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Abstract

This paper proposes a new general framework of higher-order shear deformation theory (HSDT)

and solves the structural responses of the functionally graded (FG) plates using novel exponential

shape functions for the Ritz method. Based on the fundamental equations of the elasticity theory, the

displacement field is expanded in a unified form which can recover to many different shear deformation

plate theories such as zeroth-order shear deformation plate theory, third-order shear deformation plate

theory, various HSDTs and refined four-unknown HSDTs. The characteristic equations of motion are

derived from Lagrange’s equations. Ritz-type solutions are developed for bending, free vibration

and thermal buckling analysis of the FG plates with various boundary conditions. Three types of

temperature variation through the thickness are considered. Numerical results are compared with

those from previous studies to verify the accuracy and validity of the present theory. In addition,

a parametric study is also performed to investigate the effects of the material parameters, side-to-

thickness ratio, temperature rise and boundary conditions on the structural responses of the FG

plates.

Keywords: Higher-order shear deformation theory; Functionally graded plates; Static; Vibration;

Thermal buckling.

1. Introduction

Plate structures are widely used in engineering field such as mechanical engineering, aerospace,

construction, etc. The development of plate theories in order to predict accurately their behaviours

has therefore been an interesting topic attracted a number of researches with different approaches. In

general, structural responses of the plates can be generally captured by either 2D or 3D theories in
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which the first approach is more popular owing to its simplicity and low cost computations, whilst the

second one is complicated to implement but more accurate. Many shear deformation plate theories

have been developed with various displacement fields, only some representative references are herein

cited. Based on the single-layer plate theory, in order to account for effects of transverse shear strains,

the first-order shear deformation plate theory (FSDT) and higher-order shear deformation plate theory

(HSDT) can be employed. In practice, due to simplicity in analysis and programming, the FSDT [1–4]

has been mostly used, however a shear correction factor is required. The HSDTs [5–7] with non-linear

variations of the membrane displacements or Quasi-3D [8, 9] and Carrera Unified Formulation (CUF)

[10–20] with higher-order variations of both membrane and transverse displacements predict more

accurate than the FSDT. The novelty of CUF was that it can generate any theories on the basis of

the same ’fundamental nucleus’ that comes from geometrical relations and Hooke’s law [20] and fulfils

Koiter’s recommendation [21]. It should be noted that the HSDTs neglect the thickness stretching

effect, which needs to be considered for functionally graded (FG) plates especially in thermal stresses.

This matter was clearly identified and discussed in many CUF papers [12, 13, 16, 18]. However, this

is also limitation of this paper, which focuses on a new general framework of HSDTs. The novelty

of this framework is that various displacement fields of the plate of existing HSDTs available in the

literature could be recovered from this unified theory. In practice, although the higher-order variation

of both in-plane and out-of-plane displacements predicts generally more accurate than the HSDTs, it

appears to be complicated for implementation and costs due to the increase of variables.

It should be mentioned that the accuracy of HSDTs depends on the selection of shear functions

which has been investigated by many researchers. Various types of shear functions have been developed

for isotropic, laminated composite and FG plates such as polynomial ([22–26]), trigonometric ([27–

33]), exponential ([34]), hyperbolic ([35, 36]), and hybrid ([37, 38]). Among above studies, there

are few papers dealing with thermal load. Zenkour and Radwan [9] studied effects of hygro-thermo-

mechanical buckling of the FG plates using a Quasi-3D plate theory with a polynomial shear function.

Mantari et al. [19] used various plate theories in a unified formulation based on the CUF for analysis

of composite plates under thermal load. A brief literature review on the plate theories showed that

although a number of researches have been performed, the finding of general models for many different

shear deformation plate theories is still essential and this complicated problem needs to be studied

further. This is the main contribution of this paper, which proposes a new general framework of HSDT

based on the fundamental equations of elasticity theory and then solves the problems by using novel

exponential shape functions for the Ritz method.

A new general framework of HSDT, which can recover many available existing theories in the
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literature, for static, vibration and thermal buckling analysis of the FG plates is introduced in this

paper. The Ritz method is used to approximate solution field within which novel exponential shape

functions are introduced for structural analysis of the FG plates with different boundary conditions.

Various temperature variations including uniform, linear and nonlinear through the thickness are

investigated. Numerical examples for the FG plates are carried out to validate the accuracy and

efficiency of the proposed theory. The effects of the material parameters, side-to-thickness ratio,

temperature rise and boundary conditions on the structural responses of the FG plates are investigated.

2. Theoretical formulation

2.1. Unified displacement field of the HSDT

Consider a rectangular isotropic plate with sides a× b and thickness h. Its behaviour is assumed

to be elastic, linear and under small displacement. It is assumed that the normal stress is equal to

zero, the non-zero transverse shear strains of the plate are calculated via transverse shear stresses and

shear modulus G = E/[2(1 + ν)] by:

γxz =
σxz
G

(1a)

γyz =
σyz
G

(1b)

where E and ν are Young’s modulus and Poisson’s ratio.

The transverse shear strains in Eq. (1) can be also expressed in terms of membrane and transverse

displacements (u, v and w) in x-, y- and z−directions of the plate as follows:

γxz = u,z + w,x (2a)

γyz = v,z + w,y (2b)

where the comma subscript indicates the differentiation of the variable that follows. Substituting

Eq. (2) into Eq. (1) leads to:

u,z + w,x =
σxz
G

(3a)

v,z + w,y =
σyz
G

(3b)
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Moreover, the transverse shear stresses can be obtained from the transverse shear forces, Qx and

Qy, as follows:

σxz(x, y, z) = Ψ′(z)Qx(x, y) (4a)

σyz(x, y, z) = Ψ′(z)Qy(x, y) (4b)

where Ψ(z) is a non-linear shear function whose the first derivative satisfies the stress-free con-

ditions at the bottom and top surfaces of the plate, i.e Ψ′(z = ±h
2 ) = 0. As a special case,

Ψ(z) = 3
2h

(
z − 4z3

3h2

)
is common used for the homogeneous plates. In practice, the accuracy of the

plate theory strictly depends on a choice of this shear function, which has been studied by many

previous authors ([22–38]).

Substituting Eq. (4) into Eq. (3) leads to:

u,z + w,x =
Ψ′(z)Qx(x, y)

G
(5a)

v,z + w,y =
Ψ′(z)Qy(x, y)

G
(5b)

For simplicity purpose, it is assumed that the transverse displacement of the plate is constant

through the thickness, i.e w(x, y, z) = w0(x, y). By integrating Eq. (5) in the thickness direction, the

displacement field is obtained as follows:

u(x, y, z) = u0(x, y)− zw0,x + Ψ(z)
Qx(x, y)

G
(6a)

v(x, y, z) = v0(x, y)− zw0,y + Ψ(z)
Qy(x, y)

G
(6b)

w(x, y, z) = w0(x, y) (6c)

where u0, v0 are membrane displacements of the plate. Eq. (6) is a unified framework of the

HSDT from which different displacement fields can be found and developed further. As the first case,

Eq. (6) is a general zeroth-order shear deformation plate theory. This theory developed by Shimpi

[39] for the homogeneous plates and Ray [40] for laminated composite plates can be recovered with

Ψ(z) = 3
2h

(
z − 4z3

3h2

)
.

Moreover, as a second case, if the transverse shear forces are expressed under the form:

Qx(x, y) = Gϕx(x, y) (7a)

Qy(x, y) = Gϕy(x, y) (7b)
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where ϕx, ϕy represent as rotations about the y- and x- directions, Eq. (6) becomes:

u(x, y, z) = u0(x, y)− zw0,x + Ψ(z)ϕx(x, y) (8a)

v(x, y, z) = v0(x, y)− zw0,y + Ψ(z)ϕy(x, y) (8b)

w(x, y, z) = w0(x, y) (8c)

It is observed that the displacement field in Eq. (8) is known as a general HSDT which is mostly

used in the open literature owing to its simplicity. As a third case, if the transverse shear forces are

expressed with the rotation and the derivative of transverse displacement as follows ([23]):

Qx(x, y) =
5Gh

6
(θx + w0,x) (9a)

Qy(x, y) =
5Gh

6
(θy + w0,y) (9b)

Substituting Eq. (9) into Eq. (5) leads to a new general HSDT as:

u(x, y, z) = u0(x, y) +

(
5hΨ

6
− z
)
w0,x +

5hΨ

6
θx(x, y) (10a)

v(x, y, z) = v0(x, y) +

(
5hΨ

6
− z
)
w0,y +

5hΨ

6
θy(x, y) (10b)

w(x, y, z) = w0(x, y) (10c)

It should be noted that the HSDTs derived from Reissner [23], Shi [41] and Reddy [42] can be

found in Eq. (10) with Ψ(z) = 3
2h

(
z − 4z3

3h2

)
and Ψ(z) = 6

5h

(
z − 4z3

3h2

)
, respectively.

In addition, as a fourth case, if the transverse displacement is decomposed into bending part and

shear one as follows: w0(x, y) = wb(x, y) + ws(x, y) and θx = ws,x, θy = ws,y, a novel general refined

four-unknown HSDT is formulated as follows:

u(x, y, z) = u0(x, y) +

(
5hΨ

6
− z
)
wb,x +

(
5hΨ

3
− z
)
ws,x (11a)

v(x, y, z) = v0(x, y) +

(
5hΨ

6
− z
)
wb,y +

(
5hΨ

3
− z
)
ws,y (11b)

w(x, y, z) = wb(x, y) + ws(x, y) (11c)
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2.2. Strains and stresses

In order to derive the characteristic equations of motion of the plate, the displacement field given

in Eq. (10) is used in the following theoretical formulations. The non-zero membrane and shear strains

associated to the displacements in Eq. (10) are expressed by:
εx

εy

γxy

 =


ε
(0)
x

ε
(0)
y

γ
(0)
xy

+ Φ1(z)


ε
(1)
x

ε
(1)
y

γ
(1)
xy

+ Φ2(z)


ε
(2)
x

ε
(2)
y

γ
(2)
xy

 (12a)

 γxz

γyz

 = Φ3(z)

 γ
(0)
xz

γ
(0)
yz

 (12b)

where Φ1(z) = 5hΨ/6 − z, Φ2(z) = 5hΨ/6, Φ3(z) = 5hΨ′(z)/6; and the strains components are

calculated by:
ε
(0)
x

ε
(0)
y

γ
(0)
xy

 =


u0,x

v0,y

u0,y + v0,x

 ,


ε
(1)
x

ε
(1)
y

γ
(1)
xy

 =


w0,xx

w0,yy

2w0,xy

 ,


ε
(2)
x

ε
(2)
y

γ
(2)
xy

 =


θx,x

θy,y

θx,y + θy,x

 (13a)

 γ
(0)
xz

γ
(0)
yz

 =

 θx + w0,x

θy + w0,y

 (13b)

The non-zero stresses of the plate associated to the strains in Eq. (12) are given by:
σx

σy

γxy

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66




εx

εy

γxy

 = Qε (14a)

 σxz

σyz

 =

 Q55 0

0 Q44

 γxz

γyz

 = Qsγ (14b)

where Qij and Qs
ij are the reduced stiffness components of the plate which are given by:

Q11 = Q22 =
E

1− ν2
, Q12 = νQ11, Q44 = Q55 = Q66 =

E

2(1 + ν)
(15)
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2.3. Energy formulation

The strain energy U of the plate is given by:

U =
1

2

∫
V

(σxεx + σyεy + σxyγxy + σxzγxz + σyzγyz)dV (16)

=
1

2

∫
A

[
A11u

2
0,x +A22v

2
0,y +D11w

2
0,xx +D22w

2
0,yy +Hs

11θ
2
x,x +Hs

22θ
2
y,y

+ 2B11u0,xw0,xx + 2B22v0,yw0,yy + 2Bs
11u0,xθx,x + 2Bs

22v0,yθy,y + 2Ds
11w0,xxθx,x

+ 2Ds
22w0,yyθy,y + u0,x(A12v0,y +B12w0,yy +Bs

12θy,y) + w0,xx(B12v0,y +D12w0,yy +Ds
12θy,y)

+ θx,x(Bs
12v0,y +Ds

12w0,yy +Hs
12θy,y) +A66(u0,y + v0,x)2 + 4D66w

2
0,xy

+ Hs
66(θx,y + θy,x)2 + 4B66w0,xy(u0,y + v0,x) + 2Bs

66(u0,y + v0,x)(θx,y + θy,x)

+ 4Ds
66w0,xy(θx,y + θy,x) +As

44(θy + w0,y)2 +As
55(θx + w0,x)2

]
dA (17)

where Aij , Bij , Dij , B
s
ij , D

s
ij , H

s
ij and As

ij are the stiffness components of the plates given by:

(
Aij , Bij , Dij , B

s
ij , D

s
ij , H

s
ij

)
=

∫ h/2

−h/2

(
1,Φ1,Φ

2
1,Φ2,Φ1Φ2,Φ

2
2

)
Qijdz (18a)

As
ij =

∫ h/2

−h/2
Φ2
3Q

s
ijdz (18b)

The work done V by a transverse q and in-plane load is determined by ([42]):

V = −
∫
A
qw0dA+

1

2

∫
A

(N0
xw

2
0,x + 2N0

xyw
2
0,xy +N0

yw
2
0,y)dA (19)

where N0
x , N

0
y , N

0
xy are in-plane edge loads. For thermal buckling, the pre-buckling in-plane thermal

loads are determined by:

N0
xy = 0, N0

x = N0
y = N0 = −

∫ h/2

h/2
(Q11 +Q12)α∆Tdz (20)

where α is the coefficient of thermal expansion; ∆T = T (z) − T0 is the difference of current

temperature with reference one T 0.

The kinetic energy K of the plate is calculated by:

K =
1

2

∫
V
ρ(z)

(
u̇2 + v̇2 + ẇ2

)
dV

=
1

2

∫
A

[
I0(u̇

2
0 + v̇20) + 2I1(u̇0w0,x + v̇0w0,y) + 2J1(u̇0θ̇x + v̇0θ̇y)

+ I2(ẇ
2
0,x + ẇ2

0,y) + 2J2(ẇ0,xθ̇x + ẇ0,y θ̇y) +K2(θ̇
2
x + θ̇2y) + I0ẇ

2
0

]
dA (21)

where the dot-superscript indicates the time derivative; ρ is the mass density; and the moments of

inertia terms are defined as:

(I0, I1, I2, J1, J2,K2) =

∫ h/2

−h/2

(
1,Φ1,Φ

2
1,Φ2,Φ1Φ2,Φ

2
2

)
ρdz (22)
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The total energy Π of the plate is calculated by:

Π =
1

2

∫
A

[
A11u

2
0,x +A22v

2
0,y +D11w

2
0,xx +D22w

2
0,yy +Hs

11θ
2
x,x +Hs

22θ
2
y,y

+ 2B11u0,xw0,xx + 2B22v0,yw0,yy + 2Bs
11u0,xθx,x + 2Bs

22v0,yθy,y + 2Ds
11w0,xxθx,x

+ 2Ds
22w0,yyθy,y + u0,x(A12v0,y +B12w0,yy +Bs

12θy,y) + w0,xx(B12v0,y +D12w0,yy +Ds
12θy,y)

+ θx,x(Bs
12v0,y +Ds

12w0,yy +Hs
12θy,y) +A66(u0,y + v0,x)2 + 4D66w

2
0,xy +Hs

66(θx,y + θy,x)2

+ 4B66w0,xy(u0,y + v0,x) + 2Bs
66(u0,y + v0,x)(θx,y + θy,x) + 4Ds

66w0,xy(θx,y + θy,x)

+ As
44(θy + w0,y)2 +As

55(θx + w0,x)2
]
dA−

∫
A

[
qw0 +N0(w2

0,x + w2
0,y)
]
dA

− 1

2

∫
A

[
I0(u̇

2
0 + v̇20) + 2I1(u̇0w0,x + v̇0w0,y) + 2J1(u̇0θ̇x + v̇0θ̇y)

+ I2(ẇ
2
0,x + ẇ2

0,y) + 2J2(ẇ0,xθ̇x + ẇ0,y θ̇y) +K2(θ̇
2
x + θ̇2y) + I0ẇ

2
0

]
dA (23)

2.4. Ritz-type solution

By using novel exponential shape functions, the displacement variables can be approximated as

follows:

u0(x, y, t) =

nx∑
i=1

ny∑
j=1

uij(t)Ri,x(x)Pj(y) (24a)

v0(x, y, t) =

nx∑
i=1

ny∑
j=1

vij(t)Ri(x)Pj,y(y) (24b)

w0(x, y, t) =

nx∑
i=1

ny∑
j=1

wij(t)Ri(x)Pj(y) (24c)

θx(x, y, t) =

nx∑
i=1

ny∑
j=1

xij(t)Ri,x(x)Pj(y) (24d)

θy(x, y, t) =

nx∑
i=1

ny∑
j=1

yij(t)Ri(x)Pj,y(y) (24e)

where dij = (uij , vij , wij , xij , yij) are five unknowns variables; Ri(x) and Pj(y) are the shape

functions in x- and y−direction associated to the displacements dij , which are selected in such that

the solution variables have the same order. As a result, five unknowns of the plate only depend on two

shape functions. It should be noted that the accuracy, convergence rates and numerical instabilities

of the Ritz solution depends on the selection of the shape functions, which was discussed in details

in [43–48]. In this paper, novel shape functions are proposed in Table 1 in which they are expressed

under a hybrid form of exponential functions and admissible polynomial ones that satisfy the boundary

conditions (BCs):
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• Simply-supported (S): v0 = w0 = θy = 0 at x = 0, a and u0 = w0 = θx = 0 at y = 0, b

• Clamped (C), u0 = v0 = w0 = θx = θy = 0 at x = 0, a and y = 0, b.

The combination of simply-supported, clamped and free boundary on the edges of the plate leads

to the various BCs as follows: SSSS, CCCC, CSCS, CCSS, CCFF and CCSF, which will be considered

in the numerical examples.

By using Lagrange’s equation and substituting Eq. (24) into Eq. (23) leads to:

∂Π

∂d
− d

dt

∂Π

∂ḋ
= 0 (25)

K11 K12 K13 K14 K15

TK12 K22 K23 K24 K25

TK13 TK23 K33 K34 K35

TK14 TK24 TK34 K44 K45

TK15 TK25 TK35 TK45 K55





u

v

w

x

y



+



M11 0 M13 M14 0

0 M22 M23 0 M25

TM13 TM23 M33 M34 M35

TM14 0 TM34 M44 0

0 TM25 TM35 0 M55





ü

v̈

ẅ

ẍ

ÿ


=



0

0

f

0

0


(26)

or under the compact form as follows:

Kd + Md̈ = F (27)
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where K, M and F are obtained as follows:

K11
ijkl = A11T

22
ik S

00
jl +A66T

11
ik S

11
jl ,K

12
ijkl = A12T

20
ik S

02
jl +A66T

11
ik S

11
jl

K13
ijkl = B11T

22
ik S

00
jl +B12T

20
ik S

02
jl + 2B66T

11
ik S

11
jl

K14
ijkl = Bs

11T
22
ik S

00
jl +Bs

66T
11
ik S

11
jl ,K

15
ijkl = Bs

12T
20
ik S

02
jl +Bs

66T
11
ik S

11
jl

K22
ijkl = A22T

00
ik S

22
jl +A66T

11
ik S

11
jl ,K

24
ijkl = Bs

12T
02
ik S

20
jl +Bs

66T
11
ik S

11
jl

K23
ijkl = B22T

00
ik S

22
jl +B12T

02
ik S

20
jl + 2B66T

11
ik S

11
jl

K25
ijkl = Bs

22T
00
ik S

22
jl +Bs

66T
11
ik S

11
jl

K33
ijkl = D11T

22
ik S

00
jl +D22T

00
ik S

22
jl + 2D12T

20
ik S

02
jl + 4D66T

11
ik S

11
jl +As

44T
00
ik S

11
jl +As

55T
11
ik S

00
jl

+ N0(T 11
ik S

00
jl + T 00

ik S
11
jl )

K34
ijkl = Ds

11T
22
ik S

00
jl +Ds

12T
02
ik S

20
jl + 2Ds

66T
11
ik S

11
jl +As

55T
11
ik S

00
jl

K35
ijkl = Ds

22T
00
ik S

22
jl +Ds

12T
20
ik S

02
jl + 2Ds

66T
11
ik S

11
jl +As

44T
00
ik S

11
jl

K44
ijkl = Hs

11T
22
ik S

00
jl +Hs

66T
11
ik S

11
jl +As

55T
11
ik S

00
jl ,K

45
ijkl = Hs

12T
20
ik S

02
jl +Hs

66T
11
ik S

11
jl

K55
ijkl = Hs

22T
00
ik S

22
jl +Hs

66T
11
ik S

11
jl +As

44T
00
ik S

11
jl

M11
ijkl = I0T

11
ik S

00
jl ,M

13
ijkl = I1T

11
ik S

00
jl ,M

14
ijkl = J1T

11
ik S

00
jl

M22
ijkl = I0T

00
ik S

11
jl ,M

23
ijkl = I1T

00
ik S

11
jl ,M

25
ijkl = J1T

00
ik S

11
jl

M33
ijkl = I2(T

11
ik S

00
jl + T 00

ik S
11
jl ) + I0T

00
ik S

00
jl ,M

34
ijkl = J2T

11
ik S

00
jl ,M

35
ijkl = J2T

00
ik S

11
jl

M44
ijkl = K2T

11
ik S

00
jl ,M

55
ijkl = K2T

00
ik S

11
jl , fij = f00ij (28)

with

Tmn
ik =

∫ a

0

∂mRi

∂xm
∂nRk

∂xn
dx, Smn

jl =

∫ b

0

∂mPj

∂ym
∂nPl

∂yn
dy, f00ij =

∫ a

0

∫ b

0
qRiPjdxdy (29)

It is worth to noticing that for static analysis under mechanical loads, the displacement and stress

responses of the plate can be obtained from Eq. (27) by setting M = 0. For vibration analysis, by

denoting d(t) = deiωt where ω is the natural frequency of the plate and i2 = −1 is imaginary unit, the

natural frequency can be derived from the following equation (K−ω2M)d = 0. For thermal analysis,

the critical buckling temperature can be obtained by solving the characteristic equation det(K) = 0.

2.5. Material properties and temperature distribution

Consider a FG plate made of Al/ZrO2 and Al/Al2O3 with the material properties in Table 2. For

FGMs, Ostoja-Starzewski et al. [49–51] presented a method based on micromechanics to calculate the

effective macroscopic properties, which required processing of several length scales: a thin interfacial
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microstructure, its mesocontinuous representation, fiber size and macroscale level. They demonstrated

the bounding of the effective properties of random multiscale microstructures by means of essential

and natural boundary conditions [52] and also measured the fractal dimension of phase interfaces in

two-phase FGM [53]. However, in this paper with assumption weak mismatches between the phases

and using power-law model that presented by Reddy [42], the effective elastic properties are estimated

as follows:

P (z) = (Pt − Pb)

(
z

h
+

1

2

)p

+ Pb (30)

where p is material parameter or power-law index; Pt, Pb are the material properties at the top

and bottom of plate.

For the temperature field, three different types of temperature variations are considered as below.

• For the uniform temperature rise (UTR): the expression of the current temperature is derived

from a reference temperature at the bottom surface T0 as:

T (z) = T0 + ∆T (31)

• For the linear temperature rise (LTR): the expression of the current temperature is calculated

based on the temperatures at the top plate surface Tt and bottom plate surface Tb as follows:

T (z) = (Tt − Tb)
(
z

h
+

1

2

)
+ Tb (32)

• For the nonlinear temperature rise (NLTR): the expression of the current temperature is derived

from the coefficient of thermal conductivity k(z) based on the Fourier equation of steady-state

heat conduction as follows:

T (z) = Tb +
Tt − Tb∫ h/2

−h/2 1/k(z)dz

∫ z

−h/2

1

k(ξ)dξ
(33)

3. Numerical examples

In this section, the FG plates in Fig. 1 with the shear function Ψ(z) = cot−1 h
z −

16z3

15h3 [45] are

analysed for the proposed HSDT. Numerical examples are reported to verify the validity of the present

solutions and investigate the effects of side-to-thickness ratio a/h, material parameter p and boundary

conditions (BCs) as well as the variation of temperature field on the structural responses of the FG
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plates. For convenience, the following normalized parameters are used:

ū =
100Ech

3

q0a4
u

(
0,
b

2
, z

)
, w̄ =

10Ech
3

q0a4
w

(
a

2
,
b

2

)
, ŵ =

100Emh
3

12(1− ν2m)q0a4
w

(
a

2
,
b

2

)
(34a)

σ̄x(z) =
h

q0a
σx

(
a

2
,
b

2
, z

)
, σ̄xy(z) =

h

q0a
σxz (0, 0, z) , σ̄xz(z) =

h

q0a
σxz

(
0,
b

2
, z

)
(34b)

ω̄ =
ωab

π2h

√
12(1− ν2c )ρc

Ec
(34c)

T̄cr = ∆Tcr × 10−3 (34d)

For convergence study, Table 3 shows nondimensional transverse displacement ŵ and fundamental

frequency ω̄ of the Al/ZrO2-2 square plates under a uniformly distributed load with a/h = 5 and

p = 2. The results are calculated with six types of BCs (CCCC, SSSS, CCSS, CSCS, CCSF, CCFF)

and the same number of series in x− and y−direction (nx = ny = n). It can be seen from Table 3

that the results converge very quickly, and the number of series n = 10 is sufficient for convergence of

the static and dynamic responses of the FG plates. Therefore, the number of series n = 10 is assumed

to be a convergence point of the solution field and will be used hereafter for numerical computations.

The first verification study is performed for a simply-suported FG plate subjected to a sinusoidal

load with a/h = 10. The aim of this example is to validate the accuracy of the derived solutions and

the proposed theory in predicting the bending responses of Al/Al2O3 plates. Table 4 summarises the

nondimensional membrane displacements, transverse displacements, membrane stresses and transverse

stresses of the considered plate obtained from the present study and those generated by Zenkour [5]

based on a sinusoidal shear deformation theory (SSDT), Thai and Kim [6] based on a hyperbolic shear

deformable theory (HSDT) and Carrera et al. [11] based on a CUF model. It can be observed that

the present solutions are in good agreement with previous ones.

The next verification study aims at verifying the accuracy of the present solutions for the FG plates

with different BCs. A square Al/ZrO2-1 plate subjected to uniformly distributed load is considered

with various p = 0, 0.5, 1, 2, 5, 10 and a/h = 5, 10. The obtained deflections are compared with those

predicted by the FSDT [3] and [2], and Quasi-3D theory [8] for SSSS, CCCC and CCSS plates as

shown in Table 5. It can be found that the present results comply with those predicted by the FSDT

for all BCs considered. There is a slight difference between the present model and Quasi-3D one [8]

due to the normal strain effect which is ignored in the present theory. In addition, new results for other

BCs predicted by the present theory are also provided in this example to serve as benchmarks for the

development of other plate models in the future. It is observed from Table 5 that the center deflection

increases as p increases and the maximum and minimum values of the displacement appear in SSSS

and CCCC plates, respectively. Furthermore, Figs. 2 and 3 display variations of nondimensional
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transverse shear and membrane stresses in the thickness direction of simply-supported Al/ZrO2-1

plate under uniformly distributed load with various of p and a/h = 10. As expected, the shear stress

disappears at the top and bottom surfaces of the plate. The maximum stresses tend to slightly move

forward to the upper surface of the plate due to asymmetric properties of the FG plates. Whereas,

the axial stress increases with p and minimises when p < 1. The effects of both a/h and p on the

deflection w̄ as illustrated in Fig. 4 indicate that the shear deformation effect is much more dominant

for very thick plates with a/h less than 5.0.

The aim of the third example is to verify the validity of the present solutions in predicting free

vibration responses of the FG plates. A square Al/ZrO2-2 plate under various BCs is considered in this

example. Table 6 shows the comparison of the nondimensional fundamental frequencies for different

values of p, a/h = 5, 10 and various BCs. The obtained results are compared to those derived from a

3D plate model of Uymaz and Aydodu [54] and a HSDT of Nguyen [7]. It is clear that the normalized

fundamental frequencies derived from the present model are in excellent agreement with those from

the HSDT and Quasi-3D theory for the SSSS plate, whereas for other BCs there are some slight

deviations between them. Table 6 shows that the nondimensional fundamental frequencies decrease

with an increase of p. This can be explained by the fact that the increase of p leads to a decrease of

the ceramic volume fraction, and thus that makes the plate become softer.

The fourth example aims to evaluate the accuracy of the present theory in predicting thermal

buckling behaviours. Table 7 summarizes the critical buckling temperatures of simply-supported

Al/Al2O3 square plates with a/h = 5 and 10. The results are obtained for three types of temperature

rise (UTR, LTR, NLTR) in which it is assumed that the reference temperature is taken at the bottom

surface of the plate. The obtained results are compared with those obtained from the FSDT [4], HSDT

and Quasi-3D theory from [9]. It is observed that there are excellent agreement of the results between

the HSDT models for all values of p and a/h. There is a slight difference between the present model

and Quasi-3D one observed in the case of thick plate. This is again due to effects of the transverse

and shear normal strains which included in Quasi-3D model, but ignored here. Moreover, the effects

of BCs and p on the critical buckling temperatures of the Al/Al2O3 plate are also plotted in Fig. 5,

in which the results are computed for three representative BCs (SSSS, CCCC, CCSS) for a/h = 10

and UTR. The results decrease rapidly from p ≤ 2 and then the curves become flatter as expected

since the variation of ceramic volume fraction led to the decrease of the plate stiffness. Furthermore,

the effect of temperature rise (UTR, LTR, NLTR) with respect to p is displayed in Fig. 6 for the

simply-supported Al/Al2O3 square plate with a/h = 10. The highest and lower ones correspond to

the NLTR and UTR. The results of LTR and NLTR is similar for the homogeneous plate (p = 0).
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Additionally, the effects of temperature change on fundamental frequencies are also investigated in

Fig. 7 with a/h = 5 and p = 5. Three frequency-temperature interaction curves are plotted for

UTR, LTR and NLTR. It can be seen that the natural frequency diminishes with an increase of the

temperature. The maximum and minimum critical buckling temperatures are again found for NLTR

and UTR, respectively.

4. Conclusions

Based on the fundamental equations of elasticity theory, a novel general HSDT is proposed in

this paper for the FG plates. Different displacement fields of the plate of existing HSDTs available

in the literature could be recovered from this unified theory. Characteristic governing equations of

the plate are derived. They are then solved for approximate solutions using the Ritz method and

Lagrange’s equations. Novel exponential shape functions are used to solve the static, free vibration

and thermal buckling problems. The verification study indicates that the present model can provide an

accurate prediction for strucural responses of the FG plates under different geometric configurations

and material parameters. New results are also presented as benchmarks for the future comparison

with other plate models.
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CAPTIONS OF FIGURES

Figure 1: Geometry of a FG plate.

Figure 2: Variation of transverse shear stress σ̄xz in the thickness direction with respect to p of

simply-supported Al/ZrO2-1 plate under a uniformly distributed load (a/h = 10).

Figure 3: Variation of membrane stress σ̄x in the thickness direction with respect to p of simply-

supported Al/ZrO2-1 plate under a uniformly distributed load (a/h = 10).

Figure 4: Variation of nondimensional center deflection ŵ of Al/ZrO2-1 plate under uniformly

distributed load with respect to a/h and p.

Figure 5: Variation of the critical buckling temperatures of Al/Al2O3 plate with respect to p for

the UTR and different BCs (a/h = 10).

Figure 6: Variation of the critical buckling temperatures of simply-supported Al/Al2O3 plate with

respect to p and different temperature rises (a/h = 10, SSSS).

Figure 7: Variation of nondimensional fundamental frequency of simply-supported Al/Al2O3 plate

with respect to the different temperature rises (a/h = 5, p = 5).
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Table 1: Shape functions with different BCs.

Boundary conditions Shape functions

Rj(x) Pj(y)

SSSS x(a− x)e−
jx
a y(b− y)e−

jy
b

CCCC x2(a− x)2e−
jx
a y2(y − b)2e−

jy
b

CCSS x2(a− x)2e−
jx
a y(b− y)e−

jy
b

CSCS x2(a− x)e−
jx
a y2(b− y)e−

jy
b

CCSF x2(a− x)2e−
jx
a ye−

jy
b

CCFF x2(a− x)2e−
jx
a e−

jy
b
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Table 2: Material properties of the FG plates

Material E (GPa) ρ (kg/m3) ν α (1/C) k (W/mK)

Aluminum (Al) 70 2702 0.3 23× 10−6 204

Zirconia (ZrO2-1) 200 5700 0.3 - -

Zirconia (ZrO2-2) 151 3000 0.3 - -

Alumina (Al2O3) 380 3800 0.3 7.4× 10−6 10.4
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Table 3: Convergence study of Al/ZrO2-2 square plates subjected to a uniformly distributed load with different BCs.

(a/h = 5, p = 2).

BCs Number of series

1 2 4 6 8 10 12 14

Center transverse displacement (ŵ)

SSSS 0.3429 0.6411 0.6379 0.6383 0.6376 0.6375 0.6372 0.6373

CCCC 0.2331 0.2654 0.2563 0.2650 0.2629 0.2693 0.2685 0.2683

CCSS 0.2733 0.3690 0.3664 0.3740 0.3724 0.3763 0.3753 0.3743

CSCS 0.3483 0.3856 0.3813 0.3849 0.3837 0.3843 0.3864 0.3865

CCFF 0.3694 0.4898 0.4846 0.4942 0.4942 0.4957 0.4984 0.4977

CCSF 0.3700 0.4216 0.4230 0.4373 0.4357 0.4406 0.4402 0.4409

Fundamental frequency (ω̄)

SSSS 1.9077 1.4789 1.4691 1.4666 1.4669 1.4666 1.4666 1.4666

CCCC 2.4714 2.3717 2.2964 2.2729 2.2742 2.2681 2.2697 2.2687

CCSS 2.2057 1.9746 1.9230 1.9066 1.9075 1.9039 1.9050 1.9048

CSCS 1.9486 1.9087 1.8688 1.8636 1.8622 1.8615 1.8609 1.8606

CCFF 1.6430 1.5500 1.5061 1.4934 1.4938 1.4920 1.4929 1.4921

CCSF 1.7340 1.6256 1.5758 1.5577 1.5583 1.5549 1.5553 1.5557
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Table 4: Nondimensional stresses and displacements of simply-supported Al/Al2O3 square plates under a sinusoidal load

(a/h = 10).

p Theory ū(−h/4) w̄ σ̄x(h/3) σ̄xy(−h/3) σ̄xz(h/6)

1 Present 0.6416 0.5890 1.4888 0.6140 0.2551

HSDT [6] 0.6414 0.5890 1.4898 0.6111 0.2608

SSDT [5] 0.6626 0.5889 1.4894 0.6110 0.2622

Quasi-3D [11] 0.6436 0.5875 1.5062 0.6081 0.2510

2 Present 0.8986 0.7573 1.3950 0.5469 0.2704

HSDT [6] 0.8984 0.7573 1.3960 0.5442 0.2737

SSDT [5] 0.9281 0.7573 1.3954 0.5441 0.2763

Quasi-3D [11] 0.9012 0.7570 1.4147 0.5421 0.2496

4 Present 1.0497 0.8815 1.1783 0.5719 0.2528

HSDT [6] 1.0502 0.8815 1.1794 0.5669 0.2537

SSDT [5] 1.0941 0.8819 1.1783 0.5667 0.2580

Quasi-3D [11] 1.0541 0.8823 1.1985 0.5666 0.2362

8 Present 1.0764 0.9746 0.9467 0.5926 0.2084

HSDT [6] 1.0763 0.9746 0.9477 0.5858 0.2088

SSDT [5] 1.1340 0.9750 0.9466 0.5856 0.2121

Quasi-3D [11] 1.0830 0.9738 0.9687 0.5879 0.2262
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Table 5: Nondimensional deflections (ŵ) of Al/ZrO2-1 square plates under a uniformly distributed load with different

BCs.

a/h BCs Theory p

0 0.5 1 2 5 10

5 SSSS Present 0.1716 0.2324 0.2719 0.3135 0.3568 0.3871

FSDT [3] 0.1722 0.2403 0.2811 0.3221 - -

FSDT [2] 0.1701 0.2232 0.2521 0.2825 - -

Quasi-3D [8] 0.1671 0.2505 0.2905 0.3280 - -

CCCC Present 0.0741 0.0985 0.1153 0.1354 0.1600 0.1743

FSDT [3] 0.0774 0.1073 0.1207 0.1404 - -

FSDT [2] 0.0750 0.0975 0.1109 0.1264 - -

Quasi-3D [8] 0.0731 0.1034 0.1253 0.1444 - -

CCSS Present 0.1029 0.1376 0.1610 0.1881 0.2201 0.2395

CSCS Present 0.1046 0.1402 0.1643 0.1910 0.2219 0.2413

FSDT [3] 0.1073 0.1447 0.1701 0.1953 - -

Quasi-3D [8] 0.1017 0.1501 0.1751 0.2008 - -

CCFF Present 0.1357 0.1811 0.2121 0.2480 0.2906 0.3164

CCSF Present 0.1206 0.1612 0.1885 0.2205 0.2583 0.2812

10 SSSS Present 0.1495 0.2045 0.2391 0.2730 0.3039 0.3288

CCCC Present 0.0521 0.0707 0.0827 0.0952 0.1079 0.1170

CCSS Present 0.0765 0.1041 0.1218 0.1398 0.1577 0.1709

CSCS Present 0.0817 0.1113 0.1302 0.1492 0.1675 0.1814

CCFF Present 0.1017 0.1382 0.1618 0.1858 0.2094 0.2269

CCSF Present 0.0896 0.1218 0.1424 0.1636 0.1845 0.1999
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Table 6: Nondimensional fundamental frequency (ω̄) of Al/ZrO2-2 square plates with different BCs..

BCs a/h Theory p

0 0.5 1 2 5 10

SSSS 5 Present 1.7761 1.6026 1.5277 1.4666 1.4127 1.3757

HSDT [7] 1.7723 1.6003 1.5245 1.4629 1.4084 1.3726

3D [54] 1.7748 1.6031 1.4764 1.4628 1.4106 1.3711

10 Present 1.9325 1.7385 1.6589 1.5993 1.5501 1.5091

HSDT [7] 1.9330 1.7402 1.6593 1.5994 1.5500 1.5095

3D [54] 1.9339 1.7406 1.6583 1.5968 1.5491 1.5066

CCCC 5 Present 2.7535 2.5006 2.3810 2.2683 2.1580 2.1011

3D [54] 2.7404 2.4919 2.3706 2.2561 2.1447 2.0832

10 Present 3.3219 2.9974 2.8582 2.7460 2.6463 2.5760

3D [54] 3.3496 3.0249 2.8809 2.7658 2.6645 2.5923

CCSS 5 Present 2.3102 2.0945 1.9946 1.9041 1.8174 1.7698

3D [54] 2.3000 2.0880 1.9849 1.8947 1.8055 1.7549

10 Present 2.7177 2.4502 2.3366 2.2467 2.1686 2.1111

3D [54] 2.7349 2.4678 2.3516 2.2605 2.1794 2.1213

CCFF 5 Present 1.8094 1.6411 1.5630 1.4920 1.4236 1.3859

3D [54] 1.8110 1.6431 1.5620 1.4899 1.4212 1.3820

10 Present 2.1049 1.8973 1.8095 1.7406 1.6812 1.6355

3D [54] 2.1260 1.9183 1.8275 1.7549 1.6941 1.6492

CCSF 5 Present 1.8861 1.7106 1.6292 1.5549 1.4832 1.4441

3D [54] 1.8841 1.7088 1.6248 1.5491 1.4798 1.4352

10 Present 2.2102 1.9923 1.9002 1.8276 1.7642 1.7173

3D [54] 2.2271 2.0099 1.9131 1.8411 1.7748 1.7291
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Table 7: Critical buckling temperatures (T̄cr) of simply-supported Al/Al2O3 square plates.

Temperature rise a/h Theory p

0 0.5 1 2 5 10

UTR 5 Present 5.5839 3.2409 2.6717 2.3410 2.2745 2.2780

FSDT [4] 5.5806 - - - 2.3594 2.3682

HSDT [9] 5.5834 - 2.6715 - 2.2750 2.2767

Quasi-3D [9] 5.8781 - 2.8661 - 2.4396 2.4162

10 Present 1.6188 0.9243 0.7584 0.6701 0.6793 0.6932

FSDT [4] 1.6186 - - - 0.6867 0.7010

HSDT [9] 1.6186 - 0.7583 - 0.6793 0.6926

Quasi-3D [9] 1.6444 - 0.7908 - 0.7137 0.7177

LTR 5 Present 11.1678 6.4681 5.0107 4.1209 3.9154 4.0393

FSDT [4] 11.1513 - - - 4.0527 4.1877

HSDT [9] 11.1568 - 5.0009 - 3.9073 4.0257

Quasi-3D [9] 11.7462 - 5.3659 - 4.1907 4.2728

10 Present 3.2376 1.8447 1.4224 1.1797 1.1694 1.2291

FSDT [4] 3.2272 - - - 1.1735 1.2335

HSDT [9] 3.2273 - 1.4129 - 1.1606 1.2186

Quasi-3D [9] 3.2788 - 1.4738 - 1.2199 1.2630

NLTR 5 Present 11.1678 11.2724 8.9162 6.8685 5.5074 5.0212

FSDT [4] 11.1513 - - - 5.0685 4.8402

10 Present 3.2376 3.2149 2.5311 1.9662 1.6449 1.5279

FSDT [4] 3.2272 - - - 1.4676 1.4256
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Figure 1: Geometry of a FG plate.
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Figure 2: Variation of transverse shear stress σ̄xz in the thickness direction with respect to p of simply-supported

Al/ZrO2-1 plate under a uniformly distributed load (a/h = 10).
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Figure 3: Variation of membrane stress σ̄x in the thickness direction with respect to p of simply-supported Al/ZrO2-1

plate under a uniformly distributed load (a/h = 10).
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Figure 4: Variation of nondimensional center deflection ŵ of Al/ZrO2-1 plate under uniformly distributed load with

respect to a/h and p.
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Figure 5: Variation of the critical buckling temperatures of Al/Al2O3 plate with respect to p for the UTR and different

BCs (a/h = 10).
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Figure 6: Variation of the critical buckling temperatures of simply-supported Al/Al2O3 plate with respect to p and

different temperature rises (a/h = 10).)
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Figure 7: Variation of nondimensional fundamental frequency of simply-supported Al/Al2O3 plate with respect to the

different temperature rises (a/h = 5, p = 5).
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