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Abstract. We show that any system of ODEs can be modified whilst preserv-
ing its homogeneous Darboux polynomials. We employ the result to generalise

a hierarchy of integrable Lotka-Volterra systems.

1. Introduction. We are concerned with systems of Ordinary Differential Equa-
tions (ODEs),

ẋ = f(x), (1)

where ẋ denotes the time derivative of a vector x. A Darboux polynomial (or second

integral) of (1) is a polynomial P (x) such that Ṗ = C(x)P for some function C
which is called the cofactor of P [6]. Darboux polynomials are important as the
existence of sufficiently many Darboux polynomials implies the existence of a first
integral, cf. Theorems 2.2 and 2.3 in [6]. Recently their use was extended to the
discrete setting in [2].

In this paper, we propose the following generalisation of any ODE system of the
form (1):

ẋ = f(x) + b(x, t)x, (2)

where b is a scalar function of x, t. We will prove that if P is a homogeneous
Darboux polynomial for (1), then P is also a Darboux polynomial for (2) with a
modified cofactor.

We show that in several examples the above generalisation preserves the integra-
bility of the ODE, e.g. this is the case for generalisations of: (i) the 2-dimensional
system

ẋ = x2 + 2xy + 3y2,

ẏ = 2y(2x+ y),
(3)

found in [4, Appendix], (ii) the 4-dimensional Lotka-Volterra (LV) system

ẋ1 = x1(+x2 + x3 + x4)

ẋ2 = x2(−x1 + x3 + x4)

ẋ3 = x3(−x1 − x2 + x4)

ẋ4 = x4(−x1 − x2 − x3),

(4)
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as well as (iii) higher dimensional LV systems found in [9]. For the LV systems we
show that both Liouville integrability and superintegrability are preserved under
certain generalisations given by (2).

2. Darboux polynomials and integrals/integrability. Note that if P1 and P2

are Darboux polynomials with cofactors C1 and C2 respectively, the product P a
1 P

b
2

is a Darboux polynomial with cofactor aC1 +bC2. This implies that linear relations
between cofactors give rise to integrals.

For the 2-dimensional system (3) three Darboux polynomials

P1 = x+ y, P2 = x− y, P3 = y, (5)

with cofactors given by

C1 = x+ 5y, C2 = x− y, C3 = 4x+ 2y, (6)

respectively, were given in [6, Example 2.21]. As these cofactors satisfy the linear
relation C1 + 3C2 − C3 = 0, an integral is given by

I = P1P
3
2P
−1
3 =

(x+ y)(x− y)3

y
.

The 4-dimensional LV system (4) admits linear Darboux polynomials of the form

Pi,j =

j∑
k=i

xk, with 1 ≤ i ≤ j ≤ 4,

with corresponding cofactor

Ci,j = −
i−1∑
k=1

xk +

n∑
k=j+1

xk.

Because

C1,2 − C3,3 + C4,4 = (x3 + x4)− (−x1 − x2 + x4) + (−x1 − x2 − x3) = 0,

the rational function

F = P1,2P
−1
3,3P4,4 = (x1 + x2)

x4
x3

is an integral. And similarly,

C3,4 − C2,2 + C1,1 = (−x1 − x2)− (−x1 + x3 + x4) + (x2 + x3 + x4) = 0

yields the rational integral

G = P3,4P
−1
2,2P1,1 = (x3 + x4)

x1
x2
.

As C1,4 = 0, the function

H = P1,4 = x1 + x2 + x3 + x4

provides a third integral. The functions F,G,H are functionally independent, as
their gradients are linearly independent, and therefore the LV system (4) is superin-
tegrable. The variables ui = P1,i provide a separation of variables, i.e. each variable
satisfies the same differential equation u̇i = ui(H − ui) which can be explicitly in-
tegrated, cf. [1]
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The system (4) is also a Hamiltonian system, with Hamiltonian H and quadratic
Poisson bracket, of rank 4,

{xi, xj} = xixj , i < j. (7)

As both F and G Poisson commute with H, the systems F,H and G,H, and hence
the vector field (4), are Liouville integrable, cf. [9].

3. Generalising ODE systems. The following result is quite general, it gener-
alises any ODE system (1) whilst preserving all homogeneous Darboux polynomials.

Theorem 3.1. Let P (x) be a homogeneous Darboux polynomial of degree d with
cofactor C(x) for the system of ODEs ẋ = f(x). Then P is a Darboux polynomial
for the system ẋ = f(x) + b(x, t)x, with cofactor C + db(x, t), where b is a scalar
function of x, t.

Proof. As P is homogeneous of degree d, we have x · ∇P = dP . As P is a Darboux
polynomial for ẋ = f(x), we have Ṗ = ∇P · f = CP . For the generalised system
we then have

Ṗ = ∇P · (f + bx) = CP + bdP = (C + db)P.

We first apply Theorem 3.1 to the 2-dimensional system (3). With b = ax + cy
we obtain a generalisation of (3),

ẋ = x2 + 2xy + 3y2 + (ax+ cy)x,

ẏ = 2y(2x+ y) + (ax+ cy)y.
(8)

Each Pi, i = 1, 2, 3, given by (5), is a linear Darboux polynomial for the system (8)
with modified cofactor C ′i = Ci + ax+ cy, where Ci is given by (6). As

(c− a− 2)C ′1 − (a+ c+ 6)C ′2 + 2(a+ 1)C ′3 = 0,

the function

K = P c−a−2
1 P

−(a+c+6)
2 P

2(a+1)
3 =

(x+ y)c−a−2y2(a+1)

(x− y)a+c+6
.

is a first integral of (8).

Applying Theorem 3.1 to the 4-dimensional system (4), taking b to be a constant,
yields

ẋ1 = x1(b+ x2 + x3 + x4)

ẋ2 = x2(b− x1 + x3 + x4)

ẋ3 = x3(b− x1 − x2 + x4)

ẋ4 = x4(b− x1 − x2 − x3),

(9)

whose Darboux polynomials Pi,j now have cofactors C ′i,j = Ci,j + b. In particular,
H = P1,4 is no longer an integral, and the linear combinations C ′1,2 −C ′3,3 +C ′4,4 =
C ′3,4 − C ′2,2 + C ′1,1 = b do not vanish. We have to subtract the cofactor C ′1,4 = b,
which corresponds to dividing by H. This yields two integrals

F ′ =
(x1 + x2)x4

(x1 + x2 + x3 + x4)x3
,
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and

G′ =
(x3 + x4)x2

(x1 + x2 + x3 + x4)x1
.

The new system (9) is still Hamiltonian, with the same bracket (7). The new
Hamiltonian

H ′ = H − b ln

(
x1x3
x2x4

)
is no longer rational. The integrals F ′, G′, H ′ are functionally independent, and
so the system (9) is superintegrable. Moreover, the functions F ′ and G′ Poisson
commute with H ′, hence the systems F ′, H ′ and G′, H ′ are Liouville integrable. In
the next section we generalise this example to arbitrary even dimensions.

4. Integrability of a generalised n-dimensional LV system. In [9] the system
of ODEs

ẋi = xi

∑
j>i

xj −
∑
j<i

xj

 , i = 1, . . . , n, (10)

arose as a subsystem of the quadratic vector fields associated with multi-sums of
products, and it was shown to be superintegrable as well as Liouville integrable.
Integrable generalisations of the system (10) have been obtained in [3, 5, 7]. The
generalisation

ẋi = xi

b+
∑
j>i

xj −
∑
j<i

xj

 , i = 1, . . . , n, (11)

of which (9) is a special case, seems to be new. In [9] the LV system of ODEs (10),
with n = 2r even, was shown to admit the integrals, for k = 1, . . . , r,

Fk = (x1 + x2 + · · ·+ x2k)
x2k+2x2k+4 · · ·xn
x2k+1x2k+3 · · ·xn−1

,

Gk = (xn−2k+1 + xn−2k+2 + · · ·+ xn)
x1x3 · · ·xn−2k−1
x2x4 · · ·xn−2k

,
(12)

The n − 1 integrals F1, . . . , Fr−1, G1, . . . , Gr−1, Fr = Gr = H = P1,n were proven
to be independent, and the sets {F1, . . . , Fr−1, H}, {G1, . . . , Gr−1, H} were proven
to pairwise Poisson commute with respect to the bracket (7), which has rank n.
Similar results were obtained for n odd (here the rank of (7) is n− 1), establishing
the superintegrability as well as Liouville integrability of the n-dimensional LV
system (10) for all n. We consider a generalisation of the even-dimensional system.

Theorem 4.1. The system

ẋi = xi(b+
∑
j>i

xj −
∑
j<i

xj), i = 1, . . . , n, (13)

where n = 2r is even, is both superintegrable and Liouville integrable.

Proof. The system is Hamiltonian with Hamiltonian

H ′ = H − bS, with S = ln

(
x1x3 · · ·xn−1
x2x4 · · ·xn

)
.

According to Theorem 3.1 the functions (12) and H are Darboux functions (func-

tions F such that Ḟ = C(x)F for some C) with cofactor b. Therefore, n−2 integrals
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are given by F ′i = Fi/H ,G′i = Gi/H, i = 1, . . . , r− 1. Together with H ′ they form
a set of n− 1 integrals,

S = {F ′1, . . . , F ′r−1, G′1, . . . , G′r−1, H ′},

for which we will prove functional independence, thereby showing the superinte-
grability of (13). The trick is to add a function, H, and show that the bigger set
S ∪ {H} is functionally independent, by showing the determinant of the Jacobian
to be non-zero, which is done using LU-decomposition, cf. [8, Chapter 5]. We may
perform row operations, which we do by taking linear combinations of the functions
H and H ′ and ordering the functions in a particular way:

Z =
(
2(H −H ′/2)/n2, H/n2, G′n/2−1, F

′
1, G

′
n/2−2, F

′
2, . . . , G

′
1, F

′
n/2−1

)
.

We then consider the scaled Jacobian J = n2Jac(Z)/2 in the point x1 = x2 = · · · =
xn = b = 1. The first two functions in Z are chosen so the first two rows in J are
given by Ji,j = i+ j + 1 mod 2 (i = 1, 2).

We conveniently introduce two sets of elementary functions

Pi,j = xi + xi+1 + · · ·+ xj , Qi,j = x−1i xi+1x
−1
i+2 · · ·x

(−1)j−i+1

j ,

so that e.g. F ′k =
P1,2kQ2k+1,n

P1,n
. As

∂F ′k
∂xi

=


Q2k+1,n

P1,n
− P1,2kQ2k+1,n

P 2
1,n

i ≤ 2k

−(−1)i
P1,2kQ2k+1,n

xiP1,n
− P1,2kQ2k+1,n

P 2
1,n

i > 2k,

we have

n2

2

∂F ′k
∂xi

|x=1=

{
n
2 − k i ≤ 2k

−(−1)ikn− k i > 2k.

In the point 1 the gradient of Gk is the gradient of Fk read from right to left. This
yields, for i > 2

Ji,j =


−((−1)jn+ 1)(n− i+ 1)/2 i ≡ 1, j < i

(i− 1)/2 i ≡ 1, j ≥ i
(n− i+ 2)/2 i ≡ 0, j < i− 1

((−1)jn− 1)(i− 2)/2 i ≡ 0, j ≥ i− 1,

where (here and in the sequel) the equivalence is taken modulo 2. Explicitly, for
n = 10 we have

J =



1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
36 −44 1 1 1 1 1 1 1 1
4 4 −11 9 −11 9 −11 9 −11 9
27 −33 27 −33 2 2 2 2 2 2
3 3 3 3 −22 18 −22 18 −22 18
18 −22 18 −22 18 −22 3 3 3 3
2 2 2 2 2 2 −33 27 −33 27
9 −11 9 −11 9 −11 9 −11 4 4
1 1 1 1 1 1 1 1 −44 36


.
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We define lower and upper triangular matrices

Li,k =


Mi,k k = 1, 2

1 k = i

k/(n− k) 1 ≡ i = k + 1, k > 2

0 otherwise,

Uk,j =



Mk,j k = 1, 2

−n(n− k)/2 k ≡ 1, j ≡ 1, j ≥ k
n(n− k + 2)/2 k ≡ 1, j ≡ 0, j ≥ k
−n2/(n− k + 1) k ≡ 0, j ≡ 0, j ≥ k
0 k ≡ 0, j ≡ 0, j ≥ k or k > j.

When n = 10 we have

L =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
36 −44 1 0 0 0 0 0 0 0
4 4 3

7 1 0 0 0 0 0 0
27 −33 0 0 1 0 0 0 0 0
3 3 0 0 1 1 0 0 0 0
18 −22 0 0 0 0 1 0 0 0
2 2 0 0 0 0 7

3 1 0 0
9 −11 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 9 1


,

U =



1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1
0 0 −35 45 −35 45 −35 45 −35 45
0 0 0 − 100

7 0 − 100
7 0 − 100

7 0 − 100
7

0 0 0 0 −25 35 −25 35 −25 35
0 0 0 0 0 −20 0 −20 0 −20
0 0 0 0 0 0 −15 25 −15 25
0 0 0 0 0 0 0 − 100

3 0 − 100
3

0 0 0 0 0 0 0 0 −5 15
0 0 0 0 0 0 0 0 0 −100


.

We now show that J = LU , making use of the Kronecker delta, δi,k = 1 if i = k
and 0 otherwise, and using summation over repeated indices. There are three cases:

• i = 1, 2. We have Li,k = δi,k, so Li,kUk,j = Ui,j = Mi,j .
• 1 ≡ i > 2. We have

Li,kUk,j = (n− 1)(n− i+ 1)U1,j/2− (n+ 1)(n− i+ 1)U2,j/2 + Ui,j

=


−((−1)jn+ 1)(n− i+ 1)/2 i > j

(n− 1)(n− i+ 1)/2− n(n− i)/2 = (i− 1)/2 1 ≡ j ≥ i
−(n+ 1)(n− i+ 1)/2 + n(n− i+ 2)/2 = (i− 1)/2 0 ≡ j ≥ i.
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• 0 ≡ i > 2. We have

Li,kUk,j = (n− i+ 2)(U1,j + U2,j)/2 + (i− 1)Ui−1,j/(n− i+ 1) + Ui,j

=


n−i+2

2 j < i− 1
n−i+2

2 − (i−1)n(n−i+1)
2(n−i+1) = − (i−2)(n+1)

2 1 ≡ j ≥ i
n−i+2

2 + (i−1)n(n−i+3)
2(n−i+1) − n2

n−i+1 = (i−2)(n−1)
2 0 ≡ j ≥ i.

As both L and U have non-zero diagonal elements, the determinant of J is non-zero.
Hence the set S is functionally independent. This shows that (13) is superintegrable.

Next we prove that each pair of functions in the set {F ′1, . . . , F ′r−1, H ′} Poisson
commutes with respect to the bracket (7). Due to the Leibniz rule, the brackets
{F ′i , F ′j} = {Fi/H,Fj/H}, with 1 ≤ i, j < r, can be expressed in terms of {Fi, Fj},
{Fi, H}, {H,Fj}, which all vanish. We also have {F ′i , H ′} = 0 as the F ′i are
integrals and H ′ is the Hamiltonian function of the system. Similarly, it follows
that the functions in {G′1, . . . , G′r−1, H ′} Poisson commute. This shows that (13) is
Liouville integrable.

Remark 1. Similar to the above, one can also show that the system

ẋi = xi

b(S) +
∑
j>i

xj −
∑
j<i

xj

 , i = 1, . . . , n = 2r, (14)

where b is an arbitrary integrable function, is both superintegrable and Liouville
integrable. The system (14) is a Hamiltonian system with Hamiltonian H∗ =
H −B(S), where B is the anti-derivative of b.

Remark 2. In general, the b-generalisation (2) of a Hamiltonian system (1) will
not be Hamiltonian. We hope to discuss some other cases in which the generalisation
is Hamiltonian in a future publication. The reason that we have restricted the
dimension of the Lotka-Volterra systems (13) to be even is that it seems unclear
whether a Hamiltonian exists in the general odd-dimensional case.
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