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Abstract: For a scalar field in an exponentially expanding universe, constituent modes of elementary
excitation become unstable consecutively at shorter wavelength. After canonical quantization,
a Bogoliubov transformation reduces the minimally coupled scalar field to independent 1D modes
of two inequivalent types, leading eventually to a cosmological partitioning of energy. Due to
accelerated expansion of the coupled space-time, each underlying mode transits from an attractive
oscillator with discrete energy spectrum to a repulsive unit with continuous unbounded energy
spectrum. The underlying non-autonomous Schrödinger equation is solved here as the wave function
evolves through the attraction-repulsion transition and ceases to oscillate.
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1. Introduction

Due to the accelerated expansion of the universe, fundamental modes of a weakly coupled scalar
field eventually become unstable. It is shown here that a Bogoliubov transformation may reduce
the system to a collection of oscillators with time dependent frequencies that become pure imaginary at
times of attraction–repulsion transition. The main question to be answered here is what the Schrödinger
wave function looks like as it evolves across the attraction–repulsion transition. That is answered
by solving the non-autonomous Schrödinger equation exactly. Before that, the spectral properties
of the quantum field are analysed in the Fock picture. Possible implications in cosmology and in
the mathematical representation theory of Boson fields, are discussed.

Over the last decade it has become generally accepted that over intergalactic scales the universe is
isotropic, spatially flat, expanding, and accelerating [1–8]. These assumptions lead to a simple form of
the Friedmann equation (e.g., [9]). Neglecting the radiation component of energy,(

ȧ(t)
a

)2

=
8πG

3
ρ(t) +

Λc2

3

where G is the universal gravitational constant, ρ is the mass density of matter, and Λ is
the cosmological constant which is assumed to be positive to produce an accelerating universe.
The energy density of the dark component is Λc4

8πG . As time increases and the universe expands,
the mass density will decrease. Therefore at large times, a(t) will be asymptotic to e

√
Λ/3ct.

Carroll and Chatwin-Davies [10] view this as a consequence of the second law of thermodynamics,
even without reference to general relativity. The FLRW universe with this scale factor is equivalent by
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a change of coordinates to half of the maximally symmetric de Sitter space which can be defined as a
four dimensional hyper-surface satisfying

z2
0 − z2

1 − z2
2 − z2

3 − z2
4 = − 3

Λ
,

and embedded in 1+4-dimensional flat Minkowski space (e.g., Chap. 5.4 of [11].)
The field equations are routinely solved exactly in terms of a discrete expansion of spherical

harmonics satisfying appropriate boundary conditions. The consideration of boundary conditions
is not straightforward [12]. The choice of boundary conditions, and its relativistic consequences,
are discussed in Appendix B. Consideration of the canonical stress-energy tensor constructed from a
de Sitter-invariant Lagrangian, lead to a boundary condition that is unusual in this context. The set-up
of the classical boundary value problem and its standard solution by separation of variables are given
in Section 2.1 and Appendix A. This construction is well known but it is needed to explain the origin
of repulsive modes.

Section 2.2 is concerned with the energy spectrum. After second quantization, a Bogoliubov
transformation is applied to reduce the Hamiltonian to that of a sum of independent subsystems of
minimal degrees of freedom. However, unlike in usual free Boson field theory (e.g., [13]) and unlike in
the many-body theory of condensed matter (e.g., [14]), the Hamiltonian is not a sum of quasi-particle
number operators. The indefinite Hamiltonian involves two of the six types of Broadbridge’s
inequivalent normal forms [15] for quadratic Boson operators. After canonical quantization,
the Hamiltonian is composed of light and a dark components, quantum oscillators as well as quantum
repulsive units . The repulsive units have a continuous spectrum of energy eigen-distributions akin to
Schroer’s “jelly states” [16]. As time increases, modes of progressively high wave number cease to be
oscillatory and join the collection of unbounded repulsive units. The fundamental non-autonomous
modes are analysed in two ways. The first is to classify the spectrum of the modal Hamiltonian
that is frozen in time (Section 2.2). The second, which is the main objective, is to directly solve
the non-autonomous Schrödinger equation that evolves from a harmonic oscillator to a repulsive unit
(Section 2.3). Initializing from the well defined vacuum in the distant past, it is demonstrated that
the expectation value of each quantum field mode progresses through a finite number of oscillations
before it remains on one side or another of φ = 0. The solution is readily extended to other initial
conditions in the distant past. The example is given of a linear combination of the past vacuum with a
past single particle state.

The covariant massless Klein-Gordon field develops unstable modes when it is minimally coupled
to an exponentially accelerating de Sitter universe [17,18]. However when unstable classical modes are
quantized the Fock representation is no longer physically relevant [19–22]. The absence of number
operators [23] in the commutant of the Hamiltonian is associated with the breakdown of the Fock-Cook
representation of the quantum algebra. It has been proven [24] that no de Sitter-invariant Fock vacuum
state exists for a massless minimally coupled field on de Sitter space. Allen concludes that either
(1) the standard Fock space construction must be abandoned or (2) the vacuum state must break
full de Sitter invariance. Since breaking invariance is a far less radical idea than the abandonment
of the familiar Fock representation, there has been much investigation into possible vacua for
the massless minimally coupled field that are invariant under a subgroup of O(4, 1) [24–27]. This is in
contradistinction with the weakly coupled massive scalar field for which there are many fully invariant
states, including the Bunch-Davies vacuum [28] which coincides with the minimum energy state
in the distant past. One may instead, consider Allen’s first option: the abandonment of the Fock
space construction. The break-down of the Fock representation is entirely due to the unstable modes
and as we will show, there are only finitely many of these modes at any time. The repulsive modes
that are discussed further in Section 3 are dark in the sense that they have no particle or radiation
interpretation and so cannot be detected by usual methods that rely on absorption and scattering
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of particles and oscillatory waves. This phenomenon occurs already at the level of semi-classical
quantization wherein the scalar field is quantized but the gravitational tensor field is classical.

The inflationary period is most simply represented by a scalar inflaton field [29] that was coupled
to a universe that was expanding exponentially as a(t) = e

√
Λ/3ct, with Λ very large [30,31]. The radius

of the observable universe is estimated to be 47 billion light years compared to only 14 billion light
years for the Hubble radius ctH [32]. The favoured explanation is expansion that is evidenced by
correlations over large space-like separations observed in the cosmic microwave background [33].
The inflationary exponential time scale

√
3/Λc2 must be several orders of magnitude smaller than

the duration of the inflation period, which is supposed to be 10−32s . After the sharp big bang,
dynamical fields should have a broad frequency spectrum. As discussed in Section 3.1, after many
dynamical modes have been destabilised at successively higher energy, the critical radial wave number
is proportional to a(t). As is familiar from spherical harmonic expansions, the nth principal quantum
energy levels have degeneracy of order n2. These two facts combined, ensure that the dark energy
density is approximately constant in time during inflation.

Section 3.2 is a discussion on the existence of a preferred physical representation of the quantum
field algebra of observables, which is conventionally taken to be a C∗-algebra generated by the Weyl
operators [34]. Use of a countable basis of exact field solutions in a finite universe has resulted
in the number of repulsive units remaining finite, although increasing with time. This means
that although the repulsive modes have neither a natural vacuum representation nor a particle
interpretation, Stone’s theorem guarantees that the Hilbert space representation is unique, modulo
a unitary automorphism. This preferred physical representation enables meaningful calculations
and predictions about the system. This result is significantly different from that of the approximate
continuous Fourier expansion [18], since approximation of finite space by spatially infinite space,
artificially leads to a problematic infinite number of unstable modes. The remaining infinitely many
quantum oscillator modes still have a unique Fock-Cook representation, so overall there is still a well
defined preferred physical representation.

2. Canonical Field Quantization and Unstable Modes

2.1. Classical Klein-Gordon Field in an Accelerating Space-Time

Assuming the geometry of a spatially isotropic expanding universe, the standard metric is

ds2 = gµνdxµdxν = c2dt2 − a(t)2
3

∑
i=1

dxidxi.

Here, x0 = ct, xi are to be interpreted as material coordinates that maintain fixed values on matter
that is moving with the mean expansion of the universe and t is cosmic time that would be measured
in such a reference frame. The generally covariant Klein-Gordon equation is

∇ν∇νΦ(x, t) + (
m2c2

h̄2 + ξR)Φ = 0 (1)

where ∇ν represents the covariant derivative, m is the particle rest mass, ξ is the coupling constant for
matter wave-gravity interaction, and R = 6

c2a2 (aä(t) + ȧ2) is the Ricci Scalar.
∇ν∇ν is the divergence of the gradient or the Laplace-Beltrami operator,

∇ν∇νΦ = |det g|−1/2∂µ

[
|det g|1/2gµν∂νΦ

]
.

Changing to a conformal time coordinate,

η =
∫ t

0

1
a(t1)

dt1, (2)
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then the metric conforms to that of Minkowski,

ds2 = a(t)2(c2dη2 −
3

∑
i=1

dxidxi).

From here on, attention will be focussed on exponential expansion with Hubble time

th =
1
c

(
3
Λ

)1/2
, so that (3)

a(t) = e
√

Λ/3ct, (4)

cη =
√

3/Λ
(

1− e−
√

Λ/3t
)

, (5)

a =
η∞

η∞ − η
with cη∞ =

√
3
Λ

. (6)

Defining φ = aΦ, as explained in [18], (1) is expressed as

�φ + µ2φ = 0 (7)

where

µ2 =

(
3m2

Λh̄2 −
12γ

c2

)
(η∞ − η)−2, (8)

γ = 1
6 − ξ and � is the standard d’Alembertian operator. In these coordinates, the Klein-Gordon

equation resembles the standard Lorentz-invariant scalar wave equation, allowing one to develop an
illustrative quantum field theory using the familiar notation of canonical quantization.

For minimal coupling, ξ = 0 and γ = 1/6. In that case the ratio of the mass-dependent term to
the mass-independent term within µ2 is 3m2c2/2Λh̄2. Even for the massive Higgs particle, during
the inflation period this ratio is smaller than 10−20, due to the large value of Λ. During inflation,
particle rest mass has little influence on field dynamics. For illustrative purposes, we will consider
m = 0. Then with minimal coupling ξ = 0,

µ =
i
√

2
c(η∞ − η)

= i
√

2
ctH

et/tH . (9)

The focus from here will be on separated modes with distinct radial wave number k. This analysis
will make no further assumptions about the effective potential energy function of the mean inflaton
field that would allow for development of observed structures. In fact, in the minimal chaotic inflaton
field model, the effective potential is indeed quadratic at small-ϕ but it needs a higher-order plateau at
large-ϕ (e.g., [35] ).

When examining the analytic structure of relativistic wave equations, it is convenient to assume
that h̄ (Planck’s constant divided by 2π), speed of light c and reference radius R0 have been scaled to
unity. The length scale `s, time scale ts and mass scale ms may be chosen so that

R0/`s = 1, c/[`st−1
s ] = 1, h̄/[ms`

2
s t−1

s ] = 1

⇐⇒ `s = R0, ts = R0/c, ms = h̄/cR0.

After this choice of scaling, other important constants such as G and Λ will be scaled to non-unit
dimensionless values:
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Λ̂ = Λ`2
s = 3

(
R0

ctH

)2

Ĝ =
Gh̄

c3R2
0

.

The reference radius is the universal radius at a particular reference time. In epochs well after
inflation, the reference time is usually taken to be the present, labelled here as t = 0. For studies of
inflation dynamics, a more appropriate reference time would be around 10−35s after the singularity
at a = 0. From the perspective of de Sitter space, the singularity at t = −∞ may be viewed as a
coordinate singularity. The standard FLRW coordinate system covers only half of de Sitter space.
There is another coordinate patch that covers an earlier period of FLRW contraction. There is no
consideration here of the structure of the inflaton field prior to exponential expansion when the de
Sitter model is inappropriate. For convenience, the circumflex will be left off dimensionless variables
x̂i = xi/`s, r̂ = r/`s, t̂ = t/ts and η̂ = η/ts. However, the numerical values of dimensional quantities
will be recalled in later discussions when necessary.

As discussed in Appendix B, there exists a reference frame with a system of co-moving (material)
space-like coordinates, by which the universe is described as the interior of a sphere x · x < 1 within
which the de Sitter metric applies. The scalar field will be supplemented by the boundary condition

∂φ

∂r
= 0. (10)

It can be seen by constructing the canonical stress-energy tensor that this condition guarantees
zero flux of energy across the material boundary which is a moving boundary in another system of
physical coordinates.

By separation of variables (Appendix A), the solution to (7) may be expanded in terms of spherical
harmonic basis functions

Fnl(r)Ym
l (θ, ϕ){anlm fn`(η) + bnlm f ∗n`(η)} (11)

where anlm and bnlm are expansion coefficients. Fnl(r) are solutions of

1
F

∂

∂r

(
r2 ∂F

∂r

)
+ k2

n,`r
2 = l(l + 1), (12)

wherein kn,` are eigenvalues of the radial wave number, to be determined from the boundary conditions.
fn`(η) satisfies a non-autonomous differential equation whose solutions are nevertheless well known
in terms of Hankel functions or equivalently as Bessel functions,

fn`(η) = f (1)n` (η) + i f (2)n` (η), with

f (1)n` (η) =
√

η∞ − η J
(

1
2

√
1 + 48γ, kn,`(η∞ − η)

)
and

f (2)n` (η) =
√

η∞ − η Y
(

1
2

√
1 + 48γ, kn,`(η∞ − η)

)
,

where J(ν, ·) and Y(ν, ·) are Bessel functions of order ν, of the first and second kind respectively. Fn` are
well-known spherical Bessel functions

Fn`(r) = A
Jl+ 1

2
(kn,` r)√
kn,` r

+ B
Yl+ 1

2
(kn,` r)√
kn,` r

. (13)
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As recounted in Appendix A, the classical time-dependence of a dynamical mode with radial
wave number k may be expressed in terms of a time-dependent angular frequency ω,

f ′′(η)
f

= −k2c2 + 2(η∞ − η)−2.

This leads to a time dependent dispersion relation (Figure 1),

ω2 = k2c2 − 2(η∞ − η)−2 = k2c2 − 2
t2

H
e2t/tH . (14)
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Figure 1. (a) Time dependent dispersion relation (schematic) for minimally coupled Klein-Gordon
equation. ω2 for the minimum discrete wave number k becomes negative at critical time tc. (b) Classical
potential energy and quantum energy levels for time-dependent Hamiltonian. As time increases,
the attractive force weakens and discrete energy gaps narrow between bound eigenstates. At times
t > tc, the force is repulsive and the Hamiltonian has continuous spectrum with no lower bound.

Since the Bessel function of the second kind is singular at r = 0, a finite-valued φ requires B = 0.
A is absorbed into anlm and bnlm. Equation (13) with the boundary condition (10) determines that in
Equation (11), kn,` covers the set of eigenvalues of a Sturm-Liouville problem, satisfying

kJ′l+ 1
2
(k)− 1

2
Jl+ 1

2
(k) = 0. (15)

It follows that the set of admissible eigenvalues kn` is the set of zeros of the derivative spherical
Bessel function,

j′`(k) = 0, (16)

where ` is any non-negative integer. k can take one of a discrete set of values being the s’th positive
zero of j′`. In the notation of Antosiewicz [36], k can be a′`,s ; ` = 0, 1, 2, · · · ; s = 1, 2, · · · . It is known
that the zeros of j′` and of j′`+1 are interlaced [37]:

a′`,1 < a′`+1,1 < a′`,2 < a′`+1,2 < a′`,3 < · · ·

This statement requires a′0,1 to be interpreted as 0. The ordering of zeros of j′` is not fully
understood. However from Sec. 10.1.58 of [36], for s >> `,

a′`,s ∼ β +O(β−1); β = [s +
1
2
(`− 1)]π, (17)
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which is approximately a monotonic function of the integer part n of β/π,

n = [β/π]− = [s +
1
2
(`− 1)]− .

It is convenient to choose
kn,` = a′

`,[n+1− `
2 ]−

. (18)

The ordering in the following summation is complete, covering all positive zeros of derivative
spherical Bessel functions within the factor Fn`(r) = j`(kn,`r). It is practically monotonic in n and has
the advantage of simple enumeration.

φ =
∞

∑
n=1

2n

∑
l=0

`

∑
m=−`

Fn`(r)Ym
` (θ, ϕ){anlm fn`(η) + bnlm f ∗n`(η)}. (19)

This expansion is analogous to that which uses the standard ordered basis of energy eigenfunctions
of central force systems [38]. n is analogous to the principal quantum number but the r-dependence is
different because the assumed material surface boundary condition replaces square integrability on R3.
The time dependence is not merely trigonometric since the governing equation is non-autonomous.
The basis functions fn` are chosen to be complex, so that canonical second quantization may proceed
just as in the autonomous free field case for which fn`(t) are complex sinusoids e−iωn`t.

The number of independent basis eigenfunctions with quantum number n is (2n + 1)2. Hence,
the number of radial wave number eigenvalues that are less than or equal to a′0,n+1 is similarly of
order n2.

2.2. Reduction of Time-Frozen Hamiltonian by Bogoliubov Transformation

The method of canonical quantization will be the long established approach, similar to that of
Pauli [13]. For aspects of coupling with curved space-times, the reader is referred to the standard
texts [11,39,40].

Under canonical quantization, the field φ becomes a self-adjoint operator of the same form as (11)
but with anlm and bnlm now operators.

Noting that (Ym
` )∗ = (−1)m(Y−m

` ), the requirement that φ be self adjoint implies
b†

nlm = (−1)manl−m, where superscript dagger represents the operator adjoint. Therefore the second
quantized field is

φ =
∞

∑
n=1

2n

∑
l=0

l

∑
m=−l

Jl+ 1
2
(knl r)
√

knl r
Ym

l (θ, ϕ){anlm fn`(η) + (−1)ma†
nl−m f ∗n`(η)}. (20)

Now the field Equation (7) is the Euler-Lagrange equation generated by the Lagrangian density

L =
1
2

φ2
,η −

1
2
(∇φ)2 − 1

2
µ2φ2 ,

so the canonical conjugate field variable is

π(x, η) =
∂L
∂φ̇

=
∞

∑
n=1

2n

∑
l=0

l

∑
m=−l

Jl+ 1
2
(kn,l r)
√

knl r
Ym

l (θ, ϕ){anlm f ′n`(η)

+(−1)ma†
nl−m f ∗n`

′(η)}, (21)
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with φ̇ = φ,η . For Boson fields the field variable and its corresponding canonical conjugate field
variable will obey the equal-time commutation relations:

[φ(x, η), φ(y, η)] = 0 (22)

[π(x, η), π(y, η)] = 0 (23)

[φ(x, η), π(y, η)] = iδ(x− y), (24)

which taken with (20) and (21) imply

[anlm, an′ l′m′ ] = 0 (25)

[a†
nlm, a†

n′ l′m′ ] = 0 (26)

[anlm, a†
n′ l′m′ ] =

i
Wn`Anl

δnn′δll′δmm′ (27)

where Wn` is the Wronskian W( fn`, f ∗n`) and from (Equation 11.4.5 of Luke [41]),

An` =
∫ 1

0

J2
`+ 1

2
(kn,` r)

kn,`
rdr=

1
2k3

n,`
[k2

n,` − `(`+ 1)]J2
`+ 1

2
(kn,`) . (28)

Since An` is a real constant and Wn` = 4ikn,`/π is a purely imaginary constant, one can normalize
fn` to

fn`(η) =
1
2

√
π

kn,`An`
[ f (1)n` (η) + i f (2)n` (η)]

so that Wn` = i
An`

whereby (25)–(27) are the standard Boson commutation relations and we may
interpret a†

nlm and anlm as Boson creation and annihilation operators respectively.
The canonical Hamiltonian is

H =
∫

Ω

1
2

φ2
,η +

1
2
(∇φ)2 +

1
2

µ2φ2 dV , (29)

where Ω is the sectioned 3-space given by η =constant and dV is the spatial volume element.
To avoid the difficulty of integrating the second term we note that the boundary condition (10)
with Green’s identity ∫

Ω
φ∇2ψ +∇φ · ∇ψ dV =

∫
∂Ω

φ n̂ · ∇ψ dS

where ∂Ω is the surface of all space, implies that

H =
1
2

∫
Ω

φ2
,η − φφ,ηη dV

=
1
2

∞

∑
n=1

2n

∑
l=0

l

∑
m=−l

{W( f ′n`, f ∗n`)(anl−ma†
nl−m + a†

nlmanlm)

+ (−1)mW( f ′n`, fn`)anl−manlm + (−1)mW( f ∗n`
′, f ∗n`)a†

nlma†
nl−m}

= ∑
n,l

Hnl0 +
1
2 ∑

n,`,m
Anl{W( f ′n`, f ∗n`)(anl−ma†

nl−m + anlma†
nlm (30)

+ a†
nlmanlm + a†

nl−manl−m) + (−1)mW( f ′n`, fn`)(anl−manlm + anlmanl−m)

+ (−1)mW( f ∗n`
′, f ∗n`)(a†

nlma†
nl−m + a†

nl−ma†
nlm)}.
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The Hamiltonian is a sum of commuting quadratic Boson terms

Hnl0 =
1
2
{W( f ′n`, f ∗n`)(anl0a†

nl0 + a†
nl0anl0)

+ W( f ′n`, fn`)anl0anl0 + W( f ∗n`
′, f ∗n`)a†

nl0a†
nl0}

and

Hnlm =
1
2

[
a†

nlm a†
nl−m anlm anl−m

]
Dnlm


anlm

anl−m
a†

nlm
a†

nl−m

 for m 6= 0 (31)

where Dnlm = Anl×
W( f ′n`, f ∗n`) 0 0 (−1)mW( f ∗n`

′, f ∗n`)
0 W( f ′n`, f ∗n`) (−1)mW( f ∗n`

′, f ∗n`) 0
0 (−1)mW( f ′n`, fn`) W( f ′n`, f ∗n`) 0

(−1)mW( f ′n`, fn`) 0 0 W( f ′n`, f ∗n`)

 (32)

The eigenvalues of ÎDnlm, where Î = diag[1, 1,−1,−1], that are invariants of the group of
Bogoliubov transformations, are

ωnl = ±Anl(W( f ′n`, f ∗n`)
2 −W( f ′n`, fn`)W( fn`

′∗, f ∗n`))
1
2 . (33)

These eigenvalues are real when µ2 + k2
n,l > 0 and purely imaginary ωnl = iαnl when µ2 + k2

n,l < 0.
These are the same criteria for real and imaginary frequency found by Mijic [17]. By the theory of
equivalence classes of quadratic Hamiltonians [15], there exists a Bogoliubov transformation by which
the Hamiltonian in terms of new annihilation operators bnlm is

H = HL + HD (34)

with

HL = ∑
n,l

k2
n,l>|µ

2|

ωnl(η)

2

[
bnl0b†

nl0 + b†
nl0bnl0

]
(35)

+
ωnl(η)

2

l

∑
m=1

[
bnl−mb†

nl−m + bnlmb†
nlm + b†

nlmbnlm + b†
nl−mbnl−m

]
and

HD = ∑
n,l

k2
n,l<|µ

2|

iαn,l(η)

2

[
bnl0bnl0 − b†

nl0b†
nl0

]

+
iαn,l(η)

2

l

∑
m=1

[
bnl−mbnl−m + bnlmbnlm − b†

nlmb†
nlm − b†

nl−mb†
nl−m

]
. (36)

We can regard HL and HD respectively as a collection of quantum oscillators with time dependent
frequency ωk and quantum repulsive units with time dependent Hooke coefficient αk. An analogous
partitioning occurs between propagating and evanescent modes in optics [42]. Note that HL
and HD commute and they each may be further decomposed into a sum of commuting Hamiltonian
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components for independent elementary modes of one degree of freedom. Unlike HL, HD cannot be
transformed to a linear combination of number operators since the frequencies are purely imaginary
ωk = iαk for all wave numbers k2 < |µ2|.

The expansion in terms of the countable basis of spherical harmonics results in the number of
repulsive modes, although increasing with time, remaining finite since for any finite value of µ there are
only finitely many solutions to (15) with k2 < |µ2|. The basis modes in (20) have an r-dependent factor

Jl+1/2(knlr)√
knlr

= (−1)m+1

√
2
π

1
knlr

cos(knlr) + O([knlr]−3/2) for l = 2p ∈ Z

= (−1)m+1

√
2
π

1
knlr

sin(knlr) + O([knlr]−3/2) for l = 2p + 1 ∈ Z.

In this sense, knl resembles a wave number. However, at any time, a field dynamical mode with
radial wave number less than |µ(η)| will be non-oscillatory, reaching its last extremum near to the time
that k2

nl − |µ(η)|
2 becomes negative. At the level of second quantization, that dynamical mode is a

harmonic oscillator with time dependent squared angular frequency ω2(t) that becomes negative
at some finite time. The Pauli formulation [13] represents a quantized field as an infinite system of
harmonic oscillators. When the field is minimally coupled to an accelerating expanding space-time,
there is also a finite number of quantum field modes that may be represented as repulsive units with
pure imaginary frequency.

In the Fock representation of quantum mechanics, a single harmonic oscillator is represented by
the Hamiltonian

H =
ω

2
[b†b + bb†] = ω[b†b + 1],

with [b, b†] = 1. This can be expressed as

H =
1
2

p2 +
1
2

ω2q2

q = (2ω)−1/2[b + b†],

p = −i(ω/2)1/2[b− b†],

[q, p] = i.

However if the decreasing angular frequency ω(η) becomes zero, the above correspondence
between canonical variables (q, p) and creation/annihilation operators (b†, b) breaks down. When
the real angular frequency ω becomes pure imaginary iα, the self-adjoint time-frozen Hamiltonian H
has a continuous spectrum instead of a discrete spectrum (Figure 1) and it can no longer be written
in terms of a number operator b†b + 1. Instead, the normal form [15] for such a repulsive dynamical
mode is i α

2 [bb− b†b†] as in the components of HD in (36).

2.3. Non-Autonomous Quantum Evolution: Solution with Finitely Many Extrema

The spectral properties of the time-frozen Hamiltonian do not give the complete picture of
the dynamics of a single component non-autonomous oscillator. In the next section, operators q and p
will be represented in the usual Schrödinger picture as operators on L2(R) with q : Ψ(x) → xΨ(x)
and p : Ψ(x, η)→ −i∂xΨ(x, η). Thereafter, the relevant non-autonomous Schrödinger equation will
be solved exactly. Full spatial dependence of the field φ is temporarily disregarded as attention is
focused on a dynamical mode with a single degree of freedom labelled by (nlm), with a single pair of
canonical variables (qnlm, pnlm) that are now operators. In the following section, if x is to be regarded
as the classical version of quantum variable q, then that variable is associated with the displacement of
a single independent dynamical mode of the field φ. However, as in the Pauli construction by Fourier
inversion, after each of those separate quantum dynamical modes have been solved exactly, they may
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be recombined to construct the full space-time-dependent field, even though this reconstruction is no
longer standard Fourier inversion.

2.3.1. Transforming to an Autonomous Schrödinger Equation

The aim is to solve the non-autonomous Schrödinger equation

Ψxx + 2iΨη −ω2(η)x2Ψ = 0 (37)

where

ω2(η) = k2 − 2(η∞ − η)−2

= k2 − 2η̄−2

with η̄ = η − η∞ < 0, η∞ =
√

3/Λ̂, and Λ̂ is the cosmological constant, where η ∈ (−∞, η∞)

and η̄ ∈ (−∞, 0). Note that time evolution, under the non-autonomous equation, is still unitary.
In Dirac notation,

d
dη
|Ψ〉 = −iH(η) |Ψ〉 ,

where H(η) is self adjoint and time dependent. If |χ〉 evolves under the same time evolution,

d
dη
〈Ψ(η)|χ(η)〉 = 〈−iHΨ|χ〉+ 〈Ψ| − iHχ〉

= 〈Ψ|iHχ〉+ 〈Ψ| − iHχ〉 = 0.

By analogous results of Bluman and Kumei [43] on non-autonomous diffusion equations, it is
possible to transform to a new function
W = G(x, η)Ψ satisfying the autonomous Schrödinger equation

Wz1z1 + 2iWz2 − k2z2
1W = 0, (38)

in terms of transformed variables of the form

z1(x, η), z2(η)

with inverse transformation
x(z1, z2), η(z2).

The above transformation can be made to approach the identity transformation in the distant past,
so that the non-autonomous Equation (37) agrees asymptotically with the autonomous Equation (38).
Initial conditions for the original pde and the transformed pde will coincide, at a time taken sufficiently
far back in the past. We need to find suitable functions z1(x, η), z2(η) and G(x, η).

Now the target autonomous PDE (38) implies(
∂x
∂z1

)2
GΨxx +

(
∂2x
∂z2

1
G + 2

(
∂x
∂z1

)2 ∂G
∂x

+ 2i
∂x
∂z2

G

)
Ψx + 2i

∂η

∂z2
GΨη

+

(
∂2x
∂z2

1

∂G
∂x

+

(
∂x
∂z1

)2 ∂2G
∂x2 + 2i

∂x
∂z2

∂G
∂x

+ 2i
∂η

∂z2

∂G
∂η
− k2z2

1G

)
Ψ = 0. (39)

Equating coefficients with those of original Schrödinger equation (37) gives the following set of
PDEs that we must solve, in order to find z1(x, η), z2(η) and G(x, η).
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The ratio of the coefficient of the Ψη term to the coefficient of the ψxx term in (37) must agree with
that in (39). Therefore,

dη

dz2
=

(
∂x
∂z1

)2
= T2,

where T is an unknown function of z2 only. Then this gives

η =
∫

T2dz2 and x = Tz1 + S(z2) (40)

=⇒ z2 =
∫ 1

T2 dη and z1 =
1
T
(x− S), (41)

where S is some function of z2. Consequently,

∂2x
∂z2

1
= 0.

With a primed variable denoting a total derivative with respect to η, we also have

∂x
∂z2

= T2
(

T′

T
(x− S) + S′

)
.

Now matching the Ψx terms:

Gx

G
= −i

T′

T
x + iS

T′

T
− iS′, so that

G(x, η) = exp
(
−i
2

T′

T
x2 + iS

T′

T
x− iS′x + F(η)

)
, (42)

for some function F.
This establishes the form of the three functions z1, z2 and G but we need to specify the three newly

introduced functions T, S and F. From (42) we find

Gxx

G
= −i

T′

T
+

(
−i

T′

T
x + iS

T′

T
− iS′

)2

and
Gη

G
=
−i
2

[
T′′

T
−
(

T′

T

)2
]

x2 + iS

[
T′′

T
−
(

T′

T

)2
]

x + iS′
T′

T
x− iS′′x + F′(η). (43)

By comparing the ratios of the Ψ− coefficient to the Ψη− coefficient in (37) and in (39),
it follows that:
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�
�
��∂2x

∂z2
1

∂G
∂x

+

(
∂x
∂z1

)2 ∂2G
∂x2 + 2i

∂x
∂z2

∂G
∂x

+ 2i
∂η

∂z2

∂G
∂η
− k2z2

1G = −
(

∂x
∂z1

)2
Gω2x2

⇐⇒ T2

[
−i

T′

T
+

(
−i

T′

T
x + iS

T′

T
− iS′

)2
]

G

+ 2i
[

T2
(

T′

T
(x− S) + S′

)] [
−i

T′

T
x + iS

T′

T
− iS′

]
G

+ 2iT2 ∂G
∂η
− k2

[
1
T
(x− S)

]2
G = −T2Gω2x2

⇐⇒ 2
Gη

G
= i

[(
T′

T

)2

− k2

T4 + ω2

]
x2 + 2i

[
−
(

T′

T

)2

S +
T′

T
S′ +

k2

T4 S

]
x

+
T′

T
+ i

[
−2

T′

T
SS′ +

(
T′

T

)2

S2 + (S′)2 − k2

T4 S2

]
.

Now compare coefficients with those of the previous expression (43) for Gη/G.
From the x-coefficient:

�
�����
−
(

T′

T

)2

S +
�
��T′

T
S′ +

k2

T4 S =
T′′

T
S
��

����
−
(

T′

T

)2

S +
�

��T′

T
S′ − S′′

S′′ = −ω(η)2S,

which has general solution

S =
√
|η̄| [C1 J3/2(−kη̄) + C2Y3/2(−kη̄)] (44)

but we will simply choose S = 0, because this will be most convenient.
From the x2- coefficient:

�
�
��

(
T′

T

)2

− k2

T4 + ω2 = −T′′

T
+
�

�
��

(
T′

T

)2

T′′ − k2

T3 + ω2T = 0

which is the Ermakov-Pinney equation with solution

C3T2 = k2u2 + u2
(

C4 + C3

∫ 1
u2 dη

)2
(45)

where u(η) satisfies
u′′ + ω2u = 0.

We take the simplest non-zero solution for u,

u =
√

k|η̄|J3/2(−kη̄)

=
2
π
(−kη̄)−2[−kη̄ cos(kη̄)− sin(−kη̄)]2.
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Then ∫ 1
u2 dη =

1
k

∫ 1
u2 d(kη̄)

= −1
k

∫ 1
kη̄ J2

3/2(−kη̄)
d(kη̄)

= − π

2k
kη̄ sin(kη̄) + cos(kη̄)

−kη̄ cos(kη̄) + sin(kη̄)
.

The singularities due to the zeros in the denominator are cancelled by part of the Bessel term
when we multiply by u, resulting in T being a well behaved function. We would also like to remove
the oscillatory behaviour in T due to the trigonometric and Bessel functions, so that the transformations
to z1 and z2 are one-to-one and invertible. This can be done by choosing C3 = 2k2/π and C4 = 0,
so that

2k2

π
T2 = k2u2 + u2

(
2k2

π

∫ 1
u2 dη

)2

,

T2 = (kη̄)−2
[
(−kη̄ cos(kη̄) + sin(kη̄))2 + (kη̄ sin(kη̄) + cos(kη̄))2

]
= 1 + (kη̄)−2,

which is 1-1 for all times in the domain η̄ ∈ (−∞, 0).
From the x0-coefficient:

2F′(η) =
T′

T
+ i

[
−2

T′

T
SS′ +

(
T′

T

)2

S2 + (S′)2 − k2

T4 S2

]
. (46)

With the choice, S = 0,

2F′(η) =
T′

T
(47)

F = log(
√

T). (48)

We can now substitute these into the transformations.

z2 =
1
k

∫ 1
T2 d(kη̄)

=
1
k

∫ 1
1 + (kη̄)−2 d(kη̄)

=
1
k
(kη̄ − arctan(kη̄)) + const.

To ensure that the transformation approaches the identity in the distant past (ie as η → −∞ or
N → ∞) we choose

z2 = η̄ − 1
k

arctan(kη̄)− π

2k
+ η∞ = η − 1

k
arctan(k[η − η∞])− π

2k
. (49)

Next we simply have

z1 =
1
T
(x− S) (50)

=⇒ z1 =
x
T

(51)
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which approaches x in the distant past, as desired.
Letting S = 0 also simplifies G so we have

G(x, η) =
√

T exp(− i
2

T′

T
x2)

= (1 + (kη̄)−2)1/4 exp
(

i
2

kx2(kη̄)−3

1 + (kη̄)−2

)
,

which approaches 1 in the distant past, as desired.

2.3.2. Harmonic Oscillator Initially in Ground State

We take W to have the form of a simple harmonic oscillator in the ground state with frequency k
(in the distant past, the frequency ω(η) approaches k). W(z1, z2) = ( k

π )
1/4e−

i
2 kz2 e−

1
2 kz2

1 , so

ψ(x, η) =
W(z1, z2)

G(x, η)

=

(
k
π

)1/4
(1 + (kη̄)−2)−1/4

× exp
(
−kx2

2
1− i(kη̄)−3

1 + (kη̄)−2 +
i
2

arctan(kη̄)− i
2

kη̄ +
i
2
[
π

4
− kη∞]

)
.

The probability density is

ψψ∗ =

√
k
π
(1 + (kη̄)−2)−1/2 exp

(
−kx2

1 + (kη̄)−2

)
.

Compared to the usual stationary Gaussian probability density of the time-independent oscillator
in its ground state, the Gaussian probability density spreads as the particle wave number effectively
decreases in time, as

k̄ =
k(η∞ − η)2

(η∞ − η)2 + 1
.

2.3.3. Superposition of Harmonic Oscillator Ground State and First Excited State

As an example of an oscillating asymmetric state, we take the solution to (38) to be a superposition
of the ground state and the first excited state. We choose the probability density to be predominantly
on one side initially.

W(z1, z2) = cos ΘΨ0(z1, z2) + sin ΘΨ1(z1, z2),

which is automatically normalised for any value of Θ. With Θ = π/4,

W(z1, z2) =
1√
2
(Ψ0(z1, z2) + Ψ1(z1, z2))

=
1√
2

(
k
π

) 1
4 (

e−i k
2 z2 +

√
2kz1e−i 3

2 kz2
)

e−
k
2 z2

1

and

WW∗ =
1
2

√
k
π

(
e−i k

2 z2 +
√

2kz1e−i 3
2 kz2
) (

ei k
2 z2 +

√
2kz1ei 3

2 kz2
)

e−kz2
1

=
1
2

√
k
π

(
1 + 2kz2

1 + 2
√

2kz1 cos(kz2)
)

e−kz2
1 .
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In the original coordinates, the probability density is

Ψ(x, η)Ψ∗(x, η) =
WW∗

GG∗

=
1
T

WW∗

=
1

2T

√
k
π

(
1 + 2k

x2

T2 + 2
√

2k
x
T

cos(kz2)

)
e−

x2

T2

where

cos(kz2) = cos(kη − arctan(kη̄)− π

2
)

=
−kη̄ cos(kη) + sin(kη)√

1 + (kη̄)2

which will approach sin(kη∞), a constant between −1 and 1 that is related to the exact value of

the cosmological constant, since η∞ =
√

3
Λ̂

.
Now using

∫ ∞

0
e
−x2

a dx =

√
πa
2

,
∫ ∞

0
xe
−x2

a dx =
a
2

, and
∫ ∞

0
x2e

−x2
a dx =

1
4
√

πa
3
2 ,

the total probability to the right of the origin is

∫ ∞

0
ΨΨ ∗ dx =

1
2T

√
k
π

∫ ∞

0

(
1 + 2k

x2

T2 + 2
√

2k
x
T

cos(kz2)

)
e−

x2

T2 dx

=
1
2
+

1√
2π

cos(kz2).

The probabilistically favoured location oscillates from side to side but eventually the oscillations
cease. The extrema in the probability of x > 0 occur at times

z2 =
nπ

k
∈ (−∞, η∞ −

π

2k
) (with n ∈ Z).

The final extremum occurs at time z2 = P π
k , where P is the largest integer less than k

π η∞ − 1
2 .

The final distribution will depend on the cosmological constant and the limit of cos(kz2). In that final
distribution, the probability of x being positive is 1

2 + 1√
2π

sin(kη∞).

3. Discussion

3.1. Cosmological Implications

The highest radial wave number for an unstable mode is given by

k2
N,l ≈ µ2 = O(η∞ − η)−2 = O(a(t)2) (52)

for some index (N, l). Combining this with (17), N = O(a(t)). With n fixed, the number of independent
basis functions is approximately (2n + 1)2. Hence the number of independent unstable non-particulate
modes, is approximately the number of basis functions with n ≤ N, which is

N

∑
n=1

(2n + 1)2 =
4
3

N3 +O(N2).
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The number of independent non-oscillatory modes is of order a(t)3. If one assumes equipartition
of energy among modes originating from a broad-spectrum sharp explosion, then the energy density
summed over non-particulate modes will remain approximately constant during the expansion.
In more detail, the critical radial wave number is

kN,l = |µ(t)| =
(

2Λ̂
3

)1/2

a(t) ≈ Nπ. (53)

The number of independent unstable modes is

N

∑
n=1

(2n + 1)2 =
4
3

N3 + 6N2 +
17N

3
. (54)

If the dimensionless mean energy distributed to each unstable mode is E, then the dark energy
density is

ρΛ =
4
3 N3E
4
3 πa3

= 2−3/2π−4

(
Λ̂
3

)3/2

E. (55)

This could not account for all dark energy Λ̂/8πĜ that is consistent with the Friedmann equation
unless the energy per unstable mode were to be

E =

(
3
2

)3/2
π3 Λ̂−1/2

Ĝ
.

E diverges as Λ approaches zero, consistent with unstable quantum field modes not being
prevalent when accelerated expansion is negligible. Conversely, when Λ is very large, the dark energy
is allocated in small amounts among very many unstable discrete modes, consistent with the classical
continuum approximation that is inherent in the Friedmann equation.

The above presentation includes a number of assumptions that may be rough approximations.
The eigenvalue label n is not exactly proportional to kn,l . The Hamiltonian is not constant but decreasing
in time. Similarly, E(t) may be decreasing in time as would be the case at thermal equilibrium with
radiation at decreasing temperature. Assume that the best-fit power law is

kN,l = k0N1/(1+δ) = |µ(t)| =
√

2
(

Λ
3

)1/2
a(t).

Then the dark energy density will be

ρΛ =
N3E(t)
πa(t)3 = E(t)

(
2Λ̂
3k2

0

)3(1+δ)/2
a(t)3δ

π
. (56)

This agrees with the Friedmann equation if and only if

E(t) =
1
8

(
3

2k2
0

)3(1+δ)/2

Ĝ−1a(t)−3δ. (57)

In the unlikely event that dark energy modes remain in thermal equilibrium with radiation modes
whose temperature decreases as a(t)−1, δ would be 1

3 . In the more likely event that dark energy modes
do not freely interact with radiation modes so that they are not in thermal equilibrium, but remain
near the energy levels at which they became unstable, δ would be much less than 1

3 , consistent with
the approximation of kN,l being proportional to N.
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A scalar inflaton field would have converted a large amount of energy to non-particulate form.
This is not the case for the expansion rate that is inferred at the present age of the universe. The Hubble
time tH is currently estimated to be 14 billion years and the estimated age is 13.7 billion years.
Due to expansion, the radius of the observable universe is much greater than ctH , around 47 billion
light years [32]. Since the material radius is scaled here to r = 1, the dimensionless Hubble radius is
less than 14/47. The first positive zero of the spherical Bessel functions is k1,1 = a′1,1 ≈ 2.2. This mode
becomes unstable when k1,1 = |µ(t)|. Equivalently from (9) in dimensionless form,

a′1,1 =

√
2

tH
et/tH (58)

=⇒ t
tH
≈ −0.77, (59)

which occurred at around 0.23 times the age of the universe which is within the matter-dominated
era which lasted until about 0.7 times current age [44]. Here, t = 0 denotes the present time when

a = 1. At the present time, the critical radial wave number is k =
√

2
√

Λ
3 a(t) =

√
2/tH ≈ 4.7. If there

were already a large number of unstable modes, then we would have 4.7 ≈ kN,l ≈ Nπ. This implies
N = O(1) which contradicts the assumption of large N unless material radius is much larger than
observable radius.

Destabilization of the classical field has been examined in detail here only for a massless spin-0
scalar field but we expect that this effect is indicative of more general integer-spin fields. We expect that
a similar effect will occur for a massless spin-1 field and that Bose quantization of the unstable modes
will again require a representation with non-particulate eigenstates of the Hamiltonian. The black body
spectrum of the cosmic microwave background peaks at 1.07 µm. In the scalar field, according to (53),
modes of this wavelength will become repulsive after an exponential expansion of approximately 100
tH duration. Although at the present time, large-scale cosmogenic field instability is barely incipient
and therefore has no practical consequence, the unstable non-particulate quantum modes might
dominate the energy spectrum in the far-distant future.

3.2. Existence of Preferred Physical Representation

There is no preferred Fock representation of the Weyl quantum algebra of observables for fields
that are unstable. Even if we freeze the form of the Hamiltonian at a particular time, there is
no time-invariant vacuum state of zero energy, there is no number operator that commutes with
the total Hamiltonian [23] and the energy spectrum of each quantized unstable mode is unbounded
below. This is more dramatic than the Unruh effect [45] in which observers in different accelerating
reference frames ascribe different vacuum states and different n-particle states in the same Hilbert
space. It is more dramatic than the van Hove effect [46] (which in turn is stronger than the Unruh
effect), in which the strength of interaction requires unitarily inequivalent vacuum representations of
the quantum algebra at different times. When a classical mode becomes exponentially unstable,
the cyclic representation of the quantum algebra based on a time invariant vacuum state is no
longer possible [19,20,22]. Each independent unstable mode contributes a continuous spectrum
with corresponding generalized eigenfunctions of the Hamiltonian that are distributions in the dual of
the Hilbert space. These eigenfunctions are neither oscillatory nor particulate in character, but related
to Schroer’s “jelly” states [16].

Despite these technical difficulties, there are only finitely many unstable modes at any given time,
so that for the unstable subsystem, the Stone-von Neumann theorem will guarantee an irreducible
separable quantum Hilbert space representation that is unique up to unitary equivalence. In this
sense, Isidro and Fernández Córdoba [47] are correct to say that the finite extent of the universe
allows for unambiguous measurement of universal quantities such as the total Boltzmann entropy.
Since the remaining countably infinite set of stable modes can be represented in terms of simultaneous
eigenstates of number operators and of the Hamiltonian, they can be interpreted as absorption of any
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number of quanta above the vacuum level. The usual preferred Fock-Cook representation [34,48,49] of
the stable field component can be extended in a uniquely defined way simply by taking a direct product
with the representation of the unstable component that has finite degrees of freedom and whose Hilbert
space representation is uniquely determined by the Stone-von Neumann theorem [50,51].

4. Conclusions

The effectively massless scalar field minimally coupled to a spatially flat but rapidly expanding
FLRW universe with positive cosmological constant, is an example of an exactly solvable quantum
field theory. It has been shown how each of the contributing non-autonomous quantum dynamical
modes may be solved exactly even when they evolve from being attractive to repulsive. Like all
well-known successful 20th Century quantum field theories, the model is semi-classical in the sense that
the primary fields are operators but the space-time background is classical. The pseudo-Riemannian
space-time is associated with a classical gravitational field. Because of the exponential expansion
of the universe, the fundamental dynamical modes of the system become unstable at progressively
shorter material wavelengths at progressively later times. Much of the energy of the inflaton field
would have been converted to a non-oscillatory form. Apart from the inflation period, the current
universe would admit a relatively small number of unstable Klein-Gordon modes. The simple model
with minimal coupling already demonstrates the influence of unstable modes on the quantized energy
spectrum. A single unstable mode contributes a continuous spectrum of the quantized time-frozen
Hamiltonian, associated with eigenstates that can be viewed as neither oscillatory radiation nor
particles. There is no particle number operator that commutes with the time-frozen Hamiltonian
of an unstable mode. This non-oscillatory character pertains also when the full non-autonomous
system is solved; wave components eventually cease to oscillate in time. The destabilised energy
eigenstates are dark in the sense that neither particle detectors nor wave detectors are designed to
interact with them. The appearance of these states follows from nothing more than the standard
canonical field quantization procedure that has been used for more than 75 years. It requires no
additional physical postulates.

The increasing number of independent unstable modes remains finite, whereas the number of
stable modes is countably infinite. This allows one to specify a preferred Hilbert space representation
with a Fock representation accounting for all of the stable modes. By considering cosmological effects
in semi-classical quantization we have focused on effects at extremely long wavelengths. However it
is conceivable that a similar mechanism of dark energy generation at short wavelengths may occur
in a quantum gravity theory. The conformal metric is expanding exponentially so one would not
expect all dynamical modes of the gravitational field to be expressible in terms of gravitational waves
and graviton particles.
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Appendix A. Separation of Variables

From the non-autonomous Klein-Gordon Equation (7),

∂2φ

∂η2 −∇
2φ− 12γ(η∞ − η)−2φ = 0.

In spherical polar coordinates (r, θ, ϕ),

∂2φ

∂η2 −
∂2φ

∂r2 −
2
r

∂φ

∂r
− 1

r2 sin θ

∂

∂θ

[
sin θ

∂φ

∂θ

]
− 1

r2 sin2 θ

∂2φ

∂ϕ2 − 12γ(η∞ − η)−2φ = 0.

Consider a separated solution φ = F(r)L(θ)Z(ϕ) f (η) satisfying

f ′′(η)
f

r2 sin2 θ − 12γr2 sin2 θ(η∞ − η)−2 − F′′(r)
F

r2 sin2 θ

−2
r

F′(r)
F

r2 sin2 θ − sin θ

L(θ)
d
dθ

[sin(θ)L′(θ)]

=
Z′′(ϕ)

Z
= −m2 (separation constant).

In order for Z(ϕ) to be 2π-periodic, m can be any integer; consequently Z(ϕ) = eimϕ.
Now separating the independent variable θ,

−F′′(r)
F r2 − 2r F′(r)

F + f ′′(η)
f r2 − 12γr2(η∞ − η)−2 =

1
sin(θ)L(θ)

d
dθ [sin(θ)L′(θ)]− m2

sin2 θ
= −`(`+ 1) (separation constant).

The separated equation for L(θ) is equivalent to Legendre’s equation

(1− x2)
d2L
dx2 − 2x

dL
dx
− m2L

1− x2 + `(`+ 1)L = 0,

where x = cos(θ). L is finite for all θ if and only if ` is a non-negative integer. Then L(θ) = Pm
` (cos θ),

a Legendre function of z.
Separating the remaining independent variables η and r,

F′′(r)
F +

2
r

F′(r)
F
− `(`+ 1)

r2

= f ′′(η)
f −12γ(η∞ − η)−2 = −k2 (separation constant).

The separated equation for f (η) is equivalent to

(η∞ − η)2g′′(η)− (η∞ − η)g′(η) + [−(12γ +
1
4
) + k2(η∞ − η)2]g = 0,
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where g(η) = (η∞ − η)−1/2 f (η). Hence the solutions f (η) are linear combinations of

(η∞ − η)1/2 J√12γ+1/4(k[η∞ − η]) and (η∞ − η)1/2Y√12γ+1/4(k[η∞ − η]).

Finally, F(r) satisfies

r2F′′(r) + 2rF′(r)− `(`+ 1)F + k2r2F = 0.

G(r) = r1/2F(r) satisfies Bessel’s equation, resulting in the solutions for F being spherical Bessel
functions F(r) = j`(kr) = J`+1/2(kr)/

√
kr. This neglects the second kind y`(kr) that is undefined at

r = 0.

Appendix B. Choice of Boundary Conditions

Boundary conditions in relativistic field theories are guided by symmetry principles.
The exponentially expanding FLRW universe may be embedded in de Sitter space (e.g., Chap. 5.4
of [11] ), which is flat 1+4 -dimensional Minkowski space coordinatised as (z0, zi, z4; i = 1, 2, 3)
and restricted to the isometry-invariant hyperbolic surface

z2
0 −

3

∑
i=1

z2
i − z2

4 = −3c2/Λ = (ctH)
2.

Here, zi : i = 1, 2, 3 are grouped together because they are closely related to FLRW
material coordinates:

z0 = ctH sinh(t/tH) +
r2

2ctH
et/tH

zi = et/tH xi; i = 1, 2, 3,

z4 = ctH cosh(t/tH)−
r2

2ctH
et/tH .

This then results in the FLRW metric with exponential expansion:

ds2 = c2dt2 − e2t/tH
3

∑
i=1

(dxi)2.

In material polar coordinates (t, r, θ, ρ),

ds2 = c2dt2 − e2t/tH [dr2 + r2dθ2 + r2 sin2 θdρ2].

The coordinate patch given by xµ covers only half of de Sitter space. In the context of de Sitter
space, the singularity at t = −∞ is merely a coordinate singularity, not a geometric singularity.
The other half of de Sitter space could be covered by a second FLRW patch in which a(t) is decreasing.
This second patch is currently well beyond the realm of practical science.

It is straightforward to calculate Killing vectors, being tangent vectors of isometries in de Sitter
space. A coordinate transformation then results in ten independent Killing vectors for the FLRW space.
This was done by Schrödinger [52], neatly summarised by Hari Dass and Desiraju [53] who related
the isometries to zero modes of the Laplace-Beltrami operator. Because of the exponential form of
expansion, the maximally invariant de Sitter version of FLRW has an additional scaling isometry

r̄ = e−εr; t̄ = t + ε; θ̄ = θ; ρ̄ = ρ.
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The radius of a sphere is not even invariant under this simplest of isometries. The spherical
surface r = 1 is not invariant under Lorentz transformations that contract lengths in the direction of an
observer’s velocity. The invariant surface containing the points with r = r0 and t = 0 is the space-time

hyperboloid given by r =
√

r2
0 + c2t2e−t/tH . However in continuum mechanics the boundary is

physically defined by parcels of co-moving matter each of which, by definition, has a constant location
in material coordinates (r, θ, ρ). Hence in order to state a boundary condition on the sphere, one needs
an additional postulate that the isotropic space-time has a special locally Lorentz frame in which
each time-section is a sphere. It is an anathema to the principle of relativity that there should be a
physically distinguished frame. However it has recently been demonstrated that the cosmic microwave
background is isotropic only in a special reference frame. Relative to that frame, the earth has a speed
of 370 km s−1 [54].

Standard physical boundary conditions are commonly stated in terms of components of
the canonical stress-energy tensor which is constructed from the de Sitter-invariant Lagrangian density

T λν = −gλνL+
∂L

∂φ,λ
φ,ν. (A1)

In terms of polar radial coordinates and in units chosen so that c = 1 and h̄=1, the Lagrangian
density for the scalar field equation is

L =
1
2

φ2
,η −

1
2

[
φ2

,r +
1
r2 φ2

,θ +
1

r2 sin2 θ
φ2

,ρ

]
− 1

2
µ2φ2.

The (η, r) component of the stress energy tensor is T 01 = −a(η)−2φ,ηφ,r which must be equal
to the energy flux in the radial direction. In the material coordinate system, an expanding spherical
boundary has a constant material radius coordinate r = 1. Since this is in a material coordinate system,
zero-transport across the location r = 1 really means zero-transport relative to a moving location
r∗ = a(t) in terms of a system of physical coordinates. The material coordinate system is convenient
for expressing a moving boundary condition in a simple way. In that case the required physical
condition of no transport of energy across the boundary implies either φ,r = 0 or φ,η = 0. There is no
generally agreed boundary condition for the universe. The viewpoint here is that each fundamental
single-particle mode will have only a finite number of oscillations in time before it transitions to a dark
non-oscillatory mode. At any time instant, each propagating mode will have only a finite number
of local extrema. If the boundary condition φr = 0 is imposed, then the last of the finite number of
extrema of each mode will occur at the boundary. Since zeros of φ(η, r) are interlaced between extrema,
the mode decomposition will be virtually the same if the boundary condition were given as φ = 0.

References

1. Aldrovandi, R. Nonrelativistic spacetimes with cosmological constant. Class. Quantum Grav. 1999, 16,
495–506.

2. Balbi, A. Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 2000, 545, L1–L5.
3. De Bernardis, P. A flat Universe from high-resolution maps of the cosmic microwave background radiation.

Nature 2000, 404, 955–959.
4. Peacock, J.A.; Cole, S.; Norberg, P.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.D.;

Colless, M.; Collins, C.; Couch, W.; et al. (Hubble Space Telescope Project Consortium). A measurement of
the cosmological mass density from clustering in the 2dF. Galaxy Redshift Survey. Nature 2001, 410, 169–173.

5. Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.;
Goobar, A.; Groom, D.E.; et al. (Supernova Cosmology Project Consortium). Measurements of Ω and Λ from
42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–587.



Symmetry 2020, 12, 943 23 of 24

6. Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.;
Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for
past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–688.

7. Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.;
Jarosik, N.; Kogut, A.; et al. (WMAP Team). First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Determination of Cosmological Parameters. Astrophys. J. Supp. 2003, 148, 175–195.

8. Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.;
Weinberg, D.H.; Zehavi, I.; Bahcall, N.A.; et al. (WMAP team). Cosmological parameters from SDSS
and WMAP. Phys. Rev. D. 2004, 69, 103501-1–103501-26.

9. Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Benjamin Cummings: San Francisco,
CA, USA, 2003.

10. Carroll, S.M.; Chatwin-Davies, M. Cosmic equilibration: a holographic no-hair theorem from the generalized
second law. Phys. Rev. D 2017, 97, 046012.

11. Birrell, N.D., Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge,
UK, 1982.

12. Esposito, G.; Kamenshchik, A.Y.; Pollifrone, G. Euclidean Quantum Gravity on Manifolds with Boundary;
Kluwer/Springer: Dordrecht, The Netherlands, 2007.

13. Pauli, W. Relativistic field theory of elementary particles. Rev. Mod. Phys. 1941, 13, 203–232.
14. Thouless, D.J. The Quantum Mechanics of Many-Body Systems, 2nd. ed.; Dover Publications: New York, NY,

USA, 1992.
15. Broadbridge, P. Normal forms for classical and Boson systems. Phys. A 1979, 99, 494–512.
16. Schroer, B. Quantization of m2 < 0 field equations. Phys. Rev. D 1971, 3, 1764–1770.
17. Mijic, M. Particle production and classical condensates in de Sitter space. Phys. Rev. D 1998, 57, 2138–2146.
18. Broadbridge, P.; Zulkowski, P. Dark Energy States from Quantization of Boson Fields in a Universe with

Unstable Modes. Rep. Math. Phys. 2006, 57, 27–40.
19. Broadbridge, P.; Hurst, C.A. Existence of a complex Structure for Quadratic Hamiltonians? Ann. Phys. 1981,

131, 104–117.
20. Paneitz, S.M. Unitarization of symplectics and stability for causal differential equations in Hilbert space.

J. Funct. Anal. 1981, 41, 315–326.
21. Broadbridge, P. Problems in the quantization of quadratic Hamiltonians. Hadron. J. 1981, 4, 899–948.
22. Broadbridge, P. Existence Theorems for Segal Quantization via Spectral Theory in Krein Space. J. Austral.

Math. Soc. B 1983, 24, 439–460.
23. Chaiken, J.M. Number operators for representations of the canonical commutation relations. Commun. Math.

Phys. 1968, 8, 164–184.
24. Allen, B. Vacuum states in de Sitter space. Phys. Rev. D 1985, 32, 3136–3149.
25. Allen, B.; Folacci, A. Massless minimally coupled scalar field in de Sitter space. Phys. Rev. D 1987, 35,

3771–3778.
26. Kirsten, K.; Garriga, J. Massless minimally coupled fields in de Sitter space: O(4)-symmetric states versus de

Sitter-invariant vacuum. Phys. Rev. D 1993, 48, 567–577.
27. Polarski, D. Infrared divergences in de Sitter space. Phys. Rev. D 1991, 43, 1892–1895.
28. Bunch, T.S.; Davies, P. C.W. Quantum field theory in de Sitter space—Renormalization by point-splitting.

Proc. Roy. Soc. A. 1978, 360, 117–134.
29. Guth, A.H. Inflation. Proc. Natl. Acad. Sci. USA 1993, 90, 4871–4877.
30. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980, 91B,

99–102.
31. Kazanas, D. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. 1980, 241, L59–L63.
32. Taylor Redd, N. How Big is the Universe? Available online: https://www.space.com/24073-how-big-is-the-

universe.html (accessed on 10 June 2017).
33. Adam, R.; Ade, P.A.; Aghanim, N.; Akrami, Y.; Alves, M.I.R.; Argüeso, F.; Arnaud, M.; Arroja, F.;

Ashdown, M.; Aumont, J.; et al. (The Planck Collaboration). Planck 2015 results. I. Overview of products
and scientific results. Astron. Astrophys. 2016, 594, A16.

34. Segal, I.E. Mathematical Problems of Relativistic Physics; American Mathematical Soc.: Providence, RI, USA,
1963.

https://www.space.com/24073-how-big-is-the-universe.html
https://www.space.com/24073-how-big-is-the-universe.html


Symmetry 2020, 12, 943 24 of 24

35. Harigaya, K.; Ibe, M.; Kawasaki, M.; Yanagida, T.T. Revisiting the minimal chaotic inflation model. Phys. Lett.
B 2016, 756, 113–117.

36. Antosiewicz, H.A. Bessel Functions of Fractional Order. In Handbook of Mathematical Functions;
Abramowicz, M., Stegun, I.A., Eds.; National Bureau of Standards: Washington, DC, USA,1964; pp. 435–478.

37. Liu, H.; Zou, J. Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in
inverse acoustic obstacle scattering. IMA J. Appl. Math. 2007, 72 817–831.

38. Messiah, A. Quantum Mechanics; North-Holland: Amsterdam, The Netherlands, 1961; Volume 1, Chapter 9.
39. Fulling, S.A. Aspects of Quantum Field Theory in Curved Space-Time; Cambridge University Press: Cambridge,

UK, 1989.
40. Mukhanov, V.F.; Winitski, S. Introduction to Quantum Effects in Gravity; Cambridge University Press:

Cambridge, UK, 2007.
41. Luke, Y.L. Integrals of Bessel Functions. In Handbook of Mathematical Functions; Abramowicz, M., Stegun, I.A.,

Eds.; National Bureau of Standards: Washington, DC, USA, 1964; p. 485.
42. Aiello, A. Field theory of monochromatic optical beams. 1. Classical fields. J. Opt. 2019, 22, 014001.
43. Bluman, G.W.; Kumei, S. Symmetry-based algorithms to relate partial differential equations. 1. Local

symmetries. Euro. J. Appl. Math. 1990, 1, 189–216.
44. Ryden, B. Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 2006.
45. Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1984 14, 870–892.
46. Van Hove, L. Les difficultés de divergences pour un modele particulier de champ quantifié. Physica 1952, 18,

145–159.
47. Isidro, J.M.; Fernández de Córdoba, P. On the Holographic Bound in Newtonian Cosmology. Entropy 2018,

20, 83, doi:10.3390/e20020083
48. Fock, V. Konfigurationsraum und zweite Quantelung. Z. Phys. 1932, 75, 622–647.
49. Cook, J. The mathematics of second quantization. Trans. Am. Math. Soc. 1953, 74, 222–245.
50. Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648.
51. Von Neumann, J. Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 1931, 104, 570–578.
52. Schrödinger, E. Expanding Universes; Cambridge University Press: Cambridge, UK, 1956.
53. Hari Dass, N.D.; Desiraju, H. Killing vectors of FLRW metric (in comoving coordinates) and zero modes of

the scalar Laplacian. arXiv 2016, arXiv:1511.07142v3.
54. Collaboration, P.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.;

Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. (The Planck Collaboration). Planck 2018 results. I. Overview,
and the cosmological legacy of Planck. arXiv 2018, arXiv:180706205P

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Canonical Field Quantization and Unstable Modes
	Classical Klein-Gordon Field in an Accelerating Space-Time
	 Reduction of Time-Frozen Hamiltonian by Bogoliubov Transformation
	Non-Autonomous Quantum Evolution: Solution with Finitely Many Extrema
	Transforming to an Autonomous Schrödinger Equation
	Harmonic Oscillator Initially in Ground State
	Superposition of Harmonic Oscillator Ground State and First Excited State


	Discussion
	Cosmological Implications
	Existence of Preferred Physical Representation

	Conclusions
	Separation of Variables
	Choice of Boundary Conditions
	References

