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Abstract

Transcriptomics technologies are the techniques used to study an organism’s

transcriptome, the sum of all of its RNA transcripts. The information content of an organism

is recorded in the DNA of its genome and expressed through transcription. Here, mRNA

serves as a transient intermediary molecule in the information network, whilst noncoding

RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of

the total transcripts present in a cell.

The first attempts to study the whole transcriptome began in the early 1990s, and techno-

logical advances since the late 1990s have made transcriptomics a widespread discipline.

Transcriptomics has been defined by repeated technological innovations that transform the

field. There are two key contemporary techniques in the field: microarrays, which quantify a

set of predetermined sequences, and RNA sequencing (RNA-Seq), which uses high-

throughput sequencing to capture all sequences.

Measuring the expression of an organism’s genes in different tissues, conditions, or time

points gives information on how genes are regulated and reveals details of an organism’s

biology. It can also help to infer the functions of previously unannotated genes. Transcrip-

tomic analysis has enabled the study of how gene expression changes in different organ-

isms and has been instrumental in the understanding of human disease. An analysis of

gene expression in its entirety allows detection of broad coordinated trends which cannot be

discerned by more targeted assays.

This is a "Topic Page" article for PLOS Computational Biology.

History

Transcriptomics has been characterised by the development of new techniques which have

redefined what is possible every decade or so and render previous technologies obsolete (Fig

1). The first attempt at capturing a partial human transcriptome was published in 1991 and
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reported 609 mRNA sequences from the human brain [1]. In 2008, two human transcriptomes

composed of millions of transcript-derived sequences covering 16,000 genes were published

[2][3], and, by 2015, transcriptomes had been published for hundreds of individuals [4][5].

Transcriptomes of different disease states, tissues, or even single cells are now routinely gener-

ated [5][6][7]. This explosion in transcriptomics has been driven by the rapid development of

new technologies with an improved sensitivity and economy (Table 1) [8][9][10][11].

Fig 1. Transcriptomics method use over time. Published papers since 1990, referring to RNA sequencing

(black), RNA microarray (red), expressed sequence tag (blue), and serial/cap analysis of gene expression

(yellow)[12].

https://doi.org/10.1371/journal.pcbi.1005457.g001

Table 1. Comparison of contemporary methods [23] [24] [10].

Method RNA-Seq Microarray

Throughput High [10] Higher [10]

Input RNA amount Low ~ 1 ng total RNA [25] High ~ 1 μg mRNA [26]

Labour intensity High (sample preparation and data analysis) [10][23] Low [10][23]

Prior knowledge None required, though genome sequence useful [23] Reference transcripts required for probes [23]

Quantitation

accuracy

~90% (limited by sequence coverage) [27] >90% (limited by fluorescence detection accuracy) [27]

Sequence resolution Can detect SNPs and splice variants (limited by sequencing

accuracy of ~99%) [27]

Dedicated arrays can detect splice variants (limited by probe design

and cross-hybridisation) [27]

Sensitivity 10−6 (limited by sequence coverage) [27] 10−3 (limited by fluorescence detection) [27]

Dynamic range >105 (limited by sequence coverage) [28] 103−104 (limited by fluorescence saturation) [28]

Technical

reproducibility

>99% [29][30] >99% [31][32]

RNA-Seq, RNA Sequencing

https://doi.org/10.1371/journal.pcbi.1005457.t001
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Before transcriptomics

Studies of individual transcripts were being performed several decades before any transcrip-

tomics approaches were available. Libraries of silkmoth mRNAs were collected and converted

to complementary DNA (cDNA) for storage using reverse transcriptase in the late 1970s [13].

In the 1980s, low-throughput Sanger sequencing began to be used to sequence random indi-

vidual transcripts from these libraries, called expressed sequence tags (ESTs) [2][14][15][16].

The Sanger method of sequencing was predominant until the advent of high-throughput

methods such as sequencing by synthesis (Solexa/Illumina, San Diego, CA). ESTs came to

prominence during the 1990s as an efficient method to determine the gene content of an

organism without sequencing the entire genome [16]. Quantification of individual transcripts

by northern blotting, nylon membrane arrays, and later reverse transcriptase quantitative PCR

(RT-qPCR) were also popular [17][18], but these methods are laborious and can only capture

a tiny subsection of a transcriptome [12]. Consequently, the manner in which a transcriptome

as a whole is expressed and regulated remained unknown until higher-throughput techniques

were developed.

Early attempts

The word “transcriptome” was first used in the 1990s [19][20]. In 1995, one of the earliest

sequencing-based transcriptomic methods was developed, serial analysis of gene expression

(SAGE), which worked by Sanger sequencing of concatenated random transcript fragments

[21]. Transcripts were quantified by matching the fragments to known genes. A variant of

SAGE using high-throughput sequencing techniques, called digital gene expression analysis,

was also briefly used [9][22]. However, these methods were largely overtaken by high through-

put sequencing of entire transcripts, which provided additional information on transcript

structure, e.g., splice variants [9].

Development of contemporary techniques

The dominant contemporary techniques, microarrays and RNA-Seq, were developed in the

mid-1990s and 2000s [9][33]. Microarrays that measure the abundances of a defined set of

transcripts via their hybridisation to an array of complementary probes were first published in

1995 [34][35]. Microarray technology allowed the assay of thousands of transcripts simulta-

neously at a greatly reduced cost per gene and labour saving [36]. Both spotted oligonucleotide

arrays and Affymetrix (Santa Clara, California) high-density arrays were the method of choice

for transcriptional profiling until the late 2000s [12][33]. Over this period, a range of microar-

rays were produced to cover known genes in model or economically important organisms.

Advances in design and manufacture of arrays improved the specificity of probes and allowed

for more genes to be tested on a single array. Advances in fluorescence detection increased the

sensitivity and measurement accuracy for low abundance transcripts [35][37].

RNA-Seq refers to the sequencing of transcript cDNAs, in which abundance is derived

from the number of counts from each transcript. The technique has therefore been heavily

influenced by the development of high-throughput sequencing technologies [9][11]. Massively

parallel signature sequencing (MPSS) was an early example based on generating 16–20 bp

sequences via a complex series of hybridisations [38] and was used in 2004 to validate the

expression of 104 genes in Arabidopsis thaliana [39]. The earliest RNA-Seq work was published

in 2006 with 105 transcripts sequenced using the 454 technology [40]. This was sufficient

coverage to quantify relative transcript abundance. RNA-Seq began to increase in popularity

after 2008 when new Solexa/Illumina technologies (San Diego, CA) allowed 109 transcript
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sequences to be recorded [4][10][41][42]. This yield is now sufficient for accurate quantitation

of entire human transcriptomes.

Data gathering

Generating data on RNA transcripts can be achieved via either of two main principles:

sequencing of individual transcripts (ESTs, or RNA-Seq), or hybridisation of transcripts to an

ordered array of nucleotide probes (i.e., microarrays).

Isolation of RNA

All transcriptomic methods require RNA to first be isolated from the experimental organism

before transcripts can be recorded. Although biological systems are incredibly diverse, RNA

extraction techniques are broadly similar and involve the following: mechanical disruption of

cells or tissues, disruption of RNase with chaotropic salts [43], disruption of macromolecules

and nucleotide complexes, separation of RNA from undesired biomolecules including DNA,

and concentration of the RNA via precipitation from solution or elution from a solid matrix

[43][44]. Isolated RNA may additionally be treated with DNase to digest any traces of DNA

[45]. It is necessary to enrich messenger RNA as total RNA extracts are typically 98%

ribosomal RNA [46]. Enrichment for transcripts can be performed by poly-A affinity methods

or by depletion of ribosomal RNA using sequence-specific probes [47]. Degraded RNA may

affect downstream results; for example, mRNA enrichment from degraded samples will result

in the depletion of 5´ mRNA ends and uneven signal across the length of a transcript. Snap-

freezing of tissue prior to RNA isolation is typical, and care is taken to reduce exposure to

RNase enzymes once isolation is complete [44].

EST

An EST is a short nucleotide sequence generated from a single RNA transcript. RNA is first

copied as cDNA by a reverse transcriptase enzyme before the resultant cDNA is sequenced

[16]. The Sanger method of sequencing was predominant until the advent of high-throughput

methods such as sequencing by synthesis (Solexa/Illumina, San Diego, CA). Because ESTs

don’t require prior knowledge of the organism from which they come, they can also be made

from mixtures of organisms or environmental samples [16]. Although higher-throughput

methods are now used, EST libraries commonly provided sequence information for early

microarray designs; for example, a barley GeneChip was designed from 350,000 previously

sequenced ESTs [48].

Serial and Cap analysis of gene expression (SAGE/CAGE)

SAGE was a development of EST methodology to increase the throughput of the tags gener-

ated and allow some quantitation of transcript abundance (Fig 2) [21]. cDNA is generated

from the RNA but is then digested into 11 bp “tag” fragments using restriction enzymes that

cut at a specific sequence, and 11 base pairs along from that sequence. These cDNA tags are

then concatenated head-to-tail into long strands (>500 bp) and sequenced using low-through-

put, but long read length methods such as Sanger sequencing. Once the sequences are

deconvoluted into their original 11 bp tags [21]. If a reference genome is available, these tags

can sometimes be aligned to identify their corresponding gene. If a reference genome is

unavailable, the tags can simply be directly used as diagnostic markers if found to be

differentially expressed in a disease state.
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The Cap analysis of gene expression (CAGE) method is a variant of SAGE that sequences

tags from the 5´ end of an mRNA transcript only [49]. Therefore, the transcriptional start site

of genes can be identified when the tags are aligned to a reference genome. Identifying gene

start sites is of use for promoter analysis and for the cloning of full-length cDNAs.

SAGE and CAGE methods produce information on more genes than was possible when

sequencing single ESTs, but the sample preparation and data analysis are typically more labour

intensive.

Microarrays

Principles and advances. Microarrays consist of short nucleotide oligomers, known as

"probes," which are arrayed on a solid substrate (e.g., glass) [50]. Transcript abundance is

determined by hybridisation of fluorescently labelled transcripts to these probes (Fig 3) [51].

Fig 2. Summary of SAGE. Within the organisms, genes are transcribed and spliced (in eukaryotes) to produce mature mRNA transcripts

(red). The mRNA is extracted from the organism, and reverse transcriptase is used to copy the mRNA into stable double-stranded–cDNA

(ds-cDNA; blue). In SAGE, the ds-cDNA is digested by restriction enzymes (at location “X” and “X”+11) to produce 11-nucleotide “tag”

fragments. These tags are concatenated and sequenced using long-read Sanger sequencing (different shades of blue indicate tags from

different genes). The sequences are deconvoluted to find the frequency of each tag. The tag frequency can be used to report on

transcription of the gene that the tag came from.

https://doi.org/10.1371/journal.pcbi.1005457.g002
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The fluorescence intensity at each probe location on the array indicates the transcript abun-

dance for that probe sequence [51]. Microarrays require some prior knowledge of the organ-

ism of interest, for example, in the form of an annotated genome sequence or in a library of

ESTs that can be used to generate the probes for the array.

Methods. The manufacture of microarrays relies on micro and nanofabrication tech-

niques. Microarrays for transcriptomics typically fall into one of the following two broad cate-

gories: low-density spotted arrays or high-density short probe arrays [36]. Transcript presence

may be recorded with single- or dual-channel detection of fluorescent tags.

Spotted low-density arrays typically feature picolitre drops of a range of purified cDNAs

arrayed on the surface of a glass slide [52]. The probes are longer than those of high-density

Fig 3. Summary of DNA microarrays. Within the organisms, genes are transcribed and spliced (in eukaryotes) to produce mature mRNA

transcripts (red). The mRNA is extracted from the organism and reverse transcriptase is used to copy the mRNA into stable double-

stranded–cDNA (ds-cDNA; blue). In microarrays, the ds-cDNA is fragmented and fluorescently labelled (orange). The labelled fragments

bind to an ordered array of complementary oligonucleotides, and measurement of fluorescent intensity across the array indicates the

abundance of a predetermined set of sequences. These sequences are typically specifically chosen to report on genes of interest within the

organism’s genome.

https://doi.org/10.1371/journal.pcbi.1005457.g003
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arrays and typically lack the transcript resolution of high-density arrays. Spotted arrays use dif-

ferent fluorophores for test and control samples, and the ratio of fluorescence is used to calcu-

late a relative measure of abundance [53]. High-density arrays use single channel detection,

and each sample is hybridised and detected individually [54]. High-density arrays were popu-

larised by the Affymetrix GeneChip array (Santa Clara, CA), in which each transcript is quan-

tified by several short 25-mer probes that together assay one gene [55].

NimbleGen arrays (Pleasanton, CA) are high-density arrays produced by a maskless-

photochemistry method, which permits flexible manufacture of arrays in small or large num-

bers. These arrays have hundreds of thousands of 45- to 85-mer probes and are hybridised

with a one-colour labelled sample for expression analysis [56]. Some designs incorporate up to

12 independent arrays per slide.

RNA-Seq

Principles and advances. RNA-Seq refers to the combination of a high-throughput

sequencing methodology with computational methods to capture and quantify transcripts

present in an RNA extract (Fig 4) [10]. The nucleotide sequences generated are typically

around 100 bp in length, but can range from 30 bp to over 10,000 bp, depending on the

sequencing method used. RNA-Seq leverages deep sampling of the transcriptome with

many short fragments from a transcriptome to allow computational reconstruction of the

original RNA transcript by aligning reads to a reference genome or to each other (de novo

assembly) [9]. The typical dynamic range of 5 orders of magnitude for RNA-Seq is a key

advantage over microarray transcriptomes. In addition, input RNA amounts are much

lower for RNA-Seq (nanogram quantity) compared to microarrays (microgram quantity),

which allowed finer examination of cellular structures, down to the single-cell level when

combined with linear amplification of cDNA [25]. Theoretically, there is no upper limit of

quantification in RNA-Seq, and background signal is very low for 100 bp reads in nonrepe-

titive regions [10].

RNA-Seq may be used to identify genes within a genome or identify which genes are active

at a particular point in time, and read counts can be used to accurately model the relative gene

expression level. RNA-Seq methodology has constantly improved, primarily through the

development of DNA sequencing technologies to increase throughput, accuracy, and read

length [57]. Since the first descriptions in 2006 and 2008 [40][58], RNA-Seq has been rapidly

adopted and overtook microarrays as the dominant transcriptomics technique in 2015 [59].

The quest for transcriptome data at the level of individual cells has driven advances in

RNA-Seq library preparation methods, resulting in dramatic advances in sensitivity. Single-

cell transcriptomes are now well described and have even been extended to in situ RNA-Seq

where transcriptomes of individual cells are directly interrogated in fixed tissues [60].

Methods. RNA-Seq was established in concert with the rapid development of a range of

high-throughput DNA sequencing technologies [61]. However, before the extracted RNA

transcripts are sequenced, several key processing steps are performed. Methods differ in the

use of transcript enrichment, fragmentation, amplification, single or paired-end sequencing,

and whether to preserve strand information.

The sensitivity of an RNA-Seq experiment can be increased by enriching classes of RNA

that are of interest and depleting known abundant RNAs. The mRNA molecules can be sepa-

rated by using oligonucleotides probes which bind their poly-A tails. Alternatively, ribo-deple-

tion can be used to specifically remove abundant but uninformative ribosomal RNAs (rRNAs)

by hybridisation to probes tailored to the taxon’s specific rRNA sequences (e.g., mammal

rRNA, plant rRNA). However, ribo-depletion can also introduce some bias via nonspecific
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depletion of off-target transcripts [62]. Small RNAs such as microRNAs, can be purified based

on their size by gel electrophoresis and extraction.

Because mRNAs are longer than the read-lengths of typical high-throughput sequencing

methods, transcripts are usually fragmented prior to sequencing. The fragmentation method is

a key aspect of sequencing library construction [63]. It may incorporate chemical hydrolysis,

nebulisation, or sonication of RNA, or utilise simultaneous fragmentation, and tagging of

cDNA by transposase enzymes.

During preparation for sequencing, cDNA copies of transcripts may be amplified by PCR

to enrich for fragments that contain the expected 5´ and 3´ adapter sequences [64]. Amplifica-

tion is also used to allow sequencing of very low-input amounts of RNA, down to as little as 50

pg in extreme applications [65]. Spike-in controls can be used to provide quality control assess-

ment of library preparation and sequencing, in terms of guanine-cytosine content, fragment

length, as well as the bias due to fragment position within a transcript [66]. Unique molecular

Fig 4. Summary of RNA sequencing. Within the organisms, genes are transcribed and spliced (in eukaryotes) to produce mature mRNA

transcripts (red). The mRNA is extracted from the organism, fragmented and copied into stable double-stranded–cDNA (ds-cDNA; blue).

The ds-cDNA is sequenced using high-throughput, short-read sequencing methods. These sequences can then be aligned to a reference

genome sequence to reconstruct which genome regions were being transcribed. These data can be used to annotate where expressed

genes are, their relative expression levels, and any alternative splice variants.

https://doi.org/10.1371/journal.pcbi.1005457.g004
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identifiers (UMIs) are short random sequences that are used to individually tag sequence frag-

ments during library preparation so that every tagged fragment is unique [67]. UMIs provide

an absolute scale for quantification and the opportunity to correct for subsequent amplifica-

tion bias introduced during library construction and accurately estimate the initial sample

size. UMIs are particularly well-suited to single-cell RNA-Seq transcriptomics, in which the

amount of input RNA is restricted and extended amplification of the sample is required [68]

[69][70].

Once the transcript molecules have been prepared, they can be sequenced in just one direc-

tion (single-end) or both directions (paired-end). A single-end sequence is usually quicker to

produce, cheaper than paired-end sequencing, and sufficient for quantification of gene expres-

sion levels. Paired-end sequencing produces more robust alignments and/or assemblies, which

is beneficial for gene annotation and transcript isoform discovery [10]. Strand-specific RNA-

Seq methods preserve the strand information of a sequenced transcript [71]. Without strand

information, reads can be aligned to a gene locus, but do not inform in which direction the

gene is transcribed. Stranded-RNA-Seq is useful for deciphering transcription for genes that

overlap in different directions, and to make more robust gene predictions in nonmodel organ-

isms [71].

Currently, RNA-Seq relies on copying of RNA molecules into cDNA molecules prior to

sequencing; hence, the subsequent platforms are the same for transcriptomic and genomic

data (Table 2). Consequently, the development of DNA sequencing technologies has been a

defining feature of RNA-Seq [73][75][76]. Direct sequencing of RNA using nanopore

sequencing represents a current state-of-the-art RNA-Seq technique in its infancy (in pre-

release beta testing as of 2016) [77][78]. However, nanopore sequencing of RNA can detect

modified bases that would be otherwise masked when sequencing cDNA and also eliminates

amplification steps that can otherwise introduce bias [11][79].

The sensitivity and accuracy of an RNA-Seq experiment are dependent on the number of

reads obtained from each sample. A large number of reads are needed to ensure sufficient cover-

age of the transcriptome, enabling detection of low abundance transcripts. Experimental design

is further complicated by sequencing technologies with a limited output range, the variable effi-

ciency of sequence creation, and variable sequence quality. Added to those considerations is

that every species has a different number of genes and therefore requires a tailored sequence

yield for an effective transcriptome. Early studies determined suitable thresholds empirically,

but as the technology matured, suitable coverage is predicted computationally by transcriptome

saturation. Somewhat counterintuitively, the most effective way to improve detection of differ-

ential expression in low expression genes is to add more biological replicates, rather than adding

Table 2. Sequencing technology platforms commonly used for RNA-Seq [72][73].

Platform (Manufacturer) Commercial

release

Typical read

length

Maximum

throughput per run

Single read

accuracy

RNA-Seq runs deposited in the

NCBI SRA (Oct 2016) [74]

454 (Roche, Basel, Switzerland) 2005 700 bp 0.7 Gbp 99.9% 3548

Illumina (Illumina, San Diego, CA,

USA)

2006 50–300 bp 900 Gbp 99.9% 362903

SOLiD (Thermo Fisher Scientific,

Waltham, MA, USA)

2008 50 bp 320 Gbp 99.9% 7032

Ion Torrent (Thermo Fisher Scientific,

Waltham, MA, USA)

2010 400 bp 30 Gbp 98% 1953

PacBio (Pacbio, Menlo Park, CA,

USA)

2011 10,000 bp 2 Gbp 87% 160

NCBI, National Center for Biotechnology Information; SRA, Sequence Read Archive; RNA-Seq, RNA sequencing.

https://doi.org/10.1371/journal.pcbi.1005457.t002
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more reads [80]. The current benchmarks recommended by the Encyclopedia of DNA

Elements (ENCODE) Project are for 70-fold exome coverage for standard RNA-Seq and up to

500-fold exome coverage to detect rare transcripts and isoforms [81][82][83].

Data analysis

Transcriptomics methods are highly parallel and require significant computation to produce

meaningful data for both microarray and RNA-Seq experiments. Microarray data are recorded

as high-resolution images, requiring feature detection and spectral analysis. Microarray raw

image files are each about 750 MB in size, while the processed intensities are around 60 MB in

size. Multiple short probes matching a single transcript can reveal details about the intron-

exon structure, requiring statistical models to determine the authenticity of the resulting sig-

nal. RNA-Seq studies can produce >109 of short DNA sequences, which must be aligned to

reference genomes comprised of millions to billions of base pairs. De novo assembly of reads

within a dataset requires the construction of highly complex sequence graphs. RNA-Seq opera-

tions are highly repetitious and benefit from parallelised computation, but modern algorithms

mean consumer computing hardware is sufficient for simple transcriptomics experiments that

do not require de novo assembly of reads. A human transcriptome could be accurately cap-

tured by using RNA-Seq with 30 million 100 bp sequences per sample [84][85]. This example

would require approximately 1.8 gigabytes of disk space per sample when stored in a com-

pressed fastq format. Processed count data for each gene would be much smaller, equivalent to

processed microarray intensities. Sequence data may be stored in public repositories, such as

the Sequence Read Archive (SRA) [86]. RNA-Seq datasets can be uploaded via the Gene

Expression Omnibus.

Image processing

Microarray image processing must correctly identify the regular grid of features within an

image and independently quantify the fluorescence intensity for each feature (Fig 5). Image

Fig 5. Microarray and sequencing flow cell. Microarrays and RNA sequencing (RNA-Seq) rely on image

analysis in different ways. In a microarray chip, each spot on a chip is a defined oligonucleotide probe, and

fluorescence intensity directly detects the abundance of a specific sequence (Affymetrix, Santa Clara, CA). In

a high-throughput sequencing flow cell, spots are sequenced one nucleotide at a time, with the colour at each

round indicating the next nucleotide in the sequence (Illumina Hiseq, San Diego, CA). Other variations of

these techniques use more or fewer colour channels.

https://doi.org/10.1371/journal.pcbi.1005457.g005
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artefacts must be additionally identified and removed from the overall analysis [87]. Fluores-

cence intensities directly indicate the abundance of each sequence because the sequence of

each probe on the array is already known.

The first steps of RNA-seq also include similar image processing, however conversion of

images to sequence data is typically handled automatically by the instrument software. The

Illumina sequencing-by-synthesis method results in a random or ordered array of clusters dis-

tributed over the surface of a flow cell. The flow cell is imaged up to four times during each

sequencing cycle, with tens to hundreds of cycles in total. Flow cell clusters are analogous to

microarray spots and must be correctly identified during the early stages of the sequencing

process. In Roche‘s Pyrosequencing method, the intensity of emitted light determines the

number of consecutive nucleotides in a homopolymer repeat. There are many variants on

these methods, each with a different error profile for the resulting data [88].

RNA-Seq data analysis

RNA-Seq experiments generate a large volume of raw sequence reads, which have to be

processed to yield useful information. Data analysis usually requires a combination of

bioinformatics software tools that vary according to the experimental design and goals. The

process can be broken down into the following four stages: quality control, alignment, quanti-

fication, and differential expression [89]. Most popular RNA-Seq programs are run from a

command-line interface, either in a Unix environment or within the R/Bioconductor statistical

environment [90].

Quality control. Sequence reads are not perfect, so the accuracy of each base in the

sequence needs to be estimated for downstream analyses. Raw data are examined for high

quality scores for base calls, guanine-cytosine content matches the expected distribution, the

over representation of particularly short sequence motifs (k-mers), and an unexpectedly high

read duplication rate [85]. Several options exist for sequence quality analysis, including the

FastQC and FaQCs software packages [91][92]. Abnormalities identified may be removed by

trimming or tagged for special treatment during later processes.

Alignment. In order to link sequence read abundance to expression of a particular gene,

transcript sequences are aligned to a reference genome, or de novo aligned to one another if

no reference is available. The key challenges for alignment software include sufficient speed to

permit>109 of short sequences to be aligned in a meaningful timeframe, flexibility to recog-

nise and deal with intron splicing of eukaryotic mRNA, and correct assignment of reads that

map to multiple locations. Software advances have greatly addressed these issues, and increases

in sequencing read length are further reducing multimapping reads. A list of currently avail-

able high-throughput sequence aligners is maintained by the EBI [93][94].

Alignment of primary transcript mRNA sequences derived from eukaryotes to a reference

genome requires specialised handling of intron sequences, which are absent from mature

mRNA. Short read aligners perform an additional round of alignments specifically designed to

identify splice junctions, informed by canonical splice site sequences and known intron splice

site information. Identification of intron splice junctions prevents reads from being misaligned

across splice junctions or erroneously discarded, allowing for more reads to be aligned to the

reference genome and improving the accuracy of gene expression estimates. Because gene

regulation may occur at the mRNA isoform level, splice-aware alignments also permit detec-

tion of isoform abundance changes that would otherwise be lost in a bulked analysis [95].

De novo assembly can be used to align reads to one another to construct full-length tran-

script sequences without the use of a reference genome (Table 3) [96]. Challenges particular to

de novo assembly include larger computational requirements compared to a reference-based
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transcriptome, additional validation of gene variants or fragments, additional annotation of

assembled transcripts. The first metrics used to describe transcriptome assemblies, such as

N50, have been shown to be misleading [97], and subsequently improved evaluation methods

are now available [98][99]. Annotation-based metrics are better assessments of assembly com-

pleteness, such as contig reciprocal best hit count. Once assembled de novo, the assembly can

be used as a reference for subsequent sequence alignment methods and quantitative gene

expression analysis.

Quantification. Quantification of sequence alignments may be performed at the gene,

exon, or transcript level. Typical outputs include a table of reads counts for each feature sup-

plied to the software, for example, for genes in a general feature format file. Gene and exon

read counts may be calculated easily using the HTSeq software package, for example [109].

Quantitation at the transcript level is more complicated and requires probabilistic methods to

estimate transcript isoform abundance from short read information, for example, using cuf-

flinks software [95]. Reads that align equally well to multiple locations must be identified and

either removed, aligned to one of the possible locations, or aligned to the most probable

location.

Some quantification methods can circumvent the need for an exact alignment of a read to a

reference sequence all together. The kallisto method combines pseudoalignment and quantifi-

cation into a single step that runs 2 orders of magnitude faster than comparable methods such

as tophat/cufflinks, with less computational burden [110].

Differential expression. Once quantitative counts of each transcript are available,

differential gene expression is then measured by normalising, modelling, and statistically ana-

lysing the data (Fig 6). Examples of dedicated software are described in Table 4. Most read a

table of genes and read counts as their input, but some, such as cuffdiff, will accept binary

alignment map format read alignments as input. The final outputs of these analyses are gene

lists with associated pair-wise tests for differential expression between treatments and the

probability estimates of those differences.

Validation

Transcriptomic analyses may be validated using an independent technique, for example,

quantitative PCR (qPCR), which is recognisable and statistically assessable [115]. Gene expres-

sion is measured against defined standards both for the gene of interest and control genes. The

Table 3. RNA-Seq de novo assembly software.

Software (Manufacturer) Released Last

Updated

Resource

load

Strengths and weaknesses

Velvet-Oases [100][101] 2008 2011 Heavy The original short read assembler, now largely superseded.

SOAPdenovo-trans [102] 2011 2015 Moderate Early short read assembler, updated for transcript assembly.

Trans-ABySS [103] 2010 2016 Moderate Short reads, large genomes, MPI-parallel version available.

Trinity [104][105] 2011 2017 Moderate Short reads, large genomes, memory intensive.

miraEST [106] 1999 2016 Moderate Repetitive sequences, hybrid data input, wide range of

sequence platforms accepted.

Newbler [107] 2004 2012 Heavy Specialised for Roche 454 sequence, homo-polymer error

handling.

CLC genomics workbench (Qiagen—Venlo,

Netherlands) [108]

2008 2014 Light Graphical user interface, hybrid data.

MPI, Message Passing Interface; RNA-Seq, RNA sequencing.

https://doi.org/10.1371/journal.pcbi.1005457.t003
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Fig 6. identification of gene co-expression patterns across different samples. Heatmap Each column

contains the measurements for gene expression change for a single sample. Relative gene expression is

indicated by colour: high-expression (red), median-expression (white) and low-expression (blue). Genes and

samples with similar expression profiles can be automatically grouped (left and top trees). Samples may be

different individuals, tissues, environments, or health conditions. In this example, expression of gene set 1 is high

and expression of gene set 2 is low in samples 1, 2, and 3.

https://doi.org/10.1371/journal.pcbi.1005457.g006
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measurement by qPCR is similar to that obtained by RNA-Seq wherein a value can be calcu-

lated for the concentration of a target region in a given sample. qPCR is, however, restricted to

amplicons smaller than 300 bp, usually toward the 3´ end of the coding region, avoiding the

3´ unstralated region (3´UTR) [116]. If validation of transcript isoforms is required, an inspec-

tion of RNA-Seq read alignments should indicate where qPCR primers might be placed for

maximum discrimination. The measurement of multiple control genes along with the genes of

interest produces a stable reference within a biological context [117]. qPCR validation of

RNA-Seq data has generally shown that different RNA-Seq methods are highly correlated [58]

[118][119].

Functional validation of key genes is an important consideration for post transcriptome

planning. Observed gene expression patterns may be functionally linked to a phenotype by an

independent knock-down/rescue study in the organism of interest.

Applications

Diagnostics and disease profiling

Transcriptomic strategies have seen broad application across diverse areas of biomedical

research, including disease diagnosis and profiling [10]. RNA-Seq approaches have allowed for

the large-scale identification of transcriptional start sites and uncovered alternative promoter

usage and novel splicing alterations. These regulatory elements are important in human dis-

ease, and therefore, defining such variants is crucial to the interpretation of disease-association

studies [120]. RNA-Seq can also identify disease-associated single nucleotide polymorphisms

(SNP), allele-specific expression, and gene fusions, contributing to our understanding of dis-

ease causal variants [121].

Retrotransposons are transposable elements which proliferate within eukaryotic genomes

through a process involving reverse transcription. RNA-Seq can provide information about

the transcription of endogenous retrotransposons that may influence the transcription of

neighbouring genes by various epigenetic mechanisms that lead to disease [122]. Similarly, the

potential for using RNA-Seq to understand immune-related disease is expanding rapidly due

to the ability to dissect immune cell populations and to sequence T cell and B cell receptor rep-

ertoires from patients [123][124].

Human and pathogen transcriptomes

RNA-Seq of human pathogens has become an established method for quantifying gene expres-

sion changes, identifying novel virulence factors, predicting antibiotic resistance, and unveil-

ing host-pathogen immune interactions [125][126]. A primary aim of this technology is to

develop optimised infection control measures and targeted, individualised treatment [124].

Transcriptomic analysis has predominantly focused on either the host or the pathogen.

Dual RNA-Seq has recently been applied to simultaneously profile RNA expression in both the

Table 4. RNA-Seq differential gene expression software.

Software Environment Specialisation

Cuffdiff2 [111] Unix-based Transcript analysis at isoform-level

EdgeR [112] R/Bioconductor Any count-based genomic data

DEseq2 [113] R/Bioconductor Flexible data types, low replication

Limma/Voom [114] R/Bioconductor Microarray or RNA-Seq data, isoform analysis, flexible experiment design

RNA-Seq, RNA sequencing.

https://doi.org/10.1371/journal.pcbi.1005457.t004
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pathogen and host throughout the infection process. This technique enables the study of the

dynamic response and interspecies gene regulatory networks in both interaction partners

from initial contact through to invasion and the final persistence of the pathogen or clearance

by the host immune system [127][128].

Responses to environment

Transcriptomics allows for the identification of genes and pathways that respond to and coun-

teract biotic and abiotic environmental stresses. The nontargeted nature of transcriptomics

allows for the identification of novel transcriptional networks in complex systems. For exam-

ple, comparative analysis of a range of chickpea lines at different developmental stages identi-

fied distinct transcriptional profiles associated with drought and salinity stresses, including

identifying the role of transcript isoforms of Apetela 2 and Ethylene-Responsive Element

Binding Protein (AP2-EREBP) [129]. Investigation of gene expression during biofilm forma-

tion by the fungal pathogen Candida albicans revealed a coregulated set of genes critical for

biofilm establishment and maintenance [130].

Transcriptomic profiling also provides crucial information on mechanisms of drug

resistance. Analysis of over a thousand Plasmodium falciparum isolates identified that upregu-

lation of the unfolded protein response and slower progression through the early stages of the

asexual intraerythrocytic developmental cycle were associated with artemisinin resistance in

isolates from Southeast Asia [131].

Gene function annotation

All transcriptomic techniques have been particularly useful in identifying the functions of

genes and identifying those responsible for particular phenotypes. Transcriptomics of Arabi-
dopsis ecotypes that hyperaccumulate metals correlated genes involved in metal uptake, toler-

ance, and homeostasis with the phenotype [132]. Integration of RNA-Seq datasets across

different tissues has been used to improve annotation of gene functions in commercially

important organisms (e.g., cucumber) [133] or threatened species (e.g., koala) [134].

Assembly of RNA-Seq reads is not dependent on a reference genome [104], and it is so

ideal for gene expression studies of nonmodel organisms with nonexisting or poorly developed

genomic resources. For example, a database of SNPs used in Douglas fir breeding programs

was created by de novo transcriptome analysis in the absence of a sequenced genome [135].

Similarly, genes that function in the development of cardiac, muscle, and nervous tissue in lob-

ster were identified by comparing the transcriptomes of the various tissue types without use of

a genome sequence [136]. RNA-Seq can also be used to identify previously unknown protein

coding regions in existing sequenced genomes.

Noncoding RNA

Transcriptomics is most commonly applied to the mRNA content of the cell. However, the

same techniques are equally applicable to noncoding RNAs that are not translated into a pro-

tein, but instead, have direct functions (e.g., roles in protein translation, DNA replication,

RNA splicing, and transcriptional regulation) [137][138][139][140]. Many of these noncoding

RNAs affect disease states, including cancer, cardiovascular, and neurological diseases [141].

Transcriptome databases

Transcriptomics studies generate large amounts of data that has potential applications far

beyond the original aims of an experiment. As such, raw or processed data may be deposited
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into public databases to ensure their utility for the broader scientific community (Table 5). For

example, as of 2016, the Gene Expression Omnibus contained millions of experiments.

Conclusions

Transcriptomics has revolutionised our understanding of how genomes are expressed. Over

the last three decades, new technologies have redefined what is possible to investigate, and

integration with other omics technologies is giving an increasingly integrated view of the com-

plexities of cellular life. The plummeting cost of transcriptomics studies have made them possi-

ble for small laboratories, and large-scale transcriptomics consortia are able to undertake

experiments comparing transcriptomes of thousands of organisms, tissues, or environmental

conditions. This trend is likely to continue as sequencing technologies improve.
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