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Abstract 

This paper proposes static, free vibration and buckling analysis of thin-walled 

functionally graded sandwich and composite channel-section beams. It is based on the 

first-order shear deformable beam theory, which can recover to classical one by 

ignoring the shear effect. Ritz’s approximation functions are developed to solve the 

characteristic problems. Both results from classical and the first-order shear deformable 

theories are given in a unified fashion. Ritz solutions are applied for thin-walled FG 

sandwich channel-section beams for the first time. Numerical examples are presented in 

relation to many important effects such as span-to-height ratio, material parameter, lay-

ups, fiber orientation and boundary conditions on the beams’ deflections, natural 

frequencies and critical buckling loads. New results presented in this study can be of 

interests to the scientific and engineering community in the future. 
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1. Introduction 

Functionally graded (FG) and composite materials are widely used in many engineering 

fields owing to their high strength-to-weight and stiffness-to-weight ratio, long-term 

durability and non-corrosive nature. Most recent applications in civil, transportation and 

mechanical industries show the effectiveness of thin-walled FG and composite 

structures (Dechao, Zhongmin and Xingwei 2001; Librescu and Song 2005; Pawar and 

Ganguli 2006; Moon et al. 2010; Arnaud et al. 2011; Alizada, Sofiyev and Kuruoglu 

2012; Harursampath, Harish and Hodges 2017b; Xu, Zhang and Zhang 2018; Sofiyev 

2019). They also attracted a large number of researchers to study the structural 

responses, in which, vibration, bending and buckling behaviours are the importance and 

interest to the performance. 

Thin-walled beam theory was firstly introduced for isotropic material by Vlasov, which 

was also called Vlasov’s classical beam theory (Vlasov 1961). It was then extended to 

composite material by many authors and some of them were mentioned here. Bauld and 

Lih-Shyng (1984) developed Vlasov’s theory for bending and buckling analysis of thin-

walled composite beams. Kim, Shin and Kim (2006) analysed thin-walled composite 

channel and I-beams under torsion. Bending behaviours of composite I-beams were 

presented by Shin, Kim and Kim (2007). Nguyen, Kim and Lee (2016a) and Nguyen, 

Kim and Lee (2016b) predicted the deflections and vibration of thin-walled FG 

sandwich beams with channel and I-sections. Vo and Lee (2013) proposed a finite 

element method for vibration and buckling analysis of thin-walled composite I-beams 

with arbitrary lay-ups under axial loads and end moments. Kim and Lee (2015) 

developed refined theory for analysing thin-walled composite beams on elastic 

foundations. Recently, Kim and Lee (2017a) analysed bending responses of thin-walled 
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FG sandwich beams under torsion and vertical load. Zhu et al. (2016), Malekshahi, 

Hosseini and Ansari (2020) proposed theoretical estimation for vibration and post 

buckling structure with hollow sections. It can be seen that although the classical beam 

theory is simply but it ignores the shear effect, which becomes significant for the thick 

beams. Therefore, in order to account this effect, a large number of studies are 

developed to predict behaviours of thin-walled composite beams. Mao and Lin (1996) 

studied buckling and post-buckling behaviours of thin-walled composite beams with 

simply-supported boundary conditions using trigonometric series solutions and 

perturbation method. Pagani, Carrera and Ferreira (2016) investigated free vibrations of 

thin-walled beams using higher-order shear deformation theories and radial shape 

functions. Ascione, Feo and Mancusi (2000) proposed a shear deformable model to 

determine the deflections of composite channel beams. Lee (2005) analysed bending 

behaviours of thin-walled composite I-beams. Sheikh and Thomsen (2008) presented a 

new beam element to analyse thin-walled composite beams with open or closed section. 

Cortínez and Piovan (2006) analysed nonlinear buckling thin-walled composite beams 

including shear effects. Back and Will (2008) predicted the buckling loads and 

deflections of thin-walled composite I-beams. Kim and Lee (2014) proposed exact 

solution for vibration and buckling of thin-walled composite beams with open section. 

Maceri and Vairo (2009) proposed a new model for thin-walled anisotropic beams. The 

shear deformable theory was also used by Kim and Lee (2017b) to analyse thin-walled 

FG sandwich I-beams. Pavazza, Matoković and Vukasović (2020) proposed a torsion 

theory for isotropic thin-walled beams considering shear effect. Sofiyev (2014),  

Sofiyev et al. (2016a), Sofiyev et al. (2016b), and Sofiyev and Osmancelebioglu (2017) 

analysed buckling and vibration of FG cylindrical shells based on a first order shear 
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deformation theory. In these studies, authors investigated the effects of shear stress, FG 

core, sandwich shell geometry on critical loads and frequencies of shell. For 

computational approach, the finite element method (FEM) is increasingly used for 

bending and buckling analysis of thin-walled composite beams. Kollár and Pluzsik 

(2012) analysed bending and torsion behaviours of thin-walled composite beams. 

Aguiar, Moleiro and Soares (2012) developed FEM to analyse bending of composite 

beams with various cross-sections. Günay and Timarci (2017) presented static 

behaviours of thin-walled composite beams with closed-section by the classical beam 

theory. Kim and Lee (2018) proposed a nonlinear model of thin-walled FG I-beams. 

Kim and Jeon (2013) analysed static and dynamic behaviours of thin-walled composite 

channel beams by a shear deformable theory. FEM is also used to analyse bending, 

buckling and vibration of FG beam with honeycomb core (Li, Shen and Wang 2019b; Li, 

Shen and Wang 2019d; Li, Shen and Wang 2019c; Li, Shen and Wang 2019a). Later, by 

stiffness matrix method and FEM, Kim, Jeon and Lee (2013), Kim and Shin (2009), and 

Kim (Kim 2011; Kim 2012) determined the deflections of thin-walled composite beams 

with mono-symmetric I-, L- and channel section. Lanc et al. (2016) used FEM to 

analyse buckling behaviours of thin-walled FG beams. Isogeometric analysis method 

was used to deal with thin-walled composite curved beams (Cárdenas et al. 2018). 

Harursampath, Harish and Hodges (2017a) proposed the variational asymptotic method 

and used Monte-Carlo-type stochastic approach for behaviour analysis of thin-walled 

composite beams. Ritz method is simple and effective to analyse bending, buckling and 

free vibration of composite beams with rectangular cross-section (Aydogdu 2006a; 

Aydogdu 2006b; Şimşek 2009; Pradhan and Chakraverty 2013; Mantari and Canales 

2016; Nguyen et al. 2017), however, it is rarely used for thin-walled composite beams. 
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Qiao and Zou (2002) presented free vibration of fiber-reinforced plastic composite 

cantilever I-beams using the Ritz method with transcendental and polynomial shape 

functions satisfying the boundary conditions. Nguyen et al. (2019) developed the Ritz 

method for vibration and buckling of thin-walled composite I-beams. From literature 

review, Ritz method has not been previously used to analyse vibration, bending and 

buckling behaviours of thin-walled composite channel beams. Due to asymmetric 

geometric and material anisotropic of composite channel section, shear center and 

centroid are not coincided. This causes coupling responses from axial, bending, lateral, 

torsional and warping behaviours thus their structural responses are is very complex. 

Besides, it can be seen that the effect of shear deformation on the structural responses of 

thin-walled FG sandwich channel-section beams has not been available yet. Therefore, 

there is a need for further studies related to these complicated problems. 

This paper, which is extended from previous study (Nguyen et al. 2019), focuses on 

bending, vibration and buckling analysis of thin-walled FG sandwich and composite 

channel beams. It is based on the first-order shear deformation theory, which can 

recover to classical one by ignoring the shear effect. Lagrange’s equations are employed 

to formulate the governing equations to describe the structural responses of beams and 

Ritz method is used to solve the problems. Numerical examples are performed to verify 

accuracy and efficiency of the present solutions. Many significant effects such as span-

to-height ratio, material parameter, lay-ups, fiber orientation, boundary conditions on 

the beams’ deflection, frequency and critical buckling load are investigated. 

2. Theoretical formulation 

In this section, a displacement field and constitutive equations of thin-wall FG sandwich 

and composite beams are established. Next, their strain energy, work done by external 
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forces and total potential energy are determined, and finally the Ritz method is proposed 

to solve structural responses of such beams with various boundary conditions.  

In order to develop displacement field of thin-walled beams, local coordinate system 

( , ,n s z ), Cartesian coordinate system ( , ,x y z ) and contour coordinate S along the 

profile of the section are used as shown in Fig. 1 (Lee 2001). The P is called the shear 

center and the axis, which is through P and parallel to the axis z, is called the pole axis. 

θ  is an angle of orientation between ( , ,n s z ) and ( , ,x y z ) coordinate systems. r and q 

are coordinates of any point on the contour measured from P in ( , ,n s z ) coordinate 

system. The basic assumptions are (a) the contour of section does not deform in its own 

plane; (b) shear strains 0 0,xz yzγ γ  and warping shear 0
ϖγ  are uniform over the section; (c) 

Poisson’s coefficient is constant. 

2.1. Kinematics 

The displacements ( , ,u v w ) at any point in the contour are expressed through the mid-

surface displacements ( ,  , u v w ) and the rotations of transverse normal about s and z 

( , )s zψ ψ  as followings (Lee 2005; Vo and Lee 2009; Nguyen et al. 2019):  

 ( ) ( ), , , , ,u n s z t u s z t=  (1a) 

 ( ) ( ) ( ), , , , , , ,sv n s z t v s z t n s z tψ= +  (1b) 

 ( ) ( ) ( ), , , , , , ,zw n s z t w s z t n s z tψ= +  (1c) 

The mid-surface displacements ( ,  , u v w ) and rotations of transverse normal about s 

and z ( , )s zψ ψ  are related to displacements of P in x-, y- and z- directions ( , , )U V W  

and rotations of the cross-section with respect to ,x y , ϖ  and pole axis 

( , , , )x y ϖψ ψ ψ φ  as (Lee 2005; Vo and Lee 2009; Kim and Lee 2017b; Nguyen et al. 

2019): 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , sin , cos ,u s z t U z t s V z t s z t q sθ θ φ= − −  (2a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , cos , sin ,v s z t U z t s V z t s z t r sθ θ φ= + +  (2b) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,y xw s z t W z t z t x s z t y s z t sϖψ ψ ψ ϖ= + + +  (2c) 

 sin cos= − −z y x qϖψ ψ θ ψ θ ψ  (2d) 

 ( ),s

u
s z

s
ψ ∂= −

∂
 (2e) 

where  

 0 '= −y xz Uψ γ   (3a) 

 0 '= −x yz Vψ γ  (3b) 

 0 '= −ϖ ϖψ γ φ  (3c) 

and the prime designates the derivative with respect to z ; ϖ  is warping function 

given by: 

 ( ) ( )
0

= 
s

s

s r s dsϖ  (4) 

The non-zero strains of thin-walled beams are defined as (Lee 2005): 

( ) ( ) ( ) ( ) ( ) ( )0, , , , , , , sin cosz z z z y xn s z t s z t n s z t x n y n nq ϖε ε κ ε θ κ θ κ ϖ κ= + = + + + − + −  (5a) 

 ( ) ( ) ( ) 0 0 0, , , , , , , cos sinsz sz sz xz yz szn s z t s z t n s z t r nϖγ γ κ γ θ γ θ γ κ= + = + + +  (5b) 

 ( ) ( ) ( ) 0 0 0, , , , , , , sin cosnz nz nz xz yzn s z t s z t n s z t qϖγ γ κ γ θ γ θ γ= + = − −  (5c) 

where  

 0∂= = + + +
∂z z y x

w
x y

z
ϖε ε κ κ ϖκ  (6a) 

  sin cos
∂= = − −
∂

z
z y x q

z
ϖ

ψκ κ θ κ θ κ  (6b) 

 =sz szκ κ  (6c) 
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  0=nzκ  (6d) 

 0 '=z Wε  (6e) 

 '=x xκ ψ  (6f) 

 '=y yκ ψ  (6g) 

 '=ϖ ϖκ ψ  (6h) 

 '= −sz ϖκ φ ψ  (6i) 

It can be seen that 0
zε , xκ , y

κ , ϖκ  and szκ  are axial strain, biaxial curvatures in the 

x- and y- directions, warping cuvature with respect to the shear center and twisting 

cuvature in the beam, respectively.  

2.2. Constitutive equations  

2.2.1. Thin-walled FG sandwich beams 

Young’s modulus (E) and mass density ( )ρ  of thin-walled FG beams is expressed 

through the volume fraction of ceramic ( )cV , Young’s modulus and mass density of 

ceramic and metal ( , , , )c m c mE E ρ ρ : 

 ( )1c c m cE E V E V= + −   (7a) 

 ( )1c c m cV Vρ ρ ρ= + −   (7b) 

Three types of material distributions are considered as follows (Fig. 2): 

Type A:  

 
1

2

p

c

n
V

h

 = +  
, 0.5 0.5h n h− ≤ ≤   (8) 

where h ( )1 2 3, ,h h h  is the thickness of the flanges or web and p is material parameter.  

Type B:  
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 ( )
0.5

0.5 1

p

c

n h
V

hα
 − +

=  −  
, 0.5 0.5h n hα− ≤ ≤ −  or 0.5 0.5h n hα ≤ ≤   (9a) 

 1=cV , 0.5 0.5h n hα α− ≤ ≤   (9b) 

where α ( )1 2 3, ,α α α  is thickness ratio of ceramic material of the flanges or web.  

Type C: 

 ( )
0.5

1

 +=  −  

p

c

n h
V

hα
, ( )0.5 0.5− ≤ ≤ −h n hα   (10a) 

 1=cV , ( )0.5 0.5− ≤ ≤h n hα   (10b) 

The stress and strain relations can be written as:  

 

*
11

*
66

*
55

0 0

0 0

0 0

    
    =    
    

    

z z

sz sz

nz nz

Q

Q

Q

σ ε
σ γ
σ γ

 (11) 

where   ( )*
11Q E n= , 

( )
( )

* *
66 55

2 1

E n
Q Q

ν
= =

+
  (12) 

and ν  is Poisson’s coefficient.  

2.2.1 Thin-walled composite beams 

The stress and strain relations at the th
k -layer in ( , ,n s z ) coordinate systems can be 

determined as: 

 

( ) ( )* *
11 16

* *
16 66

*
55

0

0

0 0

    
    =    
    

    

k k

z z

sz sz

nz nz

Q Q

Q Q

Q

σ ε
σ γ
σ γ

 (13) 

where: 
2

* 12
11 11

22

= − Q
Q Q

Q
, * 12 26

16 16

22

= − Q Q
Q Q

Q
, 

2
* 26
66 66

22

= − Q
Q Q

Q
, *

55 55=Q Q   (14) 

In Eq. (14), ijQ  are the transformed reduced stiffnesses (Reddy 2003). 

2.3. Variational formulation  



  10

The strain energy ΠE  of the system is defined by: 

 ( )1

2 Ω
Π = + + Ω

s

E z z sz sz nz nzk dσ ε σ γ σ γ   (15) 

where Ω  is volume and s
k is shear correction factor, which is assumed to be a unity 

in previous study (Nguyen et al. 2019). Substituting Eqs. (5a), (5b), (5c), (11) and (13) 

into Eq. (15) leads to: 

( )

( ) ( )
( )

'2 ' ' ' ' ' '
11 16 17 15 18

0

' ' ' ' ' ' ' '
12 16 13 17 14

' '2 ' ' ' ' ' '
18 15 66 67 56 68 26

' ' ' ' ' ' '
66 36 67 46 68 56

1
2 2 2

2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

Π = + + + +

+ + + + +

+ − + + + + +

+ + + + + − +


L

E

y y x x

y

y x x

E W E W U E W V E E W

E W E W E W E W E W

E E W E U E U V E E U E U

E U E U E U E U E E U E

ϖ

ϖ

ϖ ϖ

φ

ψ ψ ψ ψ ψ

ψ φ ψ

ψ ψ ψ ψ ψ

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

'2
77

' ' ' ' ' ' ' ' ' '
57 78 27 67 37 77 47

' '2 ' ' '
78 57 55 58 88 25 28 56 68

' ' ' ' ' '
35 38 57 78 45 48 88 55

'2 '
22 26 66

2 2 2 2 2 2

2 2 2 2

2 2 2 2

2

+ + + + + + +

+ − + + + + + + +

+ + + + + + + −

+ + +

y y x x

y y

x x

y y y y

V

E E V E V E V E V E V E V

E E V E E E E E E E

E E E E E E E E

E E E

ϖ

ϖ

ϖ ϖ

φ ψ ψ ψ ψ ψ

ψ φ φψ φψ

φψ φψ φψ φψ

ψ ψ ψ ψ

( ) ( )
( )

( ) ( ) ( )

2 ' ' ' '
23 27 36 67

' ' ' ' '2
24 28 25 46 68 56 33

' 2 ' ' ' '
37 77 34 38 35 47

'2 ' 2
78 57 44 48 45 88 58 55

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2

+ + + +

+ + − + + − +

+ + + + − +

+ − + + − + − +

y x y x y x y x

y y y y x

x x x x x x

x

E E E E

E E E E E E E

E E E E E E

E E E E E E E E

ϖ ϖ ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ ϖ ϖ

ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ  dz

 (16) 

where L  is length of beam and 
ijE are the stiffness coefficients of thin-walled FG and 

composite beam, which depend on the geometry and material distributions in cross-

section (see (Lee 2005) for more details).  

The work done ΠW
 of the system by uniform load 

y
q  and concentrated load 

y
P  

applied at 
L

z  and axial load 0N  can be expressed as (Lee 2005; Back and Will 2008):  

 ( ) '2 '2 ' ' ' ' '2
0

0 0

1
2 2

2

L L

P
W y y L p p

I
q Vdz P V z N U V y U x V dz

A
φ φ φ Π = + + + + − + 

 
   (17) 

The kinetic energy ΠK  of the system is given by: 
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( ) ( )

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2 2 2

2 2
0 0 0

0

2 2 2
0 0 2 2 2

2
y2 2

1

2

1
2 2 2 2

2

2 2 2

2 2 2

2

K

L

s y c x q c P

s p p r x xs s y

xycs cs y x x x qs qs y yc c x

y y qc

n u v w d

m W m W m W m m W m U m m y U

m V m m x V m m m m m m

m m m m m m m m

m m

ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ

ρ

ψ ψ ψ φ

φ φ ψ

ψ ψ ψ ψ ψ

Ω
Π = + + Ω

= + − + − + + +

+ + − + + + + + +

+ − + + − + − +

+ − +





ɺ ɺ ɺ

ɺɺ ɺ ɺ ɺ ɺ ɺɺ ɺ ɺ

ɺ ɺɺ ɺ ɺ

ɺ ɺ ɺ ɺ ɺ

( ) ( ) 2
2 22qc x q qm m m m dzϖ ϖ ϖ ϖψ ψ ψ + − + 

ɺ ɺ ɺ

 (18) 

where dot-superscript denotes the differentiation with respect to the time t , and the 

inertia coefficients are defined in Vo and Lee (2009). 

The total potential energy of the system is obtained by: 

 
E K W

Π = Π − Π − Π   (19) 

2.4. Ritz solutions  

The displacement fields of the thin-walled composite beams are approximated by using 

Ritz’s approximation functions: 

 '

1

( , ) ( )
m

i t

j j

j

W z t z W e
ωϕ

=

=   (20a) 

 
1

( , ) ( )
m

i t

j j

j

U z t z U e
ωϕ

=

=  (20b) 

 
1

( , ) ( )
m

i t

j j

j

V z t z V e
ωϕ

=

=  (20c) 

 
1

( , ) ( )
m

i t

j j

j

z t z e
ωφ ϕ φ

=

=  (20d) 

 '

1

( , ) ( )
m

i t

y j yj

j

z t z e
ωψ ϕ ψ

=

=   (20e) 
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 '

1

( , ) ( )
m

i t

x j xj

j

z t z e
ωψ ϕ ψ

=

=   (20f) 

 '

1

( , ) ( )
m

i t

j j

j

z t z e
ω

ϖ ϖψ ϕ ψ
=

=   (20g) 

where 2 1i = −  is the imaginary unit; ω  is the frequency; jW , jU , jV , jφ , yjψ , xjψ  

and 
jϖψ  are Ritz’s parameters, which need to be determined and ( )j zϕ  are Ritz’s 

approximation functions which depend on boundary conditions (BCs) as seen in Table 1. 

Four typical BCs as simply-supported (S-S), clamped-free (C-F), clamped-simply 

supported (C-S) and clamped-clamped (C-C) are considered. 

By substituting Eq. (20) into Eq. (19), Lagrange’s equations are used to formulate the 

governing equations: 

 0
j j

d

p dt p

∂Π ∂Π− =
∂ ∂ ɺ

  (21) 

with 
j

p  representing the values of ( ), , , , , ,
j j j j yj xj j

W U V ϖφ ψ ψ ψ .  

Bending, vibration and buckling behaviours of the thin-walled beams can be obtained 

by solving the following equation, which presents relations of stiffness matrix K , mass 

matrix M, displacement and force vetor F: 
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11 12 13 14 15 16 17

12 22 23 24 25 26 27

13 23 33 34 35 36 37

14 24 34 44 45 46 47

15 25 35 45 55 56 57

16 26 36 46 56 66 67

17 27 37 47 57 67 77

11

2

T

T T

T T T

T T T T

T T T T T

T T T T T T

ω

 
 
 
 
 
 
 
 
 
 
 

−

K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

K K K K K K K

M 0 0 0 M
15 16 17

22 24

33 34

24 34 44

15 55 56 57

16 56 66 67

17 57 67 77

y

x

T T

T

T T

T T T

ϖ

 
 
 
 
 
 

  
  
  
  
   
                        

  
  
  
   

  

w

u

v

Φ
M M

ψ
0 M 0 M 0 0 0

ψ
0 0 M M 0 0 0

ψ
0 M M M 0 0 0

M 0 0 0 M M M

M 0 0 0 M M M

M 0 0 0 M M M

 
 
 
 
 =  
 
 
 
 
 

0

0

F

0

0

0

0

 (22) 

The explicit forms of stiffness matrix K, mass matrix M and force vector F are given in 

Appendix A. 

In case of ignoring the shear effect as the classical beam theory, Eqs. (3a)-(3c) 

degenerate to '= −y Uψ , '= −x Vψ , '= −ϖψ φ  and only four unknown variables 

( ), , ,W U V φ  are available. Thus, the bending, vibration and buckling behaviours of the 

thin-walled beams in this case can be reduced: 

11 12 13 14 11

12 22 23 24 22 24
2

13 23 33 34 33 34

14 24 34 44 24 34 44

NS NS NS NS NS

T

NS NS NS NS NS NS

T T

NS NS NS NS NS NS

T T T T T

NS NS NS NS NS NS NS

ω

      
      

     − =                      

wK K K K M 0 0 0

uK K K K 0 M 0 M

vK K K K 0 0 M M

ΦK K K K 0 M M M

NS

 
 
 
 
 
  

0

0

F

0

(23) 

The coefficients of the stiffness matrix 
NS K , mass matrix 

NS M   and force vector 

NS F  are given in Appendix B. 

3. Numerical results 

In this section, numerical examples are carried out to show the accuracy of the present 

solutions and then investigate bending, vibration and buckling behaviours of thin-walled 
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FG sandwich and composite channel beams. The shear effect is defined as 

/ 100%S NS SR R R− × ; where 
NSR  and 

SR  denote the results from classical and shear 

deformable theory, respectively. Unless other states, the material and geometry 

properties used in this section are given as follows: 

For FG sandwich channel beams (Fig. 2):  

 Bending and buckling analysis: 320.7cE GPa= , 105.69mE GPa= , 0.3ν = , 

1 2 3 0.2h h h h cm= = = = , 1 2 20b b h= = , 3 40b h= .  

 Free vibration analysis: 380cE GPa= , 33960 /c kg mρ = , 70mE GPa= , 

32702 /m kg mρ = , 0.3ν = , 1 2 3 0.5h h h h cm= = = = , 1 2 20b b h= = , 3 40b h= . 

For composite channel beams (Fig. 3): 1 53.78E GPa= , 2 3 17.93E E GPa= = , 

12 13 8.96G G GPa= =  , 23 3.45G GPa= , 12 13 0.25ν ν= = , 31968.9 /kg mρ = , 

1 2 3 0.208h h h h cm= = = = , 1 2 2.5b b cm= = , 3 5b cm= .    

3.1. Convergence study  

In order to study convergence of the present solutions, FG sandwich C1-beams ( 10p =  

and 3/ 20L b = ) and composite channel C4-beams, whose lay-ups in the flanges and 

web are [ ]
4

30 / 30
s

−  and 3/ 20L b = ) subject to a vertical concentrated load ( 1yP kN= ) 

acting at mid-span with the various BCs are considered. Their mid-span deflections, 

critical buckling loads and fundamental frequencies are shown in Tables 2 and 3 with 

various series number m . For all BCs, it can be found that the present solutions 

converge at 12m =  for deflections, and 10m =  for critical buckling loads and 

frequencies. These numbers of series terms will be used in the next sections.  

3.2. FG sandwich channel beams 
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3.2.1. Verification 

For bending problem, FG sandwich channel cantilever beams 3( / 50)L b =  with C1-, 

C2- and C3-sections are considered. The thickness ratio of ceramic material are taken as 

1 2 3( 0.4)α α α= = =  for C2-section, and 1 2 3( 0.9, 0.1)α α α= = =  for C3-section. In 

order to compare with the results of Nguyen, Kim and Lee (2016a), which used classical 

beam theory, non-dimensional vertical displacement is used as 
3
3

3
c

y

E hb
V V

P L
= . 

Maximum deflections of beams under a vertical load ( )yP  acting at free end are shown 

in Fig. 4. The present results are an excellent agreement with those of Nguyen, Kim and 

Lee (2016a) for all sections. It is noted that there is not much discrepancy between 

results of shear and no shear models due to their slenderness 3( / 50)L b = . 

In order to verify further, FG sandwich C1-beams ( 1 2 3 0.5h h h h cm= = = = , 

1 2 20b b h= = , 3 40b h= ) with 3/ 12.5L b =  for buckling and 3/ 40L b =  for free 

vibration are considered. Non-dimensional frequency is defined as 
2

3

m

m

L

b E

ρωω = . 

Their results are given in Tables 4 and 5, and compared with those from Lanc et al. 

(2016) and Nguyen, Kim and Lee (2016b), which based on classical beam theory. It is 

seen that the present results are good agreement with those of previous studies. 

3.2.2 Parameter study 

3.2.2.1 Bending analysis: 

FG sandwich channel beams under a uniform load ( yq  = 0.5 kN/m) for various BCs, 

3/L b  and p  are considered to study span-to-height ratio 3( / )L b  and material 

parameter ( )p . Tables 6-8 show their mid-span deflections with C1-, C2-sections 
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1 2 3( 0.4)α α α= = =  and C3-section 1 2 3( 0.9 and 0.1)α α α= = = . It can be seen that 

they are the largest for C-F and smallest for C-C beams, as expected. Besides, they 

increase as p  increases for all configurations.  

The shear effect on the deflections with respect to 3/L b  ( 10)p = , and with respect to 

p  (L/b3 = 10) are shown Fig. 5 and 6 for C2- and C3-sections. As 3/L b  increases, this 

effect decreases and has the highest value for C-C beams and the lowest one for C-F 

beams. For C2-section, it does not depend on material parameter for all BCs (Fig. 5b), 

which can be explained partly by the constant ratio 33 77/E E  in Fig. 7. However, for 

C3-section, it strongly increases from 0 5p≤ ≤  after that, increases slowly from 

5 40p≤ ≤ as shown in Fig. 6b and again can be justified by ratio 33 77( / )E E .  

Next, FG sandwich channel C3-beams under uniform load (L/b3 = 10, p = 2 and yq  = 

10 kN/m) are used to study the shear effect with respect to variation of ceramic’s 

thickness ratio in the flanges and web in Fig. 8. This effect increases as ceramic’s 

thickness ratio in the top and bottom flanges increases, whilst it decreases as ceramic’s 

thickness ratio in the web increases.  

3.2.2.2 Vibration and buckling analysis 

To investigate shear effect on the critical buckling load and natural frequencies, FG 

sandwich channel C2-beams ( 1 2 3 0.5h h h h cm= = = = , 1 2 3 20b b b h= = = ) are 

considered. Variations of shear effect with respect to 3/L b , ceramic’s thickness ratio in 

flanges 1 2( , )α α , web 3( )α  and material parameter (p) are showed in Figs. 9 and 10. 

It can be observed that this effect decreases as ceramic’s thickness ratio in flanges 

increases; increase as ceramic’s thickness ratio in web increase, and hardly depend on p. 

It is significant for higher buckling and vibration modes as shown in Fig. 11. 
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3.3. Thin-walled composite channel beams 

3.3.1. Verification 

For bending problem, a cantilever composite channel C4-beam ( 3/ 20)L b =  under a 

vertical load ( 1 )yP kN=  acting at free end is analysed. This beam is made by 16 layers 

of symmetric angle-ply lay-ups in the flanges and web. Maximum deflections are given 

in Table 9 for both shear and no shear case, and compared with results of Kim, Jeon and 

Lee (2013). Again, the current results are coincided with those from previous research.  

For vibration and buckling problems, composite cantilever C4-beams 

( 1 2 3 0.208h h h h cm= = = = , 1 2 2.0b b cm= = , 3 5b cm=  and 3/ 20L b = ) are 

considered. Their results are given in Tables 10 and 11 , and compared with Kim and 

Lee (2014). It can be seen that there are absolutely coincided between the present results 

and those of Kim and Lee (2014). 

3.3.2 Parameter study 

3.3.2.1. Bending analysis 

Table 12 presents the mid-span deflections of C4-section beams subjected to a uniform 

load ( 0.1 / )yq kN m=  for various 3( / )L b . Fig. 12 shows the shear effect on the 

deflection of beams with lay-up 4[45 / 45] S−  for various BCs. It can be found that the 

deflections increase as 3( / )L b  and fiber orientation increases. 

In order to further examine the shear effect with respect to the fiber orientation, Fig. 13 

illustrates the results for C-C composite channel beams 3( / 10, 0.1 / )yL b q kN m= =  

with C5- and C6- sections. The C5-section has the web considered as unidirectional, 

and the top and bottom flanges assumed to be angle-ply laminates [ / ]θ θ− , while the 

C6-section has the top and bottom flanges considered as unidirectional, and the web 
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assumed to be angle-ply laminates [ / ]θ θ−  as shown in Fig. 3. It is clear that the shear 

effect depends on fiber orientation, and it is stronger for C6-section than C5-section. It 

is interesting that for C5-section, this effect is minimum at fiber angle 60θ =  whereas 

for C6-section, it is minimum at 40θ = . This phenomenon is explained in Fig. 14, 

where 33 77( / )E E  ratio is plotted with respect to fiber orientation. 

3.3.2. Vibration and buckling analysis 

To investigate shear effect on the critical buckling loads and natural frequencies, 

composite channel C4-beams ( 1 2 3 0.208h h h h cm= = = = , 1 2 3 20b b b h= = = ) are 

considered. Variation of shear effect on critical buckling load and frequency of beams 

( 4[45 / 45] S−  in flanges and web) respect to 3/L b  is plotted in Fig. 15. This effect also 

depends on fiber angle as shown in Fig. 16. It is more pronounced for higher buckling 

and vibration modes (Fig. 17). 

4. Conclusions 

Based on the first-order shear deformation theory, bending, vibration and buckling 

analysis of thin-walled FG sandwich and composite channel beams is studied. 

Lagrange’s equations are used to formulate the governing equations. Ritz method is 

developed to obtain the deflections, natural frequencies and buckling loads of thin-

walled FG sandwich and composite channel beams. Both results from classical and 

first-order shear deformation beam theories are derived in a unified fashion. Numerical 

results are obtained and compared with those available in the literature. Some new 

results are displayed as benchmark values in the future. The results indicate that the 

present study is efficient and accurate to analyse the structural responses of FG 

sandwich and composite channel beams. 
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Figure 1. Thin-walled coordinate systems. 
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Figure 4. Maximum non-dimensional deflections of FG sandwich cantilever beams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  35

 

 
a. 1 2 3 0.4α α α= = =  and p = 10 

  
b. 1 2 3 0.4α α α= = =  and 3/ 10L b =  

Figure 5. Shear effect on the deflections of FG sandwich C2-beams with respect to 

3/L b  and p for various BCs. 
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a. 1 2 0.9α α= = , 3 0.1α =  and p = 10 

 

 
b. 1 2 0.9α α= = , 3 0.1α =  and 3/ 10L b =  

Figure 6. Shear effect on the deflections of FG sandwich C3-beams with respect to 

3/L b  and p for various BCs. 
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Figure 8. Shear effect on the deflections of FG sandwich C3-beams ( 3/ 10L b = ) with 

respect to ceramic’s thickness ratio of top and bottom flanges 3 1 2( 0.1, )α α α= =  and 

ceramic’s thickness ratio of web 1 2 3( 0.9, )α α α= = . 
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Figure 9. Shear effect on the critical buckling load and fundamental frequency of FG 
sandwich beams (C2-section, 1 2 3 0.4α α α= = =  and p = 2) with respect to L/b3 for 

various BCs. 
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Figure 10. Shear effect on the critical buckling load and fundamental frequency of FG 

sandwich C-C C2-beams ( 3/ 5L b = ) with respect to ceramic’s thickness ratio or 

material parameter. 
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a. Buckling loads 

 
b. Natural frequency 

Figure 11. Shear effect on first three buckling load and natural frequencies of FG 
sandwich C-C C2-beams ( 1 2 0.4α α= = , p = 2 and 3/ 5L b = ) with respect to ceramic’s 

thickness ratio of web. 
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Figure 12. Shear effect on the deflections of composite C4-beams with [ ]

4
45 / 45

S
− in 

flanges and web with respect to 3/L b  for various BCs. 
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Figure 13. Shear effect on the deflections of composite C-C beams with C5- and  

C6- sections with respect to fiber orientation. 
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Figure 14 33 77/E E  ratio of composite channel beams for C5- and C6-section with 

respect to fiber orientation. 
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Figure 15. Shear effect on the critical buckling load and fundamental frequency of 

composite C4-beams ([ ]
4

45 / 45
S

− in flanges and web) with respect to 3/L b  for  

various BCs. 
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Figure 16. Shear effect on the critical buckling load of composite C4-beams ( 3/ 5L b = ) 

with respect to fiber orientation in flanges and web for various BCs.  
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Figure 17. Shear effect on first three buckling loads and natural frequencies modes of 

composite C-C C4-beams ([ ]
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−  in flanges) with respect to fiber orientation in 

web. 
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Table 1. Shape functions and essential BCs of thin-walled channel beams. 
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Table 2. Convergence studies of thin-walled FG sandwich channel beams.  

BCs Model m=2 4 6 8 10 12 14 

1. Mid-span deflections (mm)  

S-S 
Shear 1.907 2.005 2.026 2.029 2.031 2.032 2.033 

No shear 1.875 1.971 1.990 1.993 1.994 1.995 1.996 

C-F 
Shear 3.876 4.032 4.060 4.063 4.066 4.067 4.068 

No shear 3.813 3.963 3.986 3.989 3.990 3.991 3.991 

C-S 
Shear 0.802 0.896 0.905 0.908 0.909 0.910 0.910 

No shear 0.770 0.863 0.869 0.872 0.872 0.873 0.873 

C-C 
Shear 0.519 0.527 0.532 0.534 0.534 0.536 0.536 

No shear 0.487 0.494 0.497 0.498 0.498 0.499 0.499 

2. Critical buckling loads (kN)  

S-S 
Shear 26.316 25.719 25.538 25.535 25.535 25.535 25.535 

No shear 26.346 25.751 25.570 25.568 25.568 25.568 25.568 

C-F 
Shear 6.756 6.392 6.392 6.392 6.392 6.392 6.392 

No shear 6.759 6.395 6.395 6.395 6.395 6.395 6.395 

C-S 
Shear 45.352 42.303 42.245 42.245 42.245 42.245 42.245 

No shear 45.597 42.539 42.481 42.481 42.481 42.481 42.481 

C-C 
Shear 72.139 71.474 71.357 71.357 71.357 71.357 71.357 

No shear 72.510 71.841 71.723 71.723 71.723 71.723 71.723 

3. The fundamental frequencies (Hz)  

S-S 
Shear 18.880 18.633 18.564 18.563 18.563 18.563 18.563 

No shear 18.896 18.650 18.580 18.579 18.579 18.579 18.579 

C-F 
Shear 6.713 6.623 6.618 6.617 6.617 6.617 6.617 

No shear 6.716 6.626 6.621 6.621 6.621 6.621 6.621 

C-S 
Shear 26.889 26.333 26.324 26.324 26.324 26.324 26.324 

No shear 27.115 26.567 26.559 26.559 26.559 26.559 26.559 

C-C 
Shear 35.550 35.383 35.379 35.377 35.376 35.376 35.376 

No shear 35.768 35.605 35.604 35.604 35.604 35.604 35.604 
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Table 3. Convergence studies of thin-walled composite channel beams.  

BCs Model m=2 4 6 8 10 12 14 

1. Mid-span deflections (mm)  

S-S 
Shear 6.385 6.715 6.786 6.796 6.803 6.807 6.810 

No shear 6.256 6.575 6.641 6.650 6.655 6.657 6.658 

C-F 
Shear 12.977 13.500 13.598 13.607 13.619 13.623 13.626 

No shear 12.722 13.223 13.300 13.309 13.315 13.317 13.318 

C-S 
Shear 2.699 3.013 3.045 3.056 3.060 3.063 3.064 

No shear 2.568 2.879 2.901 2.909 2.911 2.912 2.912 

C-C 
Shear 1.753 1.783 1.799 1.807 1.809 1.814 1.814 

No shear 1.625 1.649 1.657 1.660 1.662 1.663 1.664 

2. Critical buckling loads (kN)  

S-S 
Shear 4.972 4.859 4.825 4.825 4.825 4.825 4.825 

No shear 4.984 4.870 4.836 4.835 4.835 4.835 4.835 

C-F 
Shear 1.277 1.208 1.208 1.208 1.208 1.208 1.208 

No shear 1.278 1.209 1.209 1.209 1.209 1.209 1.209 

C-S 
Shear 10.841 9.865 9.847 9.847 9.847 9.847 9.847 

No shear 10.896 9.910 9.892 9.892 9.892 9.892 9.892 

C-C 
Shear 16.295 16.170 16.148 16.148 16.148 16.148 16.148 

No shear 16.389 16.263 16.240 16.240 16.240 16.240 16.240 

3. The fundamental frequencies (Hz)  

S-S 
Shear 55.180 54.459 54.255 54.252 54.252 54.252 54.252 

No shear 55.262 54.538 54.333 54.330 54.330 54.330 54.330 

C-F 
Shear 19.621 19.358 19.343 19.342 19.342 19.341 19.341 

No shear 19.634 19.371 19.356 19.355 19.355 19.355 19.355 

C-S 
Shear 87.520 84.667 84.623 84.622 84.621 84.621 84.621 

No shear 87.786 84.916 84.874 84.874 84.874 84.874 84.874 

C-C 
Shear 112.686 111.973 111.945 111.934 111.929 111.927 111.926 

No shear 113.047 112.374 112.365 112.365 112.365 112.365 112.365 
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Table 4. Comparison of the critical buckling load of C1-beams (kN) 

BCs Reference p =0 0.5 1 2 5 10 

S-S Present (Shear) 776.278 594.574 509.456 429.022 350.578 312.060 

Present (No shear) 778.265 597.312 513.747 434.010 353.787 313.688 

Lanc et al. (2016) 

(No shear) 

780.153 601.903 518.922 438.979 357.429 316.213 

C-F Present (Shear) 263.747 203.379 173.556 144.095 115.143 102.208 

Present (No shear) 264.029 203.579 173.714 144.223 115.253 102.311 

Lanc et al. (2016) 

(No shear) 

264.038 203.605 173.752 144.258 115.272 102.321 

C-S Present (Shear) 1414.959 1088.613 931.698 779.988 630.954 560.598 

Present (No shear) 1422.236 1094.418 938.226 786.652 635.630 563.744 

Lanc et al. (2016) 

(No shear) 

1427.730 1105.210 950.041 797.849 643.889 569.606 

C-C Present (Shear) 2598.438 2004.193 1714.215 1430.336 1150.364 1020.995 

Present (No shear) 2624.444 2022.495 1730.650 1444.845 1161.556 1030.365 

Lanc et al. (2016) 

(No shear) 

2648.370 2053.970 1762.670 1474.170 1183.630 1047.040 
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Table 5. Comparison of the first four non-dimensional frequencies of S-S beams with 

C1-section. 

Reference Frequency p=0 0.5 1 2 5 10 

Present (Shear)  
1ω  3.0659 2.7541 2.5544 2.3114 2.0048 1.8349 

2ω  4.3462 3.8270 3.5533 3.2895 3.0075 2.8059 

3ω  10.1965 9.1416 8.4879 7.7173 6.7663 6.2169 

4ω  12.0939 10.7356 9.9661 9.1447 8.0110 7.3327 

Present  

(No shear)  

1ω  3.0668 2.7549 2.5551 2.3119 2.0054 1.8354 

2ω  4.3475 3.8653 3.6402 3.4168 3.1088 2.8599 

3ω  10.2254 9.2126 8.5910 7.8480 6.8848 6.2971 

4ω  12.1028 10.7996 10.1011 9.2302 8.0168 7.3391 

Nguyen, Kim 

and Lee (2016b) 

(No shear)  

1ω  3.0668 2.7612 2.5642 2.3227 2.0148 1.8421 

2ω  4.3475 3.8641 3.6385 3.4141 3.1054 2.8575 

3ω  10.2254 9.2060 8.5828 7.8407 6.8811 6.2951 

4ω  12.1029 10.8223 10.1441 9.2903 8.0589 7.3684 
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Table 6. Mid-span deflections at of thin-walled FG channel C1-beams subject to a 

uniform load (
yq  = 0.5 kN/m) (mm). 

3/L b  BC Model p      

   0 0.5 1 2 5 10 

20 S-S Present (Shear) 0.396 0.510 0.596 0.716 0.897 1.014 

  Present (No shear) 0.390 0.502 0.586 0.705 0.883 0.998 

 C-F Present (Shear) 1.343 1.730 2.021 2.429 3.044 3.440 

  Present (No shear) 1.325 1.706 1.993 2.396 3.003 3.393 

 C-S Present (Shear) 0.162 0.209 0.244 0.293 0.367 0.415 

  Present (No shear) 0.156 0.201 0.235 0.282 0.353 0.399 

 C-C Present (Shear) 0.084 0.108 0.126 0.152 0.190 0.215 

  Present (No shear) 0.078 0.100 0.117 0.141 0.177 0.200 

50 S-S Present (Shear) 15.261 19.654 22.958 27.596 34.583 39.080 

  Present (No shear) 15.223 19.605 22.900 27.527 34.496 38.982 

 C-F Present (Shear) 51.872 66.802 78.030 93.796 117.543 132.829 

  Present (No shear) 51.759 66.655 77.859 93.590 117.285 132.539 

 C-S Present (Shear) 6.127 7.891 9.217 11.080 13.885 15.690 

  Present (No shear) 6.089 7.842 9.160 11.011 13.798 15.593 

 C-C Present (Shear) 3.082 3.969 4.637 5.573 6.984 7.893 

  Present (No shear) 3.045 3.921 4.580 5.505 6.899 7.797 
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Table 7. Mid-span deflections of thin-walled FG channel C2-beams subject to a uniform 

load ( 1 2 3 0.4α α α= = = , 
yq  = 0.5 kN/m) (mm). 

3/L b  BC Model p      

   0 0.5 1 2 5 10 

20 S-S Present (Shear) 0.396 0.457 0.496 0.541 0.595 0.624 

  Present (No shear) 0.390 0.450 0.488 0.533 0.586 0.614 

 C-F Present (Shear) 1.343 1.551 1.681 1.835 2.021 2.118 

  Present (No shear) 1.325 1.530 1.659 1.811 1.993 2.089 

 C-S Present (Shear) 0.162 0.187 0.203 0.221 0.244 0.255 

  Present (No shear) 0.156 0.180 0.195 0.213 0.235 0.246 

 C-C Present (Shear) 0.084 0.097 0.105 0.115 0.126 0.132 

  Present (No shear) 0.078 0.090 0.098 0.107 0.117 0.123 

50 S-S Present (Shear) 15.261 17.625 19.104 20.855 22.958 24.061 

  Present (No shear) 15.223 17.581 19.057 20.803 22.901 24.001 

 C-F Present (Shear) 51.872 59.906 64.934 70.884 78.033 81.782 

  Present (No shear) 51.759 59.775 64.792 70.729 77.863 81.604 

 C-S Present (Shear) 6.127 7.076 7.670 8.373 9.218 9.660 

  Present (No shear) 6.089 7.032 7.623 8.321 9.160 9.600 

 C-C Present (Shear) 3.082 3.560 3.858 4.212 4.637 4.859 

  Present (No shear) 3.045 3.516 3.811 4.161 4.580 4.800 
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Table 8. Mid-span deflections of thin-walled FG channel C3-beams subject to a uniform 

load ( 1 2 30.9 and 0.1α α α= = = , 
yq  = 0.5 kN/m) (mm). 

3/L b  BC Model p      

   0 0.5 1 2 5 10 

20 S-S Present (Shear) 0.396 0.425 0.441 0.459 0.478 0.487 

  Present (No shear) 0.390 0.418 0.433 0.450 0.468 0.477 

 C-F Present (Shear) 1.343 1.441 1.496 1.555 1.619 1.650 

  Present (No shear) 1.325 1.420 1.473 1.530 1.592 1.622 

 C-S Present (Shear) 0.162 0.174 0.181 0.188 0.197 0.200 

  Present (No shear) 0.156 0.167 0.173 0.180 0.187 0.191 

 C-C Present (Shear) 0.084 0.091 0.094 0.098 0.103 0.105 

  Present (No shear) 0.078 0.084 0.087 0.090 0.094 0.095 

50 S-S Present (Shear) 15.261 16.361 16.974 17.633 18.347 18.690 

  Present (No shear) 15.223 16.317 16.925 17.581 18.289 18.629 

 C-F Present (Shear) 51.872 55.610 57.689 59.930 62.353 63.520 

  Present (No shear) 51.759 55.478 57.546 59.774 62.181 63.340 

 C-S Present (Shear) 6.127 6.571 6.818 7.085 7.373 7.512 

  Present (No shear) 6.089 5.627 6.770 7.032 7.315 7.452 

 C-C Present (Shear) 3.082 3.307 3.432 3.568 3.715 3.786 

  Present (No shear) 3.045 3.263 3.385 3.516 3.658 3.726 
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Table 9. Comparison of the maximum deflections of thin-walled composite channel C-F 

beams subjected to a vertical concentrated load ( 1 )yP kN=  at end free (mm). 

Reference Lay-up       

 [ ]
16

0  

4

15 /

15

 
 −  s

 
4

30 /

30

 
 −  s

 
4

45 /

45

 
 −  s

 
4

60 /

60

 
 −  s

 
4

75 /

75

 
 −  s

 
4

0 /

90
s

 
 
 

 

Present (Shear) 72.291 79.845 107.188 154.586 195.326 212.101 108.109 

Kim, Jeon and Lee (2013) 

(Shear) 

72.627 80.075 107.270 154.570 195.260 212.120 107.790 

Present (No shear) 71.486 79.122 106.556 153.929 194.544 211.170 107.219 

Kim, Jeon and Lee (2013)  

(No shear) 

71.399 79.211 106.150 154.220 193.410 211.160 106.530 
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Table 10. Comparison of the critical buckling load of thin-walled composite channel  

C-F beams (kN). 

Lay-up Reference 

 Present (Shear)  Kim and Lee (2014) (Shear) 

[ ]
16

0  0.9858  0.9858 

[ ]
4

15 / 15
s

−  0.8907  0.8907 

[ ]
4

30 / 30
s

−  0.6615  0.6615 

[ ]
4

45 / 45
s

−  0.4579  0.4580 

[ ]
4

60 / 60
s

−  0.3623  0.3624 

[ ]
4

75 / 75
s

−  0.3338  0.3338 

[ ]
4

90 / 90
s

−  0.3287  0.3287 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  58

 

Table 11. Comparison of the fundamental frequencies of thin-walled composite channel 

C-F beams (Hz). 

Lay-up Reference 

 Present 

(Shear) 

Kim and Lee 

(2014) (Shear) 

Present  

(No Shear) 

Kim and Lee 

(2014) (No Shear) 

[ ]
16

0  18.418 18.40 18.430 18.43 

[ ]
4

15 / 15
s

−  17.508 17.50 17.518 17.52 

[ ]
4

30 / 30
s

−  15.089 15.09 15.095 15.09 

[ ]
4

45 / 45
s

−  12.555 12.55 12.559 12.56 

[ ]
4

60 / 60
s

−  11.168 11.17 11.172 11.17 

[ ]
4

75 / 75
s

−  10.719 10.72 10.723 10.72 

[ ]
4

90 / 90
s

−  10.637 10.64 10.641 10.64 
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Table 12. Mid-span deflections of thin-walled composite beams with C4-section 

subjected to a uniform load (
yq = 0.1kN/m) (mm). 

3/L b  BC Model Lay-up       

   [ ]
16

0  
4

15 /

15

 
 −  s

 
4

30 /

30

 
 −  s

 
4

45 /

45

 
 −  s

 
4

60 /

60

 
 −  s

 
4

75 /

75

 
 −  s

 
4

0 /

90
s

 
 
 

 

20 S-S Present (Shear) 0.289 0.318 0.424 0.610 0.770 0.837 0.430 

  Present (No shear) 0.279 0.309 0.416 0.601 0.760 0.825 0.419 

 C-F Present (Shear) 0.979 1.078 1.439 2.069 2.613 2.839 1.457 

  Present (No shear) 0.949 1.051 1.415 2.044 2.584 2.805 1.424 

 C-S Present (Shear) 0.122 0.133 0.174 0.249 0.314 0.342 0.179 

  Present (No shear) 0.112 0.124 0.167 0.241 0.304 0.330 0.168 

 C-C Present (Shear) 0.066 0.071 0.091 0.128 0.162 0.177 0.095 

  Present (No shear) 0.056 0.062 0.083 0.120 0.152 0.165 0.084 

50 S-S Present (Shear) 10.971 12.130 16.309 23.539 29.746 32.295 16.430 

  Present (No shear) 10.908 12.073 16.259 23.488 29.685 32.222 16.360 

 C-F Present (Shear) 37.274 41.217 55.428 80.011 101.111 109.771 55.832 

  Present (No shear) 37.087 41.049 55.281 79.858 100.929 109.555 55.625 

 C-S Present (Shear) 4.426 4.886 6.553 9.446 11.935 12.962 6.614 

  Present (No shear) 4.363 4.829 6.504 9.395 11.874 12.889 6.544 

 C-C Present (Shear) 2.244 2.470 3.300 4.748 5.997 6.516 3.341 

  Present (No shear) 2.182 2.415 3.252 4.698 5.937 6.444 3.272 

 

 

 

 


