
Received December 10, 2020, accepted December 14, 2020, date of publication December 21, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3046078

Swarm-Based Machine Learning Algorithm
for Building Interpretable Classifiers
DIEM PHAM1,2, BINH TRAN 1, (Member, IEEE), SU NGUYEN 1, (Member, IEEE),
AND DAMMINDA ALAHAKOON1, (Member, IEEE)
1Research Centre for Data Analytics and Cognition, La Trobe University, Melbourne, VIC 3086, Australia
2College of Information and Communication Technology, Can Tho University, Can Tho 900100, Vietnam

Corresponding author: Binh Tran (b.tran@latrobe.edu.au)

This work was supported by La Trobe University: FUNDREF 10.13039/501100001215, GRANT #(s) Startup
Grant / ASSC-2020-RSU20-TRAN.

ABSTRACT This paper aims to produce classifiers that are not only accurate but also interpretable to
decision makers. The classifiers are represented in the form of risk scores, i.e. simple linear classifiers
where coefficient vectors are sparse and bounded integer vectors which are then optimised by a novel
and scalable discrete particle swarm optimisation algorithm. In contrast to past studies which usually use
particle swarm optimisation as a pre-processing step, the proposed algorithm incorporates particle swarm
optimisation into the classification process. A penalty-based fitness function and a local search heuristic
based on symmetric uncertainty are developed to efficiently identify classifiers with high classification
performance and a preferred model size or complexity. Experiments with 10 benchmark datasets show that
the proposed swarm-based algorithm is a strong candidate to develop effective linear classifiers. Comparisons
with other interpretable machine learning algorithms that produce rule-based and tree-based classifiers also
demonstrate the competitiveness of the proposed algorithm. Further analyses also confirm the interpretability
of the produced classifiers. Finally, the proposed algorithm shows excellent speed-up via parallelisation,
which gives it a great advantage when coping with large scale problems.

INDEX TERMS Particle swarm optimization, risk score prediction, interpretable machine learning, classi-
fication.

I. INTRODUCTION
In recent years, artificial intelligence (AI) has been widely
adopted in various application domains from medicine and
energy to supply chain management. AI-based tools used in
these domains have shown to be more productive compared
to conventional solutions, and even created better outcomes
compared to human decisions in certain cognitive tasks [1].
These achievements have motivated researchers and practi-
tioners to further improve and extendAI technologies in order
to solve more complex problems such as self-driving cars,
digital marketing, productionmanagement, andmedical diag-
nosis [2]–[5]. While the preliminary outcomes are promising,
the increasing levels of sophistication and automation of AI
applications have raised a number of concerns related to trust,
reliability, and fairness. Given that AI or the decisions made
by AI will impact increasing numbers of users, it is more
important than ever to understand how AI makes a particular
decision and why such a decision is made.

Interpretable ML (IML) includes a set of models and
algorithmswhich are interpretable by design. Representatives

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

of this class are logistic regression, decision trees [6], and
Bayesian Rule List [7]. These algorithms focus on building
ML models which can be easily interpreted by decision mak-
ers while achieving a strong prediction accuracy. IML is par-
ticularly popular in risk assessment problems in a wide range
of critical domains such as medicine [8], [9] and finance [10].
In these problems, users are not only interested in calculating
the risk but also required to understand how the risks are
determined in order to provide appropriate explanations and
recommendations to the parties involved. These requirements
are derived from the genuine need of the users to solve
their problems, e.g. the doctors from intensive care units
must know what factors can increase the risk of mortality
to come up with prevention or treatment plans. To address
these requirements, risk score models have been widely used
in medical domain [8], [9].

A. RISK SCORE MODELS
Risk scores are linear classification models that allow users to
make quick predictions through simple arithmetic (e.g. addi-
tions and subtractions) even without electronic assistance.
Fig. I shows an example of risk scores for assessing bad
credit where the score is easily calculated by adding up the

228136 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-2445-1231
https://orcid.org/0000-0003-2365-1087
https://orcid.org/0000-0003-0261-4068

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

FIGURE 1. An example risk score model to assess bad credit.

points of the corresponding conditions (features) related to a
person. This score is then checked against the risk score table
underneath to determine the risk of this particular patient
having a stroke. Thanks to its simplicity, interpretability and
straightforward implementation, risk scores have beenwidely
adopted by practitioners [8], [9]. Another advantage of risk
scores is that small integer numbers allow users to conve-
niently extract decision rules by listing conditions when the
score exceeds the threshold.

B. CHALLENGES OF CREATING RISK SCORE MODELS
Developing effective risk scores is not a trivial task, and
currently most risk scores are generated in an ad hocmanner.
Heuristics for building risk scores include manually selecting
features, rounding coefficients obtained by logistic regres-
sion, or using a panel of experts [8]. Xie et al. [11] adopted
different machine learning algorithms to determine impor-
tant features but heuristics are used for rounding coefficients
obtained by logistic regression.When risk scores are obtained
with heuristics, there is no guarantee that the obtained risk
scores are optimal or nearly optimal. To address this problem,
Ustun and Rudin have formulated a mixed-integer nonlinear
program (MINLP) for the optimal risk score problem (ORSP)
[12] and proposed a new solution method RiskSLIM. The
goal of ORSP and RiskSLIM is to automatically build a risk
score model that is sparse, has small integer coefficients, and
performs well in terms of risk calibration and sparsity. The
empirical results show that RiskSLIM performs very well as
compared to traditional risk score methods. Spangler et al.
[13] attempted to use extreme gradient boosting (XGBoost)
algorithm for building risk scores and achieved good pre-
diction performance. However, interpretability remains a
limitation of their algorithm.

Solving ORSP is a key factor for producing effective risk
scores. However, as ORSP is an NP-hard problem, it is
difficult, if not impossible, to solve this problem when the
number of features increases and the number of instances is
high. The experiments in [12] show that the running time of
RiskSLIM increases dramatically and the optimality gaps are
prohibitively high as the number of features or the number
of instances increase. To overcome this scalability limitation
and to solve ORSP, we investigate the swarm intelligence
approach, particularly particle swarm optimisation (PSO).
There are several reasons for choosing PSO for solving this
challenging problem. First, PSO is an effective and efficient
meta-heuristic for a wide range of optimisation problems
from designing artificial neural networks [14] to evolving

cognitive diagnostic models [15]. Also, PSO is very easy to
implement and can be deployed independently without the
need of commercial solvers. Second, PSO has been applied to
feature selection, an ML task similar to ORSP, and has shown
a highly competitive performance [16]. Third, as a popu-
lar algorithm in meta-heuristics and evolutionary computa-
tion (EC) communities, many advances (e.g. representation,
fitness function) have been made to enhance PSO capabilities
in order to solve challenging and constrained optimisation
problems. Finally, as a population-based optimisation algo-
rithm, PSO can easily take advantage of parallel computing
to speed up the learning process. This is an important prop-
erty which helps PSO cope with big high-dimensional data
and provides decision makers with accurate and interpretable
models within a short time frame.

C. CONTRIBUTIONS AND STRUCTURE OF THE PAPER
The main contributions of this paper are:
• We propose a new formulation for solving ORSP that is
more efficient than RiskSLIM.

• We develop the first PSO-based algorithm called
PSORisk to build risk score models which are highly
interpretable classifiers.

• A new representation for PSO is proposed to evolve risk
score models.

• A new penalty-based fitness function is developed to
encourage models with high accuracy and small sizes.

• A new learning mechanism is proposed for PSO to have
an effective search towards small and accurate models.

• A new local search heuristic is introduced to help PSO
search more efficiently.

• Extensive experiments and comparisons with linear and
non-linear IML classification algorithms have shown the
competitiveness of PSORisk.

• Analyses of accuracy, interpretability, and scalability are
presented to show the efficacy of the proposed algo-
rithm.

The rest of this paper is organised as follows. The next section
provides background and related work to PSORisk.

The detailed descriptions of the proposed ORSP formula-
tion and PSORisk are presented in Section III. Section IV
shows the experimental design and datasets used to vali-
date the performance PSORisk. The results and analyses are
shown in Section V and Section VI. Conclusions and future
directions are discussed in Section VII.

II. BACKGROUND
This section presents risk score optimisation and interpretable
machine learning related research work. It also introduces the
original PSO algorithm.

A. RISK SCORE OPTIMISATION AND RELATED WORK
Risk scores are simple linear classification models used for
risk assessment. The goal of risk score models is to facili-
tate the risk calculation by only applying addition, subtrac-
tion, and multiplication operators to a few small numbers
[12]. Such models allow users to quickly make a prediction

VOLUME 8, 2020 228137

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

without extensive training or even a computer. These models
clearly have advantageswhen applied to real-world scenarios.
Another attractive point of risk scores is their interpretability.
With risk score models, users can easily and quickly iden-
tify the key risk factors and quantify their contributions to
the risk prediction. This property is very useful given that
there is an increasing pressure for AI systems to provide
explanations, especially for critical applications (e.g. finance,
healthcare).

However, risk score optimisation has a number of chal-
lenges. To be applicable, risk scores must be rank-accurate
(i.e. high AUC to ensure reliable prediction), risk-calibrated
(i.e. add support for probability prediction) and
sparse (i.e. with a few selected features). In addition, the risk
scores have to satisfy operational constraints such as the
model size and domain-knowledge prediction constraints
(e.g. if the model uses Hypertension, then it should also
use Age ≥ 75). Because of the lack of optimisation tools,
these requirements have been handled in an ad-hoc manner,
which requires multiple heuristics and experts’ experience
[8]. These manual interventions may lead to poor prediction
performance of the risk score models and fail to realise their
true potentials.

A number of recent studies have focused on developing
automated and systematic approaches to determining optimal
risk scores. Souillard-Mandar et al. [8] pointed out that the
lack of transparency in ML models may restrict the adoption
of these models in clinical use. They developed an algo-
rithm called Supersparse Linear InterpretableModels (SLIM)
which aims at building optimal risk scores with integer coef-
ficients (or points as shown in Fig. I) and constraints on
the range of coefficients. Their experiments showed that
SLIM could produce models that are more robust, more
interpretable and more accurate than some widely used scor-
ing systems, and require less computation on the part of
the clinicians to compute the result. The full descriptions
of SLIM are presented in [9] where several datasets from
different application domains are used to prove its effective-
ness. A comprehensive comparison in terms of model sizes
and classification performance between SLIM and other ML
algorithms are also presented to demonstrate the usefulness
of SLIM. Ustun et al. [17] used SLIM to examine the values
of medical information on the prediction of sleep apnea.
Another study [18] investigated the use of SLIM for recidi-
vism prediction and showed that SLIM model outperforms
traditional interpretable ML algorithms.

In RiskSLIM [12], Ustun et al. further extended the
SLIM algorithm for risk assessment by optimising the logis-
tic loss function shown in Equation (1), rather than the
simple accuracy. Given a dataset D = {(xxx i, yi)}Ni where
xxx i = (xi1, . . . , xid)> ∈ Rd is the feature vector and yi ∈
{−1,+1} is the label, RiskSLIM [12] formulates the ORSP
as follows:

min
λλλ

l(λλλ′)+ C0||λλλ
′
||0

s.t. λλλ′ ∈ L (1)

where λλλ′ ∈ Rd+1 is a coefficient vector to be optimised,
l(λλλ′) = 1

N

∑N
i=1 log(1+ exp(−

〈
λλλ′, yixxx ′i

〉
)) is the logistic loss

function to achieve high AUC and risk calibration, xxx ′i =
(1, xi1, . . . , xid)>, and L0-norm ||λλλ′||0 =

∑d
j=0 1[λ

′
j 6= 0]

is for sparsity. The parameter C0 is to control the trade-off
between loss function and sparsity. L represents the feasible
domain of the risk scores, e.g. L = {−5, . . . , 5}d . The
predicted risk for an example i for a positive class is:

Pr(yi = +1|xxx ′i) =
1

(1+ exp(−
〈
λλλ′,xxx ′i

〉
))

(2)

In [12], Ustun et al. also provided the proof of optimality
and proposed a cutting plane algorithm with a commercial
optimisation solver (CPLEX) to help RiskSLIM cope with
large datasets. Although the results are promising, the scal-
ability issues of their proposed algorithm can be observed
when the number of instances and the number of features
increase.

Recently, Spangler et al. [13] applied extreme gradi-
ent boosting (XGBoost) algorithm to risk scores. This
approach obtained good prediction performance. However,
its interpretability remains limited.

B. RELATED WORK IN INTERPRETABLE MACHINE
LEARNING
Interpretability in ML has recently gained an increasing
amount of attention with the creation of many methods to
provide interpretable models. This section briefly reviews
representative ML approaches to interpretability. Readers
are referred to more comprehensive surveys such as [19]
with a new taxonomy for interpretable ML, or [20] with a
new framework for users to evaluate interpretable methods
based on their predictive accuracy, descriptive accuracy and
relevancy.

Two main approaches to IML are self-explanatory models
and post hoc analysis [19], [20]. Representatives of the for-
mer are linear models, decision trees, and rule-based mod-
els. Linear regression and logistic regression [6] rely on the
weighted summation of feature inputs to provide the predic-
tion. Because of the linear relationship, it is fairly easy to
interpret the learned models when the number of features
is small. As the number of features increase, regularised
versions of these techniques are needed to restrict the com-
plexity of the final model. Lasso is one of the most popular
techniques to train sparse linear models, i.e., performing fea-
ture selection to improve generalisation and interpretability
of the trained models. Recently, more advanced techniques
aiming at controlling the complexity and enhancing the inter-
pretability at feature-level were also proposed. For example,
as introduced above, RiskSLIM [12] was developed for the
optimised risk score problem in which the number of features
and the coefficients of features are explicitly constrained.

Decision tree (DT) [6] is another popular interpretable ML
technique. DT can capture the interactions between features
better as compared to linear models. DT is reasonably easy to
interpret and has a number of useful ways to measure feature

228138 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

importance or to deal with missing data. However, DT often
has trouble with linear relationships or continuous variables.
In those cases, DT can be unstable or produce prediction
which are not intuitive.

If-Then rules are one of the most acceptable solutions if
the learned rules provide a reasonable accuracy. Most rule
learning algorithms depend on some heuristics to extract the
frequent patterns or effective rules. Bayesian Rule List (BRL)
[7] is a recently proposed algorithm that shows promising
results. In the first stage, BRL uses a frequent set mining
technique to identify patterns with strong support from the
dataset. Then, BRL uses the selected patterns to build the
If-Then rules based on Bayesian statistics. Apart from their
interpretability, If-Then rules can provide fast prediction and
easy implementation. However, similar to DT, learned rules
also have difficulty dealing with linear relationships. Tsetlin
machine [21], a recently proposed algorithm to solve complex
pattern recognition problems with propositional formulas,
is also a potential approach to building interpretable classi-
fiers. To handle classification tasks, Tsetlinmachine produces
a set of conjunctive clauses and performs classification via
majority voting. In Tsetlin, learning is done through a rein-
forcement mechanism to strengthen frequent patterns and to
improve the discrimination power of the produced patterns.

Since black-box ML models usually have a high predic-
tive performance, a recent model-agnostic approach to IML
called explainers have been proposed providing some level
of model interpretation. This approach is also known as post
hoc analysis in [20]. Example methods are local interpretable
model-agnostic explanations (LIME) [22] and SHapleyAddi-
tive exPlanations (SHAP) [23], which explain complex mod-
els such as XGBoost and deep neural network (DNN).
Following this approach, SkopeRules [24] combines rein-
forcement learning and graph search to generate IF-THEN
rules for black-box ML algorithms.

C. PARTICLE SWARM OPTIMISATION
PSORisk is developed based on Particle Swarm Optimisation
(PSO) [25] which is a population or swarm based algorithm.
Each individual or particle in a swarm represents a candi-
date solution in its position. By exchanging the best solu-
tion/position each particle has found so far (pbestpbestpbest), particles
know the global best solution (gbestgbestgbest) and move towards these
fruitful areas by adjusting their velocity which determines
their flying direction and magnitude.

Given d as the problem dimension or the number of fea-
tures, a particle’s velocity and position are d-dimension vec-
tors of numerical values. The position and velocity of particle
k are updated using Equations (3) and (4), respectively.

pt+1kj = ptkj + v
t+1
kj (3)

vt+1kj = w ∗ vtkj + c1 ∗ r1 ∗ (pbest
t
kj − p

t
kj)

+c2 ∗ r2 ∗ (gbest tj − p
t
kj) (4)

where ptkj and v
t
kj are the position and velocity of particle k

in dimension j at time t , respectively. w is the inertia weight

representing the moving momentum of the particles. pbestkj
and gbestj arepbestpbestpbestk andgbestgbestgbest position in dimension j. c1 and
c2 are acceleration constants. r1 and r2 are random values in
[0, 1] anew at time t .
Mimicking the social behaviours of bird flocking, PSO is

well-known with its global searchability. Compared to other
population-based algorithms, PSO requires less computation
time and has a faster convergence speed. It has been suc-
cessfully applied to many optimisation problems such as
feature selection [26], rule induction [27] and neural network
architecture design [28]. However, PSO has never been used
in solving risk score problems.

In summary, risk score is a simple, transparent, and highly
interpretable model that is widely adopted by practitioners.
Determining optimal risk scores is a promising approach
to achieve interpretability for machine learning. However,
previous studies have shown that automatically building risk
score models is a challenge. Therefore, this paper proposes a
novel PSO approach to solving the ORSP problem.

III. THE PROPOSED APPROACH
The main motivation for developing PSORisk is to provide
not only accurate but also scalable and highly parallelisable
algorithm to solve ORSP. To achieve this goal, we propose a
new formulation for ORSP and a new PSO-based algorithm
to solve this formulation.

A. A NEW ORSP FORMULATION
To overcome the scalability issues of RiskSLIM,we proposed
a new formulation for ORSP as follows.

min
λλλ

lc(λλλ)+ Cg(λλλ)

s.t. λλλ ∈ L (5)

where λλλ ∈ Rd is a coefficient vector to be optimised, lc(λλλ) =
1
N

∑N
i=1 log (1+ exp (−yi (α0 + α1 〈λλλ,xxx i〉))) is the logistic

loss function, g(λλλ) is the regularisation term for sparsity, and
C is a parameter to control the trade-off between loss and
sparsity. L is the feasible domain of the risk scores.

The main difference between l(λλλ′) in Eq. (1) and lc(λλλ) in
Eq. (5) is the role of the coefficient vector. In the RiskSLIM
formulation, the total score

〈
λλλ′,xxx ′i

〉
is directly used to calcu-

late the probability. Meanwhile, in PSORisk, the total score
〈λλλ,xxx i〉 is a new feature constructed based on a linear combi-
nation of original features with rounded coefficients. In this
case, the predicted risk is calculated as:

Pr(yi = +1|xxx i) =
1

1+ exp (− (α0 + α1 〈λλλ,xxx i〉))
(6)

With the above formulation, the ORSP can be broken into
two phases: (1) selecting features and determining the coef-
ficient vector λλλ, and (2) calibrating the probability. The first
phase is handled by a new PSO-based algorithm to determine
selected features and their corresponding small integer coef-
ficients to construct the total score 〈λλλ,xxx i〉. The second phase
is handled by logistic regression (LR) to provide calibrated
probabilities via determining the best suit coefficients α0

VOLUME 8, 2020 228139

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

FIGURE 2. PSO representation for ORSP.

and α1. By breaking the solving process into two phases,
we can significantly reduce the computational complexity
encountered by RiskSLIM [12]. The remainder of this section
describes the new PSO-based algorithm in detail.

B. PSORisk REPRESENTATION AND SYSTEM OVERVIEW
As discussed, PSO is used to select features and determine the
coefficient for each feature. Therefore, a candidate solution
which will be encoded in the position of a particle is a
coefficient vector assigned to selected features in the dataset.
In addition, to make the model more interpretable and easily
applied, a risk score solution should use a limited number of
features and the coefficients assigned to these features need
to be small integers.

To cope with these requirements, the position of a particle
k is a d-dimension vector pppk = [pk1, . . . , pkd] of real num-
bers given d as the number of features of the dataset. Each
dimension corresponding to a feature encodes a coefficient
which is bounded to [−B, . . . ,B] where B is a small positive
integer number defined by users. To obtain the coefficient
vector λλλk , PSORisk simply rounds the position values to
the nearest integer numbers. Although there are a number
of techniques proposed in the literature [29] for discrete
solutions, we choose the rounding technique because of their
simplicity and straightforward implementation. A feature is
considered as selected if its rounded coefficient is not zero.
This representation decides how each feature contributes to
the total score 〈λλλk ,xxx i〉, positively or negatively.
Fig. 2 shows an example of a particle position with d = 10

and B = 5. The position values corresponding to all features
are rounded to form the solution, i.e. coefficient vector λλλk =
[4,−1, 5, 0,−3, 0, 0, 4, 0, 2]. The shaded features are not
selected because their scores are zeros. With this decoding
scheme, we ensure that the coefficient vector always satisfies
the small integer constraints in ORSP, which is very expen-
sive to handle with RiskSLIM.

Fig. 3 presents the overview of PSORisk, which starts
by randomly initialising the positions of all particles in
the swarm. The evolutionary process is a loop in which
particles are evaluated (using a new fitness function pro-
posed in Section III-C), refined (using a new local search
proposed in Section III-E) and updated (using the proposed
learning mechanism in Section III-D). When the terminating
condition is met, the best feasible solution is returned and
used to construct the total score by linearly combining the
selected features with their rounded coefficients as described
in Section III-A. The total score is then fed into a logistic
regression (LR) algorithm to build the classifier or risk score
model.

C. FITNESS FUNCTION
The goal of PSORisk is to obtain an accurate model that
is easy to interpret. The risk score model is more difficult

FIGURE 3. Overview of PSORisk.

to interpret if more features are included, similar to other
ML algorithms. Therefore, the number of features should be
below a certain threshold, i.e. model sizeM that is pre-defined
by the users based on the practical requirements. However,
if this constraint is hard coded in the particle representation,
PSO may not conduct a smooth search in its fitness land-
scape for better solutions. Therefore, during the evolutionary
process, a particle is allowed to have an arbitrary number of
selected features, i.e. it can be either a feasible solution or an
infeasible solution. A solution is considered feasible if and
only if the number of selected features is smaller than or equal
to M .

To guide particles moving towards feasible solutions,
PSORisk uses a measure called Oversize as a penalty to
degrade the fitness of those particles that select more fea-
tures than required. As shown in Equation (7), Oversize(λλλk)
is a positive number showing how many extra features are
selected.

OverSize(λλλk) =

{
0, if |FS(λλλk)| < M
|FS(λλλk)| −M , otherwise

(7)

where FS(λλλk) is the set of active features determined by the
score vectorλλλk obtained from the above decoding step. In the
example presented in Fig. 2, FS(λλλk) = {1, 2, 3, 5, 8, 10}
and |FS(λλλk)| = 6. If the model size M = 5, the penalty
Oversize(λλλk) = 1.

To evaluate the classification performance of a candidate
solutionλλλk , PSORisk applies it to the training set to construct
the total score as a linear combination of selected features
weighted by the corresponding coefficients as described in
Section III-A. The total score is combined with the class
labels to form a new training set D′ = {(〈λλλk ,xxx i〉 , yi)}Ni=1.
LR uses D′ to build the classifier and determine the optimal
coefficients α0 and α1 as shown in equation (6). A 5-fold
cross-validation (CV) is applied to calculate the average
AUC, which is used to calculate the fitness of a particle.
Although LR is run to evaluate each particle, this evalua-
tion process is inexpensive since D′ has only one feature.
Equation (8) shows how PSORisk calculates the fitness of
particle k .

Fitness(pppk) = AUC(λλλk)−Cg(λλλk) (8)

228140 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

where AUC(λλλk) is the AUC obtained by the trained LR
model and g(λλλk) is the regularisation term based on the model
size M .

To heavily penalise solutions that seriously violate the
model size constraints, we set g(λλλk) = Oversize(λλλk)2. As
shown in Equation (8), a better solution is the one with higher
fitness. Note that PSORisk directly uses AUC to measure the
classification performance instead of the logistic loss func-
tion as AUC is a preferable metric for assessing the quality
of classifiers. The logistic loss function is only used by LR
algorithm to optimise α0 and α1 in Equation (6).

D. A NEW PSO LEARNING MECHANISM
After evaluation, each particle will update its best position
(pbestpbestpbest) which is the fittest position it has explored so far. Then
all particles communicate with each other using the fully
connected topology to learn the global best solution (gbestgbestgbest),
i.e., the best solution found by the whole swarm.

Since the fitness function shown in Equation (8) comprises
two components to maximise the accuracy and minimise the
model size, moving towards gbestgbestgbest does not guarantee to find
feasible solutions. To cope with the infeasibility, PSORisk
also maintains a global best feasible solution (FgbestFgbestFgbest) which
is the feasible particle with the best AUC.

To guide particles to move smoothly towards the best solu-
tion in general (gbestgbestgbest) and the best feasible solution (FgbestFgbestFgbest),
FgbestFgbestFgbest is introduced into PSORisk’s velocity update as
shown in Equation (9). In this way, PSORisk simultaneously
improves the quality of feasible solutions and the feasibility
of infeasible solutions. To keep the updating equation com-
pact, we also remove the inertia term in this formula after
conducting some pilot experiments which suggested that this
term is not useful for PSORisk.

As shown in Equation (9), PSORisk velocity updating
formula incorporates information from not only particle’s
self-cognition (pbestpbestpbestk) but also from knowledge of the whole
swarm (gbestgbestgbest and FgbestFgbestFgbest).

vt+1kj = cp ∗ r1 ∗ (pbest tkj − p
t
kj)

+cg ∗ r2 ∗ (gbest tj − p
t
kj)

+cf ∗ r3 ∗ (Fgbest tj − p
t
kj) (9)

where pt+1kj and vt+1kj are the position and velocity of particle
k at dimension j and time t + 1. cp, cg, cf are acceleration
constants, and r1, r2, and r3 are random values which are
reset anew in each time step. It should be noted that gbestgbestgbest
can be the same as FgbestFgbestFgbest if gbestgbestgbest is also feasible, which
makes PSORisk behave similarly to the traditional PSO.
After the velocity is calculated, PSORisk uses the traditional
Equation (3) for updating positions.

E. A NEW LOCAL SEARCH HEURISTIC
To increase the chance of reaching and improving Fgbest , a
new local search is proposed in PSORisk to refine infeasible
solutions to become feasible and more accurate ones. This
helps PSORisk quickly identify good and feasible solutions
to improve FgbestFgbestFgbest .

Algorithm 1 New Local Search Heuristic
Input : current population
Output: refined particles and feasible global best

1 begin
2 IP← {k : |FS(pbestpbestpbestk)| > M}Popsizek=1 ;
3 N ← select rIF%× Popsize in IP with the highest

AUCs ;
4 for pbestpbestpbestk ∈ N do
5 nbnbnb← remove lowest SU features from pbestpbestpbestk

until a feasible solution is found;
6 Evaluate nbnbnb using equation (8);
7 if nbnbnb is better than pbestpbestpbestk then
8 pppk ← nbnbnb;
9 pbestpbestpbestk ← nbnbnb;
10 end
11 if nbnbnb is better than FgbestFgbestFgbest then
12 FgbestFgbestFgbest ← nbnbnb;
13 end
14 end
15 Return refined particles k ∈ N and FgbestFgbestFgbest;
16 end

Although local search can be applied on all infeasible
particles, applying it too intensively may reduce the diversity
of the population, which may have negative impacts on the
final performance. Therefore, in each iteration, the proposed
local search is only applied to an rIF% of infeasible pbestpbestpbest that
have the highest AUC.

Specifically, this local search aims to generate a feasible
and better neighbouring solution than the given pbestpbestpbest . This
is done by removing a number of features to make it fit the
model size. For the local search to obtain better solutions, it is
important to choose the right features to remove. A simple
heuristic is designed to remove the most irrelevant features
from the set of active features. Symmetric uncertainty (SU)
[30] is used to measure feature relevance. SU is a normalised
version of information gain (IG) [31]. It can be used to
measure the correlation between two features. A feature is
irrelevant to the problem if it weakly correlates to the class;
in other words, it has a small SU value with the class label.
Equation (10) shows how SU between two features X and Y
is calculated:

SU (X ,Y) =
IG(X |Y)

H (X)+ H (Y)
(10)

IG(X |Y) = H (X)− H (X |Y) (11)

where H (X) is the entropy of X and H (X |Y) is the condi-
tional entropy of X given Y . The value of SU (X ,Y) is in
the range [0, 1]. The higher the value of SU , the higher the
correlation between variables X and Y .

The pseudo-code of this local search is shown in
Algorithm 1. First, the top rIF% infeasible pbestpbestpbests will be
selected from the population. For each selected pbestpbestpbestk , a new
neighbouring solution (nbnbnb) is created by removing the lowest

VOLUME 8, 2020 228141

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

Algorithm 2 PSORisk
Input : Training data
Output: Best found solution

1 begin
2 Initialise PSO population;
3 for iter = 1 to max_iterations do
4 for k = 1 to Popsize do
5 Calculate Fitness(pppk) using equation (8);
6 if Fitness(pppk) > Fitness(pbestpbestpbestk) then
7 Update pbestpbestpbestk ;
8 end
9 if Fitness(pppk) > Fitness(gbestgbestgbest) then
10 Update gbestgbestgbest);
11 end
12 if pppk is feasible &

Fitness(pppk) > Fitness(FgbestFgbestFgbest) then
13 Update FgbestFgbestFgbest;
14 end
15 end
16 Apply local search in Algorithm 1 ;
17 for k = 1 to Popsize do
18 Update velocity and position of particle k

using equation (9) and (3);
19 end
20 end
21 TotalScore← Calculate total score from training set

and FgbestFgbestFgbest (See Section III-A) ;
22 Model ← Train LR using TotalScore;
23 ReturnModel;
24 end

SU features from pbest to reduce the number of selected
features to M (Line 5). In other words, nbnbnb is a feasible
solution. nbnbnb is then evaluated (Line 6) based on the fitness
evaluation described in Section III-C. If it is better thanpbestpbestpbestk
in terms of AUC, both the current position pppk and pbestpbestpbestk are
updated (Lines 7-10). In addition, FgbestFgbestFgbest is also updated if
the refined solution is better (Lines 11-13).

F. PSORisk OVERALL ALGORITHM
Algorithm 2 shows the pseudo code of PSORisk. Given a
training dataset, it returns the best risk score model evolved
after a number of max_iterations. Firstly, a swarm with
Popsize particles is initialised. The particles’ positions are
randomly initialised within the pre-defined boundary B; how-
ever, restricted to a small percentage of selected features
(i.e. non-zero dimensions in λλλk) in order to explore the space
that has more feasible solutions. Specifically, the expected
number of selected features in the initialised particles are
twice the model size M . Lines 3-20 shows the main loop of
PSORisk with the three main steps, evaluation (Lines 5-15),
local search (Line 16) and update particles (Lines 17-19). The
best feasible solutionFgbestFgbestFgbest is then used to calculate the total
score for each instance in the training set. LR is then applied

on the new training set to build the risk score table (similar to
the example in Fig. I) to return as the final solution.

IV. EXPERIMENT DESIGN
This session presents the datasets, baseline methods and
parameter setting in experiments. All the experiments are
conducted by means of software simulations.

A. DATASETS
Ten binary classification datasets with varying difficulties
ranging from tens to hundreds of features are used to test the
performance of PSORisk. As shown in Table 1, these datasets
also have a wide range of sizes with hundreds to tens of
thousands of instances. These datasets are widely used in the
risk prediction literature. The adult, bank, mushroom, and
spambase datasets are obtained from RiskSLIM’s repos-
itory [12]. For other datasets, there are some continuous
features such as monthly income in the hribm dataset or
the customer age in the german dataset. We apply k-bins
discretiser and one-hot encoding [42] with k = 4 into these
datasets. This is an optional step to further simplify the risk
score calculation. The same transformed data is applied to all
other compared methods in our experiments.

B. EXPERIMENT CONFIGURATION
1) COMPARED METHODS
To test if PSORisk has obtained our primary goal which is
creating interpretable and accurate classifiers, we compare
PSORisk results with six well-known IML algorithms which
were introduced in Section II. The first two methods are
logistic regression (LR) and linear support vector classifier
(LinearSVC), which are representatives of linear classifica-
tion algorithms. The remaining four algorithms are decision
trees (DT) [6], Bayesian Rule List (BRL) [7], SkopeRules
(SK) [24], and Tsetlin [21], which represent the non-linear
counterparts.

PSORisk is compared with the six IML methods in terms
of classification performance (AUC) and model size, which
represent model accuracy and interpretability, respectively. In
PSORisk, the model sizeM is a pre-defined ORSP constraint
as introduced in Section III-C. Similar to PSORisk, linear
classifiers such as LR and LinearSVC take the number of
selected features [9] as the model size. To generate models
with different model sizes for LR and LinearSVC, we apply
different regularisation parameters. For the remaining four
rule-based classifiers, the comparisons are not straightfor-
ward as they are fundamentally different from linear classi-
fiers. With DT, the model size can be measured as the number
of leaves in the final trees (equivalent to the number of rules
if we flatten the decision tree) or the total number of nodes.
Different maximum numbers of leaves (ML) are set for DT to
have different tree sizes. For SK, BRL, and Tsetlin, the model
size is the number of rules in the returned model. In SK,
different maximum depths (MD) are used to generate models
with different numbers of rules. In Tsetlin, the number of
rules is set to 10 to keep the model interpretable. Note that
as the model sizes are measured by different approaches,

228142 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

TABLE 1. Datasets used in the experiments.

TABLE 2. Parameter setting.

the results are mainly used for qualitative evaluations to
compare the complexity and interpretability of the trained
classifiers.

2) PARAMETER SETTING
Table 2 describes parameter settings for PSORisk. The pop-
ulation size is set to 100, which is larger than the usual
size set in common PSO applications. Since each particle or
candidate solution allows to select a very small number of
features (i.e. model size is 5), PSORisk can quickly lose its
diversity. Therefore, a large population is used to cover more
feasible solutions with the aim of increasing its diversity and
avoid premature convergence. Section V-C will investigate
the influence of this parameter.

Since PSORisk velocity updating mechanism has three
terms with three acceleration constants cp, cg, and cf ,
we chose a smaller value of 1.2 for each constant instead of
using the commonly-used value of 1.49618. The experimen-
tal results comparing the two values showed that 1.2 obtained
a better AUC. The remaining parameters are either set as
popularly used value or experimentally chosen. For example,
preliminary runs show that the global best solution is almost
unchanged from the 45th iteration, so 50 was chosen as the
maximal iteration.

3) EXPERIMENT DESIGN
To create a training and test set for each dataset, we use 10-
fold CV to split the data. Each method is run on the training
set comprising 9 folds and tested on the remaining fold. Since
PSORisk is a stochastic algorithm, 30 independent runs with
different seeds are executed on each dataset. Therefore, each
dataset will have 300 results (30 runs x 10-fold CV), whose
average will be reported and compared with other methods.
Wilcoxon statistical test with a significance level of 0.05 is

FIGURE 4. 10-fold CV AUC and model size obtained by PSORisk and linear
classifiers.

used in the comparisons to confirm if the difference between
two methods is significant.

Experiments were run on PC with the following configura-
tions: CPU Intel Core i5-9400 @ 2.9GHz, RAM 8GB, oper-
ating system Windows 10, python 3.6. All the experiments
are run on a single CPU core except the one in Section VI-B
where the fitness evaluations component of PSORisk is run
parallel on multiple CPU cores to examine its efficiency.

V. RESULTS
To show the effectiveness of PSORisk in building classifiers
with a high classification performance and a desirable model
size, this section compares the AUC and size of the models
obtained by PSORisk with linear classifiers (Section V-A)
and non-linear or rule-based classifiers (Section V-B). It also
analyses the effect of population size (Section V-C) and
model size (Section V-D) on PSORisk performance.

A. COMPARISON WITH LINEAR CLASSIFIERS
Fig. 4 shows the average test AUC obtained by PSORisk
in 30 runs versus the AUC obtained by LR, and LinearSVC
with different model sizes. An ideal classifier should be
the one with the highest AUC and the smallest model size
(i.e. using the smallest number of features). This means that
the closer the result to the top left corner, the better the
classifier. The figure showed that PSORisk obtained a closer
result to the ideal classifier than LR and LinearSVC on eight
out of ten datasets with exceptionally higher AUC on adult
and spambase. On the remaining two datasets, PSORisk

VOLUME 8, 2020 228143

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

obtained a slightly worse result on german with model size
of 5, and a similar result when its model size increases to 10.
On hribm, PSORisk has a worse performance than LR while
obtaining a significantly higher AUC than LinearSVC with
small model sizes.

The results on majority of datasets show that LR and
LinearSVC require more features to achieve a similar clas-
sification performance as PSORisk. This demonstrates the
effectiveness of PSORisk in selecting a smaller while more
relevant subset of features. Given that PSORisk applies much
stricter constraints on coefficients (an integer value in the
range of [−B..B]) and model size than LR and LinearSVC,
the results also indicate that PSORisk effectively selects
features and optimises the corresponding coefficients. These
constraints also make PSORisk models more interpretable
than those generated by LR and LinearSVC. Section VI
presents a closer look at PSORisk models.

Since the ten datasets are presented in the ascending order
of the dataset sizes, Fig. 4 also shows an interesting pattern
that the larger the dataset, the better the performance of
PSORisk. This reveals the potential of PSORisk in big data
applications.

Figure 5 compares the results of PSORisk with the reported
results of RiskSLIM [12] on four common datasets, namely
adult, bank, mushroom and spambase. PSORisk was run on
these four datasets with 5-fold cross validation and in 10 min-
utes to have the same experiment setting as RiskSLIM.
The minimum and maximum AUC obtained by PSORisk
are also plotted using the black bar. As can be seen from
the figure, PSORisk can find slightly more accurate solu-
tion than RiskSLIM, and its average AUC is very close
to RiskSLIM.

In general, the results demonstrate the effectiveness of
PSORisk as a classification algorithm. Even when we ignore
the interpretability, PSORisk still shows good performances
across most of the datasets with very effective feature selec-
tion abilities. It can therefore be considered as a good addition
to the family of linear classification algorithms.

B. COMPARISON WITH RULE-BASED CLASSIFIERS
Table 3 and 4 compare the results of PSORisk with M = 5
versus DT, SK, BRL, and Tsetlin. Column T presents the
results of the Wilcoxon statistical test comparing two meth-
ods. A ‘+’ means the result of the method in the correspond-
ing row is significantly better than the average performance
of PSORisk and vice versa. This means that the more ‘−’,
the better the performance of PSORisk in terms of accuracy.
The last column, MS, presents the number of total nodes
in the created tree by DT and the number of rules in the
generated model by SK and BRL, and Tsetlin.

As can be seen from Tables 3 and 4, PSORisk achieved a
significantly better average AUC than DT with all the model
sizes on almost all datasets. Only on australian, DT obtained
a significantly better AUC of 0.9073 with 9 nodes. However,
the best PSORisk model of size 5 on this dataset still has a
better AUC of 0.9099.

FIGURE 5. 5-fold CV AUC obtained PSORisk and RiskSLIM.

PSORisk outperformed SK with both max depths of 2 and
3 on five datasets, namely hribm, churn, icu, adult and bank
with up to 0.3155 difference in average AUC on the adult
dataset. For the remaining five datasets, SK with one of the
max depths achieved a better AUC than PSORisk with up to
0.0143 difference in the average AUC. However, the average
number of rules in these SK models can be quite large,
up to 45 rules in german. We also note that SK model sizes
change dramatically when the max depth (MD) changes from
2 to 3.

Among all the compared methods, Tsetlin obtained the
worst performance on all datasets with the worst AUC
of 0.5 on spambase. The best result obtained by Tsetlin on

228144 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

TABLE 3. 10-fold CV AUC and model size/complexity (MS) obtained by
PSORisk and rule-based classifiers.

the ten datasets is on mushroom with AUC of 0.8890, while
PSORisk obtained an average AUC of 0.9773 on this dataset.
Each Tsetlin model has 10 rules, each of which comprises of
multiple predicates. Therefore, its models are usually bigger
and more complex than PSORisk.

BRL is the most competitive algorithm among the four
rule-based classifiers and able to outperform PSORisk in 6
out of 10 datasets. However, BRL is relatively computation-
ally expensive and tends to generate classifiers with a large
number of rules. In all the six cases where BRL obtained
up to 0.043 higher AUC than PSORisk, the number of rules
in BRL models is up to 18 rules more than PSORisk. With
a larger model size such as M = 7 or M = 10 as shown
in Table 5, PSORisk can easily outperform BRL. Given that
risk scores can also be flexibly transformed into rules (as
shown in Section VI), PSORisk is possibly a more attractive
solution in real-world applications.

In general, the results show that PSORisk outperforms the
compared methods in 54 out of 70 comparisons, similar on
1 and worse on the remaining 15. Among these 15 lower
performing cases, the best model of PSORisk can still have a
higher AUC in many cases.

TABLE 4. 10-fold CV AUC and model size/complexity (MS) obtained by
PSORisk and rule-based classifiers. (cont).

C. INFLUENCE OF POPULATION SIZES
To examine how the population size has influenced the quality
of obtained risk scores, we conducted additional experiments
with different population sizes ranging from 30 to 90. The
results of ten datasets are shown in Figs. 6 and 7. As can
be seen from the figures, PSORisk benefits from a larger
population size in almost all datasets. Larger populations
are especially useful (i.e. significant improvements) when
PSORisk deals with datasets that have a large number of fea-
tures such as mushroom (113 features) and hribm (121 fea-
tures). It is obvious that selecting a good set of 5 features
from such a large number of combinations requires good
coverage of the search space. This supports our hypothesis
that a large population is needed to maintain the diversity of
the population and help PSORisk improve its performance.

D. INFLUENCE OF THE MODEL SIZE
Table 5 compares the best and the average test AUC of
PSORisk with model size 5, 7 and 10. The last column shows
the results of Wilcoxon tests which confirm if the differ-
ences are significant. A ‘+’ means the corresponding model
size achieves a significantly better average AUC than the
default model size of 5 and vice versa. The results show that

VOLUME 8, 2020 228145

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

TABLE 5. Classification performance with different model sizes.

FIGURE 6. Influences of population size on adult, churn, icu, australian
and bank datasets.

PSORisk consistently obtained better AUC when the model
size increases. This is an important property for risk scores as
we do not want to increase the model size without gaining any
significant classification performance. The results show the
effectiveness of PSORisk when dealing with different model
size constraints. It is also noted that PSORisk is always able to
find feasible solutions for all the datasets, which confirms the
effectiveness of the proposed learning mechanism and local
search in evolving feasible risk scores.

We also conducted extra experiments to investigate the
impact of the proposed local search on the quality of obtained
risk scores. The results show that PSORisk can effectively
determine good solutions for all datasets when the model

FIGURE 7. Influences of population size on spambase, cervical, german,
mushroom and hribm datasets.

FIGURE 8. PSORisk model for hribm dataset (AUC = 0.7461).

size M = 5 and there are no significant differences between
PSORisk with and without the local search. However, as the
model size increases to 7 and 10, PSORiskmay fail to identify
feasible solutions without the support of the proposed local
search.

VI. FURTHER ANALYSES
The previous section has demonstrated the effectiveness of
PSORisk in producing accurate and simple risk scores. In this
section, we will further examine the interpretability of the
obtained risk scores and PSORisk’s scalability.

A. INTERPRETABILITY OF OBTAINED RISK SCORES
To see how interpretable the risk scores obtained by PSORisk
are, we present here some of the risk score models generated
by PSORisk for hribm and adult with M = 5. To make
the paper concise, we only compare PSORisk models with
BRL in this section as BRL obtained the most competi-
tive performance among the baseline methods. As shown in
Tables 3 and 4, PSORisk and BRL rank first on hribm and
adult, respectively.

1) MODELS FOR hribm

Fig. 8 shows a PSORisk model evolved on hribm with an
AUC of 0.7461. The goal of this model is to predict the
risk at which an employee will leave her/his job based on
their information such as age, business travel, daily rate, and
department in the company. In the presented model, PSORisk
selects five features among 121 features of this dataset,

228146 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

FIGURE 9. BRL rules for hribm dataset (AUC = 0.7140).

FIGURE 10. Risk score model for the adult dataset (AUC = 0.8384).

namely working overtime, job level, marital status, environ-
ment satisfaction, and relationship satisfaction. Among the
five features, working overtime is the most important factor
contributing to attrition risk. It has twice as many points
as the remaining features. Other features selected in this
model are also intuitively and highly relevant to the risk. For
example, employees who are at entry level and single have
low environment satisfaction, and low manager relationship
satisfaction will have a higher risk of attrition.

From the PSORisk generated risk score model, simple
rules can also be extracted. For example, if we want to
identify employees with an attrition risk of 70% or more,
i.e., employees who score at least 5 points according to the
model in Fig. 8., a simple rule will be to find those who are
working overtime and match any three (or more) out of the
last 4 features in the model.

Figure 9 shows a BRL model generated for hribm with
an AUC of 0.7140. It comprises five rules, each of which
is associates with a probability of employee’s leaving the
job. Among the four selected features, three are in common
with PSORisk model, namely working overtime, job level,
and marital status. While the PSORisk model also consid-
ers satisfaction in working environment and work-related
relationship, the BRL model looks at age as an additional
feature.

2) adult DATASET
Fig. 10 shows a risk score model evolved by PSORisk for the
adult dataset, where the goal is to determine the probability
of earning 50,000 USD per annum per capita. Among 36 fea-
tures of this dataset, PSORisk selects four features including
married, having some capital gains, age in range 45-59, and
having a bachelor or graduate degree. Among the four fea-
tures, being married is identified as the most important factor
with 4 points, while the age range (from 45 to 59) and having

FIGURE 11. BRL rules for adult dataset (AUC = 0.8621).

high education share the lowest point, at 2 points. Having
some capital gains ranks second, at 3 points. A higher score
means that the considered person has a higher probability of
gaining a high income. For example, a person who has some
capital gains and is married has a score of 7. This means that
he or she has at least a 63% chance of earning 50,000 USD
per year.

Using the model generated from PSORisk, we can also
generate rules that reflect an individual income. For example,
in order to have an over 80% chance of earning more than
50,000 USD annually (or more than 8 points according to the
generated risk score model), a person must:
• be married and have some capital gains, and either

– is from 45 to 59 years old, or
– has a bachelor or graduate degree.

Figure 11 shows a model generated by BRL on adult data.
With 24 rules showing the probability of earning 50.000USD
per year of a person, this model is much bigger than the
risk score model generated by PSORisk. Its interpretability
therefore becomes a question, especially for rules that have a
low probability such as 1.6% or 1.7%. While BRL models
are as transparent as PSORisk ones, the relevance of each
feature and relationship between the features in BRL rules
cannot be determined directly as in PSORisk because they
are sequentially combined in a global IF..ELSE rule.

To further investigate PSORisk explanatory capability,
we have conducted extra experiments to compare the inter-
pretability of our risk scores and SHAP [10]. For these
experiments, we use extreme gradient boosting (XGBoost) as
the black-box classification algorithm and a SHAP explainer
is used to show the impact of each feature on the model
outputs. Figures 12 and 13 show top 20 impactful features
in SHAP interpretation for hribm and adult, respectively. As
can be seen from these figures, both SHAP and PSORisk
models (in Figures 8 and 10) can consistently determine
the most important features that influence the outputs. For
examples, married, capital gains, and ages (45 to 59) are
important features of both PSORisk and SHAP (XGBoost)
for the adult dataset. Similarly, overtime, job level, mari-
tal status, environment satisfaction, and relationship satis-
faction are important features for the hribm dataset. How-
ever, the risk scores are very transparent in the way risk

VOLUME 8, 2020 228147

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

FIGURE 12. SHAP interpretation for XGBoost models on hribm.

FIGURE 13. SHAP interpretation for XGBoost models on adult.

is determined while the outputs of SHAP (XGBoost) are
quite noisy and the relative importance of features is hard to
determine.

The two examples demonstrate that PSORisk classifiers
are transparent and easier to interpret than those learnt by
BRL and SHAP, which are representative IML approaches.
PSORisk models can also be transformed into simple deci-
sion rules. The simplicity of the models enables anyone to
use them even without a calculator.

FIGURE 14. Multi-core performance of PSORisk.

B. SCALABILITY OF PSORisk
In this section, we examine the scalability of PSORisk by run-
ning a parallelised version of PSORisk that utilises multiple
cores for fitness evaluations. Fig. 14 shows the running times
of PSORisk with and without local search on bank. All the
other parameters are set as in 2.

As can be seen from Fig. 14, the running times of PSORisk
without local search reduce dramatically as more cores are
utilised, reaching more than 10× reduction when 16 cores
are used. PSORisk with local search has a roughly 2× speed-
up. This reduction is not as extensive as the PSORisk without
local search because the local search heuristic is still serially
implemented in this experiment. A number of strategies can
be used to enhance the efficiency in this case. The easi-
est approach is to parallelise the local search heuristics in
Algorithm 1. Another sophisticated but more efficient solu-
tion is to develop an asynchronous implementation of
PSORisk so that PSO learning mechanism and local search
can be flexibly applied and enhance the effectiveness of each
other.

While RiskSlim [12] is a powerful tool to build optimal risk
scores, it cannot scale well for large datasets. Experiments
in Ustun and Rudin [12] shows that the optimality gaps of
RiskSlim increases rapidly when the the number of instances
and the number of features increase. An example of this
limitation can be seen in Figure 5 where RiskSlim performs
worse than PSORisk when used to process the largest dataset.
Also, compared with PSORisk, it is much more challenging
to speed up RiskSlim with parallelism due to the complexity
of the algorithm. Therefore, PSORisk is a more attractive
algorithm to handle the scalability issues of ORSP without
deteriorating the classification accuracy.

VII. CONCLUSION AND FUTURE WORK
This paper proposes PSORisk, a scalable and interpretable
machine learning algorithm based on particle swarm opti-
misation. The novelty of PSORisk is a simple yet effective
classification algorithm to evolve risk score models. As a first
PSO-based method for risk score, PSORisk is comprised of a
new PSO representation for risk score, a new learning mech-
anism, a new fitness function that helps PSORisk effectively

228148 VOLUME 8, 2020

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

evolve feasible risk score models, and a new local search
heuristic to refine solutions discovered by the swarm.

The results of PSORisk on ten datasets with varying dif-
ficulties show that PSORisk is an innovative application of
PSO to solve challenging machine learning tasks. Compar-
isons with representative linear and non-linear methods in
IML showed that PSORisk can produce not only accurate but
also highly interpretablemodels. PSORisk has three key prac-
tical advantages: (1) interpretability to provide both trans-
parency and simple risk assessment, (2) flexibility to integrate
operational constraints into risk scores, and (3) scalability to
cope with large numbers of features and large numbers of
instances. Although, to our knowledge this is the first work
on PSO for solving optimal risk score problems, PSORisk
has shown great promise and an excellent addition to the
interpretable machine learning toolbox.

There are a number of directions for future studies.
The current representation can be enhanced by co-evolving
high-level interpretable features with the risk scores, which
can significantly improve the discrimination power of
PSORisk. Another aspect to investigate is the position
updating mechanism which can improve the efficiency of
PSORisk when searching for accurate and feasible risk
scores. There have been many techniques proposed in the
literature to handle constraints, and it is important to inves-
tigate which techniques can be useful for PSORisk. More-
over, a very interesting direction is to extend PSORisk
to deal with multi-objective optimisation risk score prob-
lems in which both accuracy and model size are optimised
simultaneously.

REFERENCES
[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[2] D. E. O’Leary, ‘‘Artificial intelligence and big data,’’ IEEE Intell. Syst.,
vol. 28, no. 2, pp. 96–99, Mar./Apr. 2013.

[3] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, ‘‘Machine learning
on big data: Opportunities and challenges,’’ Neurocomputing, vol. 237,
pp. 350–361, May 2017.

[4] S. Nguyen, M. Zhang, D. Alahakoon, and K. C. Tan, ‘‘People-
centric evolutionary system for dynamic production scheduling,’’
IEEE Trans. Cybern., early access, Sep. 5, 2019, doi: 10.1109/
TCYB.2019.2936001.

[5] E. J. Topol, ‘‘High-performance medicine: The convergence of human
and artificial intelligence,’’ Nature Med., vol. 25, no. 1, pp. 44–56,
Jan. 2019.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statisti-
cal Learning: Data Mining, Inference and Prediction, 2nd ed. Berlin,
Germany: Springer, 2009.

[7] B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, ‘‘An inter-
pretable stroke prediction model using rules and Bayesian analysis,’’
in Proc. 17th AAAI Conf. Late-Breaking Develop. Field Artif. Intell.
(AAAIWS), 2013, pp. 65–67.

[8] W. Souillard-Mandar, R. Davis, C. Rudin, R. Au, D. J. Libon, R. Swenson,
C. C. Price, M. Lamar, and D. L. Penney, ‘‘Learning classification models
of cognitive conditions from subtle behaviors in the digital clock drawing
test,’’Mach. Learn., vol. 102, no. 3, pp. 393–441, Mar. 2016.

[9] B. Ustun and C. Rudin, ‘‘Supersparse linear integer models for optimized
medical scoring systems,’’ 2015, arXiv:1502.04269. [Online]. Available:
http://arxiv.org/abs/1502.04269

[10] S. B. van der Zon, W. Duivesteijn, W. van Ipenburg, J. Veldsink, and
M. Pechenizkiy, ‘‘ICIE 1.0: A novel tool for interactive contextual inter-
action explanations,’’ in Proc. ECML PKDD Workshops, C. Alzate,
A. Monreale, L. Bioglio, V. Bitetta, I. Bordino, G. Caldarelli, A. Ferretti,
R. Guidotti, F. Gullo, S. Pascolutti, R. G. Pensa, C. Robardet, and
T. Squartini, Eds. Cham, Switzerland: Springer, 2019, pp. 81–94.

[11] F. Xie, B. Chakraborty, M. E. H. Ong, B. A. Goldstein, and N. Liu,
‘‘Autoscore: A machine learning–based automatic clinical score generator
and its application to mortality prediction using electronic health records,’’
JMIR Med. Inf., vol. 8, no. 10, p. e21798, Oct. 2020.

[12] B. Ustun and C. Rudin, ‘‘Optimized risk scores,’’ in Proc. 23rd ACM
SIGKDD Int. Conf. Knowl. Discovery DataMining (KDD). NewYork, NY,
USA: Association for Computing Machinery, 2017, pp. 1125–1134.

[13] D. Spangler, T. Hermansson, D. Smekal, and H. Blomberg, ‘‘A validation
of machine learning-based risk scores in the prehospital setting,’’ PLoS
ONE, vol. 14, no. 12, pp. 1–18, Dec. 2019.

[14] C.-F. Juang, ‘‘A hybrid of genetic algorithm and particle swarm optimiza-
tion for recurrent network design,’’ IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 2, pp. 997–1006, Apr. 2004.

[15] Y. Lin, Y. Jiang, Y. Gong, Z. Zhan, and J. Zhang, ‘‘A discrete multiobjective
particle swarm optimizer for automated assembly of parallel cognitive
diagnosis tests,’’ IEEE Trans. Cybern., vol. 49, no. 7, pp. 2792–2805,
Jun. 2019.

[16] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding, ‘‘A micro-
GA embedded PSO feature selection approach to intelligent facial emo-
tion recognition,’’ IEEE Trans. Cybern., vol. 47, no. 6, pp. 1496–1509,
Jun. 2017.

[17] B. Ustun, M. B. Westover, C. Rudin, and M. T. Bianchi, ‘‘Clinical pre-
diction models for sleep apnea: The importance of medical history over
symptoms,’’ J. Clin. Sleep Med., vol. 12, no. 2, pp. 161–168, Feb. 2016.

[18] J. Zeng, B. Ustun, and C. Rudin, ‘‘Interpretable classification models for
recidivism prediction,’’ J. Roy. Stat. Soc., A, Statist. Soc., vol. 180, no. 3,
pp. 689–722, Jun. 2017.

[19] J.-X. Mi, A.-D. Li, and L.-F. Zhou, ‘‘Review study of interpretation
methods for future interpretable machine learning,’’ IEEE Access, vol. 8,
pp. 191969–191985, 2020.

[20] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, ‘‘Defini-
tions, methods, and applications in interpretable machine learning,’’ Proc.
Nat. Acad. Sci. USA, vol. 116, no. 44, pp. 22071–22080, 2019.

[21] O.-C. Granmo, ‘‘The tsetlin machine—A game theoretic bandit driven
approach to optimal pattern recognition with propositional logic,’’ 2018,
arXiv:1804.01508. [Online]. Available: http://arxiv.org/abs/1804.01508

[22] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should i trust
you?’: Explaining the predictions of any classifier,’’ in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD),
New York, NY, USA, 2016, pp. 1135–1144. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939778

[23] S. M. Lundberg and S.-I. Lee, ‘‘A unified approach to interpreting model
predictions,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS).
Red Hook, NY, USA: Curran Associates, 2017, pp. 4768–4777. [Online].
Available: http://dl.acm.org/citation.cfm?id=3295222.3295230

[24] M. Christoph. (2019). Interpretable machine learning. Lulu. [Online].
Available: https://christophm.github.io/interpretable-ml-book/

[25] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm
theory,’’ in Proc. 6th Int. Symp. Micro Mach. Hum. Sci. (MHS), 1995,
pp. 39–43.

[26] B. Tran, B. Xue, andM. Zhang, ‘‘Variable-length particle swarm optimiza-
tion for feature selection on high-dimensional classification,’’ IEEE Trans.
Evol. Comput., vol. 23, no. 3, pp. 473–487, Jun. 2019.

[27] Y.-J. Zheng, H.-F. Ling, J.-Y. Xue, and S.-Y. Chen, ‘‘Population clas-
sification in fire evacuation: A multiobjective particle swarm optimiza-
tion approach,’’ IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 70–81,
Feb. 2014.

[28] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘A particle swarm optimization-
based flexible convolutional autoencoder for image classification,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 8, pp. 2295–2309, Aug. 2019.

[29] D. Zouache, A. Moussaoui, and F. B. Abdelaziz, ‘‘A cooperative swarm
intelligence algorithm for multi-objective discrete optimization with appli-
cation to the knapsack problem,’’ Eur. J. Oper. Res., vol. 264, no. 1,
pp. 74–88, Jan. 2018.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer-
ical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 1992.

[31] J. R. Quinlan, C4. 5: Programs for Machine Learning. Amsterdam,
The Netherlands: Elsevier, 2014.

VOLUME 8, 2020 228149

http://dx.doi.org/10.1109/TCYB.2019.2936001
http://dx.doi.org/10.1109/TCYB.2019.2936001

D. Pham et al.: Swarm-Based Machine Learning Algorithm for Building Interpretable Classifiers

[32] K. Fernandes, J. S. Cardoso, and J. Fernandes, ‘‘Transfer learning with
partial observability applied to cervical cancer screening,’’ in Pattern
Recognition and Image Analysis, L. A. Alexandre, J. S. Sánchez, and
J. M. F. Rodrigues, Eds. Cham, Switzerland: Springer, 2017, pp. 243–250.

[33] J. R. Quinlan, ‘‘Simplifying decision trees,’’ Int. J. Man-Mach. Stud.,
vol. 27, no. 3, pp. 221–234, Sep. 1987.

[34] A. Khashman, ‘‘Neural networks for credit risk evaluation: Investigation of
different neural models and learning schemes,’’ Expert Syst. Appl., vol. 37,
no. 9, pp. 6233–6239, 2010.

[35] Kaggle. (2019). IBM HR Analytics Employee Attrition & Performance.
Accessed: Nov. 11, 2019. [Online]. Available: https://www.kaggle.com/
pavansubhasht/ibm-hr-analytics-attrition-dataset

[36] L. F. Cranor and B. A. LaMacchia, ‘‘Spam!’’Commun. ACM, vol. 41, no. 8,
pp. 74–83, 1998.

[37] Kaggle. (2019). Telco Customer Churn. Accessed: Nov. 11, 2019. [Online].
Available: https://www.kaggle.com/blastchar/telco-customer-churn

[38] J. C. Schlimmer, Concept Acquisition Through Representational Adjust-
ment. Irvine, CA, USA: Univ. California, Irvine, 1987.

[39] A. E. Johnson, J. Aboab, J. Raffa, T. Pollard, R. Deliberato, L. Celi, and
D. Stone, ‘‘A comparative analysis of sepsis identification methods in an
electronic database,’’ Crit. Care Med., vol. 46, no. 4, pp. 494–499, 2018.

[40] R. Kohavi, ‘‘Scaling up the accuracy of Naive-Bayes classifiers:
A decision-tree hybrid,’’ in Proc. 2nd Int. Conf. Knowl. Discovery Data
Mining (KDD), 1996, pp. 202–207. [Online]. Available: http://dl.acm.org/
citation.cfm?id=3001460.3001502

[41] S. Moro, P. Cortez, and P. Rita, ‘‘A data-driven approach to predict the
success of bank telemarketing,’’ Decis. Support Syst., vol. 62, no. 1,
pp. 22–31, Jun. 2014.

[42] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller,
O. Grisel, V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,
J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux, ‘‘API design for
machine learning software: Experiences from the scikit-learn project,’’ in
Proc. ECML PKDD Workshop, Lang. Data Mining Mach. Learn., 2013,
pp. 108–122.

DIEM PHAM received the M.Sc. degree in com-
puter science from Cantho University, Vietnam,
in 2010. She is currently pursuing the Ph.D. degree
with the Business School, La Trobe University,
Melbourne, Australia. Her research interests are in
data analytics and machine learning.

BINH TRAN (Member, IEEE) received the Ph.D.
degree in computer science from the Victoria Uni-
versity of Wellington, New Zealand, in 2018. She
is currently a Lecturer of business analytics with
the Business School, La Trobe University, Mel-
bourne, Australia. Her research interests are in
computational intelligence, data analytics, feature
manipulation, and machine learning.

SU NGUYEN (Member, IEEE) received the Ph.D.
degree in artificial intelligence and data analyt-
ics from the Victoria University of Wellington,
New Zealand, in 2013. He is currently a Senior
Research Fellow with the Centre for Research
in Data Analytics and Cognition, La Trobe Uni-
versity, Australia. His primary research interests
include computational intelligence, optimization,
data analytics, largescale simulation, and their
applications in operations management and
social media.

DAMMINDA ALAHAKOON (Member, IEEE)
received the Ph.D. degree from Monash Univer-
sity, Australia, in 2002. He is currently a Professor
of business analytics with the Business School,
La Trobe University, Melbourne, Australia, and
the Director of the Research Centre for Data
Analytics and Cognition. He has published over
100 research articles in data mining, clustering,
neural networks, machine learning, and cogni-
tive systems. He received the Monash Artificial
Intelligence Prize from Monash University.

228150 VOLUME 8, 2020

