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Abstract 

This thesis aims to advance the knowledge on the development of multimodal perceptual 

mechanisms for artificial intelligent applications inspired by the findings of psychological, 

behavioural and neurobiological studies on human multimodal perception. 

Related literature in this space has focused on modelling the multimodal dynamics of the human 

brain rather than on the application of the developed models to real-world problems, let alone 

the challenges posed by the vast amount of data generated in big data environments. Moreover, 

while most of the previous attempts have focused on the supervised paradigm, multimodal 

fusion techniques for unsupervised environments are still unresolved and an ongoing problem. 

The proposed artificial perceptual model consists of a conceptual model, an architectural model 

and a computational model. It is grounded on the biological mechanisms of neocortex including 

the development of cortical patterns through neural self-organization, hierarchical organization 

of cortical areas generating progressively abstract representations and crossmodal connections 

facilitating different aspects captured via different modalities to interact/affect each other. The 

model is implemented with artificial cortical areas modelled by the growing self-organizing 

map (GSOM) algorithm (Alahakoon et al., 2000), multimodal interactions modelled with a 

multimodal distance metric and a clustering algorithm which facilitate the fusion of modalities 

based on their co-occurrence relationships. The implementation is demonstrated on multimodal 

datasets and evaluated in terms of the quality of the fused representation. 

Most of the multimodal applications need to derive efficient representations to perceive the 

environment effectively. Moreover, the time taken to adapt/retrain the decision models in 

response to environmental changes needs to be reasonable. To this end, this thesis proposes a 

distributed architecture for improving the efficiency and scalability of multimodal fusion. The 

self-organizing mechanism of the architecture is realised through the Distributed GSOM 

algorithm, which is further adapted to three contemporary distributed computing platforms, 



x 

 

Apache Hadoop, Spark and Hama. Furthermore, the multimodal clustering algorithm is adapted 

to distributed computing, and a case study of the overall distributed implementation from the 

physical activity monitoring domain is presented. 
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Chapter 1                                                                    

An Introduction 

1.1  The Digital Environment and Rethinking AI 

Compared to a decade or two ago, artificial intelligence applications operate in a very different 

landscape in terms of the variety, volume and volatility of data available for processing (Allam 

& Dhunny, 2019; O’Leary, 2013). In the past, available datasets were small, unimodal, isolated 

and infrequent. The AI applications had access only to a particular aspect of a situation or event 

at hand with only a small amount of data. Once the AI applications have processed these 

individual aspects of an event or situation, the humans in the loop were responsible for forming 

a holistic understanding of the situation to take appropriate actions (Carvalho et al., 2001; 

Dautenhahn, 1998; Falcone & Castelfranchi, 2001). However, the sensing and data capturing 

in the Big Data era have transformed the datasets being generated (Han et al., 2015; Ma et al., 

2015; Rathore et al., 2015; Williams et al., 2017; Yin Zhang et al., 2014). Now the datasets are 

large, multimodal and multisource, dense and high frequent, starting to represent the natural 

environment more closely. 
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This phenomenon has created what we would like to call a digital environment, which is a 

closer representation of the natural environment than the one derived with smaller, unimodal, 

isolated and infrequent data. The examples include various Internet of Things (IoT) enabled 

environments such as smart home/office/city as well as applications such as autonomous 

robots/vehicles/drones. For instance, the latest autonomous robots carry state-of-the-art sensory 

devices such as multichannel microphones, various proximity sensors, high-resolution imagery 

sensors, force and tactile sensors (Noda et al., 2014), and each of these sensors captures a 

particular aspect of its environment. The key reason for placing such a vast array of sensors to 

capture multimodal sensory inputs in the first place is the inability of a single sensory modality 

to fully capture different aspects or features of the environment. Capabilities to fuse these 

multimodal sensory inputs are required to achieve a coherent and holistic understanding of the 

surrounding. Applications operating with limited information from single/limited sensory 

modalities pose risks to people and objects around them due to their restricted understanding 

of the surrounding. Autonomous applications that require real-time responses require 

computational means to fuse multimodal sensory inputs without any intervention from human 

operators.   

The digital environment closely resembles how a human would perceive his environment. 

Humans do not sense their environment with disparate, unimodal, and limited sensory inputs. 

Instead, they perceive the surrounding in a continuous and holistic manner by analysing and 

fusing different sources of sensory excitations (Stein et al., 2009; Stein & Meredith, 1993). 

Multimodal nature of human sensation is key to the holistic perception as different sensory 

modalities represent different aspects of a given event or a situation. They carry complementary 

information, and when fused together, they support forming a more coherent picture of the 

underlying event or situation. Overall, the sensory modalities act as the mediums that transfer 

the features about the natural environment to the human, allowing him to perceive the 

environment as a continuum.       
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The artificial counterparts in such an environment are tasked with taking appropriate actions to 

maximise the likelihood of achieving their stated goals (Hanheide et al., 2017; Van den Berg et 

al., 2011).  The key to success for them is the accurate sensing and perception of the external 

environment forming a coherent impression about it. A new breed of AI applications that 

operates in such data-intensive digital environment (Y. Pan, 2016) needs to form a holistic 

impression on the digital environment, similar to how humans would form a holistic impression 

on the natural environment from multimodal sensory excitations they receive (Bult et al., 2007; 

Edelman & Gally, 2013; Tononi et al., 1998). The findings on biological mechanisms enabling 

the accurate and holistic perception have played an inspirational role in developing artificial 

systems aimed at accurate sensing and perception, especially how multimodal, multisource 

sensor data could be integrated to improve the representation (Khacef et al., 2020; Velik, 2014). 

With environment sensing being performed across multiple modalities with high frequency, the 

digital environment represented by these data provides a more natural and realistic environment 

for artificial counterparts to interact and operate. The accurate perception of the external 

environment by fusing multimodal data sources is paramount for the success of new AI 

operating in the digital environment as it allows for autonomy and proactiveness compared to 

manual and human-driven AI applications in the past.  

1.2 Motivation - in Brief 

Sensory systems that capture different aspects of an event/object offer richer information about 

the same due to the fact that they jointly capture the same event/object in multiple modalities 

supplementing each other (Mareschal et al., 2012). For example, the vision of the speaker’s 

face, especially the lips, greatly helps in the understanding what is being said (Schwartz et al., 

2004). This positive effect of vision is greatly highlighted in instances where there is significant 

background noise, which is commonly referred to as the ‘cocktail party’ situation (Arons, 

1992). Psychological, behavioural and neurophysiological studies studying this phenomenon 

have identified many cases of interactions between modalities, where the perception of one 

sensory modality is conditioned by the information simultaneously available to another (Choe 
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et al., 1975; Jack & Thurlow, 1973). Moreover, they carry complementary information which, 

when fused forms a more coherent picture of the underlying event/object. How humans 

effortlessly perform this fusion belies its complexity (Mareschal et al., 2012). 

Psychological and behavioural studies have long examined the crossmodal effect between 

sensory modalities, including crossmodal influence and crossmodal calibrations (Harris, 1965; 

Radeau & Bertelson, 1974, 1977). These experiments have analysed the multimodal nature of 

human perception externally providing us with an abstract view of the process. Neurobiological 

studies, on the other hand, have revealed the regions in the brain and biological mechanisms 

which are responsible for the process. Recent advents of neuroimaging, which includes 

techniques such as functional magnetic resonance imaging (fMRI), has facilitated the study of 

neuronal activation at a single neuron level (Stein & Stanford, 2008). Such finer granularity 

was earlier restricted to non-human subjects such as primates and cats and has now been 

extended to study neuronal activations in the human brain (James & Stevenson, 2012). The 

knowledge accumulated about sensory fusion from these studies has encouraged computer 

scientists to model the dynamics of the brain in computational models. As highlighted earlier, 

the accurate perception of the external environment by fusing multimodal data sources is 

paramount for the success of new AI operating in the digital environment as it allows for 

autonomy and proactiveness compared to manual and human-driven AI applications in the past. 

Hence, the primary motivation of this thesis is the need for utilising psychological and 

neurobiological knowledge on multisensory fusion to facilitate coherent and holistic impression 

generation by artificial intelligence in the digital environment, and the current dearth of research 

on biologically inspired models of multisensory fusion. 

While there have been limited attempts at building computational models of multisensory 

fusion, they have mostly focused on modelling the dynamics of the brain (Cuppini et al., 2010; 

Magosso et al., 2012; Rowland et al., 2007; Ursino et al., 2009) rather than on the application 

of the developed models on real-world problems, let alone the challenges posed by the vast 

amount of data generated in digital environments. In this work, we acknowledge the challenges 
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posed by the volume and variety of data generated and develop algorithms to perform 

multimodal data fusion at scale. Moreover, while most of the previous attempts have focused 

on the supervised paradigm, fusion techniques for unsupervised environments are still 

unresolved and an ongoing problem (Dasarathy, 2006). On the other hand, with the vast amount 

of data being generated, unsupervised learning mechanisms are important more than ever before 

due to the inability to label such large datasets. Motivated by this fact, the novel neural network 

algorithms presented in this thesis adhere to the unsupervised learning paradigm.  

1.3 Research Objectives 

Based on the above-stated motivation, the central goal of this research is to develop multimodal 

perceptual mechanisms for generating artificial impressions on digital environments inspired 

by the findings of psychological, behavioural and neurobiological studies on human multimodal 

perception. As stated above, we draw inspiration from the underlying innate mechanisms in the 

human brain that allows humans to perform fusion of multimodal sensory cues with seemingly 

no effort. The mechanisms include the development of cortical patterns through neural self-

organization, hierarchical organization of cortical areas that process sensory cues generating 

progressively abstract representation as the hierarchy is traversed, and crossmodal links which 

facilitate different aspects of an event captured via different modalities to interact with/affect 

each other. 

Based on the above goal, the main objectives of the research are as below. 

• The key objective of this thesis is to design and develop multimodal perceptual 

mechanisms for artificial impression generation drawing upon the organization and 

functionality of the human brain to facilitate artificial counterparts to be autonomous 

and proactive by forming a holistic understanding of the digital environment. 

• The second objective is to elevate these mechanisms and algorithms to support large 

volumes of data, which is a key characteristic of the digital environment, such that the 

above could be practicable in real-life situations. 
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• The third objective is to use and validate the developed algorithm on real-life and 

benchmark dataset and demonstrate their use in unsupervised learning settings. 

1.4 Research Questions 

Consistent with the above objectives, the main research question that is aimed to be addressed 

in this thesis is, 

Inspired by sensing and perception mechanisms in the brain, how can unsupervised 

machine learning algorithms be developed for holistic data representation and fusion 

in digital environments? 

As the main research question is broad and abstract, sub research questions were drawn to 

identify different research areas that are discussed and addressed in this thesis. These research 

areas include neurobiology, psychology, unsupervised machine learning, parallel and 

distributed computing. The detailed research questions identified are as below. 

1. How can sensing and perception mechanisms in the brain inspire data fusion for holistic 

representation in digital environments? 

2. How can unsupervised machine learning be advanced to develop holistic multimodal 

data fusion algorithms? 

3. How can the multimodal fusion algorithms in 2 be implemented for distributed 

computing paradigms to enable fusion at scale? 

4. How can algorithms in 2 and 3 be validated using benchmark datasets and real-life 

environments? 

Research question 1 is concerned with the investigation of sensing and perception mechanisms 

in the brain that allows for a seamless fusion of multimodal sensory data as inspiration for 

developing a holistic data representation mechanism in digital environments. Research along 

this line of inquiry is guided by questions such as,  
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• What psychological evidence of multimodal perception has been observed and what 

psychological models have been proposed? 

• What theories on the organization of the human brain to support knowledge 

representation have been put forward? 

• What theories on the dynamics of the human brain to support multimodal perception 

have been proposed? 

Research question 2 is concerned with advancing unsupervised learning algorithms to develop 

multimodal fusion mechanisms inspired by the sensing and perception mechanisms in the brain 

for holistic representation in digital environments. Research along this line of inquiry is guided 

by questions such as,  

• Are there any unsupervised learning algorithms that have been proposed for 

multimodal data representation and fusion; are there any limitations? 

• Can the principles of self-organization be used to realise unsupervised learning for 

developing artificial cortical areas that represent information from individual 

modalities? 

• How can co-occurrence of neuronal activations across modalities be used for 

developing a multimodal fusion mechanism? 

With the understanding that generating efficient representations from large multimodal data 

sources is essential in most online application scenarios, research question 3 is concerned with 

implementing algorithms developed for research question 2 be adapted and implemented for 

distributed computing paradigms. Research endeavours targeted at this are in answer to 

questions such as, 

• What is an appropriate distributed architecture for improving the efficiency and 

scalability of the multimodal fusion algorithm in order to provide results under 

acceptable computing times? 
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• How can self-organizing maps that are used to represent information from individual 

modalities be implemented for distributed computing paradigms, MapReduce (Dean & 

Ghemawat, 2008), Bulk Synchronous Parallel (BSP) (Valiant, 1990) and Resilient 

Distributed Dataset (RDD) (Zaharia et al., 2012)? 

Research question 4 is concerned with the demonstration and evaluation of developed models 

and algorithms with benchmark datasets and real-life environments. This can be further 

elaborated with questions such as, 

• How can the improvement in multimodal representation accuracy of the proposed 

multimodal fusion algorithm be evaluated with appropriate benchmark datasets? 

• How can the efficiency gains attained by the distributed implementations be evaluated? 

1.5 Contribution to Knowledge 

The main contributions of this research can broadly be categorized under two categories; 

theoretical contributions and computational contributions.  

1.5.1 Theoretical Contributions 

We identify multimodal fusion to be the most critical feature in enabling artificial impression 

generation in digital environments. The fusion of multimodal inputs enables incorporating 

multiple aspects of a situation allowing for the formation of an unambiguous interpretation of 

the event from partial - and often ambiguous - information present in each modality. To this 

end, this thesis proposes an artificial model inspired by the human neocortex for the purpose of 

generating artificial impressions in digital environments. The proposed model consists of a 

conceptual model, an architectural model and a computational model. The conceptual model 

describes the abstract organization of multiple cortical layers and information flow among 

them. The architectural model consists of components that implement various sections of the 

conceptual model by generating the associated functionality while the computational model 

proposes the algorithmic means by which we propose to achieve this. 



  An Introduction 

9 

 

Most of the multimodal applications need to derive efficient representations from the 

multimodal sensory inputs to effectively perceive the environment. The efficient online fusion 

of data from multiple sensory modalities facilitates responding promptly when dealing with 

real-world situations. Moreover, the time taken to adapt/retrain the decision models in response 

to changes in the environment needs to be reasonable so that the decisions are not made with 

outdated models. To facilitate this, this thesis proposes a distributed architecture for improving 

the efficiency and scalability of the multimodal fusion algorithm in order to provide results 

under acceptable computing times. 

1.5.2 Computational Contributions 

This thesis makes three major computational contributions. The first is the implementation of 

the proposed architectural model for generating artificial impressions in digital environments. 

The proposed multi-layered architectural model is implemented with artificial cortical areas 

modelled by the GSOM algorithm and multimodal clustering algorithm allowing for the fusion 

of modalities based on their co-occurrence relationships. The multimodal clustering algorithm 

is based on the hypothesis that observations of an event recorded over multiple modalities 

should bear similarities across them due to natural regularities. The computational model is 

evaluated in terms of the quality of the fused representation.  

The second major computational contribution is a data parallelised distributed SOM algorithm 

as an implementation of the distributed self-organizing components of the proposed 

architectural model. The algorithm is adapted to three distributed computing paradigms, 

MapReduce (Dean & Ghemawat, 2008), Bulk Synchronous Parallel (BSP) (Valiant, 1990) and 

Resilient Distributed Dataset (RDD) (Zaharia et al., 2012), and implemented on three 

contemporary platforms, Apache Hadoop, Hama and Spark. The empirical evaluations 

demonstrate super-linear speedup compared to the serial SOM using several benchmarking and 

real-life data sets. 
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The third major computational contribution is the distributed implementation of the multimodal 

clustering algorithm. Computationally heavy multimodal distance calculation and multimodal 

clustering algorithms have been adapted to use distributed computing to support the efficient 

online fusion of data from multiple sensory modalities. The distributed implementation on 

Apache Spark is evaluated with a dataset from the physical activity monitoring domain, which 

suffers from both large data volumes and multimodality. 

1.6 Roadmap 

This thesis presents the research contributions in detail in the chapters to follow. Figure 1.1 

presents the organization of the rest of the thesis. 

 Chapter 2 provides a detailed introduction to the multimodal sensory perception in humans and 

a thorough review of the literature related to the psychological, neurobiological and 

computational aspects of the same.  

In Chapter 3, we layout our premise on sensation and perception in humans. We discuss how 

humans construct the state of the external environment from the multimodal sensory inputs by 

forming what we call a coherent impression about the external world. We propose an artificial 

model, which consists of an architectural model as well as a computation model, for generating 

artificial impressions on digital environments.  

The implementation of the above model is presented in Chapter 4. We demonstrate this artificial 

model on an audio-visual dataset and experiment with various parameters of the model. Results 

demonstrate that the multimodal representation achieves higher clustering accuracy compared 

to unimodal representation. Further, highlighting the necessity of generating efficient 

representations from multimodal data sources in most online application scenarios, we present 

a distributed architecture for online multimodal sensory fusion. 

Chapter 5 discusses a distributed SOM algorithm as an implementation of the distributed self-

organizing component of the proposed distributed architecture. The algorithm is adapted to 
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three contemporary distributed computing platforms, Apache Hadoop, Spark and Hama and 

empirical evaluations, which demonstrate super-linear speedup compared to the serial SOM 

using several benchmarking and real-life data sets, are reported. 

Chapter 6 presents the details of multimodal clustering component of the proposed architecture 

implemented for distributed computing. Moreover, we demonstrate the overall distributed 

Figure 1.1 Thesis organization 
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implementation using a case study from the physical activity monitoring domain, which suffers 

from large data volumes and multimodality. 

Concluding in Chapter 7, the proposed models, architectures, implementations, results and 

contributions are discussed while outlining future research directions. 
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Chapter 2                                                                    

Setting the Stage 

The central goal of this research is to develop an artificial impression generation architecture 

for digital environments inspired by the findings of psychological, behavioural and 

neurobiological studies on human multimodal perception. Hence, it is necessary to have 

background knowledge of the neurobiology of the brain, psychological and neurobiological 

evidence of multimodal perception, and theories on how the human brain creates a unified 

conscious perceptual experience, known as the binding problem. Moreover, it is important to 

review the computational models of multisensory fusion proposed thus far to understand their 

strengths and limitations. This chapter provides a detailed introduction to the above subject 

areas while critically reviewing existing computational models.  

The chapter starts with a brief introduction to the neurobiology of the brain, giving an overview 

of different cortical areas and their functionalities. Then the chapter reviews various academic 

literature related to the evidence of multimodal sensory perception from two aspects, 1) the 

psychological evidence and models of multimodal perception, 2) neuro-biological studies of 

multimodal perception and their findings. The behavioural and psychological studies have 

demonstrated fascinating crossmodal effects between sensory modalities in the form of 1) 
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crossmodal influence where the sensation in one modality influence the perception of a co-

occurring sensation of another modality, 2) crossmodal recalibrations when artificially induced 

discrepancies in a single modality lead to the alteration of correspondence between the 

modalities and, 3) medical conditions demonstrating the crossmodal effect between sensory 

modalities. On the other hand, the neuro-biological studies discussed in the chapter include 

experiments carried out on non-human subjects to assess the multisensory integration in terms 

of the effectiveness of the crossmodal stimulus with respect to the strength of individual stimuli. 

Moreover, more recent neuroimaging studies that use techniques such as functional magnetic 

resonance imaging (fMRI) to study multisensory nature of different cortical areas of the brain 

are discussed. 

Once the evidence of multimodal perception in humans has been established, the chapter 

discusses various theories on how humans perceive the information captured from different 

sensory modalities as a coherent event/object, known as the binding problem. Here we discuss 

theories such as feature integration theory, synchronisation theory and the theories on the role 

of attention in perceptual binding.  

Then, the chapter discusses self-organization, which has long been viewed as a central 

mechanism of nature. Self-organization has been hypothesised as the mechanism by which the 

feature maps of the brain responsible for processing sensory modalities are organized.  The 

chapter discusses a range of computation algorithms that uses self-organization as the central 

processing mechanism as possible candidates for implementing artificial multimodal 

processing. 

Finally, the chapter critically reviews the computational models of multisensory fusion found 

in the literature. These computational models are broadly organized under biologically inspired 

models and models that view multisensory fusion as Bayesian inference. 
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2.1 Neurobiology of the Human Brain 

The human brain is the most vital organ of the central nervous system, which facilitate 

perception, cognition, consciousness, reasoning, language understanding, motor control etc. A 

fundamental component of the brain that facilitate the above “higher-order” functions is the 

neocortex, the most recent part of the brain to be evolved. The neocortex is composed of six 

neuronal layers and forms the major part of the cerebral cortex, the outermost layer of neural 

tissue of the brain. 

The cortical areas of the neocortex have specific functions. These include sensory, which is 

responsible for receiving and processing sensory information, association, which is responsible 

for combining multiple sensory stimuli to a meaningful perceptual experience of the world, 

abstract thinking and language functionalities, and motor, which is responsible for the control 

of voluntary movements (Yeo et al., 2011). The cortical areas that receive and process sensory 

information are further localized as the primary visual cortex, primary auditory cortex and 

primary somatosensory cortex which processes visual, auditory and touch sensations initiated 

at the corresponding organs. The primary cortical areas are organized as topographic maps 

which preserve topological relationships from the sensing areas onto the primary cortical areas 

(Goodhill & Xu, 2005). Moreover, the organization of these cortical areas is highly influenced 

by the exposure to the stimuli at a young age, highlighting the neuronal plasticity. This has been 

demonstrated with experiments that deprive such stimuli in kittens (Wiesel & Hubel, 1963).  

2.2 Evidence of Multimodal Perception 

Humans, like many other organisms, possess multiple sensory systems. These systems that 

capture different aspects of the environment offers richer information of the surrounding due to 

the fact that they jointly capture the same event or object in multiple modalities supplementing 

each other. A number of research disciplines studying this phenomenon have identified many 

cases of interactions between modalities, where the perception of one sensory modality is 

conditioned by the information simultaneously available to another.  This section describes 
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research work examining this phenomenon in the field of behavioural and psychological studies 

as well as in the field of neurobiology, enabled by brain-imaging techniques such as functional 

magnetic resonance imaging (fMRI). 

2.2.1 The Psychology of Multimodal Perception 

A large body of research in behavioural and psychological fields has demonstrated the 

crossmodal effect between sensory modalities. These effects include crossmodal influences 

where the sensation in one modality influence the perception of a co-occurring sensation of 

another modality, crossmodal recalibrations when artificially induced discrepancies in a single 

modality lead to the alteration of correspondence between the modalities and in some cases 

medical conditions demonstrating the crossmodal effect between sensory modalities (see 

(Bertelson & De Gelder, 2004) for a comprehensive survey of literature). 

2.2.1.1 Crossmodal Influence 

A classic example of crossmodal influence is the ventriloquism effect (Howard & Templeton, 

1966) where the audience experiences the voice as coming from the dummy when the 

performing ventriloquist moves the lips, eyes, and head of the dummy in synchrony with the 

voice produced by him. The observers are involuntarily tricked by their brain to perceive the 

dummy is speaking, demonstrating the intersensory bias of vision on audition in generating an 

impression on the point of origin. 

Among a large number of early behavioural studies that evaluate the online reactions to the 

exposure of spatially conflicting multimodal inputs, Bertelson & De Gelder (2004) identify two 

main effects that have been studied; namely the spatial fusion of conflicting inputs and 

immediate crossmodal bias of spatial perception. The spatial fusion studies are predominantly 

based on the participants judging the origins of the conflicting inputs as same or different (for 

example: (Choe et al., 1975; Jack & Thurlow, 1973)). The immediate visual bias of 

proprioception has been demonstrated with experiments where the participant has to point with 
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one of his hand which is hidden under a cover towards the felt location of the other hand while 

the visual of the second hand is being displaced with the use of a prism (Hay et al., 1965).  

The crossmodal influence between audition and vision has been studied in behavioural 

experiments extensively. A popular scenario that has been studied is the interaction between 

auditory and visual speech recognition. It is generally understood that the vision of the speaker’s 

face, especially the lips, greatly helps in the understanding what is being said. This has been 

demonstrated experimentally, emphasising on how the visuals enable the listener “to hear better 

and hence to understand better” (Schwartz et al., 2004, p. B69). The positive effect of vision is 

greatly highlighted in instances where there is significant background noise, which is 

commonly referred to as the ‘cocktail party’ situation (Arons, 1992). 

A seminal research paper by Mcgurk & Macdonald (1976), aptly named “Hearing lips and 

seeing voices”, on visual influence on auditory describes what is today known as the McGurk 

effect. They identified two cases of influence; one where the incompatible visual and auditory 

cues being transformed into something new, different from both original visual and auditory 

cues (“fusion”), and the other where a composite comprising of unmodified elements from the 

two modalities (“combination”). For the experimentation, they mixed up incompatible audio 

and visual of lip movements of a woman uttering [ba-ba], [ga-ga], [pa-pa], [ka-ka] creating 

audio/video pairs of 1) [ba-ba] voice/[ga-ga] lips, 2) [ga-ga] voice/[ba-ba] lips, 3) [pa-pa] 

voice/[ka-ka] lips, and 4) [ka-ka] voice/[pa-pa] lips. The most spectacular case with very high 

support from the experiments was the “fusion” of [ba-ba] voice with [ga-ga] lips leading to 

hearing [da-da]. Similarly, about 2/3 of the participants reported hearing [ta-ta] when the audio 

of [pa-pa] was combined with visuals of [ka-ka]. They highlight how the auditory-based 

theories of speech perception fall short of completely explaining this phenomenon and the 

important role of vision in the perception of speech. 

2.2.1.2 Crossmodal Recalibration   

Another class of examples of crossmodal perception demonstrates the recalibration effect of 

sensory modalities due to artificially induced discrepancies in one of the modalities. The early 
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experiments involved wearing optical devices that displaced the retinal image, which leads to 

a discrepancy between the vision and proprioception. While this initially led the subjects to 

miscalculate the locations of objects, they quickly got adapted to the discrepancy allowing them 

to grasp objects despite optical distortion (Harris, 1965).  Moreover, when the optical devices 

were taken off, the subjects were still adjusting for a while, making them miss the objects. 

Similarly, the recalibration effect has been demonstrated for both visual and auditory locations 

using concurrent light flashes and sound bursts originating at slightly different locations 

(Radeau & Bertelson, 1974, 1977). For example, in (Radeau & Bertelson, 1974) the subjects 

were exposed to concurrent light flashes and sound bursts with light emitted at an angle of 15o 

on to the right relative to the sound, resulting in both post-exposure sound location and light 

location being shifted to left and right respectively. Based on similar perceptual adaptation 

experiments, Wallach (1968) presented a general view of information discrepancy as the basis 

for such perceptual adaptation. 

2.2.1.3 Evidence from Medical Cases  

A number of specialised medical conditions have been identified as a great source of evidence 

for multimodal dynamics in the human brain.  

Synaesthesia is such an interesting medical condition where a stimulus in one modality induces 

sensation in another (Ramachandran & Hubbard, 2001). For example, seeing a particular 

number may always induce experiencing a specific colour (known as Grapheme-colour 

synaesthesia) or listening to everyday sounds/musical notes may trigger seeing colours (known 

as Chromesthesia). While the colour associated with the particular number or sound/note may 

differ from patient to patient, it is constant over time for a given patient. Other forms of 

synaesthesia include auditory-tactile synaesthesia where certain sounds induce touch sensations 

on the body, lexical-gustatory synaesthesia where hearing certain words induce particular 

unrelated tastes among others. Synaesthesia is automatic and does not require the attention of 
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the patient (Robertson, 2003). Moreover, the condition is persistent throughout life. Figure 2.1 

contains a colouring done by a synesthete who were perceiving colour when presented with 

shapes. 

Synaesthesia represents a case of abnormal feature binding. It has been widely hypothesized as 

being due to direct connections between cortical feature maps that had not been properly pruned 

during development (Baron-Cohen & Harrison, 1997). This hypothesis has been further 

supported by functional imaging studies of the brain where the activations are noted in the 

ventral pathway that registers sound, shape and colour as well as in parietal lobe where sensory 

information among various modalities are integrated (Nunn et al., 2002). Moreover, this is 

consistent with behavioural studies on synaesthesia, which suggest the synesthetic binding 

occurs before attention (Robertson, 2003). 

Other medical cases include patients who have lost the ability to consciously perceive a 

particular modality due to brain damage, who nevertheless process the stimuli, which ultimately 

bias the perception of other modalities. Studying such patient cases provides a wealth of 

evidence on the crossmodal effect of perception and allows the researchers to examine such 

effects in great details. 

Prosopagnosia is one such cognitive disorder of face perception where the patients are unable 

to recognize familiar faces, including their own, even though other visual tasks, such as object 

Figure 2.1 Synesthetic colouring. A synesthete placed the colours exactly as she perceived 

them after the shapes (black outline) drawn by the experimenter (Robertson, 2003). 
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discrimination, are unaffected. De Gelder et al. (2000) present a case study of a patient suffering 

from Prosopagnosia who “shows a complete loss of processing facial expressions in recognition 

as well as in matching tasks” (p. 425) along with her inability to recognize familiar faces. The 

researchers studied crossmodal bias of vision on audition by presenting incongruent visual and 

auditory stimuli such as a happy face with a fearful tone of voice and asking her to identify the 

emotional tone.  The results show that her identification is biased by the face shown, even 

though she is unable to identify the emotion on the face consciously.  

Bertelson et al. (2000) have studied the visual bias of auditory location with a patient having 

visual unilateral neglect, who is unable to detect any visual light flashes present in his left visual 

field. In the experiment (see Figure 2.2), when the patient was asked to point to the location of 

sound which was emitted centrally in synchrony with light flashes presented in the patient’s 

visual left hemifield, his perception of the location of the sound was strongly biased towards 

the light flashes the patient was not consciously seeing. Bertelson and De Gelder (2004) 

highlights the importance of this result, demonstrating the automaticity of visual bias in 

auditory localisation, where it biases even without the awareness of its occurrence of the visual 

stimuli.    

 

Figure 2.2: The experimental setup for examining the visual bias of auditory location. The 

patient points to the location of sound that was emitted centrally in synchrony with light flashes 

presented in left/right/both sides (De Gelder & Bertelson, 2003). 
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2.2.2 Neuro-biological Evidence of Multimodal Perception 

Before the advent of neuroimaging techniques, the neuro-biological studies into the 

multisensory integration of the brain was limited to the experiments carried out on non-human 

subjects such as cat and primates. In these experiments, the multisensory integration is assessed 

by the effectiveness of the crossmodal stimulus with respect to the strength of individual 

stimuli. Stein and Stanford (2008) define the multisensory integration at the level of single 

neuron as “statistically significant difference between the number of impulses evoked by a 

crossmodal combination of stimuli and the number evoked by the most effective of these stimuli 

individually” (p. 255). 

The experimental research into the multisensory phenomenon at the single neuronal level has 

identified a number of important characteristics of the multisensory interplay. As depicted in 

Figure 2.3, multisensory enhancement (or depression) of the integrated stimulus in the case of 

congruent (or incongruent) individual stimuli demonstrate response which is greater (lesser) 

than individual stimuli (Calvert et al., 2004; Gillmeister & Eimer, 2007). Of great interest is the 

case of superadditivity where the combined response is much greater than the summation of the 

individual response highlighting how the two senses combine to invoke a response from motor 

mechanism to generate a reaction. Moreover, it has been demonstrated that the multisensory 

integration can shorten the time between sensory reception the motor command generation 

(Bell et al., 2005). 

Another important characteristic of the multimodal neurons is the inverse effectiveness 

(Meredith & Stein, 1986) of their combination, i.e. multisensory enhancement is inversely 

proportional to the strength of individual stimuli. This principle is important for effectively 

sensing the environment. The individual stimuli that are salient will anyway be detected, and 

the inverse effectiveness is the mechanism that generates sizable neuronal responses to weak 

multimodal cues. Moreover, the magnitude of the integrated response is affected by the time 

overlap of the individual stimuli. Even though the time disparities up to several hundreds of 
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milliseconds are tolerated, the combined response is maximized when the individual stimuli 

coincide. 

 

Figure 2.3: Multisensory enhancement. The neuronal response of a single multisensory neuron 

in superior colliculus to visual (V), to auditory (A) and combined (VA) stimuli (Stein & 

Stanford, 2008).  

The experiments carried out with cats and primates have identified a number of regions that 

have multisensory neurons in abundance. The cat superior colliculus contains multisensory 

neuron having multiple receptive fields for each sensory modality (Stanford et al., 2005; M. T. 

Wallace & Stein, 1997). These receptive fields are in spatial overlap among each other, 

allowing for the multimodal stimuli arising from the same/close by physical location to be 

integrated. Similarly, the experiments on primates have focused on posterior parietal cortex 

where cues from multiple sensory modalities such as visual, auditory and tactile converge.  

2.2.2.1 Evidence from Neuroimaging 

With the advent of neuroimaging techniques such as functional magnetic resonance imaging 

(fMRI), the study of neuronal activation at the single neuron level, which was earlier restricted 

to non-human subjects such as primates and cats, has now been extended to study neuronal 

activations in the human brain (James & Stevenson, 2012). Insights from ground-breaking 

studies using such technology have identified various multisensory regions of the human brain 
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and broaden our understanding of the multimodal dynamics at the single neuronal level (Stein 

& Stanford, 2008). The fMRI uses the blood oxygenation level dependent (BOLD) contrast as 

the primary measure for neuronal activation as the cerebral blood flow and neuronal activation 

are closely linked. However, James and Stevenson (2012) point out the fundamental difference 

between what is measured by BOLD activation and single neuron activity as the BOLD 

activation is measured from vasculature supplying a population of neurons opposed to an 

individual neuron. 

One of the first phenomena of multimodal dynamics of the human brain to be studied using 

fMRI was the superadditivity. Calvert et al. (2000), in their fMRI-based study, presented the 

human subjects with semantically congruent and incongruent audio-visual speech and to each 

modality in isolation. By analysing the BOLD activation, they identified an area in the left 

superior temporal sulcus that demonstrated superadditive response to congruent stimuli and 

subadditive response to incongruent stimuli. The use of stronger superadditive criterion, where 

multisensory response needs to be greater than the sum of unisensory response, compared to 

maximum criterion, where multisensory response needs to be greater than the maximum of 

unisensory response (Beauchamp, 2005), ensures that the region contains multisensory neurons 

and the BOLD activation is not due to individual activations from unisensory neurons. 

Similar fMRI studies have been carried out to investigate the integration of auditory and visual 

information at the human superior temporal sulcus area (Beauchamp et al., 2004, 2010; Hertz 

& Amedi, 2010). Based on previous invasive experiments on macaque monkeys, superior 

temporal sulcus area contains neuron sensitive only to auditory stimuli, only to visual stimuli, 

or both to auditory and to visual stimuli. In their fMRI study, Beauchamp et al. (2004) identified 

similar patches of voxels in human superior temporal sulcus where 44% of voxels responded 

more to unimodal auditory than unimodal visual stimuli, 30% of voxels that responded vice 

versa and 26% of voxels were multisensory patches that responded equally to unimodal 

auditory and visual stimuli (see Figure 2.4). These regions are identified as containing 
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individual neurons that are receiving primarily auditory, primary visual inputs and multisensory 

auditory-visual neurons, respectively.  

Figure 2.4: Patches of voxels in the human superior temporal sulcus. Coronal section (a) and 

lateral view of the left hemisphere (b) with enlargements showing of the superior temporal 

sulcus with visual patches (orange), auditory patches (blue) and multisensory patches (green). 

GL and GB are the identities of the two subjects. (c) Response in visual, auditory and 

multisensory patches to three stimulus types (pink shade – visual, blue shade – auditory, green 

shade - multisensory). (Beauchamp et al., 2004) 

Hertz and Amedi (2010) using multifrequency fMRI spectral analysis identified audio-visual 

areal convergence in superior temporal sulcus supporting bottom-up processing of audio-visual 

signals where single modalities are processed in primary areas, and then multiple sensory 

streams are converged outside primary areas. Interestingly, they found a weak level of 

convergence of audio-visual signals in primary areas as well.  The fMRI studies using audio-

visual stimuli have also been extended to study the McGurk effect, a prominent example of 

auditory-visual multisensory influence. It has been demonstrated that by disrupting the 

multisensory areas of the superior temporal sulcus with single-pulse transcranial magnetic 
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stimulation while the subject is exposed to the incongruent audio-visual stimuli, the likelihood 

of the McGurk percept is significantly reduced (Beauchamp et al., 2010). 

The fMRI-based studies have been utilised to study cortical areas of multimodal integration of 

different multimodal stimuli. Foxe et al. (2002) demonstrated how auditory and somatosensory 

inputs converge in the superior temporal gyrus, a subregion of the human auditory cortex. 

Further, they observed superadditivity of sensory signals demonstrating the multimodal 

integration in the convergence.  Moreover, this finding suggests multisensory integration earlier 

in the cortical processing hierarchy than previously anticipated. Similarly, Gentile et al. (2010) 

identified regions of the brain that demonstrated nonlinear, superadditive responses to visual-

tactile stimuli, including left anterior intraparietal sulcus, the insula and dorsal premotor cortex. 

2.3 Binding Problem 

The binding problem refers to how the human brain processes sensations from multiple stimuli 

generated by our surrounding to create a united conscious perceptual experience (Revonsuo & 

Newman, 1999). These multiple stimuli could be multimodal as well as relating to multiple 

constituents of the same modality. Binding problem, on the one hand, can be viewed as a 

segregation problem, addressing the questions ‘How does the brain segregate different features 

relating to different objects from the sensory input and correctly assign them to distinct 

objects?’ (Smythies, 1994). Contrary to the name, this view of the binding problem is more of 

discrimination of the stimuli. On the other hand, the binding problem can be viewed as a 

combination problem which explains the mechanisms by which physically separated neural 

signals processed at disparate processing areas of the brain are combined on to a single 

perception (Goldstein, 2009). Figure 2.5 highlights how the binding allows us to experience a 

stimulus such as a rolling ball as a coherent percept, while the location, form, depth, motion 

and colour activate neurons at various locations of the brain, as opposed to separated location, 

form, depth, motion and colour perception. 
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There has been a number of theories put forward to answer the segregation aspect of the binding 

problem both at psychological and physiological levels. Following are some of the theories in 

brief. 

 

Figure 2.5: Binding allows us to perceive as a single experience the activations generated by a 

single stimulus at various locations of the brain (Goldstein, 2009) 

2.3.1 Feature Integration Theory and Role of Attention 

The feature integration theory (Treisman & Gelade, 1980) proposes that the object’s location 

mediates the binding of the features such as the form, depth, motion and colour. The theory 

defines perception as a two-stage process.  The first stage, preattentive stage, rapidly, parallelly 

and automatically register features such as form, depth, motion and colour without the explicit 

attention. The second state, focused attention stage, is responsible for the unified perception of 

an object where it combines individual features and is based upon the explicit attention to the 

location of the object registered in the “master map” of locations. 

This is further explained with respect to the what and where streams of the cortex. The attention 

is the “glue” that combines the form and colour information of the what stream with the location 

and motion information of the where stream. The experiments described by Treisman and 

Schmidt (1982) provide experimental evidence for early registration of features in the 

preattentive stage where the subjects make illusory conjunction, combining features from two 

images flashed at a quick succession on the same location (see Figure 2.6). 
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Figure 2.6: Illusory conjunctions. Flashing two images at a quick succession on the same 

location may lead to recombining features such as colour and shape. Letter intrusion and colour 

intrusion may be introduced to correct the results for guessing as intrusion are very rare. 

(Robertson, 2003).  

Further support for feature integration theory is provided by the patients having Bálint's 

syndrome, who are unable to focus attention on individual objects due to parietal lobe damage. 

During the experiments, the patients having Bálint's syndrome often reported colours and letters 

mixed up such as ‘red T’ when they were presented with a ‘red O’ and a ‘blue T’ even for 

relatively long durations (Friedman-Hill et al., 1995; Robertson et al., 1997). Another 

implication of the two-stage process of the perception is the difference between time and 

attention required to perform a feature search and a conjunction search (Treisman, 1982; 

Treisman & Gelade, 1980).  In a feature search, the search is performed based on a single 

characteristic such as colour, shape, movement or orientation and can be performed much faster 

than a conjunction search where the search needs to be performed based on two or more 

characteristics (see Figure 2.7). The conjunction searches require more effort with conscious 

attention and performed serially in the focused attention stage.  
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Figure 2.7: Feature search versus conjunction search. Try finding the green horizontal bar in 

section (a) and (b). The task is fast and effortless in (a) since it is a feature search easily 

discriminated by the orientation at the preattentive stage. Much time and concision attention at 

each location are required for (b) as it a conjunction search requiring discrimination by multiple 

features, colour and orientation in this case (Goldstein, 2009). 

Nevertheless, the feature integration theory has been criticized for its vague presentation of the 

concept of attention (Tsal, 1989; Di Lollo, 2012). Attention is generally characterized as a 

limited resource for choosing a particular aspect of the visual field that is of interest or relevant 

at the moment. Di Lollo (2012) notes that even though attention has been described with various 

metaphors such as a spotlight, a filter, a zoom lens and more commonly glue that binds various 

stimuli relating to the same object, these descriptions lack explanations on any specific 

mechanism mediating the binding. 

2.3.2 Synchronization Theory 

A popular hypothesis on the underlying mechanism of binding of feature binding is identified 

as the synchronization theory (Engel et al., 1999; Varela, 1995). The synchronization theory 

suggests that the neuronal activation in various parts of the brain induced by the same object 
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are in synchrony and this synchronization is the basis of binding which leads to the perception 

of these objects, opposed to individual features (see Figure 2.8). 

 

Figure 2.8: Coherent perception by synchrony in neuronal activity. The neuronal activities of 

neurons that get activated to various features of the same objects are synchronized in their firing 

(Engel et al., 1999).  

The early results from the empirical studies of Gamma wave activity in the brain provided the 

impetus for this hypothesis (Gray et al., 1989). However, more recent experimental results have 

questioned the role of synchrony in binding. For instance, Dong et al. (2008) reported that the 

neurons activating for the contours of the same or different shapes, having no effect on the 

temporal synchrony. Moreover, Thiele and Stoner (2003) reported how the synchronization 

theory was not supported by examining the neuronal responses to moving plaid patterns. 

2.4 Self-organization, a Biologically Central Process 

Self-organization has long been viewed as a central mechanism of nature that organizes selected 

parts of a system so as to promote a specific function (Camazine et al., 2003). Isaeva (2012) 

defines self-organization as the “emergence of spatio-temporal order, during which the global 

pattern of systems is formed by local interactions of its elements” (p. 110). Contrary to external 

organization, where the system organization imposed by external factors, the self-organization 

facilitates the evolution of the system into an organized form in the absence of external 
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constraints. Another major characteristic of self-organized systems is the global order which 

emerges from the local interactions. Isaeva (2012) highlights how this is central to the formation 

of complex systems such as biological system where the whole system does not demonstrate 

the characteristics of its constituents, rather demonstrates a new arising, or emergent features. 

Self-organization is commonplace in biological systems (Camazine et al., 2003; Kelso, 1997; 

Kohonen, 1989). For example, in gene expression, connectivity graphs and the systems of 

proteins with autocatalyzing properties gain collective order by self-organization (Isaeva, 

2012).  

Self-organization has been hypothesised as the mechanism by which the features maps of the 

brain responsible for processing sensory modalities are developed. Undoubtedly, the main 

structure of the brain, which has been evolved over a long period of time, is fixed at the time of 

birth for a given person. However, experimental evidence suggests that sensory projections are 

conditioned by experience. This is due to the plasticity of the neurons and the self-organization 

mechanism that drives the conditioning. It has been demonstrated that after depriving sensory 

experience at a young age or after surgical removal of brain tissue (Berman & Hunt, 1975; Chu 

et al., 2000), some projections are not developed, and the remaining projections move on to 

occupy the corresponding area of the brain. 

The self-organization process results in developing features maps in all sensory systems of the 

brain. These are known as topographic maps as they preserve topological relationships from 

the input signal onto the cortical areas (Goodhill & Xu, 2005).  For example, in the human 

auditory system, tonotopic maps, which spatially maps sound frequencies in an orderly fashion 

onto regions of the cortex, are developed under the control of received information (Humphries 

et al., 2010; Petkov et al., 2006; Talavage et al., 2000). Similarly, in the human visual system, 

the ganglion cells of the retina are mapped to the lateral geniculate nucleus (LGN) in an orderly 

progression and to the primary visual cortex (V1) from there onwards in an orderly fashion 

(Lemke & Reber, 2005). Known as retinotopic maps, adjacent areas of the retina are represented 

by adjacent neuron in LGN and V1. 
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The elegance of self-organization process and the capability of topographic maps to produce a 

reduced representation of facts without loss of knowledge about their interrelationships 

(Kohonen, 1989) have inspired a range of computation algorithms for information processing 

and knowledge representation.  These algorithms develop simplified models of the world at a 

level of abstraction in relations to the inputs from the observable world. Below we describe 

several such computation algorithms inspired by the self-organization process and reduced 

representation mechanism of the brain. 

2.4.1 Adaptive Resonance Theory 

Adaptive resonance theory (ART) (Grossberg, 1982, 2013) is a cognitive and neural theory on 

how the human brain learns to organize events and objects observed on a continuing basis. The 

unsupervised computational model built on top of this theory (Carpenter & Grossberg, 1987a, 

1987b) places high emphasis on tackling the stability-plasticity dilemma. The model strives to 

achieve stability without rigidity and plasticity without chaos while continuing to perform 

learning and to preserve the learned patterns. The model exhibits self-organizing and self-

stabilizing characteristics in its recognition prototypes once trained by the unsupervised 

competitive learning algorithm. 

A central idea of ART is that the object categorization is based on the interaction between the 

sensory information that flows bottom-up and the “expectations” that flows top-down in the 

forms of memory templates or prototypes. In the computation model, this is implemented with 

two artificial neural layers known as comparison layer, 𝐹1, and recognition layer, 𝐹2. The 

comparison layer initially receives the input, 𝑥 ∈ ℝ𝐷, which is passed on to the recognition 

field for selection of a winner, 𝑗∗, using (2.1), by multiplying with the forward weight matrix, 

𝐵 = [𝑏𝑖𝑗]. The winner selection is based on competitive learning, a form of unsupervised 

learning. This process represents the bottom-up flow of sensory stimuli.  

 𝑗∗ = arg 𝑚𝑎𝑥𝑗 ∑ 𝑏𝑖𝑗𝑥𝑖
𝑖

 (2.1) 
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The top-down expectation flow or feedback from the recognition layer to the comparison layer 

is calculated using the feedback weight matrix, 𝑇 = [𝑡𝑗𝑖]. This produces a prototype pattern on 

the comparison layer and reset module assesses the recognition match to the vigilance 

parameter, which controls the granularity of the recognition layer. If the comparison indicates 

a close enough match, training is carried out by adjusting 𝑏∗𝑗, the weight vector of 𝐵 

corresponding to the winning neuron. Otherwise, the winning neuron is inhibited, and the 

search for a new winner is carried out in iterations until the vigilance criterion is met. 

2.4.2 Self-Organizing Map Algorithm 

The self-organizing map (SOM) algorithm (Kohonen, 1990), also known as self-organizing 

feature map, is a computational algorithm inspired by the characteristics and processing 

mechanisms of the human brain. The SOM structure consists of a set of neurons (also known 

as nodes or units) that resembles the structure of a cortical layer of the human brain, and the 

neurons are assembled in a lattice of usually two dimensions. The algorithm produces a 

discretised representation of the input space onto a lower-dimensional space, usually two-

dimensional, facilitating dimensionality reduction while producing the reduced representation.  

The algorithm uses an unsupervised learning algorithm; in particular, competitive learning 

where the neurons compete for the incoming input data. Moreover, the training algorithm 

preserves the topological relationships from the input domain onto the lower-dimensional space 

inspired by the topographic maps in the human sensory system. 

The SOM is arranged as a lattice of neurons each having a weight vector, 𝑤𝑘(𝑡) ∈ ℝ𝐷, at 

iteration 𝑡, representing the input space and 𝑥, 𝑦 coordinates in the lattice representing the 

output space. To train the SOM, each input vector, 𝑥𝑖 ∈ ℝ𝐷, is presented to the SOM and the 

best matching unit (BMU), 𝑘∗ is found using (2.2) based on the distance between the input and 

the weight vectors of the neurons using a suitable distance metric. 

 𝑘∗ = arg 𝑚𝑖𝑛𝑘  (‖𝑤𝑘 −  𝑥𝑖‖) (2.2) 
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The weight vectors of the BMU and its neighbours are updated using (2.3), resulting in the 

weight vectors of the BMU and its neighbouring neurons moving towards the presented input. 

Here, 𝑤𝑘(𝑡 + 1) is the updated weight vector of the kth neuron while 𝑤𝑘(𝑡) is the previous 

weight vector of the same neuron. Parameter 𝛼 is a time-decreasing learning rate, ℎ𝐵𝑀𝑈,𝑘(𝑡) is 

a neighbourhood function which decreases the size of the neighbourhood of weight adjustment 

over time and 𝑥𝑖 is the input presented. The use of neighbourhood function is responsible for 

the careful preservation of the topology, and the Gaussian function is a common choice for the 

neighbourhood function. Usually, the input presentation and weight update are carried out for 

a pre-defined number of iterations. 

The main limitation of the SOM algorithm is its fixed network size and shape. Usually, the 

number of neurons and the arrangement of the neurons (the width and height of the map in case 

of two-dimensional SOM) need to be defined prior to the learning phase. However, any 

information that may be useful in defining the shape and size of the grid may not be available 

at the time of learning as SOM is widely used for exploratory tasks where the user has no or 

very little knowledge about the underlying structures of the input.  Unsuitable map size and 

shape may lead to under-representation of certain areas of the input domain.   Moreover, the 

rigid size and shape do not represent the dynamic structure adaptation of the cortical areas it is 

inspired by. There are several alternatives/extensions to the SOM algorithm proposed to 

overcome this limitation, which includes the growing self-organizing map (Alahakoon et al., 

2000), growing neural gas (Fritzke, 1994), growing when required network (Marsland et al., 

2002) and growing hierarchical self-organizing map (Dittenbach et al., 2000).   

2.4.3 Growing Self-Organizing Map Algorithm 

As a dynamic variant of the SOM algorithm, the growing self-organizing map (GSOM) 

algorithm (Alahakoon et al., 2000) addresses the limitation of fixed size and shape of the SOM 

map. The algorithm initializes the topographic map with just four neurons, and iteratively adds 

 𝑤𝑘(𝑡 + 1) =  𝑤𝑘(𝑡) +  𝛼(𝑡)ℎ𝐵𝑀𝑈,𝑘(𝑡)[𝑥𝑖 − 𝑤𝑘(𝑡)] (2.3) 
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neurons to the map during the training phase to form a better representation of the inputs space. 

Hence, the GSOM algorithm is able to identify the ideal map structure automatically without 

the user having to specify the same arbitrarily. The ability to grow the grid shape and size 

according to the input data results in GSOMs requiring a lesser number of nodes for 

representing a data set to a comparable SOM. Moreover, as the algorithm is initialized with a 

minimal number of neurons and neurons being added only when required, the algorithm has 

also been demonstrated to be faster than the standard SOM algorithm (Fonseka et al., 2011; 

Ganegedara & Alahakoon, 2011; Hsu & Halgamuge, 2003).  

Due to the favourable characteristics of GSOM, it has been successfully applied in numerous 

research endeavours ranging from basic science (Hsu et al., 2003; Gunasinghe et al., 2014; 

Chan et al., 2008), engineering (De Silva et al., 2011; Guru et al., 2005) to e-commerce (Hsu et 

al., 2009; Nathawitharana et al., 2015), and adapted for data streams (Nallaperuma et al., 2017, 

2018), text mining (Matharage et al., 2013), taxonomic classification (Weber et al., 2011), 

anomaly detection (Ippoliti & Zhou, 2012) and sequence mining (Gunasinghe & Alahakoon, 

2013). 

The GSOM algorithm consists of two phases, a growing phase which adjusts the structure of 

the map to represent the input data and a smoothing phase to fine-tune the weights of the 

neurons.  In the growing phase, the GSOM network is initialized with four neurons arranged in 

a 2×2 lattice, each having a weight vector, 𝑤𝑘(𝑡) ∈ ℝ𝐷.  To train the GSOM, each input vector, 

𝑥𝑖 ∈ ℝ𝐷, from the dataset, 𝑆 is presented to the map over a number of iterations and the winning 

neuron, known as the best matching unit (BMU), is identified similar to the SOM algorithm 

(see (2.2)). The distance between the weight vector and the BMU is called the quantization 

error 𝐸(𝑡), given by (2.4), is accumulated on the BMU. 

 𝐸(𝑡) =  ‖𝑤𝐵𝑀𝑈(𝑡) −  𝑥𝑖‖ (2.4) 
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If the accumulated quantization error of the neuron 𝑘,  𝐴𝐸𝑘(𝑡) is greater than the growth 

threshold 𝐺𝑇, as defined in (2.5), that neuron is said to under-represent the input space it 

represents, and if the neuron is on the boundary, the map is grown from the boundary by adding 

new neurons to the map. Otherwise, the error is spread among neighbouring neurons. 

𝐺𝑇 is determined by the number of dimensions 𝐷, and spread factor 𝑆𝐹, which allows 

controlling the growth of the GSOM and is independent of the dimensionality of the dataset.  

A boundary node is a node which has at least one of its immediate neighbouring positions 

vacant. Since the GSOM algorithm utilizes a square grid structure of neuron positioning one to 

three positions of a boundary node can be vacant. When the neurons are added to the grid, all 

the vacant neighbouring positions are filled with new neurons and the weight vectors of them 

are initialized to match the weight vectors of its neighbours to maintain a smooth weight 

surface. We can identify three cases of weight initialization based on the location of the new 

node being added, as illustrated in Figure 2.9. 

 

Figure 2.9: Weight initialization for a newly added node 

With the weight vector of the node that initiated node growth, the weight vector of the 

neighbouring node and the weight vector of the newly added denoted as  𝑤1, 𝑤2 and 𝑤𝑛𝑒𝑤 

respectively, the weight initialization for the new node is carried out as follows. 

 𝐺𝑇 = −𝐷 × ln (𝑆𝐹) (2.5) 



Chapter 2 

 

36 

 

 Case (a): The new node has two consecutive old nodes on one of its sides. 

Case (b): The new node is in the middle of two older nodes. 

Case (c): The new node has only one older neighbour, and this neighbour has another node on 

its side which is not directly opposite to the new node. 

If both cases (a) and (c) are valid for a given node insertion, case (a) take precedence in weight 

initialization. 

For a non-boundary node, 𝑘, the error is redistributed to its immediate neighbours when the 

accumulated quantization error, 𝐴𝐸𝑘(𝑡),  exceeds the growth threshold, 𝐺𝑇. The effect of the 

error redistribution is to pass the high error value in the middle of the map towards the boundary 

leading to node addition along the boundary. With error redistribution, the accumulated 

quantization error of the node, 𝑘, that exceeds the growth threshold is set as follows. 

The weight vectors of the immediate neighbour, 𝑛𝑖; 𝑖 = 1 … 4, are updated as follows. 

Constant 𝛾 is called the factor of distribution (FD), which controls the error redistribution rate. 

This is usually set as 0 < 𝛾 < 1. 

Smoothing phase is the fine-tuning phase responsible for fine-tuning the weight vectors of the 

neurons. Similar to the growing phase, inputs are presented, and weights are adjusted, however, 

 
𝑤𝑛𝑒𝑤 =  {

𝑤1 − (𝑤2 −  𝑤1);    𝑤2 >  𝑤1

𝑤1 + (𝑤1 −  𝑤2);    𝑤2 ≤  𝑤1
 

(2.6) 

 
𝑤𝑛𝑒𝑤 =  

𝑤1 +  𝑤2

2
 

(2.7) 

 
𝑤𝑛𝑒𝑤 =  {

𝑤1 − (𝑤2 −  𝑤1);    𝑤2 >  𝑤1

𝑤1 + (𝑤1 −  𝑤2);    𝑤2 ≤  𝑤1
 

(2.8) 

 𝐴𝐸𝑘(𝑡 + 1) = 𝐺𝑇/2 (2.9) 

 𝐴𝐸𝑛𝑖
(𝑡 + 1) = (1 + 𝛾) 𝐴𝐸𝑛𝑖

(𝑡) (2.10) 
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with no new neuron growth. The purpose of this phase is to smooth out any existing 

quantization error. 

2.4.4 Neural Gas and Variants 

Neural gas (NG) (Martinetz & Schulten, 1991) is an artificial neural network which draws its 

inspiration from the vector quantization of self-organizing maps. Similar to SOM algorithm, 

the NG algorithm strives to achieve an optimal representation of the input space with a finite 

number of neurons (also referred to as nodes or units) each having a prototypes/feature vector. 

However, as the name suggests, NG does not have a pre-defined structure, and the neurons 

distribute themselves reminiscing of the dynamics of a gas filling the “input” space. 

The NG algorithm trains the feature vectors by iteratively presenting them with samples drawn 

randomly from the input dataset. Given the input dataset 𝑆 consisting of input vectors, 𝑥𝑖 ∈ ℝ𝐷 

and a finite number of feature vectors, 𝑤𝑘(𝑡) ∈ ℝ𝐷, at each input presentation, the order of the 

neurons is identified by the distance between the input and the feature vector using a suitable 

distance measure. Next, all feature vectors are adapted using (2.11), where 𝜀 is the adaptation 

step size while 𝜆 is the neighbourhood range which determines the number of neural units 

significantly changing their weights. Both parameters are decreased over time to stabilize the 

training process 

Similar to the SOM algorithm, the fixed number of neurons used in the NG algorithm has been 

identified as a major limitation. A number of alternatives have been proposed to eliminate this 

limitation, including growing neural gas algorithm (Fritzke, 1994) and growing when required 

network (Marsland et al., 2002).  

Unlike the NG algorithm, the growing neural gas algorithm (GNG) (Fritzke, 1994), starts with 

a mere two neurons and adds additional neuron gradually to adapt to the distribution of the 

input data. Extending on the work by Martinetz (1993), the GNG algorithm performs the 

 
𝑤𝑘(𝑡 + 1) =  𝑤𝑘(𝑡) +  𝜀 𝑒

−
𝑘
𝜆 (𝑥𝑖 −  𝑤𝑘(𝑡))  

(2.11) 
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learning by means of competitive Hebbian learning. Due to the dynamic neuronal addition, the 

GNG algorithm does not require parameters that change over time and continue to learn the 

input data topology by adding new neurons and neuronal connections until a convergence 

criterion is met. The GNG algorithm has been further extended with utility criterion to follow 

non-stationary distribution in (Fritzke, 1997). The new version allows for the removal of some 

of the neurons when the utility criterion falls below a certain threshold for the neuron. This 

allows for better representation of the input space allowing for incorporating dynamic changes 

observed in the input space. 

Growing when required (GWR) network (Marsland et al., 2002) extends the neural gas 

algorithm to tackle the fixed size of the network of neurons used for training in order to 

approximate the input space more accurately, more parsimoniously. The underlying idea of the 

proposed algorithm is to accelerate the node growth compared to other dynamic neural network 

architectures. Marsland et al. (2002) argue that other growing networks only add neurons after 

a number of iterations as the previous iterations are required to accumulate the error at each 

node. To compensate this limitation, the GWR network adds new neurons whenever the best 

matching unit differs from the input vector by some (arbitrary) accuracy and the new neuron is 

initialized to match the current input vector. It is highlighted that GWR would work well with 

non-stationary distributions, adding new neurons to approximate new distribution once the 

distribution changes. 

2.5 Computational Models of Multisensory Fusion 

As more and more physiological evidence is made available about the neural mechanism that 

underly the multisensory interplay, a large number of computational theories have been put 

forward about the multisensory integration/fusion in the brain. The computation models 

implementing these theories can broadly be categorized as 1) biologically inspired artificial 

neural network models that implement known neurophysiological characteristics, 2) models 

that view multisensory fusion as Bayesian inference. The former category is inspired by the 
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fact that the multisensory integration is not present at birth but acquired during the course of 

interaction with multimodal stimuli during early stages thanks to the neural plasticity (Burr & 

Gori, 2012). Such models rely on Hebbian learning or principles of self-organization to 

implement the neuronal adaptation to perform the multisensory fusion. The latter category uses 

Bayes theorem and is based on conditional probabilities in achieving an optimal estimator of 

external multimodal stimuli. 

2.5.1 Biologically Inspired Artificial Neural Network Models 

A number of artificial neural models, both at the single neuronal level and neural network level, 

have been proposed to model the neurophysiological mechanism of the Superior Colliculus and 

the Cortex that is responsible for fusing multimodal stimuli. Some of these models implement 

the traditional neuroscience view of the multisensory fusion, which is often known as 

unisensory before multisensory. This view assumes that individual senses are first processed in 

their respective unisensory cortical areas of separated channels, and the fusion of the senses 

happens only at a later stage at higher-level cortical areas. Models implementing this view are 

usually organized in a hierarchical feedforward manner to resemble the hierarchical 

organization of individual sensory modalities and multisensory processing higher up at the 

hierarchy. While this view is still partially valid, more recent physiological evidence has 

demonstrated the role of primary cortical areas in the fusion process. They have been shown to 

receive inputs from other primary cortical areas and higher-order association areas, making 

them involved in an early stage fusion process. Subsequently, recent biologically inspired 

models of multisensory fusion have adapter this evidence with artificial synaptic links between 

primary areas and feedback links from higher-order areas. 

2.5.1.1 Hierarchical Feedforward Models  

Below we discuss a few noteworthy hierarchical feedforward artificial neural models of 

multisensory fusion. 
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Hierarchical Growing When Required Networks 

Parisi et al. (2017) have proposed a self-organizing neural network hierarchy with four layers 

as depicted in Figure 2.10 for the unsupervised fusion of multimodal pose and motion inputs. 

The first two layers consist of GWR networks (Marsland et al., 2002) organized as a two-stream 

hierarchy for pose and motion modalities. The GWR algorithm trains a dynamic network of 

neurons to achieve an optimal data representation based on prototype vectors. The integration 

of the two streams are carried out in the third layer, (aptly named GSTS for superior temporal 

sulcus (STS) which shows a superadditive response to multimodal stimuli (Calvert et al., 

2000)), which is modelled using another GWR network modified to account for movement 

dynamics in the joint vector space. The fourth layer is implemented with an extended GWR 

network called online semi-supervised GWR (OSS-GWR), which performs semi-supervised 

associative learning for learning action-word mapping and subsequently classifying multimodal 

inputs with action labels. Throughout the network, higher-order networks are trained with the 

activation trajectories of their immediately preceding layer as the input vectors. 

However, a major limitation of the proposed approach is that it fuses the two unimodal 

representation at the 3rd layer by simply concatenating the two activation trajectories from layer 

2. A number of studies have pointed out the limitation of such concatenation based approaches 

due to the fact that the representation, distribution and scale of the two dataset may vary (Ngiam 

et al., 2011; Srivastava & Salakhutdinov, 2014). Moreover, Zheng (2015) highlights three 

limitations of direct concatenation approach; 1) it causes over-fitting for small datasets, and 

specific statistical properties of each dataset are lost, 2) it makes it hard to learn highly non-

linear relationships between the low-level features across the two modalities, and, 3) 

redundancies and dependencies that exist between the two modalities are overlooked.  
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Figure 2.10: Hierarchical processing of pose and motion modalities with growing when 

required (GWR) networks (Parisi et al., 2017). 

Hierarchical GSOM 

Motivated by the hierarchical cortical modelling proposed by Hawkins and Blakeslee (2007), 

Fonseka (2012) presents a hierarchical model for processing multimodal input data. The 

architecture prescribes the low-level neuronal regions pertaining to multiple sensory modalities 

are connected indirectly through regions higher up in the hierarchy. Moreover, the simultaneous 

activation in different parts of the hierarchy and the integration of such activation for 

recognition is in agreement with the Ensemble Coding Hypothesis (Gazzaniga et al., 2013). 

The hierarchy consists of multiple artificial neural layers modelled using the GSOM algorithm 

(Alahakoon et al., 2000). The hierarchy is composed of primary cortical area, association area 

and higher-order association area symbolizing the V1, V2 and V4 regions in the human visual 

processing hierarchy. The above areas may be composed of one or more neural layers and 

provide an increasingly abstract view of the inputs as the hierarchy is traversed from the bottom. 

All the layers use the activation trajectory of it immediately preceding layer as their input. 
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The higher-order association area is responsible for combining the sensations generated at 

each sensory channel. As the GSOM algorithm used for the implementation of this level uses 

competitive learning, the winning neuron is determined by the weighted errors of activation 

trajectories of two modalities of the lower level, 𝑤𝐴𝑘(𝑣) and 𝑤𝐴𝑘+1(𝑣), with their corresponding 

portions of the weight vector, 𝑤𝑂𝑘,𝑘+1

𝑘  and 𝑤𝑂𝑘,𝑘+1

𝑘+1 . 

Here the subscript 𝐴𝑘 denotes the association area of the 𝑘𝑡ℎ modality while the subscript 

𝑂𝑘,𝑘+1 denotes the higher-order association area that receives inputs from modalities 𝑘 and 

𝑘 + 1. This allows for the use of different distance functions for each modality (𝑑𝑘(𝑥) and 

𝑑𝑘+1(𝑥)) opposed to direct concatenation of vectors, and parameter 𝛼 controls the extent of 

each modality’s influence. 

Fusion Adaptive Resonance Theory 

Tan et al. (2007) proposed a generalization to the adaptive resonance theory (ART) (Carpenter 

& Grossberg, 1987a, 1987b), named fusion adaptive resonance theory (fusionART), extending 

the algorithm to multimodal pattern channels. Refer section 2.4.1 for an overview of ART. As 

shown in Figure 2.11, the comparison layer, 𝐹1, which initially receive the inputs, is now 

divided into multiple layers to accommodate multiple pattern channels. One advantage of 

fusionART highlighted by Nguyen et al. (2008) is that it does not require input to be available 

to each channel. Such missing inputs are handled by initializing the input vector to all zeros. 

 

Figure 2.11: Architecture of fusionART (Tan et al., 2007)  

 
𝑒

𝑂𝑘,𝑘+1=[𝛼 × 𝑑𝑘(𝑤𝐴𝑘
,   𝑤𝑂𝑘,𝑘+1

𝑘 )]+[(1−𝛼)× 𝑑𝑘+1(𝑤𝐴𝑘+1
,   𝑤𝑂𝑘,𝑘+1

𝑘+1 )] 
 

(2.12) 



   Setting the Stage 

43 

 

The fusion of the multimodal inputs is performed by weighted combination the activations of 

layer 𝐹1. With 𝐼𝑐𝑘 = (𝐼1
𝑐𝑘 , 𝐼2

𝑐𝑘, … , 𝐼𝑛
𝑐𝑘) denoting the inputs to channel 𝑐𝑘;  𝑘 = 1, … , 𝐾 and 𝑤𝑗

𝑐𝑘 

denoting the weight vector associated with 𝑗𝑡ℎ node in 𝐹2 and pattern channel 𝐹1
𝑐𝑘, the code 

activation at node 𝑗, 𝑇𝑗, is calculated as, 

The contribution parameter, 𝛾𝑐𝑘 ∈ [0,1], determines the extent to which each modality 

influence the dynamics of the system. 

FusionART has been demonstrated with image and text data extracted from news articles on 

terrorist attacks (Nguyen et al., 2008). The evaluations are based on the clustering achieved 

with the fusionART on multimodal inputs, comparing it against the clustering achieved on 

unimodal inputs. The accuracy reported is around 40%, while the unimodal clusters report 

similar results. They attribute this less-than-satisfactory results to the small size of the training 

sample compared to the high dimensionality of the input vectors. However, experiments carried 

out with artificial data have archived better results. 

Hierarchical Modelling of Superior Colliculus 

Magosso et al. have presented an artificial neural network that models the multimodal dynamics 

of the superior colliculus (SC) in a series of papers (Magosso et al., 2008; Ursino et al., 2009). 

Their model consists of two layers, a layer of unisensory neurons having receptive fields for 

each modality and another layer of multisensory neurons feeding on the unisensory layer (see 

Figure 2.12).  

The neurons in the unisensory layers exhibit non-linearity with the use of a sigmoid function 

for the activation of neurons while the neurons in the multisensory layer perform weighted sum 

calculation of the inputs from the unimodal layer. Due to the non-linearity, the multimodal 

neural network can demonstrate the inverse effectiveness property of biological neurons, 

switching between the superadditive enhancement and the subadditive enhancement based on 

 

𝑇𝑗 = ∑ 𝛾𝑐𝑘
|𝐼𝑐𝑘 ∧ 𝑤𝑗

𝑐𝑘|

𝛼𝑐𝑘 + |𝑤𝑗
𝑐𝑘|

𝐾

𝑘=1

 

(2.13) 
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the crossmodal stimuli (Ursino et al., 2014). Moreover, the proposed model demonstrates the 

multisensory enhancement and multisensory suppression properties (Meredith & Stein, 1986) 

facilitated by the lateral connections having an inhibition profile in the shape of a Mexican hat. 

 

Figure 2.12: Architecture of artificial hierarchical model of the superior colliculus. Each 

neuronal area (A: auditory, V: visual and SC: superior colliculus) is laterally connected to the 

neuron in the same area, and their excitatory/inhibitory profile is shown in their respective 

charts. Inter-area feedforward excitatory connections send signals from unimodal neurons to 

the multimodal neurons in the SC area (arrow K) while the feedback connections send signals 

the other way around (arrow F). (Magosso et al., 2008) 

2.5.1.2 Models with Inter-area Feedback 

Recent physiological evidence has demonstrated the role of primary cortical areas in the fusion 

process. They have been shown to receive inputs from other primary cortical areas and higher-

order association areas, making them involved in an early stage fusion process. Models inspired 

by this phenomenon contain lateral connections between unimodal areas of the multiple 

modalities. Among other demonstrations, they have been used to simulate audio-visual illusions 

among primary areas. 

Magosso et al. (2012) proposed a multisensory model containing direct lateral connections 

between the artificial cortical areas of each modality. The model has been demonstrated for 

audio-visual inputs with a fine topological organization (higher spatial resolution) for the visual 

modality and a coarse topological organization (lower spatial resolution) for the auditory 
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modality. As shown in Figure 2.13, intra-layer excitatory and inhibitory synaptic connections 

connect the neurons within a single modality while inter-layer excitatory connections connect 

the two modalities.  

 

Figure 2.13: Schematic diagram of the model with intra-layer excitatory and inhibitory 

connections and inter-area excitatory connections. Arrowheads denote excitatory synaptic 

connections while dots denote inhibitory synaptic connections (Magosso et al., 2012). 

This model has been successful in demonstrating the effects and aftereffects of ventriloquism 

(Refer section 2.2.1.1 for an introduction to ventriloquism) despite the absence of a dedicated 

convergent multimodal area. The effect of ventriloquism is ascribed to the excitatory feedback 

between the visual and auditory neuronal layers while the aftereffects are ascribed to the 

Hebbian training mechanism that modifies the intra-area lateral connection weights. 

Another implementation of crossmodal interaction between multiple modalities has been 

presented in (Hoshino, 2011). This specifically models the direct interactions between the 

lower-order unimodal sensory areas and demonstrates the contribution of such interaction in 

the multisensory fusion of subthreshold stimuli that would not otherwise reach perceptual 

awareness in isolation. The model consists of two unimodal areas (X and Y) connected to each 

other via lateral connections and a higher-order multimodal area (M). The experiments 
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conducted with the implementation of the proposed model demonstrate how the interaction 

between the lower unisensory areas is essential to generate a suprathreshold response to 

congruent subthreshold multimodal stimuli. 

2.5.2 Bayesian Models 

A number of Bayesian models have also been proposed to model the multisensory fusion of the 

brain. The underlying idea behind using a Bayesian approach for multisensory fusion is that the 

human brain operates in an environment with uncertainty. The uncertainty arrives from the 

environmental noise, neural variability and neural structural constraints (Ursino et al., 2014), 

especially in the case of multimodal integration, and the brain needs to account for this 

uncertainty in its operations. Hence, Bayesian principles are proposed to model this uncertainty 

and to compute the posterior probability given the uncertain sensory information. These models 

mathematically formalize the fusion of multimodal sensory signals having different reliability 

levels. 

Given an uncertain sensory cue 𝑐 and the actual attribute, 𝑎, being transmitted by the cue, the 

Bayesian formulation calculates the posterior probability 𝑝(𝑎|𝑐) using the Bayes theorem, 

Here, 𝑝(𝑐|𝑎) is the likelihood of the cue occurring given attribute, taking into account the 

uncertainty associated with the cue and 𝑝(𝑎) brings in the prior knowledge about the attribute 

𝑎. The simplest Bayesian formulation transformed into the multimodal domain would be, 

where 𝑐𝐴 and 𝑐𝑉 are the sensory cue in individual modalities, respectively. A similar Bayesian 

model has been proposed by Battaglia et al. (2003) to explain the localization of audio-visual 

signals. With the above formulation, 𝑎 is the location of the event to be estimated while 𝑐𝐴 and 

𝑐𝑉 are the auditory and visual locations reported by the subjects. 

 𝑝(𝑎|𝑐) = 𝑝(𝑐|𝑎) ∙ 𝑝(𝑎)/𝑝(𝑐) (2.14) 

 𝑝(𝑎|𝑐𝐴, 𝑐𝑉) = 𝑝(𝑐𝐴, 𝑐𝑉|𝑎) ∙ 𝑝(𝑎)/𝑝(𝑐𝐴, 𝑐𝑉) (2.15) 
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Further extensions to these models have been proposed to model the dynamics of incongruent 

stimuli, for example, when the auditory and visual are emitted from different locations. In these 

models, the attribute, for example, the location is allowed to have two distinct values for each 

modality. Starting with visual and auditory locations reported, 𝑐𝐴 and 𝑐𝑉, the position is 

estimated by maximizing 𝑝(𝑎𝐴, 𝑎𝑉|𝑐𝐴, 𝑐𝑉) where  𝑎𝐴 and 𝑎𝑉 are the auditory and visual 

locations respectively. The new formulation takes the form, 

Interaction prior, 𝑝(𝑎𝐴, 𝑎𝑉), is the joint prior probability of the auditory and visual locations, 

and this captures the interaction between the two modalities (Körding et al., 2007). When the 

two locations are independent, there is no interaction between the modalities. The interaction 

prior was a Gaussian ridge along the diagonal when the model was fitted with a cat’s 

localization response, reflecting the frequent case of actual auditory and visual locations being 

the same. 

2.6 Summary 

Multimodal perception in humans offers richer information about the surrounding since sensory 

modalities jointly capture the same event or object supplementing each other. Psychology and 

neurobiology research disciplines have identified many cases of interactions between 

modalities, where the perception of one sensory modality is conditioned by the information 

simultaneously available to another (Bertelson & De Gelder, 2004). This conditioning has been 

demonstrated in the form of crossmodal influence (Mcgurk & Macdonald, 1976; Schwartz et 

al., 2004) and crossmodal recalibration (Radeau & Bertelson, 1974; Wallach, 1968) while 

special medical conditions provide further evidence of multimodal dynamics in the human brain 

(De Gelder & Bertelson, 2003; Ramachandran & Hubbard, 2001). Moreover, neurobiological 

experiments carried out on non-human subjects such as cat and primates (Stein & Stanford, 

 𝑝(𝑎𝐴, 𝑎𝑉|𝑐𝐴, 𝑐𝑉) = 𝑝(𝑐𝐴, 𝑐𝑉  |𝑎𝐴, 𝑎𝑉) ∙ 𝑝(𝑎𝐴, 𝑎𝑉)/𝑝(𝑐𝐴, 𝑐𝑉) 

                                      =  𝑝(𝑐𝐴|𝑎𝐴) ∙ 𝑝(𝑐𝑉|𝑎𝑉) ∙ 𝑝(𝑎𝐴, 𝑎𝑉)/𝑝(𝑐𝐴, 𝑐𝑉) 

(2.16) 
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2008) and more recently, the findings from neuroimaging have reaffirmed the role of 

multimodality in human perception (Beauchamp et al., 2004, 2010).  

There has been a number of theories put forward on how the human brain processes sensations 

from multimodal stimuli to create a united conscious perceptual experience. The feature 

integration theory (Treisman & Gelade, 1980) proposes that the object’s location mediates the 

binding of the features such as the form, depth, motion and colour while the attention is 

proposed as the “glue” that combines this information. On the other hand, the synchronization 

theory (Engel et al., 1999) proposes that the neuronal activation in various parts of the brain 

induced by the same object are in synchrony and this synchronization is the basis of binding. 

As more and more physiological evidence is made available about the neural mechanism that 

underly the multisensory interplay, a number of computational theories have been put forward 

about the multisensory fusion in the brain (Cuppini et al., 2010; Fonseka, 2012; Magosso et al., 

2012; Parisi et al., 2017; Rowland et al., 2007; Ursino et al., 2009). A number of such 

computational models proposed are based on the principles of self-organization as cortical maps 

in the human brain develop early by means of self-organization mechanisms (Fonseka, 2012; 

Khacef et al., 2020; Parisi et al., 2017; Tan et al., 2007). The self-organization-based algorithms 

that have been used as the basis for such computational models include SOM (Kohonen, 1990), 

GSOM (Alahakoon et al., 2000), ART (Grossberg, 1982, 2013), and NG (Martinetz & Schulten, 

1991). 

While there have been a number of attempts at building computational models of multimodal 

fusion, they have mostly focused on modelling the dynamics of the brain (Cuppini et al., 2010; 

Magosso et al., 2012; Rowland et al., 2007; Ursino et al., 2009) rather than on the application 

of the developed models on real-world problems, let alone the challenges posed by the vast 

amount of data generated in digital environments. Hence, despite recent research effort in 

multimodal fusion for a holistic perception, the question remains open on how to better adapt 

biologically plausible algorithms to develop an artificial impression generation architecture for 

digital environments, especially for data-intensive environments. 
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Moreover, while most of the previous attempts have focused on the supervised paradigm, fusion 

techniques for unsupervised environments are still unresolved and an ongoing problem 

(Dasarathy, 2006). With the vast amount of data being generated, unsupervised learning 

mechanisms are important more than ever before due to the inability to label such large datasets. 
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Chapter 3                                                                    

Theoretical Foundation - 

Computational Basis for Artificial 

Impression Generation 

3.1 Introduction 

Even before the advent of computing, humans envisioned developing intelligence artificially. 

Sensing and perceiving the surrounding by fusing different sensory modalities has been a core 

component of the AI from the inception of the concept. However, recent changes in the data 

and technology landscape have made a significant shift, requiring rethinking how this can be 

achieved in AI.  

As highlighted in Chapter 1, compared to a decade or two ago, artificial intelligence 

applications operate in a much more different landscape in terms of the variety and volume of 

data available for processing. Then, with less automation and connectivity, the data collection 

was passive. Moreover, datasets collected were small, mostly unimodal, isolated and 

infrequent. With these datasets, the AI applications had access only to limited aspects of an 
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issue at hand with a small amount of data. By analysing these small datasets individually, the 

interactions among different modalities were mostly not accounted for while it remained with 

the human in the loop to analyse and synthesize outcomes of different analysis made by AI to 

form a holistic understanding of the situation and to make appropriate decisions. 

However, nowadays, the sensing and capturing in Big Data era generates large, unlabelled, 

multimodal and multisource, connected and high frequent datasets starting to more closely 

represent the natural environment being captured. This phenomenon has created a digital 

environment which is a closer representation of the natural environment than the one derived 

with smaller, labelled, unimodal, isolated and infrequent data.  The digital environment closely 

resembles how a human would perceive his environment where they perceive the surrounding 

in a holistic manner by analysing and fusing different sources of sensory excitations. 

Humans’ ability to create a holistic understanding of an event or a situation is well supported 

by the brain functionality, developing an impression of such an event/situation based on 

multiple input sources representing diverse aspects of the event/situation. The ability to exert 

the impact of an additional co-occurring sensory input on a particular input (or what is 

represented by a particular input) results in the contextualization of the particular input (or 

representation). Moreover, it is important to note that sensory inputs do not carry any labelling 

or annotation, and the impression arises solely from the impacting and fusion of the modalities 

in the context of past knowledge/memory. 

We argue that AI for Big data era must be capable of imitating such ability and propose an 

innovative concept of a digital impression as the basis of achieving this functionality. That is, 

enabling AI applications to form a coherent and holistic impression on the digital environment, 

similar to how humans would form a coherent and holistic impression on the natural 

environment from multimodal sensory excitations they receive. We further argue the need and 

justification: (a) The need for more autonomous AI, i.e., a new breed of AI applications which 

is autonomous and proactive compared to manual and human-driven AI applications in the past. 
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(b) Availability of multiple and multimodal data sources with deeper granularity, captured with 

higher frequency and in large volumes.  

Chapter 3 is organized as under two major sections. The first section posits our premise on 

human sensation and perception in forming a coherent impression about the external world and 

how this can be implemented on artificial counterparts. The second section proposes an 

artificial model of neocortex for the purpose of generating artificial impressions on digital 

environments. The artificial model consists of a conceptual model conceptualizing the 

organization of the artificial cortical layers, neuronal connections and information flow among 

them, an architectural model describing the components of the proposed artificial model and a 

computational model outlining the algorithmic means by which we propose to achieve this. 

3.2 Our Premise 

In this section, we layout our premise of sensation and perception in humans. We discuss how 

humans construct the state of the external environment from the sensory inputs by forming what 

we call a coherent impression about the external world. We draw on neurobiological and 

physiological research in developing our understanding and highlights the role of knowledge 

representation which provides the context for making sense of the sensory information.  

It has been one of the major goals of the field of AI to equip AI algorithms with the ability to 

perceive as we humans do. Noting that the sensing and capturing in Big Data era generates 

large, multimodal, dense and high frequent datasets creating a digital environment which 

closely represent the natural environment being captured, we discuss how we can enable AI 

algorithms to generate artificial impressions on digital environments, and which biologically 

plausible algorithms could be utilised/developed to achieve this. 
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3.2.1 Coherent Impressions 

Humans, similar to other living beings, consume a plethora of external information through 

their sensory system. They receive this information in the form of sensory excitations at their 

sensory organs, and the human brain is then responsible for processing these sensory 

excitations. It is the duty of the human brain to reconstruct the state of the external environment 

from multiple sensory cues to provide us with an appropriate interpretation of the surrounding. 

The highly specialized neural mechanism in our brain processes sensory excitations allowing 

us to perceive the surrounding in the form visual, auditory, olfactory, gustatory and tactile 

perceptions. The process of analysing and fusing different sources of sensory information 

Figure 3.1 Generation of impressions on a situation/event by humans (a) and artificial 

counterparts (b) 
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generates what we call a coherent impression about the external world, which mediates our 

actions and reactions.  

We have so far used the term impression without providing a formal definition. Given the 

centrality of this concept for this thesis, it is imperative that we provide a precise formal 

definition of what we mean by the term impression. In the context of this thesis, the term 

impression refers to, 

Any form of interpretation derived from sensory data at hand, either captured naturally 

by a living being or artificially by a sensor, in the context of a knowledge representation 

derived from past encounters. 

As the above definition implies, an impression is a brain’s interpretation of the 

surrounding/situation derived from the sensations. This impression in humans (as well as 

animals) is likely something developed over the course of evolution, allowing for them to be 

safe from dangers in nature such as predators and natural hazards. 

The concept of impression is well aligned with the notion of sense data (Russell, 1914). Sense 

data refer to the mind-dependent objects that we are directly aware of in perception. They are 

the mind’s interpretation of sensory inputs or mental images and have exactly the properties 

they appear to have. For example, looking at a ripened lemon, we form the image of the lemon 

in our mind. This image is yellow and round. Sometimes the notion of sense data is interpreted 

narrowly limited to things perception makes us directly aware of. However, we also perceive 

things that we are indirectly aware of, that is, being aware of something in a way that depends 

on the awareness of something else (Jackson, 1977). Elaborating on the previous example, we 

only see the surface of the lemon that is facing us. However, we count as seeing the lemon by 

virtue of seeing something else, namely, the facing surface of the lemon. The notion of 

impression we discuss here encompasses both direct and indirect perceptions.  

Another aspect of impression is making sense of sensory data in the context of past 

knowledge/experience. It is, in fact, the past experience that gives meaning to what we perceive 
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right now. In the previous example, we would only count a yellow, round object instead of a 

lemon in the absence of past knowledge/experience. The impression generation is heavily 

dependent on the classification or clustering process that interprets the current perception in the 

context of past knowledge/experience. This process can also be viewed as a form of transfer 

learning, “extracting the knowledge from one or more source tasks and applying the knowledge 

to a target task” (S. J. Pan & Yang, 2010, p. 2), in the same domain in this case. Hence, the 

details of the knowledge representation mechanism which allows for classifying current 

perception to interpret it is of paramount interest. 

With regards to the process of impression generation in humans, the process is aligned well 

with the mind’s system 1 proposed by Kahneman and Egan (2011). They identified system 1 

to be fast, instinctive, stereotypical and automatic. It is the seat of trained expertise.  It carries 

unconscious biases coded into it from the past experience. Moreover, the system 1 does not 

spend time reasoning compared to system 2, which is deliberate and logical and is the seat of 

deduction and insight. 

3.2.2 Structure of Neocortex to Support Impression Generation 

Turning back to the natural counterpart – the brain – for inspiration, it is interesting to analyse 

how the neural mechanisms in the neocortex are organized to facilitate knowledge 

representation. There is a large body of research that demonstrates human knowledge is 

organized in a category-specific manner at both the cognitive and neural levels (Caramazza & 

Shelton, 1998; Tyler & Moss, 2001; Capitani et al., 2003; Mahon & Caramazza, 2011). 

Experiments conducted with brain-damaged patients having category-specific semantic 

impairments has been used as evidence of such category-specific organization of knowledge in 

the neocortex. These patients have conceptual level impairments that are specific to a particular 

category such as animals, plants, conspecifics or artefacts. It is hypothesised that different 

semantic categories are processed by distinct and dedicated neural regions. Domain-specific 

hypothesis (Caramazza & Shelton, 1998) specify that “there are innately dedicated neural 
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circuits for the efficient processing of a limited number of evolutionarily motivated domains of 

knowledge”.  

More recently, findings of such studies have been re-evaluated by neuroimaging studies using 

functional magnetic resonance imaging (fMRI) technology to map category-specific regions of 

the neocortex (Martin, 2007). Martin (2007) identifies a more intricate organization of the 

neural region, consistent with the categorical organization proposed in earlier studies. He notes 

that different aspects of an object - such as what it looks like, how it is used, and how it moves 

- are coded in different parts of the neural circuitry and object categories such as animals, plants 

and tools have a distributed, partially distinct sensory-based coding. Hence, the object concepts 

emerge from activity in aspect-based regions of the brain. However, he notes that aspect-based 

regions demonstrate categorical organization, thus providing evidence aligned with the 

category-based formulation. 

This understanding of the organization of the neural mechanism in the neocortex is important 

in our quest to implement impression generation process for artificial counterparts. The aspect-

based representation - such as what it looks like, how it is used, and how it moves - is analogous 

to different aspects of an object/event captured by different sensory modalities. This means that 

an artificial implementation would require a representation mechanism at modality level to 

capture different aspects of the object/event. Moreover, to facilitate the emergence of higher-

level object concepts from activity in aspect-based representations, a higher-order fusion 

mechanism would need to be implemented. 

Just as much as it is important to understand the organization of the neocortex supporting 

impression generation, it is important to look at the dynamics of the neural mechanism that 

facilitate it. Reentry in nervous systems has long been suggested as the mechanism that couples 

the functioning of multiple areas of the cerebral cortex and thalamus (Edelman & Mountcastle, 

1978) and the experimental evidence on the phenomenon have since suggested that it is one of 

the most important mechanisms supporting multimodal integration in the mammalian brain 

(Edelman, 1993). Reentry is the “ongoing bidirectional exchange of signals along reciprocal 
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axonal fibres linking two or more brain areas” (Edelman & Gally, 2013, p. 1). It supports the 

coordination of neuronal activity in functionally and anatomically segregated areas in the brain. 

By these means, they bind crossmodal sensory features by synchronizing and integrating 

patterns of neural activity in different brain regions. Edelman and Gally (2013) go further to 

suggests that “by sustaining attention and short-term memory, reentry might even play a central 

role in generating conscious awareness” (p. 1). 

As highlighted about the organization earlier, the neocortex has evolved to be a mosaic of 

functionally and anatomically segregated areas (Somogyi et al., 1998). Due to this, neurons 

responsive to various modalities or sub-modalities of a given multimodal sensory input are 

distributed across separate areas in the neocortex.  As shown in Figure 3.2, the neurons 

belonging to different layers within a cortical area form a dense columnar array and neurons 

belonging to different cortical areas are reciprocally interconnected by reentrant networks of 

excitatory axons (Markov et al., 2014). These reentrant neurons are thought to develop very 

early by means of self-organization mechanisms during the embryonic development of the 

mammalian brain (Shatz, 1992). Stimulus evoked patterns of activity in newly developed 

neurons help develop the connectivity patterns both within and among cortical areas. 

The key role played by reentrant neuronal circuitry is the integration or binding of the 

multimodal sensations into a coherent percept. Evidence suggests that synchronous exchanges 

of signals among neuronal groups in dispersed cortical areas correlate with, and bind together, 

the multiple but distinguishable features of unified, conscious scenes (Edelman & Gally, 2013). 

Reentry is thus thought to be critical for transformation of sensory neural activity into a stable, 

consciously reportable percept. 
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Figure 3.2 Schematic diagram of reentrant neuronal bundles linking segregated cortical areas 

(Edelman & Gally, 2013) 

This understanding of reentry, the interaction mechanism among segregated areas in the 

neocortex that process different modalities or sub-modalities, is important in our quest to 

implement impression generation process for artificial counterparts since the impression is the 

impact multiple sensory inputs make on the mind as a whole (captured by cortical regions). As 

such, it is important to understand the mechanism which results in sensory inputs of one 

modality which influences cortical regions capturing inputs from other modalities. Such a 

mechanism should shape the design of artificial impression generation mechanism. In our 

conceptual model of artificial neocortex (Section 3.3.1), we propose to implement this 

mechanism with inter-modal associative connections.  

3.2.3 Digital Environment 

For the artificial counterparts, the key to success is the accurate sensing and perception of the 

external environment forming a coherent impression about it. Remember, our goal here is to 

enable digital counterparts to form a holistic impression on the digital environment (Figure 3.1 

(b)), similar to how humans would form a holistic impression on the natural environment from 

multimodal sensory excitations they receive (Figure 3.1 (a)). With environment sensing being 

performed across multiple modalities with high frequency, the digital environment represented 

by these data provides a more complete and realistic environment for artificial counterparts to 

interact and operate. Hence, to be able to take advantage of this, it is essential that modern AI 

is geared to tackle volume and variety challenges posed by the digital environment.  



  Theoretical Foundation 

59 

 

To elaborate the above, let us consider an example use case. Consider a traffic monitoring and 

management system that helps monitor the traffic situation of a city in real-time to facilitate 

remedial actions. A holistic impression of the city-wide traffic situation is essential for such a 

system as individual situations across sites and areas of the city is highly interrelated. The 

sensory network of the system would consist of various types of sensors placed around the city 

to get an understanding about the traffic situations at specific sites, areas of the city as well as 

the whole city. Examples include Bluetooth sensors placed in road intersections uniquely 

capturing vehicle movements, motion sensors placed near pedestrian paths and crossings to 

judge the pedestrian traffic, and video cameras capturing vehicles and pedestrian movement. It 

is the data, that is captured across multiple modalities, multiple sources, multiple sites with high 

frequency, that enables the monitoring system to form a city-wide holistic impression of the 

traffic situation which is the essential first step for remedial actions. Such extensive coverage 

of the traffic situation of the city provides a comprehensive digital environment for the 

algorithm to operate on and generate a holistic impression. 

However, with the lack of algorithmic capability for machines to form a holistic impression, it 

is currently created in the minds of people who operate these systems. While humans are good 

at forming a holistic impression, they lack in terms of the volume of information they can 

handle.  For example, while a human can effectively integrate information from multiple 

sensory modalities to form a clear impression on his surrounding, a city-wide traffic situation 

involving hundreds of intersection, thousands of road segments and hundreds of thousands of 

vehicles and pedestrians would easily overwhelm even a team of human operators of a city-

wide traffic monitoring and management system. Therefore, we would greatly benefit from 

enabling artificial counterparts algorithmically forming holistic impression from large volumes 

of multimodal data. 

However, the question remains: how can we provide artificial counterparts with the ability to 

form impressions in digital environments they operate? 
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3.2.4 Computational Elements for the Simulation of Cortical 

Functions: SOMs and GSOMs 

As highlighted earlier, it has been one of the major goals of the field of AI to equip AI with the 

ability to perceive as we humans do. As an important first step in allowing AI to form an 

artificial impression about the external world which it operates in, researchers have long been 

developing knowledge representation mechanisms (Brachman & Levesque, 1985).  

The family of self-organizing map algorithms have been widely used to model the feature maps 

in the human brain. This is due to two major reasons; 1) the working mechanism of the 

algorithm has been inspired by the self-organization, which is a central mechanism of nature 

that organizes selected parts of a system so as to promote a specific function (Camazine et al., 

2003),  2) the algorithm uses an unsupervised training mechanism which resembles how 

humans learn from sensory inputs which are not accompanied by any labelling.  

Self-organization has been hypothesised as the mechanism by which the features maps of the 

brain responsible for processing sensory modalities are developed. The experimental evidence 

suggests that sensory projections are conditioned by experience, due to the plasticity of the 

neurons and the self-organization mechanism that drives the conditioning. 

Nature does not label its data. Humans do not receive any labelling with the sensations they 

receive through their sensory systems. There are no data outside of the sensory inputs for 

humans to form an understanding or an impression of the sensory inputs. This unsupervised 

learning nature should be accounted for in the AI algorithm that mimics the natural counterpart. 

The elegance of self-organization process, unsupervised nature of learning and the capability 

of topographic maps to produce a reduced representation of facts without loss of knowledge 

about their interrelationships (Kohonen, 1989) have inspired the family of self-organizing map 

algorithms for information processing and knowledge representation. These algorithms develop 

simplified models of the world at a level of abstraction in relations to the inputs from the 
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observable world and have been widely used in knowledge representation tasks in a wide array 

of fields. 

As described in Section 2.4, the SOM algorithm is the most widely used algorithm of the family 

of self-organizing map algorithms. The algorithm produces a discretised representation of the 

input space onto a lower-dimensional space, facilitating dimensionality reduction while 

producing the reduced representation. The training algorithm preserves the topological 

relationships from the input domain onto the lower-dimensional space inspired by the 

topographic maps in the human sensory system. Moreover, the algorithm uses an unsupervised 

learning mechanism consistent with how a human would learn/organize his experiences. 

To alleviate the limitation of fixed size and structure of SOM, the GSOM algorithm has been 

proposed. As highlighted in Section 2.4.3, the dynamic nature of structure allows for better 

representation of relationships in input data and closer resemblance of dynamic structure 

adaptation of the cortical areas it is inspired by. 

3.2.5 Generating Digital Impressions 

Let us briefly review where we stand at this point. We have analysed the process of fusing 

multimodal sensory data in humans to generate coherent and wholistic impressions about the 

external world and formally defined the term impression. We discussed the biological structure 

of human neocortex facilitating impression generation. Noting that the technological 

advancements in data capture (large volumes of multimodal data at high frequency) have 

created a digital environment which closely approximates the natural environment, we aspired 

to enable digital counterparts to form a similar holistic impression on the digital environment. 

Since the natural impression in the human mind is generated by the structure and functionality 

of the human cortex, we reviewed computational elements that can be used for the simulation 

of cortical functions. 

Let us now delve into how we can enable digital counterparts to form a holistic impression on 

the digital environment. 
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We identify four key features of such an artificial impression generation system. 

1. The ability to capture and represent multimodal data in a common representation. 

Such a system would be required to consume multimodal data pertaining to a given 

situation and a common representation mechanism and common format to represent 

information from different modalities would be beneficial in associating similar 

concepts across modalities. A common representation would facilitate implementing a 

unified way of interaction between modalities which is identified as the second key 

feature. Such a representation would allow extending the overall system to multiple 

modalities without much effort given that representation mechanism is independent of 

the modality-specific nuance.  

Moreover, a common representation is reflective of the biological organization of the 

sensory system in humans where primary cortical areas of different modalities are 

organized in a similar way. Due to this uniformity in representation mechanism at the 

lower level, when a person or an animal is deprived of one sensory modality, the other 

sensory modalities overtake the primary cortical region that is used to process that 

sensory modality. For example, humans who are congenitally deaf process visual 

information in areas that normally become the auditory region. Similarly, the 

congenitally blind humans use the rearmost section of the cortex, which usually 

processes visual signals to read braille with tactile sensations (Hawkins & Blakeslee, 

2007). 

2. A mechanism for different aspects of an event to interact with/impact each other. 

How we perceive a single modality is impacted by other co-occurring modalities. We 

perceive a given modality in the context of the other modalities, and they condition our 

perception of the given modality; thus, the representations of the same situation attain 

a level of contextualization.  
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The crossmodal effect of multimodal sensory stimuli is backed by biological evidence 

from experiments carried out on humans and animals. As highlighted in Section 2.2.1, 

numerous researchers in behavioural and psychological fields have demonstrated the 

crossmodal effect between sensory modalities. These effects include crossmodal 

influences where the sensation in one modality influence the perception of a co-

occurring sensation of another modality and crossmodal recalibrations where 

artificially induced discrepancies in a single modality lead to the (temporary) alteration 

of correspondence between the modalities (Harris, 1965; Radeau & Bertelson, 1974, 

1977). 

Hence, this feature is aimed at capturing the interaction among modalities and enabling 

the system with such capability. 

3. The ability to combine multiple aspects of an event/situation. 

We identify fusion to be one of the most important features in enabling artificial 

impression generation in digital environments. The fusion of multimodal inputs enables 

incorporating multiple aspects of a situation, allowing for forming an unambiguous 

interpretation of the event from partial - and often ambiguous - information present in 

each modality. The stimuli received through different sense organs at a given time are 

highly relatable. This is due to the fact that those multimodal stimuli originate from the 

same underlying event/object, hence represent the different elements of the same 

situation. The idea here is to utilize complementary information from co-occurring 

modalities to enhance the total information we know about the external even/object. 

This is the main rationale for fusing information from multiple modalities. 

As highlighted earlier in the chapter, the aspect-based representation - such as what it 

looks like, how it is used, and how it moves – in the human brain is analogous to 

different aspects of an object/event captured by different sensory modalities. Hence, 

the emergence of higher-level object concepts from activity in aspect-based 
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representations requires a higher-order fusion mechanism to achieve a final coherent 

impression based on the primary sense data. With this feature, we aim to empower the 

artificial system with a similar ability. 

4. A mechanism to maintain memory/knowledge of the situation. 

This feature is for allowing for new events/situations to be evaluated based on the 

accumulated knowledge from the past.  

As highlighted earlier, an important aspect of impression generation is making sense 

of sensory data performed in the context of past knowledge/experience. It is, in fact, 

the past experience that gives meaning to what we perceive right now. Hence the 

representation mechanism needs to support memory/knowledge in order to classify the 

current perception and interpret it. 

The perspective taken in this thesis is that this impression generation is a process based on the 

four key features identified above. It is imperative to think about how these four key features 

are implemented in an artificial system for impression generation. 

We propose to implement the first key feature - the ability to capture and represent multimodal 

data in a common representation - by implementing artificial cortical areas modelled by 

topographic maps. As highlighted in Section 3.2.4, topographic maps produce a reduced 

representation of facts without loss of knowledge about their interrelationships (Kohonen, 

1989) and have been used for information processing and knowledge representation due to this 

favourable characteristic. Topographic maps capture the interrelationships of data in its 

underlying structure, and the points on the map represent coherent concepts for a given 

modality. Hence, topographic maps are independent of the modality-specific details, and the 

proposal is to use such topographic maps in all modalities facilitating collocating similar 

concepts across modalities. 

The use of topographic maps satisfies the fourth key feature - a mechanism to maintain 

memory/knowledge of the situation - as well. A topographic map is built with a set of training 
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data, and the structure of the topographic map represents the knowledge acquired and loose 

memories formed during the training. As the new data arrives, they are evaluated against the 

existing memory/knowledge. In a more algorithm specific details, the best matching unit is 

searched for in the topographic map, which represents loose matching of the new data to 

existing memory/knowledge. Hence, the use of topographic maps as the common representation 

supports maintaining memory/knowledge of the environment. 

In this thesis, we propose implementing the second and third key features as an unsupervised 

multimodal clustering process which organizes artificial cortical areas into meaningful clusters. 

The crossmodal effect (second key feature) and multimodal fusion (third key feature) are 

proposed to be modelled as clustering of cortical areas of a particular modality while 

considering the presence and the context of co-occurring stimuli on other modalities, i.e. 

clustering each cortical area using a metric that also accounts for co-occurring stimuli. The 

clustering algorithm should take the following two factors into consideration; 1) the activation 

distribution within the cortical area of the modality under consideration, similar to a regular 

clustering algorithm, and 2) the co-activation distribution of cortical areas of other co-occurring 

modalities and own cortical area. Taking the co-activation across modalities into consideration 

accounts for the crossmodal effect while the multimodal clustering satisfies multimodal fusion, 

the second and third key features identified. This process results in mutual bootstrapping of 

each cortical area being clustered while taking co-occurrence into account. 

This process is different from the traditional sense of multimodal integration where attributes 

pertaining to multiple modalities are joined together by a common factor (or a key) such as 

time, before being subjected to a clustering process. We find the proposed approach more 

biologically plausible given that sensations in individual modalities are processed by their 

respective modality-specific cortical hierarchies while inter-modal associative connections 

assist interpreting the sensation in the context of co-occurring stimuli. 

Thinking about this from a psychological point of view, while we are able to construct a 

coherent impression from the biological fusion process, we are still able to distinguish sensation 
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in each modality. We perceive each modality in the context of other modalities. While the other 

co-occurring modalities have affected and influenced the complete fused perception, they have 

not made it to an indistinguishable mixture. We draw parallels to this with the proposed 

multimodal clustering approach where the co-occurring stimuli make an influence on the 

clustering of a modality, however still maintaining a level of separation between modalities. 

3.3 An Artificial Model of Neocortex 

In this section, we propose an artificial model of neocortex for the purpose of generating 

artificial impressions on digital environments. The artificial model consists of a conceptual 

model, an architectural model and a computational model. The conceptual model describes the 

high-level organization of the proposed artificial cortical layers and their functionality. The 

architectural model describes the components which generate associated functionality of the 

conceptual model and information flow among them. The computational model proposes the 

algorithmic means by which we propose to achieve this. There we describe how the artificial 

cortical layers and the dynamics of the information processing could be modelled 

algorithmically. 

3.3.1 A Conceptual Model 

In this section, we present our conceptual model of the neocortex for impression generation in 

digital environments. As depicted in Figure 3.3, the model consists of three layers, outer layer, 

inner layer and core. The outer layer is the external-facing layer of the model, which is exposed 

to external data pertaining to different modalities. The outer layer represents the primary 

cortical areas of the human brain, which process the incoming sensory stimuli captured through 

sensory organs and transmitted though the respective neurons.  In our conceptual model, 

different regions in the outer layer represent these different modality-specific primary cortical 

areas. The outer layer satisfies the first and fourth key features identified in Section 3.2.5, the 

ability to capture and represent multimodal data in a common representation and a mechanism 

to maintain memory/knowledge of the situation. 
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The inner layer of our conceptual model is analogous to the association areas in the human 

sensory system. The association areas receive inputs from different sensory modalities and are 

responsible for the fusion of co-occurring stimuli from them. Similarly, our theoretical model 

contains multiple regions in its inner layer with each of them associated to a particular sensory 

modality. Inter-modal associative connections, which connects different regions in the outer 

layer onto regions in the inner layer, represent the neural mechanism that connects primary 

cortical areas to the association areas in the human brain. Each region in the inner layer is 

connected to outer layer regions of all other modalities via these inter-modal associative 

connections. Moreover, each region in the inner layer is connected to its corresponding region 

in the outer layer via a direct intra-modal connection. For clarity, only such connections to the 

auditory modality are depicted in Figure 3.3. The inner layer of the conceptual model satisfies 

the second feature identified in Section 3.2.5, a mechanism for different aspects of an event to 

Figure 3.3 Conceptual model of neocortex for impression generation in digital environments 
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interact with/impact each other. This interaction and the ability to impact the perception of other 

modalities is facilitated by the inter-modal associative connections. 

The innermost ‘core’ layer represents the impression generation mechanism facilitated by the 

previous two layers. This facilitates the third feature identified in Section 3.2.5, the ability to 

combine multiple aspects of an event/situation to form a coherent and wholistic impression 

about the situation. 

3.3.2 An Architectural Model 

In this section, we present the realization of the above conceptual modal into an architectural 

model. The architectural model consists of components that implement various sections of the 

conceptual model by generating the associated functionality. Figure 3.4 is an illustration of the 

proposed architectural model, presenting its components and how these components achieve 

the four key features of an artificial impression generation system identified earlier. 

 

Figure 3.4 Proposed architecture for artificial impression generation 

The multimodal input presentation module is responsible for the simultaneous presentation of 

co-occurring multimodal stimuli which is an input to both topographic map generation process 

as well as intermodal association mapping process. The topographic map generator generates 

the topographic maps which form the outer layer of the conceptual model. Irrespective of the 
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type of the modality (e.g., image, text, numerical) topographic maps are employed as the 

common representation of different modalities. Moreover, with topology preservation, the 

neuron and areas of topographic maps act as the mechanism to maintain knowledge/memory. 

Future inputs are evaluation against these neurons with a similarity function allowing to match 

and map with the stored knowledge/memory.  

Using generated topographic maps and simultaneous multimodal input presentation, intermodal 

association generation module records the co-activation of neurons among modalities. 

Recorded co-activations are used to calculate the co-activation distributions of individual 

neurons.   

Our goal is to organize cortical areas that process sensory inputs into meaningful clusters, and 

the inner layer of the conceptual model is the outcome of this clustering process. Multimodal 

clustering module, which performs clustering based on intermodal co-activations distributions, 

captures intermodal interactions and allow modalities to impact each other in forming the final 

multimodal clustering. The multimodal clusters formed over the cortical areas represent the 

organization of multimodal concepts which we consider as the basis of grounding sensory 

experiences in forming a coherent impression on them. 

3.3.3 A Computational Model 

As highlighted earlier, the family of SOM algorithms have been widely used to model the 

feature maps in the human brain. We proposed to use the topographic maps generated by the 

GSOM algorithm to model the outer layer of the conceptual model. The GSOM algorithm was 

chosen due to the dynamic structure adaptive nature of the algorithm to represent the input 

space being modelled. Based on the conceptual model, each region of the outer layer would be 

modelled by a topographic map using the GSOM algorithm. The GSOM algorithm receives 

modality-specific inputs which are used to iteratively build and condition the respective 

topographic map. 
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As the proposed architecture is to simulate the multimodal impression generation, input 

presentation is not carried out in isolation for individual modalities. Instead, the co-occurring 

multimodal inputs are presented to their respective regions in the outer layer in parallel. The 

inter-modal associative connections capture the co-activation of neuron pairs in different 

regions. These co-activation profiles can be used to unearth the intricate relationships between 

co-occurring modalities.  

Our goal is to organize cortical areas that process sensory inputs into meaningful clusters, and 

the inner layer of the conceptual model is the outcome of this clustering process. With inter-

modal associative connections that captured the co-activation relationships among neurons in 

different modalities, the clustering algorithm can utilize these relationships to enrich the 

clustering process.  The co-activation relationships can be used to generate the probabilities of 

co-activation among the neurons in multiple modalities. If we consider two of the multiple 

modalities, modality 𝑋 and modality 𝑌, what this gives us is the probability distributions of 

activation on 𝑋 and 𝑌 when a neuron or a set of neurons in the other modality is active. Our 

proposal is to incorporate these probability distributions into the clustering process for it to 

capture the relationships between the modalities. 

The probability distributions can be used to identify similar neurons by analysing their 

similarity. That is, if neurons 𝑛𝑖 and 𝑛𝑗 in the topographic map, 𝐺𝑋 of modality 𝑋 have similar 

probability distributions of activation on the topographic map, 𝐺𝑌 of modality 𝑌, we consider 

it as a signal that these two neurons are similar from the point of view of the modality 𝑌. By 

factoring this information into the clustering process, we can effectively incorporate 

information from modality 𝑌 into the clustering of 𝐺𝑋. The similarity of probability 

distributions can be measured objectively, and a distance-based metric can be provided on how 

similar two probability distributions are. A distance-based metric on crossmodal similarity is 

particularly useful given that the connectivity-based clustering algorithms operate on distance-
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based metrics. Figure 3.5 depicts the flow of the proposed computational model with all the 

major tasks. 

Figure 3.5 High-level flow diagram of the proposed computational model depicting the major 

tasks 

3.4 Chapter Summary 

In this chapter, we first laid out our premise of human sensation and perception. We discussed 

how humans form a coherent impression about the external world with the focus of how this 

can be implemented on artificial counterparts. In the process, we formally defined the term 

impression and drew upon neurobiological and physiological research in developing our 

understanding of the process.  

Further, we closely examined the recent changes in data generation and collection brought in 

by Big Data revolution and how large, multimodal, multisource datasets create a digital 
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environment, a close approximation of the natural environment. We envisaged generating 

digital impressions, a human-like impression on the digital environment, and identified four 

key features of such a system. 

Finally, we proposed an artificial model of neocortex for the digital impression generation 

consisting of a conceptual model conceptualizing the organization of the artificial cortical 

layers, neuronal connections, an architectural model describing the composition of the artificial 

model and a computational model outlining the algorithmic means of the model.   

The next chapter presents the implementation and the validation of the model while an 

adaptation of the model for distributed computing, its implementation and demonstration on 

large datasets are presented in Chapter 6.
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Chapter 4                                                                    

Multimodal Sensory Fusion 

In the previous chapter, we discussed how humans construct the state of the external 

environment from the sensory inputs by forming a coherent impression about the external 

world. Further, we discussed how AI algorithms could be facilitated to generate artificial 

impressions on digital environments and which biologically plausible algorithms could be 

utilised to achieve this. To this end, we proposed an artificial model, which consisted of a multi-

layered conceptual model, an architectural model and a computational model, as theoretical 

contributions. 

In this chapter, we discuss the implementation of the artificial model for impression generation. 

The outer cortical layer of the proposed conceptual model, which processes multimodal sensory 

inputs, is implemented with topographic maps generated by the GSOM algorithm. The 

multimodal interactions are modelled with a multimodal distance metric while a clustering 

algorithm based on it organizes cortical areas into meaningful clusters in the inner cortical layer. 

We demonstrate this artificial model for impression generation on an audio-visual dataset and 

experiment with various parameters of the model. 
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Further, highlighting the necessity of generating efficient representations from multimodal data 

sources in most online application scenarios, we present a distributed architecture for online 

multimodal sensory fusion. 

Some of the work in this chapter has appeared in (Jayaratne et al., 2018). 

4.1 Multimodal Sensory Fusion for Impression 

Generation 

Categorization of sensory input into meaningful categories is of paramount importance for all 

animals in order to form awareness of their surroundings. Environment sensing and impression 

generation process have long been the subject of philosophical discussion, as highlighted in 

Chapter 3. The development of this capability in an unsupervised manner has amazed and 

puzzled most thinkers.  

The perspective taken in this thesis is that environment sensing and impression generation 

process could be represented with a self-organization-based clustering process, which organizes 

cortical areas that processes sensory inputs into meaningful clusters. Since the same 

object/event is perceived by multiple sensory organs, this clustering process is incomplete 

without the fusion of sensations from multiple modalities. Hence, the impression generation is 

modelled as clustering of cortical areas of a particular modality while considering the influence 

of co-occurring stimuli on other modalities. Below, we present the algorithmic modelling of 

impression generation. 

For algorithmic modelling, we define the impression generation as a multimodal clustering 

problem over the artificial cortical areas modelled by the GSOM algorithm in an unsupervised 

manner. The clustering should allow for meaningful organization of the inputs into categories 

without explicit knowledge such as the number of categories present in the input. The 

multimodal clustering algorithm is based on the hypothesis that observations of an event 

recorded over multiple modalities should bear similarities across them due to natural 
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regularities. We adapt the crossmodal clustering (Coen, 2005) to build upon and extend the 

topographic maps as a mechanism for fusing such information recorded across multiple 

modalities to achieve multimodal representation. 

The proposed multimodal self-organizing neural architecture consists of topographic maps for 

each individual modality and inter-modality associative connections capturing the co-

occurrence relationships among the modalities. The architecture falls under the post-perceptual 

binding paradigm as the individual modalities are processed first, and the fusion is carried out 

over these modality-specific topographic maps. Figure 4.1 outlines the overall layout of the 

proposed neural architecture. 

 

Figure 4.1: Proposed multisensory self-organizing neural architecture. 𝑀𝐴 and 𝑀𝐵 the 

modality-specific neuronal maps. Associative links running from a single neuron in 𝑀𝐴 to the 

𝑀𝐵 are shown for clarity. 

The modality-specific components are responsible for the processing of each individual 

modality and generating a topographic map using unsupervised machine learning. The 

individual topographic maps are trained using the GSOM (Alahakoon et al., 2000) algorithm 

and form representations of their respective modalities. For obtaining the multimodal 

representation over the individual topographic maps, we adapt the crossmodal clustering 

algorithm (Coen, 2005). The crossmodal clustering algorithm utilises the co-occurrence 

relationships captured on inter-modality associative connections to incorporate knowledge 

across modalities to cluster individual neural layers.  
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We utilise this algorithm to iteratively combine clusters of neurons until a certain stopping 

criterion is met. The initial clusters consist of single neurons, and the iterative process may end 

up clustering non-adjacent neurons based on the influence of other modalities. In essence, the 

clustering process forms a hierarchical clustering and allows us to inspect the hierarchy of 

clusters formed. Specifically, the clustering process is agglomerative or “bottom-up” where 

each neuron starts in its own cluster, and pairs of clusters are merged as one moves up the 

hierarchy.  

4.1.1 A Multimodal Distance Metric 

Without loss of generality, let us consider two topological maps, 𝐺𝑋 and 𝐺𝑌, trained using the 

GSOM algorithm pertaining to two co-occurring modalities, 𝑋 and 𝑌. The GSOMs consist of 

their modality neurons such that 𝐺𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚} and MB = {b1, b2, b3, … , bn}. The 

co-occurrence relationship between the two modalities allows us to define the probabilities of 

co-activation among the neurons in the two modalities. We define the co-activation 

relationships using the notion of Hebbian projection of a cluster of neurons as below. Let 𝑐 ⊆

 𝐺𝑋 be a cluster of neurons. We define the Hebbian projection of 𝑐 onto 𝐺𝑌, 𝐻𝑋
𝑌(𝑐), 𝐻(𝑐) for 

clarity, in (4.1) and this provide a spatial probability distribution of activation over 𝐺𝑌 whenever 

a neuron in 𝑐 is active. 

Pr(𝑦𝑖|𝑐) is the probability of the neuron 𝑦𝑖 being active while any neuron in cluster 𝑐 is active, 

calculated as (4.2), where ℎ(𝑐) is the number of times cluster 𝑐 is active and ℎ(𝑦𝑖 , 𝑐) is the 

number of time cluster 𝑐 and neuron 𝑦𝑖 is active at the same time. 

The weighted version of the Hebbian projection, 𝐻𝑋
𝑌𝜔(𝑐), 𝐻𝜔(𝑐) for clarity, is defined in (4.3) 

with weights 𝜔 =  [𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑚]  where ∑ 𝜔𝑗 = 1. 

 𝐻(𝑐)  =  [Pr(𝑦1|𝑐), Pr(𝑦2|𝑐), … , Pr(𝑦𝑛|𝑐)] (4.1) 

 
Pr(𝑦𝑖|𝑐) =

ℎ(𝑦𝑖 , 𝑐)

ℎ(𝑐)
 

(4.2) 

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
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where Pr𝜔(𝑦𝑖|𝑐) = ℎ𝜔(𝑦𝑖 , 𝑐) / ℎ𝜔(𝑐)  =  ∑ 𝜔𝑥ℎ(𝑦𝑖 , 𝑥)𝑥∈𝑐 / ∑ 𝜔𝑥ℎ(𝑥)𝑥∈𝑐 . 

Similar to how we define spatial probabilities of activation over 𝐺𝑌 we are able to define the 

same in the reverse direction, the Hebbian projection onto 𝐺𝑋. The notion of reverse Hebbian 

projection in (4.4) combines these two. The reverse Hebbian projection of cluster 𝑐 onto 𝑌, 

Ĥ𝑋
𝑌(𝑐),  Ĥ(𝑐)  for clarity, provides a probability distribution over 𝐺𝑋 denoting which neurons 

in 𝐺𝑋 are similar to neuronal cluster 𝑐 from the point of view of modality 𝑌. 

The reverse Hebbian projection intuitively combines the activation probabilities of onward and 

backward directions. In essence, we utilise the co-activation relationships in the two neural 

layers to achieve information flow from modality 𝑌 to modality 𝑋. 

The reverse Hebbian projection can be used to define a distant metric between clusters of 

neurons in 𝐺𝑋. As the reverse Hebbian Projections are n-dimensional probability distributions, 

we utilise the earth mover’s distance as the distance metric. Consider two clusters 𝑐𝑖, 𝑐𝑗 ⊆  𝐺𝑋. 

The earth mover’s distance between their reverse Hebbian projections are denoted as 

𝑑𝐸𝑀𝐷(Ĥ(𝑐𝑖), Ĥ(𝑐𝑗)). The earth mover’s distance accounts only for the distance from the view 

of the second modality. However, we would like to combine them both, the distance in its own 

modality with 𝑑𝐸𝑀𝐷. To measure the distance between 𝑐𝑖, 𝑐𝑗 in their own modality, any suitable 

distance metric such as the Euclidian distance, 𝑑𝐸𝐷, can be used. The combined multimodal 

distance, 𝑑𝑀𝐷 is defined in (4.5). The weighting parameter λ controls the relative weighting 

between the two distance metrics. 

The combined distance captures two perspectives on the distance between two clusters, one 

from the own modality and the other from the second co-occurring modality. Two clusters that 

 𝐻𝜔(𝑐)  =  [Pr𝜔(𝑦1|𝑐), Pr𝜔(𝑦2|𝑐), … , Pr𝜔(𝑦𝑛|𝑐)] (4.3) 

 Ĥ(𝑐)  = 𝐻𝐻(𝑐)(𝐺𝑌)  =  [Pr𝐻(𝑐)(𝑥1|𝐺𝑌), Pr𝐻(𝑐)(𝑥2|𝐺𝑌), … , Pr𝐻(𝑐)(𝑥𝑚|𝐺𝑌)] (4.4) 

 
𝑑𝑀𝐷(𝑐𝑖 , 𝑐𝑗) =  √λ[𝑑𝐸𝑀𝐷(Ĥ(𝑐𝑖), Ĥ(𝑐𝑗))]

2
+ (1 − λ)[𝑑𝐸𝐷(𝑐𝑖 , 𝑐𝑗)]

2
 

(4.5) 
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are close by in terms of distance in own modality, 𝑑𝐸𝐷, maybe perceived distant apart by the 

second modality, 𝑑𝐸𝑀𝐷, and vice versa and the effect of this is intuitively captured by the 

combined distant metric, 𝑑𝑀𝐷, which fuses information across modalities exploiting the co-

occurrence relationships. We use the combined distances as a fused view to obtain a clustering. 

Multimodal distance metric defined in 4.1 is based on the concept of co-activation of neurons 

in GSOMs pertaining to different modalities. This inherently brings in the assumption that all 

modalities are captured at the same frequency. When all modalities are not captured at the same 

frequency, some modalities need to be resampled (downsampled or upsampled) to match the 

others. Downsampling leads to some level of information loss, and synthetic upsampling would 

preserve most information. The common frequency for all modalities is very much application-

specific, and the decision is best left with the users. 

4.1.2 Multimodal Clustering 

As highlighted earlier, our intention is to combine single neurons into larger cortical areas using 

a clustering process. The multimodal distance, 𝑑𝑀𝐷, which intuitively calculates the distance 

between two clusters combining the perspective of the own modality as well as the perspectives 

of other co-occurring modalities, is our distance metric for the clustering process. This warrants 

for agglomerative hierarchical clustering where each neuron starts in its own cluster and pairs 

of clusters are merged as one moves up the hierarchy.  

The agglomerative hierarchical clustering combines the closest cluster pair at each iteration and 

continues this iterative process till all the neurons are combined onto a single cluster. The 

multimodal distance, 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗), represents the distance between clusters 𝑐𝑖 and 𝑐𝑗, 𝑐𝑖, 𝑐𝑗 ⊆

 𝐺𝑋, from the perspective of the own modality as well as other modalities. At each iteration, 

clusters 𝑐𝑘 and 𝑐𝑙, 𝑐𝑘 , 𝑐𝑙 ⊆ 𝐺𝑋 are merged if, 

 ∀𝑖, 𝑗;  𝑑𝑀𝐷(𝑐𝑘, 𝑐𝑙) < 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗); 𝑐𝑖, 𝑐𝑗, 𝑐𝑘 , 𝑐𝑙 ⊆ 𝐺𝑋 (4.6) 
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However, we are interested in stopping this process at an appropriate point, allowing for ideal 

clustering of cortical areas modelled by GSOM maps. The stopping criteria should ideally be 

based on 𝑑𝑀𝐷. Such a criterion would allow for combining clusters 𝑐𝑖 and 𝑐𝑗, 𝑐𝑖, 𝑐𝑗 ⊆  𝐺𝑋 if 

𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗) is sufficiently small or retaining them as separate clusters otherwise. However, the 

question remains, how small should 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗) be to be “sufficiently” small?  

4.1.2.1 Self-distance 

Coen (2005) defines the notion of self-distance as the threshold for being considered as 

sufficiently small for merging two clusters. The self-distance measures the internal crossmodal 

distance between data points inside a given cluster as opposed to measuring the distance 

between two clusters for which crossmodal distance was used thus far. This provides a measure 

of internal coherence of a given cluster and can be used as a threshold for merging two clusters 

by measuring the self-distance of the potentially merged cluster. 

The self-distance of a cluster 𝑐′ ⊆ 𝐺𝑋, 𝑑𝑠𝑒𝑙𝑓(𝑐′), is defined as below.  

Clusters 𝑐𝑖 , 𝑐𝑗 ⊆ 𝐺𝑋 are two clusters we consider for merging while 𝑐′ ⊆ 𝐺𝑋 is the compound 

cluster created by the merging of 𝑐𝑖 and 𝑐𝑗. Clusters 𝑐�̂�, 𝑐�̂� ⊆ 𝐺𝑋 are partitions of 𝑐′ by fitting a 

linear orthogonal regression onto it.  

The rationale of the self-distance is to identify whether we are merging two clusters 

representing the same concept or different concepts. When we consider merging 𝑐𝑖 and 𝑐𝑗 we 

have already calculated the multimodal distance between the two and found it to be the lowest 

among other potential cluster pairs to be merged; however, yet unsure as to whether they 

represent the same concept. Cluster 𝑐′ is formed by the hypothetical merging of the two clusters. 

However, if 𝑐𝑖 and 𝑐𝑗 represent the same concept, we should observe similar multimodal 

distances between different partitions of 𝑐′, despite the way we decide to partition them 

 
𝑑𝑠𝑒𝑙𝑓(𝑐′) =

𝑑𝑀𝐷(𝑐�̂�, 𝑐�̂�)

𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗)
 

(4.7) 
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subsequently. This is because they should co-occur in the same way across other modalities. 

On the other hand, if 𝑐𝑖 and 𝑐𝑗 represent the different concepts we should observe different 

multimodal distances between partitions of 𝑐′. To capitalise on the above, the formulation of 

self-distance uses the ratio between 𝑑𝑀𝐷(𝑐�̂�, 𝑐�̂�) and 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗) while using linear orthogonal 

regression for partitioning which minimises the multimodal distance between 𝑐�̂� and 𝑐�̂� if 𝑐𝑖 and 

𝑐𝑗 represent different concepts. 

 Based on the above 𝑑𝑠𝑒𝑙𝑓(𝑐′) would be close to 1 if 𝑐𝑖 and 𝑐𝑗 represent the same concept while 

it would be close to 0 if 𝑐𝑖 and 𝑐𝑗 represent the different concepts. We use 𝑑𝑠𝑒𝑙𝑓(𝑐′) ≥ 0.5 as 

the threshold for merging two clusters. 

4.1.2.2 Multimodal Clustering Algorithm 

Below, we formalise the multimodal clustering algorithm, which is based on the agglomerative 

hierarchical clustering. The clustering process uses multimodal distance, 𝑑𝑀𝐷, as the distance 

metric while an important distinction from agglomerative hierarchical clustering is the stopping 

criteria based on the self-distance, 𝑑𝑠𝑒𝑙𝑓. The algorithm takes GSOMs trained on different co-

occurring modalities and the weighting parameter λ which controls the relative weighting 

between two distance components of 𝑑𝑀𝐷 as inputs and iteratively combines clusters in a 

greedy fashion until the stopping criterion is met. Below, algorithm 4.1 outlines the steps of the 

algorithm while we examine the steps in detail afterwards. 

The multimodal clustering algorithm starts by creating a set of clusters, each containing a single 

neuron from the trained GSOMs (lines 1-5). The algorithm then iterates inside a loop (lines 6-

27) merging clusters in a greedy fashion until no clusters were merged in a given iteration (lines 

24-26). 
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Algorithm 4.1. Multimodal clustering algorithm 

 Input: 𝐺: GSOMs trained on different co-occurring modalities. λ: The weighting 

parameter which controls the relative weighting between 𝑑𝐸𝐷 and 𝑑𝐸𝑀𝐷. 

1 for GSOM 𝐺𝑥 ∈ 𝐺 do 

2     for neuron 𝑛𝑖 ∈ 𝐺𝑥 do 

3         Create cluster 𝑐𝑖 ∈ 𝐺𝑥   as 𝑐𝑖 =  {𝑛𝑖}  

4     end for 

5 end for 

6 while (true) do 

7     merged ← false 

8     Calculate 𝑑𝑀𝐷 for all pairs of clusters over all 𝐺𝑥 ∈ 𝐺       

9     for GSOM 𝐺𝑥 ∈ 𝐺 do  

10         Sort pairs of clusters (𝑐𝑖, 𝑐𝑗) ∈ 𝐺𝑥 by 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗) 

11         for cluster pair (𝑐𝑖, 𝑐𝑗) ∈ 𝐺𝑥 in sorted order do 

12             if 𝑑𝑠𝑒𝑙𝑓(𝑐′) ≥ 0.5  where 𝑐′ = 𝑐𝑖 ∪ 𝑐𝑗 then 

13                 # Merge 𝑐𝑗 with 𝑐𝑖 

14                 𝑐𝑖 =  𝑐𝑖 ∪  𝑐𝑗 

15                 Remove 𝑐𝑗 from 𝐺𝑥 

16                 merged ← true 

17                 for cluster 𝑐𝑘 ∈ 𝐺𝑥 do 

18                     𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑘) ← min(𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑘), 𝑑𝑀𝐷(𝑐𝑗, 𝑐𝑘)) 

19                 end for 

20                 break 

21             end if 

22         end for 

23     end for 

24     if merged = false then 

25         break 

26     end if  

27 end while 

 

Each iteration starts by calculating the multimodal distance, 𝑑𝑀𝐷, for all pairs of clusters within 

each modality 𝐺𝑥 ∈ 𝐺 (line 8). The algorithm proceeds in a greedy manner, considering pairs 

of clusters of each modality sorted by 𝑑𝑀𝐷 for merging. If the cluster pair, (𝑐𝑖, 𝑐𝑗), satisfies 
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𝑑𝑠𝑒𝑙𝑓(𝑐′) ≥ 0.5  where 𝑐′ = 𝑐𝑖 ∪ 𝑐𝑗 then we proceed to merge the two clusters (lines 13-20). 

The merging involves transferring all neuron into a single cluster and removing the empty 

cluster. Moreover, we set the multimodal distance between the combined cluster and the rest of 

the clusters in the modality to the minimum of the multimodal distances of the original clusters. 

This is due to the fact the now we consider all the neurons in the combined cluster to represent 

the same concept, hence equivalent to each other. Now that the 𝑑𝑀𝐷 inside the modality under 

consideration have changed, we exit the inner loop (line 20) to start considering pairs of clusters 

for merging sorted by their 𝑑𝑀𝐷. After each iteration, we recompute 𝑑𝑀𝐷 to propagate the effect 

of merges that took place so far. 

4.2 Experiments 

4.2.1 Dataset 

We used Tulips1 audio-visual dataset (Movellan, 1995) for the experimentation to evaluate the 

accuracy of the proposed impression generation algorithm. The dataset consists of utterances 

from 12 speakers captured on both audio and video modalities. Each speaker utters the digits 

one through four twice, making the dataset consists of 96 instances in total. Figure 4.2 contains 

sample frames captured from one such utterance. For the audio modality, we extracted Mel-

frequency cepstral coefficients (MFCCs) as their feature representation. The video consists of 

100×75 pixels frames captured at a rate of 30 frames per second. We used the following six 

manually engineered features provided by Baldwin, Martin, and Saeed (1999) for each frame. 

1. The width of outer corners of the mouth 

2. The height of outer corners of the mouth 

3. The width of inner corners of the opening of the mouth 

4. The height of inner corners of the opening of the mouth 

5. The height of the upper lip 

6. The height of the lower lip 
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Since the utterances are of varying lengths, we used dynamic time warping (DTW) to optimally 

align sequences, so they are comparable. DTW retains the natural order of input to ensure the 

temporal dependencies within the sequence are maintained. 

 

Figure 4.2: Sample frames captured from an utterance 

Tulip1 dataset has been extensively used for evaluating multimodal information processing 

algorithms for multimodal representation and fusion in various application areas (Cheng et al., 

2018; Galatas, 2014; Makkook, 2007; Movellan & Mineiro, 1998; Wysoski et al., 2010). 

4.2.2 Experimental Plan 

Below we outline the plan for evaluating the multimodal clustering algorithm. First, the 

experiments evaluate the quality of clustering generated by multimodal clustering compared 

that of unimodal clustering. Then we analyse the iterative cluster formation to understand the 

process better. Moreover, we focus on analysing the effect of parameters in the algorithm on 

the quality of fused representation.  

4.2.2.1 Multimodal clustering vs Unimodal clustering 

In this experiment, we are interested in quantifying the effect of the information brought in 

from other modalities by the multimodal clustering algorithm. To achieve this, we compared 

the quality of clusters generated by the multimodal clustering algorithm with those generated 

by a unimodal clustering algorithm. We implemented k-means clustering over the individual 

neuronal layers, which only utilised unimodal representations. While the multimodal clustering 
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did not have to know the number of cluster/classes in advance, this value had to be provided to 

the k-means algorithm with the parameter 𝑘 being set to 4, the number of classes in the dataset. 

4.2.2.2 Clustering process analysis 

As highlighted above, the multimodal clustering process forms a hierarchical clustering and 

allows us to inspect the hierarchy of clusters formed. The clustering process is agglomerative 

or “bottom-up” where each neuron starts in its own cluster, and pairs of clusters are merged as 

one moves up the hierarchy. Dendrograms are used to illustrate the arrangement of the clusters 

produced by such hierarchical clustering processes. We use dendrograms to analyse the order 

of merging as well as the multimodal distance at which each merger takes place. 

4.2.2.3 Coefficient of fusion 

The parameter λ in the definition of 𝑑𝑀𝐷(𝑐𝑖, 𝑐𝑗) in (4.5) controls the relative weighting between 

the earth mover’s distance, 𝑑𝐸𝑀𝐷(Ĥ(𝑐𝑖), Ĥ(𝑐𝑗)), which accounts for the distance from the view 

of the second modality and the Euclidian distance, 𝑑𝐸𝐷(𝑐𝑖, 𝑐𝑗), which accounts for the distance 

in their own modality for two clusters 𝑐𝑖 and 𝑐𝑗. The parameter λ acts as the coefficient of fusion 

between the two components and has the range [0, 1]. At the extreme ends, when λ = 0 the 

multimodal distance only considers information from the second modality whereas when λ =

1 only the distance in their own modality is considered. While it is sensible to combine the 

information from both sources using λ in the range of (0, 1), it would be interesting to 

understand the effect of λ on the quality of multimodal clustering. In this experiment, we 

evaluate the quality of multimodal clustering with λ = 0.0, 0.1, 0.2, … , 1.0. 

4.2.3 Configurations 

The following base parameters were used to conduct the above experiments except where we 

varied a particular parameter to understand the effect of the parameter. GSOM training in 

individual modalities was run for 100 growing phase iterations and 100 smoothing phase 

iterations allowing for sufficient growth and weight convergence. The starting learning rate, 

𝛼0, was set at 0.3 while the spread factor, SF, was set at 0.7. The starting neighbourhood radius 

https://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
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𝑁0 was set to 4 to include the immediate neighbour neurons. For the multimodal clustering, the 

relative weighting factor between 𝑑𝐸𝑀𝐷 and 𝑑𝐸𝐷, λ, was set at 0.5, giving both the distance in 

own modality and the distance based on the second modality similar importance. Experiments 

were carried out for five runs, and the averages of the metrics of these runs are presented. 

4.3 Experimental Results 

4.3.1 Evaluation Metrics 

We have used a number of evaluation metrics to evaluate the quality of the multimodal 

clustering generated. Clustering quality evaluation metrics fall under two broad categories; 

internal and external. The internal metrics evaluate the clustering based on the data that were 

used to perform the clustering themselves. These measures usually reward high intra-cluster 

similarity and low inter-cluster similarity in order to generate coherent clusters. The external 

metrics, on the other hand, use class labels to evaluate the clustering generated. We note that 

the external metrics are suitable to evaluate the quality of clusters generated by multimodal 

clustering due to the following reasons. Multimodal clustering incorporates information from 

multiple modalities leading to cluster together two neurons in a given modality that are spatially 

apart given the other modalities perceive them as similar. Conversely, two neurons that are 

spatially close might be clustered separately if they are perceived distant from the view of other 

modalities. However, external cluster evaluation metrics measure the quality of clustering based 

on class labels which, in fact, is the desired ground truth.  

External cluster evaluation metrics F1, which is the harmonic mean between precision and 

recall, Rand measure (Rand, 1971), Dice index (Dice, 1945), cluster purity, normalised mutual 

information (NMI) and internal cluster evaluation metric Davies–Bouldin index (DB-Index) 

(Davies & Bouldin, 1979) have been calculated to evaluate the quality of clustering. 

The purity of a cluster is defined by assigning to the cluster, the most frequent class of inputs 

grouped to it and calculating the ratio between the number of instances of the most frequent 

class and the total instances assigned to the cluster. With 𝐶𝑖 denoting the 𝑖th cluster, |𝐶𝑖| its size 
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and 𝐶𝑖
𝑙 ∈ 𝐶𝑖 the number of instances of whose class is 𝑙, the purity of the cluster is 𝐶𝑖 defined 

as, 

Based on the above, the cluster purity measure is defined as the weighted average of the purities 

of each cluster, weighted by the number of instances in each cluster. 

where 𝑘 is the number of clusters and 𝑁 = ∑ |𝐶𝑖|𝑘
𝑖=1 . Due to the lack of any penalisation for 

similar inputs being grouped into separate clusters, one of the limitations of the cluster purity 

measure is that a high purity measure can be obtained by the clustering algorithm being extra 

stringent leading to a high number of clusters. For instance, a perfect purity score can be 

achieved by clustering each input as a cluster. 

The normalised mutual information (NMI) eliminates this limitation and examines both cluster 

quality and the number of clusters. Let 𝐶 = {𝐶1, 𝐶2,…,𝐶𝑘}  be the set of clusters and 𝐿 =

{𝐿1, 𝐿2,…,𝐿𝑚}  be the set of class labels. The NMI is evaluated as follows, 

where 𝐼(𝐶, 𝐿) is the mutual information calculated using, 

and H is the entropy calculated using, 

 
Purity(𝐶𝑖) =

1

|𝐶𝑖|
max

𝑙
(𝐶𝑖

𝑙) 
(4.8) 

 

Purity =
1

𝑁
∑|𝐶𝑖| × Purity(𝐶𝑖)

𝑘

𝑖=1

 

(4.9) 

 
𝑁𝑀𝐼(𝐶, 𝐿) =

𝐼(𝐶, 𝐿)

[𝐻(𝐶) + 𝐻(𝐿)]/2
 

(4.10) 

 
𝐼(𝐶, 𝐿) = ∑ ∑ 𝑃(𝐶𝑖 ∩ 𝐿𝑗) log

𝑃(𝐶𝑖 ∩ 𝐿𝑗)

𝑃(𝐶𝑖)𝑃(𝐿𝑗)
𝑗𝑖

 
(4.11) 

 𝐻(𝐶) = − ∑ 𝑃(𝐶𝑖) log 𝑃(𝐶𝑖)

𝑖

 
(4.12) 
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Under the maximum likelihood estimates of the probabilities, the above probability terms can 

be evaluated using corresponding relative frequencies. 

Evaluating clustering with accuracy measures such as precision, recall, and F1 takes the view 

of decision making in clustering. Two similar inputs grouped into the same cluster can be 

considered as an instance of true positive (TP) while a grouping of two dissimilar inputs into 

separate clusters can be considered as an instance of true negative (TN). Similarly, a false 

negative (FN) is the placement of similar inputs in separate clusters while a false positive (FP) 

is the placement of dissimilar inputs in the same cluster. Based on the above, cluster evaluation  

metrics precision (𝑃), recall (𝑅) and F1 measure can be defined as, 

The Rand measure (Rand, 1971) is also based on the same view and can be considered as 

calculating the fraction of correct input assignments. The Rand measure is defined as, 

The Rand measure gives equal weights to true positives and true negatives. While this property 

might be undesirable for evaluating classification results, the same is not a problem for cluster 

quality evaluation. The Dice index (Dice, 1945) which doubles the weight of true positives and 

ignore true negatives are defined as, 

 𝐻(𝐿) = − ∑ 𝑃(𝐿𝑗) log 𝑃(𝐿𝑗)

𝑗

 (4.13) 

 
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.14) 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.15) 

 
𝐹1 =

2 × 𝑃 × 𝑅

𝑃 + 𝑅
 

(4.16) 

 
𝑅𝐼 =

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(4.17) 
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On the other hand, DB-Index (Davies & Bouldin, 1979), an internal cluster evaluation measure, 

is defined as a function of the ratio between the intra-cluster scatter and inter-cluster separation. 

That is, a lower value of the DB-Index is desired, and the metric rewards high cohesion within 

the clusters and high separation among clusters. DB-Index is defined as, 

where 𝑘 is the number of clusters,  𝑆𝑖 and 𝑆𝑗 are measures of intra-cluster scatter of 𝑖th and 𝑗th 

clusters respectively and is 𝑀𝑖,𝑗 a measure of inter-cluster separation between the same. 𝑆𝑖 is 

defined as, 

where given the 𝑖th cluster, 𝑋𝑗 is the 𝑗th input mapped to it,  𝑇𝑖 is its size and 𝐴𝑖 is its centroid. 

Parameter 𝑝 is usually set to 2, which makes the distance calculation Euclidean.  𝑀𝑖,𝑗 is defined 

as, 

where 𝑛 is the dimensionality and 𝑎𝑘,𝑖 is the 𝑘th element of 𝐴𝑖. 

4.3.2 Results and Discussion 

This section presents and discusses the results of the experiments outlined in the experimental 

plan. The results are presented in terms of the evaluation metrics identified in the previous 

section. 

 
𝐷𝐼 =

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(4.18) 

 

𝐷𝐵 =
1

𝑘
∑ max

𝑗≠𝑖

𝑆𝑖 + 𝑆𝑗

𝑀𝑖,𝑗

𝑘

𝑖=1

 

(4.19) 

 

𝑆𝑖 = (
1

𝑇𝑖
∑|𝑋𝑗 − 𝐴𝑖|

𝑝

𝑇𝑖

𝑗=1

)

1/𝑝

 

(4.20) 

 

𝑀𝑖,𝑗 = (∑|𝑎𝑘,𝑖 − 𝑎𝑘,𝑗|
𝑝

𝑛

𝑘=1

)

1/𝑝

 

(4.21) 
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4.3.2.1 Multimodal clustering vs unimodal clustering 

Table 4.1 presents the performance of the multimodal representation using the multimodal 

clustering compared to the clustering performance of unimodal representation using k-means 

clustering. It can be observed that precision has been significantly improved with multimodal 

clustering compared to k-means clustering for both audio and video modalities. Usually, a high 

gain in precision is at the expense of recall. However, in this case, the observed drop in the 

recall is marginal for both modalities. The F1-measure, the harmonic average of precision and 

recall, which accounts for both the measures, can be observed to have improved in multimodal 

clustering. Similarly, both cluster purity and NMI is higher for the multimodal clustering 

asserting the positive impact of incorporating the information from the second modality. 

Table 4.1: Multimodal representation performance. Clustering quality of multimodal 

representation compared to that of unimodal representation 

It can be observed that the DB-Index of multimodal clustering is higher than that of k-means 

clustering, while a lower value is desired. DB-Index is defined as a function of the ratio of the 

intra-cluster scatter and inter-cluster separation, favouring higher cluster cohesion and better 

cluster separation. In the case of multimodal clustering, the algorithm might add two neurons 

spatially apart in its own modality into a cluster if the neurons are perceived similar from the 

Metric 

Audio modality Video modality 

Multimodal Unimodal Multimodal Unimodal 

Precision 79.33% 58.08% 43.91% 37.60% 

Recall 91.79% 95.71% 56.99% 58.68% 

F1 84.12% 71.59% 49.33% 45.30% 

Purity 86.67% 68.54% 62.08% 52.29% 

NMI 0.84 0.74 0.41 0.31 

DB-Index 0.52 0.45 1.40 1.18 
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view of the second modality. Conversely, two neurons that are spatially close might be 

separated into two clusters based on the view of the second modality. However, this is penalised 

in DB-Index as it is not designed for such a multimodal clustering scenario. On the other hand, 

metrics precision, recall, F1-measure, cluster purity and NMI are based on actual class labels 

and are able to effectively measure the clustering improvement brought in by the multimodal 

effect. 

4.3.2.2 Clustering process analysis 

Below, we use dendrograms to analyse the hierarchical nature of the multimodal clustering 

process. A dendrogram is a tree-like structure illustrating the arrangement of clusters produced 

by the hierarchical clustering process. The distance between merged clusters increases with the 

level of the merger. That is, the height of each node in the plot is proportional to the value of 

the intergroup dissimilarity, as measured by the multimodal distance, between its two children. 

 

Figure 4.3 Hierarchical nature of the multimodal clustering process presented in dendrograms. 

The primary modality is audio while video is the secondary modality. The small pie charts 

illustrate the composition of clusters in terms of class labels at the beginning and end of the 

clustering process. 
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Usually, the hierarchical clustering process would continue until all the records are merged into 

a single cluster which would result in a single tree-like dendrogram. However, as the 

multimodal clustering impose an appropriate stopping criterion, the process results in multiple 

clusters. This corresponds to multiple dendrograms with one dendrogram for each final cluster. 

Figure 4.3 illustrates the clustering process with audio as the primary modality with video 

modality as the secondary. As indicated by the small pie charts, two neurons at the initial level 

have records from multiple classes mapped to them. The multimodal clustering process seems 

to accurately combine clusters at each iteration with the clusters containing “impurities” 

combined last, only at higher multimodal distances.  

 

Figure 4.4 Hierarchical nature of the multimodal clustering process presented in dendrograms. 

The primary modality is video while the audio is the secondary modality. 
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Similarly, Figure 4.4 illustrates the clustering process with video modality as the primary 

modality while having audio modality as the secondary. The clustering process starts with the 

majority of the neurons “pure”, having records pertaining to only one class mapped to them. 

Seven neurons have records from multiple classes mapped to them. Similar to the above, we 

can notice that “pure” clusters are merged at a lower multimodal distance while clusters with 

“impurities” are merged at a higher multimodal distance. 

4.3.2.3 Coefficient of fusion 

We varied the parameter λ in 𝑑𝑀𝐷 from 0 to 1 (inclusive of the extremes) by increments of 0.1 

and evaluated its effect on the quality of multimodal clustering as measured by the evaluation 

metrics defined above. The audio modality was used as the main modality while the video 

modality was considered as the supplementary modality. Figure 4.5 illustrates the quality of 

multimodal clustering with varying values of λ. 

 

Figure 4.5 Multimodal clustering quality with varying values of λ 
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We observed highest clustering quality when λ = 0.5 for metrics NMI, Rand measure, Dice 

index and F1, where a higher value of the metric indicates higher clustering quality. For cluster 

purity, where a higher value of the metric indicates higher clustering quality, λ values 0.3 and 

0.5 recorded the highest purity value of 0.74. On the other hand, DB-Index, where a lower value 

is desired, confirmed 0.5 as the optimal λ value with DB-Index value of 0.62. 

All the cluster quality evaluation metrics suggest 0.5 as the optimal value for λ in this 

application. Parameter value λ = 0.5 provides equal relative weighting between the earth 

mover’s distance, which accounts for the distance from the view of the second modality and 

the Euclidian distance, which accounts for the distance in their own modality in the distance 

measure. As with any hyperparameter, the value of λ is application-specific and would require 

tuning for the application at hand. However,  λ = 0.5 would provide a good starting point for 

hyperparameter tuning. 

4.4 A Distributed Architecture for Impression 

Generation 

Most of the multimodal applications need to derive efficient representations from the 

multimodal sensory inputs to effectively perceive the environment. The efficient online fusion 

of data from multiple sensory modalities facilitates responding promptly when dealing with 

real-world situations. Moreover, the time taken to adapt/retrain the decision models in response 

to changes in the environment needs to be reasonable so that the decisions are not made with 

outdated models. For example, autonomous systems would need to be periodically retrained 

with latest training examples to maintain a degree of accuracy in dynamically changing 

environments. For such use cases, the efficiency and the scalability of the training algorithms 

are of paramount importance. Training algorithms that can be parallelised to take advantage of 

parallel and distributed computing are essential to training decision models with very large 

training datasets.  
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Below, we propose a distributed architecture for improving the efficiency and scalability of the 

impression generation algorithm in order to provide results under acceptable computing times. 

Chapter 5 presents a novel distributed GSOM algorithm as an implementation of the distributed 

self-organizing components of the proposed distributed architecture while chapter 6 presents 

the detail of multimodal clustering algorithm implemented for distributed computing. 

4.4.1 Proposed Distributed Architecture 

Figure 4.6 depicts the proposed distributed architecture for impression generation with major 

modules and the data flow among them. The proposed architecture consists of two major 

modules. The first module is the distributed GSOM training module implementing a distributed 

variant of the GSOM algorithm for training GSOM maps of individual modalities. The second 

module is the multimodal clustering module, which performs multimodal clustering over the 

modality specific GSOMs generated by the first module. 

Distributed GSOM training module ingests multimodal training data and uses data parallelism 

to train modality specific GSOM maps. It should be noted that the proposal here is to parallelise 

GSOM training among multiple modalities as well as within individual modality. This would 

achieve greater parallelism unrestricted by the number of modalities compared to mere 

parallelism among multiple modalities. Moreover, the use of data parallelism (partitioning input 

data across processors) opposed to network parallelism (partitioning neurons or weights across 

processors) within each modality allows parallelising unrestricted by the GSOM map size. We 

identify three major tasks for the distributed GSOM training within each modality, 1) data 

partitioning, which partitions the dataset by a given criterion 2) distributed GSOM training, 

which trains a GSOM map on each partition parallelly and 3) merging GSOM maps, which 

generates a single topographic map for each modality from the individual GSOM maps. 
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Figure 4.6: High-level architecture of the scalable fusion process, shown only for two 

modalities 
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The second major module is the multimodal clustering module, which performs multimodal 

clustering over the modality specific GSOMs generated by the first module. We identify two 

tasks for performing multimodal clustering, 1) co-activation distribution calculation, and 2) 

multimodal cluster generation. In the first task, multimodal data is presented to the GSOM maps 

in order to record co-activation among the neurons pertaining to different modalities which are 

used to calculate a co-activation distribution for each neuron. We propose to data parallelise 

co-activation calculation and implement for distributed computing. The second task generates 

multimodal clusters, and this is done by iteratively merging clusters based on the multimodal 

distance. 

4.5 Chapter Summary 

In this chapter, we presented the implementation details of the model for impression generation 

proposed in the previous chapter. The implementation adheres to a multi-layered conceptual 

model with the outer cortical layer, which receives multimodal inputs, modelled using 

topographic maps generated by the GSOM algorithm. The multimodal interactions are 

modelled using a multimodal distance metric which effectively combines information across 

modalities exploiting the co-occurrence relationships. The multimodal clustering algorithm, 

which uses multimodal distance, takes neurons of the outer cortical layer as input and organize 

them into meaningful categories without explicit knowledge such as the number of categories 

present in the input.  

The proposed multimodal clustering algorithm was demonstrated with an audio-visual dataset. 

In the experimentation, we compared the quality of clustering generated by the multimodal 

clustering with that of a unimodal clustering to demonstrate cluster quality improvements. 

Hierarchical cluster merging was analysed to a better understanding of the process while further 

experiments were conducted to analyse the effect of hyperparameters. 

Noting how most of the multimodal applications need to derive efficient representations from 

multimodal sensory inputs to perceive the environment effectively, we proposed a distributed 
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architecture for improving the efficiency and scalability of the impression generation algorithm 

in order to provide results under acceptable computing times. Chapter 5 continues on this quest, 

proposing a distributed GSOM algorithm and its implementations on multiple distributed 

computing paradigms to speedup computations.
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Chapter 5                                                                    

A Distributed GSOM Algorithm 

The previous chapter concluded with a theoretical contribution, proposing a distributed 

architecture for impression generation. This chapter presents a novel distributed SOM 

algorithm as an implementation of the distributed self-organizing components of the proposed 

distributed architecture while the next chapter presents the detail of multimodal clustering 

algorithm implemented for distributed computing. 

Current literature reports several studies towards scalable SOM algorithms to address the 

scalability issues of the SOM algorithm while being applied to Big Data environments. They 

can be classified into two groups, network parallelisation and data parallelisation. In network 

parallelisation, the number of nodes in the SOM becomes a constraint to scalability while data 

parallelisation requires a batch version of the SOM algorithm with a costly synchronisation step 

after each iteration. As a solution, this chapter describes a new data parallelised SOM algorithm 

which does not require the use of the batch SOM. The proposed algorithm processes data in 

parallel to generate multiple SOMs which are then projected together to a single mapping while 

preserving topological relationships of the original input data. We utilise the GSOM algorithm, 

a structure adapting variation of the SOM, which results in further processing improvement. 
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The new algorithm is adapted to three contemporary distributed computing platforms, Hadoop, 

Spark and Hama and empirical evaluations which demonstrate super-linear speedup compared 

to the serial SOM using several benchmarking and real-life data sets are reported in this chapter. 

5.1 Introduction 

With large data volumes, using the SOM algorithm for data processing become increasingly 

difficult due to the algorithm’s inherent time complexity, 𝑂(𝑁), where 𝑁 is the data size. With 

recent changes in social, technology and economic forces that created the Big Data 

phenomenon, the amount of data available has grown exponentially in all fields. In such 

instances, SOM computations on a single computing resource are resource-intensive, which has 

been a significant constraint in the application of the SOM in Big Data environments. This 

limitation can be addressed by adapting SOM learning and topology preservation into parallel 

and distributed computing environments where processors function independently without 

sharing or synchronisation. Many research endeavours targeting the development of scalable 

SOMs using parallel and distributed computing environments have been reported in the 

literature. Such research could be categorised in two main directions as network parallelisation-

based and data parallelisation-based SOMs. Since network parallelisation is constrained by the 

number of nodes in the SOM, data parallelisation has been the more predominant and widely 

accepted direction. The SOM in its original form cannot be adapted to data parallelisation since 

weight adaptation across multiple data partitions needs to be synchronised and as such a batch 

processing version of the SOM is used in the data parallelised algorithms.  

The proliferation of distributed computing platforms makes it convenient and economical to 

conduct distributed computations. Several of the proposed parallel SOM algorithms, both 

network and data parallelised, have been adapted to distributed computing platforms such as 

Apache Hadoop and Apache Spark. Although significant improvements in processing speed 

have been reported, the following key limitations constrain the use of distributed SOMs with 

large data volumes:  
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1. Network parallelised SOMs are restricted by maximum processors equal to the number 

of SOM nodes, resulting in limiting the processing improvement as well as under-

utilisation of GPU capacity 

2. Data parallelised SOMs require batch SOM where weight synchronisation after each 

iteration becomes a major bottleneck on speed  

3. It has been reported that the batch version of the SOM results in the reduction of final 

map quality (Fort et al., 2002). 

As such, there is still further advancement required on the existing work on parallelisation of 

the SOM, which could then be adapted into the distributed computing platforms. The research 

reported in this chapter describes a new distributed SOM algorithm to address the above 

limitations with adaptation into three well known distributed computing platforms for practical 

utilisation. A dynamic and adaptive version of the SOM called the Growing SOM (GSOM) is 

used due to its proven processing advantages over the original SOM. Data parallelisation was 

chosen as the more suitable direction for very large data volumes since this enables 

parallelisation unrestricted by map size. The chapter reports on design and development of the 

Distributed GSOM algorithm and its adaptation to three well-established distributed computing 

paradigms, MapReduce (Dean & Ghemawat, 2008), Bulk Synchronous Parallel (BSP) (Valiant, 

1990) and Resilient Distributed Dataset (RDD) (Zaharia et al., 2012). Each adaptation is 

demonstrated on its respective platform, MapReduce on Apache Hadoop, BSP on Apache 

Hama and RDD on Apache Spark. 

5.2 Background 

This section describes distributed computing paradigms and related past research, which make 

up the foundation on which the proposed algorithm was developed. This discussion further 

highlights the gap in distributed SOM research and algorithms and justify the direction of work 

resulting in the proposed distributed GSOM algorithm. 



   A Distributed GSOM Algorithm 

101 

 

5.2.1 Distributed Computing Paradigms 

Below we present a brief account of three popular distributed computing paradigms. These 

paradigms have been utilised for implementing several of the existing distributed SOM 

algorithms, and the proposed Distributed GSOM has been implemented on all paradigms. Most 

of the known distributed adaptations of SOM have been utilised in the MapReduce (Dean & 

Ghemawat, 2008) computing paradigm which is designed for processing large datasets on a 

cluster of commodity hardware. MapReduce works by allowing the user to specify a map 

function and a reduce function, and the underlying system takes care of parallelising the 

processing to multiple computing nodes. Mapper nodes are responsible for processing a subset 

of the dataset and outputting intermediate results as key-value pairs. The MapReduce 

framework delivers these intermediate pairs to reducer nodes and guarantees that all the pairs 

with the same key are delivered to the same reducer. The reducer is responsible for aggregating 

the intermediate key-value pairs for a single key and outputs the aggregated value against the 

key as yet another key-value pair. 

Apache Hadoop is the widely used open-source implementation of the MapReduce paradigm. 

Hadoop facilitates MapReduce computation by providing a number of essential services such 

as job scheduling, a distributed file system, and fault tolerance. It is designed to scale from one 

node to thousands of computing nodes offering local computing and storage. Hadoop’s YARN 

module is responsible for job scheduling and cluster resource management while Hadoop 

Distributed File System (HDFS) module provides a distributed file system for high-throughput 

access to application data. Although widely used, accessing partial results stored in HDFS is a 

significant overhead in performance, especially when iterative steps are required. Bulk 

Synchronous Parallel (BSP) has been proposed as a solution for such situations. 

Bulk Synchronous Parallel (BSP) is a generic distributed computing paradigm capable of 

operating on a cluster of computing nodes. Usually, a BSP algorithm consists of a series of 

supersteps, each having three components, concurrent computation, communication, and 

barrier synchronisation. In a superstep, each computing node may perform its computations 
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using data available to it locally and the nodes may exchange data among them by sending 

messages. The computation and communication are asynchronous and may overlap as well. 

Barrier synchronisation is used to synchronise all nodes such that a node would wait until other 

nodes have reached the barrier. Barrier synchronisation concludes a superstep and a BSP 

algorithm may consist of one or more such supersteps. Apache Hama is a popular 

implementation of the BSP paradigm and provides the necessary infrastructure for 

communicating with peer nodes and performing synchronisation. Hama is closely related to 

Hadoop in that Hama uses HDFS as the distributed storage. 

Apache Spark implements the Resilient Distributed Dataset (RDD) (Zaharia et al., 2012), which 

is an immutable, fault-tolerant distributed dataset divided into logical partitions. Due to in-

memory processing, Spark has reported significant improvement in processing speed compared 

to Hadoop MapReduce. RDDs can be created by deterministic operations on either data or other 

RDDs and computations on these partitions may be carried out on different nodes in the cluster. 

Spark provides a large number of operations such as map, reduce, reduceByKey, collect, and 

filter to manipulate and transform the RDDs. RDDs are fault-tolerant, such that, Spark uses 

the lineage of operations to regenerate an RDD in the case of a failure. Spark also uses HDFS 

as distributed storage and can be configured to use YARN for job scheduling and cluster 

management. 

Although each platform has reported advantages in certain situations, no clear ‘winner’ for all 

data types and situations has been reported. Although Spark is said to have significant speed 

improvement due to in-memory processing, Hadoop is reported to perform better when the data 

set is larger than available memory. With Hama, the construction of iterative workloads is 

simpler as the same logic could be re-executed in a series of super steps. User-friendliness of 

the user interfaces as well as faster learning curves have been reported as criteria when 

comparing these platforms. Since each platform seems to have its advantages according to 

different scenarios, the proposed Distributed GSOM algorithm was adapted to all three as 

described in section 5.4. 
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5.2.2 Parallel and Distributed Models of Self-Organizing Maps 

The parallel and distributed algorithms targeted at addressing scalability issues of the SOM 

learning can be categorised based on parallelism as network parallelised (partitioning neurons 

or weights across the processors) and data parallelised (partitioning the input data across 

processors). A number of such algorithms have been proposed and goes as far back as 1990 

(Huntsberger & Ajjimarangsee, 1990). However, more recent attempts can be identified under 

two common themes and direction, (1) GPU based network parallelised models and (2) batch 

SOM algorithm-based data parallelised models.  

Network parallelism is common in approaches targeted towards GPUs and specialised hardware 

such as Very-Large-Scale Integration (VLSI) chips. The parSOM algorithm (Rauber et al., 

2000) is parallelised at the neuron level, i.e. each partition contains a subset of neurons of the 

complete map, which is further improved for distributed memory systems by Tomsich, Rauber, 

and Merkl (2000). More recent implementations of network parallel SOM algorithms focus on 

GPUs for parallelism. (Moraes et al., 2012) propose such an implementation based on CUDA. 

Moraes et al. used Single Instruction, Multiple Data (SIMD) paradigm for distance calculations 

and for finding the BMU using parallel reduction. Another GPU-based implementation of the 

SOM proposed by Zhongwen, Zhengping, and Xincai (2005) assigns a single neuron or a group 

of neurons to each processor of the GPU for parallel operation. The main limitation of network 

parallelised algorithms is that their speedup is limited by the number of neurons in the map if 

neurons are processed in parallel or the dimensionality of data if dimensions are processed in 

parallel. Due to the above limitation, these approaches do not scale well to large datasets or 

have limited applicability for specialised purposes such as handling high dimensional data. 

Batch SOM algorithm based data parallelism is the most predominant variant used for 

parallelising the SOM algorithm. The original online learning algorithm for SOM cannot be 

parallelised in its original form since weights of neurons in the map have to be updated for each 

input vector (Garabato et al., 2015). In the modified batch variant of the SOM algorithm (Mulier 

& Cherkassky, 1995) weights are updated only once per each iteration, and most data 
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parallelisation attempts are based on this variant. In these attempts, the current map is published 

to all worker nodes, and the training data is distributed among them for each iteration. The 

worker nodes present each input vector from the training data assigned to them, record the 

winning neuron and calculate the necessary information for the weight update. At the end of 

the iteration, this information is transmitted to the master node, which performs the weight 

updates of the neurons in the map.   

This workflow has been ported to the MapReduce paradigm and implemented for distributed 

computing frameworks Apache Hadoop (Garabato et al., 2015; Weichel, 2010) and in recent 

works, Apache Spark (Koutsoumpakis, 2014; Malondkar, 2015; Sarazin et al., 2014). Weichel 

(2010) used two MapReduce jobs, and two-fold emit in reduce phase to implement the 

calculation of an iteration. This was improved by Garabato et al. (2015) when they implement 

the same with only one MapReduce job per iteration. Another MapReduce-based 

implementation of SOM, which utilises the batch learning algorithm, is proposed in (Wittek & 

Darányi, 2012) and (Wittek & Darányi, 2013). The algorithm is implemented for GPUs in MR-

MPI, which is a light-weight framework that allows to program GPUs with the MapReduce 

paradigm. 

The main drawback of reported research on the batch variant of the SOM is the computationally 

expensive synchronisation step at the end of each iteration. Parallelisation is achieved only 

within iterations, and workers need to synchronise and communicate results to the master node 

at the end of each iteration. Moreover, it is noted in the literature that the quality of the map 

produced by the batch algorithm is inferior to that of the online algorithm (Fort et al., 2002). In 

Hadoop, each iteration is implemented as a MapReduce job, and the intermediate results are 

shared among jobs by writing them to an external stable storage system such as HDFS which 

is extremely slow compared to in-memory sharing. In addition, the number of outputs generated 

by the map phase of the MapReduce job is the mathematical product of the total number of 

input vectors and the total number of neurons in the map. In a distributed system, this can slow 

down calculation for large datasets. Sarazin et al. (2014) show that the ratio between the number 
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of training samples and computation time drops when the size of the training set exceeds 106. 

This is attributed to the large number of outputs the map phase generates, and thereby such 

approaches are not scalable beyond 106 training samples. 

A different approach to data parallelism has been adopted in Scalable GSOM algorithm (Zhai 

et al., 2006).  It uses a two-level growing phase, where the first level divides data among 

independent parallel processing units and the second level trains GSOMs on each data partition. 

However, using a GSOM training level to partition data may limit the benefits of distributed 

processing. The method also lacks a final combined map which is the hallmark feature of the 

SOM algorithm and an essential feature for the visualisation of neighbourhood relationships in 

the data. Gorgonio and Costa propose another approach, the partSOM (Gorgonio & Costa, 

2008a, 2008b) which uses vertical data partitioning and assigns a subset of attributes to each 

node for SOM training and uses another SOM to combine individual SOMs. The main 

drawback is that the parallelisation of this approach is limited by the number of attributes in the 

dataset. Given the variety of approaches adopted for SOM parallelisation, it is useful to 

summarise all in terms of key features (Table 5.1). 

The speedup of a network parallelised algorithm is restricted by the number of neurons or the 

dimensionality of data.  Hence, GPU based network parallelised models would not scale well 

to process large datasets available in the Big Data era or have limited applicability for 

specialised purposes. On the contrary, the speedup of a data parallelised algorithm is 

proportional to the input data size and would be more suitable for large datasets. However, as 

discussed above, the online SOM algorithms cannot be parallelised in the original form and as 

such data parallelism has to be based on the batch variant which is inherently impacted by (a) 

the delayed synchronisation step in each iteration, (b) the large number of intermediate outputs 

emitted and (c) the inferiority of quality of the batch learning algorithm. It is pertinent to 

conclude this subsection by highlighting the need for a novel data parallelised SOM algorithm 

that demonstrates effective scalability on Big Data volumes.  
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Table 5.1: Parallel and distributed SOM algorithm comparison 
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Lawrence et al., 1999 (Lawrence et al., 1999) 

Data parallelised batch SOM algorithm with calculations 

further improved for sparse data. Implemented in MPI 

paradigm. 

128,282 rows 

(14 dims) 

64 

neurons ✓  ✓  ✓  ✓  

Weichel, 2010 (Weichel, 2010) 

Data parallelised batch SOM algorithm ported to 

MapReduce paradigm and implemented with Hadoop. 

Uses two MapReduce jobs per iteration. 

2,500 rows  

(20 dims) 

440 

neurons ✓  ✓  ✓  ✓  

Sarazin et al., 2014 (Sarazin et al., 2014) 

Data parallelised batch SOM algorithm ported to 

MapReduce paradigm and implemented with Spark. 

Proposes a way to reduce the large number of outputs in 

the map phase. 

100 million rows 

(2 dims) 

100 

neurons ✓  ✓  ✓  ✓  

Koutsoumpakis, 2014 (Koutsoumpakis, 2014) 

Data parallelised batch SOM algorithm implemented with 

Spark. 

1,244 rows  

(# dims not given) 

25 

neurons ✓  ✓  ✓  ✓  

Garabato et al., 2015 (Garabato et al., 2015) 

Data parallelised batch SOM algorithm ported to 

MapReduce paradigm and implemented with Hadoop. 

10.36 million rows 

(6 dims) 

900 

neurons ✓  ✓  ✓  ✓  

Malondkar, 2015 (Malondkar, 2015) 

Data parallelised batch SOM algorithm ported to 

MapReduce paradigm and implemented with Spark for 

individual SOM training of Growing Hierarchical SOM 

algorithm. 

8,124 rows 

(22 dims) 

70 

neurons ✓  ✓  ✓  ✓  

Gorgonio and Costa, 2008 (Gorgonio & Costa, 

2008b) 

Data parallelised (with vertical data partitioning) SOM 

algorithm which assigns a subset of attributes to each node 

for SOM training and uses another SOM to combine 

individual SOMs. 

699 rows 

(10 dims) 

132 

neurons ✓  ✓  ✓   ✓ 

Gorgonio and Costa, 2008 (Gorgonio & Costa, 

2008a) 

Combines the above algorithm with k-mean clustering for 

cluster analysis in distributed databases. 

699 rows 

(10 dims) 

Not 

given ✓  ✓  ✓   ✓ 

Wittek and Darányi, 2012 (Wittek & Darányi, 

2012) 

Data parallelised batch SOM algorithm ported to 

MapReduce paradigm and implemented with MR-MPI for 

distributed GPUs. 

84,283 rows 

(200 dims) 

100 

neurons ✓  ✓   ✓ ✓  

Wittek and Darányi, 2013 (Wittek & Darányi, 

2013) 

Improving the above algorithm for text mining tasks on 

distributed GPUs. 

84,283 rows 

(100 dims) 

100 

neurons ✓  ✓   ✓ ✓  
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Takatsuka and Bui, 2010 (Takatsuka & Bui, 

2010) 

Data parallelised batch SOM algorithm implemented with 

OpenCL for GPUs. 

2,000 rows  

(3 dims) 

 

92 

neurons ✓   ✓  ✓ ✓  

Rauber et al., 2000 (Rauber et al., 2000) 

Serial SOM algorithm parallelised using network 

partitioning where each partition contains a subset of 

neurons of the map. 

420 rows 

(4012 dims)  

 

150 

neurons 
 ✓  ✓ ✓   ✓ 

Tomsich et al., 2000 (Tomsich et al., 2000) 

The above algorithm improved for distributed memory 

systems. 

420 rows 

(4012 dims) 

150 

neurons 
 ✓ ✓  ✓   ✓ 

Zhongwen et al., 2005 (Zhongwen et al., 2005) 

Serial SOM algorithm parallelised using map partitioning 

targeting GPUs. 

80 rows 

(# dims not given) 

262,144 

neurons 
 ✓  ✓  ✓  ✓ 

Moraes et al., 2012 (Moraes et al., 2012) 

Serial SOM algorithm with some of the subtasks 

parallelised using SIMD paradigm. Implemented using 

CUDA targeting GPUs. 

# rows not given 

(1,000 dims) 

16,384 

neurons 
 ✓  ✓  ✓  ✓ 

 

5.3 Proposed Distributed GSOM 

In this section, we present the Distributed GSOM algorithm, which addresses the limitations 

highlighted in the existing parallel and distributed SOM algorithms. The algorithm uses data 

parallelism to be able to process large datasets available in the Big Data era. Moreover, the 

algorithm is based on the online SOM algorithm. 

5.3.1 Comparison with Batch SOM Based Approaches 

Figure 5.1 presents the execution flow of the batch variant-based SOM parallelisation, and 

Figure 5.2 highlights how the proposed Distributed GSOM algorithm is different from the batch 

variants. The proposed algorithm (Figure 5.2) does not have to synchronise after each iteration 

and does not suffer from a large number of intermediate outputs. Moreover, the use of the online 

variant preserves the quality of the final map. 
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5.3.2 Distributed GSOM Algorithm 

A high-level outline of the Distributed GSOM algorithm is presented in Algorithm 5.1, and the 

flow is illustrated in Figure 5.2. Multiple partitioning techniques can be utilised for the first 

step, including random partitioning, class-based partitioning and high-level clustering-based 

partitioning. The number of partitions is a parameter to the algorithm and is usually decided 

based on the number of computing resource available. We have used random partitioning and 

ruled out class-based partitioning since the class may not be readily available in the dataset and 

high-level clustering due to the associated computing cost. Next, individual GSOMs are trained 

in parallel on each partition using the GSOM algorithm. 

j = no. of Iterations 

j < no. of Iterations 

𝑑1

𝑑2 

𝑑3 

𝑑𝑛 

𝐷 
Data 

Partitioning 

𝑃2
𝑗
 

𝑃1
𝑗
 

𝑃3
𝑗
 

𝑃𝑛
𝑗
 

SOM Weight 

Update (Uj
) 

Final SOM 

Intermediate SOM 

Figure 5.1: Common execution flow of batch variant based parallelisation efforts.  𝑑𝑖 is the ith 

data partition, 𝑃𝑖
𝑗
 is the processing on ith partition on jth iteration and 𝑈𝑗 is the weight update 

after jth iteration. 
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Algorithm 5.1. The high-level outline of Distributed GSOM algorithm 

1 Split the dataset into partitions 

2 Train a GSOM on each partition in parallel 

3 Remove redundant neurons across partitions 

4 Merge by performing Sammon’s projection on neurons in trained GSOMs 

 

5.3.2.1 Redundancy Reduction 

One of the issues in partitioning the dataset and training GSOMs on each of them is that, when 

the actual groupings are spread among computing nodes, the individual GSOMs could contain 

similar neurons leading to redundant neurons in the merged map. This could lead to high 

processing times for the merging process, which employs Sammon’s projection. Redundancy 

reduction step of the algorithm addresses this issue by removing such redundant neurons. We 

identify that the redundancy reduction can also be performed in a distributed manner where 

redundancies among smaller subsets of maps can be removed simultaneously. Specifically, the 

reduce operation of functional programming - which applies some function to pairs of objects 

of similar type and produces a single object of the same type as the output - can be applied for 

redundancy reduction. Here, the reduce operation will consume two maps at a time to output a 
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GSOM2 
Training 
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Reduction Projection 

Intermediate 

GSOMs 

Final 
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Redundancy 
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Figure 5.2: High-level outline of Distributed GSOM algorithm 
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single map with redundancies among them removed. Such a reduction operation requires the 

reduce function to be commutative and associative. 

Algorithm 5.2. The redundant neuron reduction algorithm 

 Input: P: GSOMs trained on training data partitions  

1 𝑑  0, 𝑛  0 

2 for partition 𝑃𝑖 ∈ P do 

3     for neuron 𝑛𝑖,𝑗 ∈ 𝑃𝑖 do 

4         for partition 𝑃𝑘 ∈ P such that  𝑖 ≠ 𝑘 do 

5             𝑛𝑘,𝑙    GetBMU(𝑤𝑖,𝑗, 𝑘) 

6             𝐸𝑘,𝑙
𝑖,𝑗

  ∑ |𝑤𝑘,𝑙 − 𝐼𝑖,𝑗[𝑥]|
𝑁𝑖,𝑗

𝑥=0  

7             𝐸𝑐   𝐸𝑖,𝑗 + 𝐸𝑘,𝑙 {Total current error} 

8             𝐸1  𝐸𝑖,𝑗 + 𝐸𝑖,𝑗
𝑘,𝑙

 {Total 𝑛𝑖,𝑗 error} 

9             𝐸2  𝐸𝑘,𝑙 + 𝐸𝑘,𝑙
𝑖,𝑗

 {Total 𝑛𝑘,𝑙 error} 

10             if 𝐸𝑐 > 𝐸1 AND 𝐸2 > 𝐸1 then 

11                 remove 𝑛𝑘,𝑙 

12                 𝑑  𝑑 + |𝑤𝑖,𝑗 − 𝑤𝑘,𝑙| 

13                 𝑛  𝑛 + 1 

14             else if 𝐸𝑐 > 𝐸2 AND 𝐸1 > 𝐸2 then 

15                 remove 𝑛𝑖,𝑗 

16                 𝑑  𝑑 + |𝑤𝑖,𝑗 − 𝑤𝑘,𝑙| 

17                 𝑛  𝑛 + 1 

18             end if 

19         end for 

20     end for 

21 end for 

22 𝑅𝐼 =  𝑒𝑆𝐹  ×  𝑑/𝑛 

23 for partition 𝑃𝑖 ∈ P do 

24     for neuron 𝑛𝑖,𝑗 ∈ 𝑃𝑖 do 

25         if IsNonHitNeuron(𝑛𝑖,𝑗) then 

26             for partition 𝑃𝑘 ∈ P such that  𝑖 ≠ 𝑘 do 

27                 for neuron 𝑛𝑘,𝑙 ∈ 𝑃𝑘 do 

28                     if IsNonHitNeuron(𝑛𝑘,𝑙) then 

29                         if |𝑤𝑖,𝑗 − 𝑤𝑘,𝑙| ≤  𝑅𝐼 then 

30                             remove 𝑛𝑘,𝑙 

31                         end if 

32                     end if 

33                 end for 

34             end for 

35         end if 

36     end for 

37 end for 
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where, 

𝑛𝑖,𝑗 The neuron 𝑗 in partition 𝑖 

𝑤𝑖,𝑗 The weight vector of 𝑛𝑖,𝑗 

𝐸𝑖,𝑗 The total quantisation error for 𝑛𝑖,𝑗 for 𝐼𝑖,𝑗 

𝐸𝑖,𝑗
𝑘,𝑙

 The total quantisation error for 𝑛𝑖,𝑗 for 𝐼𝑘,𝑙 

𝑅𝐼 Redundancy index 

GetBMU(𝑤𝑖,𝑗, 𝑘) returns the closest neuron to 𝑤𝑖,𝑗 in partitioned network 𝑘. 

IsNonHitNeuron(𝑛𝑖,𝑗) returns true if the neuron 𝑛𝑖,𝑗 does not have any training data mapped. 

5.3.2.2 Projection for Final GSOM 

Finally, Sammon’s projection (Sammon, 1969) is used to merge the individual maps due to its 

ability to preserve the topological ordering. The accuracy of using Sammon’s projection in the 

merging phase in terms of topology preservation and clustering results have been demonstrated 

in earlier work (Ganegedara & Alahakoon, 2011). Sammon’s projection algorithm is based 

upon point mapping of higher dimension vectors to lower dimensional space such that the 

inherent structure of the data is preserved. It does so by attempting to minimise Sammon’s 

stress, 𝐸, in (5.1), over a number of iterations. 

where, 𝑑𝑖,𝑗
∗  is the distance between vectors 𝑋𝑖 and 𝑋𝑗 in the higher dimensional space and 𝑑𝑖,𝑗 

is the distance between the corresponding vectors 𝑌𝑖 and 𝑌𝑗 in the lower dimension space. 

Sammon’s projection has the time complexity of 𝑂(𝑛2), where 𝑛 is the number of vectors. In 

the case of merging GSOMs trained in parallel, this would be the total number of neurons in 

individual maps. Hence, it is important that the redundancy reduction mechanism removes any 

redundant neurons in individual maps. 

We adapt the algorithm to three distributed computing paradigms, MapReduce, Bulk 

Synchronous Parallel (BSP) and Resilient Distributed Dataset (RDD) and implement these 

adaptations on their respective platforms Apache Hadoop, Apache Hama and Apache Spark. 

 

𝐸 =  
1

∑ [𝑑𝑖,𝑗
∗ ]𝑖<𝑗

  ∑
[𝑑𝑖,𝑗

∗ − 𝑑𝑖,𝑗]2

𝑑𝑖,𝑗
∗

𝑁

𝑖<𝑗

 

(5.1) 
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The Distributed GSOM algorithms presented here have their roots in earlier work, the spilt and 

merge GSOM algorithm (Ganegedara & Alahakoon, 2011, 2012). Ganegedara and Alahakoon 

(2011) assessed the topology preservation of Sammon’s projection with smaller datasets. The 

results indicate that GSOM with Sammon’s projection preserved topology better than standard 

GSOM algorithm and concluded that “maps generated using Sammon’s projection have better 

topology preservation leading to better results in terms of accuracy” (p 199). 

5.4 Adaptation and Implementation 

This section describes the adaptations of the Distributed GSOM algorithm to 3 widely used 

distributed computing paradigms, MapReduce, BSP and RDD and their implementations on 

corresponding platforms Apache Hadoop, Apache Hama and Apache Spark respectively. 

Apache Hadoop is one of the most popular distributed computing platforms implementing the 

MapReduce paradigm. It is well suited for batch-oriented processing; however, it suffers when 

multiple MapReduce jobs need to be employed for computation as the intermediate result 

sharing happens over the disk-based HDFS. This may affect the Hadoop based implementation 

of the Distributed GSOM algorithm as it uses two MapReduce jobs, as shown in section 5.4.1. 

Apache Hama and Apache Spark, on the other hand, avoid using HDFS and use communication 

among peer nodes and in-memory data sharing respectively to share intermediate results. This 

led us to adapt the Distributed GSOM algorithm to BSP and RDD paradigms and implement 

on platforms Apache Hama and Apache Spark, respectively. Moreover, Apache Spark’s 

support for distributed reduce operation (with treeReduce function) is well suited for 

distributed redundancy reduction. Here, the reduce operation consumes two maps at a time and 

outputs a single map with redundant neurons among them removed. 

5.4.1 Distributed GSOM on Hadoop MapReduce 

We adapt the distributed GSOM algorithm to the MapReduce paradigm, and it is implemented 

using two MapReduce jobs. Below we describe these jobs for (1) data partitioning and (2) 

parallel GSOM training, redundancy reduction and Sammon’s projection. 
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5.4.1.1 Job 1: Data Partitioning 

We use random partitioning as the data partitioning strategy in our study. However, the main 

limitation of the random partitioning itself is the randomness of the assignment. If a mapper 

node training a GSOM on a data partition fails, it should be possible to access the same set of 

data for consistency. However, this would not be possible with the random partitioning. Hence, 

we use a separate MapReduce job that randomly partitions data and writes the results to HDFS, 

which is later used by the MapReduce job performing GSOM training and redundancy 

reduction. 

  Algorithm 5.3. Job 1: Data partitioning 

  map (key, value) 

 Input: Desired number of partitions, P, the file offset, key, the line composing of a 

record, value 

 Output: <key’, value’> pair, where the key’ is the index of the partition 

1 key’  Get random integer in the range [1, P] 

2 value’  value 

3 Output <key’, value’> pair 

reduce (key, V) 

 Input: Index of the partition, key, all the record lines for the partition, V 

 Output: None 

1 Write V to a file named key 

 

Data partitioning MapReduce job uses standard TextInputFormat so that the mapping phase 

of the job would receive a line of the file containing data pertaining to a single record at a time.  

The mapper is responsible for assigning each of these records an integer in the range [1, P] 

where P is the desired number of partitions. This integer is used as the key of the output while 

the record is used as the value. A reducer, which receives all the records assigned to a single 

partition, would then write all the records on to a file on HDFS using the key as the file name. 

5.4.1.2 Job 2: GSOM Training, Redundancy Reduction, and Projection 

The Distributed GSOM algorithm is well aligned with the MapReduce computing paradigm 

such that parallel GSOM training step can be mapped to the map phase, the redundancy 

reduction phase can be mapped to the combine and reduce phases while merging can be mapped 
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to the reduce phase. Each mapper in MapReduce is responsible for training a GSOM on its data 

partition while each combiner is responsible for removing redundant neurons from a set of 

GSOMs assigned to a single mapper node. Finally, a single reducer is responsible for removing 

redundant neurons among GSOMs originating from multiple mapper nodes and finally 

performing Sammon’s projection. 

  Algorithm 5.4. Job 2: GSOM training, redundant neuron removal, and projection 

  map (key, value) 

 Input: Name of the partition file, key, records of the partition, value 

 Output: <key’, value’> pair, where the key’ is the output key (constant) and value’ is 

the neurons of the trained GSOM map 

1 gsom  Train a GSOM on value 

2 value’  gsom.neurons 

3 key’  K (constant) 

4 Output <key’, value’> pair 

combine (key, V) 

 Input: GSOM neurons from the same node, V 

 Output: <key’, value’> pair, the value’ is the non-redundant neurons of the V 

1 value’  Remove redundant neurons in V 

2 key’  key 

3 Output <key’, value’> pair 

reduce (key, V) 

 Input: Partially redundancy reduced GSOM neurons, V 

 Output: None 

1 V’  Remove redundant neurons in V 

2 P  Perform Sammon’s projection on V’ 

3 Write P to a file 

 

This MapReduce job uses a specialised input reader to read comma-separated values written by 

the data partitioning job. The input reader uses the file name as the key in making sure that all 

the records from a single partition are received by the same mapper. GSOMs are trained on 

each partition in parallel by the mappers using the standard GSOM algorithm and output them 

with the single key, so they are received by a single reducer. 

A combiner is an optional step in Hadoop that operates between the mappers and reducers to 

reduce network traffic by summarising output records of the map phase with the same key. In 



   A Distributed GSOM Algorithm 

115 

 

our implementation, the combiner removes redundant neurons among maps assigned to the 

same computing node. The redundancy reduction algorithm examines the input vectors mapped 

to each neuron to calculate its quantisation error. Hence, the records are stored with the best 

matching unit to avoid the combiners and the reducer having to access all the partitions in the 

HDFS. The single reducer performs further redundancy reduction among GSOMs generated in 

different computing node and perform Sammon’s projection to generate the final GSOM map. 

5.4.2 Distributed GSOM on Apache Hama 

The Hadoop implementation of the MapReduce-based Distributed GSOM has inherent 

disadvantages. The main disadvantage arises due to how data is shared between jobs in Hadoop 

MapReduce. It does so by writing the intermediate results to HDFS, which is much slower than 

sharing it over memory. In the Distributed GSOM algorithm, this affects the data sharing 

between the two MapReduce jobs. The BSP paradigm is an alternative to overcome this 

limitation. The supersteps facilitate local computations, communications among peer nodes and 

barrier synchronisation, eliminating the need to use HDFS to communicate results among steps. 

In this section, we investigate the BSP computing paradigm and its implementation Apache 

Hama as a candidate for the Distributed GSOM algorithm. The BSP based Distributed GSOM 

algorithm starts by choosing one node in the cluster as the master node in the setup phase. We 

use two supersteps in our algorithm, and they correspond closely with the two jobs in the 

MapReduce-based implementation. 

The first superstep is responsible for partitioning the dataset into a predefined number of 

partitions using random partitioning strategy. Here we choose the number of computing nodes 

as the number of partitions as each node can work on each partition in the second superstep. 

We use a specialised input reader to read comma-separated values, and each node iteratively 

read each line - which corresponds to a single record - from its file split. It then draws a random 

integer in the range [1, P] where P is the desired number of partitions and based on the number, 

places the record in a temporary bin corresponding to the integer. When all the records are read 
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from the file split, each node sends its bins to respective nodes using the peer communication 

infrastructure available with Hama. There is a barrier synchronisation at the end of 

communication to ensure all nodes are synchronised at this point, concluding the first superstep. 

The second superstep is responsible for parallel GSOM training, and it starts by reading the 

messages from peers to collect the set of records assigned to it. Once all the records are acquired 

the standard GSOM algorithm is used by the node to train a GSOM on the data. The trained 

GSOM is sent as a message using the peer messaging infrastructure to the master node chosen 

initially. Finally, a barrier synchronisation is applied to conclude the second superstep of the 

algorithm. 

We use the third superstep for the aggregation of the maps. The final phase operates only on 

the master node, and it starts by collecting all the GSOMs sent to it by the peer nodes. Then the 

redundancy reduction algorithm removes redundant neurons among GSOMs, which facilitates 

faster merging. As the final step, Sammon’s projection is used to generate the final GSOM. 

Below we outline the algorithm using the following notation, 

size(𝑃) returns the size of the list 𝑃, rand(0, 𝑛) returns a random integer between 0 and 𝑛, 

add(𝐷, 𝑚) adds data item 𝑚 to the list 𝐷, train(𝐷) trains a GSOM on the dataset 𝐷, 

reduceRedundancies(𝑀) performs redundant neuron removal among maps 𝑀 and merge(𝑀) 

merges maps 𝑀 using Sammon’s projection. 
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Algorithm 5.5. Distributed GSOM BSP job 

 Input: P: The list of all peers 

1 bsp-setup 

2     𝑚𝑎𝑠𝑡𝑒𝑟  peer 𝑃1 

3 superstep 

4     𝐵   Ø  

5     𝑛  size(𝑃)  

6     while 𝑑  read() ≠ NIL do 

7         𝑖  rand(0, 𝑛) 

8         add(𝐵𝑖, 𝑑) 

9     end while 

10     for peer 𝑃𝑗 ∈ P do   

11         send message 𝐵𝑗  to 𝑃𝑗 

12     end for 

13 synchronise 

14 superstep 

15     𝐷   Ø 

16     while 𝑚  read message ≠ NIL do 

17         add(𝐷, 𝑚) 

18     end while 

19     𝑁  train(𝐷) 

20     send message 𝑁 to master  

21 synchronise 

22 superstep 

23     if self =  𝑚𝑎𝑠𝑡𝑒𝑟 

24         𝑀   Ø 

25         while 𝑚  read message ≠ NIL do 

26             add(𝑀, 𝑚) 

27         end while 

28         reduceRedundancies(𝑀) 

29         𝑄  merge(𝑀) 

30         write(𝑄) 

31     end if 

32 synchronise 

 

https://en.wikipedia.org/wiki/%C3%98_(disambiguation)
https://en.wikipedia.org/wiki/%C3%98_(disambiguation)
https://en.wikipedia.org/wiki/%C3%98_(disambiguation)
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By default, Hama divides the data file into a number of splits based on the block size and spawns 

a similar number of workers called peers. If the number of splits is low compared to the 

processing cores available with the cluster, it leads to underutilisation of resources. Even though 

Hama allows for specifying the number of BSP tasks, this value is not respected by the file 

splitter. We believe this is a bug in the platform or an implementation decision by the 

developers. To work around the above, we set the configuration bsp.max.split.size, which 

controls the split size, to appropriate lower values to generate a number of splits similar to the 

number of cores when carrying out the experiments. This allows for comparable running times 

with Hadoop and Spark. 

5.4.3 Distributed GSOM on Apache Spark 

The main disadvantage of implementations based on both Hadoop MapReduce and Hama is 

having to perform most of the redundancy reduction in a single reducer node. In this section, 

we investigate the RDD paradigm for distributed computing where its implementation Apache 

Spark has shown to outperform Hadoop MapReduce in distributed computing tasks. 

Similar to Distributed GSOM on Hadoop MapReduce, we have a two-phase algorithm for 

Distributed GSOM on Spark. In this algorithm, we have used a number of data transformation 

operations defined on RDDs such as, map, which applies a provided function for each record, 

reduceByKey, which aggregates all the records for a particular key by applying a provided 

function, collect, which creates a local list from the records and treeReduce which 

aggregates all the records. While the former two generate new RDDs, the latter two generate 

local lists of records from the input RDDs. 

Similar to job1 of the MapReduce algorithm, the first phase of the Spark algorithm is 

responsible for reading data from HDFS, parsing them and partitioning parsed records into a 

number of partitions. As outlined in Algorithm 5.6, the first phase starts by reading a file 

containing data from HDFS, which creates an RDD of lines of the file, each line containing a 

record entry. This RDD is then subjected to a map operation, which transforms the data by 
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parsing each line and returning an RDD of records. Then the resultant RDD is further subjected 

to another map operation, which assigns each of these records an integer in the range [1, P] 

where P is the desired number of partitions. The output of this operation is an RDD of key-

value pairs with the integer as the key and the record as the value. The final step of this phase 

is a reduceByKey operation to aggregate all the records assigned to a particular partition with 

an RDD of key-value pairs as its output. 

Algorithm 5.6. Data partitioning in Spark 

 Input: file 

 Output: partitions: PairRDD 

1 lines  readFile(file) 

2 records  lines.map {l → d} 

3 pairs  records.map {d → (i, d)} 

4 partitions  pairs.reduceByKey {(i, d) → (i, D)} 

 

The second phase operates on the output of the first phase, similar to job2 of the MapReduce 

algorithm. However, the major difference is that while MapReduce writes the resulting data 

from the job1 to HDFS to share them with job 2, Spark allows in-memory sharing of data 

between jobs. RDD stores the state of memory as an object across the jobs, and the object is 

shareable between those jobs. The first transformation of the second phase is a map operation, 

which trains GSOMs on each data partition in parallel, which results in a distributed RDD of 

GSOMs. 

Algorithm 5.7. GSOM training, redundancy reduction and projection in Spark 

 Input: partitions: PairRDD 

 Output: projection 

1 maps  partitions.map {(i, D) → M} 

2 neurons  maps.treeReduce {(M, M) → M} 

3 final map  merge(neurons) 
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For the next task, redundancy reduction, we have deviated from the MapReduce approach of 

having all the GSOMs in a single node and have used the treeReduce operation of Spark. We 

choose treeReduce operation over reduce operation due to the serial nature of the reduce 

operation’s implementation, which prevents it from utilising the full potential of distributed 

computation capability. The custom function provided to the treeReduce operation receives 

two GSOMs at a time and removes redundant neurons in the two maps using the redundancy 

reduction algorithm and outputs the other neurons. The function provided to the treeReduce 

operation needs to be commutative and associative. Below we outline that the redundancy 

reduction algorithm operating on two GSOMs satisfies the above two requirements. 

Denoting the redundancy reduction algorithm for two GSOMs as 𝑅𝑅(𝑃𝑖 , 𝑃𝑘) where 𝑃𝑖 and 𝑃𝑘 

are the two GSOMs, the algorithm operates as follows: for each neuron 𝑛𝑖,𝑗 of 𝑃𝑖, it checks 

whether there exists a neuron 𝑛𝑘,𝑙 of 𝑃𝑘, which gives a lower total quantisation error if one of 

them is removed and vectors mapped to it is transferred to the other. The quantisation error 

check is performed for both options of removing either 𝑛𝑖,𝑗 and 𝑛𝑘,𝑙. Hence, irrespective of 

whether the neurons in 𝑃𝑖 or neurons in 𝑃𝑘 are iterated the same neuron will be removed. This 

ensures that the redundancy reduction algorithm is commutative. 

Similarly, it can be shown that the redundancy reduction algorithm is associative. Let us 

consider three GSOMs, 𝑃𝑖, 𝑃𝑘 and 𝑃𝑚 and operations 𝑅𝑅(𝑅𝑅(𝑃𝑖, 𝑃𝑘), 𝑃𝑚) and 

𝑅𝑅(𝑃𝑖, 𝑅𝑅(𝑃𝑘 , 𝑃𝑚)). For neuron 𝑛𝑘,𝑙 of 𝑃𝑘 to make it to the final map, it needs to ensure that 

there does not exist 𝑛𝑖,𝑗 of 𝑃𝑖 or 𝑛𝑚,𝑛 of 𝑃𝑚 which gives a lower total quantisation error if 𝑛𝑘,𝑙 

is removed and vectors mapped to it is transferred to the other. This does not depend on whether 

𝑃𝑘 is redundancy reduced with 𝑃𝑘 or 𝑃𝑚 first and only depends on the fact that 𝑛𝑘,𝑙 has the best 

representation for vectors mapped to it among neurons in all three maps. Hence, only the 

neurons having the best representation for vectors mapped to it make it to the final map. This 

ensures that the redundancy reduction algorithm is associative as well. 
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The output of the treeReduce operation is a list of neurons pertaining to all the non-redundant 

neurons from multiple maps. These neurons are then merged with Sammon’s projections to 

obtain the final map. 

5.4.4 Algorithm Summary 

Table 5.2 summarises the three algorithms with respect to the steps of the Distributed GSOM 

algorithm. Here we denote the two MapReduce jobs as J1 and J2, three BSP supersteps as SS1, 

SS2 and SS3 and two RDD phases as S1 and S2. 

Table 5.2: Distributed GSOM steps in three algorithms 

Step Hadoop Hama Spark 

Data partitioning Job 1 (J1) Superstep1 (SS1) Phase 1 (S1) 

GSOM training 

Job 2 

(J2) 

Map Superstep2 (SS2) 

Phase 2 (S2) Redundancy reduction 

Combine 

Superstep3 (SS3) 
Reduce 

Merging  

 

5.5 Experiments and Results 

Experiments were carried out to compare the efficiency of the Hadoop-, Hama- and Spark-

based algorithms. Random partitioning was used as the partitioning technique for all the 

experiments. 

5.5.1 Test Environment, Configurations and Experiment Plan 

All our experiments were conducted on Amazon Elastic MapReduce (EMR) cloud platform for 

data processing and analysis. We employed 16 virtual machines, each with four 2.3 GHz 

processing cores and 16 GB of memory, in our cluster. Apache Hadoop version 2.7.3 with the 

Java version 8, Apache Hama version 0.7.1 with the Java version 8 and Apache Spark version 

2.0.2 with Scala version 2.11.6 were used for MapReduce, BSP, and RDD based 
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implementations, respectively. Further, we implemented serial versions of GSOM and SOM 

algorithms which were run on a single machine with the same hardware specification to act as 

upper bounds for Hadoop-, Hama- and Spark-based implementations. 

Total elapsed time is our primary performance measure and includes the time from job 

submission to the end of execution. This encompasses both CPU and non-CPU times such as 

file system IO and network IO times. Total elapsed time is a suitable metric since it is in fact 

what matters to the user, especially with cloud platforms charging based on the elapsed time. 

The parameters for the algorithms are selected as follows. We set the spread factor to 0.0001, 

considering the size of the datasets and employ 100 growing iterations. The number of 

partitions, P, for Hadoop- and Spark-based implementations was set to 64 to match the total 

number of virtual processing cores available with the hardware setup. Since specifying the 

number of BSP tasks did not have any effect we set the configuration bsp.max.split.size, 

which controls the split size, to appropriate lower values to generate 64 partitions. This allows 

for comparable running times with Hadoop and Spark. For all three implementations, random 

partitioning is used as the partitioning strategy. 

Our primary experiment was concerned with the speedups of the three distributed 

implementations over a serial implementation. We investigated this by comparing the elapsed 

time of the three distributed implementations on their respective platforms and the serial version 

for three datasets described in section 5.5.2. Since the parallelising mechanism is not bound to 

a particular variant of self-organizing maps, traditional SOM or any other variant of it can be 

used in place of GSOM. We also investigated the overall speedup, in terms of total elapsed 

time, when the SOM algorithm is used for the distributed processing. However, the major 

challenge of using SOM is its requirement to specify the size and the shape of the map in 

advance. For the comparison, we use square-shaped maps with the same number of neurons on 

each side. The size of the map is determined by the average number of neurons in each partition 

before the redundancy reduction phase. These values are available in Table 5.5. This generates 
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comparable maps with a similar number of neurons and facilitates the comparison of elapsed 

time between the use of SOM and GSOM for distributed processing. 

As the three distributed implementations have comparable phases, as highlighted in Table 5.2, 

we analysed the relative performance of each of these phases in different implementations in 

terms of the elapsed time.  Finally, we analysed the scaling out of the three implementations by 

varying the number of machines in the computer cluster from 1 to 16 (virtual cores from 4 to 

64).  

5.5.2 Datasets 

The performance of our three algorithms was evaluated using three real-life datasets. Datasets 

are MIRFlickr dataset (Huiskes et al., 2010), Million Songs dataset (Bertin-Mahieux et al., 

2011) and power consumption dataset (Dua & Graff, 2017). These datasets have been widely 

used to evaluate distributed algorithms (Hadgu et al., 2015; Huang et al., 2016; Kraska et al., 

2013; Sozykin & Epanchintsev, 2015). In (Kraska et al., 2013) Million Songs dataset has been 

used to demonstrate the capabilities of the MLBase, the predecessor of the Apache Spark’s own 

machine learning library, MLib. Similarly, it has been used to evaluate the distributed 

implementation of Adaptive Sub-gradient Descent (AdaGrad), a variant of Stochastic Gradient 

Descent (SGD), for large-scale machine learning tasks using Apache Spark (Hadgu et al., 

2015). A distributed implementation of Earth Mover's Distance (EMD) on Apache Hadoop, 

Hama and Spark (Huang et al., 2016) has been evaluated on both MIRFlickr and Million Songs 

datasets while MIRFlickr dataset has been used to demonstrate distributed image processing 

using Apache Hadoop (Sozykin & Epanchintsev, 2015).  

Statistics about datasets are presented in Table 5.3. 

1) MIRFlickr dataset contains features related to images extracted from Flicker social 

media platform, and the features include MPEG-7 edge histogram descriptors and 

homogeneous texture descriptors. The dataset consists of one million records of 
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images, and each record in texture descriptor feature dataset has 43 attributes. We 

denote the texture descriptors feature dataset as A. 

2) Million Songs dataset is a collection of audio features and metadata for a million 

contemporary popular music tracks. We use a subset of the dataset made available at 

the UCI machine learning repository (Dua & Graff, 2017) with timbre features 

extracted. Each record in the dataset has 90 features, 12 timbre average features, and 

78 timbre covariance features. This feature dataset is denoted as B. 

3) Power consumption dataset is a multivariate dataset with records of household electric 

power consumption data containing more than 2 million measurements gathered 

between December 2006 and November 2010. Each record consists of 9 attributes. 

After removing missing values, the dataset consists of 2,075,259 records. We denote 

this dataset as C. 

Table 5.3: Summary of datasets used in the study 

Dataset Instances Attributes 

MIRFlickr texture descriptors (A) 1,000,000 43 

Million songs (B) 515,345 90 

Power consumption (C) 2,075,259 9 

 

5.5.3 Results 

Total elapsed time in seconds for three Distributed GSOM algorithm implementations and the 

serial implementations using GSOM and SOM algorithms for three datasets are shown in Table 

5.4 and Figure 5.3. The very high elapsed time of the serial implementations and relatively low 

elapsed time of the distributed implementations highlights the need for distributed 

implementation for GSOM, and SOM in general, to be practical for large datasets. 
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Table 5.4: Total Elapsed Time in seconds 

Dataset 

Serial Hadoop Hama Spark 

GSOM SOM GSOM SOM GSOM SOM GSOM SOM 

A 75,719 78,305 1,026 1,312 806 1,103 953 1,312 

B 17,994 23,144 275 356 78 158 64 167 

C 141,561 145,103 912 974 845 829 831 856 

It can be seen that Hadoop-based implementation records highest elapsed times for all three 

datasets while there is no clear winner across all three datasets. Higher elapsed times of Hadoop 

is likely due to the high cost associated with the intermediate results sharing over HDFS. 

Moreover, it can be noticed that elapsed time for dataset B is significantly lower across three 

distributed platforms as well as on the serial implementation. The lower processing time is due 

to the lower number of neurons in both intermediate maps and the final map as can be seen in 

Table 5.5 and Table 5.6. 

Table 5.5: Average number of neurons in individual maps 

Dataset Hadoop Hama Spark 

A 480.56 478.08 476.47 

B 152.40 151.28 151.06 

C 1,107.39 1,098.56 1,050.36 

 

Figure 5.3: Total elapsed time for three Distributed GSOM implementations using GSOM and 

SOM as underlying algorithm 



Chapter 5 

 

126 

 

It can be seen that using the GSOM algorithm over the SOM algorithm for the distributed 

processing speeds up the computations. GSOM based implementations have recorded faster 

running times for all datasets for all distributed and serial implementations except for dataset C 

on Apache Hama. The faster processing times of GSOM is linked to the fact that the map is 

initialised with mere four neurons and additional neurons are added later as required. 

Given that 64 processing cores are available in our testing environment, Hadoop-, Hama-, and 

Spark-based implementations using the GSOM algorithm have achieved super-linear speedups 

of 73.80, 93.94 and 79.45 respectively on dataset A compared to the serial implementation 

using the GSOM algorithm. Similarly, high speedups are observed on dataset B with speedups 

of 65.43, 230.69 and 281.16 for Hadoop, Hama, and Spark respectively. Speedups for datasets 

C in the same order are 155.22, 167.53 and 170.35. Super-linear speedups compared to the 

serial implementation are because a processing core processes a portion of data as well as works 

only with a subset of nodes of the final map. Even though the distributed GSOM training leads 

to some redundant neurons being introduced in individual maps, the number of neurons in an 

individual map is still far less compared to the final map. 

Table 5.6: Total number of neurons after redundancy reduction 

Dataset Hadoop Hama Spark 

A 16,060 14,568 15,215 

B 1,394 1,316 1,457 

C 12,992 12,972 13,398 
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5.5.4 Performance of Different Phases 

It is interesting to analyse the cost of different phases of the three algorithms. The MapReduce-

based algorithm consists of two phases (jobs) responsible for data partitioning and running 

GSOM algorithm. Similarly, the RDD based algorithm consists of two phases corresponding 

to the same tasks. In the BSP based algorithm, the first superstep corresponds to the first phase 

of the other two algorithms while the combination of the second superstep and cleanup phase 

accounts for the second phase of the others. Hence, their comparison can unveil the strength 

(and weakness) of each platform for a particular phase. 

We present the cost of different phases of the three implementations of Distributed GSOM 

algorithm in this section. Figure 5.4 illustrates the cost of each phase of the three 

implementations on datasets A, B, and C (Note the log scale of the Y-axis). J1 and J2 

Figure 5.4: Cost of each phase in different implementations 
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correspond to the two MapReduce jobs of the Hadoop implementation. The cost of J2 

dominates the overall cost, and for dataset A and C, it is about an order of magnitude expensive 

than J1 while the dominance is less for dataset B. This is due to the inherent serial nature of 

Sammon’s projection algorithm used for merging parallel trained GSOMs. The relatively lower 

number of neurons in the final map for dataset B leads to faster Sammon’s projection. For the 

Hama BSP implementation, SS1, SS2, and Cleanup correspond to the supersteps 1, 2 and 

cleanup phases respectively. Cleanup is expensive than SS2 (about an order of magnitude for 

dataset A) while SS2 is more expensive than SS1. Similar to Hadoop, the dominance of phases 

SS2 and Cleanup over SS1 is less for dataset B. Similarly, the data partitioning phase of the 

Spark implementation, denoted as S1, is much cheaper compared to the GSOM training phase. 

Parallel GSOM training, redundant neuron removal and merging with Sammon’s projection, 

which constitutes the second phase of the Spark implementation denoted as S2. It can be seen 

that S1 is more than an order of magnitude cheaper than S2 for both datasets A and C. Overall, 

merging dominates the overall cost, highlighting the requirement of redundant neuron removal. 

The merging phases of all three algorithms dominate the total elapsed time due to the serial 

nature of Sammon’s projection being used for merging. The time complexity of Sammon’s 

projection is 𝑂(𝑛2), where 𝑛 is the number of vectors, which broadens its effect on total elapsed 

time. Due to this, we can see that the total number of neurons after redundancy reduction in 

Table 5.6 is highly correlated with the total elapsed times in Table 5.4. 

5.5.5 Effect of Scaling Out 

We experimented with the scaling out of the three algorithms by varying the number of 

machines in the cluster. The experiments were carried out using the dataset A, and the cluster 

size is varied from 1 machine to 16 machines, which in turn increased the total number of virtual 

cores in the cluster from 4 to 64. The results in terms of speedup and the total elapsed time for 

the implementations on three paradigms are presented in Table 5.7 and Figure 5.5, respectively. 
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Table 5.7: Speedups when scaling out 

Platform 
Number of Nodes 

1 4 8 12 16 

Hadoop 1.00 2.86 4.84 6.11 6.77 

Hama 1.00 3.17 5.27 6.62 7.84 

Spark 1.00 2.78 5.04 6.25 7.44 

Average 1.00 2.94 5.05 6.33 7.35 

 

It can be seen that the total elapsed time decreases as the number of machines are increased 

from 1 to 16. The Distributed GSOM achieves speedups up to 7.84 on Hama with comparable 

speedups on Hadoop and Spark. Moreover, the speedups are sub-linear for all the platforms. 

We believe that a full linear speedup is not achieved due to two reasons, the overhead inevitably 

introduced by having more workers and the linear components in the algorithms such as 

merging of trained maps. Further, it can be seen that for dataset A, Hama slightly outperforms 

both Hadoop and Spark. While both Hadoop and Spark have similar run times, Spark slightly 

outperforms Hadoop as the number of nodes is increased. 

Figure 5.5: Total elapsed time when scaling out 
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5.6 Chapter Summary 

This chapter proposed Distributed GSOM, a novel data parallelised distributed SOM algorithm 

to speed up SOM calculations. The proposed algorithm overcomes the limitations of previous 

parallelisation attempts such as the need for synchronisation operation after each iteration by 

using a single projection operation and the inferior map quality of batch SOM by using online 

SOM algorithm.  

The proposed algorithm was adapted for MapReduce, BSP and RDD paradigms and 

implemented on well-established distributed computing platforms Apache Hadoop, Hama and 

Spark respectively. We conducted a number of experiments on real-life datasets to demonstrate 

the super-linear speedup achieved by the distributed version compared to the serial counterpart. 

The previous best result is the linear speedup achieved in (Lawrence et al., 1999) with data 

partitioned batch SOM  algorithm. We compared the three implementations in terms of the total 

elapsed time and investigated the cost of each phase of the algorithms. Moreover, the scalability 

of the algorithm was demonstrated by varying the number of virtual computing cores in the 

cluster from 4 to 64. Finally, we demonstrated that using GSOM algorithm in place of 

traditional SOM for distributed processing improves the overall running time. 

With a distributed algorithm proposed for the self-organizing component of the distributed 

architecture, the next chapter presents the detail of multimodal clustering component 

implemented for distributed computing. Further, the overall distributed implementation is 

demonstrated using a case study from the physical activity monitoring domain, which suffers 

from large data volumes and multimodality. 
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Chapter 6                                                                    

A Case Study 

Chapter 4 highlighted the advantages of using distributed computing to scale and speed up 

artificial impression generation and proposed a suitable distributed computing architecture for 

impression generation mechanism. The first component of the distributed architecture, the 

Distributed SOM algorithm, was presented, adapted to multiple distributed computing 

platforms, and demonstrated on large heterogenous datasets in Chapter 5.  

This chapter addresses the second component of the distributed architecture by proposing the 

use of distributed computing for the multimodal clustering algorithm. Moreover, we evaluate 

the overall system implemented on Apache Spark with a dataset from physical activity 

monitoring domain, which suffers from large data volumes due to the high-frequent capture of 

sensor reading from body-worn sensors and multimodality due to different sensor modalities 

capturing the physical movements of the subject.  

Some of the work in this chapter has appeared in (Jayaratne et al., 2017) and (Jayaratne et al., 

2019) 
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6.1 Distributed Multimodal Clustering  

In Chapter 5, we demonstrated the advantages of distributed computing in terms of 

computational speedup for processing large datasets. The DGSOM algorithm demonstrated 

super-linear speedup while generating topographic maps on underlying data allowing us to 

reduce processing times from days to minutes. In this section, we investigate possible ways of 

using distributed computing for generating a multimodal clustering over the unimodal GSOMs. 

The speedups achieved using distributed computing for both phases facilitate artificial 

impression generation for large multimodal datasets under acceptable computational times to 

facilitate real-time applications. 

6.1.1 Apache Spark as Distributed Computing Platform 

Due to the versatile nature and the performance demonstrated with Distributed GSOM 

algorithm, in this section, we extend the use of Apache Spark for implementation of the 

multimodal clustering algorithm. Three well-established distributed computing platforms, 

namely Apache Spark, Apache Hama and Apache Hadoop, were considered for the 

implementation. As established distributed computing platforms, all three platforms considered 

provide essential functionalities such as scheduling, fault recovery, job monitoring and 

interacting with distributed file systems. Below, we outline the reasons for our choice of Apache 

Spark as the preferred distributed computing platform for the overall implementation of the 

Multimodal Clustering algorithm over the others. 

Apache Spark provides a large number of operations such as map, reduce, reduceByKey, 

collect, filter to manipulate and transform RDDs, which are Spark’s immutable, fault-

tolerant distributed dataset divided into logical partitions. These high-level operations distribute 

computation among worker nodes in the cluster under the hood with the programmer being 

provided with an easy-to-use abstraction from the low-level workings. Having to only worry 

about the logic and flow of the distributed algorithm, with Apache Spark, the programmer is 
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freed from the need to understand the nitty-gritty of the low-level distribution of computational 

tasks. 

In contrast, Apache Hama merely provides low-level distributed computing constructs such as 

barrier synchronisation and peer-to-peer communication. Even though this provides the 

freedom to the programmer to implement a variety of distributed computing operations using 

these low-level constructs, the programmer is left to implement these operations ground up. 

Moreover, system-wide functionalities such as distributed caching are non-existent, whereas 

they are provided built-in in Apache Spark and Apache Hadoop. 

Apache Hadoop, on the other hand, provides a higher-level abstraction and system-wide 

functionalities compared to Apache Hama, however, falls short of the easy-to-use operations of 

Apache Spark. With Apache Hadoop, all the distributed computation steps need to be 

transformed into the MapReduce paradigm, which could be challenging. On the other hand, the 

only way to transfer results of one MapReduce job as input to another MapReduce jobs is 

through the distributed file system which is much slower compared to in-memory data sharing 

of Apache Spark. 

The above advantages of Apache Spark over Apache Hadoop and Apache Hama led to the 

selection of it for the overall implementation of the multimodal clustering algorithm. 

6.1.2 Multimodal Distance Calculation on Apache Spark 

Multimodal distance calculation is an expensive computation step that could take advantage of 

distributed computing. As part of multimodal distance calculation, it is required to calculate the 

activation probabilities for each neuron pair belonging to different modalities in order to derive 

the probability distribution of activation for each neuron. Activation probabilities are calculated 

using activation counts, and activation counts are recorded by presenting each multimodal input 

to the trained modality specific GSOMs and recording winner neuron pairs. This provides an 

ideal situation to data parallelise the processing by distributing multimodal inputs among 

worker nodes. 
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Moreover, once the activation frequencies are calculated for each neuron pair belonging to 

different modalities, distributed computing could be used for further processing these 

intermediate results. Given that the number of possible combinations is 𝑁 =  𝑛1 × 𝑛2 × 𝑛3 … ×

𝑛𝑚 where 𝑛𝑖 = |𝐺𝑖|, the size of GSOM of 𝑖𝑡ℎ modality, 𝑁 could run into a sizable number. 

Hence, it makes sense to use distributed computing for further process these frequencies into 

calculating required probability distributions. Similarly, these intermediate results could be data 

parallelised to calculate the probability distribution of activation for each neuron. 

Algorithm 6.1 outlines the distributed multimodal distance (𝑑𝑀𝐷) calculation on Apache Spark. 

Each multimodal input, 𝑖, is presented to the trained modality-specific GSOMs using a map 

operation and winner pair, 𝑤 = (𝑤𝑥 , 𝑤𝑦),  𝑤𝑥 ∈ 𝐺𝑥, 𝑤𝑦 ∈ 𝐺𝑦, is recorded. The frequency of 

activation, 𝑛, for each pair is calculated with a mapToPair operation and a subsequent 

reduceByKey operation. To calculate the probability distribution for each neuron, we then 

subject this frequency information to a mapToPair operation and another reduceByKey 

operation. The mapToPair operation outputs the first neuron of the winner pair, 𝑤𝑥, as the key 

and a co-activation distribution (CoAD) object having co-activation frequency of the winner 

pair marked against the second neuron, 𝑤𝑦. The reduceByKey operation collects the co-

activation frequencies of different second neurons for the same first neuron by aggregating 

them into a single CoAD object. The output of these operations is a map of CoAD objects for 

each neuron with the neuron as the key of the map. The multimodal distance calculator, 𝑑, is 

provided with the GSOMs as well as the map of co-activation distributions, which are required 

to calculate 𝑑𝐸𝐷 and 𝑑𝐸𝑀𝐷 components of 𝑑𝑀𝐷 respectively. 
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Algorithm 6.1. Multimodal distance calculation on Apache Spark 

 Input: GSOM maps trained on each modality, GSOMs, multimodal input data, input 

 Returns: Multimodal distance object, 𝑑 

1 winners ← input.map {𝑖 → 𝑤} 

2 winnerCounts ← winners.mapToPair {𝑤 → (𝑤, 1)} 

3 frequencies ← winnerCounts.reduceByKey {(𝑤, 1) → (𝑤, 𝑛)} 

4 CoADs ← frequencies.mapToPair {(𝑤, 𝑛) → (𝑤𝑥 , 𝐶𝑜𝐴𝐷(𝑤𝑦, 𝑛)} 

5 CoADs ← CoDs.reduceByKey {(𝑤𝑥, 𝐶𝑜𝐴𝐷) → (𝑤𝑥 , 𝐶𝑜𝐴𝐷)} 

6 CoADs ← CoADs.collectAsMap 

7 𝑑 ← MultiModalDistance(CoADs, GSOMs) 

 

6.1.3 Multimodal Clustering Implementation on Apache Spark 

Similarly, we implement the multimodal clustering using Apache Spark. The multimodal 

clustering algorithm is responsible for creating a hyper clustering on the topological map by 

defining clusters on each neuron containing only the particular neuron, and iteratively merging 

them based on the multimodal distance,  𝑑𝑀𝐷.  

While the main iterative process of the multimodal clustering cannot be parallelised due to the 

sequential nature imposed by the cluster merging process, the intermediate calculations can 

benefit from distributed computing. For example, to minimise the cost of having to calculate 

𝑑𝑀𝐷 for all the cluster pairs in each iteration, we have utilised a caching mechanism where we 

calculate these distances upfront. Given that the number of possible cluster pairs could run into 

a sizable number, such pre-calculation benefits from distributed computing.  

The details of the Apache Spark-based implementation are outlined in Algorithm 6.2. 
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Algorithm 6.2. Multimodal clustering on Apache Spark 

 Input: GSOM maps trained on each modality, GSOMs, multimodal distance object,d 

 Returns: Multimodal clusters, C 

1 for each 𝐺𝑋 ∈ GSOMs 

2     for each neuron, 𝑥𝑖 ∈ 𝐺𝑋 

3         create cluster 𝑐𝑖 in 𝐺𝑋 containing 𝑥𝑖 

4     end for 

5 end for 

6 distanceCache ← {} 

7 for each 𝐺𝑋 ∈ GSOMs 

8     for each 𝐺𝑌 ∈ GSOMs and 𝐺𝑌 ≠ 𝐺𝑋 

9         C ← clusters in 𝐺𝑋 

10        pairC ← C.cartesian  {𝑐𝑖 →  (𝑐𝑖, 𝑐𝑗), 𝑖 ≠ 𝑗} 

11        distances ← pairC.map  {(𝑐𝑖, 𝑐𝑗) → ((𝑐𝑖, 𝑐𝑗), 𝑑𝑀𝐷)} 

12        distanceCache [𝑋, 𝑌] ← distances.sort # by 𝑑𝑀𝐷 

13     end for 

14 end for 

15 while (true) 

16     for each 𝐺𝑋 ∈ GSOMs 

17         for each 𝐺𝑌 ∈ GSOMs and 𝐺𝑌 ≠ 𝐺𝑋 

18            distances ← distanceCache [𝑋, 𝑌] 

19            for each pair ((𝑐𝑖, 𝑐𝑗), 𝑑𝑀𝐷) ∈ distances 

20                SD ← calculate self-distance for (𝑐𝑖, 𝑐𝑗) 

21                if SD > 0.5 

22                    merge (𝑐𝑖, 𝑐𝑗)  

23                    update distanceCache [𝑋, 𝑌]   

24                    break   

25                end if 

26            end for 

27         end for 

28     end for 

29     if no clusters were merged 

30         exit 

31     end if 

32 end while 
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In Algorithm 6.2, lines 1-5 are concerned with generating a hyper clustering with each neuron 

as a cluster. To minimise the cost of having to calculate 𝑑𝑀𝐷 for all the cluster pairs in each 

iteration, we have utilised a caching mechanism. Distance 𝑑𝑀𝐷 is pre-calculated for each pair 

of clusters, (𝑐𝑖 , 𝑐𝑗) in each modality, 𝐺𝑋 with respect to other modality,  𝐺𝑌. Pairs of clusters 

are obtained with the cartesian operation of Apache Spark, while a map operation is used 

for the distributed calculation of corresponding multimodal distances. Moreover, the distributed 

sort operation of Apache Spark is used to sort these multimodal distances in descending order 

to identify clusters to merge quickly.  

During the cluster merging phase (lines 15-32), each cluster pair, (𝑐𝑖, 𝑐𝑗), sorted descending by 

multimodal distance, 𝑑𝑀𝐷, is considered for merging. The cluster pair is merged if the self-

distance of the combined cluster, (𝑐𝑖, 𝑐𝑗) is less than 0.5. The self-distance of a cluster measures 

the multimodal distance, 𝑑𝑀𝐷 between points within the cluster. The value of self-distance is 

utilised to determine whether two potential clusters for merging represent the same concept or 

different concepts. Once two clusters are merged, distance cache is updated to invalidate all the 

distance values relating to the old clusters and to calculate distance values for the new combined 

cluster. Moreover, the inner loop is exited to combine closest clusters by 𝑑𝑀𝐷 which may have 

been updated due to cache updates. This iterative merging is carried out until no clusters are 

merged in the latest iteration. 

6.2 Evaluation in a Physical Activity Monitoring 

Application 

In Chapter 4, we utilised a dataset from speech recognition domain to demonstrate the 

multimodal clustering algorithm and in Chapter 5 datasets from image understanding and audio 

classification domains to demonstrate the distributed GSOM algorithm. In order to demonstrate 

the overall system, which performs distributed multimodal clustering for large datasets, we 

draw an experiment from the physical activity monitoring domain (Cornacchia et al., 2017). In 
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particular, this dataset presents the challenge of multimodality due to several modalities 

capturing the physical movements of the subjects and large data volumes due to the high-

frequent capture of sensor reading from body-worn Inertial Measurement Units (IMUs). 

6.2.1 Physical Activity Monitoring 

Physical activity is any movement in the human body produced by the contraction of muscles 

resulting in some displacement and energy expenditure (C.-C. Yang & Hsu, 2010). Monitoring 

human physical activity has been an area of interest for several research fields including 

exercise physiology (Copeland & Esliger, 2009), sports physiology (Aughey, 2011), aged care 

research (Bagalà et al., 2012), and epidemiological research (C.-C. Yang & Hsu, 2010).  Body-

worn sensors have been widely accepted as a useful and practical method to assess and measure 

physical activity among research subjects. IMUs containing a wide array of sensors have been 

used to study subjects under free-living conditions in longitudinal studies (Berlin et al., 2006; 

Ruch et al., 2011). Raw sensor data from such experiments have been used to identify and 

calculate high-level constructs such as movement classification (Ugulino et al., 2012), energy 

expenditure calculation (Van Hees et al., 2011), and fall detection (Bagalà et al., 2012). 

Moreover, with the diminishing cost of Internet of Things (IoT) devices, there has been a surge 

in interest on body-worn sensor-based devices that monitor activity levels among the public in 

general (Price et al., 2017). Many products from vendors such as Fitbit1, Garmin2 and Misfit3 

has been released to the market and gained popularity among health-conscious consumers. 

Traditionally, a variety of subjective methods such as self-reported diaries, logs, questionnaires 

and surveys have been utilised to assess the levels of physical activity for research purposes 

(Prince et al., 2008). However, data collected with such methodology is heavily dependent on 

individual observation and subjective interpretation and pose a reliability issue for the research 

dependant on them (Tudor-Locke & Myers, 2001). On the other hand, more recent research 

 
1 https://www.fitbit.com 
2 https://www.garmin.com 
3 https://misfit.com/ 
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requiring physical activity monitoring has opted-in for more objective methods such as the use 

of body-worn motion sensor such as accelerometers, magnetometers, gyroscopes and 

pedometers (Attal et al., 2015; Doherty et al., 2017; Pedišić & Bauman, 2015). 

Accelerometers measure the acceleration of the subject along reference axes and are useful in 

estimating the intensity of the human activity. Acceleration data can be used to calculate 

velocity by calculating time integrals of acceleration and displacement by calculating time 

integral of velocity. Moreover, acceleration can be used to calculate acceleration-jerk, the time 

derivative for acceleration. Gyroscopes measure the angular velocity and similarly can be used 

to calculate additional measurements such as its time derivative, angular acceleration. 

Pedometers, one of the simplest body-worn sensors, count the number of steps which can be 

used to estimate the energy expenditure and the distance walked. An IMU combines several 

such sensors and provides an easy-to-wear wearable device for physical activity monitoring. 

6.2.2 The Dataset 

We utilised PAMAP2 (Reiss & Stricker, 2012), a multimodal physical activity monitoring 

dataset to evaluate the implementation of our overall system. The PAMAP2 dataset consists of 

sensor readings captured from body-worn IMUs on nine volunteers while they are performing 

12 different activities (such as lying, sitting, standing, rope jumping and ascending stairs). The 

3 IMUs are worn on the chest, the dominant arm’s wrist and the ankle on the dominant side. 

The IMUs capture tri-axial acceleration at two scales (in ms-2), tri-axial angular speed (in rad/s) 

and tri-axial magnetometer data (in μT) at the sampling frequency of 100Hz. The dataset 

contains a total of 2,872,533 readings. The PAMAP2 dataset has been widely used to 

demonstrate various algorithms that perform multimodal sensor fusion for human activity 

recognition (Guo et al., 2016; Kasnesis et al., 2019; Münzner et al., 2017; Wang et al., 2019; Z. 

Yang et al., 2018). 

We have used the acceleration and angular speed recordings (with additional features 

engineered on them) as different modalities that capture the volunteers’ activities. While the 
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distributed multimodal sensor fusion is demonstrated here with two modalities, it is 

generalizable and can be extended to more than two modalities, effectively fusing all the 

required sensor inputs to obtain a robust multimodal representation. The dataset was pre-

processed to remove records with missing values and records related to transitioning between 

two activities. Moreover, of the two scales, acceleration captured at ±6g scale was discarded as 

the signal gets saturated during high impact activities while the acceleration captured at ±16g 

scale was retained. Further, we removed orientation data as it was indicated to be invalid for 

this data collection. The metadata of the dataset contains resting heart rate for each participant 

and based on that we calculated the average heart rate increase for each activity, as shown in 

Table 6.1.  

Table 6.1: Average heart rate increase for each activity and intensity categorisation 

Activity HR increase (bps) Intensity 

Lying 9.02 

Low 

Sitting 13.21 

Standing 22.42 

Ironing 24.34 

Vacuum cleaning 37.69 

Walking 46.46 

Moderate 

Nordic walking 58.21 

Cycling 58.85 

Descending stairs 62.94 

Ascending stairs 63.01 

Running 81.62 

High 

Rope jumping 90.16 
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We can observe that the activities include a mix of low-intensity activities such as lying, sitting, 

standing, ironing, vacuum cleaning, moderated intensity activities such as walking, Nordic 

walking, cycling and high-intensity activities such as running and rope jumping. 

Similar to (Anguita et al., 2013), we engineered additional features from the raw signal to 

improve the accuracy of classification. For the acceleration modality, we engineered the tri-

axial acceleration jerk (da/dt), and acceleration magnitude from the tri-axial acceleration 

components. Similarly, for the angular speed modality, we engineered the tri-axial angular 

acceleration and angular speed magnitude. The complete list of features for the two modalities 

is listed in Table 6.2. 

Table 6.2: Original and engineered features for the two modalities 

6.2.3 Evaluation Metrics 

Our artificial impression generation mechanism operates over the unimodal representations 

generated by the GSOM maps generating a clustering in each GSOM map. The clustering 

incorporates information from the other modalities by exploiting co-occurrence relationships 

among them. Similar to the evaluations in section 5.5.3, the primary metric used to evaluate the 

performance speedup due to distributed self-organizing calculations is the total elapsed time as 

Modality 1 Modality 2 

Acceleration – x axis (ms-2) Angular speed – x axis (rad·s-1) 

Acceleration – y axis (ms-2) Angular speed – y axis (rad·s-1) 

Acceleration – z axis (ms-2) Angular speed – z axis (rad·s-1) 

Acceleration jerk – x axis (ms-3) Angular acceleration – x axis (rad·s-2) 

Acceleration jerk – y axis (ms-3) Angular acceleration – y axis (rad·s-2) 

Acceleration jerk – z axis (ms-3) Angular acceleration – z axis (rad·s-2) 

Acceleration magnitude (ms-2) Angular speed magnitude (rad·s-1) 
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it encompasses both computation-based as well as non-computation-based times. To evaluate 

the quality of the multimodal clustering generated, we have used a number of evaluation 

metrics. Clustering quality evaluation metrics fall under two broad categories; internal and 

external. The internal metrics evaluate the clustering based on the data that were used to perform 

the clustering themselves. These measures usually reward high intra-cluster similarity and low 

inter-cluster similarity in order to generate coherent clusters. The external metrics, on the other 

hand, use class labels to evaluate the clustering generated. We note that the external metrics are 

suitable to evaluate the quality of clusters generated by multimodal clustering due to the 

following reasons. Multimodal clustering incorporates information from multiple modalities 

leading to cluster together two neurons in a given modality that are spatially apart, given the 

other modalities perceive them as similar. Conversely, two spatially close neurons might be 

clustered separately if they are perceived distant from the view of other modalities. Moreover, 

external cluster evaluation metrics measure the quality of clustering based on class labels, 

which, in fact, is the desired clustering.  

External cluster evaluation metrics F1, which is the harmonic mean between precision and 

recall, Rand measure (Rand, 1971), Dice index (Dice, 1945), cluster purity, normalised mutual 

information (NMI) and internal cluster evaluation metric Davies–Bouldin index (DB-Index) 

(Davies & Bouldin, 1979) were calculated to evaluate the quality of clustering. A lower DB-

index value represents a better clustering, and higher values represent better clustering for all 

other metrics used. 

6.2.4 Test Environment and Configurations 

The experiments were carried out on a commercial cloud computing platform employing 8 

virtual machines each having 8 computing cores each with the clock speed of 2.3GHz and 

16GBs of memory. The Spark-based algorithm is implemented using Apache Spark 2.0.0 with 

Scala 2.11.8. In order to compare the speedup of the DGSOM implementations, a serial version 

of the GSOM algorithm was implemented, and computations were carried out employing a 

single virtual machine with the same hardware specifications.  
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For the GSOM training, we employed 100 training iterations and 100 smoothing iterations with 

the parameters of the GSOM algorithm set as below. The spread factor which controls the 

spread of the map, 𝑆𝐹 = 0.01, the starting learning rate, 𝛼(0) = 0.3 and starting 

neighbourhood radius, which is used in the neighbourhood calculation, 𝑁(0) = 4. 

6.2.5 Evaluation Methods and Results 

To demonstrate the quality of clusters generated with multimodal clustering, we compare them 

with those from the k-means clustering performed over the unimodal neuronal layers. While 

the number of clusters needs not to be provided as a parameter to the multimodal clustering 

algorithm, the k-means algorithm requires this to be provided as the parameter 𝑘 beforehand. 

A common method to eliminate this requirement is to perform multiple rounds of clustering 

while varying 𝑘 from 2 to √𝑛, where 𝑛 is the number of items to be clustered and choosing 𝑘 

such that an internal metric is optimal. We utilised this mechanism to choose the optimal value 

of 𝑘 for k-means clustering while using DB-Index as the internal cluster evaluation metric. For 

the crossmodal clustering, the relative weighting factor between 𝑑𝐸𝐷 and 𝑑𝐸𝑀𝐷, 𝜆, was set at 

0.5, giving both the distance in own modality and the distance based on the second modality 

similar importance. 

Table 6.3: Performance of Spark-based DGSOM implementation compared to the serial 

implementation 

Significant speedups could be observed for Spark-based adaptation compared to the serial 

implementations, as highlighted in Table 6.3. Compared to the serial implementation, Apache 

Spark-based implementations has achieved a 73.16-fold improvement in running time. While 

the distributed implementation utilised 64 virtual computation cores, the speedup of Apache 

Spark is even greater than that. This is due to the fact that while each computation core 

GSOM implementation Total elapsed time (s) 

Serial 24,139.212 

DGSOM on Spark 329.941 
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processes 1/64 of the data, it only operates on a portion of neurons in the final map. This results 

in super-linear speedups compared to the serial implementation. 

Table 6.4: Multimodal representation performance. Evaluation of the quality of multimodal 

clustering compared to the unimodal (k-means) clustering 

Table 6.4 presents the performance of the multimodal representation using the multimodal 

clustering compared to the clustering performance of unimodal representation using k-means 

clustering. Modality 1 is the tri-axial acceleration and features derived from them while 

modality 2 is the tri-axial angular speed and their engineered features. It can be observed that 

modality 1 has benefited from the complementary information with all the external cluster 

evaluation metrics of multimodal clustering exceeding those of unimodal (k-means) clustering. 

Multimodal clustering for modality 2 has performed better in terms of Rand measure, cluster 

purity and NMI while marginally underperformed in terms of F1 and Dice index compared to 

k-means clustering. 

It can be also be observed that DB-Index is higher for multimodal clustering for both modalities 

while usually a lower value is preferred. DB-Index, an internal cluster evaluation measure, is 

defined as a function of the ratio of the intra-cluster scatter and inter-cluster separation 

favouring higher cluster cohesion and better cluster separation. Designed for a unimodal 

clustering, DB-Index is unsuitable for multimodal clustering scenario as described earlier and 

Metric 

Modality 1 Modality 1 

Multimodal Unimodal Multimodal Unimodal 

F1 22.75% 18.94% 20.04% 20.74% 

Rand measure 0.7751 0.4780 0.7930 0.5706 

Dice index 0.2275 0.1894 0.2004 0.2075 

Cluster purity 26.68% 16.25% 23. 41% 20.19% 

NMI 0.2151 0.0888 0.2096 0.2078 

DB-Index 6.6779 2.2414 6.6137 2.1907 
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included only as a reference. On the other hand, metrics F1-measure, Rand measure, Dice index, 

cluster purity and NMI are based on actual class labels and effectively measure the clustering 

improvement brought in by the crossmodal effect.   

 

Figure 6.1: Multimodal clustering for modality 1. The number of clusters automatically selected 

by the multimodal clustering algorithm. 

 

Figure 6.2: k-means algorithm based unimodal clustering for modality 1. Parameter k set to 2 

for two clusters based on optimal DB-Index value. 
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Figure 6.2 displays the k-means algorithm based unimodal clustering of the neuron in modality 

1 GSOM map. The parameter 𝑘 was set to 2 for two clusters based on the optimal value of DB-

index. Figure 6.1 displays the multimodal clustering achieved by the algorithm with seven 

clusters and the number of clusters has been selected by the stopping criteria of the iterative 

merging phase. While the algorithm has clustered spatially close neurons in modality 1 together 

most of the times, the clustering of neurons of spatially apart from each other into the same 

cluster is due to the co-occurrence influence of the second modality. Similarly, Figure 6.3 and 

Figure 6.4 displays the k-means algorithm based unimodal clustering and multimodal clustering 

for modality 2, respectively. 

 

Figure 6.3: k-means algorithm based unimodal clustering for modality 2. Parameter k set to 3 

for three clusters based on optimal DB-Index value. 

6.3 Further Application Areas 

Due to the speedups and scalability achieved using distributed computing, proposed multimodal 

clustering is well suited for application requiring real-time processing of multimodal data. The 

possible application areas span any scenario where the environment is comprehensively 

captured by multiple sensory modalities facilitating a digital environment. 
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Human gesture recognition is one such application area that can benefit from multimodal 

perceptual mechanisms. Human gesture recognition is of interest for different fields of research 

including virtual, augment and mixed reality. Devices such as Microsoft Kinect, which carry 

depth-sensors in addition to traditional 2D sensors (e.g. RGB cameras), have become affordable 

and commonplace during the last decade. These sensors allow capturing the human gestures 

more robustly under varying lighting conditions and provide a closer representation of the 

environment (Parisi et al., 2017). Proposed multimodal clustering algorithm could be applied 

for such environments facilitating modelling the environment holistically using multiple 

modalities. 

As discussed in Chapter 3, the sensor network of a city-wide traffic management system would 

consist of various types of sensors placed around the city to understand the traffic situations at 

various levels. Examples include Bluetooth sensors placed in road intersections, motion sensors 

placed near pedestrian paths, and video cameras capturing vehicles and pedestrian movement. 

Data captured across multiple modalities, multiple sources, and multiple sites at high frequency 

provides extensive coverage of the traffic situation of the city and creates a comprehensive 

Figure 6.4 Multimodal clustering for modality 2. The number of clusters automatically 

selected by the multimodal clustering algorithm. 
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digital environment. Such a digital environment would be ideal for the proposed algorithm to 

operate on and generate a holistic impression of the city-wide traffic situation.  

In (Jayaratne et al., 2018) and (Jayaratne et al., 2019), two of the publications arising from this 

thesis, we identified active perception in autonomous robotic systems as one the major 

application domain for the proposed algorithm. Active perception is a research area concerned 

with the accurate environment perception for robotic systems (including humanoid robots, 

unmanned aerial vehicle, autonomous cars) and determines their ability to successfully operate 

in the environment. The perceptions and actions of the robotic systems work in a reinforcement 

cycle where perception supports making necessary adjustments which in turn enables the more 

accurate perception of the surrounding. A large body of research under active perception is 

concerned with improving this cycle allowing improved autonomy for robotic systems (Chen 

et al., 2011; Eidenberger & Scharinger, 2010; Martinez-Hernandez et al., 2017, 2013). As 

emphasised in (Ferreira et al., 2013; Liu et al., 2017; Yongmian Zhang & Ji, 2006), active 

perception systems are complex systems characterised by 1) multimodality: multiple 

heterogeneous sensors with different degrees of reliability are used to sense the environment, 

2) efficiency: the need for shorter processing times to make decisions in real-time, 3) evolution: 

the world situation is changing over time requiring adapting/retraining the decision models.  

The fusion of different sensory modalities is key to the accurate perception in creating a holistic 

representation of the surrounding (Parisi et al., 2017).  The fusion of multiple sensor modalities 

helps with noise reduction, disambiguating any ambiguities in sensor data and incorporating 

complementary information carried by individual modalities in generating a robust impression 

about the surrounding (Atrey et al., 2010; Suk et al., 2014). For example, an autonomous 

navigational system that requires identification of known or unknown objects/entities in the 

environment would utilise sensors such as imaging sensors, acoustic sensors and proximity 

sensors. The key characteristics of a target would be provided by different sensors such as 

imaging sensors for shape and size and sonar for speed. 
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Autonomous robotic systems need to derive efficient representations of the surrounding from 

the sensory inputs for them to effectively perceive the environment (Mnih et al., 2015). The 

efficient online fusion of data from multiple sensory modalities and forming a robust impression 

about the surrounding facilitates responding promptly when dealing with real-world situations 

(Luo et al., 1988). Moreover, the time taken to adapt/retrain the decision models in response to 

changes in the environment needs to be reasonable so that the decisions are not made with 

outdated models. Training algorithms that can be parallelised to take advantage of parallel and 

distributed computing are essential to training decision models with vast training datasets. 

Further, given the challenges in obtaining labelling for high-volume and high-velocity sensory 

data, it is essential that such impression generation mechanisms use unsupervised machine 

learning techniques for it to be practically useful (Najafabadi et al., 2015). Among a large body 

of literature on multimodal perception, only a handful of research focuses on unsupervised 

machine learning and the mechanism proposed in this thesis is based on unsupervised machine 

learning for it be practical for real-life scenarios. Multimodal clustering uses natural regularities 

in patterns observed across multiple modalities and enriches each modality with information 

from other co-occurring modalities to achieve a multimodal clustering. The clusters can be used 

for online prediction and offline action planning of the robot by matching the current sensory 

inputs. The algorithm uses unsupervised machine learning, hence can be used with any 

multimodal dataset without being restricted by the labelling of the dataset. These characteristics 

make the proposed scalable impression generation algorithm suitable for perception tasks in 

autonomous robotic systems. 

6.4 Chapter Summary 

This chapter proposed the distributed implementation of the multimodal clustering algorithm, 

the final piece of the jigsaw puzzle. Implementing the distributed computing architecture for 

impression generation proposed in Chapter 4, the distributed multimodal clustering algorithm 

proposed in this chapter, along with the DGSOM algorithms proposed in Chapter 5 constitutes 
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the overall distributed implementation. The overall system implemented on Apache Spark was 

demonstrated on a physical activity monitoring application to tackle the multimodality arising 

from the use of various sensor modalities and large volumes of data resulting in frequent capture 

of sensor readings. The next chapter concludes the research endeavour documented in this 

thesis.
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Chapter 7                                                                    

Conclusion 

This thesis explored the development of multimodal perceptual mechanisms for artificial 

intelligent applications inspired by the findings of psychological, behavioural and 

neurobiological studies on human multimodal perception. This investigation was conducted 

with the objective of designing and developing an artificial impression generation mechanism 

drawing upon the organization and functionality of the human brain to facilitate artificial 

counterparts to be autonomous and proactive by forming a holistic understanding of the digital 

environment.  

With a brief introduction to the research area, Chapter 1 outlined the motivation for undertaking 

the research presented in this thesis. The main research question was formalised while 

identifying sub-research questions in neurobiology, psychology, unsupervised machine 

learning, parallel and distributed computing. A comprehensive survey of related literature in 

multiple research disciplines was presented in Chapter 2.  Chapter 3 laid out our premise on 

sensation and perception in humans while proposing an artificial model for generating artificial 

impressions on digital environments. The implementation details of the proposed artificial 

model were presented in Chapter 4, along with the empirical evaluation of the model on an 
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audio-visual dataset. Chapter 4 concluded by highlighting the necessity of generating efficient 

representations from multimodal data sources in most online application scenarios and 

presenting a distributed architecture for online multimodal sensory fusion. Chapter 5 introduced 

a distributed SOM algorithm, its adaptation to three distributed computing paradigms, 

implementation on respective platforms, and empirical evaluation of performance while 

Chapter 6 presented the detail of multimodal clustering component of the proposed architecture 

implemented for distributed computing. Moreover, the overall distributed implementation was 

demonstrated using a case study from the physical activity monitoring domain. 

Finally, this chapter concludes this thesis by discussing the answers to the research questions 

formulated in Chapter 1. The main research question addressed in this thesis is, 

Inspired by sensing and perception mechanisms in the brain, how can unsupervised 

machine learning algorithms be developed for holistic data representation and fusion 

in digital environments? 

Further, a summary of research contributions is discussed while presenting future research 

directions in this chapter. 

7.1 Summary of Research Contributions 

The overall contribution of this research is the advancement of knowledge on the development 

of multimodal perceptual mechanisms for artificial intelligent applications inspired by findings 

of psychological, behavioural and neurobiological studies on human multimodal perception. 

This allows artificial intelligent applications to be autonomous and proactive by forming a 

holistic understanding of the digital environment. 

Summaries of the research contributions presented in each chapter are outlined below. 

Chapter 2 developed a comprehensive base of literature relating to multimodal sensory 

perception, including evidence of multimodal perception, theories on perceptual binding, 

artificial models of multimodal fusion and applications of such proposed models, by 
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systematically analysing past research. With respect to the natural systems, evidence of 

multimodal sensory perception in humans were reviewed from two aspects, 1) the 

psychological evidence and models of multimodal perception, 2) neuro-biological studies of 

multimodal perception and their findings. The behavioural and psychological studies have 

demonstrated fascinating crossmodal effects between sensory modalities in the form of 

crossmodal influence, crossmodal recalibrations and medical conditions demonstrating the 

crossmodal interplay between sensory modalities. The chapter discussed various theories on 

how humans perceive the information captured from different sensory modalities as a coherent 

event/object including feature integration theory, synchronisation theory and the theories on the 

role of attention in perceptual binding. With respect to the artificial systems, we reviewed 

models implementing multimodal sensory processing categorised under 1) biologically inspired 

artificial neural network models that implement known neurophysiological characteristics, 2) 

models that view multisensory fusion as Bayesian inference. 

Chapter 3 presented a novel artificial model consisting of conceptual, architectural and 

computational components as the basis for generating artificial impressions on digital 

environments. We laid out our premise on sensation and perception in humans and discussed 

how humans construct the state of the external environment from the multimodal sensory inputs 

by forming what we called a coherent impression about the external world. This culminated 

with a theoretical contribution of the artificial model inspired by the human neocortex for 

generating artificial impression on digital environments consisting of a conceptual model, an 

architectural model as well as a computational model. 

The proposed artificial model was implemented and empirically evaluated in Chapter 4. 

Proposed multi-layered architectural model was implemented with artificial cortical areas 

modelled by the GSOM algorithm and multimodal clustering algorithm allowing for the fusion 

of modalities based on their co-occurrence relationships. The model was empirically evaluated 

with a multimodal (audio-visual) dataset measuring the accuracy gains attained by multimodal 

fusion. Further, the process of hierarchical cluster formation was analysed for a better 
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understanding of the process while the optimal parameter values for multimodal interaction 

were demonstrated. Highlighting that most of the multimodal applications are required to derive 

efficient representations from the multimodal sensory inputs to perceive the environment 

effectively, Chapter 4 concluded with a theoretical contribution: a distributed architecture for 

improving the efficiency and scalability of the multimodal fusion algorithm in order to provide 

results under acceptable computing times. 

A distributed SOM algorithm was proposed, adapted to three contemporary distributed 

computing paradigms, implemented on their respective platforms and empirically evaluated in 

Chapter 5.  The adaptations are for MapReduce, BSP and RDD paradigms while 

implementations are on Apache Hadoop, Apache Hama and Apache Spark, respectively. This 

fulfils the distributed self-organizing component of the proposed distributed architecture. The 

empirical evaluation on three benchmarks, real-life datasets from various domains (image, 

audio and power consumption) demonstrate super-linear speedup compared to the serial SOM, 

highlighting applicability irrespective of the data modality. 

Multimodal clustering algorithm was implemented to use distributed computing in Chapter 6. 

Computationally heavy multimodal distance calculation and multimodal clustering algorithm 

were adapted to use distributed computing to support the efficient online fusion of data from 

multiple sensory modalities. Moreover, the overall distributed implementation was 

demonstrated using a case study from the physical activity monitoring domain, which suffers 

from large data volumes and multimodality. 

7.2 Addressing the Research Questions 

The main research question composed of four sub research questions: questions on biological 

inspiration for multimodal data fusion, questions on development of unsupervised machine 

learning algorithms for multimodal data fusion, questions on adapting the developed algorithms 

for distributed computing to work efficiently and at scale, and validation of algorithms on real-

life datasets. 
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7.2.1 Research Questions on Biological Inspiration for Multimodal 

Data Fusion 

1. What psychological evidence of multimodal perception has been observed and what 

psychological theories have been proposed? 

There is a large body of psychological evidence of multimodal perception in humans. 

The evidence was analysed under three boards categories, 1) evidence of crossmodal 

influence, 2) evidence of crossmodal calibration, and 3) evidence from medical cases. 

Evidence of crossmodal influences includes the visual influence of proprioception and 

the visual influence on audition, which have been demonstrated with the ventriloquism 

effect (Howard & Templeton, 1966) and McGurk effect (Mcgurk & Macdonald, 1976). 

Temporary crossmodal recalibrations have been demonstrated on visual-

proprioception and visual-audition modality combinations when exposed to 

incongruent multimodal stimuli. Furthermore, several special medical conditions have 

been identified as a source of evidence for multimodal dynamics in the human brain, 

including Synaesthesia (Ramachandran & Hubbard, 2001) and Prosopagnosia (De 

Gelder et al., 2000).  

There are two major theories on how humans perceive multimodal sensory information 

as a coherent event, commonly known as the binding problem. Feature integration 

theory (Treisman & Gelade, 1980) suggests that object’s location mediates the binding 

of the features, and the attention is the “glue” that combines these features. On the other 

hand, the synchronisation theory (Engel et al., 1999; Varela, 1995) suggests that the 

neuronal activation in various parts of the brain induced by the same object are in 

synchrony and this synchronisation is the basis of binding which leads to the perception 

of these objects, opposed to individual features. 

2. What theories on the organization of the human brain to support knowledge 

representation have been put forward? 
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Domain-specific hypothesis (Caramazza & Shelton, 1998), which suggests that human 

knowledge is organized in a category-specific manner at the cognitive level, has been 

proposed based on evidence from patients who have conceptual level impairments that 

are specific to a particular category such as animals, plants, conspecifics or artefacts 

(Tyler & Moss, 2001; Capitani et al., 2003; Mahon & Caramazza, 2011). More 

recently, neuroimaging studies have re-evaluated the category-specific organization of 

the neocortex (Martin, 2007) and concluded a more intricate organization where 

different aspects of an object - such as what it looks like, how it is used, and how it 

moves - are coded in different parts of the neural circuitry and object categories such 

as animals, plants and tools have a distributed, partially distinct sensory-based coding. 

Hence, the object concepts emerge from activity in aspect-based regions of the brain. 

The aspect-based coding and category-based organization provided the inspiration for 

developing the structure/organization of the conceptual model. In our conceptual 

model, regions in the outer layer represent different modality-specific primary cortical 

areas where different aspects of an object received via different modalities are mapped. 

The innermost layer of our conceptual model consists of categories formed by the 

organization of these aspect-based coding into meaningful categories – which is 

analogous to the emergence of object concepts – using the multimodal clustering 

algorithm. 

3. What theories on the dynamics of the human brain to support multimodal perception 

have been proposed? 

The experimental evidence on the reentry mechanism suggests that it is one of the 

essential mechanisms supporting multimodal integration in the mammalian brain 

(Edelman & Gally, 2013). The neurons belonging to different layers within a cortical 

area form a dense columnar array and neurons belonging to different cortical areas are 

reciprocally interconnected by reentrant networks of excitatory axons (Markov et al., 

2014). Evidence suggests that synchronous exchanges of signals among neuronal 
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groups in dispersed cortical areas correlate with, and bind together, the multiple but 

distinguishable features of unified, conscious scenes (Edelman & Gally, 2013).  

Reentry mechanism shaped the dynamics of our artificial impression generation 

mechanism. In our conceptual model, reentry mechanism inspired the inter-modal 

associative connections which connect different regions in the outer layer onto regions 

in the inner layer. They capture the co-activation of neuron pairs in different regions, 

and these co-activation profiles are used to unearth the intricate relationships between 

co-occurring modalities. 

7.2.2 Research Questions on Development of Unsupervised Machine 

Learning Algorithms for Multimodal Data Fusion 

1. Are there any unsupervised learning algorithms that have been proposed for 

multimodal data representation and fusion; are there any limitations? 

There are several artificial neural models, both at the single neuronal level and neural 

network level, which have been proposed to model the neurophysiological mechanism 

of the cortex that is responsible for fusing multimodal stimuli. A number of noteworthy 

models, hierarchical feedforward models such as hierarchical GWR (Parisi et al., 

2017),  hierarchical GSOM (Fonseka, 2012), fusionART (Tan et al., 2007), hierarchical 

model of superior colliculus (Magosso et al., 2008; Ursino et al., 2009) and models 

with inter-area feedback proposed by Magosso et al. (2012) and Hoshino (2011), were 

analysed. However, most of these models focus only on modelling the multimodal 

dynamics of the human brain rather than on the application of the developed models to 

real-world problems, let alone the challenges posed by the vast amount of data 

generated in digital environments. Moreover, some are primarily focused on the 

supervised paradigm; multimodal fusion for unsupervised environments are still 

unresolved and an ongoing problem (Dasarathy, 2006). 

These limitations were addressed in this thesis. Multimodal representation and fusion 

mechanisms presented in this thesis rely on unsupervised algorithms for both 
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representation and fusion aspects. Moreover, it was proposed with real-world 

applications in mind and later adapted to distributed computing to support the vast 

amount of data generated in digital environments. Proposed algorithms were adapted 

to multiple contemporary distributed computing paradigms and implemented on 

respective distributed computing platforms. Further, the implementation was 

demonstrated on a real-world dataset from physical activity monitoring domain. 

2. Can the principles of self-organization be used to realise unsupervised learning for 

developing artificial cortical areas that represent information from individual 

modalities? 

Self-organization has long been viewed as a central mechanism of nature that organizes 

selected parts of a system to promote a specific function (Camazine et al., 2003). The 

self-organization-based algorithms that have been used as the basis for multimodal 

fusion models include SOM (Kohonen, 1990), GSOM (Alahakoon et al., 2000), ART 

(Grossberg, 1982, 2013), and NG (Martinetz & Schulten, 1991). In the proposed 

multisensory self-organizing neural architecture, individual topographic maps are 

trained using the GSOM algorithm and form representations of their respective 

modality. The GSOM algorithm was chosen for modelling the individual modalities 

due to the self-organizing characteristic and the dynamic structure adaptive nature of 

the algorithm. 

3. How can co-occurrence of neuronal activations across modalities be used for 

developing a multimodal fusion mechanism? 

Sensory data from different modalities, mediated by the time dimension, carry the 

information about the same underlying event or situation. Inter-modal associative links 

between modality-specific topographic maps capture the co-occurrence relationships 

between the modalities. The co-occurrence of neuronal activations is the basis of 

multimodal fusion proposed. Co-occurrence is accounted for in the multimodal 

distance metric proposed, and it is in turn used as the distance metric of the multimodal 
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clustering algorithm which organizes neurons of topographic maps into meaningful 

clusters. 

7.2.3 Research Questions on Adapting the Developed Algorithms for 

Distributed Computing for Efficiently and Scale 

1. What is an appropriate distributed architecture for improving the efficiency and 

scalability of the multimodal fusion algorithm in order to provide results under 

acceptable computing times? 

Proposed distributed architecture for improving the efficiency and scalability of the 

multimodal fusion algorithm comprises of two major modules. The first module is the 

distributed GSOM training module implementing a distributed variant of the GSOM 

algorithm for training GSOM maps of individual modalities. The second module is the 

multimodal clustering module, which performs multimodal clustering over the 

modality-specific GSOMs generated by the first module.  

2. How can self-organizing maps that are used to represent information from individual 

modalities be implemented for distributed computing paradigms, MapReduce, BSP and 

RDD? 

Proposed DGSOM algorithm uses data parallelism to train modality-specific GSOM 

maps. The algorithm consists of three major tasks for the distributed GSOM training, 

1) data partitioning 2) distributed GSOM training, and 3) merging GSOM maps. The 

workflow of the DGSOM algorithm is adapted for MapReduce, BSP and RDD 

distribute computing paradigms and implemented on well-established distributed 

computing platforms Apache Hadoop, Hama and Spark, respectively. Empirical 

evaluations using several benchmarking and real-life data sets saw all three adaptations 

achieve super-linear speedup compared to the serial GSOM implementation.  These 

speedups facilitate generating efficient representations from large multimodal data 

sources which is essential in most online application scenarios. 
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7.2.4 Research Questions on Validation of Algorithms on Real-life 

Datasets 

1. How can the improvement in multimodal representation accuracy of the proposed 

multimodal fusion algorithm be evaluated with appropriate benchmark datasets? 

Clustering quality was identified as an appropriate proxy for the quality/accuracy of 

multimodal representation generated by the multimodal fusion algorithm. More 

specifically, external cluster evaluation metrics are appropriate given they rely on class 

labels for the accuracy. External cluster evaluation measures, F1, Rand measure (Rand, 

1971), Dice index (Dice, 1945), cluster purity and NMI, were the metrics used.  

Tulips1 audio-visual dataset (Movellan, 1995) and PAMAP2 physical activity 

monitoring dataset (Reiss & Stricker, 2012) were used as the multimodal benchmark 

datasets. These experiments demonstrated the superiority of multimodal representation 

(achieved with multimodal clustering) compared to the baseline unimodal 

representation (achieved with k-means clustering) in terms of the above cluster quality 

evaluation measures.    

2. How can the efficiency gains attained by the distributed implementations be evaluated? 

Total elapsed time is the primary performance measure used as it includes the time 

from job submission to the end of execution. DGSOM implementations on Apache 

Hadoop, Hama and Spark were evaluated in terms of the elapsed time and compared 

with the elapsed time of the same process running serially. Three implementations 

achieved super-linear speedups compared to the serial GSOM algorithm using several 

benchmarking and real-life data sets. 
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7.3 Future Directions 

Further directions to the proposed impression generation mechanism include algorithmic 

improvements as well as applications.  

While the distributed GSOM algorithm was presented for supporting multimodal impression 

generation for large datasets, it is not limited to that and can be applied in applications such as 

visual analytics and segmentation tasks where traditionally a SOM/GSOM would be used. 

Currently, in the implementation of the distributed GSOM, Sammon’s projection algorithm is 

used for the merging of the individual maps. While the algorithm achieves the desired merging 

task by projecting neurons while preserving topology, the algorithm does not place neurons in 

a grid-like structure of SOM/GSOM. For applications such as visual analytics, the grid-like 

structure of SOM/GSOM is desired and one future direction would be to develop a novel 

heuristic-based merging algorithm to place neurons in grid-like structure while preserving the 

topology. A further limitation of Sammon’s projection algorithm is that it operates serially. 

Hence, another future direction would be to target the novel heuristic-based merging algorithm 

for parallel programming to generate the final merged GSOM map concurrently. This would 

improve the efficiency of the DGSOM algorithm by using distributed computing throughout all 

stages.   

While the multisensory neural architecture is generalisable to any number of modalities, it was 

implemented and demonstrated with two modalities. Multisensory neural implementation can 

be extended to more than two modalities effectively fusing all the required sensor inputs to 

obtain a robust multimodal representation. 

Autonomous robotic systems need to derive efficient representations of the surrounding from 

the sensor inputs for them to perceive the environment effectively. The efficient online fusion 

of data from multiple sensory modalities facilitates responding promptly when dealing with 

real-world situations. Multimodal perception and efficient fusion supported by distributed 

computing make the research proposed in this thesis ideal for autonomous robotics applications. 
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While the multimodal neural architecture was demonstrated on benchmark datasets, we would 

like to embed it on a robotic platform allowing efficient representations of the surrounding from 

the sensor data.
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