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Analytic solutions for calcium ion fertilisation waves on the surface of eggs
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The evolution of calcium fertilisation waves on the cortex of amphibian eggs can be described by a
nonlinear reaction-diffusion process on the surface of a sphere. Here, we use the nonclassical symmetry
technique to find an exact analytic solution that describes the evolution of the calcium concentration. The
solutions presented compare well with published experimental results. The analytic solution can be used
to give insight into the processes governing the fertilisation wave, such as the flow of calcium ions from
the sperm entry point. By finding a spiral solution to an approximate equation linearised near saturation,
we also demonstrate how solutions with other properties may be constructed using this technique.
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1. Introduction

Calcium ion fertilisation waves travelling over the surface of fish eggs were first observed in the 1970’s
by Gilkey et al. (Gilkey, 1983; Ridgway et al., 1977) and were subsequently observed in sea urchin,
frog and mouse eggs, among others (Cuthbertson et al., 1981; Steinhardt et al., 1977; Wasserman
et al., 1980). Calcium ions diffuse from the sperm puncture point and stimulate further release from
stores just beneath the surface. This increase in the cortical calcium ion concentration is necessary
to block polyspermy and it also initiates key processes in the activation of the embryonic cell cycle
(Nuccitelli, 1991; Wagner et al., 1998).

A number of mathematical models describing the evolution of calcium waves in general, and calcium
fertilisation waves in particular have been developed. Almost all of these models are of reaction-
diffusion type and fall into one of two categories, as described by Tsai & Sneyd (2007). Some models
consist of systems of differential equations and contain details regarding the various mechanochemical
processes and descriptions of calcium pumps and channels, whereby stored calcium is released to the
ovum surface (Sneyd et al., 1993; Wagner et al., 1998). Others consider only the essential mechanisms,
ensuring that the model reflects the most important features while remaining mathematically tractable
(Cheer et al., 1987; Lane et al., 1987; Tsai & Sneyd, 2007).

In this paper, we consider this second type of model and use nonclassical symmetry analysis look
for exact analytic solutions of a nonlinear reaction-nonlinear diffusion equation

ut = ∇.(D(u)∇u) + R(u), (1.1)

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

on the surface of a spherical egg, where ∇ is the usual gradient operator on the surface of a sphere. The
diffusion coefficient, D(u), is typically taken to be constant. Here, we use a cubic nonlinear reaction
term (discussed in more detail in Section 2).

The classical Lie point symmetry classification of reaction-diffusion equations, with consequent
similarity reductions, was presented by Galaktionov et al. (1988). The complete nonclassical symmetry
classification for the case when u(x, t) = u(x, t) (i.e. one (Cartesian) dimension), and D(u) = D
is a constant, was given by Arrigo et al. (1994) and Clarkson & Mansfield (1994). Other solutions,
particularly in the context of population dynamics and nerve impulses, are given in Kametaka (1976),
McKean (1970), Conte (1988), Chen & Guo (1992), Chen & Gu (1999), Kawahara & Tanaka (1983)
and Nikitin & Barannyk (2004). Solutions to the nonlinear diffusion equation in spherical coordinates,
with R(u) = 0 and spherical symmetry were provided by King (1990). Nonclassical invariant solutions
for nonlinear diffusion-nonlinear reaction in Cartesian coordinates were found by Arrigo & Hill (1995)
and Goard & Broadbridge (1996).

In Section 2 we present the model in more detail and nondimensionalise the relevant equation. In
Section 3, we describe the results presented in Arrigo & Hill (1995) and Goard & Broadbridge (1996)
and extend them to the case of spherical coordinates. A specific example solution to the nonlinear model
describing the evolution of the calcium fertilisation wave is presented in Section 4. In Section 5, we
present some spiral solutions using an approximate linearised model that is valid near an equilibrium
point. In Section 6 we make some final remarks and comment on the applicability of the solutions
presented herein.

2. Model equations and nondimensionalisation

As described above, a number of reaction-diffusion models have been proposed to describe a calcium
fertilisation wave on the surface of an egg. Here, we use a cubic reaction term so that our model equation
in dimensional variables is

ūt̄ = ∇̄.(D̄(ū)∇̄ū) + s̄(ū − ūmin)(ūmax − ū)(ū − ū1), (2.1)

where ū(θ̄ , φ̄, t̄) is the areal concentration of calcium ions, ūmax and ūmin are the maximum and minimum
concentrations, respectively, D̄(ū) is the nonlinear diffusion coefficient, s̄ is a constant and ∇̄ is the usual
(dimensional) gradient operator on the surface of a sphere. While this form of the reaction term captures
some of the reaction kinetics (Cheer et al., 1987; Lane et al., 1987; Slepchenko et al., 2000) and reflects
the bistable nature of the problem (Cheer et al., 1987; Tsai & Sneyd, 2007; Wagner et al., 1998), the
model is still mathematically tractable. Other relatively simple forms of the reaction term that may be
considered include those derived from a Michaelis–Menton approach (Fall et al., 2004).

Equation (2.1) with D(u) = D (constant) has been used to model one-dimensional (planar) calcium
waves (Sneyd et al., 1998; Tsai & Sneyd, 2007), as well as calcium fertilisation waves on the surface
of a sphere (Cheer et al., 1987; Murray, 2002). The equation is often solved numerically, although
Lane et al. (1987) constructs a solution to an approximate equation with piecewise linear R(u).

Introducing the nondimensional (unbarred) variables r̄ = ar, t̄ = Tt = (a2/〈D̄〉)t, ū = Uu =
(ūmax − ūmin)u and D̄(ū) = 〈D̄〉D(u), where

〈D̄〉 = 1

U

∫ ū

ūmax

D̄(ū′)dū′,
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 3

we rewrite (2.1) to obtain

ut = ∇.(D(u)∇u) + su(1 − u)(u − u1), (2.2)

where

u1 = ū1 − ūmin

ūmax − ūmin
and s = T(ūmax − ūmin)

2s̄

(0 < u1 < 1) are positive nondimensional parameters. In this paper, we seek exact analytic solutions to
equation (2.2) on the surface of a sphere and discuss their relevance for calcium fertilisation waves.

3. Nonclassical reduction of the nonlinear reaction diffusion equation

As described above, the classical and nonclassical symmetries of equations of type (1.1) were studied
in one dimension (with u(x, t) = u(x, t)) by Arrigo & Hill (1995) and in two dimensions (with
u(x, t) = u(x, y, t)) by Goard & Broadbridge (1996). In both one and two Cartesian dimensions, there
is a nonclassical symmetry generator that allows equation (1.1) to be reduced to a linear second order
differential equation with one fewer independent variables, provided

R(u) =
(

A

D(u)
+ κ

)∫ u

u∗
D(u′) du′. (3.1)

This reduction method does not assume restrictions on the choice of coordinates or the number of
dimensions (Broadbridge & Bradshaw-Hajek, 2016; Broadbridge et al., 2015). As demonstrated here,
it is still valid when the spatial domain is the surface of an embedded sphere, with the transport process
described in terms of the surface Laplacian. The transformation can be defined by the nonclassical
symmetry generator,

Γ = ∂

∂t
+ Au

∂

∂u
.

We define a new function Ψ (θ , φ) that is related to the calcium concentration u(θ , φ, t) via

μ =
∫ u

u∗
D(u′) du′ = eAtΨ (x). (3.2)

The quantity μ is the flux potential, since the flux density of calcium ions is −∇μ = −D(u)∇u. The
constants A and κ arise from the nonclassical symmetry analysis, while u∗ must be appropriately chosen
and will be discussed in further detail later.

Equation (3.2) implies that D(u)∇u = eAt∇Ψ . Using this, and assuming that relationship (3.1) is
satisfied, equation (1.1) in spherical coordinates may be reduced to

∇2Ψ (x) + κΨ (x) = 0, (3.3)

i.e. the Helmholtz (κ > 0), modified Helmholtz (κ < 0) or Laplace equation (κ = 0). Here, ∇2 is the
Laplacian on the surface of a sphere, and Ψ (x) = Ψ (θ , φ), where 0 ≤ θ ≤ π is the polar angle and
0 ≤ φ ≤ 2π is the azimuthal angle.

Solution of equation (3.3) on the surface of a sphere depends on the value of the parameter κ , but in
general it can be written in terms of trigonometric, hypergeometric and associated Legendre functions.
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4 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

4. Model diffusivity and solution

Nondimensionalisation of the equation in Section 2 has scaled the problem so that u = 1 represents the
positive stable equilibrium value. Then u1 is the critical stimulus level, an unstable equilibrium value
above which more calcium will be released; u = 1 denotes 100% saturation. Equation (2.2) may be
reduced to (3.3) whenever the diffusion coefficient and the reaction term satisfy relationship (3.1). That
is, we must have

D(u) = A
∫ u

u∗ D(u′)du′

su(1 − u)(u − u1) − κ
∫ u

u∗ D(u′)du′ . (4.1)

In order that D(u) does not change sign at an achievable concentration, u∗ must either be formally
set to be negative or it must be one of the zeros of R(u). If u∗ < 0,

D(u) = A[C + ∫ u
0 D(u′)du′]

su(1 − u)(u − u1) − κ
[
C + ∫ u

0 D(u′)du′] ,

with C > 0. It then immediately follows that

D(0) = D(1) = D(u1) = −A/κ . (4.2)

Now consider u∗ = 1. From (4.1) it still follows that

D(0) = D(u1) = −A/κ .

By making use of a Taylor series expansion near u = u∗ = 1 and ignoring the terms of order
O((u − u∗)2), we see that

D(u∗) = D(1) = lim
u→1

A
∫ u

1 D(u′)du′

su(1 − u)(u − u1) − κ
∫ u

u∗ D(u′)du′

= lim
u→1

AD(1)(u − 1)

−s(u − 1)(1 − u1) − κD(1)(u − 1)
, (4.3)

from which it follows that

D(u∗) = D(1) = −A − s(1 − u1)

κ
. (4.4)

From the above discussion, we see that the constants A and κ must be chosen such that −A/κ > 0, so
that one of these constants must be negative, and one positive. We choose A < 0 (and κ > 0) otherwise
the experimentally observed steady state would not be attained.

Relationship (3.1) gives a direct construction of R(u) from a specified diffusivity function D(u);
however, we wish to specify R(u) (not D(u)). After specifying a cubic reaction function, equation (4.1)
cannot be solved exactly to construct D(u) in terms of familiar functions. Numerical solution is relatively
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 5

Fig. 1. (a) Nondimensional nonlinear diffusion calculated using the first iterate of the contraction map (4.5), i.e. (4.7) (solid blue
line) and the numerical solution of (4.1) (dashed black line). (b) Nondimensional nonlinear reaction term. The black dashed line
is a cubic (su(1 − u)(u − u1)), and the red solid line is the reaction term that corresponds to (4.7) through (3.1). The parameter
values are given in the text (Colour online).

straight forward. Alternatively, a contraction map may be derived that has the solution of (3.1) as its fixed
point (Broadbridge et al., 2015),

Dn+1(u) = A
∫ u

u∗ Dn(u
′)du′

R(u) − κ
∫ u

u∗ Dn(u
′)du′ , (4.5)

with D0(u) = D(u∗), allowing an approximate expression for the required diffusion coefficient to be
calculated. Since D0 is a constant, D1 may always be found analytically, regardless of the form of
R(u). The possibility of calculating the second iterate, D2, analytically will depend on whether or not
the integral of D1 can be found analytically. Fortunately, this map converges quickly and it is often
sufficient to use the first iterate (see Fig. 1(a) for a comparison between the numerical solution of
equation (4.1) and the first iterate). Although D(u) will be nonconstant and may be non-monotonic,
it is not strongly varying, so that solutions u(θ , φ, t) are expected to be qualitatively similar to those
obtained from a constant diffusivity D = −A/κ . In fact we will see that the required nonlinear diffusivity
decreases with concentration near the saturation level. Wagner & Keizer (1994) proposed a theoretical
model for the diffusion coefficient of buffered calcium ions in cytosol and compared their theoretical
predictions with the experimental results of Allbritton et al. (1992), where the diffusion of calcium
ions in cytosol was investigated. The theoretical model of Wagner & Keizer predicts that the diffusion
coefficient should increase with increasing calcium ion concentration. The nonlinear diffusion used here
is not in alignment with this; however, given that it is not strongly varying, we expect that the predicted
calcium profiles will be similar to those obtained using constant diffusion (in fact, the profiles obtained
using an increasing diffusion coefficient are also similar (see Wagner & Keizer)). Indeed, the numerical
comparison presented in Section 5 supports this claim.

Taking this approach we begin with a cubic reaction term (2.2) and use the contraction map (4.5)
to calculate an approximate corresponding nonlinear diffusion. To ensure that we find an exact analytic
solution, we then calculate a new reaction term which corresponds exactly to the nonlinear diffusion by
using equation (3.1). We show that this new reaction term maintains all the important features of the
original cubic reaction term.
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6 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

In some experiments, fertilisation initiates a wave of calcium ions at one point on the surface of the
egg (denoted the animal pole) which is seen to move around the surface of the egg to the opposite pole
(the vegetal pole)(Carroll et al., 2003). In this case, there is symmetry in the azimuthal angle (φ) and
equation (3.3) can be simplified to

1

sin θ

d

dθ

[
sin θ

dΨ

dθ

]
+ κΨ = 0, (4.6)

where Ψ = Ψ (θ). We choose the starting point of the iterative contraction map for D(u) to be the
constant D0 = D(1) given in (4.4) and the first iterate of the contraction map is given by

D1(u) = AD0

−su(u − u1) − κD0
. (4.7)

We will use this form of nonlinear diffusion. The nonlinear reaction term that is precisely related to (4.7)
by equation (3.1), and thereby allows use of the nonclassical symmetry, can be easily calculated and is
shown in Fig. 1. The reaction term is no longer a cubic function; however, it retains many of the features
of the cubic that was used to calculate D(u).

Equation (4.6) can be transformed into the Legendre equation via z = cos θ (Polyanin & Zaitsev,
2003), and solutions can be written in terms of the hypergeometric function (Abramowitz & Stegun,
1964),

Ψ (θ) = c1F
(
− 	

2 , 1+	
2 ; 1

2 ; cos θ
)

+ c2 cos θF
(

1−	
2 , 1 + 	

2 ; 3
2 ; cos θ

)
,

where κ = 	(	 + 1) and c1, c2 are constants of integration. The hypergeometric function is a
generalisation of the Legendre function that allows the integer index of a Legendre function to extend to
non-integer real numbers 	. Here we choose 	 < 1 (see below for more detail) and so the hypergeometric
function is used. In order to ensure that the solution u(θ , t) initially has little mass in the region away
from the animal pole, we choose c2 = 0. The solution for the calcium ion concentration can be found
by inverting (3.2) to find

u(θ , t) = u1

2
+ b tan

(
eAtΨ (θ) + tan−1

(
1 − u1/2

b

))
, (4.8)

where

b =
√

κD0
s − 1

4 u2
1 .

Solution (4.8) is an exact analytic solution to equation (1.1) with D(u) given by (4.7) and R(u) given by
(3.1) in the case of azimuthal symmetry. The constant c1 may be chosen by requiring that the calcium ion
concentration at the bottom (vegetal pole) of the egg is initially zero, that is u(π , 0) = 0. For 	 < 1, the
hypergeometric function is unbounded when the argument is 1, i.e. at the site of fertilisation (the animal
pole), θ = 0 (see below for an explanation of why we have chosen 	 < 1). This localised problem may
be resolved by restricting the domain to the exterior of a small ‘polar cap’ approximating a puncture,
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 7

Fig. 2. (a) The nondimensional calcium ion concentration (4.8), the arrow shows increasing time (t = 0, 1, 2, . . . , 10).
(b) Progression of calcium ion front on the surface of a sphere. Curves are plotted where u = 0.85 at t = 0, 1, 2, . . . , 6. The
parameter values are given in the text.

Fig. 3. Nondimensional calcium ion concentration (4.8) mapped onto a sphere for t = 0, 1, 3, 5. The parameter values are given
in the text.

i.e. θ0 ≤ θ ≤ π (with a small θ0 representing the size of the puncture). This small polar cap acts a source
of calcium ions.

The diffusion and reaction terms are plotted in Fig. 1 and the calcium ion concentration (solution
(4.8)) is plotted in Fig. 2. The time evolution of the solution is mapped onto the surface of a sphere in
Fig. 3.
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8 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

In Figs. 1–3, the parameters have been chosen to reflect the dynamics of a calcium wave on the
surface of a sea urchin egg such as that observed in the paper by Carroll et al. (2003). Sea urchin
eggs are approximately 170μm in diameter, so we take a = 85μm. The parameter A governs the
time a calcium wave takes to travel from the top of the egg (the fertilisation site) to the bottom in
our model. Experiments show that for a sea urchin egg, this is approximately τ̄ = 45s. We choose
Ā so that this represents the time taken until the calcium ion concentration is 80% of saturation,
Ā = ln 0.2/τ̄ ≈ −0.035. While the maximum and minimum calcium concentrations are not given in the
paper by Carroll et al. (2003) , others suggest ūmin = 0μM, ūmax = 1μM and ū1 ≈ 0.4μM (Slepchenko
et al., 2000).

Since we have not taken specific account of the resequestration of the calcium ions, we use the
diffusion coefficient for calcium ions in cytoplasm. Various values appear in the literature. A value
of 4 × 10−11m2s−1 has been used in several papers modelling calcium fertilisation waves (Bugrim
et al., 2003; Dupont & Dumollard, 2004). Cheer et al. (1987) states that the diffusion coefficient of
calcium ions in cytoplasm is approximately 10−12m2s−1. The diffusion coefficient in the cytoplasm
of a nerve axon has been measured as 2 − 5 × 10−10m2s−1 (Al-Baldawi & Abercrombie, 1995;
Donahue & Abercrombie, 1987), while Allbritton et al. (1992) measured it to be 2 × 10−10m2s−1

in cytosolic extract from a Xenopus oocyte. Here, we take a value of D(1) = D0 = 5 × 10−10m2s−1.
An appropriate value for the reaction constant s does not seem to appear in the literature.

Nevertheless, our methodology allows us to find a relationship between the various parameters so that s̄
may be found from the dimensional version of equation (4.4).

The value chosen for κ will determine the shape of the hypergeometric function that is used to
construct the solution for the calcium ion concentration. Since D(u) > 0 for 0 ≤ u ≤ 1, the Kirchhoff
variable (calculated using u∗ = 1) is negative, i.e. μ(u) ≤ 0 for 0 ≤ u ≤ 1 (see equation (3.2)). It is
therefore essential that Ψ (θ) is negative for θ0 < θ < π , and as a result the hypergeometric function
must not change sign in this range. This only occurs for small values of 	, and certainly 	 < 1. Here we
have chosen 	 = 0.25 so that κ = 0.3125.

Figure 1 shows the nondimensional nonlinear diffusivity calculated using the first iterate of the
contraction map (4.5). The nonlinear diffusion is well behaved and near 1 in the range of calcium ion
concentrations of interest. The nondimensional nonlinear reaction term calculated using (3.1) is shown
in Fig. 1, and it is clear that over the range of concentrations of interest, it exhibits many of the same
features of the original cubic reaction term (shown with a dashed line).

The time evolution of the calcium ion concentration is shown in Fig. 2(a). If A < 0, then by (3.2),
|μ(u)| will be decreasing with time and μ(u) will approach zero from below. This means that as time
progresses, the solution u(θ , t) will approach 1 everywhere in a pointwise manner. This can be observed
in Fig. 2(a). The effect of introducing a polar cap can be seen near θ = 0, where no solution is shown.
As required, the initial calcium ion concentration is zero at the bottom of the egg, u(π , 0) = 0. The
calcium ion concentration is approximately 80% of saturation everywhere at nondimensional time, t =
5, corresponding to a dimensional time of t̄ = 50s, very close to the estimated flooding time for a sea
urchin egg. Figure 2(b) shows the latitude at which the nondimensional calcium ion concentration is
85% of saturation, u = 0.85, at various times. The increase in concentration is much faster in the lower
half of the egg due to the stimulated release of calcium ions from the cortex. Figure 3 shows the solution
mapped onto the surface of a sphere, with the final panel showing the concentration at t = 5. While the
analytic solution (4.8) is not of travelling wave form (i.e. it cannot be written in terms of a travelling
wave coordinate, z = x − ct), the solution as presented in Fig. 3 appears to the observer as a ‘wave’ of
calcium ions moving over the surface of the egg, exhibiting similar characteristics to those observed in
experiment (Carroll et al., 2003).
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 9

5. An approximate linearised model

In some situations, the calcium ion fertilisation wave appears as a spiral around the surface of the
egg (Lechleiter et al., 1991). This type of behaviour has also been observed in chemical reactions
(Maselko & Showalter, 1989), and some numerical solutions of the relevant equations show spiral-like
properties. In this section, we find an analytic spiral solution to an approximate linear model.

We are now interested in a model that does not exhibit symmetry in the azimuthal angle, so the
calcium ion concentration on the surface of a sphere will be governed by equation (2.2) where ∇ is the
usual gradient operator on the surface of a sphere, taking into account variations in both the polar and
azimuthal angles, with u(θ , φ, t).

Solutions to the Helmholtz equation may be written in terms of spherical harmonics, Ym
l (θ , φ).

Taking linear combinations of spherical harmonics of neighbouring degrees (i.e. 	 and (	 + 1)), spiral
patterns can be produced, with the number of ‘arms’ in the spiral determined by 	 (Sigrist & Matthews,
2011) . In order to use this property, we must construct solutions using different values of 	, and hence
different values of κ since κ = 	(	 + 1). Since the parameter κ is a characteristic of the nonclassical
symmetry transformation, directly taking two values of κ is not possible. However, an alternative
approach may be taken if we linearise the model equation (2.2).

Using two different values of κ , κ(1) and κ(2), we may use the first iterate of the contraction map
(4.5) to calculate two different nonlinear diffusion functions, D(1)(u) and D(2)(u), that approximately
correspond (via (3.1)) to a cubic reaction term. These two functions, may then be used to calculate two
different reaction terms, R(1)(u) and R(2)(u), that correspond precisely to the two different nonlinear
diffusion terms. We now have two (albeit very similar) model equations

ut = ∇.(D(1)(u)∇u) + R(1)(u) (5.1)

ut = ∇.(D(2)(u)∇u) + R(2)(u). (5.2)

Note that if we set parameters D0 and s to be the same in both cases, then choosing different values
of κ requires that we also use different values for A (the other parameter arising from the symmetry
reduction). These values can be calculated by rearranging (4.4) (with D0 = D(1)). As will be shown,
both R(1)(u) and R(2)(u) are very similar to a cubic reaction term.

As the calcium ion concentration approaches its stable equilibrium value, u = 1 (Kazmierczak
et al., 2018), equation (2.2) may be linearised. The reaction term approximates a linear function, and
the nonlinear diffusion may be taken as constant so that both equation (5.1) and equation (5.2) can be
approximated by

ut ≈ D∇2u + s(1 − u)(1 − u1). (5.3)

Equation (5.3) is also a linear approximation of equation (2.2).
The nonclassical symmetry described in Section 3 can be used to reduce equations (5.1) and (5.2) to

the Helmholtz equation, each with a different parameter,

∇2Ψ (1) + κ(1)Ψ (1) = 0 (5.4)

∇2Ψ (2) + κ(2)Ψ (2) = 0. (5.5)
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10 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

Fig. 4. (a) Nonlinear diffusion coefficient calculated from the first iterate of the contraction map (4.5) with R(u) cubic. The solid
(blue) line is calculated with κ(1) = 6, while the dashed (red) line is for κ(2) = 12. (b) Nonlinear reaction terms calculated using
equation (3.1). The solid (blue) line is calculated with κ(1), while the dashed (red) line is for κ(2). The finer dashed (black) line is
a cubic. The three lines are almost indistinguishable. (c) A top and side view of the calcium ion concentration on the surface of a
sphere. The parameter values are D0 = 1, u1 = 0.4 and s = 0.2 (Colour online).

The solution to each of these equations can be written in terms of spherical harmonics. By choosing
κ(1) = 	(1)(	(1) + 1) and κ(2) = 	(2)(	(2) + 1) such that 	(2) = 	(1) + 1, we may take advantage of the
fact that neighbouring spherical harmonics can produce spiral patterns on the surface of a sphere.

For example, if we choose κ(1) = 6 so that 	(1) = 2 and κ(2) = 12 so that 	(2) = 3, solutions to
equations (5.4) and (5.5) may be written

Ψ (1)(θ , φ) = c1Y2
2 (θ , φ) = 1

6 cos 2φ sin2 θ and

Ψ (2)(θ , φ) = c2Y2
3 (θ , φ) = 1

3 sin 2φ cos θ sin2 θ .

Solutions to equations (5.1) and (5.2) can then be constructed using an appropriate version of (4.8)
(where the appropriate values of κ and A are used). These solutions are both approximate solutions to
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 11

Fig. 5. Numerical solution to equation (2.2) with D(u) = D (constant). The arrow shows increasing time (t = 0, 1, 2, . . . , 10).
The parameter values are given in the text.

equation (5.3), and since (5.3) is linear, we may take a linear combination of them. Since (5.3) also
approximates (2.2), we find that an example approximate solution to (2.2) is

u(θ , φ, t) = 1
2

[
u1
2 + b(1) tan

(
eA(1)tΨ (1) + tan−1

(
1−u1/2

b(1)

))]

+ 1
2

[
u1
2 + b(2) tan

(
eA(2)tΨ (2) + tan−1

(
1−u1/2

b(2)

))]
,

where b(1) and b(2) take the same form as b defined earlier.
This solution is shown in Fig. 4, together with the corresponding nonlinear diffusion and nonlinear

reaction terms. Figure 4(a) shows that the nonlinear diffusion terms formed using different values for κ

are indeed near constant and very similar to each other. The calculated reaction terms, shown in Fig. 4(b),
are also very similar, and indeed they are almost cubic in the domain of interest. The solution (Fig. 4(c))
shows a spiral pattern of calcium ions on the surface of the sphere. The spiral has two arms of high
calcium ion concentration since we have chosen 	(1) = 2. The spiral pattern is transient since the higher
level spherical harmonics decay faster than the lower ones and eventually the interplay between the
neighbouring harmonics is lost. As time becomes large, the (nondimensional) calcium ion concentration
approaches u = 1 everywhere.

6. Discussion and final remarks

In this paper, we have presented the first exact analytic solution to a nonlinear reaction-diffusion
equation that describes the calcium ion fertilisation wave on the surface of an egg in the case where
the wave moves symmetrically from the sperm entry point to the opposite pole of the egg. This analytic
solution reflects the behaviour observed in experiments and is reminiscent of a ‘wave’ of ions moving
over the surface of the egg.

The exact analytic solution presented here may also be compared to the numerical solution of
equation (2.2) on the surface of a sphere, shown in Fig. 5. Here, we have set D(u) = D =constant
so that a comparison with the typical case of constant diffusivity may be made. All nondimensional
parameters have been chosen to have the same value as those used to create Fig. 2, with D = 1 since
this is the average value of the nondimensional nonlinear diffusion. The initial condition (Gaussian)
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12 B. H. BRADSHAW-HAJEK AND P. BROADBRIDGE

has been chosen to represent an initial, localised increase in the calcium ion concentration due to a
fertilisation event, while the boundary condition at the edge of the polar cap has been set to u(θ0, t) = 1.
The boundary condition at the bottom pole is uθ |θ=π = 0 for symmetry. Concentrations are shown at
the same nondimensional times as those shown in Fig. 2. The numerical solution is very similar to the
analytical solution, except at the initial condition and at very early times (t < 1). It also exhibits a slight
delay in comparison to the analytic solution. This may represent the time taken for the concentration
profile in the analytic solution to increase from the ‘true’ near-zero initial condition to our first contour.

One benefit of obtaining an analytical solution is that it enables various features to be investigated
that might be elusive given a numerical solution only. For example, even though the solution presented
here (4.8) is infinite at the top (animal pole) of the egg (as discussed in Section 4), the derivative is not,
so that the flux of calcium ions from the fertilisation site may be directly calculated. In this way, we
may gain an understanding of what proportion of calcium ions originates from the fertilisation site, and
what proportion is released from the cortex of the egg. The analytic model has a boundary condition of
flux density being proportional to e−|A|t. The solution with constant concentration at the aperture also
has rapidly decreasing flux density. The numerical and analytical solutions become comparable after a
short time.

The nondimensional flux from the vicinity of the animal pole is given by

2π

∣∣∣∣ lim
θ→0

(− sin θ∇μ)

∣∣∣∣ = −2πeAt lim
θ→0

sin θ
d

dθ
Ψ (θ)

= 2c1π
3/2eAt

[
Γ

(− 	
2

)
Γ

(
1+	

2

)]−1
.

The total amount of calcium ions released from the animal pole can be found by integrating the flux
from the time when the calcium concentration at the vegetal pole is zero,

2c1π
3/2

[
Γ

(− 	
2

)
Γ

(
1+	

2

)]−1
∫ ∞

0
eAt′dt = −2c1π

3/2

AΓ
(− 	

2

)
Γ

(
1+	

2

) (6.1)

since A < 0.
The total nondimensional amount of calcium ions that has been released over the surface of the egg

both from the animal pole and from the stored reserves near the cortex can be found by calculating the
surface integral of concentration deficiency over the sphere,

2π

∫ π

0
(1 − u(θ ′, 0)) sin θ ′dθ ′, (6.2)

since u = 1 represents nondimensional calcium ion saturation. Unfortunately, this quantity cannot be
calculated analytically; however, a numerical calculation is straightforward.

Given these two quantities, (6.1) and (6.2), the amount of calcium ions released from the cortex can
be obtained by calculating the difference. Using the parameter values given in Section 4, we find that
approximately 81% of the calcium ions are released from the cortex of the egg, while 19% of the total
increase in calcium ions comes from the flux from the pole. The cortical store of calcium is important
in this role, with the calcium ions flowing from the pole serving mainly as a trigger for cortical activity.
The diffusive time scale is much larger than the characteristic time for the reaction dynamics (Td � Tr),
ensuring that the release of calcium ions from the cortex contributes significantly to the dynamics (c.f.
(Spiro & Othmer, 1999)).
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ANALYTIC SOLUTIONS FOR CALCIUM WAVES 13

In this analysis, we have assumed that the calcium wave has progressed as a surface wave on the
plasma membrane; in this way we have removed the radial dependence of the problem. However, this is
an approximation and it is likely that the waves actually extend some distance into the interior of the egg
(Fall et al., 2004). The concentrations that we predict here could be viewed as an average over a small
radial distance near the surface of the egg. Alternatively, the particular nonclassical symmetry used to
reduce equation (2.2) to the Helmholtz equation (3.3) can also be used to construct solutions in the case
when the behaviour of the calcium ion concentration inside the egg becomes important. We leave this
for a future investigation.
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