edges E that connects the vertices. A graph signal x ∈ RN is an association
or mapping between xi ∈ x and vi ∈ V. The adjacency matrix A ∈ RN×N

contains the weights of the edges. The element an,m is the weight of a di-
rected edge from vm to vn. If an,m = 0 there is no edge. In general an,m 6= am,n

and the graph is directed. The weights are assumed to be non-negative, i.e.
an,m ≥ 0, although in the DSPG framework this restriction is not needed.
Additionally, A is assumed to be normalized such that the eigenvalue with
largest magnitude |λ̂N| = 1. If A is un-normalized, normalization can be
achieved by either of the two methods described below:
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1. A→ A/|λ̂N|.

2. A → D−1A, where D = diag {A1}1 and 1 is the column vector with N
ones.

The second method achieves normalization as a consequence of the Perron-
Frobenius theorem on non-negative matrices [37]. The adjacency matrix A is
considered as the generalization of the shift operator. A linear shift invariant
graph filter is a matrix polynomial

h(A) =
L

∑
i=0

hiAi.

Graph filtering is achieved by the transform matrix product y = h(A)x. If A
is diagonalizable, the eigendecomposition is given by

A = V̂Λ̂V̂−1

where V̂ = [v1 v2 . . . vN] is the matrix of eigenvectors and Λ̂ = diag(λ̂1, λ̂2, . . . , λ̂N)

is the diagonal matrix of eigenvalues, where the eigenvalues λ̂i are sorted in
an increasing order. If A is not diagonalizable, then A = V̂ JV̂−1, where
J is the Jordan normal form of eigenvalues and V̂ is the matrix of eigenvec-
tors [38]. The eigenvalues can be interpreted as the graph natural frequencies
and the eigenvectors can be used as the basis for spectral analysis. The graph
Fourier transform is then defined as

x̂ = V−1x, (2.1)

The element [x̂]i gives the amplitude of component vi of the graph signal x.
The original signal x can then be expressed in terms of its spectral component
as

x = V x̂. (2.2)

and this represents the inverse graph Fourier transform. Consequently, we
have two alternative methods for expressing a graph signal, vertex domain
representation x and the corresponding spectral domain representation x̂.
This idea is illustrated in Figure 2.1

1diag {.} creates a diagonal matrix from the vector argument.
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(a) Vertex domain

(b) Graph spectral domain

FIGURE 2.1: Vertex and graph spectral domains of a 2D grid
graph (N=25) with a test signal defined by adding the first five
eigenvectors (∑5

i=1 vi) and Gaussian noise with noise σ = 0.1.
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2.3 Graph signal denoising

The observed noisy signal defined over a graph G = (V, E) is modelled as
follows

t = x + n (2.3)

where x is the desired noiseless signal and n is random additive noise.
The assumption made about x is that it is smooth with respect to the un-
derlying graph [39]. The measure of smoothness of a graph signal proposed
in [23] is the quadratic form defined as:

R(x)DSPG ≡ ‖x− Ax‖2
2 = (x− Ax)T(x− Ax) (2.4)

where it is assumed that the adjacency matrix A is normalized so that the
largest magnitude eigenvalue is unity. A smooth graph signal will have a
small R(x)DSPG value and this is the assumption made of the desired signal
x.

A common approach to denoising is via a variational regularized frame-
work pioneered by Tikhonov for ill-posed problems. Consider the functional

E(x) =
1
2
‖x − t‖2

2 + γR(x) (2.5)

where the first term measures the fidelity, the second term measures the de-
gree of non-smoothness and the parameter γ controls the trade-off between
the two measures. Two types of quadratic regularizer function R(x) have
been proposed in the literature. One is based on the DSPG framework [22]
and uses R(x)DSPG in (2.4) as the regularizer. The other is based on spec-
tral graph theory for undirected graphs [21] and the regularizer is given by
R(x)SGT = xTLx [40, 36], where L is the Laplacian matrix of the undirected
graph. In this work, the regularizer in (2.4) is considered, which works for
both undirected and directed graphs.

The denoised signal is obtained by solving the following optimization
problem

x̂ = argmin
x

{
1
2
‖x− t‖2

2 + γ‖x− Ax‖2
2

}
(2.6)
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The objective function is quadratic in x and admits the following exact solu-
tion:

x̂ = (I + γ(I − A)T(I − A))−1t (2.7)

The solution in (2.7) is exact but requires the inversion of an N × N matrix.
If the number of vertices N is large, it becomes computationally expensive
as the inversion requires at least O(N2) arithmetic operations even if A is
sparse. This has motivated the authors in [18] to propose a method that
avoids direct inversion of the matrix. The idea is to construct a suitable poly-
nomial g(λ) such that the matrix polynomial g(A), i.e. graph filter, gives the
matrix inverse. It is shown in [18] that such a filter can be constructed if AT

is diagonalizable: AT = V̂DV̂−1, where D is a diagonal matrix and V̂ is the
eigenvector matrix of A, i.e. A = V̂Λ̂V̂−1. Note that the eigenvectors of AT

and A are assumed to be the same and this implies that AT and A commute,
in multiplication, with each other, i.e. A is a normal matrix. Then a polyno-
mial of degree N can be found such that h(A) = AT and the graph filter is an
N degree polynomial that interpolates the values

g(λ̂n) = (1 + γ(1− λ̂n − h(λ̂n) + h(λ̂n)λ̂n)) (2.8)

for n = 1, . . . , N. In general AT is not exactly diagonalizable and an approxi-
mation is used:

AT ≈ h(A) = V̂D̂V̂−1 (2.9)

where D̂ is the solution to the optimization problem

D̂ = argmin
D∈D

∥∥∥∥V̂ DV̂−1 − AT
∥∥∥∥2

F
. (2.10)

Now D is the set of all diagonal matrices and F denotes the Frobenius norm.

2.4 Graph polynomial filter

The method in [18] (as described above) requires knowledge of the eigenvec-
tor matrix V̂ for the problem (2.10) and also for constructing h(A) = V̂D̂V̂−1.
When the number of vertices N in the graph is large, the resulting graph filter
(g(A)) degree is also large. In this section a method that avoids the need for
eigendecomposition is presented. The proposed method is in the form of a
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low degree polynomial filter which is derived with no assumption about the
diagonalizability of AT or A.

By defining
Ã ≡ I − A and B ≡ ÃT Ã, (2.11)

equation (2.7) can be expressed as:

x̂ = (I + γB)−1t (2.12)

Now it can be easily verified that B = BT and

yTBy = yT ÃT Ãy = ‖Ãy‖2
2 ≥ 0 (2.13)

for any y, i.e. B is a symmetric positive semi-definite (SPSD) matrix. An orthog-
onal eigendecomposition therefore exist B = UΛUT, where U is the orthog-
onal matrix of eigenvectors and Λ is the diagonal matrix of non-negative
eigenvalues λn ≥ 0 for n = 1, . . . , N. Now (2.12) can also be expressed as
x̂ = f (B)t where

f (λ) ≡ 1
1 + γλ

(2.14)

and the usual definition of a matrix function applies [41]

f (B) ≡ U f (Λ)UT

Lemma 1. If a degree N polynomial H(λ) = ∑N
m=0 Hmλm interpolates the points

(λn, f (λn)) for n = 1, . . . , N, i.e. H(λn) = f (λn), the solution (2.12) is also given
by:

x̂ = H(B)t =
N

∑
m=0

HmBmt. (2.15)

Proof. Since B = UΛUT and UUT = UTU = I, (2.12) can be written as

x̂ = (UUT + γUΛUT)−1 t

= (U(I + γΛ)UT)−1 t

= U(I + γΛ)−1UT t

= Udiag((1 + γλn)
−1)UT t

= Udiag{ f (λn)}UT t

= Udiag{h(λn)}UT t

= H(B) t
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Lemma 1 shows that the exact solution can be obtained using the graph
filter H(B), when the polynomial H(λ) interpolates f (λ) at the eigenvalues
points λ = λn. To construct the interpolating polynomial, knowledge of all
the eigenvalues is required. This is computationally expensive for large N.
The large filter degree N also leads to increased implementation complex-
ity. An approximate solution is proposed next to reduce the computational
complexity.

2.4.1 Approximate solution

Instead of a polynomial of degree N a lower degree L << N polynomial is
considered

Ĥ(λ) =
L

∑
m=0

ĥmλm (2.16)

Unlike H(λ) in Lemma 1, the polynomial Ĥ(λ) will only approximately in-
terpolate the eigenvalues points (λn, f (λn)). The matrix polynomial Ĥ(B) is
used as an approximation to the inverse

Ĥ(B) ≈ f (B) = (I + γB)−1

The commonly used Frobenius norm is considered as the criterion for ap-
proximation.

Lemma 2. The Frobenius norm of the approximation error is given

∥∥Ĥ(B)− f (B)
∥∥2

F =
N

∑
n=1

(Ĥ(λn)− f (λn))
2 ≡ e(Λ)

Proof. Both Ĥ(B) and f (B) are symmetric matrices and can be diagonalized
with the orthogonal matrix U (eigenvector matrix of B). Therefore

Ĥ(B)− f (B) = U(Ĥ(Λ)− f (Λ))UT (2.17)

Now the Frobenius norm of a matrix E is invariant under pre- or post- multi-
plication by a unitary matrix V, i.e. ‖EV‖F = ‖VE‖F = ‖E‖F [37, page 292].
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Since both U and UT are unitary, we have

‖Ĥ(B)− f (B)‖F = ‖U(Ĥ(Λ)− f (Λ))UT‖F

= ‖Ĥ(Λ)− f (Λ)‖F

Since both Ĥ(Λ) and f (Λ) are diagonal matrices, the Frobenius norm is the
sum-of-squares of the diagonals and the result follows.

To minimize e(Λ) with respect to ĥm, knowledge of all the eigenvalues λn

(the spectrum) is required. Determining the spectrum is however computa-
tionally expensive for large matrices. To avoid the computation of the spec-
trum, the following strategy is proposed. Let ρ(B) ≡ maxn λn denote the
spectral radius and λmax(≥ ρ(B)) be an upper bound of the radius. There-
fore, a bound on the spectrum exists as follows 0 ≤ λn ≤ λmax. Instead
of trying to minimize the errors, i.e. (Ĥ(λ)− f (λ))2, at discrete spectral fre-
quencies λn, the proposed strategy is to minimize the average errors over the
entire range λ ∈ [0, λmax]. This result is suboptimal but this strategy avoids
having to determine the values of the discrete spectral frequencies λn, i.e.
spectrum. Consider then the proxy objective function

E(ĥ) ≡
∫ λmax

0
(Ĥ(λ; ĥ)− f (λ))2dλ (2.18)

where ĥ ≡ [ĥ0 . . . ĥL]. A small E(ĥ) will result in a small e(Λ). With E(ĥ)
detailed knowledge of the spectrum is not required but only an upper bound
on the spectral radius λmax. Using (2.16), E(ĥ) can be written as

E(ĥ) =
∫ λmax

0

(
L

∑
m=0

ĥmλm − f (λ)

)2

dλ (2.19)

which is quadratic in ĥ. Now

∂E
∂hn

= 2
∫ λmax

0

(
L

∑
m=0

ĥmλm − f (λ)

)
λn dλ (2.20)
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The optimum value is obtained when ∂E
∂hn

= 0 or

L

∑
m=0

ĥm

∫ λmax

0
λm+ndλ =

∫ λmax

0
f (λ)λn dλ

=
∫ λmax

0

λn

1 + γλ
dλ

for n = 0, . . . , L. This leads to the system of linear equations Cĥ = r where
the elements of C are given by

cm,n ≡
∫ λmax

0
λm+ndλ =

λm+n+1
max

m + n + 1
(2.21)

for m, n = 0, . . . , L and the elements of r are given by

rn ≡
∫ λmax

0

λn

1 + γλ
dλ

for n = 0, . . . , L. By using the change of variable x = 1 + γλ so that xmax =

1 + γλmax,

rn ≡
1

γn+1

∫ xmax

1

(x− 1)n

x
dx

For n = 0, the integral can be easily evaluated to give

r0 =
1
γ

loge(1 + γλmax)

For n ≥ 1, the following binomial expansion is used for the integrand

(x− 1)n =
n

∑
k=0

(
n
k

)
xn−k(−1)k

=
n−1

∑
k=0

(
n
k

)
xn−k(−1)k + (−1)n

The last term needs to be treated separately as in results in a 1/x integral.
Using this expansion in the integral gives the following explicit expression



2.4. Graph polynomial filter 19

for rn

rn =
1

γn+1

n−1

∑
k=0

(
n
k

)
(−1)k (1 + γλmax)n−k − 1

(n− k)

+
1

γn+1 (−1)n loge(1 + γλmax)

for n = 1, . . . , L.
If λmax is sufficiently large the resulting solution ĥ is independent of the

graph (spectrum). However if λmax is too large the approximation may not
be good over the interval 0 ≤ λ ≤ ρ(B). For a given graph and therefore B,
one approach is to apply the power method [38] to determine ρ(B) = λmax.
The power method is computationally efficient but its convergence may be
slow.

Another approach, which is non-iterative and adopted here, is to use
known bounds for ρ(B) [42, page 142] :

ρ(B) ≤ min (‖B‖1, ‖B‖∞) (2.22)

where

‖B‖1 ≡maxj ∑
i
|[B]i,j|, and

‖B‖∞≡maxi ∑
j
|[B]i,j|,

are the 1-norm and ∞-norm, respectively, and can be computed easily with-
out any iterative process. Figure 2.2 shows the degree L = 7 polynomial
approximation to f (λ) ≡ 1

1+γλ (γ = 10). The value λmax = 6.34 is the upper
bound of ρ(B) for the temperature sensor graph (in Section 2.5.1) using (2.22).
The relative approximation error for this case is given by

‖Ĥ(B)− f (B)‖2
F

‖ f (B)‖2
F

= 1.51%

and is reasonably small. This means that the approximated inverse is close
to the exact inverse. The example in Figure 2.2 shows that any eigenvalue of
the inverse f (λn) (for 0 ≤ λn ≤ λmax) is well approximated by H̃(λn) irre-
spective of the location of the eigenvalue λn. This may seem like an ’overkill’
but the approach does not require detailed knowledge of the location of the
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eigenvalues. It is important to note that to achieve a specific target approxi-
mation error, the larger the value of γ, the higher the degree L required. In
other words, as L→ ∞ the approximation error E→ 0.

FIGURE 2.2: Graph polynomial filter of degree (L = 7) de-
signed using the least squares technique with λmax = 6.34 and

γ = 10.

2.4.2 Distributed processing and complexity comparison

The denoising using Ĥ(B) can be implemented in a distributed manner where
information are exchanged between neighbourhood vertices. The fundamen-
tal operator here is B = ÃT Ã. Now the operator Ã ≡ I − A results in the
difference between the signal value at a vertex and the weighted average of
the signals from the one-hop in-link vertices. The operator ÃT ≡ I − AT

does something similar but with one-hop out-link vertices. The operator B
is a tandem combination of these two operators. The degree of vertex lo-
calization is determined by the degree L of the graph filter. The solution
in [18] however, is a matrix polynomial in A which involves only the in-link
vertices. For many practical applications, the adjacency matrix A is highly
sparse, i.e. on average every row contains only K non-zero elements where
K is small. Implementing the graph polynomial filter would then require
O(2LKN) arithmetic operations. For large N (graphs) this is significantly
less than the O(N2) operations required by the direct inversion.
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2.5 Experimental results

The exact solution using explicit matrix inversion in (2.7) is referred to as
GTVR (Graph-Total-Variation-Regularization) method. Our proposed ap-
proximate solution using Ĥ(B) is referred to as the GPF (Graph-Polynomial-
Filter) method. The graph filter degree is L = 7.

2.5.1 Temperature sensors measurement denoising

For this example, the freely available GSOD [43] dataset is used. The GSOD
dataset contains daily summaries from weather stations around the world.
For this experiment, temperature measurements from a subset of 617 sensors
located in the US for the year 2003 are used. N random stations, representing
vertices, are chosen out of 617 stations to construct a graph. The graph is con-
structed by connecting each vertex with its 8 nearest geographic neighbours.
Three different graphs with N = 200, 400, 600, as shown in Figures 2.3 to 2.5,
are used in the simulations.
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FIGURE 2.3: Sensor Graph with N = 200

The edge weight between vertices vn and vm is calculated as follows

am,n = exp
(
−dm,n

σ2

)
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FIGURE 2.4: Sensor Graph with N = 400

10

20

30

40

50

60

70

FIGURE 2.5: Sensor Graph with N = 600

where dm,n is the geodesic distance between vertices and

σ2 =
1
N ∑

(m,n)∈E
dm,n
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The adjacency matrix is normalized as follows: A→ D−1A.
The noisy signal is synthesized by adding zero mean Gaussian noise with

a range of variances to simulate varying levels of noise. To evaluate the per-
formance, the RMSE between the ground truth signal x and the denoised
signal x̂ is calculated using the GTVR and GPF techniques. Tables 2.1 to 2.3
show the results of denoising the temperature signals on graphs of different
sizes.

TABLE 2.1: Temperature Sensors (N = 200) : RMSE of GTVR
and GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.06 15.17 24.36 35.53

GTVR 5.06 15.17 24.36 35.53

0.01
GPF 4.69 14.32 23.73 36.75

GTVR 4.69 14.32 23.73 36.75

0.1
GPF 4.84 12.99 23.39 31.68

GTVR 4.84 12.99 23.39 31.68

1
GPF 3.98 8.98 12.91 20.01

GTVR 3.98 8.98 12.91 20.02

10
GPF 6.21 7.19 10.04 10.54

GTVR 6.02 7.01 10.34 10.76

100
GPF 8.02 8.37 9.68 10.45

GTVR 7.10 7.78 8.97 11.37
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TABLE 2.2: Temperature Sensors (N = 400) : RMSE of GTVR
and GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.16 14.62 24.57 36.24

GTVR 5.16 14.62 24.57 36.24

0.01
GPF 4.96 14.40 23.65 33.81

GTVR 4.96 14.40 23.65 33.81

0.1
GPF 4.63 13.42 23.43 30.64

GTVR 4.63 13.42 23.43 30.64

1
GPF 3.83 8.09 13.03 18.47

GTVR 3.83 8.09 13.03 18.48

10
GPF 5.90 7.10 9.10 12.71

GTVR 5.77 7.12 9.34 13.22

100
GPF 7.90 8.04 9.22 11.32

GTVR 6.58 7.30 9.37 12.42

TABLE 2.3: Temperature Sensors (N = 600) : RMSE of GTVR
and GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.09 14.57 25.23 35.38

GTVR 5.09 14.57 25.23 35.38

0.01
GPF 4.69 14.97 24.63 34.76

GTVR 4.69 14.97 24.63 34.76

0.1
GPF 4.42 13.50 22.46 30.44

GTVR 4.42 13.50 22.46 30.44

1
GPF 3.61 8.07 13.37 18.42

GTVR 3.61 8.07 13.37 18.43

10
GPF 5.17 6.46 7.81 10.10

GTVR 5.16 6.64 8.01 10.52

100
GPF 6.68 7.09 8.31 8.78

GTVR 6.04 7.01 8.37 10.25
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2.5.2 Image denoising

The underlying similarity between pixels is modelled using as a weighted
graph where the vertices represent the pixels. Edges weights are calculated
using the Non-Local-Means (NLM) filter weights [44]

aij = exp
(
−‖p(i)− p(j)‖2

h2

)
(2.23)

where p(i) and p(j) are the image patches centred at pixels i and j respec-
tively, and h is the smoothing parameter. The adjacency matrix is normalized
as follows: A→ A/|λ̂N|.

Noisy images are synthesized by adding zero mean Gaussian noise with
a range of variances σ2 to simulate varying levels of noise. For an image,
patches that are used to determine the edge weights in (2.23) are obtained
from a smoothed version of the noisy image by using a simple Gaussian filter.
This smoothing is only for the purpose of obtaining the edge weights aij. The
denoising using the GTVR and GPF techniques are performed on the noisy
images (before the Gaussian filter). Experiments were carried out on five
standard images (Barbara, Lena, Cameraman, Mandrill and Peppers) shown
in Figure 2.6 and the results are shown in Tables 2.4 to 2.8, where each table
contains the results for one image.
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FIGURE 2.6: Images used in the image denoising experiment:
Barbara, Lena, Mandrill, Peppers and Cameraman.

2.5.3 Discussion

The results in presented earlier (Section 2.5.2) show that the GPF perfor-
mance is very similar to the GTVR performance except for when γ is large.
For most cases the results are indistinguishable. The difference in RMSE be-
comes larger when the parameter γ value becomes larger. A larger γ value
is required when the noise level is higher. When γ is large, it is harder to
approximate the ideal function f (λ) in (2.14) with a polynomial as there is a
steep decrease in the function near the origin. A higher degree L polynomial
is then required for a good approximation to the inverse. For localization
and efficient implementation, it is desirable to have a small L. A simple way
to ascertain if a particular L is good enough is to compare the polynomial
approximation (2.16) with the ideal function in (2.14), e.g. Figure 2.2 with
γ = 10. If the polynomial is a good fit to the ideal function the denoising
performance using the GPF will be similar to the GTVR technique. In the
examples above, it can be seen that the performance is very similar when
γ ≤ 10 as the L = 7 degree polynomial gives a good fit to the ideal function.



2.5. Experimental results 27

TABLE 2.4: Image Denoising (Barbara) : RMSE of GTVR and
GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 4.95 14.82 25.05 34.80

GTVR 4.95 14.82 25.05 34.80

0.01
GPF 5.04 15.23 24.98 34.76

GTVR 5.04 15.23 24.98 34.76

0.1
GPF 4.79 14.64 24.68 35.01

GTVR 4.79 14.64 24.68 35.01

1
GPF 3.31 12.99 23.83 33.47

GTVR 3.31 12.97 23.82 33.47

10
GPF 1.27 10.63 22.00 32.14

GTVR 1.17 9.70 20.99 31.44

100
GPF 1.22 10.06 17.06 29.58

GTVR 0.56 5.84 11.81 25.34

TABLE 2.5: Image Denoising (Lena) : RMSE of GTVR and GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.03 15.00 25.36 34.08

GTVR 5.03 15.00 25.36 34.08

0.01
GPF 5.03 14.89 25.27 34.25

GTVR 5.03 14.89 25.27 34.25

0.1
GPF 4.73 14.43 25.02 35.40

GTVR 4.73 14.43 25.02 35.40

1
GPF 3.31 13.44 23.70 33.79

GTVR 3.31 13.43 23.69 33.79

10
GPF 1.58 10.67 20.10 29.78

GTVR 1.42 9.43 18.93 28.98

100
GPF 1.22 10.00 19.97 28.24

GTVR 0.64 6.02 14.50 23.09
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TABLE 2.6: Image Denoising (Mandrill) : RMSE of GTVR and
GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.04 15.18 24.65 34.64

GTVR 5.04 15.18 24.65 34.64

0.01
GPF 4.91 14.96 25.20 34.48

GTVR 4.91 14.96 25.20 34.48

0.1
GPF 4.79 14.49 24.64 35.78

GTVR 4.79 14.49 24.64 35.78

1
GPF 3.25 13.27 22.95 33.65

GTVR 3.25 13.26 22.95 33.65

10
GPF 1.48 10.03 20.29 29.39

GTVR 1.34 9.08 19.25 28.34

100
GPF 1.23 8.92 18.73 32.11

GTVR 0.52 5.51 13.84 28.54

TABLE 2.7: Image Denoising (Peppers) : RMSE of GTVR and
GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.02 14.98 25.05 35.36

GTVR 5.02 14.98 25.05 35.36

0.01
GPF 5.02 15.17 24.61 35.44

GTVR 5.02 15.17 24.61 35.44

0.1
GPF 4.70 14.62 24.59 35.19

GTVR 4.70 14.62 24.59 35.19

1
GPF 3.31 13.44 24.05 33.58

GTVR 3.31 13.43 24.04 33.58

10
GPF 1.41 12.21 21.60 32.81

GTVR 1.28 11.12 20.61 32.32

100
GPF 1.22 9.48 20.86 30.24

GTVR 0.63 5.52 15.70 25.64
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TABLE 2.8: Image Denoising (Cameraman) : RMSE of GTVR
and GPF

γ Technique
Noise σ

5 15 25 35

0
GPF 5.02 15.10 24.65 34.61

GTVR 5.02 15.10 24.65 34.61

0.01
GPF 4.85 14.84 25.33 34.51

GTVR 4.85 14.84 25.33 34.51

0.1
GPF 4.75 15.03 25.07 34.63

GTVR 4.75 15.03 25.07 34.63

1
GPF 3.29 13.65 23.69 33.23

GTVR 3.29 13.64 23.68 33.23

10
GPF 1.41 10.34 21.46 31.68

GTVR 1.29 9.37 20.58 31.06

100
GPF 1.16 9.26 19.20 30.11

GTVR 0.52 5.41 14.02 25.13

2.6 Further comparisons

The exact solution of GTVR is given by (2.12) and essentially requires the
solution to the system of linear equations

Hx̂ = t (2.24)

where H ≡ I + γB. For large systems, either the LDL or QR decomposi-
tion [38] of H can be used as part of the process of obtaining the solution.
This approach is computationally more efficient than the process of calculat-
ing the inverse of H directly. A comparison is provided of the run-time us-
ing this exact method with the run-time using the GPF for 7 different graphs
with different number of vertices. For the GPF case (2.15) (with L replacing N
and ĥm replacing Hm) is implemented using Horner’s method of polynomial
evaluation. Starting with

x̂L−1 = ĥLBt + ĥL−1t,
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Horner’s method computes the following

x̂m = Bx̂m+1 + ĥmt (2.25)

for m = (L− 2), (L− 3), . . . , 1, 0. The GPF output is then x̂ = x̂0. The exper-
iments were performed using Matlab on an i7-4790, 3.6GHz CPU machine
and the graphs were generated using the GSP toolbox [45] which are visu-
ally represented in Figure 2.7 except for the Erdos Renyi graph, for which
the nodes do not have positions which means; any visualisation of which is
going to be random. The run-time comparisons are shown in Table 2.9 and it
can be seen that the GPF method is computationally more efficient. When the
number of vertices is large the run-time is more than one order of magnitude
smaller.

TABLE 2.9: Run-time comparison between the GTVR and GPF
methods

Graph Technique
N (Number of vertices)

2500 5625 10000 15625

2D Grid
GPF 0.037 0.201 0.476 1.024

GTVR 0.253 2.211 8.877 30.990

Comet
GPF 0.053 0.198 0.497 1.027

GTVR 0.285 2.390 9.205 30.998

Community
GPF 0.040 0.230 0.550 1.024

GTVR 0.347 2.262 9.106 31.014

Erdos Renyi
GPF 0.042 0.190 0.459 1.027

GTVR 0.284 2.280 8.684 31.089

Spiral
GPF 0.074 0.207 0.462 1.067

GTVR 0.439 3.978 15.503 56.812

Stochastic Block
GPF 0.050 0.192 0.500 1.025

GTVR 0.286 2.189 8.934 31.040

Swiss Roll
GPF 0.158 0.305 0.638 1.255

GTVR 0.293 2.358 11.879 95.014

Another approach to solving (2.24) that avoids calculating the inverse di-
rectly is to use the Landweber majorization-minimization iteration method.
Starting with an initial x0 = t, the method proceeds iteratively

x̂i+1 = x̂i +
1
α

HT(t−Hx̂i) (2.26)



2.6. Further comparisons 31

-0.1

0

0.1

0.2

0.3

(a) 2D Grid (N = 625)

0

0.2

0.4

0.6

0.8

(b) Comet (N = 200)

-0.4

-0.2

0

0.2

(c) Community (N = 200)

-0.3

-0.2

-0.1

0

0.1

(d) Spiral (N = 500)

-0.5

0

0.5

(e) Stochastic block (N = 200)

-0.3

-0.2

-0.1

0

0.1

0.2

(f) Swiss roll (N = 500)

FIGURE 2.7: Visualisations of various graphs used from the
GSP toolbox [45]
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until x̂i converges. The hyper-parameter α affects the rate of convergence,
and needs to be properly chosen, but there are no parameters with the GPF
(using Horner’s method (2.25)). The number of iterations required here is not
fixed but with the GPF the number of iterations is determined by the degree
of the filter L and is fixed. In (2.25), there is one matrix-vector multiplication
but, there are two matrix-vector multiplications in (2.26) .

A least squares (LS) approximation to the function (2.14) was used to
derive the GPF. An alternative to the LS approximation is the Chebyshev
polynomial approximation [28]. In Table 2.10, a comparison is provided be-
tween the denoising performance of the LS and Chebyshev approximations.
In most cases, the LS approximation gave better results.

TABLE 2.10: Denoising performance using Least-squares (LS)
polynomial and Chebyshev polynomial (CP)

Graph Technique
N (Number of vertices)

1849 5625 10000 15625

2D Grid
LSP 6.592 6.351 6.187 6.086
CP 6.937 6.640 6.481 6.359

Comet
LSP 9.360 9.126 9.380 9.332
CP 11.746 11.445 11.768 11.699

Community
LSP 4.137 3.623 3.708 3.344
CP 4.455 3.937 4.032 3.691

Erdos Renyi
LSP 2.141 2.195 2.212 2.204
CP 2.573 2.711 2.758 2.759

Stochastic Block
LSP 2.214 2.182 2.183 2.184
CP 2.701 2.729 2.742 2.746

Swiss Roll
LSP 7.349 7.295 7.220 7.473
CP 7.924 7.862 7.843 8.202

Finally, a comparison of the denoising performance of the GPF with a
simple FIR filter that calculates the weighted average value of adjacent ver-
tices as follows: x̂ = At is provided. The graph used is the temperature
sensor graph with 600 vertices from Section 2.5.1. The adjacency matrix is
normalized as follows: A → D−1A. The average RMSE over ten realization
of the noise, for each variance value, is calculated. Figure 2.8 compares the
denoising performance at different noise levels. It can be seen that the GPF
gave consistently better results compared to the simple FIR filter. However
the simple FIR filter has a very low complexity.
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FIGURE 2.8: GPF vs Weighted average (FIR)

2.7 Chapter summary

The denoising of signals defined on graphs is formulated as a regularized op-
timization problem. An exact solution to the problem does exist but requires
the calculation of a matrix inverse. The technique presented in this chapter
is based on using a graph polynomial filter to approximate the inverse. The
main idea behind the technique is to approximate the eigenvalues of the in-
verse using a least squares criterion. Eigendecomposition is not required and
a low degree polynomial can be used to achieve results that are very similar
to the exact solution. Polynomial filters have the additional advantages of
the vertex-localization and the suitability for distributed processing.
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Chapter 3

Guided Adaptive Interpolation
Filter

3.1 Introduction

Image smoothing is a fundamental tool for several applications such as edge
detection, feature extraction, and image restoration. Conventional linear
time-invariant (LTI) filters are utilized to remove noise. Although these fil-
ters are computationally efficient, they are oblivious to image content and
structures usually resulting in undesirable visual effects. This is due to the
use of a spatially-invariant kernels which leads to smoothing or enhancing
both; image structure and noise.

To address this problem, researchers have developed and studied nu-
merous non-linear alternatives (spatially varying kernels) called edge-aware
filters. The goal of edge-aware filters is to avoid smoothing across signifi-
cant boundaries while eliminating the unimportant details. There are several
edge-aware filters including: bilateral filter [46], weighted least square fil-
ter [47], edge-avoiding wavelets [48], guided filter [49], L0 smoothing [50], L1

smoothing [51], region co-variance [52], domain transform [53], local Lapla-
cian filter [54], weighted median filter [55], fast global smoother [56], fast do-
main decomposition [57], the bilateral solver [58], L0 gradient projection [59],
side window guided filtering [60], guided wavelet filter [61], and filters based
on adaptive mathematical morphology [62, 63].

In addition to edge-aware smoothing, these filters are broadly utilized in
numerous applications in image processing and computational photography.
Examples include image de-noising [64, 57], detail enhancement [65, 48], im-
age fusion [66, 67], texture smoothing [68, 57, 56, 69, 70], single image haze
removal [71], tone mapping of high dynamic range (HDR) images [47, 70,



36 Chapter 3. Guided Adaptive Interpolation Filter

48, 55, 72], anomaly detection in hyper-spectral images [73], object classifica-
tion accuracy enhancement in hyper-spectral images [74], enhance the out-
put of semantic segmentation algorithms [58], depth super-resolution/up-
sampling [58, 56], image colourization [58, 56, 48], image colour quantiza-
tion [57], scale-space filtering [57, 69], style transfer [57, 55], optical flow es-
timation [55], compression artefacts removal [69, 59], content-aware resizing
and stereo matching [55].

From the earlier review of the current state-of-the-art edge-aware smooth-
ing algorithms, it can be noted that most of them are based on the idea of pre-
serving distinctive structures while smoothing small scale details. Inspired
by the success of recently published works on edge-aware filters and their
valuable applications, the goal of this work is to propose and investigate a
new edge-aware filter called guided interpolation edge-aware filter (GAIF).

This work is motivated by the guided image filter (GIF) [49] and adaptive
interpolation filter (AIF) [68]. The key idea of this work is that edge-aware
smoothing can be obtained by a local interpolation between the input im-
age and a guidance image which, in the simplest case, could be a linearly
smoothed version of the input by using a Gaussian filter. A fundamental dif-
ference between this work and those based on the AIF is that in this work
the edges and the flat regions in the resultant image are locally selected from
the original image and the guidance image, respectively, through interpo-
lation process. On the other hand, in the AIF, the interpolation process is
achieved by an iterative pixel-wise process over the entire image. Although
the interpolation process in the AIF is achieved through a linear process, it
is an iterative filter. As a result, the proposed filter is computationally more
efficient than the AIF.

On the other hand, GIF assumes a patch-level linear model instead of the
interpolation in GAIF, in other words, an output pixel is produced as a linear
model of the patch centred at the corresponding pixel in a guidance image.

In the following sections, related works are summarized in Section 3.2.
The mathematical model of the proposed guided adaptive interpolation fil-
ter, an algorithm to solve it, and a way to extend it are presented in Sec-
tion 3.3. Section 3.4, is a discussion about the impact of parameter tuning
and the smoothing performance. Applications demonstrating the efficiency
of the proposed filter are presented in Section 3.5. Finally, a brief discussion
and a conclusion about the results are presented in Section 3.6.
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3.2 Related work

Non-linear filters can be divided into two groups based on the locality of
the filtering effect; local filters which represent most of the non-linear fil-
ters in the literature [75] and global filters which are usually the solutions
to optimization problems such as the weighted least-squares based (WLS)
filter [47] [76] [77].

3.2.1 Kernel-based filters

Smoothing in kernel-based methods is achieved through a weighted average
of the input signal values to yield each element of the output. The kernel is
used to measure the similarities between pixels. These similarities are nor-
malized and used as the weights for the averaging. Specifically, the filtered
pixel denoted yi is computed from the pixels of the input image denoted {xj}
as shown below:

yi = ∑
j

Wijxj (3.1)

where the weight Wij is a function of the image to be filtered [46] or another
image in the case of joint/cross-filtering [78]. Milanfar et al. [75] has pre-
sented an excellent exposition about this kind of filters. Kernel-based filters
are generally considered to be local; because, a filtered pixel is computed as
a weighted average of its surrounding pixels.

3.2.2 Guided image filter

The guided image filter (GIF) [49] has received a great deal of attention by
the community because it has many desirable properties. For example, the
filter formulation, intuitively, makes sense from a statistical regression per-
spective, and the algorithm is computationally efficient O(N). In addition,
filter results are very compelling. These qualities contributed to popularity of
GIF and motivated other researchers to borrow ideas from it. Ham et al. [77],
adapted the idea of guidance image to the regularization term at the global
level of image rather the patch level as is done in the GIF. Li et al. [79], intro-
duced weight to the regularization parameter to enhance the edge-awareness
of the original GIF. Lu et al. [80] have proposed another weighting function
which is more robust to the regularization parameter.
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The original guided filter (GIF) [49] assumes a local linear patch model.
A pixel at location p in the kth patch Ωk is represented as p ∈ Ωk. The pixel
in output image Jpk (the subscript k refers to the kth patch) is related to the
corresponding pixel in the guidance image Gp in the following way:

Jpk = akGp + bk ∀p ∈ Ωk (3.2)

where ak and bk are model parameters for the pixels in Ωk. They are deter-
mined by solving the following optimization problem:

argmin
ak,bk

C(ak, bk) = ∑
p∈Ωk

(akGp + bk − Ip)
2 + εa2

k (3.3)

where ε is a user specified regularization parameter. Since for a square-
shaped patch of |Ωk| pixels, a pixel Gp belongs to |ωp| overlapping patches.
Each resulting in an output patch. GIF takes the average of these outputs as
the final filter output Jp.

Jp =
1
|ωp| ∑

k∈ωp

Jpk (3.4)

where ωp is the set of patches to which the pixel p belongs. This is a simple
model averaging process. For completeness here, it is worth mentioning that
other forms of model averaging can be adopted [81].

The idea of using a pair of images to produce the output image was first
described in the joint/cross bilateral filter [82] [78] which included the guid-
ance information in an ad-hoc fashion. The idea made disciplined in [49] [83]
by modelling the image patches as a linear transformation to the correspond-
ing patches in the guidance image. Extensions to this idea include using two
guidance images [84], and making the guidance procedure global rather than
local [85].

3.2.3 Energy minimization global filters

Most of the optimization-based filters are global filters. In another word,
they minimize a cost function calculated over the whole image as opposed
to the patch-oriented approach. In [86], Xu et al. proposed the relative to-
tal variation (RTV) measure to distinguish between structures and texture.
Later, RTV is used as a regularizer in a global optimization problem. RTV
achieves good texture smoothing. Zhou et al. [69] proposed a scale-aware
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measure and included it in an objective function to achieve scale-aware filter-
ing called Iterative Global Optimization filter (IGO). Liu et al. [87] proposed a
global optimization model involving truncated Huber function, the resulting
model is non-convex and non-smooth, leading to some desirable properties.
The authors demonstrated the effectiveness of this model on a number of
tasks. A major drawback in these methods is their computational complexity
which comes from solving large linear systems [56] [88] [57].

3.2.4 Interpolation based filters

Al-nasrawi et al. [68], proposed a pixel level edge-aware smoothing tech-
nique that utilises the idea of interpolation between two images, which are
the observed/original image and a smooth version of observed/original.
The filtering process proceeds in an iterative fashion and the interpolation
weights are updated in each iteration based on the residual between the ob-
served/original image and the current estimate image.

Unsharp masking [7] is a classical technique used to improve the sharp-
ness of an image. Two versions of the input image are used to produce the
result, a sharp negative version and a smoothed positive. The parameter in
unsharp masking is usually fixed throughout the image domain. Main ap-
plications of unsharp masking revolve around contrast enhancement.

3.2.5 Edge-preserving filtering

Several edge-preserving smoothing operators have been proposed in the lit-
erature. One of the earliest of these operators is the bilateral filter [46], which
has been used in numerous applications including HDR tone-mapping [89], [90]
and highlight removal [91]. A major drawback in the smoothing performance
of the bilateral filter is the gradient-reversal which results in halos when used
for image enhancement [47]. Farbman et al. [47] tackled the gradient rever-
sal problem by solving a global optimization problem. He et al. [49] pro-
posed GIF, a more efficient filter, by solving a local optimization problem
but the results still suffer from the halo artefacts [79]. Xu et al. proposed
an L0 adaptation of the total variation filter [12], which produces piece-wise
constant results. Its performance was demonstrated on a number of applica-
tions. Ham et al. [92] proposed the static-dynamic image filter which solves a
global non-convex optimization problem that involves two guidance images:
the current estimate and an external image. The authors have demonstrated
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its effectiveness at texture removal and depth super-resolution. However,
they noted that the filter produces artefacts in flash/no-flash and RGB-NIR
denoising tasks.

3.2.6 Our contribution

The novel contributions in this chapter are as follows:

1. General framework for patch-based interpolation is presented, along
with algorithms for two special cases.

2. To further enhance the edge-preserving performance of the proposed
filter, two weighting functions, that boost or suppress the penalty term
based on the image content, are introduced and compared.

3. A relationship between GAIF and GIF is highlighted where a special
case of GAIF is also a special case of GIF.

3.3 Guided adaptive interpolation filter

3.3.1 Definition

Smoothing images can readily be achieved using any linear low-pass filter
such as the Gaussian filter. However, the resulting filtered image is equally
smoothed everywhere regardless of the image contents. To rectify the lack of
discriminating power in linear filters, this chapter proposes a local, patch-
level, interpolation model. This local interpolation is between the corre-
sponding patches of two images. The first image, denoted by I, is the raw
image to be filtered. The second is a smooth image, denoted by M, produced
using any linear or non-linear smoother applied on I as follows:

M = f (I) (3.5)

where f (.) is the smoother/filter of choice. More concretely, and adopting
the same notation as the GIF, Jpk is the output pixel at location p due to the
local model derived from the kth patch. J is used to denote the interpolation
between I and its smooth version M in the patch Ωk:

Jpk = αk Ip + (1− αk)Mp ∀p ∈ Ωk (3.6)
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where αk is an interpolation parameter and is assumed to be constant in the
patch Ωk, p is the index of pixels within the patch Ωk. Each patch Ωk has
|Ωk| pixels.The output patch Jpk in (3.6) is closer to Ip if αk is higher than 0.5,
and this should be the case if the patch k is part of an edge. Alternatively,
the output patch Jpk is closer to Mp if αk is lower than 0.5, this should be the
case if the patch k is not part of an edge, i.e. smooth area. In other words,
the images I and M are responsible for the edges and the smooth areas in the
image J respectively.

p

p

p

Mk

Ik

Σ

α

1− α

Jk

FIGURE 3.1: GAIF block-diagram. Patches at index k in the
images I and M are interpolated to produce the corresponding

patch in image J

To determine the interpolation coefficient αk, a solution to (3.6) is sought
by minimizing the difference between the approximate image J and the im-
age to be filtered I. Concretely, performing the minimization of the following
cost function for each patch k:

C(αk) = ∑
p∈Ωk

|αk Ip + (1− αk)Mp − Ip|γ + εα2
k (3.7)

where ε is a regularization parameter stopping α from blowing up and con-
trolling the amount of emphasis placed on I and M. The parameter γ ∈ {1, 2}
generalizes two distinct models which, apparently, have different solutions
but are similar in performance. The reason behind that will be demonstrated.
The solutions of the model (3.7) are as follows:
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• γ = 1

argmin
αk

C(αk) = ∑
p∈Ωk

|αk Ip + (1− αk)Mp − Ip|+ εα2
k (3.8)

αk = min
(

1,
|Ωk|
2ε

MAEk

)
(3.9)

where |Ωk| is the number of pixels in the patch k and

MAEk = ∑
p∈Ωk

|Ip −Mp|/|Ωk|

• γ = 2

argmin
αk

C(αk) = ∑
p∈Ωk

(αk Ip + (1− αk)Mp − Ip)
2 + εα2

k (3.10)

αk =
MSEk

MSEk + ε̃k
(3.11)

where ε̃k = ε/|Ωk| and MSEk = ∑p∈Ωk
(Ip −Mp)2/|Ωk|.

Just as is the case in GIF [49], the pixel at location p belongs to |ωp| over-
lapping patches as shown in Figure 3.2, which results in |ωp| output patches
per pixel p, each denoted by Jpk. Following the model averaging principle,
the average of these outputs is taken as the final output as follows:

Jp =
1
|ωp| ∑

k∈ωp

Jpk (3.12)

= ᾱp Ip + (1− ᾱp)Mp (3.13)

where ᾱp = 1
|ωp| ∑k∈ωp αk.
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FIGURE 3.2: Overlapping patches

Analysis

The solutions in (3.9) and (3.11) are in terms of the patch MAE and MSE, re-
spectively which are defined earlier. The square of MAE can be considered
as an approximation of MSE in this specific case and this can be justified em-
pirically. As such, to simplify the following analysis, the assumption that
MSE ≈ MAE2 is made. With this assumption in mind, a one-to-one com-
parison is facilitated. In Figure 3.3, a pair of |Ωk| and ε is considered in (3.9)
then the best corresponding pair of |Ωk| and ε is found in (3.11) such that the
second function is closest to the first in the `2 sense.

This former parameter tuning allows us to highlight the difference be-
tween the two cases when they are the closest to each other. There are obser-
vations; (1) The two filters treat a patch Ωk of the input image in a generally
similar fashion. In other words, at the very low and the very high values
of MAE the two functions are equal. (2) The two filters differ around the

2ε
|Ωk| point. Before this point, α is higher for the γ = 2 case signifying that
the output patch gets a higher contribution from the input image. After the

2ε
|Ωk| point, the opposite occurs, the output patch gets a lower contribution
from the input image than in the γ = 1 case. Interestingly, the γ = 1 filter
produces α = 1 for MAE > 2ε

|Ωk|
However, it was experimentally found that it is very hard to visually dis-

cern the differences between the two images resulting from the two filters
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thus, from this point onward whenever GAIF is mentioned, γ = 2 is implic-
itly implied.

FIGURE 3.3: Comparison between the solutions in (3.9)
and (3.11).

3.3.2 Weighted adaptive interpolation filter

From the earlier discussion in Section 3.3.1, the proposed scheme produces
each output pixel by interpolating the patches centred around the corre-
sponding pixels in the two input images, see Figure 3.1. The choice of which
patch Ik or Mk contributes more to the output pixel is encoded as αk. In other
words, both images I and M contribute to the final GAIF filtering result J
as can be seen in (3.6). More specifically, strong edges are contributed by I
while smooth areas are contributed by M. This means, it is preferable to have
αk ≈ 1 at the locations of edges and αk ≈ 0 elsewhere.

The proposed model (3.7) has a regularisation term that puts a cost on
choosing α = 1 which is what the solution would be without the extra regu-
larization term. However, the impact of this regularization term is controlled
by a single tuning parameter ε which is fixed for the whole image.

This leads to questioning the possibility of automatically adjusting the
tuning parameter ε such that the impact of the regularization parameter be-
comes negligible, allowing the model to pick αk ≈ 1 at the edges, and amplify
the impact of the regularization parameter in smooth areas to allow the solu-
tion to be αk ≈ 0

To this end, the following model is proposed:

argmin
αk

C(αk) = ∑
p∈Ωk

(αk Ip + (1− αk)Mp − Ip)
2 + ε̃pα2

k (3.14)
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where ε̃p = εθp which means that ε is tuned at the pixel level rather than
globally as it is the case in the initial model (3.7). Li et al. [79] proposed
such formulation for the GIF. In this work, two variants of θp are proposed
as follows:

Define a re-scaling function

φ(x) = A− Ax
β + |x| (3.15)

Variant 1: θp = φ(ηp) (3.16)

where ηp =
1
|ωp| ∑

k∈ωp

η̂k
η̂k + c

and η̂k =
1
|Ωk| ∑

p∈Ωk

|Ip − µp|

Variant 2: θp = φ
(

σp

({
η(i)(I)

}))
, ∀i ∈ [1, 5] (3.17)

where η(i)(I) = MEDFILT(I, 3 + 2(i− 1))

where MEDFILT represents a 2D median filter operation with the input im-
age and window size as the first and second arguments respectively, |ωp|
is the cardinality of pixels in the region ωp and the parameters in equa-
tion (3.15) were found and set empirically to A = 5 and β = 0.025 throughout
this chapter.

The role of the rescaling function in (3.15) is twofold. Firstly; it flips the
sign of its argument, secondly; it makes the output saturate at 2A for neg-
ative inputs and saturate at 0 for large positive inputs. In other words, the
rescaling function φ(.) makes sure that the value of θp is always positive and
bounded thus avoiding potential numerical issues. c in (3.16) is a small con-
stant1.

It is important here to note that these variants result in slightly different
smoothing effects as can be clearly seen in Figure 3.4.

In variant 1, the pixels in a window are used in the computation of θp

which measures the relative mean absolute deviation of the central pixel in a
window to the mean absolute deviations of the surrounding pixels followed
by the re-scaling function φ(x) to bound the scaling of αk within the range
{0,5}.

1c was fixed throughout this paper as c = 1× 10−6
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In variant 2, the input image I is filtered with five median filters of in-
creasing windows sizes producing five different values for each pixel, the
standard deviation of the five samples is re-scaled with φ(x) to produce the
final scaling parameter θp.

Figures 3.4 and 3.5 illustrate the way ᾱp changes after adding the weighted
regularization across the image domain. Darker regions represent areas where
the filter leans towards the smooth version i.e more emphasis on M, while
light regions capture important edges where the filter leans towards the orig-
inal version i.e more emphasis on I.

(a) Original image I (b) Blurred image M

(c) Standard ᾱp (d) Standard GAIF result J

(e) Weighted ᾱp map (f) Weighted GAIF result J

FIGURE 3.4: Variant 1 of weighted GAIF. (a) is input image I.
(b) is median filtered version of I with window size = 11. (c)
and (e) are ᾱp image in the case of standard GAIF (3.11) and
variant 1 of the weighted GAIF (3.14) respectively. Light areas
represent more contribution from I than M and darker regions
represent more contribution from M than I. (d) and (f) are the

results of GAIF and weighted GAIF respectively with ε = 1.
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(a) Original image I (b) Blurred image M

(c) Standard ᾱp (d) Standard GAIF result J

(e) Weighted ᾱp map (f) Weighted GAIF result J

FIGURE 3.5: Variant 2 of weighted GAIF. (a) is input image I.
(b) is median filtered version of I with window size = 11. (c)
and (e) are ᾱp image in the case of standard GAIF (3.11) and
variant 2 of the weighted GAIF (3.14) respectively. Light areas
represent more contribution from I than M and darker regions
represent more contribution from M than I. (d) and (f) are the

results of GAIF and weighted GAIF respectively with ε = 1.

3.3.3 Filter kernel

GAIF is a local filter, in particular, the resulting image J is a local linear combi-
nation of the input image I and a smoothed version of I namely M as follows:

Jp = αk Ip + (1− αk)Mp, ∀p ∈ Ωk, (3.18)

which is considered a general model. The former model admits the special
case

Jp = αk Ip + (1− αk)Mk, ∀p ∈ Ωk, (3.19)
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where the output pixel in modelled as local blend of the input pixel Ip and
a patch level constant Mk. The output pixel of both models (3.18) and (3.19)
can be written as follows:

Jp = ∑
j∈Ωk

Wpj(I, M)Ij (3.20)

where the Wpj(I, M) is the filter kernel. The kernel depends on both I and M,
where M is generally a filtered version of the image I. One example case is to
filter I with a box filter to produce M where, the kernel of the model in (3.19)
is similar to the self-guided case of the GIF [49] which has the following ex-
plicit formula:

Wpj(I) =
1
|Ωk|2 ∑

p∈Ωk

∑
j∈Ωk

(
1 +

(Ip − µk)(Ij − µk)

σ2
k + ε

)
(3.21)

Details can be found in Appendix A

3.3.4 O(N) Time exact algorithm

A major advantage of the proposed filter over the global energy minimiza-
tion schemes is that it is an O(N) complexity exact algorithm. O(N) means
that the filter computational complexity depends linearly only on the num-
ber of pixels. In other words, it is independent of the window size, which
allows the user to choose any windows size without additional computa-
tional cost as is the case with the bilateral filter [46], non-local means [93],
SD [92], RTV [86], and the more recent filter by Wang et al. [94] just to name
few. This property is shared with the guided image filter [49]. Table 3.1 is a
summary of the computational complexities of some well-known techniques
in the literature for comparison.
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TABLE 3.1: Computational complexities of some of the well-
known filters in the literature. N is the total number of pixels in
an image, |Ωk| is number of pixels in the patch, w is the number

of pixels in a window, and n is the number of iterations.

Filter Complexity

Bilateral O(|Ωk|.N)
NLM O(|Ωk|.w.N)

SD O(n.|Ωk|.N) Assuming that the linear system can
be solved in O(N)

RTV O(n.|Ωk|.N)
GF O(N)

3.4 Parameters setting and details smoothing

3.4.1 Parameter setting

GAIF has two parameters to tune; the radius r of a patch Ωk, which is an
odd integer and can take the values {3, 5, 7, etc}, the second parameter be-
ing the regularization parameter ε. It is observed that increasing r results
in better edge preservation. On the other hand, increasing ε was found to
result in increasingly smoother images. Those observations can be verified
in Figure 3.6.

The behaviour of GAIF at various values of ε and r can be explained by
referring to Section 3.3.3. For the special case where M is an average filter,
the relationship between the output pixels and the input pixels is encoded in
the explicit formula in (3.21). From (3.21), it cab be noticed that; increasing ε

results in an averaging effect while increasing r, which increases the number
of pixels in Ωk, increases the reliance on the image I, hence more edges.

3.4.2 The role of M

The image M in (3.6) is responsible for the smoothing effect hence, it is im-
portant to demonstrate the role it plays in the GAIF filtering. The choice of
f (.) in (3.5) can be considered as a tuning parameter with the highest gains
in smoothing performance achieved for non edge-aware filters ( f (.)). To this
end, a comparison demonstrating the effect of using Gaussian and Median
filters to construct the image M on various images, is provided. Figures 3.8
to 3.15 demonstrate the role of different M images on the filtering outcome
of the four images in Figure 3.7.
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Original image Gaussian filtered with w = 11 and σ = 5

ε = 0.1 ε = 0.5 ε = 1

r = 3

r = 7

r = 11

FIGURE 3.6: Edge-preserving smoothing using GAIF filter with
different kernel sizes r and values of the regularization param-
eter ε. Lower ε values correspond to sharper outputs. Larger

patch radius r results in better edge preservation.
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FIGURE 3.7: Input images used to demonstrate the role of the
smooth image M.
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FIGURE 3.8: The role of the smooth image M. (a) and (c) are M
images produced using a Gaussian filter with σ = 2 and σ = 7
respectively. (b) and (d) are GAIF filtered images with I being
the original image in Figure 3.7 (a) while M being the image (a)

and (c) respectively.
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FIGURE 3.9: The role of the smooth image M. (a) and (c) are
M images produced using a Median filter with window size 9
and 21 respectively. (b) and (d) are GAIF filtered images with
I being the original image in Figure 3.7 (a) while M being the

image (a) and (c) respectively.
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FIGURE 3.10: The role of the smooth image M. (a) and (c) are M
images produced using a Gaussian filter with σ = 2 and σ = 7
respectively. (b) and (d) are GAIF filtered images with I being
the original image in Figure 3.7 (b) while M being the image (a)

and (c) respectively.
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FIGURE 3.11: The role of the smooth image M. (a) and (c) are
M images produced using a Median filter with window size 9
and 21 respectively. (b) and (d) are GAIF filtered images with
I being the original image in Figure 3.7 (b) while M being the

image (a) and (c) respectively.
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FIGURE 3.12: The role of the smooth image M. (a) and (c) are M
images produced using a Gaussian filter with σ = 2 and σ = 7
respectively. (b) and (d) are GAIF filtered images with I being
the original image in Figure 3.7 (c) while M being the image (a)

and (c) respectively.
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FIGURE 3.13: The role of the smooth image M. (a) and (c) are
M images produced using a Median filter with window size 5
and 13 respectively. (b) and (d) are GAIF filtered images with
I being the original image in Figure 3.7 (c) while M being the

image (a) and (c) respectively.
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FIGURE 3.14: The role of the smooth image M. (a) and (c) are M
images produced using a Gaussian filter with σ = 2 and σ = 7
respectively. (b) and (d) are GAIF filtered images with I being
the original image in Figure 3.7 (d) while M being the image (a)

and (c) respectively.
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FIGURE 3.15: The role of the smooth image M. (a) and (c) are
M images produced using a Median filter with window size 9
and 21 respectively. (b) and (d) are GAIF filtered images with
I being the original image in Figure 3.7 (d) while M being the

image (a) and (c) respectively.
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3.4.3 Details smoothing

Figures 3.16 to 3.18 are comparisons between the smoothing results. The
top part merges two filtered version of the eye image, upper-left is the eye
smoothed using the named filter, lower-right is the smoothed with GAIF.
Here the GAIF smoothed image is a result of filtering the original image,
guided by the smoothed image using the named filter. Filters used in the
comparison include the classical Gaussian and median filters, guided filter
(GIF) [49], sub-window box filter (SWF) [95], weighted least-squares (WLS) [47],
static-dynamic filter (SD) [92], rolling guidance filter (RGF) [96] and relative
total variation filter (RTV) [86]. In the close-up views, it is clear that GAIF is
better preserving the eyelashes in comparison with other filters, meanwhile
smoothing the other parts of the face. This result demonstrates the efficiency
of GAIF at improving on the smoothing results of linear and non-linear fil-
ters. This improvement comes at a minimal computational cost and no refor-
mulation of these filters is required.

(a) Original (b) Gaussian (c) Median

FIGURE 3.16: Image smoothing (b) Gaussian σ = 6, (c) me-
dian 5× 5 and GAIF ε = 0.04 for all cases. The top part com-
pares two results, to the left is a result of the indicated filter, to
the right is a result of filtering with GAIF. The bottom part is
zoomed-in versions of the top part, the red box is for the result

of the indicated filter and the blue box is for the GAIF result.
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(a) GIF (b) SWF (c) WLS

FIGURE 3.17: Image smoothing (a) GIF r = 5, ε = 0.01, (b) SWF
r = 5, (c) WLS λ = 0.05, α = 1 and GAIF ε = 0.04 for all cases.
The top part compares two results, to the left is a result of the
indicated filter, to the right is a result of filtering with GAIF. The
bottom part is zoomed-in versions of the top part, the red box
is for the result of the indicated filter and the blue box is for the

GAIF result.

(a) SD (b) RGF (c) RTV

FIGURE 3.18: Image smoothing (a) SD λ = 5, µ = 50, ν =
400, iter = 10, (b) RG σs = 3, σr = 0.01, iter = 4, (c) RTV
λ = 0.005, σ = 3 and GAIF ε = 0.04 for all cases. The top
part compares two results, to the left is a result of the indicated
filter, to the right is a result of filtering with GAIF. The bottom
part is zoomed-in versions of the top part, the red box is for the
result of the indicated filter and the blue box is for the GAIF

result.
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3.5 Applications and Experimental Results

3.5.1 Single image haze removal

Tarel et al. [97, 98] proposed a method for single image dehazing which
works in the four steps summarized in Figure 3.19 (black arrows path). To
improve on the results of this technique, a veil refinement step is introduced
which involves filtering the inferred veil image using an edge-aware filter.
GAIF is used to perform the veil refinement step, more specifically, the im-
age I is the inferred veil image while the image M is a mean or median fil-
tered version of I. The authors in [97, 98] have considered both median and
bilateral filters for veil refinement. Figures 3.20 and 3.21 are comparisons be-
tween three state-of-the-art techniques, including the techniques proposed
in [97, 98], dark channel prior [71] and our technique. The top parts of the
figures are the results of various techniques and the bottom parts are close-
up views of two regions of the images. GAIF is resulting in the clearest and
sharpest result among the four techniques.

Atmospheric 

Veil 

Inference

Visibility 

Restoration

Local 

Smoothing 

Tone 

Mapping

Veil 

Refinement

FIGURE 3.19: Single image de-hazing steps proposed in [97].
The black arrows refer to the original model and the red path

includes the GAIF as the veil refinement step.
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(a) Original (b) NBPC (c) NBPC+PA

(d) Dark prior channel (e) Proposed

FIGURE 3.20: A comparison of image haze removal on road
image. GAIF is used to filter the atmospheric veil estimate in
the no-black pixel constraint (NBPC) technique [97]. In com-
parison, dehazing using the original NBPC [97], NBPC+PA [98]

and dark prior channel [71] techniques are evaluated.
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(a) Original (b) NBPC (c) NBPC+PA

(d) Dark prior channel (e) Proposed

FIGURE 3.21: A comparison of image haze removal on city im-
age. GAIF is used to filter the atmospheric veil estimate in the
no-black pixel constraint (NBPC) technique [97]. In compari-
son, dehazing using the original NBPC [97], NBPC+PA [98] and

dark prior channel [71] techniques are evaluated.
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3.5.2 Flash/No-flash fusion denoising

Denoising an image taken without flash by utilizing another version of the
same image with flash is a common digital photography problem [78]. In Fig-
ure 3.23, comparison between three representative filters is provided namely,
guided filter (GIF) [49], joint bilateral filter (JBF) [78] and semi-guided bilat-
eral filter (SGBF) [99]. GAIF is used in this application as a replacement to
the bilateral filter in the scheme proposed in [78]. More specifically, GAIF is
used to filter both images the flash and no-flash where I is the image to be
filtered and M = H ∗ I where H is a linear average filter as shown in Fig-
ure 3.22. In Figure 3.23, not only did GAIF denoise the no-flash image, but it
also filled the dark regions between the jugs with details from the flash image
producing a significantly better result than JBF and GIF. However, compara-
ble results to SGBF, but slightly sharper, especially the drawings on the jugs.

FBase ABase

FDetail

AFinal

F

Flash 

Image

A

No-Flash 

Image

GAIFGAIF A*HF*H

÷

×

FIGURE 3.22: Flash/No flash denoising algorithm.
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(a) Flash image (b) No-flash image

(c) JBF [78] (d) GIF [49]

(e) SGBF [99] (f) Proposed

FIGURE 3.23: A comparison of image flash/no-flash denoising
between GAIF with (Fbase : M = boxfilter(I, w = 50), Ωk =
3, ε = 1, ANR : M = boxfilter(I, w = 50), Ωk = 5, ε = 20), the
joint bilateral filter [78], guided image filter [49] with (r = 9, ε =
0.0004) and Semi-guided filter [99] with (Fbase : σs = 8.5, σr =
0.5, N = 5, ANR : σs = 8.5, σr = 0.35, N = 5). The proposed
filter is superior to the first two and is on par with (e) but at less
computational complexity. In (f) GAIF manages to capture all

the important details as annotated.
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(a) Flash image (b) No-flash image

(c) JBF [78] (d) GIF [49]

(e) SGBF [99] (f) Proposed

FIGURE 3.24: A comparison of image flash/no-flash denoising
between GAIF with (Fbase : M = boxfilter(I, w = 50), Ωk =
3, ε = 1, ANR : M = boxfilter(I, w = 50), Ωk = 5, ε = 20), the
joint bilateral filter [78], guided image filter [49] with (r = 9, ε =
0.0004) and Semi-guided filter [99] with (Fbase : σs = 8.5, σr =
0.5, N = 5, ANR : σs = 8.5, σr = 0.35, N = 5). The proposed
filter is superior to the first two and is on par with (e) but at less
computational complexity. In (f) GAIF manages to capture all

the important details as annotated.
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3.5.3 Image detail enhancement

Enhancing the details of an image starts with decomposing the image into
base and details layers followed by details amplification. To avoid halo arte-
facts, edge-aware filters are used to produce the base layer as follows:

J = GAIF(I, M) + γ(I −GAIF(I, M)) (3.22)

where γ is a magnification factor used to amplify the details, and M is me-
dian filtered version of I. Figures 3.25 and 3.26 compare the performance
of GAIF to two representative techniques; weighted least-squares (WLS) [47]
and semi-guided filter [99]. It can be observed that the proposed filter pre-
serves the original edges intact, in other words, the filtered image has the
edges of the input image as can be seen in Figure 3.25.

(a) Original image (b) WLS filter [47]

(c) Semi-GF [99] (d) Proposed

FIGURE 3.25: A comparison of Image details enhancement per-
formance between GAIF (M = MEDFILT(I, w = 13), Ωk =
3, ε = 0.1), weighted least-squares filter [47] (λ = 0.125, α =
1.2) and the semi-guided filter [99] (σs = 3.5, σr = 0.05, N = 5).
As annotated, the proposed filter excels at preserving the true
edges of the input image while achieving comparable smooth-

ing performance in other regions.
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(a) Original image (b) WLS filter [47]

(c) Semi-GF [99] (d) Proposed

FIGURE 3.26: A comparison of Image details enhancement per-
formance between GAIF (M = MEDFILT(I, w = 13), Ωk =
3, ε = 0.00001), weighted least-squares filter [47] (λ =
0.125, α = 1.12) and the semi-guided filter [99] (σs = 3.5, σr =

0.05, N = 5).

3.5.4 Edge detection

Another application of edge-aware filters is edge-detection. Images are pre-
processed using edge-aware filtering followed by an edge-detection algo-
rithm. To demonstrate the potential of GAIF at improving edge-detection,
in Figure 3.27, an experiment on a synthetically generated image with known
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FIGURE 3.27: Edge detection by preprocessing image using
GAIF. (a) is input image, (b) is the edge map of the input im-
age, (c) is the input image plus a Gaussian noise with µ = 0.5
and σ2 = 0.05, (d) is the edge map of the image in (c), (e) is
average filtered version of the image in (c) with window size 9,
(f) edge map of the image in (e), (g) is GAIF filtered image with
I is the image in (c) and M is the image in (e), finally (h) is the

edge map of the image in (g).

edges is conducted, followed by adding noise to it. To detect the edges of the
synthetically generated noisy image, it is initially preprocessed with GAIF
followed by edge-detection. The edge command in MATLAB is used for
edge detection which is an implementation of the Canny edge-detection al-
gorithm [100].

3.6 Chapter summary

In this chapter, a novel filtering technique is presented with a number of
applications in image processing and computer vision. GAIF achieves edge-
preservation by interpolating between two patches. As a result, the filter can
improve the results of linear and non-linear filters.

GAIF is a computationally efficient edge-preserving filter with a compu-
tational complexity of O(N) where N is the number of pixels in the image.
The efficiency of GAIF is demonstrated on a number of problems includ-
ing single image haze-removal, flash/no-flash image fusion, image detail en-
hancement and edge detection.
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Finally, it is important to note that GAIF models the image as an inter-
polation at the patch level between the input image and a smoothed version
of which. This means that; the filter is constructed with two images, I and
M, produced using the same type of sensor in mind. Hence, it is not straight
forward to utilize the filter for tasks that require cross-domain fusion such as
matting/feathering [101] and super-resolution.
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Chapter 4

High-pass filter generalization of
the TV model

4.1 Introduction

Denoising is one of the centre problems in signal processing, especially for
non-stationary signals. The TV model [12] aims at reducing the `1 norm of
the high-frequency component of the signal which is measured by the first
derivative of the signal. The TV model has received a great deal of attention
by researchers and was utilized to solve inverse problems such as denois-
ing, deconvolution, inpainting as well as other general signal and image pro-
cessing tasks: zooming, mean curvature motion of interfaces, segmentation
and texture extraction [102] and references therein. A limitation of the TV
model that was realized early on is what’s known as staircase effect [103]. In
other words, the total variation model prefers piece-wise constant solutions,
which represents a very limited type of signals. Many attempts have been
dedicated to tackle the staircasing problem [104] and to generalize the filter
to other types of signals [105]

The model for observed signal y is as follows:

y = x + n, (4.1)

where x is the desired signal and n is the zero-mean Gaussian white noise
with variance σn. In the discrete case, the TV model for recovering signal x
in (4.1) is expressed as following optimization problem:

x∗ = argmin
x

1
2
‖y− x‖2

2 + λ‖Dx‖1, (4.2)
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where D is a banded matrix with the elements [1, -1] along the main di-
agonal and the superdiagonal respectively. An example of the difference op-
erator D is defined as follows:

D =


1 −1

. . .

1 −1

 (4.3)

The motivation of this chapter is to explore new ways to solve the stair-
casing problem and to extend the model such that it can deal with wider
classes of signals. A new generalization of the TV model is proposed. The
main idea is that the difference operator used in the original TV model can
be regarded as the simplest half band high-pass filter with fixed amplitude
response. A natural generalization is to replace it with a high-pass filter with
user controllable bandwidth and amplitude response.

4.2 The high-pass filter generalization

The regularization term ‖Dx‖1 is the `1 norm of high-pass filtered version
of x, where the finite difference operator is a half-band high-pass filter, this
is clear in Figure 4.1. By interpreting the operator from this point of view, a
natural question is: why not use other high-pass filters? In other word, can
better denoising performance be attained by minimizing the `1 norm of a dif-
ferent band other than the highest 50% e.g., the highest 10− 90%? To answer

0 0.5 1

0

2

FIGURE 4.1: Amplitude response of the filter [1 -1]
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this question, a generalized TV model of the following form is considered:

x∗ = argmin
x

1
2
‖y− x‖2

2 + λ‖Hx‖1, (4.4)

where H is a banded matrix. Its rows are coefficients of a designed FIR high-
pass filter. The original TV model is a special case when H = D. The FIR
high-pass filters used in this work are described in next section. To solve this
problem using the ADMM algorithm [17]. Model (4.4) is reformulated as a
constrained optimization problem:

x∗ = argmin
x

1
2‖y− x‖2

2 + λ‖z‖1 (4.5)

s.t Hx = z. (4.6)

The augmented Lagrangian can be written as:

x∗ = argmin
x

1
2
‖y− x‖2

2 + λ‖z‖1 +
ρ

2
‖Hx− z + uk‖2

2, (4.7)

which can be solved as follows:

xk+1 = argmin
x

(
1
2
‖y− x‖2

2 +
ρ

2
‖Hx− zk + uk‖2

2

)
, (4.8)

zk+1 = argmin
z

(
λ‖z‖1 +

ρ

2
‖Hxk+1 − z + uk‖2

2

)
, (4.9)

uk+1 = uk + Hxk+1 − zk+1. (4.10)

The solutions for equations (4.8) to (4.10) are:

xk+1 = (I + ρHT H)−1(y− ρHT(zk − uk)), (4.11)

zk+1 = Sλ/ρ(Hxk+1 + uk), whereSk(a) := a(1− k/|a|)+, (4.12)

uk+1 = uk + Hxk+1 − zk+1. (4.13)
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FIGURE 4.2: Six types of non-stationary test signals.

4.3 Results

To demonstrate the efficiency of the proposed model, the algorithm was run
with a number of different configurations. Each configuration was solved 50
times by running the iterative equations in (4.11) to (4.13). Each of the 50 runs
was done on a new instance of random noise n in (4.1). The reported result
is the average mean absolute error (MAE) of 50 runs to come up with a good
estimate of the true mean of MAE. The parameter ρ in Section 4.2 is fixed
to 1 in all experiments. To get a better idea about the denoising capability
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of the proposed model, its performance is compared to that of the original
model (4.1) as well as wavelet denoising using a range of wavelets. Settings
of configurations are summarized as follows:

• High pass filters H: linear phase symmetric (type I) was considered,
with cut-off frequencies fc from the interval (0.1, 0.9) with orders N
from the range {4, 8, 12, 16, 20, 24}. In addition to the symmetric fil-
ters, the high-pass Gaussian filters which are generated from low-pass
Gaussian filter frequency response Hhigh(ω) = 1− Hlow(ω) were con-
sidered. The bandwidth of Hlow(ω) is controlled by the parameter σ

of the Gaussian function. In the experiments, σ is from the list {1, 2, 3}
with the respective length of the filter being N in the list {4, 8, 12}.

• Signal classes x: for each configuration, filtered noisy versions of the 6
typical types of signals were considered as shown in Figure 4.2 which
first appeared in [106] and are widely used as test signals to compare
performance of signal denoising algorithms. These signals are gen-
erated using MATLAB’s wnoise command with signal-to-noise ratio
(SNR) from the list {1, 2, 5, 10}.

• Tuning parameter λ: a range of λ′s between (1, 10) have been tested.

• For wavelet denoising, empirical Bayes-based method was used [107]
accessible in MATLAB via the wdenoise command and experiments us-
ing all the wavelets from the list {db1, db3, db5, sym2, sym3, sym5,
bior1.1, bior2.2, bior2.8} with 9 levels of decomposition were conducted.

0 0.5 1
0

0.5

1

1.5

f
c
=0.1 f

c
=0.4 f

c
=0.7 TV

FIGURE 4.3: Amplitude response of a sample of filters H(ω)
used in this work of order N = 12.

In Table 4.1, the reported results represent the minimum value of MAE
found by solving (4.4) using different values of the tuning parameter λ for
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a particular signal and SNR. The GTV column reports the best performance
achieved using a filter H among different filters. Name of filter H is reported
below MAE either as 1) HN, fc , where N is the filter order and fc is the cut-off
frequency, or 2) Gσ, where G: a high-pass of a Gaussian filter, σ is the Gaus-
sian function width. The TV column reports the minimum MAE achieved us-
ing TV and the Wavelet column reports the minimum MAE achieved among
various wavelets. The name of the wavelet is reported below MAE. The ob-
servations can be summarized as follows:

• From Table 4.1, it can be observed that for the Blocks signal, the TV
filter is the best performing filter for all SNR values. In other words, TV
is the best prior for piece-wise constant class of signals.

• For Bumps signal, in the case of low signal-to-noise ratio, total-variations
yields the best results. However, in high SNR case, the high-pass equiv-
alent of Gaussian filter with σ = 1 can perform slightly better.

• For Heavy Sine signal, the proposed model always performs better than
both TV and wavelet-based denoising at all SNR levels and this can be
attributed to the mismatch between the signal family (mostly smooth)
and the assumption of the TV model. Regularizers based on Gaussian
filters, which have σ = {2, 3} with cut-off frequencies fc = {0.26, 0.17}
respectively, favour solutions with lower frequency contents by penal-
izing wider parts of the high side of the spectrum.

• For Doppler signal, the proposed model achieves results better than TV,
but both fall behind the wavelet’s performance.

• For Quadchirp signal, the proposed filter achieves better denoising per-
formance than TV. By moving from the lower to higher SNR, the cut-off
frequency of the penalty filter H moves from (0.26→ 0.5→ 0.6).

• For Mishmash signal, the proposed filter achieves better denoising per-
formance than TV at all SNR levels by penalizing using a filter with
cut-off frequency fc = 0.8.

To demonstrate that the proposed model (4.4) doesn’t suffer from the stair-
casing phenomenon, a comparison of the denoising capacity is conducted
between the proposed model and TV in Figure 4.4, the bottom right part of
which, is achieved by solving equation (4.4) with λ = 5 and H is a Gaussian
high-pass filter with σ = 3 which has a cut-off frequency fc ≈ 0.17
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TABLE 4.1: MAE of the six signals at various SNR levels.

SNR = 1 SNR = 2

Signal GTV TV Wavelet GTV TV Wavelet

Blocks 0.235 0.174 0.217 0.289 0.179 0.219
G2 db1 G2 db1

Bumps 0.215 0.214 0.251 0.257 0.253 0.286
H4, 0.2 db5 G1 db5

Heavy Sine 0.130 0.131 0.128 0.142 0.175 0.152
G3 db3 G3 db3

Doppler 0.205 0.227 0.188 0.251 0.292 0.214
G3 sym5 G2 sym5

Quadchirp 0.597 0.611 0.643 0.686 0.710 0.915
G2 bior2.8 G1 bior2.8

Mishmash 0.596 0.633 0.697 0.708 0.801 1.297
H12, 0.8 bior2.8 H8, 0.8 bio2.8

SNR = 5 SNR = 10

Signal GTV TV Wavelet GTV TV Wavelet

Blocks 0.336 0.190 0.198 0.349 0.208 0.189
G2 db1 G2 db1

Bumps 0.295 0.309 0.317 0.332 0.354 0.352
G1 sym5 G1 sym5

Heavy Sine 0.164 0.240 0.190 0.190 0.300 0.197
G3 sym5 G2 sym5

Doppler 0.318 0.395 0.255 0.368 0.476 0.276
G1 db5 G1 sym5

Quadchirp 0.723 0.789 0.926 0.734 0.828 0.919
H4, 0.6 sym5 H24, 0.6 sym5

Mishmash 0.741 0.956 3.199 0.753 1.005 6.425
H8, 0.8 bior2.8 H8, 0.8 bior2.8
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FIGURE 4.4: Comparison between filtering a noisy signal using
TV (4.2) vs using the proposed model (4.4); the proposed model

doesn’t suffer from the staircasing phenomenon.

4.4 Chapter summary

In this chapter, one of the main drawbacks of the total variation model was
addressed, namely the staircasing phenomenon by using a simple general-
ization of the model. It was demonstrated that based on the signal charac-
teristics, better denoising performance is achievable by interpreting the finite
difference operator D as a half-band high-pass filter, which made it possible
to replace it with another banded matrix H of a high-pass filter with pre-
scribed bandwidth. Extensive simulations on six types of test signals and
comparison with the original TV model and wavelet transform based de-
noising have been conducted to evaluate the performance of the proposed
generalization.
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Chapter 5

Discrete Laplacian operator and its
applications

5.1 Introduction

Two main operations and building blocks in many engineering disciplines
in general [108, 109], image processing and computer vision tasks in partic-
ular [110], are first and second order derivatives, otherwise known as the
Gradient and Laplacian. The ubiquity of these operators comes from the way
systems and problems are modelled. Mathematical models relying on the
language of calculus are at the centre. Some of these modelling paradigms
include variational methods, partial differential equations (PDE), statistical
and linear/non-linear optimization models.

Over the years, many attempts have been dedicated towards the general-
ization of those operators to different settings. Among the generalizations is
the graph Laplacian [20] which found numerous applications in signal and
image processing [111].

Of relevance to this work, is the generalization of integer order differential
and integral operators to fractional orders. Fractional Calculus (FC) is a 300
years old concept dating back to the days of l’Hôpital and Leibniz [112]. FC
has received increased interests over the last 30 years mainly due to their
long memory property [109]. For a more recent historical survey, the reader
is referred to [113].

Fractional-order derivatives have found numerous applications in elec-
tronic circuits and control systems [108, 114], signal processing [115], image
processing, computer vision and pattern recognition [116, 117], biological
systems and economics [118].
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5.1.1 Fractional derivatives

The integer differential and integral operators are defined uniquely, and they
are local. In other words, they consider the values of very close neighbouring
points to the point of interest. On the other hand, fractional-order differential
operators are non-local; larger neighbourhoods are considered in the compu-
tation resulting in long-term memory effect. This is one of the main reasons
behind their appeal. There is a multitude of definitions of the fractional order
derivatives [119, 120]. The notation Dν is adopted to denote the derivative of
a fractional order ν. The following is a list of the most common definitions:

• Forward Grunwald-Letnikov (GL)

Dν f (z) = e−jθν lim
|h|→0

∑∞
k=0(−1)k

(
ν

k

)
f (z− kh)

|h|ν (5.1)

where
(

ν
k
)

is the binomial coefficient and h = |h|ejθ is a complex number
with θ ∈ (−π, π].

• Riemann-Liouville (RL) fractional derivatives

Dν f (t) =
1

Γ(n− ν)

dn

dtn

∫ t

a

f (τ)
(t− τ)ν−n+1 dτ (5.2)

where n− 1 < ν < n and Γ(.) is Euler’s Gamma function.

• Fourier domain fractional derivatives

Dν f (t) = F−1 [(jω)νF{ f }(ω)] , Re ν > 0 (5.3)

where ω is the Fourier variable, F and F−1 are the Fourier and the
inverse Fourier transform respectively.

Most of the fractional derivative formulations start from a continuous for-
mula which requires discretization to facilitate implementation.

5.1.2 Fractional Laplacian (FL)

The idea of extending the standard Laplacian operator to fractional order is
an old idea (c.f [121] and references therein). The standard Laplacian is a local
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operator. Local operators utilize the immediate neighbourhood only in the
calculation where outliers can have big impact on the result. Many attempts
have been made to create non-local operators that can alleviate the short-
comings of local operators in image processing applications [122]. Utilizing
fractional-order Laplacian is such an attempt.

In a similar vein to the fractional derivatives, a multitude of fractional
Laplacian (FL) definitions have been proposed over the past few decades
but, a consensus on the most appropriate definition for an application is yet
to be reached [123].

Of special interest to our work are two variants: the spectral fractional
Laplacian [123] which is defined as follows:

− (−∆)α/2 f (x) := ∑
i∈N

fiλ
α/2
i φi(x) (5.4)

where ∆ is the continuous Laplacian operator applied on the function f (x).
φi and λi are the eigenfunctions and eigenvalues of the continuous Laplacian
∆ respectively.

Secondly, the Fourier-transform based definition (pseudo-differential) [123]

F
{
(−∆)α/2 f

}
(ω) = |ω|αF{ f }(ω) (5.5)

It is important to note that both definitions are continuous, and a discretiza-
tion step is required to make them applicable to digital data. For a compre-
hensive list of the different formulations, the reader is referred to [118, 121,
123] and references therein.

5.1.3 Related works

Fractional derivative operators in image processing

Fractional-order derivatives have found numerous applications in image pro-
cessing. These applications can be categorized into three main categories
based on the framework under which the derivative is used. The first cat-
egory is linear filtering. In this category, a fractional-order derivative of an
image is calculated through a linear filtering process. In some applications,
the gradient image is the goal such as in edge detection [124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137] which is the earliest image pro-
cessing application of fractional calculus. Another application is to use the
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gradient image to enhance the input image through, for example an un-sharp
masking scheme [138, 139, 140, 141, 132, 142, 143]. The third application in
this category is contrast enhancement [144, 135, 145, 146].

The second category is referred to as PDE-based models. Modelling of im-
age restoration problems using integer derivatives dates back to the late 80s
and early 90s but utilizing fractional-order derivatives was first presented
in 2007 [147] for the image denoising application and was later refined, im-
proved and adopted for a number of applications. Among these applications
are image denoising [148, 149, 150, 151, 152, 153, 154, 155], contrast enhance-
ment [156, 157], image deblurring [158] and image super-resolution [159,
160].

The third category is related to the second and it is here referred to as
variational models for image restoration problems. Similar to PDE(s), vari-
ational models with integer derivatives in the context of image processing
date back to the 80s, but the introduction of fractional-order variational mod-
els is recent. Applications in this category include image denoising [161,
162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172], in-painting [164, 173],
fusion [162, 170], non-rigid registration [174], super-resolution [162] and op-
tical flow estimation [175].

For the sake of completeness, a fourth category is covered that is based on
a global optimization technique namely: fractional-order Darwinian particle
swarm optimization (FODPSO). The reason for distinguishing this category
is that the fractional-order derivative is not applied to the image but to a
parameter of the model at hand such as the optimal threshold. The main
application in this category is image segmentation [176, 177, 178].

Fractional Laplacian operators in image processing

The fractional Laplacian has not seen the same amount of adoption as is the
case with the fractional derivative in signal and image processing. In [179],
the authors introduced a scale-space model. In [180], the authors proposed
a quadratic optimization model for blind image deconvolution involving the
fractional Laplacian. In [181], the authors proposed a PDE model for vec-
tor field estimation flow-sensitive MRI imaging. In [182], the authors have
demonstrated image denoising by solving a fractional diffusion equation
(PDE). In [183], the authors proposed a variational model for image denois-
ing based on the fractional Laplacian and later was extended to tomographic
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reconstruction involving the fractional Laplacian as a regularizer [184].

5.1.4 Contributions

The contributions in this work can be summarized in the following:

I. Motivated by the construction of the spectral Laplacian (5.4), a discrete
fractional Laplacian is proposed in the form of a matrix operator us-
ing the DCT transform. The discrete construction avoids the need for
discretization which is typically required by the other fractional Lapla-
cian construction techniques. The discretization step in the case of the
pseudo-differential formulation in (5.5) usually involves solving a filter
design problem [185, 186, 187].

II. Motivated by the reliance of the trend filter on the Laplacian operator, a
computationally efficient implementation of traditional trend filtering
is developed in the DCT transform domain.

III. Utilizing the proposed discrete fractional Laplacian, both the traditional
and the `1 trend filters are extended to fractional order and their effec-
tiveness at the image denoising task for higher levels of noise is demon-
strated.

IV. Finally, applications of the proposed fractional Laplacian on a number
of image processing tasks are demonstrated. However, it is important
to stress that state-of-the-art performance in any of these applications
is not claimed. The goal is to demonstrate the potential of the proposed
operator.

The remainder of this chapter is organized as follows. Section 5.2 introduces
the fractional Laplacian in the 1D and 2D cases. In Section 5.3, two groups
of applications for the proposed operator are provided. In the first group
namely: fast trend filters, trend filtering is first introduced followed by a
DCT-based implementation of the `2 trend filter. The trend filtering is then
generalized by proposing a fractional `1 and a fractional `2 trend filters. In
the second group, a number of image processing applications are presented
demonstrating the effectiveness of the proposed fractional Laplacian. Lastly,
a discussion and conclusions are presented in Section 5.4.
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5.2 A Discrete fractional Laplacian operator

5.2.1 Definition for 1D case

The Laplacian operator of single variable continuous function f (x) is defined
as follows:

∆ f (x) =
∂2 f (x)

∂x2 (5.6)

To implement the Laplacian operator, an approximate discretization is used
as follows:

L{ f (x)} = f (x− h)− 2 f (x) + f (x + h)
h2 (5.7)

where L is the discrete Laplacian operator and h is a small constant. This dis-
cretization amounts to uniformly sampling the function f (x) with distance
h. This operation can be implemented as a convolution as follows:

L{ f (x)} = l ∗ f (5.8)

where l = [1,−2, 1] is an FIR filter. The Laplacian in (5.8) can be formulated
as a matrix operator in few different ways based on the boundary condition
assumed. In this work a specific formulation with desirable properties is
chosen as will be demonstrated later. Specifically, the Laplacian operator
L ∈ RN×N is reformulated as follows:

L =



1 −1
−1 2 −1

−1 2 −1
· · ·
−1 2 −1

1 −1


(5.9)

where, the rows between [1, N − 2] 1 are shifts of the FIR filter discussed ear-
lier. The signals of interest are finite, and as can be seen in (5.7), the Laplacian
filter is centred around x. In other words, to perform the convolution in (5.8),
f (x) needs to exist before and after x which, is not true at the boundaries. As
a solution, the signal is extended on both sides [188].

Thus, the first and last rows in (5.9) are different from the middle rows.
This signal extension near the boundary can be performed in several ways [189].

1Numbering starts from 0
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In (5.9), a symmetric signal extension is assumed as will be discussed next.
The operator in (5.9) has the same first and last rows, this means equal

boundary condition on both sides. For a signal u ∈ RN×1, the boundary con-
dition in (5.9) assumes the signal u has zero slope at the boundary (u̇(0) = 0,
u̇(N− 1) = 0) and is symmetrically extended around the midpoint (u(−1) =
u(0), u(N) = u(N− 1)). For more details about the boundary conditions, the
reader is referred to [189].

It is important to note that this particular operator in (5.9) is diagonaliz-
able by the DCT type-II matrix [189] denoted by M

L = MTEM (5.10)

where E is a diagonal matrix of which the diagonal elements denoted {e(k)}
are the eigenvalues of L. This spectral decomposition is real which results in
efficient computation.

Motivated by the spectral Laplacian in (5.4) and the diagonalization prop-
erty of the discrete Laplacian in (5.10), the fractional Laplacian Lα

2 is defined
as follows

Lα = MTEαM (5.11)

where Eα is diagonal matrix with the diagonal elements raised to the power
α.

To consolidate, we started from the discrete Laplacian filter l = [1,−2, 1]
which we used to formulate the matrix L in (5.9). Then we performed the
eigendecomposition in (5.10) and we raised the diagonal eigenvalues matrix
E to the power α to finally get the fractional Laplacian matrix Lα in (5.11).

Recall that when α = 1 in (5.11) the standard Laplacian in (5.9) is recov-
ered but, for α in the open set α ∈ (0, 1) different fractional Laplacian filters
are constructed. The fractional Laplacians constructed are still diagonalizable
by the DCT matrix as in (5.11) and share the same structure as the standard
Laplacian in (5.9) with the difference that smaller values of α result in less
sparse operator Lα. In other words, smaller α results in Laplacians with more
non-zero coefficients hence the memory effect.

As a result of the increase in the number of coefficients, two things become
clear: firstly, the dimensions of the fractional Laplacian need to be larger for
smaller α to reduce the numerical inaccuracy due to truncation. Secondly, the

2The subscript notation is adopted for α to avoid the confusion with the exponent as L is
a matrix operator



88 Chapter 5. Discrete Laplacian operator and its applications

number of rows in Lα that are involved in the boundary condition increases.
One way to recover a good filter lα from the matrix Lα is to choose the middle
row.

It is important to note that the eigenvalues of Lα ∈ RN×N can be obtained
by the relation e(k) =

[
2− 2 cos

(
k π

N
)]

[190]. Thus, the eigenvalues of the
fractional-order Laplacian Lα are defined as follows:

e(k; α) =
[
2− 2 cos

(
k

π

N

)]α
k = 0, 1, . . . , N − 1. (5.12)

and the coefficients of the eigenvectors matrix are the same as DCT-II matrix
which are as follows:

M(i, k) =

√
2
N

cos
[(

k +
1
2

)
iπ
N

]
, k, i = 0, 1, . . . , N − 1 (5.13)

To get the FIR filter lα from the operator Lα, the N−1
2 th row of Lα is chosen

based on the earlier discussion about avoiding the boundary condition. It
can be readily demonstrated that the coefficients of the lα have the following
form:

lα(k) =
N−1

∑
i=0

e (i; α) M ((N − 1)/2, i) M (k, i) (5.14)

5.2.2 Extension to the 2D case

Generalization to the 2D case is straight-forward as the 2D-DCT is usually
performed as 1D-DCT calculated once on the rows and once on the columns [189].
The benefits of this formulation of the fractional Laplacian in the DCT do-
main over the traditional Fourier transform formulation are twofold. First,
the fractional Laplacian filter lα is easily constructed allowing for flexibility
in applications. Second, it is computationally more efficient as filtering in
the DCT domain avoids the need for the image extension as required by the
DFT [191].

5.2.3 Computational complexity analysis

From the earlier development, it can be noticed that the proposed fractional
Laplacian has two equivalent forms. The first being a matrix operator Lα ∈
RN×N which is constructed using (5.11). To calculate the fractional Laplacian
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of a signal using Lα, a matrix-vector multiplication is performed, which has
O(N2) computational complexity.

The second form is a linear FIR filter lα ∈ RN which can be constructed
directly using (5.14). Calculating the fractional Laplacian of a signal of length
M using lα is a convolution operation with a computational complexity of
O(NM).

5.2.4 Discussion

The discussion about the other formulations of the matrix operator L have
been delayed for a reason that will become clear soon. The alternative to the
proposed Laplacian is to formulate it as a circulant matrix, assuming that the
signal has a periodic extension as follows [189]:

L =



2 −1 −1
−1 2 −1

−1 2 −1
· · ·
−1 2 −1

−1 −1 2


(5.15)

The L matrix in this formulation is diagonalizable by the discrete Fourier
matrix (DFT) [189] which could be generalized the same way done in (5.11).
However, the proposed Laplacian is computationally more efficient. This
computational efficiency comes from two aspects. Firstly, the DFT matrix is
complex while, the DCT is real. Secondly, the boundary condition in (5.15)
assumes that the signal is periodic, in other words, the signal needs to be
padded with a copy of itself on both sides creating discontinuities along the
boundaries. On the other hand, the Laplacian in (5.9) assumes that the signal
is padded with a mirror-image of itself along the boundary. This is a natural
boundary condition and it is what MATLAB uses in the imfilter command
with the symmetric option.

In [192], the authors have proposed to compute the fractional derivatives
of images implicitly by utilizing a discretization of the following result [193]:

Dν cos(ωt) = ων cos
(

ωt +
νπ

2

)
(5.16)
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where ν is the fractional exponent and ω is the continuous frequency vari-
able. In other words, in contrast to what is done in this work, the authors do
not provide a direct method for constructing the fractional differential oper-
ator (Dν) in [192]; rather a method to compute its effect on a function. Being
able to construct the operators affords more flexibility and applicability in
linear algebraic settings.

In [194], the authors propose to approximate the function (5.16) in the
DCT domain by treating it as a FIR filter design problem. This technique
produces coefficients of a FIR filter which approximates the ideal fractional
derivative operator. The main difference between this technique and ours
is that our technique does not use an approximation and it generalizes the
Laplacian operator rather than the first order derivative.

5.3 Applications

The Laplacian operator is very ubiquitous in applications and generaliza-
tions of which can be examined on such applications. The discussion about
the applications have been split into two groups. The first group deals with
a specific trend estimation technique which relies on the standard Laplacian,
it is briefly introduced, followed by a new implementation technique, and
finally, a generalization is demonstrated. In the second group, five image
processing applications are considered.

5.3.1 Fast trend filters in the DCT domain

Definition

Estimating the trend of a signal or time-series is a common problem in many
disciplines [195]. More specifically, given a signal b ∈ RN×1, it is assumed
that the signal is composed of two components: a slowly varying component
u known as the trend and a rapidly varying white Gaussian noise component
denoted ε as follows:

b = u + ε (5.17)

Trend estimation is the process of producing an estimate û for the under-
lying trend u. The literature on trend estimation is very rich with various
parametric and non-parametric techniques [196]. In this chapter however,
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the interest is in a specific trend estimation technique which will be referred
to as trend filter.

Concretely, capital and small letters represent matrices and column vec-
tors respectively. For example, the nth column vector of the matrix M is
denoted Mn, while the nth element of a vector u is denoted un. The `p−norm
of u is ‖u‖p. The trend filter [197, 195] is formally defined as follows:

argmin
u
‖u− b‖2

2 + λ‖Lu‖p
p (5.18)

where λ is a regularization parameter controlling the emphasis placed on
the regularizer ‖Lu‖p

p. A special case of the model (5.18) is the general-
ized Wiener filter [198, 199] when p = 2, which is otherwise known as the
Hodrick-Prescott trend filter in the statistics community [197]. By utilizing
the fact that the Laplacian matrix L is diagonalized by the DCT matrix (5.10),
the cost function can equivalently be defined in the DCT domain:

argmin
u
‖u− b‖2

2 + λ‖Lu‖2
2 = ‖ū− b̄‖2

2 + λ‖MTEū‖2
2 (5.19)

where ū = Mu and b̄ = Mb. Minimizing the cost function yields

ū(k) =
b̄(k)

1 + λe(k)2 (5.20)

This result shows that the trend filter can be very efficiently implemented in
the DCT domain as an element-wise division since the eigenvalues e(k) can
be pre-calculated.

This result also allows us to interpret the trend filter as a low-pass filter
in the DCT domain. To this end, let G = MT, the trend filter can thus be
represented as follows:

u = Gū (5.21)

=
N

∑
k=1

ū(k)G(k) (5.22)

=
N

∑
k=1

b̄(k)
1 + λe(k)2 G(k) (5.23)
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On the other hand, the observed vector b can be represented as

b = Gb̄ (5.24)

=
N

∑
k=1

b̄(k)G(k) (5.25)

Comparing (5.23) with (5.25), Upon brief inspection, an interpretation of the
trend filter as a shrinkage operation in the DCT domain can be gleaned. The
level of shrinkage is controlled by the regularization parameter λ. Since each
column vector G(k) can be regarded as a frequency component with k = 0
corresponding to the DC and k = N − 1 corresponding to the highest fre-
quency, the shrinkage is also frequency dependent. It can be shown that the
eigenvalues have the property e(0) = 0 and e(i) < e(k) for i < k. As a result,
a higher frequency component will be shrunk more. Similar to a linear low-
pass filter which attenuates the high frequency components in the Fourier
transform domain, the trend filter is a low-pass filter which attenuates the
high frequency components in the DCT domain.

Fractional `2 trend filter

As an application of the proposed operator in (5.11), the trend filter (5.19) is
generalized by replacing the L operator with Lα operator leading to a new
model. The new model is called: fractional trend filter which is the minimiza-
tion of the following cost function:

‖u− b‖2
2 + λ‖Lαu‖2

2 (5.26)

where λ, similar to (5.18), is the regularization parameter which controls the
emphasis placed on the regularizer. The solution to this cost function, can be
performed in DCT domain as follows:

ū(k) =
1

1 + λe(k)2α
.b̄(k) (5.27)

Compared with (5.20), more control over the magnitude response is achieved
by changing α. To demonstrate the impact of α on the shape of the filter, the
filter function (5.27) is plotted at various values of α in Figure 5.1. To facilitate
the comparison, the x-axis is normalized because, at each α a new Laplacian
Lα is generated that has its diagonal elements e(k) ∈ [0, 4α]. It is important to
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note that a similar model was proposed in [180] with the difference that the
solution was done in the Fourier domain.

FIGURE 5.1: The shrinkage effect of the fractional `2 trend filter
(first term in (5.27)) using various values of α.

From Figure 5.1, it is noticed that lower values of α allow more high fre-
quencies to pass than the higher values of α.

Fractional `1 trend filtering

The `1 trend filtering [195] is extended to fractional `1 trend filtering of the
form:

argmin
u
‖u− b‖2

2 + λ‖Lαu‖1 (5.28)

To solve this problem, the ADMM algorithm [17] is adopted as follows:

argmin
u,z

‖u− b‖2
2 + λ‖z‖1 +

ρ

2
‖z− Lαu + v‖2

2 (5.29)

In Algorithm 2, lα is one of the middle rows of Lα. It is a FIR filter. In 1D,
lα and its transpose lT

α are convolved with signals. In 2D, two kernels using
lα are generated for the x and y directions as shown Figure 5.2. lT

α is identical
to lα as they are symmetric around the centre. For images, an an-isotropic
extension of the 1D model is used as follows
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Algorithm 1: ADMM for Fractional `1 trend filter using matrix form

Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk||22/uk+1 > ε do
3 uk+1 =

(
I + ρLT

α Lα

)−1 (b + ρLT
α

(
zk − uk))

4 zk+1 = Sλ/ρ

(
Lαuk+1 + vk) where Sκ(a) = (a− κ)+ − (−a− κ)+

5 vk+1 = vk + Lαuk+1 − zk+1

6 end

Algorithm 2: ADMM for Fractional `1 trend filter using convolutions

Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk||22/uk+1 > ε do
3 uk+1 = b− ρ

(
lT
α ∗ (zk − uk)− lT

α ∗ lα ∗ uk)
4 zk+1 = Sλ/ρ

(
lα ∗ uk+1 + vk)

5 vk+1 = vk + lα ∗ uk+1 − zk+1

6 end

argmin
u
‖u− b‖2

2 + λ (‖H1 ∗ u‖1 + ‖H2 ∗ u‖1) (5.30)

lα(−2)

lα(−1)

lα(0)

lα(1)

lα(2)

lα(−2) lα(−1) lα(0) lα(1) lα(2)

FIGURE 5.2: 5 × 5 2D masks for filtering images in (5.30)
(H1, H2)
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Algorithm 3: ADMM for Fractional `1 trend filter using FFT

Result: uk+1

1 u0 = b, z0, v0 = 0;
2 while ||uk+1 − uk||22/uk+1 > ε do

3 uk+1 = F−1
{F{b}+ρF{lα}�F{zk−vk}

1+ρF{lα}2

}
4 zk+1 = Sλ/ρ

(
Lαuk+1 + vk)

5 vk+1 = vk + Lαuk+1 − zk+1

6 end

Discussion

It is notable that the fractional Laplacian in (5.14), being purely discrete, is
a FIR filter of order N. To determine the order of the filter, the structure of
the Laplacian should be exploited. The Laplacian filter is even symmetric
and has a positive and relatively high middle coefficient surrounded on both
sides by negative coefficients which decay towards zero approaching both
ends. Smaller values of α correspond to filters with sharper roll-off in the fre-
quency domain and as a result the filters are generally longer in the discrete
domain.

To determine the length of the filter lα, an empirical procedure is pro-
posed that iteratively increases the length of the filter until the first and last
coefficients become lower than a user specified threshold as can be seen in Al-
gorithm 4.

Algorithm 4: Empirical procedure for determining the length N of
the fractional-order Laplacian filter lα

Input: α
Output: lα, N

1 threshold = 10−3;
2 N = 3;
3 lα = use (5.14) ;
4 while ∑ ι(|lα|>threshold) = N do
5 N ← N + 1
6 Calculate lα using (5.14)
7 end

Frequency and impulse response of fractional Laplacian of various α’s is
presented in Figure 5.3
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FIGURE 5.3: Frequency response of fractional Laplacian lα.
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FIGURE 5.4: Impulse response of fractional Laplacian lα.
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Numerical examples

The use of the fractional trend filter in 1D and 2D settings is demonstrated.
In the 1D case, a synthetic time-series data with a piece-wise linear trend and
additive white Gaussian noise is generated. In Figures 5.5 and 5.6 synthe-
sized data, synthesized trend and filters’ results are reported for three val-
ues of α ∈ {1, 0.6, 0.2}. From Figures 5.5 and 5.6 it is noticed that different
fractional orders of trend filtering result in trend estimates that belong to dif-
ferent function families. In the case of α = 1 and `1 fractional trend filter,
which corresponds to the original `1 trend filter, the trend estimates are close
to piece-wise linear but that is not the case for α = 0.6 or 0.2.

In the 2D case, the fractional trend filter is tested on the image denois-
ing task. An experiment is conducted on six greyscale images (cameraman,
house, lena, peppers, pirate and blonde woman) shown in Figure 5.7. Start-
ing with a ground truth image ũ then noise is added to it with three noise
levels σ ∈ {15, 25, 50} forming an image b. The experiment is conducted
at various values of α ∈ {0.1 . . . 1} with the goal of recovering an image û
as close as possible to ground truth image ũ. Each experiment was run for
10 times (noise instances) and the average performance across the 10 runs is
reported. Performance is measured in the form of mean squared error:

MSE =
1

mn

m

∑
i=1

n

∑
j=1

[ũ (i, j)− û (i, j)]2. (5.31)

In the case of fractional `1 trend filtering, the results can be found in Ta-
ble 5.1. A pattern is noticed in the results that for higher noise levels, better
reconstruction is achievable with smaller α. It is important to note here that
the best regularization parameter λ was chosen using an exhaustive search.

In the case of fractional `2 trend filtering, experimental results can be
found in Table 5.2. Similar procedure to `1 case was conducted. The re-
sults here again show that there is a benefit in using a fractional Laplacian
for higher levels of noise.

In some cases, such as the “Cameraman” image and the “House” image,
it turns out that the setting α = 1 (corresponding to the Laplacian operator)
leads to the best results. Such results should not be regarded as a weakness
of the fractional Laplacian operator. Instead, this is an advantage of the frac-
tional Laplacian operator which includes the Laplacian operator as a special
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TABLE 5.1: Mean square error (MSE) of denoised image images
for six images using fractional `1 trend filtering.

(A): Cameraman

Noise σ

α 15 25 50

0.1 10.87 19.95 34.14
0.2 11.79 18.56 37.11
0.3 13.69 19.40 44.17
0.4 13.78 23.01 34.85
0.5 11.24 16.70 31.75
0.6 9.12 14.70 32.82
0.7 9.61 15.09 32.54
0.8 8.39 15.79 32.96
0.9 8.49 15.06 33.36
1 8.75 15.23 33.84

(B): House

Noise σ

α 15 25 50

0.1 14.65 15.58 20.15
0.2 11.66 12.75 18.32
0.3 9.90 11.15 18.16
0.4 9.03 10.45 20.00
0.5 8.73 10.40 24.98
0.6 8.80 11.10 35.01
0.7 9.26 13.54 27.04
0.8 10.90 18.74 21.82
0.9 10.91 14.54 24.00
1 9.72 12.09 26.45

(C): Lena

Noise σ

α 15 25 50

0.1 11.56 16.86 21.17
0.2 13.56 14.47 19.51
0.3 12.23 13.20 19.37
0.4 11.66 12.68 21.04
0.5 11.49 12.56 25.63
0.6 11.53 12.68 35.54
0.7 11.64 13.03 28.89
0.8 11.78 14.13 23.85
0.9 11.93 16.11 26.24
1 12.09 16.81 25.17

(D): Peppers

Noise σ

α 15 25 50

0.1 11.15 17.34 25.06
0.2 12.94 14.55 25.33
0.3 11.12 13.63 28.64
0.4 10.47 14.59 36.11
0.5 10.88 18.17 35.43
0.6 13.07 16.87 29.12
0.7 9.64 13.38 25.33
0.8 9.90 14.52 26.24
0.9 8.23 12.41 27.65
1 8.69 12.49 29.50

(E): Pirate

Noise σ

α 15 25 50

0.1 11.61 16.22 21.49
0.2 12.99 13.94 20.39
0.3 11.69 12.71 21.09
0.4 11.10 12.18 24.28
0.5 10.91 12.07 31.71
0.6 10.94 12.25 36.36
0.7 11.04 12.88 24.59
0.8 11.19 15.26 27.61
0.9 11.35 16.90 22.56
1 11.52 15.65 23.68

(F): Blonde

Noise σ

α 15 25 50

0.1 14.43 15.37 19.86
0.2 12.02 13.15 18.57
0.3 10.74 12.11 18.81
0.4 10.28 12.05 20.90
0.5 10.46 13.07 25.75
0.6 11.63 16.24 35.17
0.7 12.36 20.73 28.09
0.8 9.96 14.25 29.38
0.9 10.17 15.35 23.53
1 10.48 13.33 25.39
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 = 1

 = 0.6

 = 0.2

FIGURE 5.5: Fractional `2 trend filtering of synthesized data.
Dashed black is the synthetic data. Solid red is the original
trend. Solid blue is the filter result with λ chosen to minimize
the mean squared error between the filter output and the origi-

nal trend.

case. Compared with the Laplacian operator, the fractional Laplacian opera-
tor permits the user to “tune” the parameter α to achieve the desired result.
As such, in other cases, better results were achieved by tuning α.

To get an idea about the difference in performance between the presented
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 = 1

 = 0.6

 = 0.2

FIGURE 5.6: Fractional `1 trend filtering of synthesized data.
Dashed black is the synthetic data. Solid red is the original
trend. Solid blue is the filter result with λ chosen to minimize
the mean squared error between the filter output and the origi-

nal trend.

fractional trend filters and the state-of-the-art in image denoising, it is com-
pared with BM3D [200] provided with the underlying noise standard devia-
tion (not an estimate) in Table 5.3. BM3D is not the only state-of-the-art filter,
but a representative example to demonstrate the performance gap between
the fractional trend filter and the state-of-the-art in image denoising.
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TABLE 5.2: Mean square error (MSE) of denoised image images
for six images using fractional `2 trend filtering.

(A): Cameraman

Noise σ

α 15 25 50

0.1 12.75 18.68 31.44
0.2 11.38 18.70 21.83
0.3 10.82 14.58 19.10
0.4 11.12 13.10 17.80
0.5 10.06 12.59 17.15
0.6 9.50 12.31 16.87
0.7 9.21 12.15 17.03
0.8 9.08 12.07 17.51
0.9 9.01 12.04 18.13
1 8.97 12.03 18.83

(B): House

Noise σ

α 15 25 50

0.1 12.17 17.18 28.01
0.2 11.12 15.83 19.42
0.3 10.29 11.94 16.45
0.4 8.32 10.66 14.83
0.5 7.56 9.95 13.94
0.6 7.21 9.51 13.87
0.7 6.99 9.25 14.47
0.8 6.84 9.13 15.35
0.9 6.75 9.23 16.33
1 6.69 9.45 17.31

(C): Lena

Noise σ

α 15 25 50

0.1 12.61 17.88 28.38
0.2 11.09 17.53 20.79
0.3 10.43 13.74 18.07
0.4 10.51 12.59 16.70
0.5 9.75 12.17 16.03
0.6 9.42 11.95 15.96
0.7 9.30 11.86 16.43
0.8 9.27 11.83 17.14
0.9 9.26 11.85 17.94
1 9.28 11.91 18.77

(D): Peppers

Noise σ

α 15 25 50

0.1 12.69 18.59 31.35
0.2 10.86 18.12 21.37
0.3 9.68 13.10 17.81
0.4 9.30 11.54 15.97
0.5 8.38 10.86 15.01
0.6 8.05 10.47 14.77
0.7 7.87 10.25 15.24
0.8 7.76 10.14 16.01
0.9 7.69 10.14 16.89
1 7.66 10.27 17.80

(E): Pirate

Noise σ

α 15 25 50

0.1 12.47 17.62 27.68
0.2 10.88 16.99 20.33
0.3 10.11 13.37 17.67
0.4 10.13 12.27 16.36
0.5 9.34 11.82 15.73
0.6 8.99 11.58 15.67
0.7 8.85 11.46 16.13
0.8 8.79 11.41 16.83
0.9 8.76 11.41 17.62
1 8.75 11.45 18.45

(F): Blonde

Noise σ

α 15 25 50

0.1 12.01 18.33 24.64
0.2 11.46 15.58 19.16
0.3 10.98 12.55 16.71
0.4 9.42 11.60 15.41
0.5 8.78 11.14 14.78
0.6 8.55 10.91 14.91
0.7 8.45 10.80 15.53
0.8 8.41 10.76 16.35
0.9 8.39 10.81 17.24
1 8.40 10.95 18.14
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TABLE 5.3: Mean square error (MSE) of denoised image images
for six images using BM3D.

Noise σ

α 15 25 50

Cameraman 5.60 7.47 10.87
House 4.26 5.47 8.22
Lena 6.47 8.66 12.31
Peppers 5.38 7.29 11.05
Pirate 7.20 9.53 13.39
Blonde 5.88 7.90 11.66
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FIGURE 5.7: Grayscale images (256× 256) used in the denoising
experiments. (a) cameraman, (b) house, (c) lena, (d) peppers, (e)

pirate and (f) blonde woman.
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5.3.2 Image processing applications

1D filtering

To get a better idea about the effect of using the proposed fractional Lapla-
cian, a comparison on a test signal from the Wavelet Toolbox in MATLAB
named blocks is conducted. The choice of this signal was made because; it
is a piece-wise constant signal with sharp edges, allowing for clearer demon-
stration of the impact of the filters on edges. Results of linear filtering in Fig-
ure 5.8 demonstrate the long memory effect. The fractional Laplacian with
smaller values of α have longer memory effect than the standard Laplacian.

1 128 256 384 512

FIGURE 5.8: Blocks signal (dashed black) filtered using frac-
tional Laplacian lα (solid red) with different values of α. From

top to bottom are filtered signals with α ∈ {0.1, 0.4, 0.7, 1} .
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Image sharpening

One use case for fractional Laplacian is to increase the image sharpness as
follows:

J = I + γ(Hα ∗ I) (5.32)

where γ is an amplification factor and Hα is the 2D isotropic fractional Lapla-
cian kernel in Figure 5.9 formed by adding two kernels similar to the ones
in Figure 5.2.

lα(−2)

lα(−1)

lα(1)

lα(2)

lα(−2) lα(−1) 2lα(0) lα(1) lα(2)

FIGURE 5.9: 5× 5 2D isotropic fractional Laplacian (Hα).

Figure 5.10 is a comparison of image sharpening performance between
the standard Laplacian (α = 1), the fractional Laplacian (α = 0.5) and the
guided filter [201]. The results in Figure 5.10 clearly demonstrate that a
sharper image was achieved using a fractional Laplacian with α = 0.5 than
the standard Laplacian (α = 1), this results is expected as the fractional-order
Laplacian captures more information than the standard Laplacian as can be
seen in the impulse responses of Laplacian filters in Figure 5.3. Sharpen-
ing using the guided filter is presented as a comparison with a state-of-the-
art edge-aware filter. Recall that the fractional Laplacian is a linear operator
while the guided filter is non-linear.
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FIGURE 5.10: Image sharpening application. (a) is the original
input image. (b) is sharpened image using the guided filter. (c)
is sharpened image with α = 1. (d) is sharpened image with
α = 0.5. Sharpened images are produced according to (5.32)
with γ = 2. In the case of the guided filter, the residual of

filtering is boosted (J = I + γ(I −GF(I)).

Edge detection

The literature on edge detection is rich and it is beyond the scope of this
study to list and compare with all techniques in the literature however, the
potential use of the proposed fractional Laplacian in this task is being ex-
amined. Starting with the traditional Marr-Hildreth edge detector [202]. A
greyscale image is first smoothed with a Gaussian filter to reduce the impact
of noise and make the detection more robust. This is followed by Laplacian
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Gaussian
filter
Gσ

I
Laplacian

filter
H

Zero-
crossing
detection

Thresholding
with T J1

Gaussian
filter
Gσ

I

Fractional
Laplacian
filter Hα

Zero-
crossing
detection

Thresholding
with T J2

FIGURE 5.11: Block diagram of the Marr-Hildreth edge detector
(top) and the extended version with our fractional Laplacian

(bottom).

filtering step to find the edges. Filtering an image with the Laplacian kernel
results in zero-crossings where edges are potentially located. Next, slopes at
the zero-crossings are computed and finally a threshold T is applied to keep
significant edges only. The algorithm is summarized in Figure 5.11.

Marr-Hildreth edge detector is generalized by replacing the Laplacian by
its fractional-order generalization.

Figure 5.12 illustrates the results that can be achieved using various val-
ues of α. In Figure 5.12, it is clear that more robust edge detection in terms of
edge lines can be achieved with values of α other than 1.

Edge detectors based on the second order derivative are known to be sen-
sitive to noise [203] which begs the question: does the fractional Laplacian
suffer from sensitivity to noise as well? To this end, a synthetic image with
various forms of edges is used, these are edges that commonly exist in nat-
ural images, then Gaussian noise is added to it and finally processed it with
the fractional Marr-Hildreth edge detector in Figure 5.13. From Figure 5.13
it is clear that the fractional Laplacian is less sensitive to noise. This result
is expected because the fractional Laplacian has more coefficients (memory
property) than the standard Laplacian.
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FIGURE 5.12: Fractional Marr-Hildreth edge detection. (a) is
the original image. (b) is edge map produced using MATLAB’s
edge command (based on first order derivatives) using default
values. (c) is edge map produced using the standard Marr-
Hildreth. (d) is edge map produced using Fractional Marr-
Hildreth with α = 0.2. Gaussian smoothing with σ = 1 was

used in this experiment.
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FIGURE 5.13: Noise robustness of the fractional Marr-Hildreth
edge detector. (a) is the original image. (b) is a noisy image
formed by adding noise with σ = 0.3 to the original image.
(c) is edge map produced using the standard Marr-Hildreth.
(d) is edge map produced using fractional Marr-Hildreth with
α = 0.1. Gaussian smoothing with σ = 1 was used in this

experiment.
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Shock filtering

Shock filtering was initially proposed by Osher and Rudin [204] for image
enhancement but, the technique received a lot of interest from researchers.
Shock filters are formulated as PDEs that are evolved over time to come up
with the filtered image which is characterized to be piece-wise constant. The
basic formulation of a shock filter is as follows:

∂u
∂t

= − sign(∆u)|∇u| (5.33)

A more robust version utilizes a smoothing operator such as a Gaussian
kernel, and is formulated as follows:

∂u
∂t

= − sign(∆(Gσ ∗ u))|∇(Gσ ∗ u)| (5.34)

Gσ represents a two-dimensional Gaussian filter with σ being a smoothness
parameter and is set to 1 in all experiments in this work.

The proceeding model is extended to fractional order

∂u
∂t

= − sign(Lα(Gσ ∗ u))|∇(Gσ ∗ u)| (5.35)

which can be solved using the explicit scheme [110, Appendix A]

un+1 = un − λ sign(Lα(Gσ ∗ un))|∇(Gσ ∗ un)| (5.36)

This extra parameter α gives more control over the filtering effect. In Fig-
ure 5.14, a comparison between the fractional (α = 0.6) and the standard
Laplacian (α = 1) is presented. The fractional Laplacian produces better ob-
ject segmentation effect with sharper edges than the case with the standard
Laplacian.

Stopping criterion: For values of 0 < α < 1, time stepping (5.36) for a large
amount of time results in images that are not pleasant. To give a sense of
what is happening, and because the shock filter results in piece-wise constant
images, a normalized anisotropic TV-L2 cost at every iteration is computed.
The TV-L2 is:

TV-L2 :
(
‖un − u0‖2

2 + ‖∇xun‖1 + ‖∇yun‖1

)
/N (5.37)
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FIGURE 5.14: α Shock filter of the top input image. Columns
correspond to values of α ∈ {0.6, 1} from left to right. Rows
correspond to values of N ∈ {1, 25, 100} from left to right. The

parameter λ was set to 0.1 for all results.

where N is the number of pixels in the image u. Figure 5.15 demonstrates the
measure TV-L2 for different runs of the shock filter at different values of α.
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Iteration number

T
V

-L
2

FIGURE 5.15: TV-L2 calculated for 600 iterations of the model
in (5.36). Each curve corresponds to one value of α ∈

{0.1, 0.5, 0.9}.

It is clear from Figure 5.15 that the shock filter might not converge. To
avoid the shock filtered result from diverging, TV-L2 is adopted as a stop-
ping criterion as in Algorithm 5. In Figure 5.16, the impact of using differ-

Algorithm 5: Fractional shock filter with stopping criterion
Input: α, Iinput

Output: un+1

1 threshold = 10−3;
2 u0 = Iinput ;
3 while TV-L2 (5.37) > threshold do
4 un+1 using (5.36)
5 n← n + 1
6 end

ent values of α in the proposed shock filter is presented for different images
where, the number of iterations is determined by the stopping criterion.

One thing to notice in Figure 5.16 is that the fractional shock filtering re-
sults in more abstract images and sharper edges. To further validate this ob-
servation, a scanline from the three channels (RGB) is plotted in Figure 5.17
for the four images in Figure 5.16. In each subplot of Figure 5.17, scanlines
of two cases are presented to facilitate visual comparison. It can be observed
in Figure 5.17 that the scanlines for α = 1 are between the lower and up-
per envelopes of the ones with α = 0.1, to understand the reason behind
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FIGURE 5.16: α Shock filter with stopping criterion Algo-
rithm 5. Left column are input image. Middle column is the
output images of shock filter with α = 1 (Standard shock filter).
Right column is the output of shock filtering with α = 0.1. The

parameter h was set to 0.05 in this experiment.

this result, we should consider the operation of the shock filter in (5.36). The
fractional Laplacian (Lα) filters a smoothed version of un at every iteration n
and the sign of the resulting signal is used. In Figure 5.18, a scanline is fil-
tered using the standard Laplacian and the fractional Laplacian with α = 0.1
for comparison, which demonstrates that the fractional Laplacian (α = 0.1)
results in a signal with more negative and positive parts and less zeros com-
pared to the result of the standard Laplacian. This explains the reason behind
the more abstract images achieved using the fractional Laplacian compared
to the standard Laplacian.
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FIGURE 5.17: Scan-lines captured from the RGB (left to right)
channels of the images shown in Figure 5.16. Using the frac-

tional Laplacian results in more abstract lines.
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Horizontal scanline

Filtered scanline with fractional Laplacian (  = 1)

Filtered scanline with fractional Laplacian (  = 0.1)

FIGURE 5.18: Scan-line (line 350) captured from the red channel
of the cat image shown in Figure 5.16. The fractional Laplacian
with α = 0.1 results in more positive and negative signals and

less zeros compared to the standard Laplacian (α = 1)



5.3. Applications 117

α scale-space

The fractional Laplacian could be used as replacement for the standard Lapla-
cian in the heat equation, this is known as α scale-space model [205]:

∂u
∂t

= −Lαu (5.38)

This leads to different diffusion effects and rates. The implementation of
this diffusion can be carried out efficiently in the DCT domain. First, the
explicit scheme [110] is written:

ut+1 = ut −Lαut (5.39)

ut+1 = ut −MTEαMut (5.40)

Mut+1︸ ︷︷ ︸
Ut+1

= Mut︸︷︷︸
Ut

−MMT︸ ︷︷ ︸
I

EαMut︸︷︷︸
Ut

(5.41)

Consequently, the filtered signal at iteration n becomes:

Un = (I − Eα)nU0 (5.42)

A demonstration of the effect of α scale-space is presented in Figure 5.19.
It is important to stress that this is an iterative linear filtering process. The
filters are characterized as having low-pass response. The authors of [179]
have explored combining multiple fractions of the Laplacian implemented
in the Fourier transform domain.
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FIGURE 5.19: α scale-space filtered image on the top. Rows
correspond to values of α ∈ {0.2, 0.4, 0.7, 1} from top to bottom.
Columns correspond to values of N ∈ {1, 3, 10, 30} from left to
right. In the bottom right corner of each image is a plot of the α
scale-space function in (5.42) with the corresponding values of

α and N.
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5.4 Chapter summary

In this chapter, a new technique for constructing a fractional Laplacian was
presented using the DCT transform. The proposed operator is a matrix op-
erator which avoids the need for discretization, a necessary step for imple-
mentation, typically done in DSP-based constructions. The trend filter was
studied and a new DCT-based implementation was provided for it, which
was used later in generalizing trend filters to the fractional-order. The pro-
posed fractional Laplacian allowed us to make the generalization of another
version of the trend filter namely the `1 trend filter to fractional-order.

To test the efficiency of the new operator, it was incorporated in five ap-
plications that traditionally relied on the Laplacian operator. Firstly, the pro-
posed fractional trend filters were used for image denoising, and at higher
noise levels it was shown that the fractional-order Laplacians tends to pro-
duce better results than the standard Laplacian. Secondly, the proposed op-
erator was used in image sharpening and stronger sharpening effect was
achieved compared to the standard Laplacian. Thirdly, Marr-Hildreth scheme
for edge detection was generalized and more robust edge detection was demon-
strated. Fourthly, it was demonstrated that the use of fractional-order Lapla-
cian in shock filtering resulted in better segmented images. Finally, the pro-
posed fractional Laplacian was incorporated in the α scale-space scheme and
it was shown to result in faster diffusion.

Finally, it is worth reiterating; the aim of this chapter is to present an alter-
native way to define the fractional Laplacian operator, which, to the author’s
best knowledge, has not been done before. A demonstration of its potential
application in solving a wide range of problems from data modelling to im-
age processing was provided. It was observed from the simulations that the
performance is sometimes sub-optimal. This is a result of applying the frac-
tional Laplacian operator in a direct and non-sophisticated fashion. Further
improvement can be achieved by using the fractional Laplacian operator as
a building block in some successful algorithms.
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Chapter 6

Conclusion and future directions

Mathematical optimization is a versatile tool in signal and image processing.
Developing algorithms in the form of optimization models makes for a dis-
ciplined approach. In this thesis, four optimization based algorithms were
presented.

In Chapter 2, graph signal denoising was formulated as a quadratic ob-
jective function. The objective function admitted an exact solution but, this
solution involved the calculation of a matrix inverse, a prohibitively expen-
sive task for many applications. Chapter 2 presented a solution based on us-
ing a matrix (graph operator) polynomial filter to approximate the inverse.
The main idea behind the technique is to approximate the eigenvalues of the
inverse using a least squares criterion avoiding the need for the expensive
calculation of the eigendecomposition. The result is a polynomial filter of
low degree, hence computationally efficient.

Chapter 3 presented GAIF, a novel local edge-preserving image filter-
ing technique. GAIF achieved edge-preservation by interpolating between
two patches. More specifically, GAIF can improve the edge-preservation
smoothing ability of linear and non-linear filters. GAIF is computationally
efficient and its edge-preserving smoothing performance was demonstrated
on a number of image processing applications including single image haze-
removal, flash/no-flash image fusion, image detail enhancement and edge
detection.

In Chapter 4, a solution was proposed for one of the main drawbacks of
the total variation model, namely the staircasing phenomenon. The proposed
solution is a simple generalization of the TV model. It was demonstrated that
based on the signal characteristics, better denoising performance is achiev-
able by interpreting the finite difference operator D as a half-band high-pass
filter, which made it possible to replace it with another banded matrix H of a
high-pass filter with prescribed bandwidth.
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Finally in Chapter 5, a new technique for constructing the fractional Lapla-
cian was presented using the DCT transform. The proposed operator is a ma-
trix operator, discrete by construction avoiding the need for discretization, a
necessary step for implementation, typically done in DSP-based construc-
tions. The trend filter was studied and a new DCT-based implementation
was provided for it, which was used later in generalizing trend filters to the
fractional-order. The proposed fractional Laplacian made it possible to make
the generalization of another version of the trend filter namely the `1 trend
filter to fractional-order.

The efficiency of the proposed operator was demonstrated by incorpo-
rating it in five applications that traditionally relied on the Laplacian op-
erator. Firstly, in image denoising, it was shown that at higher noise lev-
els the fractional-order Laplacian tends to produce better results than the
standard Laplacian. Secondly, in image sharpening, stronger sharpening ef-
fect was achieved using the fractional Laplacian. Thirdly, in edge detection,
more robust edge detection was demonstrated using the fractional Laplacian.
Fourthly, in shock filtering, better segmented images were achieved using the
fractional-order Laplacian compared to the standard Laplacian.

Research, by nature, is a never ending endeavour and the future direc-
tions from this work can be summarized in the following:

• It was noted in Section 2.7 that the GAIF filter is constructed from two
images, I and M, produced using the same modality. This is a limiting
factor for many applications that require cross-domain fusion such as
matting/feathering [101] and super-resolution. It is of interest to en-
hance the GAIF by enabling it to handle images from different modali-
ties to test its performance on more applications including multi-sensor
fusion, image vectorization, colourization, non photo-realistic render-
ing and low-light image enhancement. This is one of the future direc-
tions.

• Another direction is based on a noticed departure from convex op-
timization towards non-convex models or convex models with non-
convex terms in the signal and image processing communities [206, 77,
207, 208, 209] due to their flexibility and expressiveness. It is interesting
to formulate non-convex image filters and design solvers for them.
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• Another direction in optimization models is towards data-driven mod-
els [210, 211, 212], where the models are learnable either fully or par-
tially.
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Appendix A

Explicit kernel proof

In the special case of M is a box filter (linear), GAIF is equivalent to the self-
guided GIF. Specifically, the model of the self-guided GIF is:

arg min
ak,bk

C(ak, bk) = ∑
p∈Ωk

(ak Ip + bk − Ip)
2 + εa2

k (A.1)

optimizing for bk results in the following:

bk = µk − akµk = (1− αk)µk (A.2)

where
µk =

1
N ∑

p∈Ωk

Ip

substituting bk in the GIF model yields:

arg min
ak,bk

C(ak) = ∑
p∈Ωk

(ak Ip + (1− αk)µk − Ip)
2 + εa2

k (A.3)

Equation (A.3) is equivalent to GAIF with M = µk.
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