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Wikidata as a knowledge graph
for the life sciences
Abstract Wikidata is a community-maintained knowledge base that has been assembled from

repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds,

and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and

reusability. Here we describe the breadth and depth of the biomedical knowledge contained within

Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to

synchronize it with source databases. We also demonstrate several use cases for Wikidata, including

the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and

drug repurposing.

ANDRA WAAGMEESTER†, GREGORY STUPP†, SEBASTIAN BURGSTALLER-
MUEHLBACHER, BENJAMIN M GOOD, MALACHI GRIFFITH, OBI L GRIFFITH,
KRISTINA HANSPERS, HENNING HERMJAKOB, TOBY S HUDSON, KEVIN HYBISKE,
SARAH M KEATING, MAGNUS MANSKE, MICHAEL MAYERS, DANIEL MIETCHEN,
ELVIRA MITRAKA, ALEXANDER R PICO, TIMOTHY PUTMAN, ANDERS RIUTTA,
NURIA QUERALT-ROSINACH, LYNN M SCHRIML, THOMAS SHAFEE,
DENISE SLENTER, RALF STEPHAN, KATHERINE THORNTON, GINGER TSUENG,
ROGER TU, SABAH UL-HASAN, EGON WILLIGHAGEN, CHUNLEI WU AND
ANDREW I SU*

Introduction
Integrating data and knowledge is a formidable

challenge in biomedical research. Although new

scientific findings are being discovered at a

rapid pace, a large proportion of that knowl-

edge is either locked in data silos (where inte-

gration is hindered by differing nomenclature,

data models, and licensing terms;

Wilkinson et al., 2016) or locked away in free-

text. The lack of an integrated and structured

version of biomedical knowledge hinders effi-

cient querying or mining of that information,

thus preventing the full utilization of our accu-

mulated scientific knowledge.

Recently, there has been a growing emphasis

within the scientific community to ensure all sci-

entific data are FAIR – Findable, Accessible,

Interoperable, and Reusable – and there is a

growing consensus around a concrete set of

principles to ensure FAIRness (Wilkinson et al.,

2019; Wilkinson et al., 2016). Widespread

implementation of these principles would greatly

advance efforts by the open-data community to

build a rich and heterogeneous network of scien-

tific knowledge. That knowledge network could,

in turn, be the foundation for many computa-

tional tools, applications and analyses.

Most data- and knowledge-integration initia-

tives fall on either end of a spectrum. At one

end, centralized efforts seek to bring multiple

knowledge sources into a single database (see,

for example, Mungall et al., 2017): this

approach has the advantage of data alignment

according to a common data model and of

enabling high performance queries. However,

centralized resources are difficult and expensive

to maintain and expand (Chandras et al., 2009;

Gabella et al., 2018), at least in part because of

bottlenecks that are inherent in a centralized

design.

At the other end of the spectrum, distributed

approaches to data integration result in a broad

landscape of individual resources, focusing on

technical infrastructure to query and integrate
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across them for each query. These approaches

lower the barriers to adding new data by

enabling anyone to publish data by following

community standards. However, performance is

often an issue when each query must be sent to

many individual databases, and the performance

of the system as a whole is highly dependent on

the stability and performance of each individual

component. In addition, data integration

requires harmonizing the differences in the data

models and data formats between resources, a

process that can often require significant skill

and effort. Moreover, harmonizing differences in

data licensing can sometimes be impossible.

Here we explore the use of Wikidata (www.

wikidata.org; Vrandečić, 2012; Mora-

Cantallops et al., 2019) as a platform for knowl-

edge integration in the life sciences. Wikidata is

an openly-accessible knowledge base that is

editable by anyone. Like its sister project Wiki-

pedia, the scope of Wikidata is nearly boundless,

with items on topics as diverse as books, actors,

historical events, and galaxies. Unlike Wikipedia,

Wikidata focuses on representing knowledge in

a structured format instead of primarily free

text. As of September 2019, Wikidata’s knowl-

edge graph included over 750 million state-

ments on 61 million items (tools.wmflabs.org/

wikidata-todo/stats.php). Wikidata was also the

first project run by the Wikimedia Foundation

(which also runs Wikipedia) to have surpassed

one billion edits, achieved by a community of

12,000 active users, including 100 active compu-

tational ‘bots’ (Figure 1—figure supplement 1).

As a knowledge integration platform, Wiki-

data combines several of the key strengths of

the centralized and distributed approaches. A

large portion of the Wikidata knowledge graph

is based on the automated imports of large

structured databases via Wikidata bots, thereby

breaking down the walls of existing data silos.

Since Wikidata is also based on a community-

editing model, it harnesses the distributed

efforts of a worldwide community of contribu-

tors, including both domain experts and bot

developers. Anyone is empowered to add new

statements, ranging from individual facts to

large-scale data imports. Finally, all knowledge

in Wikidata is queryable through a SPARQL

query interface (query.wikidata.org/), which also

enables distributed queries across other Linked

Data resources.

In previous work, we seeded Wikidata with

content from public and authoritative sources of

structured knowledge on genes and proteins

(Burgstaller-Muehlbacher et al., 2016) and

chemical compounds (Willighagen et al., 2018).

Here, we describe progress on expanding and

enriching the biomedical knowledge graph

within Wikidata, both by our team and by others

in the community (Turki et al., 2019). We also

describe several representative biomedical use

cases on how Wikidata can enable new analyses

and improve the efficiency of research. Finally,

we discuss how researchers can contribute to

this effort to build a continuously-updated and

community-maintained knowledge graph that

epitomizes the FAIR principles.

The Wikidata Biomedical
Knowledge Graph
The original effort behind this work focused on

creating and annotating Wikidata items for

human and mouse genes and proteins (Burgstal-

ler-Muehlbacher et al., 2016), and was subse-

quently expanded to include microbial reference

genomes from NCBI RefSeq (Putman et al.,

2017). Since then, the Wikidata community

(including our team) has significantly expanded

the depth and breadth of biological information

within Wikidata, resulting in a rich, heteroge-

neous knowledge graph (Figure 1). Some of the

key new data types and resources are described

below.

Genes and proteins: Wikidata contains items

for over 1.1 million genes and 940 thousand pro-

teins from 201 unique taxa. Annotation data on

genes and proteins come from several key data-

bases including NCBI Gene (Agarwala et al.,

2018), Ensembl (Zerbino et al., 2018), UniProt

(UniProt Consortium, 2019), InterPro

(Mitchell et al., 2019), and the Protein Data

Bank (Burley et al., 2019). These annotations

include information on protein families, gene

functions, protein domains, genomic location,

and orthologs, as well as links to related com-

pounds, diseases, and variants.

Genetic variants: Annotations on genetic var-

iants are primarily drawn from CIViC (http://www.

civicdb.org), an open and community-curated

database of cancer variants (Griffith et al., 2017).

Variants are annotated with their relevance to dis-

ease predisposition, diagnosis, prognosis, and

drug efficacy. Wikidata currently contains 1502

items corresponding to human genetic variants,
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focused on those with a clear clinical or therapeu-

tic relevance.

Chemical compounds including

drugs: Wikidata has items for over 150 thousand

chemical compounds, including over 3500 items

which are specifically designated as medications.

Compound attributes are drawn from a diverse

set of databases, including PubChem

(Wang et al., 2009), RxNorm (Nelson et al.,

2011), the IUPHAR Guide to Pharmacology

(Harding et al., 2018; Pawson et al., 2014;

Southan et al., 2016), NDF-RT (National Drug

File – Reference Terminology), and LIPID MAPS

(Sud et al., 2007). These items typically contain

statements describing chemical structure and

key physicochemical properties, and links to

disease

17,080

MonDO ID: 11,914

UMLS CUI: 11,441

Disease Ontology ID: 9,509

ICD-10-CM: 6,805

Orphanet ID: 6,745

MeSH descriptor ID: 6,019

OMIM ID: 5,975

...

gene

1,176,028

Entrez Gene ID: 737,302

RefSeq RNA ID: 561,824

NCBI Locus tag: 502,347

Ensembl Transcript ID: 401,691

Ensembl Gene ID: 122,639

MGI Gene Symbol: 71,959

Mouse Genome Informatics ID: 65,989

...

protein

961,210

RefSeq Protein ID: 750,780

UniProt protein ID: 646,506

Ensembl Protein ID: 251,125

PDB structure ID: 44,732

chemical compound

163,252

InChIKey: 156,336

InChI: 153,826

PubChem CID: 150,018

ChemSpider ID: 124,461

ChEBI ID: 84,459

CAS Registry Number: 71,467

UNII: 58,419

...

medication

3,869

CAS Registry Number: 2,775

UNII: 2,664

PubChem CID: 2,579

InChIKey: 2,535

ChemSpider ID: 2,503

InChI: 2,469

ChEMBL ID: 2,468

...

pharmaceutical product

2,731

RxNorm CUI: 2,046

European Medicines Agency product number: 1,068

protein family

27,431

InterPro ID: 22,025

binding site

77

InterPro ID: 76

active site

132

InterPro ID: 132

taxon

2,600,217

Global Biodiversity Information Facility ID: 2,058,609

Encyclopedia of Life ID: 1,354,013

IRMNG ID: 1,214,539

iNaturalist taxon ID: 569,998

ITIS TSN: 533,003

IPNI plant ID: 488,933

NCBI Taxonomy ID: 471,220

...

anatomical structure

120,184

Freebase ID: 1,462

TA98 Latin term: 1,363

Terminologia Anatomica 98 ID: 1,353

UBERON ID: 1,187

Encyclopædia Britannica Online ID: 743

MeSH descriptor ID: 693

UMLS CUI: 616

...

sequence variant

1,502

CIViC variant ID: 1,398

HGVS nomenclature: 820

biological pathway

2,994

Reactome ID: 2,250pharmacologic action

1,332

MeSH descriptor ID: 658

Freebase ID: 490

ChEBI ID: 359

CAS Registry Number: 230

UNII: 214

ChemSpider ID: 212

PubChem CID: 212

...

therapeutic use

803

MeSH ID: 608

ChEBI ID: 478

MeSH Code: 443

Freebase ID: 422

KEGG ID: 395

ATC code: 390

ChemSpider ID: 316

...

mechanism of action

182

MeSH Code: 288

MeSH ID: 168

symptom

1,089

subclass of (41,199)

instance of (2,335)

symptoms (685)

genetic association (13,614)

ortholog (3,711,264)

cell component (907)

physically interacts with (675)

e
n
c
o
d

e
d
 b

y
 /

e
n
c
o
d

e
s
 (

1
,8

4
5

,1
1

9
)

dr
ug

 u
se

d 
fo

r 
tr
ea

tm
en

t /

m
ed

ic
al

 c
on

di
tio

n 
tr
ea

te
d 

(6
,8

23
)

physically interacts with (3,924)

significant drug interaction (1,725)

stereoisomer of (642)

drug used for treatm
ent /

m
edical condition treated (9,626)

physically interacts w
ith (2,503)

has part / 
part o

f (6
76)

significant drug interaction (3,130)

has part / part of (1,093)

significant drug interaction (2,320)

pregnancy category (1,997)

h
a
s 

a
ct

iv
e
 in

g
re

d
ie

n
t 
/

a
ct

iv
e
 in

g
re

d
ie

n
t 
in

 (
2
,1

6
4
)

h
a
s
 a

c
ti
v
e
 i
n
g

re
d

ie
n

t 
/

a
c
ti
v
e

 i
n

g
re

d
ie

n
t 
in

 (
3
,0

3
0

)

th
e
ra

p
e
u
ti
c
 a

re
a
 (

1
,5

0
5
)

p
a
rt o

f / h
a
s
 p

a
rt (2

7
8
,0

8
9
)

subclass of (6,276)

h
a
s
 p

a
rt / p

a
rt o

f (1
0
,9

2
5
)

p
a
rt

 o
f 
/ 
h
a
s
 p

a
rt

 (
2
2
0
)

h
a
s p

a
rt / p

a
rt o

f (1
3
,7

6
3
)

part 
of /

 h
as 

part 
(2

75)

has cause /

has effect (5
78)

found in taxon (795,773)

found in taxon (581,407)

found in taxon (1,247)

anatom
ical 

location (959)

cell component (15,310)

part of / has part (726)

b
io

lo
g

ic
a
l v

a
ria

n
t o

f (1
,5

3
4

)

positive therapeutic predictor (685)

negative therapeutic predictor (565)

po
si
tiv

e 
th

er
ap

eu
tic

 p
re

di
ct

or
 (6

97
)

ne
ga

tiv
e 

th
er

ap
eu

tic
 p

re
di

ct
or

 (7
50

)

has part / 

part of (2,278)

has part /
 part o

f (3
,665)

ha
s 

pa
rt
 / 

pa
rt
 o

f (
1,

05
5)

ha
s 

pa
rt 

/ p
ar

t o
f (

30
,3

32
)fo

u
n
d
 in

 ta
x
o
n
 (2

,9
7
9
)

s
u

b
je

c
t 
h
a

s
 r

o
le

 (
7
,9

4
5

)

s
u

b
c
la

s
s
 o

f 
(2

2
1

)

s
ig

n
if
ic

a
n

t 
d

ru
g

 i
n

te
ra

c
ti
o

n
 (

2
4

7
)

subject has role (4,315)

subclass of (306)
significant drug interaction (367)

ha
s 
ac

tiv
e 

in
gr

ed
ie
nt

 /

ac
tiv

e 
in
gr

ed
ie
nt

 in
 (2

52
)

medical condition treated /

drug used for treatment (1,112)

s
u

b
je

c
t 
h
a

s
 r

o
le

 (
5
,0

5
2

)

s
ig

n
if
ic

a
n

t 
d

ru
g

 i
n

te
ra

c
ti
o

n
 (

2
4

6
)

subject has role (3,021)

subclass of (277)

significant drug interaction (365)

has active ingredient /

active ingredient in (236)

m
edical condition treated /

drug used for treatm
ent (1,022)

subject has role (2,307)

su
b
je

ct
 h

a
s 

ro
le

 (
1
,4

1
8
)

symptoms (636)

Figure 1. A simplified class-level diagram of the Wikidata knowledge graph for biomedical entities. Each box represents one type of biomedical

entity. The header displays the name of that entity type (e.g., pharmaceutical product) and the number of Wikidata items for that entity type. The lower

portion of each box displays a partial listing of attributes about each entity type and the number of Wikidata items for each attribute. Edges between

boxes represent the number of Wikidata statements corresponding to each combination of subject type, predicate, and object type. For example,

there are 1505 statements with ’pharmaceutical product’ as the subject type, ’therapeutic area’ as the predicate, and ’disease’ as the object type. For

clarity, edges for reciprocal relationships (e.g., ’has part’ and ’part of’) are combined into a single edge, and scientific articles (which are widely cited in

statement references) have been omitted. All counts of Wikidata items are current as of September 2019. The most common data sources cited as

references are available in Figure 1—source data 1. Data are generated using the code in https://github.com/SuLab/genewikiworld (archived at

Mayers et al., 2020). A more complete version of this graph diagram can be found at https://commons.wikimedia.org/wiki/File:Biomedical_

Knowledge_Graph_in_Wikidata.svg.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Most frequent data sources cited as references for the biomedical subset of the Wikidata knowledge graph shown in Figure 1.

Figure supplement 1. Trends in Wikidata edits.
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databases with experimental data, such as Mass-

Bank (Horai et al., 2010; Wohlgemuth et al.,

2016) and PDB Ligand (Shin, 2004), and toxico-

logical information, such as the EPA CompTox

Dashboard (Williams et al., 2017). Additionally,

these items contain links to compound classes,

disease indications, pharmaceutical products,

and protein targets.

Pathways: Wikidata has items for almost

three thousand human biological pathways, pri-

marily from two established public pathway

repositories: Reactome (Fabregat et al., 2018)

and WikiPathways (Slenter et al., 2018). The full

details of the different pathways remain with the

respective primary sources. Our bots enter data

for Wikidata properties such as pathway name,

identifier, organism, and the list of component

genes, proteins, and chemical compounds.

Properties for contributing authors (via ORCID

properties; Sprague, 2017), descriptions and

ontology annotations are also being added for

Wikidata pathway entries.

Diseases: Wikidata has items for over 16

thousand diseases, the majority of which were

created based on imports from the Human Dis-

ease Ontology (Schriml et al., 2019), with addi-

tional disease terms added from the Monarch

Disease Ontology (Mungall et al., 2017). Dis-

ease attributes include medical classifications,

symptoms, relevant drugs, as well as subclass

relationships to higher-level disease categories.

In instances where the Human Disease Ontology

specifies a related anatomic region and/or a

causative organism (for infectious diseases), cor-

responding statements are also added.

References: Whenever practical, the prove-

nance of each statement added to Wikidata was

also added in a structured format. References

are part of the core data model for a Wikidata

statement. References can either cite the pri-

mary resource from which the statement was

retrieved (including details like version number

of the resource), or they can link to a Wikidata

item corresponding to a publication as provided

by a primary resource (as an extension of the

WikiCite project; Ayers et al., 2019), or both.

Wikidata contains over 20 million items corre-

sponding to publications across many domain

areas, including a heavy emphasis on biomedical

journal articles.

Bot automation

To programmatically upload biomedical knowl-

edge to Wikidata, we developed a series of

computer programs, or bots. Bot development

began by reaching a consensus on data

modeling with the Wikidata community, particu-

larly the Molecular Biology WikiProject. We then

coded each bot to retrieve, transform, normalize

and upload data from a primary resource to

Wikidata via the Wikidata application program-

ming interface (API).

We generalized the common code modules

into a Python library, called Wikidata Integrator

(WDI), to simplify the process of creating Wiki-

data bots (https://github.com/SuLab/WikidataIn-

tegrator; archived at Burgstaller-

Muehlbacher et al., 2020). Relative to accessing

the API directly, WDI has convenient features

that improve the bot development experience.

These features include the creation of items for

scientific articles as references, basic detection

of data model conflicts, automated detection of

items needing update, detailed logging and

error handling, and detection and preservation

of conflicting human edits.

Just as important as the initial data upload is

the synchronization of updates between the pri-

mary sources and Wikidata. We utilized Jenkins,

an open-source automation server, to automate

all our Wikidata bots. This system allows for flexi-

ble scheduling, job tracking, dependency man-

agement, and automated logging and

notification. Bots are either run on a predefined

schedule (for continuously updated resources) or

when new versions of original databases are

released.

Applications of Wikidata
Translating between identifiers from different

databases is one of the most common opera-

tions in bioinformatics analyses. Unfortunately,

these translations are most often done by

bespoke scripts and based on entity-specific

mapping tables. These translation scripts are

repetitively and redundantly written across our

community and are rarely kept up to date, nor

integrated in a reusable fashion.

An identifier translation service is a simple

and straightforward application of the biomedi-

cal content in Wikidata. Based on mapping

tables that have been imported, Wikidata items

can be mapped to databases that are both

widely- and rarely-used in the life sciences com-

munity. Because all these mappings are stored

in a centralized database and use a systematic

data model, generic and reusable translation

scripts can easily be written (Figure 2). These

scripts can be used as a foundation for more

complex Wikidata queries, or the results can be
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downloaded and used as part of larger scripts or

analyses.

There are a number of other tools that are also

aimed at solving the identifier translation use

case, including the BioThings APIs (Xin et al.,

2018), BridgeDb (van Iersel et al., 2010), Bio-

Mart (Smedley et al., 2015), UMLS (Boden-

reider, 2004), and NCI Thesaurus (de Coronado

et al., 2009). Relative to these tools, Wikidata dis-

tinguishes itself with a unique combination of the

following: an almost limitless scope including all

entities in biology, chemistry, and medicine; a

data model that can represent exact, broader,

and narrow matches between items in different

identifier namespaces (beyond semantically

imprecise ’cross-references’); programmatic

access through web services with a track record

of high performance and high availability.

Moreover, Wikidata is also unique as it is the

only tool that allows real-time community edit-

ing. So while Wikidata is certainly not complete

with respect to identifier mappings, it can be

continually improved independent of any cen-

tralized effort or curation authority. As a data-

base of assertions and not of absolute truth,

Wikidata is able to represent conflicting informa-

tion (with provenance) when, for example, differ-

ent curation authorities produce different

mappings between entities. (However, as with

any bioinformatics integration exercise, harmoni-

zation of cross-references between resources

can include relationships other than ‘exact

match’. These instances can lead to Wikidata

statements that are not explicitly declared, but

rather the result of transitive inference.)

Integrative Queries

Wikidata contains a much broader set of infor-

mation than just identifier cross-references. Hav-

ing biomedical data in one centralized data

resource facilitates powerful integrative queries

that span multiple domain areas and data sour-

ces. Performing these integrative queries

through Wikidata obviates the need to perform

many time-consuming and error-prone data inte-

gration steps.

As an example, consider a pulmonologist

who is interested in identifying candidate chemi-

cal compounds for testing in disease models

(schematically illustrated in Figure 3). They may

start by identifying genes with a genetic associa-

tion to any respiratory disease, with a particular

interest in genes that encode membrane-bound

proteins (for ease in cell sorting). They may then

look for chemical compounds that either directly

inhibit those proteins, or finding none, com-

pounds that inhibit another protein in the same

pathway. Because they have collaborators with

relevant expertise, they may specifically filter for

proteins containing a serine-threonine kinase

domain.

SELECT * WHERE { 

  values ?symbol {"CDK2" "AKT1" "RORA" "VEGFA" "COL2A1" "NGLY1"} . 

   ?gene wdt:P353 ?symbol . 

   ?gene wdt:P351 ?entrez . 

} 

 

SELECT * WHERE { 

  values ?rxnorm {"327361" "301542" "10582" "284924"} . 

   ?compound wdt:P3345 ?rxnorm . 

   ?compound wdt:P2115 ?ndfrt . 

} 

 

 

Input IDs Input ID type 

Output ID type 

Figure 2. Generalizable SPARQL template for identifier translation. SPARQL is the primary query language for accessing Wikidata content. These

simple SPARQL examples show how identifiers of any biological type can easily be translated using SPARQL queries. The top query demonstrates the

translation of a small list of gene symbols (wdt:P353) to Entrez Gene IDs (wdt:P351), while the bottom example shows conversion of RxNorm concept

IDs (wdt:P3345) to NDF-RT IDs (wdt:P2115). These queries can be submitted to the Wikidata Query Service (WDQS; https://query.wikidata.org/) to get

real-time results. Translation to and from a wide variety of identifier types can be performed using slight modifications on these templates, and

relatively simple extensions of these queries can filter mappings based on the statement references and/or qualifiers. A full list of Wikidata properties

can be found at https://www.wikidata.org/wiki/Special:ListProperties. Note that for translating a large number of identifiers, it is often more efficient to

perform a SPARQL query to retrieve all mappings and then perform additional filtering locally.
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Almost any competent informatician can per-

form the query described above by integrating

cell localization data from Gene Ontology anno-

tations, genetic associations from GWAS Cata-

log, disease subclass relationships from the

Human Disease Ontology, pathway data from

WikiPathways and Reactome, compound targets

from the IUPHAR Guide to Pharmacology, and

protein domain information from InterPro. How-

ever, actually performing this data integration is

a time-consuming and error-prone process. At

the time of publication of this manuscript, this

Wikidata query completed in less than 10 s and

reported 31 unique compounds. Importantly,

the results of that query will always be up-to-

date with the latest information in Wikidata.

This query, and other example SPARQL

queries that take advantage of the rich, hetero-

geneous knowledge network in Wikidata are

available at https://www.wikidata.org/wiki/User:

ProteinBoxBot/SPARQL_Examples. That page

additionally demonstrates federated SPARQL

queries that perform complex queries across

other biomedical SPARQL endpoints. Federated

queries are useful for accessing data that cannot

be included in Wikidata directly due to limita-

tions in size, scope, or licensing.

Crowdsourced curation

Ontologies are essential resources for structur-

ing biomedical knowledge. However, even after

the initial effort in creating an ontology is final-

ized, significant resources must be devoted to

maintenance and further development. These

tasks include cataloging cross references to

other ontologies and vocabularies, and modify-

ing the ontology as current knowledge evolves.

Community curation has been explored in a vari-

ety of tasks in ontology curation and annotation

(see, for example, Bunt et al., 2012; Gil et al.,

2017; Putman et al., 2019; Putman et al.,

2017; Wang et al., 2016). While community

curation offers the potential of distributing these

responsibilities over a wider set of scientists, it

also has the potential to introduce errors and

inconsistencies.

Here, we examined how a crowd-based cura-

tion model through Wikidata works in practice.

Specifically, we designed a hybrid system that

combines the aggregated community effort of

many individuals with the reliability of expert

curation. First, we created a system to monitor,

filter, and prioritize changes made by Wikidata

contributors to items in the Human Disease

Ontology. We initially seeded Wikidata with dis-

ease items from the Disease Ontology (DO)

starting in late 2015. Beginning in 2018, we

(ii) Protein 1  

(ii) Membrane 
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(ii) Part of 

(ii) Encodes 

(ii) Gene 1

(iii) B
io
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a
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w
a

y
 

(iv) Protein 2  

(iv) Encodes 

(iv) Gene 2 

Serine/threonine 

protein kinase 

(iv) 

(iii) Has part 

(iii) Has part 

Items relating to pathology 

Disease of 

anatomical entity 

(i) Respiratory 

System disease 

Upper 

respiratory 

tract disease 

Lower 

respiratory 

tract disease 

Immune 

system 

disease 

endocrine 

system 

disease 

(v) Physical 

interaction 

(v) Chemical 

compound 

Items relating to cell biochemistry 

(i) Genetic 

association 

SELECT DISTINCT ?compound ?compoundLabel where { 
 
  # gene has genetic association with a respiratory disease   
  ?gene       wdt:P31    wd:Q7187 . 
  ?gene       wdt:P2293  ?diseaseGA . 
  ?diseaseGA  wdt:P279*  wd:Q3286546 . 
 
  # gene product is localized to the membrane 
  ?gene     wdt:P688             ?protein . 
  ?protein  wdt:P681             ?cc . 
  ?cc       wdt:P279*|wdt:P361*  wd:Q14349455 . 
 
  # gene is involved in a pathway with another gene ("gene2") 
  ?pathway  wdt:P31   wd:Q4915012 ; 
            wdt:P527  ?gene ; 
            wdt:P527  ?gene2 . 
  ?gene2    wdt:P31   wd:Q7187 .  
 
  # gene2 product has a Ser/Thr protein kinase domain AND  
  #       known enzyme inhibitor   
  ?gene2     wdt:P688  ?protein2 . 
  ?protein2  wdt:P129  ?compound ; 
             wdt:P527  wd:Q24787419 ; 
             p:P129    ?s2 . 
  ?s2        ps:P129   ?cp2 . 
  ?compound  wdt:P31   wd:Q11173 . 
  FILTER EXISTS {?s2 pq:P366 wd:Q427492 .} 
 
  SERVICE wikibase:label { bd:serviceParam wikibase:language "en". } 
} 
 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Figure 3. A representative SPARQL query that integrates data from multiple data resources and annotation types. This example integrative query

incorporates data on genetic associations to disease, Gene Ontology annotations for cellular compartment, protein target information for compounds,

pathway data, and protein domain information. Specifically, this query (depicted schematically at right) retrieves genes that are (i) associated with a

respiratory system disease, (ii) that encode a membrane-bound protein, and (iii) that sit within the same biochemical pathway as (iv) a second gene

encoding a protein with a serine-threonine kinase domain and (v) a known inhibitor, and reports a list of those inhibitors. Aspects related to

Disease Ontology in blue; aspects related to biochemistry in red/orange; aspects related to chemistry in green. Properties are shown in italics. Real-

time query results can be viewed at https://w.wiki/6pZ.
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compared the disease data in Wikidata to the

most current DO release on a monthly basis.

In our first comparison between Wikidata and

the official DO release, we found that Wikidata

users added a total of 2030 new cross references

to GARD (Lewis et al., 2017) and MeSH

(https://www.nlm.nih.gov/mesh/meshhome.

html). These cross references were primarily

added by a small handful of users through a web

interface focused on identifier mapping (Man-

ske, 2020). Each cross reference was manually

reviewed by DO expert curators, and 2007 of

these mappings (98.9%) were deemed correct

and therefore added to the ensuing DO release.

771 of the proposed mappings could not be

easily validated using simple string matching,

and 754 (97.8%) of these were ultimately

accepted into DO. Each subsequent monthly

report included a smaller number of added cross

references to GARD and MeSH, as well as

ORDO (Maiella et al., 2018), and OMIM

(Amberger and Hamosh, 2017; McKu-

sick, 2007), and these entries were incorporated

after expert review at a high approval rate

(>90%).

Addition of identifier mappings represents

the most common community contribution, and

likely the most accessible crowdsourcing task.

However, Wikidata users also suggested numer-

ous refinements to the ontology structure,

including changes to the subclass relationships

and the addition of new disease terms. These

structural changes were more nuanced and

therefore rarely incorporated into DO releases

with no modifications. Nevertheless, they often

prompted further review and refinement by DO

curators in specific subsections of the ontology.

The Wikidata crowdsourcing curation model

is generalizable to any other external resource

that is automatically synced to Wikidata. The

code to detect changes and assemble reports is

tracked online at https://github.com/SuLab/

scheduled-bots (archived at Stupp et al., 2020)

and can easily be adapted to other domain

areas. This approach offers a novel solution for

integrating new knowledge into a biomedical

ontology through distributed crowdsourcing

while preserving control over the expert curation

process. Incorporation into Wikidata also enhan-

ces exposure and visibility of the resource by

engaging a broader community of users, cura-

tors, tools, and services.

Interactive pathway pages

In addition to its use as a repository for data, we

explored the use of Wikidata as a primary access

and visualization endpoint for pathway data. We

used Scholia, a web app for displaying scholarly

profiles for a variety of Wikidata entries, includ-

ing individual researchers, research topics,

chemicals, and proteins (Nielsen et al., 2017).

Scholia provides a more user-friendly view of

Wikidata content with context and interactivity

that is tailored to the entity type.

We contributed a Scholia profile template

specifically for biological pathways (Scho-

lia, 2019). In addition to essential items such as

title and description, these pathway pages

include an interactive view of the pathway dia-

gram collectively drawn by contributing authors.

The WikiPathways identifier property in Wikidata

informs the Scholia template to source a path-

way-viewer widget from Toolforge (https://tools.

wmflabs.org/admin/tool/pathway-viewer) that in

turn retrieves the corresponding interactive

pathway image. Embedded into the Scholia

pathway page, the widget provides pan and

zoom, plus links to gene, protein and chemical

Scholia pages for every clickable molecule on

the pathway diagram see, for example, Scho-

lia (2019). Each pathway page also includes

information about the pathway authors. The

Scholia template also generates a participants

table that shows the genes, proteins, metabo-

lites, and chemical compounds that play a role in

the pathway, as well as citation information in

both tabular and chart formats.

With Scholia template views of Wikidata, we

were able to generate interactive pathway pages

with comparable content and functionality to

that of dedicated pathway databases. Wikidata

provides a powerful interface to access these

biological pathway data in the context of other

biomedical knowledge, and Scholia templates

provide rich, dynamic views of Wikidata that are

relatively simple to develop and maintain.

Phenotype based disease diagnosis

Phenomizer is a web application that suggests

clinical diagnoses based on an array of patient

phenotypes (Köhler et al., 2009). On the back

end, the latest version of Phenomizer uses

BOQA, an algorithm that uses ontological struc-

ture in a Bayesian network (Bauer et al., 2012).

For phenotype-based disease diagnosis, BOQA

takes as input a list of phenotypes (using the

Human Phenotype Ontology [HPO;

Köhler et al., 2017]) and an association file

between phenotypes and diseases. BOQA then

suggests disease diagnoses based on semantic

similarity (Köhler et al., 2009). Here, we studied

whether phenotype-disease associations from
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Wikidata could improve BOQA’s ability to make

differential diagnoses for certain sets of pheno-

types. We modified the BOQA codebase to

accept arbitrary inputs and to be able to run

from the command line (code available at

https://github.com/SuLab/boqa; archived at

Köhler and Stupp, 2020) and also wrote a script

to extract and incorporate the phenotype-dis-

ease annotations in Wikidata (code available at

https://github.com/SuLab/Wikidata-phenomizer;

archived at Tu et al., 2020).

As of September 2019, there were 273 phe-

notype-disease associations in Wikidata that

were not in the HPO’s annotation file (which

contained a total of 172,760 associations). Based

on parallel biocuration work by our team, many

of these new associations were related to the

disease Congenital Disorder of Deglycosylation

(CDDG; also known as NGLY-1 deficiency) based

on two papers describing patient phenotypes

(Enns et al., 2014; Lam et al., 2017). To see if

the Wikidata-sourced annotations improved the

ability of BOQA to diagnose CDDG, we ran our

modified version using the phenotypes taken

from a third publication describing two siblings

with suspected cases of CDDG (Caglayan et al.,

2015). Using these phenotypes and the annota-

tion file supplemented with Wikidata-derived

associations, BOQA returned a much stronger

semantic similarity to CDDG relative to the HPO

annotation file alone (Figure 4). Analyses with

the combined annotation file reported CDDG as

the top result for each of the past 14 releases of

the HPO annotation file, whereas CDDG was

never the top result when run without the Wiki-

data-derived annotations.

This result demonstrated an example scenario

in which Wikidata-derived annotations could be

a useful complement to expert curation. This

example was specifically chosen to illustrate a

favorable case, and the benefit of Wikidata

would likely not currently generalize to a random

sampling of other diseases. Nevertheless, we

believe that this proof-of-concept demonstrates

the value of the crowd-based Wikidata model

and may motivate further community

contributions.

Drug repurposing

The mining of graphs for latent edges has been

an area of interest in a variety of contexts from

predicting friend relationships in social media

platforms to suggesting movies based on past

viewing history. A number of groups have

explored the mining of knowledge graphs to

reveal biomedical insights, with the open source

Rephetio effort for drug repurposing as one

example (Himmelstein et al., 2017). Rephetio

uses logistic regression, with features based on

graph metapaths, to predict drug repurposing

candidates.

The knowledge graph that served as the foun-

dation for Rephetio was manually assembled from

many different resources into a heterogeneous

knowledge network. Here, we explored whether

the Rephetio algorithm could successfully predict

drug indications on the Wikidata knowledge

graph. Based on the class diagram in Figure 1, we

extracted a biomedically-focused subgraph of

Wikidata with 19 node types and 41 edge types.

We performed five-fold cross validation on drug

indications withinWikidata and found that Rephe-

tio substantially enriched the true indications in

the hold-out set. We then downloaded historical

Wikidata versions from 2017 and 2018 and

observed marked improvements in performance

over time (Figure 5). We also performed this anal-

ysis using an external test set based on Drug Cen-

tral, which showed a similar improvement in

Figure 4. BOQA analysis of suspected cases of the disease Congenital Disorder of

Deglycosylation (CDDG). We used an algorithm called BOQA to rank potential diagnoses

based on clinical phenotypes. Here, clinical phenotypes from two cases of suspected CDDG

patients were extracted from a published case report (Caglayan et al., 2015). These

phenotypes were run through BOQA using phenotype-disease annotations from the Human

Phenotype Ontology (HPO) alone, or from a combination of HPO and Wikidata. This analysis

was tested using several versions of disease-phenotype annotations (shown along the x-axis).

The probability score for CDDG is reported on the y-axis. These results demonstrate that

the inclusion of Wikidata-based disease-phenotype annotations would have significantly

improved the diagnosis predictions from BOQA at earlier time points prior to their official

inclusion in the HPO annotation file. Details of this analysis can be found at https://github.

com/SuLab/Wikidata-phenomizer (archived at Tu et al., 2020).
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Rephetio results over time (Figure 5—figure sup-

plement 1).

This analysis demonstrates the value of a

community-maintained, centralized knowledge

base to which many researchers are contribut-

ing. It suggests that scientific analyses based on

Wikidata may continually improve irrespective of

any changes to the underlying algorithms, but

simply based on progress in curating knowledge

through the distributed, and largely uncoordi-

nated efforts of the Wikidata community.

Outlook
We believe that the design of Wikidata is well-

aligned with the FAIR data principles.

Findable: Wikidata items are assigned glob-

ally unique identifiers with direct cross-links into

the massive online ecosystem of Wikipedias.

Wikidata also has broad visibility within the

Linked Data community and is listed in the life

science registries FAIRsharing (https://fairshar-

ing.org/; Sansone et al., 2019) and Identifiers.

org (Wimalaratne et al., 2018). Wikidata has

already attracted a robust, global community of

contributors and consumers.

Accessible: Wikidata provides access to its

underlying knowledge graph via both an online

graphical user interface and an API, and access

includes both read- and write-privileges. Wikidata

provides database dumps at least weekly (https://

www.wikidata.org/wiki/Wikidata:Database_

download), ensuring the long-term accessibility

of the Wikidata knowledge graph independent of

the organization and web application. Finally,

Wikidata is also natively multilingual.

Interoperable: Wikidata items are extensively

cross-linked to other biomedical resources using

Universal Resource Identifiers (URIs), which unam-

biguously anchor these concepts in the Linked

Open Data cloud (Jacobsen et al., 2018). Wiki-

data is also available in many standard formats in

computer programming and knowledge manage-

ment, including JSON, XML, and RDF.

Reusable: Data provenance is directly tracked

in the reference section of the Wikidata state-

ment model. The Wikidata knowledge graph is

released under the Creative Commons Zero

(CC0) Public Domain Declaration, which explic-

itly declares that there are no restrictions on

downstream reuse and redistribution.

The open data licensing of Wikidata is partic-

ularly notable. The use of data licenses in bio-

medical research has rapidly proliferated,

presumably in an effort to protect intellectual

property and/or justify long-term grant funding

(see, for example, Reiser et al., 2016). However,

even seemingly innocuous license terms (like

requirements for attribution) still impose legal

requirements and therefore expose consumers

to legal liability. This liability is especially prob-

lematic for data integration efforts, in which the

license terms of all resources (dozens or hun-

dreds or more) must be independently tracked

and satisfied (a phenomenon referred to as

’license stacking’). Because it is released under

CC0, Wikidata can be freely and openly used in

any other resource without any restriction. This

freedom greatly simplifies and encourages

downstream use, albeit at the cost of not being

able to incorporate ontologies or datasets with

more restrictive licensing.

In addition to simplifying data licensing, Wiki-

data offers significant advantages in centralizing

the data harmonization process. Consider the

use case of trying to get a comprehensive list of

disease indications for the drug bupropion. The

National Drug File – Reference Terminology

(NDF-RT) reported that bupropion may treat nic-

otine dependence and attention deficit hyperac-

tivity disorder, the Inxight database listed major

depressive disorder, and the FDA Adverse Event

Reporting System (FAERS) listed anxiety and

bipolar disorder. While no single database listed

all these indications, Wikidata provided an inte-

grated view that enabled seamless query and

access across resources. Integrating drug indica-

tion data from these individual data resources

was not a trivial process. Both Inxight and NDF-

RT mint their own identifiers for both drugs and

diseases. FAERS uses Medical Dictionary for

Regulatory Activities (MedDRA) names for dis-

eases and free-text names for drugs (Stupp and

Su, 2018). By harmonizing and integrating all

resources in the context of Wikidata, we ensure

that those data are immediately usable by others

without having to repeat the normalization pro-

cess. Moreover, by harmonizing data at the time

of data loading, consumers of that data do not

need to perform the repetitive and redundant

work at the point of querying and analysis.

As the biomedical data within Wikidata con-

tinues to grow, we believe that its unencum-

bered use will spur the development of many

new innovative tools and analyses. These innova-

tions will undoubtedly include the machine

learning-based mining of the knowledge graph

to predict new relationships (also referred to as

knowledge graph reasoning; Das et al., 2017;

Lin et al., 2018; Xiong et al., 2017).

For those who subscribe to this vision for cul-

tivating a FAIR and open graph of biomedical
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knowledge, there are two simple ways to con-

tribute to Wikidata. First, owners of data resour-

ces can release their data using the CC0

declaration. Because Wikidata is released under

CC0, it also means that all data imported in

Wikidata must also use CC0-compatible terms

(e.g., be in the public domain). For resources

that currently use a restrictive data license pri-

marily for the purposes of enforcing attribution

or citation, we encourage the transition to CC0

(+BY), a model that "move[s] the attribution

from the legal realm into the social or ethical

realm by pairing a permissive license with a

strong moral entreaty’ (Cohen, 2013). For

resources that must retain data license restric-

tions, consider releasing a subset of data or

older versions of data using CC0. Many biomedi-

cal resources were created under or transitioned

to CC0 (in part or in full) in recent years ,

including the Disease Ontology (Schriml et al.,

2019), Pfam (El-Gebali et al., 2019), Bgee

(Bastian et al., 2008), WikiPathways

(Slenter et al., 2018), Reactome

(Fabregat et al., 2018), ECO (Chibucos et al.,

2014), and CIViC (Griffith et al., 2017).

Second, informaticians can contribute to Wiki-

data by adding the results of data parsing and

integration efforts to Wikidata as, for example,

new Wikidata items, statements, or references.

Currently, the useful lifespan of data integration

code typically does not extend beyond the imme-

diate project-specific use. As a result, that same

data integration process is likely performed

repetitively and redundantly by other informati-

cians elsewhere. If every informatician contrib-

uted the output of their effort to Wikidata, the

resulting knowledge graph would be far more

useful than the stand-alone contribution of any

single individual, and it would continually improve

in both breadth and depth over time. Indeed, the

growth of biomedical data in Wikidata is driven

not by any centralized or coordinated process,

but rather the aggregated effort and priorities of

Wikidata contributors themselves.

FAIR and open access to the sum total of bio-

medical knowledge will improve the efficiency of

biomedical research. Capturing that information

in a centralized knowledge graph is useful for

experimental researchers, informatics tool devel-

opers and biomedical data scientists. As a contin-

uously-updated and collaboratively-maintained

community resource, we believe that Wikidata

has made significant strides toward achieving this

ambitious goal.
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