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Abstract: The graph centroids defined through a topological property of a graph called g-convexity
found its application in various fields. They have classified under the “facility location” problem.
However, the g-centroid location for an arbitrary graph is NP-hard. Thus, it is necessary to devise
an approximation algorithm for general graphs and polynomial-time algorithms for some special
classes of graphs. In this paper, we study the relationship between the g-centroids of composite
graphs and their factors under various well-known graph operations such as graph Joins, Cartesian
products, Prism, and the Corona. For the join of two graphs G1 and G2, the weight sequence of the
composite graph does not depend on the weight sequences of its factors; rather it depends on the
incident pattern of the maximum cliques of G1 and G2. We also characterize the structure of the
g-centroid under various cases. For the Cartesian product of G1 and G2 and the prism of a graph,
we establish the relationship between the g-centroid of a composite graph and its factors. Our results
will facilitate the academic community to focus on the factor graphs while designing an approximate
algorithm for a composite graph.
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1. Introduction

Graph theory is a branch of mathematics that has applications in every other field including
Arts, Humanities, Sociology, Anthropology, and Engineering. Whenever there is a pairwise relation
existing among any entities, graphs are then used to model the system. This paper deals with finding
a central structure. The problem of finding a central structure is an active research area. They are
classified under facility location problems. Using discrete mathematical models, centrality can be
defined in several different ways. One of them is using the eccentricity of vertices. This concept
uses the traditional Euclidean distance metric applied to the underlying graph. Centrality can also
be defined through the topological properties of graphs. This paper deals with geodesic-convexity
(g-convexity for short). g-convexity in graphs have been studied by several different authors. A good
review is presented in our earlier paper [1]. In [1], we define the g-convex weight sequences for graphs
based on g-convexity and provided characterization for certain classes of graphs including trees.

A central structure called the g-centroid is defined through g-convexity. In another paper [2],
the author demonstrated an application of g-convexity and g-centroids in Mobile Ad hoc Networks
(MANET). They also find applications in other areas, including measuring dissimilarities in dynamical
systems and dynamic search in graphs. In [3], Prakash constituted a first to a systematic study on the
size of convex sets in graphs. Due to its application, the location of g-centroid for any arbitrary graphs
as well as its characterization had gained importance. In [4], we have demonstrated that the g-centroid
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location problem is NP-hard for disconnected graphs. In a later paper [2], Prakash closed the gap by
proving NP-hardness for connected graphs.

As there are no tractable solutions available to locate the g-centroid for arbitrary graphs, it is
essential to design an approximate solution for the location problem. A graph is defined as a composite
graph if it can be obtained from two or more graphs through well-defined graph operations. Currently,
there is no work available in the literature that analyze the relation between the structure of the
g-centroid of a graph and its factors. In this paper, we study the structure of g-centroid and the
g-convex weight sequences (gcws) of composite graphs through some popular graph operations such
as graph-joins, cartesian products, and corona. Through the derived properties, we may able to design
efficient approximate algorithms to locate the g-centroid for composite graphs in the future.

In this paper, we make the following contributions.

• We present an application of g-convexity and g-centroids in MANET. This forms a strong motivation.
We then present an overview of theNP-hardness proof for the g-centroid location for arbitrary graphs.

• For the join of two graphs G1 and G2, the weight sequence of the composite graph does not depend
on the weight sequences of its factors; rather it depends on the incident pattern of the maximum
cliques of G1 and G2. We also characterize the structure of the g-centroid under various cases.

• For the Cartesian product of G1 and G2 and the prism of a graph, we establish the relationship
between the composite graph and its factors.

• For Corona operations, we characterize the g-centroid based on its factors.

The rest of the paper is organized as follows.
In Section 2, we present preliminary definitions that are necessary for this paper. We also outline

the NP-hardness algorithm for the g-centroid location problem. In Section 3, we present our main
results. We consider three important types of graph operations in this paper. They are Graph Joins,
Cartesian Products, and Corona. As a special case of Cartesian products, we considered the prism of
a graph. Section 4 deals with the Conclusion and Future direction. In this section, we present two
important open problems.

2. Definitions and Preliminary Results

In this section, we present some of the important definitions that are needed to understand the
rest of this paper. Standard graph-theoretic definitions that are not given here; the reader may refer to
the work in [5]. We now present a recent application of the g-convexity. A Mobile Ad hoc Network
(MANET) is a decentralized type of wireless network. It is ad hoc in nature because it does not rely
on any preexisting infrastructure such as an Access Point (AP) or a router to route packets from a
source to a destination node. The network is formed in fly and mobile nodes may join and leave the
network as they wish. Thus, there is no admission or access control mechanism in a MANET. Due to
this nature, MANETs are deployed during emergency response operations. Wireless nodes that are
within each other’s radio range communicate directly like a point-to-point network. There is no switch
to facilitate communication as a wired network. Nodes that are not within the radio range of each
other can still communicate, provided that intermediate nodes act as a router to rely on their packets.
Thus, the network is formed through cooperation from all other nodes in the network. Due to this
cooperative process, nodes lose their energy on forwarding packets on behalf of other nodes. This is in
addition to their transmission and reception. A mobile node spends more than 60% of its power on
transmission and reception compared with its internal processing. Thus, energy conservation is one of
the important problems in MANET. Therefore, every node needs to know how many pairs of nodes
that require its help in forwarding a data packet. Several routing protocols designed for MANET uses
some form of the shortest path algorithm to forward packets between a pair of nodes. Thus, if a mobile
node z lies in the shortest path between two other nodes u and v, then z is expected to route packets
for u and v.
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The following is one of the important problems in MANETs.

For a mobile node u, locating the maximum set S of nodes that can communicate with each
other without the help of u.

WiFi interface is known to be a primary energy consumption in mobile devices. The “idle listening”
consumes more energy compared with transmission or reception. It is estimated that about 60% of the
energy is wasted in idle listening. The only solution for reducing idle listening is to implement a sleep
schedule. Thus, intuitively whenever the nodes in S are communicating, u can go to sleep mode to
conserve its battery power from idle listening.

MANET can be modeled as a simple undirected graph. An edge between the mobile hosts u and
v indicates that both u and v are within their radio ranges. To simplify our discussion, we assume that
if u is within the transmission range of v, then v will be in the transmission range of u (i.e., the relation
between the nodes are symmetric. This may not be true in general due to different factors like the
transmission power of a node, geographical conditions, etc.; thus, the resulting graph is a directed
graph). Thus, the resulting graph is undirected.

We formally define the g-convexity and various parameters that are defined through the g-convexity.

Definition 1. A set S ⊆ V is geodetic convex (g-convex for short) if for every pair of vertices u, v ∈ S,
all vertices on any u− v shortest path (also called a geodesic path) belong to S.

From the above definition, it easily follows that a singleton set, vertex pair of an edge, and the
whole vertex set V(G) are g-convex sets of G. We call them as trivial g-convex sets. Moreover, if S is a
clique (S induces a complete subgraph of G), then S is a g-convex set of G.

A convex set is a set of vertices which is “closed” for the flow of information (routing, control,
or data packets). This is in line with Mulder’s treatment of Interval functions in a graph [6]. For a
connected graph G and two vertices u and v of G, the interval function I(u, v) is defined as follows;
I(u, v) = {z:z lies on any u− v geodesic path in G}. In our application terminology, I(u, v) contains the
set of all vertices that may be involved in communication between u and v. Based on his definition,
a set S ⊆ V(G) is g-convex if and only if I(u, v) ⊆ S for every pair u, v ∈ S.

We define the cardinality of the maximum g-convex set not containing u as the g-weight of u,
denoted by w(u). We then turn our attention to the set of nodes having the least weight. Intuitively,
these nodes participate in more routes than others. We now formally define these parameters:

Definition 2. Let G = (V,E) be any connected graph. For v ∈ V, the g-weight w(v) = max{| S |: S is a
g-convex set of G not containing v}. Let gc(G) = min{w(v): v ∈ V}. Then gc(G) is called the g-centroidal
number of G and the vertices v for which w(v) = gc(G) are called the g-centroidal vertices. The g-centroid Cg(G)

is the set of all g-centroidal vertices of G (i.e., g-centroid is a set of vertices which satisfies the min-max relation).

For v ∈ V(G), we denote by Sv = Sv(G), any maximum g-convex set of G not containing v.
If the context is clear, we may call g-convexity and g-centroid by simply convexity and centroid.
Let G = (V, E) be a connected graph and u ∈ V(G). Then, the eccentricity e(u) is defined as e(u)

= max {d(u, v) : v ∈ V(G)}.

2.1. The G-Centroid Location Problem for Arbirtary Connected Graphs

The g-centroid location has several practical applications. One such application domain is MANET.
It also has an application in measuring dissimilarities and information retrieval [5]. Due to its practical
applications, it is thus necessary to devise an efficient algorithm to locate the g-centroid for an arbitrary
graph. In this subsection, we outline the NP-hardness of the g-centroid location algorithm. For the
detailed proof, the readers may refer to our original paper [2].

If the context is clear, in what follows, by the term graph we always mean a connected graph.
The following proposition specifies the structure of a g-centroid and its convexity.
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Proposition 1. For any connected graph G, Cg(G) is a g-convex set of G and < Cg(G) > is connected.

Based on this proposition, we have the following results.

Proposition 2. For a connected graph G, Cg(G) lies in a block of G.

We now define the k-th neighborhood of a vertex u.
Let G = (V,E) be a connected graph and u ∈ V(G). The k-th neighborhood of u, denoted by Nk(u)

consists of all vertices in G that are at a distance k from u, i.e., Nk(u) = {v ∈ V: d(u, v) = k}.
The next result is obvious from the definition of the k-th neighborhood of a vertex and its maximal

g-convex set realizing its weight.

Proposition 3. Let G be a connected graph and u be a vertex of G. If x, y ∈ Nk(u) ∩ Su, then d(x, y) < 2k.

The following corollary is immediate from Proposition 3.

Corollary 1. Let G = (V, E) be a connected graph. For every vertex u in G, N1(u) ∩ Su is either empty or
induces a complete subgraph of G.

Note that for a vertex u of G, N1(u)∩ Su may be empty.As a nice open problem it will be interesting
to classify all graphs for which N1(u) ∩ Su 6= ∅, for every vertex u and any arbitrary Su. One such
class is a tree.

We now outline theNP-hardness of the g-centroid location algorithm. The proof is by polynomially
reducing the “clique decision” problem to the g-centroid location problem. However, we could not
establish the membership of the g-centroid location problem inNP-class to establish theNP-completeness.
g-convexity is closely related to the clique incident pattern of the graph.

We recall the definition of the “clique decision problem”:

Given a connected graph G and an integer r with 2 ≤ r ≤ n =| V(G) |, does G has a clique
of size r?

The clique decision problem is one of the classicalNP-complete problem in graph theory. Several
graph-theoretic and optimization problems were proved to be NP-complete or NP-hard by reducing
to the clique decision problem [7].

Definition 3. For a given connected graph G and an integer r with 2 ≤ r ≤ n, we construct the graph Gr from
a copy of G, Kr−1 (the complete graph on r− 1 vertices) and three new vertices a, b, and c as follows.

• V(Gr) = V(G) ∪ {a, b, c} ∪V(Kr−1)

• The edge set of Gr consists of all the edges of G, Kr−1, and the following new edges.

– Join a and b to all the vertices of G.
– Join c to a and b and to some arbitrary vertex d of Kr−1.

For a given graph G, the graph Gr will look as in Figure 1. Furthermore, it is easy to see that for a
given graph G and a r, 2 ≤ r ≤ n, Gr can be constructed in polynomial time. We explain this polynomial-
time construction now:

We may assume that the graph is stored as an “adjacency matrix”. To obtain V(Gr), we need
to add r− 1 vertices that corresponds to Kr−1 and the three new vertices a, b, and c. This is done by
adding r + 2 rows and columns to the “adjacency matrix”. Creating adjacency entries that represents
Kr−1 takes O(r2) time. Joining a to all the vertices of G is obtained by setting 1 for all columns that
correspond to the vertices of G. This can be done in linear time. Similarly, joining b to all vertices of G
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can be done in linear time. Joining c to a and b and to some arbitrary vertex d of Kr−1 can be done in a
constant time. Thus, the entire construction of Gr from G takes polynomial time.

Figure 1. Gr for a given graph G.

For an arbitrary connected graph G, we now analyze the structure of the g-centroid of Gr for
various values of r.

In what follows in this section, if the context is clear, we assume that the graph under consideration
is Gr.

The following facts can easily be established.

Proposition 4. Let G be a connected graph and Gr be defined as in Definition 3. Let x be a vertex in the copy of
Kr−1 of Gr, then w(x) =| V(Gr) | −1 = r+ | V(G) | +1.

The proof follows from the fact that N1(x) is complete and therefore Sx = V(Gr)− {x}.

Proposition 5. Let G be a connected graph and Gr be defined as in Definition 3. w(d) =| V(G) | +3.

The next proposition specifies the weight of the two vertices a and b based on the maximum
clique size of G.

Proposition 6. Let G be a connected graph and Gr be defined as in Definition 3. w(a) = w(b) = max{w +

1, r + 1}, where ω(G) = w is the maximum clique size of G.

The following proposition determines the weight of the vertex c based on the chosen r and the
maximum clique size of G.

Proposition 7. Let G be a connected graph and Gr be defined as in Definition 3. w(c) = max {w + 1, r− 1},
where w = ω(G).

We now determine the weight of every vertex u ∈ V(G). The weight of these vertices depends on
the maximum clique incident pattern of G and the chosen r.
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Proposition 8. Let G be a connected graph and Gr be defined as in Definition 3. Let M1, M2, · · · , Ms be the
maximum cliques of G, M = ∩s

i=1Mi, and w = ω(G). Then, the following hold.

1. If M = ∅, then for every u ∈ V(G), w(u) = max {w + 1,r + 1}.
2. If M 6= ∅, then for every u ∈ M, w(u) = max {w,r + 1}. For every v ∈ V(G) − M, w(v) = max

{w + 1,r + 1}.

From the above propositions, for a given connected graph G and an integer r with 2 ≤ r ≤| V(G) |,
we can find the weight of every vertex of Gr.

The following proposition analyze the structure of Cg(Gr) for various values of r.

Proposition 9. Let G be an arbitrary graph with the maximum clique size ω(G) = w. Let r be an integer such
that 2 ≤ r ≤ w− 1. Let Gr be defined as in Definition 3. Then, the g-centroid of Gr, Cg(Gr)= V(G) ∪ {a, b, c}
or M, depending upon whether the intersection of all the maximum cliques of G denoted by M is empty or not.

The following two propositions relate the chosen r and the maximum clique size of G.

Proposition 10. Let G be a connected graph with the maximum clique size ω(G) = w and Gr be defined as in
Definition 3. Let r ≥ w + 1. Then, Cg(Gr) = {c}.

Proposition 11. Let G be a connected graph with the maximum clique size ω(G) = w and Gr be defined as in
Definition 3. Let r = w. Then, Cg(Gr) = V(G) ∪ {a, b, c}, irrespective of whether M is empty or not.

Combining all the results for Gr, we have the following theorem.

Theorem 1. Let G be any connected graph and r be an integer such that 2 ≤ r ≤ n =| V(G) |. Let Gr be
defined as in Definition 3. Let ω(G) = w be the maximum clique size of G. If r < w, then Cg(Gr) = M or
V(G) ∪ {a, b, c} depending upon whether the intersection of all the maximum cliques of G denoted by M is
non-empty or not. If r = w, Cg(Gr) = V(G) ∪ {a, b, c}, r ≥ w + 1, Cg(Gr) = {c} irrespective of whether M is
empty or not.

Based on Theorem 1, we can address the clique decision problem in polynomial time.
If k ≤ ω(G)− 1, then the g-centroid of Gk is either V(G)∪ {a, b, c} or M depending upon whether

the intersection of all the maximum clique of G is empty of not. For k = ω(G), the g-centroid Cg(Gk)

= V(G) ∪ {a, b, c}. For k ≥ ω(G) + 1, Cg(Gk) = {c}. Thus, G has a clique of size k if and only if
Cg(Gk) = V(G) ∪ {a, b, c} or M.

3. Graph Compositions

In Section 2.1 we outlined the NP-hardness for a g-centroid location algorithm. It will be worth
focusing on designing efficient approximation algorithms for the g-centroid location for a general
graph or provide a polynomial-time algorithm for the g-centroid location for graphs with some special
structure (such as chordal, interval, or unit disc graph). In this section, we analyze the structure of the
g-centroid of composite graphs under some well-known graph operations. We now formally present
some of the definitions of well-known graph operations:

Definition 4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Their join denoted by G = G1 ∨ G2 has the
vertex set V = V1 ∪V2 and the edge set E = E1 ∪ E2∪ {uv: u ∈ V1, v ∈ V2}.

The Cartesian product G = G1 ⊗G2 has the vertex set V = V1 ×V2 and the edge set E is defined as follows;
(u1, u2) and (v1, v2) are adjacent in G if and only if either u1 = v1 and u2v2 ∈ E(G2) or u1v1 ∈ E(G1) and
u2 = v2.

As a special case of the cartesian product, we have the prism of a graph. The prism of a graph G1 is G =
G1 ⊗ K2, where K2 is a complete graph on two vertices.
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The corona of two graphs G1 and G2 of order n1 and n2 (where n1 = | V(G1) | and n2 = | V(G2) |),
denoted by G = G1 ◦ G2 is the graph obtained by taking one copy of G1 and n1 copies of G2 and joining the i-th
copy of G2 to the i-th vertex of G1, 1 ≤ i ≤ n1.

Remark 1. If G is a composition of G1, G2, · · · , Gr, then we say that G is a composite graph and G1, G2, · · · ,
Gr are its factors.

We now analyze the g-centroids and gcws for composite graphs under the above-defined
graph operations.

3.1. The Join of Graphs

In this subsection, we show that the weight sequence of G = G1 ∨ G2 does not depend on the
weight sequence of G1 and G2, rather it depends on the incident pattern of the maximum cliques of G1

and G2.
If G1 and G2 are either complete or if both are incomplete, we give the weight sequence of G

explicitly. If G1 is complete and G2 is incomplete, it is shown that for each u ∈ V(G2), Su(G) =
K ∪V(G1), where K is a maximum g-convex set of G2 not containing u.

The following Proposition is immediate from the definition of join of graphs.

Proposition 12. Let G1 and G2 be two graphs and G= G1 ∨ G2. Then, the following holds.

1. G has an induced subgraph isomorphic to G1 as well as to G2.
2. G is complete if and only if both G1 and G2 are complete.

If both G1 and G2 are complete, then G is a complete graph on n = | V(G1) | + | V(G2) | vertices
and the weight sequence of G is {(n− 1)n} and Cg(G) = V(G).

Now consider the case when G1 and G2 are incomplete. The following proposition determines
the structure of a g-convex sets when both G1 and G2 are incomplete.

Proposition 13. Let G1 and G2 be two incomplete graphs and G = G1 ∨ G2. Then a proper subset S of V(G)

is a g-convex set of G if and only if < S > is a complete subgraph of G.

Proof. Let S be a proper g-convex set of V. If possible, let u and v be two non adjacent vertices of G
in S. From the construction of G, both u and v belong to either G1 or G2. Let u and v belong to G1.
Let z be any vertex of G2. Then u,z,v is a geodesic joining u and v in G. As S is convex, z ∈ S. Thus
V(G2) ⊆ S as z is arbitrary. As G2 is incomplete, G2 has a pair of non-adjacent vertices. Therefore by a
similar argument, V(G1) ⊆ S. Hence S = V(G), which is a contradiction.
Proof of the sufficiency part follows trivially as cliques are always g-convex sets of G.

Remark 2. If M and N are the maximum cliques of G1 and G2, respectively, then M ∪ N is a maximum clique
of G.

We now characterize the g-convex sequences of graph joins based on the incident pattern of the
maximum cliques of their factor graphs.

Proposition 14. Let G1 and G2 be two incomplete graphs and G = G1 ∨G2. Let M1, M2, · · · , Mr and N1, N2,
· · · , Ns be the maximum cliques of G1 and G2, respectively, of sizes ω1 and ω2. Let M = ∩r

j=1Mj, N = ∩s
j=1Nj,

n = | V(G) |, m1 = | M | and m2 = | N |.

1. If M 6= ∅ and N 6= ∅, then the gcws of G is {(ω1 + ω2 − 1)m1+m2 ,(ω1 + ω2)
n−(m1+m2)}

2. If M 6= ∅ and N = ∅, then the gcws of G is {(ω1 + ω2 − 1)m1 , (ω1 + ω2)
n−m1 }

3. If M and N are empty, then the gcws of G is {(ω1 + ω2)
n}.
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Let u be a vertex of G. Then, by Proposition 13, Su induces a complete subgraph of G.
(1) Let M,N 6= ∅. Let x ∈ V(G1) and x /∈ M. Then there exists an i, 1 ≤ i ≤ r such that x /∈ Mi.
Therefore Mi ∪ Nj (1 ≤ j ≤ s) are maximum g-convex sets of G not containing x (as they are complete).
Thus, w(x) = ω1 + ω2. Similarly, w(x) = ω1 + ω2 also if x ∈ V(G2) and x /∈ N. If x ∈ M, then (Mi −
x) ∪ Nj, 1 ≤ i ≤ r and 1 ≤ j ≤ s are maximum g-convex sets of G not containing x, of cardinality
ω1 + ω2 − 1. Similarly if x ∈ N, then w(x) = ω1 + ω2 − 1. Therefore, the gcws of G is {(ω1 + ω2 −
1)m1+m2 ,(ω1 + ω2)

n−(m1+m2)}
Proofs of (2) and (3) are similar to the proof given above.
We now give the structure of Cg(G) under the above cases. If the first case of Proposition 14 is

arises, then Cg(G) = M ∪ N and hence Cg(G) is a clique of G. In the second case, Cg(G) is either M or
N depending upon whether N or M is empty. Thus in this case also Cg(G) is a clique. In the third case,
G is self centroidal. Thus, the following corollary is obvious.

Corollary 2. If G1 and G2 are incomplete graphs and G = G1 ∨ G2, then Cg(G) is either a clique of G or the
entire vertex set of G.

We now discuss the case when G1 is complete and G2 is incomplete. Here, we show that
Su(G) = K ∪V(G1), where K is a maximum g-convex set in G2 not containing u.

Proposition 15. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. Let u ∈ V(G1).
Then Su(G) induces a complete subgraph of G.

The proof follows as in Proposition 13.

Proposition 16. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. Let u ∈ V(G2).
Then Su(G) = K ∪V(G1), where K is a maximum g-convex set in G2 not containing u.

Proof. Let K′ be a maximum g-convex set of G2 not containing u. We show that S = V(G1) ∪ K′ is
a g-convex set of G not containing u. Let x,y be a pair of non-adjacent vertices in S. Then, by our
definition of G, x,y ∈ K′. If dG2(x, y) ≥ 3, then for any z ∈ V(G1), x,z,y is a geodesic joining x and
y in G. Thus, in this case all x− y geodesics lie in < S > as V(G1) ⊆ S. Suppose that dG2(x, y) = 2.
Let x,z,y be any x− y geodesic in G. If z ∈ V(G1), then z ∈ S as V(G1) ⊆ S otherwise z ∈ K′, as K′

is a g-convex set in G2. Thus, in this case also, all x − y geodesics lie in < S >. Therefore, S is a
g-convex set of G. From the definition of g-weight, it follows that w(u | G) ≥| S |. To prove the
equality, it is enough to show that for any Su(G), Su(G) ∩V(G2) is a g-convex set of G2 not containing
u. Let K = Su(G) ∩V(G2).

First, we show that K is non-empty. If K is empty, then Su(G) ⊆ V(G1). As G2 is incomplete,
| V(G2) |≥ 3. Let v be a vertex of G2 different from u. Then S = V(G1) ∪ {v} is a g-convex set of G,
not containing u, properly containing Su(G). This is a contradiction.

Next we show that K is a g-convex set of G2. If K is a clique, then K is trivially a g-convex set.
Let x, y ∈ K such that dG2(x, y) = 2. Let x,z,y be a geodesic joining x and y in G2. From the definition
of G, dG(x, y) = 2 and x,z,y is a geodesic joining x and y in G. By the convexity of Su(G), z ∈ Su(G),
and thus z ∈ K. Thus K is a g-convex set of G2.

Next we describe the structure of Cg(G) when G1 is complete and G2 is incomplete.

Proposition 17. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. V(G1) ⊆
Cg(G).

Proof. Let x ∈ V(G1). Then, by Proposition 15, Sx induces a complete subgraph of G. Thus, w(x)
= n1 − 1− ω(G2), where n1 = | V(G1) |. Let y be any vertex of G2 and M be a maximum clique of
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G2, not containing y. Then, M ∪ V(G1) is a g-convex set of G not containing y and | M ∪ V(G1) |
≥ ω(G2)− 1 + n1 = w(x). Thus, w(y) ≥ w(x). Since y is arbitrary, we have V(G1) ⊆ Cg(G).

Corollary 3. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. Let N1,N2, · · · , Ns

be the maximum cliques of G2 and N = ∩s
j=1Nj. If N = ∅, then Cg(G) = V(G1).

Proof. If x ∈ V(G1), then by the proof of the above Proposition, w(x) = n1 +ω(G2)− 1. Let y ∈ V(G2).
Since N = ∅, there exists an i, 1 ≤ i ≤ s such that y /∈ Ni. Then, Ni ∪V(G1) is a g-convex set of G not
containing y with cardinality ω(G2) + n1. Thus, w(y) > w(x), and therefore Cg(G) = V(G1).

Next, we describe the structure of Cg(G) under this case.

Proposition 18. Let G = G1 ∨ G2 with G1 complete and G2 incomplete. Then Cg(G) induces a complete
subgraph of G.

Proof. From Proposition 17, V(G1) ⊆ Cg(G). If V(G1) = Cg(G), then < Cg(G) > is complete. If |
Cg(G) ∩V(G2) | = 1, then also < Cg(G) > is complete. Let | A = Cg(G) ∩V(G2) |≥ 2. Let u, v ∈ A.
We now show that uv ∈ E(G). As w(x) = ω(G2) + n1− 1, for each vertex x of G1, we have w(u) = w(v)
= ω(G2) + n1 − 1 (as V(G1) ⊆ Cg(G)). If M is any maximum clique of G2, then u, v ∈ M (otherwise,
M ∪ V(G1) is a g-convex set of G not containing them of cardinality ω(G2) + n1). As M is a clique,
uv ∈ E(G2), and hence u and v are adjacent in G also. This proves that < Cg(G) > is complete.

The proof for the following corollary is immediate from Proposition 18.

Corollary 4. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. Let N1,N2, · · · ,
Ns be the maximum cliques of G2. If Cg(G) ∩V(G2) 6= ∅, then Cg(G) ∩V(G2) ⊆ ∩s

i=1Ni.

The containment can be proper. This is demonstrated in Figure 2.

Figure 2. The proper containment: Cg(G) ∩V(G2) ⊂ ∩s
i=1Ni.

Proposition 19. Let G1 be a complete graph and G2 be an incomplete graph and G = G1 ∨ G2. If u ∈
Cg(G) ∩V(G2), then eG2(u) ≤ 3.

Proof. From the above corollary, u ∈ ∩s
i=1Ni. Thus all the maximum cliques of G2 are contained in

NG2 [u]. Suppose that eG2(u) ≥ 4. Let x ∈ N4(u : G2). Then (Ni − u) ∪ {x} ∪V(G1) is a convex set of
G (as any x− y geodesic path passes through only vertices from V(G1)∀y ∈ (Ni − x)), x− y geodesic
contains vertices only from V(G1) with cardinality ω(G2) + n1. This is a contradiction. This proves
that eG2(u) ≤ 3.
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3.2. Cartesian Product

In this section, we deal with the gcws of the cartesian product of two graphs. First, we prove that
S ⊆ V is a g-convex set in G = G1 ⊗ G2 if and only if S = S1 × S2, where S1 and S2 are g-convex sets
of G1 and G2, respectively.

Proposition 20. Let G1 and G2 be two connected graphs. Let G = G1 ⊗ G2. Then, S ⊆ V(G) is a g-convex
set of G iff S = S1 × S2, where S1 and S2 are g-convex sets of G1 and G2, respectively.

Proof. Let S be any g-convex set of G. Let S1 = {u: (u,v) ∈ S} and S2 = {v:(u,v) ∈ S} (i.e., the projection
of S on G1 and G2). Then, clearly S ⊆ S1 × S2. First, we show that S = S1 × S2. Suppose (u,v) ∈ S1 × S2

and (u,v) /∈ S. As u ∈ S1 and v ∈ S2, by the definition of S1 and S2, there exist x,y such that (u,x), (y,v)
∈ S. Let u = u1,u2, · · · , ur = y be a u− y geodesic in G1 and x = x1, x2, · · · , xs = v be a x− v geodesic
in G2. Then (u, x1), (u, x2), · · · , (u, v = xs), (u2, v), · · · , (ur = y, v) is a geodesic joining (u, x) and
(y, v) in G. Since S is convex, (u, v) ∈ S, a contradiction. This proves that S = S1 × S2.

Our next task is to show that S1 and S2 are convex sets of G1 and G2, respectively. Let u, y ∈ S1

and u = u1,u2, · · · , ur = y be any u− y geodesic in G1. Let x be any arbitrary vertex in S2. Then (u, x),
(v, x) ∈ S. Now, (u1, x), (u2, x), · · · , (ur, x) is a geodesic joining (u, x) and (y, x) in G. Since S is
convex, (ui, x) ∈ S for 1 ≤ i ≤ r, and therefore ui ∈ S1. Thus, S1 is a g-convex set of G1. Similarly S2 is
a g-convex set of G2.

The proof of the sufficiency part follows trivially.

Corollary 5. Let G1 and G2 be two connected graphs. Let G = G1 ⊗ G2. Let S1 and S2 be g-convex sets of G1

and G2 respectively, then S1 ×V(G2) and V(G1)× S2 are g-convex sets of G.

The proof follows from the above proposition and the fact that V(G1) and V(G2) are g-convex
sets of G1 and G2.

Proposition 21. Let G1 and G2 be two connected graphs. Let G = G1 ⊗ G2. Let (u, v) ∈ V(G). Then the
weight of (u, v) is

w(u, v) = max{w(u : G1)× | V(G2) |, w(v : G2)× | V(G1) |}

Proof. Let S be a maximum g-convex set of G not containing (u, v). Then, by Proposition 20, S = S1×S2,
where S1 and S2 are g-convex sets of G1 and G2, respectively. Since (u, v) /∈ S, one of the following
holds good.

1. u /∈ S1 and v /∈ S2

2. u ∈ S1 and v /∈ S2

3. u /∈ S1 and v ∈ S2

By the maximality of S, if u /∈ S1, then S1 is a maximum g-convex set of G1 not containing u and
similarly, if v /∈ S2, then S2 is a maximum g-convex set of G2 not containing v. Thus case (1) cannot
happen (as | Su(G1)× V(G2) | >| S1 × S2 |. In case (2), S(u,v) = V(G1)× Sv and in case (3), S(u,v) =
Su ×V(G2). Thus, we have

w(u, v) = max{w(u : G1)× | V(G2) |, w(v : G2)× | V(G1) |}

From the Proposition 21, we see that if w(u : G1) and w(v : G2) are known, then w(u, v) can
be computed.

We now relate the centroid of G to those of G1 and G2. We show that Cg(G1)× Cg(G2) ⊆ Cg(G)

and the equality holds if g1n2 = g2n1.
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Proposition 22. Let G1 and G2 be two connected graphs. Let G = G1 ⊗ G2. Let g1 = gc(G1); g2 = gc(G2);
n1 = | V(G1) | and n2 = | V(G2) |. If g1n2 = g2n1, then Cg(G) = Cg(G1)× Cg(G2).

Proof. Let (u, v) ∈ Cg(G1)xCg(G2). From Proposition 21, w(u, v) = max {g1n2,g2n1}. Let (x, y) /∈
V(G)− Cg(G1)× Cg(G2). Then, either x /∈ Cg(G1) or y /∈ Cg(G2) or both. In the first case w(x, y) ≥|
Sx×V(G2) |> g1n2. (as | Sx |> g1). Similarly, in all the other cases, we can show that w(x, y) > w(u, v).
Therefore, Cg(G) = Cg(G1)× Cg(G2).

Remark 3. The converse of this proposition is not true. For, consider G = K2 ⊗ P3. Here, g1 = 1, n1 = 2, g2 =
1, and n2 = 3. Clearly g1n2 6= g2n1 but Cg(G) = Cg(K2)× Cg(P3).

Proposition 23. Let G1 and G2 be two connected graphs. Let G = G1 ⊗ G2. Let g1 = gc(G1); g2 = gc(G2);
n1 = | V(G1) | and n2 = | V(G2) |.

If g1n2 6= g2n1, then Cg(G1)× Cg(G2) ⊆ Cg(G).

Proof. Let (u, v) ∈ Cg(G1)xCg(G2). From Proposition 10, w(u, v) = max{g1n2,g2n1}. Without loss of
generality, assume that w(u, v) = g1n2. Let (x, y) ∈ V(G). if x /∈ Cg(G1) and y /∈ Cg(G2), then w(x, y) >
g1n2 (as | Sx |> g1 and SxxV(G2) is a g-convex set of G not containing (x, y)). If x /∈ Cg(G1) and
y ∈ Cg(G2), then w(x, y) ≥| SxxV(G2) |> g1n2 (as g1 <| Sx). Therefore in this case (x, y) /∈ Cg(G). If
x ∈ Cg(G1), then w(x, y) = max{g1n2,w(y)xn1} ≥ g1n2 = w(u, v). Thus for all (x, y), w(x, y) ≥ w(u, v)
for every u ∈ Cg(G1) and v ∈ Cg(G2). This proves that Cg(G1)xCg(G2) ⊆ Cg(G).

Remark 4. It can easily be seen that the containment can be proper. This is illustrated in Figure 3.

Figure 3. The proper containment of Proposition 23.

3.3. Prism of a Graph

As a special case of the cartesian product, we consider the prism of a graph. Let G be any connected
graph. Take two copies of G, say G(1) and G(2). Label the vertices of the first copy with u11,u12,· · · ,u1n
and the second copy with u21,u22,· · · ,u2n in the same order. Then, the prism of G denoted by P(G) has
the vertex set V(G(1)) ∪V(G(2)) and the edge set defined as follows:

E(P(G)) = E(G(1)) ∪ E(G(2)) ∪ {u1iu2i : 1 ≤ i ≤ n}

Remark 5. It is easy to see that the prism of a graph is the cartesican product of itself with K2. That is, P(G) =
G⊗ K2.

Proposition 24. Let G be a connected graph and u ∈ V(P(G)). Then, w(u) = max { | V(G) |, 2×w(u : G)}.

The proof follows from the above remark and Proposition 21.

Proposition 25. Let G be a connected graph and g = gc(G). If g ≤ n/2, then Cg(P(G)) = {uij, i = 1,2:
w(uj : g) ≤ n/2}; otherwise Cg(P(G)) = Cg(G)⊗ K2.
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Proof. Let g ≤ n/2. Let u1 ∈ Cg(G). Then, w(ui : G) ≤ n/2. Therefore, from Proposition 24, w(u1i) =
w(u2i) = n. Similarly if uj is any vertex of G with w(uj : g) ≤ n/2, then also w(u1j) = w(u2j) = n. If uk
is any vertex of G with w(uk : G) > n/2, then w(uik) = 2× w(uk) > n. Thus, in this case, Cg(P(G)) =
{uij, i = 1, 2: w(uj) ≤ n/2}.

Proof of the other part follows similarly.

3.4. The Corona

In this section, we deal with the corona of two graphs. Let G be the corona of G1 with G2. Then, we
prove that Cg(G) = Cg(G1).

Proposition 26. Let G = G1 ◦ G2. Let u ∈ V(G1) and v ∈ V(i, G2). Then,

1. Su(G) = Su(G1) ∪ {V(i, G2) : i ∈ Su(G1)} and
2. Sv(G) = S ∪ (V(G)−V(i, G2)), where S is a maximum g-convex set in V(i, G2) not containing v.

Proof. (1) Let S′ be any maximum g-convex set of G1 not containing u. i.e, S′ = Su(G1). We now show
that S = S′ ∪ {V(i, G2) : i ∈ S′} is a g-convex set of G.

If x, y ∈ V(G1) ∩ S, then x, y ∈ S′ and all x− y geodesics will lie in < S > (as S′ ⊆ S).
Let x, y ∈ V(i, G2). In this case, if dG2(x, y) ≥ 3, then x, i, y is the only geodesic joining x and y

in G, and by our definition of S, i ∈ S. If dG2(x, y) = 2, then as before i ∈ S and if x, z, y is any other
geodesic joining x, y in G, then clearly z ∈ V(i, G2) ⊆ S. Therefore, in all these cases, all x− y geodesics
lie in < S >.

Let x ∈ V(i, G2) and y ∈ V(j, G2) with i, j ∈ S′. In this case it is easy to see that if P is a geodesic
joining i and j in G1, then x ∪V(P) ∪ y is a geodesic joining x and y in G and conversely. Since i, j ∈ S′,
all i− j geodesics lie in < S′ >. Thus all x− y geodesics lie in < S >.

Proof of the case when x ∈ V(i, G2) and y ∈ V(G1) is similar to that of the above case.
Thus the convexity of S is established. Obviously, S does not contain u. The reason that every

such g-convex set S of G arises this way follows from the fact that S′ = S ∩ V(G1) is a g-convex set
of G1 not containing u and every V(i, G2) is a g-convex set of G. A maximum g-convex set of G not
containing u is obtained by taking for S′ a maximum g-convex set of G1 not containing u; that is an
Su(G1). This establishes (1).

(2) Let v ∈ V(i, G2). Let K′ be a maximum g2-convex set in G2 not containing v. Then as before by
considering various cases, we can prove that K′ ∪ (V −V(i, G2)) is a g-convex set of G not containing
v. If S is a maximum g-convex set of G not containing v, then trivially S ∩V(i, G2) is a g2-convex set in
G2 not containing v. Therefore Sv(G) = S ∪ (V(G)−V(i, G2)).

In the case of the corona, we prove that the g-centroid of G and G1 are the same.

Proposition 27. Let G1, G2 be two connected graphs. Let G = G1 ◦ G2. Then, Cg(G) = Cg(G1).

Proof. Let x ∈ V(G1). Then w(x : G1) + n2xw(x : G1) = w(x : G)(1 + n2) (by (1) of the above
proposition). If y is any vertex not in Cg(G1), then w(y : G) > w(x : G) (as w(y : G1) > w(x : G1)).
If z ∈ V(i, G2), then V(G) − V(i, G2) is a convex set of G not containing z with cardinality n1n2 +

n1 − n2. Therefore w(z : G) ≥ n1n2 + n1 − n2. For any x ∈ Cg(G1), w(x : G) = w(x : G1)(1 + n2) ≤
(n1 − 1)(1 + n2) = n1n2 − n2 + n1 − 1 < w(z). Thus w(z) > w(x). Therefore Cg(G) = Cg(G1).

4. Conclusions and Future Directions

In this paper, we have considered the join of graphs and have shown that the gcws of G = G1 ∨ G2

depends on the intersection pattern of the maximum cliques of G1 and G2.
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For cartesican products, we have proved that S ⊆ V(G) is a convex set of G iff S = S1 × S2,
where S1 and S2 are convex sets of G1 and G2, respectively, and deduced that Cg(G1)×Cg(G2) ⊆ Cg(G).
As a special case of this, we have considered the prism of a graph.

Finally, we have dealt with the corona of a graph with another and shown that the centroid of the
corona is that of the farmer graph.

There are several other important graph compositions such as wreath products, normal products
(see [8]. Cf. 3), etc. Establishing the relation between the gcws and the g-centroid of the composite
graph and its factor graphs under these graph operations is an interesting open problem in this area.
It is also interesting to classify all classes of graphs such that for any arbitrary member graph G,
Su ∩ N(u) 6= ∅ for all u ∈ V(G). One such member class is trees.

The concept of convexity may be extended to directed graphs. It will be interesting to study the
algorithmic complexity of g-centroid location algorithm for certain classes of directed graphs such as
“strongly connected graphs”.
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