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Abstract: This paper investigates solutions of hyperbolic diffusion equations in R3 with random1

initial conditions. The solutions are given as spatial-temporal random fields. Their restrictions to the2

unit sphere S2 are studied. All assumptions are formulated in terms of the angular power spectrum3

or the spectral measure of the random initial conditions. Approximations to the exact solutions are4

given. Upper bounds for the mean-square convergence rates of the approximation fields are obtained.5

The smoothness properties of the exact solution and its approximation are also investigated. It is6

demonstrated that the Hölder-type continuity of the solution depends on the decay of the angular7

power spectrum. Conditions on the spectral measure of initial conditions that guarantee short or8

long-range dependence of the solutions are given. Numerical studies are presented to verify the9

theoretical findings.10

Keywords: Stochastic partial differential equations; Hyperbolic diffusion equation; Spherical11

random field; Hölder continuity; Long-range dependence; Approximation errors; Cosmic microwave12

background13

1. Introduction14

Numerous environmental, biological and astrophysical applications require modelling of changes15

in data on the unit sphere S2 or in the 3D space R3, see [3,9,31,35,37,41]. One of conventional tools for16

such modelling is stochastic partial differential equations (SPDEs), see, for example, [3,4,8,37] and the17

references therein. Random fields that are solutions of such SPDEs often exhibit dynamics dependent18

on initial conditions. Investigating properties of these random fields is important for theoretical insight19

and practical applications.20

SPDEs on surfaces and Riemannian manifolds found numerous applications to problems in21

cosmology, physics, biology, fluid dynamics, pattern formation on surfaces, just to mention a few, see22

[4,29,32,33] and the references therein.23

Random fields on a sphere, one of simplest two-dimensional manifolds, have been used as a24

standard model in the astrophysical and cosmological literature in the last decades, see [8,19,31,35].25

NASA and ESA space missions [35] obtained very detailed measurements of Cosmic Microwave26

Background radiation (CMB), which are interpreted as a realisation of a spherical random field27

superimposed on an underlying signal of large-scale acoustic waves in plasma near the time of28

recombination. The theory of the standard inflation scenario uses a Gaussian model for the density29

fluctuation of this field, see [31,35,41]. Several new cosmological models were proposed using30

non-Gaussian assumptions and employed sophisticated statistical tests to justify possible departures31

from Gaussianity. The understanding of changes in CMB temperature fluctuations is important to32
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predict future cosmological evolution and accurately reconstruct past states of the universe. It also can33

help in the estimation and statistical inference of physical parameters obtained from the CMB data.34

SPDEs on the sphere can be used to model changes in CMB temperature fluctuations, see [4,8].35

The pronounced spectral peaks at very large wavelengths in CMB temperature data are evidence36

of acoustic waves that had been seeded by earlier superluminal inflation, with remnant coherent37

waves remaining until last scattering of photons and recombination of atoms around 340,000 years38

after the big bang (e.g. [11,41]). In the plasma universe there was chaotic mixing but it is problematic39

to represent the underlying particle kinematics as standard Brownian motion which leads to the40

standard diffusion equation for particle densities. Under standard diffusion, density disturbances have41

unbounded propagation speeds, which is unacceptable in relativistic cosmological contexts wherein42

remnant structures that are coherent over space-like domains, have not been smeared away by diffusion.43

Reimberg [36] has directly modelled a sequence of photon-electron collisions backwards in time from44

the last scattering, with random changes of direction, and with the same distance travelled over45

equal time steps unlike in usual random flight theory. Giona [15–17] has developed a Feynman-Kac46

stochastic dynamics by which a particle undergoes a succession of collisions with speed-limited jumps.47

Consequently, the diffusion coefficients decrease as a power of the Lorentz-Fitzgerald contraction factor48

of an inertial observer. This has the interesting consequence that different observers may disagree on49

whether a process is deterministic or stochastic. Non-trivial continuous relativistic Markov processes50

on position space are simply not possible (e.g. [12]). A simpler alternative phenomenological model is51

effected by replacing the standard diffusion equation by the simplest hyperbolic diffusion equation52

that has a variable but bounded speed of propagation. Ali and Zhang [2] recast the hyperbolic diffusion53

equation as a Lorentz invariant Liouville conservation equation in one time and four space dimensions,54

before restricting x4 to be ict. Ali and Zhang then retain the second law of thermodynamics but only55

as a reaction-diffusion equation in 1+4 dimensions. Section 8 shows how information entropy may56

decrease by a small amount during the propagation of a point source by hyperbolic diffusion, whereas57

the overall increase is much larger.58

The so-called Cattaneo hyperbolic diffusion equation [10,39] has been used to explain outcomes59

of heat conduction experiments in liquid He4 in the super-fluid state [23,27], solid He3 and solid He4
60

at very low temperatures. In these materials, and in some nanotubes and other graphite structures [20],61

heat energy propagates as a “second sound" wave mediated by phonons, at propagation speed around62

one tenth of the normal speed of sound. Since the experiments on graphite have been conducted on63

nano-scale samples, we expect that waves of second sound could likewise be detected in the spherical64

surface of a C60 or larger fullerene ball, as formulated in our previous paper on hyperbolic diffusion65

on a spherical surface, see [8].66

SPDEs on R3 have been extensively studied. However, SPDEs on manifolds attracted a lot of67

attention only recently, see [4,8,24,26]. The results in these papers demonstrate that the continuity68

properties of solutions and convergence rates of approximations to solutions are determined by decay69

rates of the angular power spectrum of initial random conditions. This article continues studies of70

solutions of SPDEs on the sphere. However, in contrast to the above publications that directly model71

spherical random fields using Laplace or Laplace-Beltrami operators on the sphere, we employ another72

approach. Namely, we consider the restriction of the stochastic hyperbolic diffusion in R3 to the73

unit sphere. Compared to the available literature this approach is more consistent with real CMB74

observations that exist in 3D space but are measured only on S2. From a mathematical point of view,75

additional investigations are required to show that solutions of known models on the sphere admit76

physically meaningful extensions to R3 that are consistent with 3D observations. By its construction,77

our model directly provides this consistency. The proposed model may find new applications for78

the next generation of CMB experiments, CMB-S4, which will be collecting 3D observations. A very79

detailed discussion of SPDEs on manifolds and their physical and mathematical justification for CMB80

problems can be found in [8]. The hyperbolic diffusion equation prohibits superluminal propagation of81

density disturbances that is an unwanted feature of pure diffusion models over super-galactic distances.82
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In addition, the linear hyperbolic diffusion equation, expressed in terms of co-moving material space83

coordinates and conformal time coordinate, is a good approximation to the field equation of a scalar84

field minimally coupled to an expanding Robertson-Walker space-time. However, speed-limited85

diffusion raises some interesting questions about the dynamics of Shannon entropy. For physical86

concentrations governed by linear or nonlinear heat diffusion equations of parabolic type, Shannon87

entropy is fully analogous to thermodynamic entropy and it increases monotonically [6]. It will88

be explained that at low wave numbers, the hyperbolic diffusion equation behaves as a dissipative89

diffusion equation but above some cut-off wave number it behaves as a bi-directional wave equation90

which has increasing entropy when twin pulses separate but has decreasing entropy when pulses91

approach each other constructively.92

The paper is organized as follows. Section 2 presents definitions and results about spatial-temporal93

random fields in R3. It also introduces hyperbolic diffusion equations with random initial conditions94

and their solutions. Section 3 investigates the spatial-temporal hyperbolic diffusion field on the unit95

sphere. The Hölder-type continuity of the exact solution of the spatial-temporal hyperbolic diffusion96

field on the sphere is investigated in Section 4. In Section 5 we study the dependence structures of the97

spherical hyperbolic diffusion random fields. Section 6 obtains the mean-square convergence rate to98

the diffusion field in terms of the angular power spectrum. Section 7 provides some numerical results.99

Finally, Shannon entropy behaviour is discussed in Section 8, followed by some conclusions.100

In the following sections we will use the symbol C to denote constants that are not important for101

our exposition. The same symbol may be used for different constants appearing in the same proof.102

2. Spatial random hyperbolic diffusion103

This section reviews the basic theory of random fields in R3 and introduces a hyperbolic diffusion104

with random initial conditions. Then the solution of the diffusion equation is derived and analysed.105

We consider the hyperbolic diffusion equation

1
c2

∂2q(x, t)
∂t2 +

1
D

∂q(x, t)
∂t

= ∆q(x, t), (2.1)

x = (x1, x2, x3) ∈ R3, t ≥ 0, D > 0, c > 0,

where q(x, t) = q(x, t, ω), ω ∈ Ω, is a random field satisfying the random initial conditions:

q(x, t)|t=0 = η(x),
∂q(x, t)

∂t

∣∣∣∣
t=0

= 0, (2.2)

where ∆ is the Laplacian in R3 and the random field η(x) = η(x, ω), x ∈ R3, ω ∈ Ω, defined106

on a suitable complete probability space (Ω,F , P), is assumed to be a measurable, mean-square107

continuous, wide-sense homogeneous and isotropic with zero mean and the covariance function108

B(‖x− y‖) = Cov(η(x), η(y)).109

The covariance function has the following representation

B(‖x− y‖) =
∫
R3

cos(〈κ, x− y〉) F(dκ) =
∫ ∞

0

sin(µ‖x− y‖)
µ‖x− y‖ G(dµ),

for some bounded, non-negative measures F(·) on (R3,B(R3)) and G(·) on (R1
+,B(R1

+)), such that

F(R3) = G([0, ∞)) = B(0), G(µ) =
∫

{‖κ‖<µ}

F(dκ),

see [42], pp. 1-5 and [21], pp. 10-15 for more details.110
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Then there exists a complex-valued orthogonally scattered random measure Z(·) such that, for
every x ∈ R3, the field η(x) itself has the spectral representation

η(x) =
∫
R3

ei〈κ,x〉 Z(dκ), E|Z(∆)|2 = F(∆), ∆ ∈ B(R3). (2.3)

Let Ylm(θ, ϕ), θ ∈ [0, π], ϕ ∈ [0, 2π), l = 0, 1, . . . , m = −l, . . . , l, be complex spherical harmonics
defined by the relation

Ylm(θ, ϕ) = (−1)m
(
(2l + 1)(l −m)!

4π(l + m)!

)1/2

exp(imϕ)Pm
l (cos(θ)),

where Pm
l (·) are the associated Legendre polynomials with indices l and m. For spherical harmonics it

holds

Yl0(0, 0) =

√
2l + 1

4π
, Yl0(θ, ϕ) =

√
2l + 1

4π
Pl0(cos θ),

Y∗lm(θ, ϕ) = (−1)mYl(−m)(θ, ϕ),

Ylm(π − θ, ϕ + π) = (−1)lYlm(θ, ϕ),∫ π

0

∫ 2π

0
Y∗lm(θ, ϕ)Yl′m′(θ, ϕ) sin θdϕdθ = δl′

l δm′
m ,

where the symbol * denotes the complex conjugation and δl′
l is the Kronecker delta function. The111

addition formula for spherical harmonics gives112

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ) =
2l + 1

4π
.

The Bessel function Jν(·) of the first kind of order ν is defined by

Jν(µ) =
∞

∑
n=0

(−1)n

n!Γ(n + ν + 1)

(
µ

2

)2n+ν

,

where Γ(·) is the Gamma function.113

It admits the following representation by the Poisson integral, see (10.9.4) in [34],

Jν(µ) =
2(µ/2)ν

√
πΓ(ν + 1

2 )

∫ 1

0
(1− t2)ν− 1

2 cos(µt)dt, ν > −1
2

.

By the addition theorem for Bessel functions, see, for example, [21], p. 14,

η(x) = η̃(θ, ϕ, r) = π
√

2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ)
∫ ∞

0

Jl+1/2(µr)
(µr)1/2 Zlm(dµ), (2.4)

where Zlm(·) is a family of random measures on (R1
+,B(R1

+)), such that

EZlm(∆1)Zl′m′(∆2) = δl′
l δm′

m G(∆1 ∩ ∆2), ∆i ∈ B(R1
+), i = 1, 2. (2.5)

The stochastic integrals in (2.3) and (2.4) are viewed as an L2(Ω) integrals with the structural measures114

F and G correspondingly.115

Let us consider the initial conditions of the form:

q(x, t)|t=0 = δ(x),
∂q(x, t)

∂t

∣∣∣∣
t=0

= 0, (2.6)
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where δ(x) is the Dirac delta-function.116

Let Q(x, t), x ∈ R3, t ≥ 0, be the fundamental solution (or the Green’s function) of the
initial-value problem (2.1) and (2.6) and

H(κ, t) =
∫
R3

ei〈κ,x〉 Q(x, t) dx, κ ∈ R3, t ≥ 0, (2.7)

be its Fourier transform.117

The following theorem derives the Fourier transform H(κ, t). Contrary to many models in the118

literature, for the initial-value problem (2.1)-(2.2) it can be explicitly written in terms of elementary119

functions. Later, this result will be used to obtain the solution q(x, t, ω), x ∈ R3, t ≥ 0, ω ∈ Ω, and its120

covariance function.121

Theorem 1. The Fourier transform (2.7) of the initial-value problem (2.1) and (2.6) is given by the formula

H(κ, t) = exp
(
− c2

2D
t
)

(2.8)

×
{[

cosh

(
ct

√
c2

4D2 − ‖κ‖2

)
+

c

2D
√

c2

4D2 − ‖κ‖2
sinh

(
ct

√
c2

4D2 − ‖κ‖2

)]
I{‖κ‖≤ c

2D } (2.9)

+

[
cos

(
ct

√
‖κ‖2 − c2

4D2

)
+

c

2D
√
‖κ‖2 − c2

4D2

sin

(
ct

√
‖κ‖2 − c2

4D2

)]
I{‖κ‖> c

2D }

}
, (2.10)

where I{·} denotes the indicator function.122

Proof of Theorem 1. The Fourier transform (2.7) is the solution of the initial-value problem123

1
c2

d2H(κ, t)
dt2 +

1
D

dH(κ, t)
dt

+ ‖κ‖2H(κ, t) = 0,

H(κ, t)|t=0 = 1,
∂H(κ, t)

∂t

∣∣∣∣
t=0

= 0, κ ∈ R3.
(2.11)

The characteristic equation for the ordinary differential equation in (2.11) is

1
c2 z2 +

1
D

z + ‖κ‖2 = 0,

with the roots

z1(κ) = −
c2

2D
−
√

c4

4D2 − c2‖κ‖2, z2(κ) = −
c2

2D
+

√
c4

4D2 − c2‖κ‖2. (2.12)

Therefore, the general solution of the ordinary differential equation in (2.11) has the form

H(κ, t) = K1(κ)ez1(κ)t + K2(κ)ez2(κ)t, (2.13)

where K1(κ), K2(κ) are some functions that do not depend on t and z1(κ), z2(κ) are given by (2.12).
From the initial conditions in (2.11) we obtain the system of equation to find these functions

K1(κ) + K2(κ) = 1, z1(κ)K1(κ) + z2(κ)K2(κ) = 0, (2.14)

which results in

K1(κ) =
1
2
− c

4D
√

c2

4D2 − ‖κ‖2
, K2(κ) =

1
2
+

c

4D
√

c2

4D2 − ‖κ‖2
. (2.15)
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Thus, by (2.13) and (2.12) the solution of the initial-value problem (2.11) is

H(κ, t) =

1
2
− c

4D
√

c2

4D2 − ‖κ‖2

 exp

[
t

(
− c2

2D
−
√

c4

4D2 − c2‖κ‖2

)]

+

1
2
+

c

4D
√

c2

4D2 − ‖κ‖2

 exp

[
t

(
− c2

2D
+

√
c4

4D2 − c2‖κ‖2

)]

= exp
(
− c2

2D
t
)(

1
2

[
exp

(
t

√
c4

4D2 − c2‖κ‖2

)
+ exp

(
−t

√
c4

4D2 − c2‖κ‖2

)]

+
c

2D
√

c2

4D2 − ‖κ‖2

1
2

[
exp

(
t

√
c4

4D2 − c2‖κ‖2

)
− exp

(
−t

√
c4

4D2 − c2‖κ‖2

)])

= exp
(
− c2

2D
t
){

cosh

(
t

√
c4

4D2 − c2‖κ‖2

)
+

c

2D
√

c2

4D2 − ‖κ‖2

× sinh

(
t

√
c4

4D2 − c2‖κ‖2

)}
= exp

(
− c2

2D
t
){[

cosh

(
ct

√
c2

4D2 − ‖κ‖2

)

+
c

2D
√

c2

4D2 − ‖κ‖2
sinh

(
ct

√
c2

4D2 − ‖κ‖2

)]
I{‖κ‖≤ c

2D } +

[
cos

(
ct

√
‖κ‖2 − c2

4D2

)

+
c

2D
√
‖κ‖2 − c2

4D2

sin

(
ct

√
‖κ‖2 − c2

4D2

)]
I{‖κ‖> c

2D }

}
.

The theorem is proved.124

Remark 1. The function H(κ, t) given by (2.8) is radial, that is, there exists a function H̃(·, ·) defined on125

(0, ∞)× (0, ∞) such that H(κ, t) = H̃(‖κ‖, t).126

Remark 2. c/2D is a cut-off wave number below which the Fourier modes decay exponentially and are127

non-travelling as in standard heat conduction. At low wave numbers the governing PDE may be regarded as a128

delayed diffusion equation, as in Cattaneo’s theory of heat propagation [10]. At higher wave numbers, it can129

easily be seen from the one-dimensional solutions that the Fourier components may be viewed as travelling waves130

but with exponentially decaying amplitude. At high wave numbers, the governing PDE may be regarded as a131

damped wave equation.132

Let us denote H̃(µ, t) = H̃1(µ, t) + H̃2(µ, t), such that

H̃1(µ, t) = exp
(
− c2

2D
t
) [

cosh

(
ct

√
c2

4D2 − µ2

)

+
c

2D
√

c2

4D2 − µ2
sinh

(
ct

√
c2

4D2 − µ2

)]
I{|µ|≤ c

2D }, (2.16)

H̃2(µ, t) = exp
(
− c2

2D
t
) [

cos

(
ct

√
µ2 − c2

4D2

)

+
c

2D
√

µ2 − c2

4D2

sin

(
ct

√
µ2 − c2

4D2

)]
I{|µ|> c

2D }. (2.17)
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Lemma 1. It holds

0 ≤ H̃1(µ, t) ≤ 1, (2.18)

and

|H̃2(µ, t)| ≤ exp
(
− c2

2D
t
)[

1 +
c2

2D
t
]

. (2.19)

Proof of Lemma 1. It follows from (2.13), (2.14) and (2.15) that for |µ| ≤ c
2D it holds

H̃1(µ, t) = ez2(µ)t(K2(µ) + K1(µ)e(z1(µ)−z2(µ))t) = ez2(µ)t
(

1 + (e(z1(µ)−z2(µ))t − 1)K1(µ)

)
= ez2(µ)t

(
1 + (e

− z2(µ)
K1(µ)

t − 1)K1(µ)

)
= (1− K1(µ))ez2(µ)t + K1(µ)e

(
z2(µ)−

z2(µ)
K1(µ)

)
t
.

Note that H̃1(µ, 0) = 1 for |µ| ≤ c
2D and

∂H̃1(µ, t)
∂t

= (1− K1(µ))z2(µ)ez2(µ)t + K1(µ)

(
z2(µ)−

z2(µ)

K1(µ)

)
e

z2(µ)−
z2(µ)
K1(µ)

t

= (1− K1(µ))z2(µ)ez2(µ)t
(

1− e
− z2(µ)

K1(µ)
t
)
≤ 0,

because z2(µ) ≤ 0 and K1(µ) ≤ 0 if |µ| ≤ c
2D . Thus, H̃1(µ, t) ≤ H̃1(µ, 0) = 1.133

As
∣∣ sin(x)

x

∣∣ ≤ 1, one obtains the upper bound (2.19) from the representation (2.17) for H̃2(·, ·).134

The following theorem provides the solution of the initial-value problem and its covariance135

function in terms of the Fourier transform H(κ, t). As the explicit expression of H(κ, t) in terms of136

elementary functions is given in Theorem 1 it can be used to obtain an explicit expression for the137

solution and then easily investigate various properties of q(x, t).138

Theorem 2. The solution q(x, t) = q(x, t, ω), x ∈ R3, t ≥ 0, ω ∈ Ω, of the initial-value problem (2.1)-(2.2)
can be written as the convolution

q(x, t) =
∫
R3

ei(κ,x)H(κ, t)Z(dκ). (2.20)

The covariance function of the spatio-temporal random field (2.20) is

Cov(q(x, t), q(x′, t′)) =
∫
R3

e〈κ,x−x′〉 H(κ, t) H(κ, t′) F(dκ). (2.21)

Proof of Theorem 2. Notice that

q(x, t) =
∫
R3

η(y) Q(x− y, t) dy =
∫
R3

η(x− z) Q(z, t) dz

=
∫
R3

ei〈κ,x〉
[∫

R3
ei〈κ,−z〉Q(z, t)dz

]
Z(dκ) =

∫
R3

ei〈κ,x〉 H(κ, t) Z(dκ),

where H(κ, t) is given by (2.8), assuming that the random initial condition has the spectral measure F,
such that ∫

R3
|H(κ, t)|2 F(dκ) < ∞. (2.22)

Under the condition (2.22), the stochastic integral (2.20) exists in the L2(Ω)-sense.139
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By Lemma 1 the function |H(κ, t)| can be bounded by a constant C(t) which depends only on t.140

Noting that
∫
R3 |H(κ, t)|2F(dκ) ≤ C(t)B(0) we obtain (2.22). The representation (2.21) immediately141

follows from (2.20) and the orthogonality of Z(·).142

3. Spherical random hyperbolic diffusion143

In this section we investigate a restriction of the spatial-temporal hyperbolic diffusion field from144

Section 2 to the unit sphere.145

Consider the sphere S2 = {x ∈ R3 : ‖x‖ = 1} in the three-dimensional Euclidean space R3 with
the Lebesgue measure

σ̃(dx) = σ(dθ, dϕ) = sin θ dθ dϕ, θ ∈ [0, π], ϕ ∈ [0, 2π).

A spatio-temporal spherical random field defined on a probability space (Ω,F , P) is a stochastic
function

T(x, t) = T(x, t, ω) = T̃(θ, ϕ, t), x ∈ S2, t ≥ 0.

We consider a real-valued spatio-temporal spherical random field T with zero-mean and finite
second-order moments and being continuous in the mean-square sense (see, for example, Marinucci
and Peccati [31] for definitions and other details). Under these conditions, the zero-mean random field
T can be expanded in the mean-square sense as the Laplace series, see [42],

T̃(θ, ϕ, t) =
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) alm(t),

where the functions Ylm(θ, ϕ) represent the spherical harmonics and the coefficients alm(t) are given
by the formula

alm(t) =
∫ π

0

∫ 2π

0
T̃(θ, ϕ, t) Y∗lm(θ, ϕ) sin θ dθ dϕ.

We assume that the field T is isotropic (in the weak sense), i.e. ET2(x, t) < ∞, and ET(x, t)T(y, t′) =146

ET(gx, t)T(gy, t′) for every g ∈ SO(3), the group of rotations in R3. This is equivalent to the condition147

that the covariance function ET̃(θ, ϕ, t)T̃(θ′, ϕ′, t′) depends only on the angular distance γ = γPQ148

between the points P = (θ, ϕ) and Q = (θ′, ϕ′) on S2 for every t, t′ ≥ 0.149

The field is isotropic if and only if

Ealm(t)al′m′(t
′) = δl′

l δm′
m Cl(t, t′), −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′. (3.1)

Hence,
Ealm(t)alm(t′) = Cl(t, t′), m = 0,±1, . . . ,±l.

The functional series {Cl(t, t′), l = 0, 1, . . . } is called the angular time-dependent power spectrum of150

the isotropic random field T̃(θ, ϕ, t).151

We can define a covariance function between two locations with the angular distance γ at times t
and t′ by

R(cos γ, t, t′) = ET(θ, ϕ, t)T(θ′, ϕ′, t′) =
1

4π

∞

∑
l=0

(2l + 1) Cl(t, t′) Pl(cos γ), (3.2)

where Pl(x) = 1
2l l!

dl

dxl (x2 − 1)l is the l-th Legendre polynomial.152

If T̃(θ, ϕ, t) is a zero-mean isotropic Gaussian field, then the coefficients alm(t), m = −l, . . . , l,
l ≥ 1, are complex-valued Gaussian stochastic processes with

Ealm(t) = 0, Ealm(t)al′m′(t
′) = δl′

l δm′
m Cl(t, t′).
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By Remark 1 the random field q(x, t), x ∈ R3, given by (2.20) is homogeneous and isotropic in x
and, hence, its covariance function (2.21) can be written in the form:

Cov(q(x, t), q(x′, t′)) =
∫ ∞

0

sin(µ‖x− x′‖)
µ‖x− x′‖ H̃(µ, t) H̃(µ, t′) G(dµ)

= 2π2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) Y∗lm(θ
′, ϕ′)

×
∫ ∞

0

Jl+1/2(µr)
(µr)1/2

Jl+1/2(µr′)
(µr′)1/2 H̃(µ, t) H̃(µ, t′) G(dµ),

where (r, θ, ϕ) and (r′, θ′, ϕ′) are spherical coordinates of x and x′ respectively.153

Using the Karhunen theorem we obtain the following spectral representation of the random field:

q(x, t) = q̃(r, θ, ϕ, t) = π
√

2
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ)
∫ ∞

0

Jl+1/2(rµ)

(rµ)1/2 H̃(µ, t) Zlm(dµ), (3.3)

where the random measures Zlm(·) are given in (2.5).154

Similarly to the condition (2.22) the isotropic measure G(·) satisfies the following condition∫ ∞

0
µ2 |H̃(µ, t)|2 G(dµ) < ∞

if the field has a finite variance.155

Subclasses of covariance functions of the isotropic fields on the sphere can be obtained from156

covariance functions of homogeneous isotropic random fields in Euclidean space, since a restriction of157

the homogeneous and isotropic random field to the sphere yields an isotropic spherical field, see, for158

example, [42], p. 76.159

Consider two locations x and x′ on the unit sphere S2 with the angle γ ∈ [0, π] between them. Then160

the Euclidean distance between these two points is 2 sin γ
2 , the inner product is 〈x, x′〉 = cos γ, which161

gives a direct correspondence between the covariance function R0(‖x− x′‖, t, t′) in the Euclidean space162

and the covariance function R(cos γ, t, t′) = R0(2 sin γ
2 , t, t′) on the sphere for every fixed t, t′ ≥ 0.163

Thus, the restriction of the homogeneous and isotropic hyperbolic diffusion field (3.3) to S2 is an164

isotropic spherical random field for every fixed t, t′ ≥ 0. We will call it the spherical hyperbolic165

diffusion isotropic random field TH(x, t), x ∈ S2, t ≥ 0.166

Its covariance function is of the form:

Cov(TH(x, t), TH(x′, t′)) = R(cos γ, t, t′) =
∫ ∞

0

sin(2µ sin γ
2 )

2µ sin γ
2

H̃(µ, t) H̃(µ, t′) G(dµ). (3.4)

By the addition theorem for Bessel functions, the random field TH(x, t) = T̃H(θ, ϕ, t) has the following167

spectral representation168

T̃H(θ, ϕ, t) =
∞

∑
l=0

l

∑
m=−l

Ylm(θ, ϕ) alm(t), (3.5)

where

alm(t) = π
√

2
∫ ∞

0

Jl+1/2(µ)√
µ

H̃(µ, t) Zlm(dµ) (3.6)

and the random measure Zlm(·) satisfies (2.5).169

Thus, the angular spectrum of the isotropic spherical random field TH(x, t) is given by the formula

Cl(t, t′) = 2π2
∫ ∞

0

J2
l+1/2(µ)

µ
H̃(µ, t) H̃(µ, t′) G(dµ). (3.7)
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Therefore, we obtained the following result.170

Theorem 3. Consider the random initial-value problem (2.1)-(2.2), in which η(x), x ∈ R3, is a homogeneous171

isotropic random field with the isotropic spectral measure G(·) given by (2.5).172

Then, the restriction of the spatio-temporal hyperbolic-diffusion random field (3.3) to the sphere S2 is an
isotropic spatio-temporal spherical random field with the following angular spectrum

Cl(t, t′) = 2π2
[∫ c

2D

0

J2
l+1/2(µ)

µ
H̃1(µ, t) H̃1(µ, t′) G(dµ)

+
∫ ∞

c
2D

J2
l+1/2(µ)

µ
H̃2(µ, t) H̃2(µ, t′) G(dµ)

]
.

The field and its covariance functions are given by (3.5) and (3.4) respectively.173

This result investigates the restriction of the spatio-temporal hyperbolic-diffusion random field174

to the sphere S2. It shows how the angular power spectrum Cl(t, t′) of the restriction depends on175

the Fourier transform H̃(µ, t). Hence, one can explicitly compute coefficients Cl(t, t′) and study176

contributions of different spherical harmonics to the spatial-temporal field TH(x, t).177

Notice that TH(x, 0) = η(x), x ∈ S2. The angular power spectrum of η(x), x ∈ S2, will be denoted
by Cl , l = 0, 1, . . . For spherical random fields with finite variances it holds

∞

∑
l=0

(2l + 1)Cl < ∞. (3.8)

Lemma 2. If (3.8) holds true, then
∞

∑
l=0

(2l + 1)Cl(t, t′) < ∞.

Proof of Lemma 2. By Theorem 3

∞

∑
l=0

(2l + 1)Cl(t, t′) = 2π2
∞

∑
l=0

(2l + 1)
∫ c/2D

0

J2
l+ 1

2
(µ)

µ
H̃1(µ, t)H̃1(µ, t′)G(dµ)

+ 2π2
∞

∑
l=0

(2l + 1)
∫ ∞

c/2D

J2
l+ 1

2
(µ)

µ
H̃2(µ, t)H̃2(µ, t′)G(dµ)

≤ 2π2 · sup
µ< c

2D

∣∣H̃1(µ, t)H̃1(µ, t′)
∣∣ · ∞

∑
l=0

(2l + 1)
∫ c/2D

0
J2
l+ 1

2
(µ)G(dµ)

+ 2π2 · sup
µ≥ c

2D

∣∣H̃2(µ, t)H̃2(µ, t′)
∣∣ · ∞

∑
l=0

(2l + 1)
∫ ∞

c/2D

J2
l+ 1

2
(µ)

µ
G(dµ). (3.9)

Now, combining (3.9) and Lemma 1 one gets178

∞

∑
l=0

(2l + 1)Cl(t, t′) ≤ 2π2
∫ c/2D

0

∞

∑
l=0

(2l + 1)
J2
l+ 1

2
(µ)

µ
G(dµ) + exp

(
− c2

D
t
)(

1 +
c2

2D
t
)2

× 2π2
∫ ∞

c/2D

∞

∑
l=0

(2l + 1)
J2
l+ 1

2
(µ)

µ
G(dµ) ≤

∞

∑
l=0

(2l + 1)Cl , (3.10)

as supx≥0(x + 1)e−x = 1, H̃1(µ, 0) = H̃2(µ, 0) = 1, and Cl(0, 0) = Cl . It completes the proof.179
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Remark 3. It follows from Lemma 2 and the estimate |Pl(cos θ)| ≤ 1 that the solution’s covariance function180

given by (3.2) is finite if the initial condition η(x), x ∈ S2, has a finite variance.181

4. Smoothness of solutions182

Numerous problems in mathematical physics and geosciences require studying regularity183

properties of solutions of differential equations. Smoothness, boundedness of derivatives or Hölder184

continuity conditions are often used to describe and investigate local changes and growth rates of185

solutions. Knowing regularity properties is also essential for an adequate approximation of SPDE186

solutions. In those cases where solutions are given by infinite series, it is a rather difficult mathematical187

problem as tail terms of such series can accumulate.188

In this section, we investigate the Hölder-type continuity of the solution T̃(θ, ϕ, t) given by (3.5)189

on the sphere. Estimations of closeness of T̃ values at spherical points (θ, ϕ) and (θ′, ϕ′) are obtained.190

We demonstrate how they depend on the decay of the angular power spectrum and provide some191

specifications in terms of the spectral measure G(·).192

First, we obtain continuity of the solution with respect to the geodesic distance on the sphere. To193

prove it we use the approach from Corollary 5 in [8].194

Theorem 4. Let T̃H(θ, ϕ, t) be the solution of the initial value problem (2.1)-(2.2) and the random initial
condition η(x), x ∈ S2, has the angular power spectrum {Cl , l = 0, 1, 2, . . . } satisfying the assumption

∞

∑
l=0

(2l + 1)1+2αCl < ∞, α ∈ (0, 1]. (4.1)

(a) Then, for t > 0

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C

∞

∑
l=0

(2l + 1)1+2αCl(1− cos γ)α,

where γ is the angle between directions (θ, ϕ) and (θ′, ϕ′).195

(b) If the measure G(·) has its support in
[ c

2D , ∞
)
, then

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C exp

(
− c2

D
t
)(

1 +
c2

2D
t
)2 ∞

∑
l=0

(2l + 1)1+2αCl(1− cos γ)α.

Proof of Theorem 4. (a) It follows from (3.1), (3.2), (3.5) and (3.10) that

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
= 2Var(T̃H(θ, ϕ, t))− 2Cov(T̃H(θ, ϕ, t)T̃H(θ

′, ϕ′, t))

=
1

2π

∞

∑
l=0

(2l + 1)Cl(t, t)(1− Pl(cos γ))

≤ 1
2π

∞

∑
l=0

(2l + 1)Cl(1− Pl(cos γ)).

Applying the property of Legendre polynomials, [26], p.16,

|1− Pl(cos γ)| ≤ 2(1− cos γ)α(l(l + 1))α, α ∈ (0, 1],

one obtains the statement (a) of the theorem.196

(b) It follows from the proof of (3.10) that in the case of G([0, c
2D ]) = 0 it holds

Cl(t, t) ≤ exp
(
− c2

D
t
)(

1 +
c2

2D
t
)2

Cl .
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The remaining steps are similar to the proof in (a).197

When the geodesic distance γ vanishes, i.e. γ → 0, it is easy to see that (1− cos γ)α → 0 and,198

therefore, MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
→ 0 as well.199

The next two results provide conditions on the field’s spectrum that guarantee the Hölder-type200

regularity of T̃H(θ, ϕ, t).201

Theorem 5. If the measure G(·) has a bounded support [0, δ], δ > 0, then

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C(1− cos γ), when γ→ 0+, (4.2)

even for the case of α = 0 in (4.1).202

Proof of Theorem 5. Indeed, by (3.4) we get

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
= 2

∫ ∞

0

(
1−

sin(2µ sin γ
2 )

2µ sin γ
2

)
H2(µ, t) G(dµ)

= 2
∫ δ

0

(
1−

sin(2µ sin γ
2 )

2µ sin γ
2

)
H2(µ, t) G(dµ).

For µ ∈ [0, δ] it holds 2µ sin γ
2 → 0, when γ→ 0+, and therefore

∣∣∣∣1− sin(2µ sin γ
2 )

2µ sin γ
2

∣∣∣∣ = ∣∣∣∣ ∞

∑
k=1

(−1)k

(2k + 1)!

(
2µ sin

γ

2

)2k+1∣∣∣∣ ≤
(

2µ sin
γ

2

)2

3!
.

Hence,

MSE
(
T̃H(θ, ϕ, t)− T̃H(θ

′, ϕ′, t)
)
≤ C sin2 γ

2

∫ δ

0
µ2H2(µ, t)G(dµ)

and (4.2) follows from Lemma 1.203

The next result gives sufficient conditions to guarantee (4.1).204

Theorem 6. Suppose that
∫ ∞

0 eµ2/4G(dµ) < ∞. Then (4.1) holds true.205

Proof of Theorem 6. By the Poisson integral representation of the Bessel function it follows

∞

∑
l=0

(2l + 1)1+2αCl = 2π2
∫ ∞

0

∞

∑
l=0

(2l + 1)1+2α J2
l+ 1

2
(µ)

G(dµ)

µ

≤ C
∫ ∞

0

∞

∑
l=0

(2l + 1)1+2α µ2l+1

22l+1Γ2(l + 1)
G(dµ)

µ

≤ C
∫ ∞

0
µ

∞

∑
l=0

(µ2/4)l

l!
(2l + 1)1+2α

l!
G(dµ)

µ
≤ C

∫ ∞

0
e

µ2
4 G(dµ),

as 1 + 2α ≤ 3.206

5. Short and long memory207

Investigating statistical dependence between measurements at two points with increasing time or208

spatial distance between them is an important issue for practical temporal or spatial predictions. The209

spatial domain of the considered random fields is restricted to the sphere S2 with the geodesic distance210

γ. Note that this distance is bounded to the interval [0, π], but time t can unboundedly increase and211

takes values in [0,+∞). Hence, this section investigates only temporal statistical dependencies, namely212
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slow or fast decays of covariance functions in time. The corresponding cases represent long or shot213

memory scenarios.214

In this section we use the representation (3.4) of covariance functions to investigate the structure of215

dependences of TH(x, t) over time. We demonstrate that conditional on the spectral isotropic measure216

G(·) of the initial random condition η(x), x ∈ R3, the random field TH(x, t) can exhibit short or217

long-range dependence.218

The random field TH(x, t) will be called short-range dependent if

∫ +∞

0
|R(cos γ, t + h, t)|dh < +∞ (5.1)

for all t ≥ 0 and γ ∈ [0, π]. If the integral in (5.1) is divergent, the field is called long-range dependent.219

Results that link behaviours of covariance functions at infinity and spectral measures at the origin220

are called Abelian-Tauberian theorems. A very detailed overview of such results for random fields can221

be found in [28].222

First we investigate the case of x = x′ in (3.4), i.e. the behaviour of R(1, t + h, t).223

Theorem 7. For x = x′ the random field TH(x, t) exhibits short-range dependence if and only if µ−2G(dµ) is224

integrable in a neighbourhood of zero.225

Proof of Theorem 7. It follows from (2.16), (2.17) and (3.4) that

∫ +∞

0
|R(1, t + h, t)|dh =

∫ +∞

0

∣∣∣∣ ∫ c/2D

0
H̃1(µ, t + h)H̃1(µ, t)G(dµ)

+
∫ +∞

c/2D
H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh.

Using the upper bound from (2.19) we get

∫ +∞

0

∣∣∣∣ ∫ +∞

c/2D
H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh ≤ exp
(
− c2

2D
t
)[

1 +
c2

2D
t
]
· G
([ c

2D
,+∞

))

×
∫ +∞

0
exp

(
− c2

2D
h
)[

1 +
c2

2D
(t + h)

]
dh < +∞. (5.2)

Hence, to study the integrability of the covariance function |R(1, t + h, t)| one has to investigate the
integral ∫ +∞

0

∣∣∣∣ ∫ c/2D

0
H̃1(µ, t + h)H̃1(µ, t)G(dµ)

∣∣∣∣dh. (5.3)

As H̃1(µ, t) > 0 for |µ| ≤ c
2D

, t ≥ 0, it is equivalent to studying the integral

∫ c/2D

0

∫ +∞

0
H̃1(µ, t + h)H̃1(µ, t)dh G(dµ),

or, by (2.16) and cosh
( c2t

2D

√
1− 4D2

c2 µ2
)
∈
[
1, cosh c2t

2D
]

for µ ∈
[
0, c

2D
]
, to the investigating of the226

finiteness of the integral227

∫ c/2D

0

∫ +∞

0

exp
(
− c2

2D
h
(

1−
√

1− 4D2

c2 µ2
))[

1 +
1√

1− 4D2

c2 µ2

]
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− exp

(
− c2

2D
h
(

1 +

√
1− 4D2

c2 µ2
))

1√
1− 4D2

c2 µ2


1 +

sinh
(

c2t
2D

√
1− 4D2

c2 µ2
)

√
1− 4D2

c2 µ2

 dh G(dµ)

=
2D
c2

∫ c/2D

0

 1

1−
√

1− 4D2

c2 µ2
+

 1

1−
√

1− 4D2

c2 µ2
− 1

1 +
√

1− 4D2

c2 µ2

 1√
1− 4D2

c2 µ2



×

1 +
sinh

(
c2t
2D

√
1− 4D2

c2 µ2
)

√
1− 4D2

c2 µ2

G(dµ).

Noting that
sin(h)

h
∈
[

0,
sinh(A)

A

]
on [0, A], A > 0, we obtain that (5.3) is finite if and only if the

following integral converges

∫ c/2D

0

 1

1−
√

1− 4D2

c2 µ2
+

c2

2D2µ2

G(dµ) =
c2

4D2

∫ c/2D

0

3 +
√

1− 4D2

c2 µ2

µ2 G(dµ).

The last integral is finite only if
∫ ε

0
G(dµ)

µ2 < ∞, ε > 0, which completes the proof.228

Now we extend Theorem 7 to the case of arbitrary x and x′ from S2.229

Theorem 8. The random field TH(x, t) is short-range dependent if and only if µ−2G(dµ) is integrable in a230

neighbourhood of the origin.231

Proof of Theorem 8. Note that by (3.4) the integrators in R(cos γ, t′, t) and R(1, t′, t) differ only by a232

multiplier
sin(2µ sin γ

2 )
2µ sin γ

2
.233

Thus,

∫ +∞

0
|R(cos γ, t + h, t)|dh =

∫ +∞

0

∣∣∣∣ ∫ c/2D

0

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃1(µ, t + h)H̃1(µ, t)G(dµ)

+
∫ +∞

c/2D

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh.

It follows from the estimates (2.19), (5.2) and the inequality
∣∣ sin(x)

x

∣∣ ≤ 1 that

∫ +∞

0

∣∣∣∣ ∫ +∞

c/2D

sin
(
2µ sin γ

2
)

2µ sin γ
2

H̃2(µ, t + h)H̃2(µ, t)G(dµ)

∣∣∣∣dh < +∞.

Now, note that for γ ∈ (0, π) the interval [0, c/2D) can be split into a finite number of subintervals

[0, c/2D) =
K⋃

k=1

[
π

2 sin γ
2
(k− 1),

π

2 sin γ
2

k

)⋃ [
π

2 sin γ
2

K,
c

2D

)
,
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where K =
[

c sin γ
2

πD

]
and [a] denotes the integer part of a. The ratio

sin(2µ sin γ
2 )

2µ sin γ
2

has the same sign on

each of these subintervals. Therefore, similar to the proof of Theorem 7 we obtain the sufficient and
necessary condition for the integrability of |R(cos γ, t′, t)|

∫ π

2 sin γ
2

0

sin
(
2µ sin γ

2
)

2µ sin γ
2

G(dµ)

µ2 < ∞.

Note that by limµ→0
sin(µ)

µ = 1 this condition is equivalent to the one in Theorem 7. This completes the234

proof.235

6. Approximations to solutions236

The results in the previous sections were based on the series representation of the random field237

T̃H(θ, ϕ, t). In applications and numerical studies only a finite number of series terms is available.238

Hence, one has to investigate behaviours of finite cumulative sums. This section provides the analysis239

of truncated series expansions of the solution field T̃H(θ, ϕ, t) and shows the role of the decay rate of240

the angular power spectrum. These results can be used to determine the number of terms for a given241

accuracy of approximate solutions.242

This section introduces and studies approximate solutions of the initial value problem (2.1)-(2.2).243

A mean-square convergence rate to the diffusion field in terms of the angular power spectrum Cl is244

obtained. Then several specifications in terms of the measure G(·) are discussed.245

We define the approximation T̃H,L(θ, ϕ, t) of the truncation degree L ∈ N to the solution T̃H(θ, ϕ, t)
given by (3.5) as

T̃H,L(θ, ϕ, t) =
L−1

∑
l=0

Ylm(θ, ϕ) alm(t), θ ∈ [0, π], ϕ ∈ [0, 2π), t ≥ 0.

The next result provides the convergence rate of T̃H,L(θ, ϕ, t) to T̃H(θ, ϕ, t) when L→ ∞.246

Theorem 9. Let T̃H(θ, ϕ, t) be the solution to the initial value problem (2.1)-(2.2) and T̃H,L(θ, ϕ, t) the
corresponding approximation of truncation degree L ∈ N. Then,

sup
t≥0
‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤

1
2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

Proof of Theorem 9. Note that by properties of alm(t) we get

E(T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)) = 0

for all L ∈ N, θ ∈ [0, π], ϕ ∈ [0, 2π) and t ≥ 0.247

Then, by (3.1) and (3.5) it follows that

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) =

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)E(alm(t)a∗lm(t))
)1/2

=

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)Cl(t, t)
)1/2

.

Using the addition formula for spherical harmonics one gets

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) =
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl(t, t)
)1/2

. (6.1)
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Finally, by (3.10)

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

248

For the SPDE model studied in [8] it was shown that its solution has an exponential decay in t
and the corresponding approximation error can be bounded as

‖u(θ, ϕ, t)− uL(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp
(
− c2t

2D

)( ∞

∑
l=L

(2l + 1)Cl

)1/2

, (6.2)

see (36) in [8].249

The following result shows that the considered model is more complex. In the general case of an250

arbitrary measure G(·) it is impossible to get a bound similar to (6.2) even for a sufficiently large L.251

Theorem 10. For any fixed C > 0 and L ∈ N there exist t > 0 and an initial random condition η(x), x ∈ R3,252

such that the norm of the approximation error T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t) does not satisfy (6.2).253

Proof of Theorem 10. Indeed, let us consider some ε ∈ (0, 1).254

Then,
√

1− 4D2

c2 µ2 ≥ 1− ε if µ ∈ Iε :=
[
0,
√

c2

4D2 (1− (1− ε)2)
]
.255

Let the measure G(·) be concentrated on the interval Iε. By (2.16), if µ ∈ Iε then

H̃1(µ, t) ≥ exp
(
− c2

2D
t
(

1−
√

1− 4D2

c2 µ2
))
≥ exp

(
− c2

2D
tε
)

.

Hence, by (6.1) and Theorem 3 for any C, L > 0, there exists t, ε > 0, and the measure G(·) such
that for the corresponding T̃H(θ, ϕ, t) and T̃H,L(θ, ϕ, t) it holds

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≥
1

2
√

π
exp

(
− c2

2D
tε
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

≥ C exp
(
− c2

2D
t
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

256

However, it is possible to obtain a rate of convergence that is exponential in t if the measure G(·)257

has a bounded support.258

Theorem 11. Let η(x), x ∈ R3, have the measure G(·) such that G([0, δ]) = 0 for some δ ∈ (0, c
2D ). Then,

for the solution T̃H(θ, ϕ, t) of the initial value problem (2.1)-(2.2) and its approximation T̃H,L(θ, ϕ, t) it holds

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤ C exp
(
− Dδ2t

)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

Proof of Theorem 11. As sinh(x)
x is an increasing function on (0, ∞) it follows from (2.16) that for µ ≥ δ259

H̃1(µ, t) ≤ exp
(
− c2

2D
t
)(

exp
(

c2

2D
t

√
1− 4D2

c2 δ2
)
+ exp

(
c2

2D
t

√
1− 4D2

c2 δ2
)

1√
1− 4D2

c2 δ2

)
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≤ exp
(
− c2

2D
t
(

1−
√

1− 4D2

c2 δ2
))(

1 +
1√

1− 4D2

c2 δ2

)

=

(
1 +

1√
1− 4D2

c2 δ2

)
exp

(
− c2

2D
t× 4D2δ2

c2
(

1 +
√

1− 4D2

c2 δ2
))

≤
(

1 +
1√

1− 4D2

c2 δ2

)
exp(−Dδ2t).

Notice that for x ≥ 0 and a ∈ (0, 1) it holds 1 + x ≤ 1
a exp(xa).260

Then, using the definition of H̃2(µ, t) in (2.17) we get for t ≥ 0

H̃2(µ, t) ≤ exp
(
− c2

2D
t
)(

1 +
c2

2D
t
)
≤ exp

(
− c2

2D
t
)

1√
1− 4D2

c2 δ2
exp

(
c2

2D
t

√
1− 4D2

c2 δ2
)

≤ 1√
1− 4D2

c2 δ2
exp

(
− Dδ2t

)
.

Hence, if G([0, δ]) = 0 it follows from Theorem 3 that261

Cl(t, t) ≤
(

1 +
1√

1− 4D2

c2 δ2

)2

exp
(
− 2Dδ2t

)
Cl .

Applying this bound to (6.1) we obtain the statement of the theorem.262

The next result follows from (6.1) and the upper bound (2.19) for H̃2(µ, t).263

Corollary 1. If G
(
[0, c

2D ]
)
= 0, then

‖T̃H(θ, ϕ, t)− T̃H,L(θ, ϕ, t)‖L2(Ω×S2) ≤
1

2
√

π

(
1 +

c2

2D
t
)

exp
(
− c2

2D
t
)( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

Remark 4. The rates of convergence in Theorems 9, 11 and Corollary 1 are sharp. Indeed, for t = 0 one obtains

‖T̃H(θ, ϕ, 0)− T̃H,L(θ, ϕ, 0)‖L2(Ω×S2) =

( ∞

∑
l=L

l

∑
m=−l

Ylm(θ, ϕ)Y∗lm(θ, ϕ)Cl(0, 0)
)1/2

=
1

2
√

π

( ∞

∑
l=L

(2l + 1)Cl

)1/2

.

The angular power spectrum {Cl , l = 0, 1, . . . }, of the initial random field η(x) is determined by264

the measure G(·). The following results provide some insight in the behaviour of ∑∞
l=L(2l + 1)Cl in265

terms of the spectral measure G(·).266

Theorem 12. Let the angular power spectrum of η(x) be {Cl , l = 0, 1, . . . }.267

(a) Then it holds

∞

∑
l=L

(2l + 1)Cl = 2π2
∫ ∞

0
µ

(
JL− 1

2
(µ)J

′

L+ 1
2
(µ)− JL+ 1

2
(µ)J

′

L− 1
2
(µ)

)
G(dµ). (6.3)
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(b) If
∫ ∞

0 µ1/3G(dµ) < ∞, then

∞

∑
l=L

(2l + 1)Cl ≤ C
∫ ∞

0

µG(dµ)

(1 + (L− 3
2 )

2 + µ2)1/3
, L ≥ 2. (6.4)

(c) If the measure G(·) has a bounded support [0, δ], δ > 0, then

∞

∑
l=L

(2l + 1)Cl ≤
C

Γ2(L− 1
2 )

(
δ

2

)2L

, L ≥ 2. (6.5)

Proof of Theorem 12. (a) It follows from the representation

Cl = 2π2
∫ ∞

0

J2
l+ 1

2
(µ)

µ
G(dµ)

that

∞

∑
l=L

(2l + 1)Cl = 2π2
∫ ∞

0

∞

∑
l=L

(2l + 1)J2
l+ 1

2
(µ)

G(dµ)

µ
. (6.6)

By von Lommel’s formula, see (2.60) in [5],268

∞

∑
n=0

(ν + 1 + 2n)J2
ν+1+2n(µ) =

µ2

4
(

J2
ν(µ)− Jν−1(µ)Jν+1(µ)

)
,

where µ ∈ R and ν > −1, we obtain

∞

∑
l=L

(2l + 1)J2
l+ 1

2
(µ) = 2

∞

∑
n=0

(
L +

1
2
+ 2n

)
J2
L+ 1

2+2n(µ) + 2
∞

∑
l=L

(
L + 1 +

1
2
+ 2n

)
J2
L+1+ 1

2+2n(µ)

=
1
2

µ2
(

J2
L− 1

2
(µ)− JL− 3

2
(µ)JL+ 1

2
(µ) + J2

L+ 1
2
(µ)− JL− 1

2
(µ)JL+ 3

2
(µ)

)
=

1
2

µ2
(

JL− 1
2
(µ)
(

JL− 1
2
(µ)− JL+ 3

2
(µ)
)
+ JL+ 1

2
(µ)
(

JL+ 1
2
(µ)− JL− 3

2
(µ)
))

= µ2
(

JL− 1
2
(µ)J

′

L+ 1
2
(µ)− JL+ 1

2
(µ)J

′

L− 1
2
(µ)

)
. (6.7)

Now, (6.3) follows by substituting the last expression in (6.6).269

(b) Using the inequality from [25]

|Jν(µ)| ≤
C

(1 + ν2 + µ2)1/6

we obtain that for L ≥ 2∣∣∣∣JL− 1
2
(µ)

(
JL− 1

2
(µ)− JL+ 3

2
(µ)

)
+ JL+ 1

2
(µ)

(
JL+ 1

2
(µ)− JL− 3

2
(µ)

)∣∣∣∣ ≤ 4
C(

1 + (L− 3
2 )

2 + µ2
)1/6 ,

which after the substitution in (6.6) gives (6.4).270

(c) By the Poisson integral formula and the identity
∫ 1

0 (1− t2)ndt =
√

πΓ(n+1)
2Γ(n+ 3

2 )
one obtains

∣∣JL− 3
2
(µ)
∣∣ ≤ 2(µ/2)L− 3

2
√

πΓ(L− 1)

∫ 1

0
(1− t2)L−2dt =

(µ/2)L− 3
2

Γ(L− 1
2 )

. (6.8)
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If [0, δ], δ > 0, is the support of the measure G(·), then it follows from (6.6), (6.7) and (6.8) that

∞

∑
l=L

(2l + 1)Cl ≤
C

22L−3Γ2(L− 1
2 )

∫ δ

0
max

(
µ2(L− 3

2 )+1, µ2(L+ 3
2 )+1

)
G(dµ),

which completes the proof.271

7. Numerical studies272

This section presents numerical studies of the solution TH(x, t), its angular spectrum and273

covariance functions over time. We also provide some numerical analysis of approximation errors.274

All numerical computations and simulations in this paper were performed using the software R275

version 3.6.1 and Python version 3.7.5. The results were derived using the HEALPix representation of276

spherical data, see [18] and http://healpix.sourceforge.net. In particular, the R package rcosmo [13],277

[14] was used for computations and visualisations of the obtained results. The Python package healpy278

was used for fast spherical harmonics generation of spherical maps from Laplace series coefficients.279

The R and Python code used for numerical examples in Section 7 are freely available in the folder280

"Research materials" from the website https://sites.google.com/site/olenkoandriy/.281

It is important to clarify that the numerical analysis in this paper is rather different from the one282

in [8] and requires more advanced approximation approaches. Namely, the stochastic model in [8]283

yielded the representation of the Laplace series coefficients alm(t) = C[Al(t) + Bl(t)]alm(0) for some284

functions Al(t) and Bl(t) which can be explicitly computed in terms of elementary functions. However,285

for the model (2.1)-(2.2) there is no such simple functional relation that links alm(t) and alm(0). As a286

result, there are no explicit elementary functional relations between Cl(t, t′), R(cos γ, t, t′) and Cl(0, 0),287

R(cos γ, 0, 0) respectively. To compute spectral and covariance functions of TH(x, t) at time t > 0288

one has to use formulae (3.4), (3.6) and (3.7). These integral representations are given in terms of the289

spectral measure G(·) and stochastic measures Zlm(·) of the initial random condition field η(x).290

By (1.2.5) in [21], it follows from

R(r) =
∫ ∞

0

sin(µr)
µr

G(dµ)

that

G(µ) =

√
2
π

∫ ∞

0
J3/2(µr)(µr)3/2 R(r)

r
dr, (7.1)

which can be used to compute (3.4), (3.7) and simulate Zlm(·) for computations in (3.6). However,291

obtaining a reliable approximation of the integral in (7.1) and stochastic measures Zlm(·) requires the292

estimation of the empirical covariance function R̂(r) on a dense grid. Moreover, for data observed on293

bounded subsets of R3, covariance functions can be estimated only for distances that do not exceed294

their diameters. Thus, it is important to verify that empirical covariance functions are sufficiently295

quickly decaying to be assumed negligible for distances greater than these diameters. We postpone the296

solution of these technical problems and analysis of real data to future publications.297

In the following examples we study properties of solutions and their approximations using298

simulated data. The examples were constructed to demonstrate that the model is sufficiently powerful299

to imitate behaviours of the empirical CMB covariance function and oscillating angular spectrum,300

see [8,38]. The actual CMB covariance function and angular spectrum are shown in Figures 1(a)301

and 1(b). Note that the estimated angular CMB spectrum shown in Figure 1(b) was obtained by a302

piecewise fitting of several physical models and interpolation techniques for different intervals of303

the spectrum, see [11,41]. Some actual spectrum estimates deviate substantially from the fitted curve304

in Figure 1(b), see [38]. Therefore, in predicting CMB and spectrum changes over time small details305

can be ignored and one needs to focus on a general pattern. Thus, the following examples with the306

http://healpix.sourceforge.net
https://sites.google.com/site/olenkoandriy/
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analysis of simulated data which spectrum is analogous to the real one can offer important insights on307

the future evolution of CMB and its spectral properties.

(a) CMB covariance (b) CMB angular spectrum

Figure 1
308

In the examples the case of a discrete measure G(·) is considered, i.e. the support of G(·) is a
finite set {µi, i = 1, . . . , I}. We employ real-valued stochastic measures Zlm(·) that are concentrated
on this set and satisfy the condition

G(µi) = E Z2
lm(µi) = σ2

i , i = 1, . . . , I.

We assume that the random field η(x) is centered Gaussian. Hence, we can choose Zlm(µi) ∼ N(0, σ2
i )309

that are independent for different l, m and i.310

In these settings formulae (3.4), (3.6) and (3.7) take the following discrete forms

R(cos γ, t, t′) =
I

∑
i=1

sin(2µi sin( γ
2 ))

2µi sin( γ
2 )

H̃(µi, t)H̃(µi, t′)σ2
i , (7.2)

alm(t) = π
√

2
I

∑
i=1

Jl+ 1
2
(µi)
√

µi
H̃(µi, t)Zlm(µi),

Cl(t, t′) = 2π2
I

∑
i=1

J2
l+ 1

2
(µi)

µi
H̃(µi, t)H̃(µi, t′)σ2

i , (7.3)

which are convenient for simulations.311

This approach can also be used to approximate absolutely continuous spectral measures G(·) by312

considering a sufficiently large I, small |µi − µi+1| and σ2
i = G

(
[µi, µi+1]

)
, i = 1, ..., I.313

Example 1. This example illustrates changes over time of the covariance function R(cos γ, 0, t) defined314

by (3.4) and the power spectrum Cl(t, t) defined by (3.7). To produce plots and computations we used315

the corresponding discrete equations (7.2) and (7.3) with values σi =
100

i by i ∈ {1, 2, . . . , 10} and a316

discrete spectrum concentrated on the interval [1, 40]. All computations and plots in this example are317

presented for the values c = 1 and D = 1 of the parameters in equation (2.1).318
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(a) R(cos γ, t, t) at the time lags t = 0, 0.1, and 0.5 and
angular distances γ for c = D = 1.

(b) R(cos γ, t, t) for c = D = 1 at time lag t and angular distance γ.

Figure 2

Figure 2(a) shows the covariance R(cos γ, t, t) at the time lags t = 0, t = 0.1 and t = 0.5 as319

functions of the angular distance γ. To understand the effect of time and the angular distance γ on the320

covariance function we provided 3D-plots (see Figure 2(b)) showing the covariance as a function of the321

time lag t. The plot in Figure 2(b) is normalized by dividing each value by max
γ∈[0,π]

R(cos γ, 0, 0). It is322

obvious that the covariance decays through time and changes very little except values of γ which are323

close to 0.324

(a) R(cos γ, 0.1, 0.1) as a function of γ and c for D=1. (b) R(cos γ, 0.1, 0.1) as a function of γ and D for c = 1.

Figure 3

To understand the effect of the parameters c and D on the covariance function we also produced325

Figure 3. It illustrates changes of the covariance function R(cos γ, t, t) at a specific time t as functions of326

the angular distances γ and the parameters c or D. To produce this figure we used t = 0.1. Figure 3(a)327

displays R(cos γ, 0.1, 0.1) for D = 1 as a function of c and the angular distances γ. While Figure 3(b)328

displays R(cos γ, 0.1, 0.1) for c = 1 as a function of D and the angular distances γ. The plots in Figure 3329
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are normalized by dividing each value by max
γ∈[0,π]

R(cos γ, 0.1, 0.1). It is clear form Figure 3(a) that the330

covariance decays through c (also through D, see Figure 3(b)) and changes very little except values331

of γ which are close to 0. Figure 3(b) demonstrates that the normalized covariance function exhibits332

decaying periodic behavior when D increases.333

Figure 4(a) displays the power spectrum Cl(t, t) as a function of t ≥ 0. To produce this figure334

we used t ∈ [0, 1] and l = 2, 5, and 10. The first 70 coefficients Cl were computed by applying the335

equation (7.3) with the above values of σi, i = 1, . . . , 10. From this figure it is clear that the power336

spectrum Cl(t, t) decays very quick to 0 when l increases. To investigate the effect of the parameter l we337

provide a plot of the ratio R0.1,0,l = Cl(0.1, 0.1)/Cl(0, 0) for the first 70 coefficients Cl (see Figure 4(b)).338

This figure confirms that the ratio R0.1,0,l is bounded by 1 and changes very little when l increases.339

Figure 5(a) plots the tail sums ∑l≥L(2l + 1)Cl(0, 0) and ∑l≥L(2l + 1)Cl(0.1, 0.1) as functions of L,340

while Figure 5(b) displays the corresponding ratio RR0.1,0,L = ∑l≥L(2l+1)Cl(0.1,0.1)
∑l≥L(2l+1)Cl(0,0) . From Figure 5(a) it is341

clear that when L increases the both terms ∑l≥L(2l + 1)Cl(0, 0) and ∑l≥L(2l + 1)Cl(0.1, 0.1) have the342

same asymptotic behaviour up to a constant multiplier which is also further confirmed in Figure 5(b).343

(a) The power spectrum Cl(t, t) for c = D = 1 and values
l = 2, 5 and 10.

(b) The ratio R0.1,0,l of the first 70 coefficients for c =
D = 1.

Figure 4

(a) Plots of ∑l≥L(2l + 1)Cl(t, t) at t = 0 and t = 0.1. (b) The ratio RR0.1,0,L.

Figure 5
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Example 2. In this example we use a discrete spectrum concentrated on the two intervals [0, 20] and344

[80, 90]. Thus, the initial condition random field η(x) has low and high frequency components. To345

produce realisations of η(x) and TH(x, t), x ∈ S2, that are similar to small real CMB values we used346

σ2
i = 0.00003 and 0.0001 for low and high frequency components respectively. These small values let us347

employ the visualisation tools and colour palettes used for CMB plotting in the R package rcosmo [14]348

and the Python package healpy.349

To produce the plots and computations in this paper we use the first 100 coefficients Cl obtained350

by applying (7.3) to the above discrete spectrum. They are shown in Figure 6 in red. In this example we351

use the values c = 1 and D = 2 of the parameters in equation (2.1). The coefficients Cl(t, t) for t = 0.05352

and 0.1 are plotted in blue and green respectively. The graph indicates two regions with relatively353

large values of Cl that correspond to the spectral measure G(·) used for these computations. It can be354

seen that values Cl(t, t) decrease over time. However, the corresponding spherical maps change rather355

slowly. Therefore, only two maps, for t = 0 and 0.05, are plotted in Figure 7.356

Figure 6. Angular power spectra Cl(t, t) for c = 1 and D = 2 at time t = 0, 0.05 and 0.1.

(a) Realisation of TH(θ, ϕ, 0) for c = 1 and D = 2. (b) Realisation of TH(θ, ϕ, 0.05) for c = 1 and D = 2 with two
observation windows.

Figure 7

For the following numerical studies we used simulated data from two windows shown in
Figure 7(b). The estimated means in Table 1 confirm that TH(θ, x, t) has a zero mean. It can be observed
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from Figure 7 and the estimated interquartile ranges (IQR) in Table 1 that the magnitude of TH(x, t)
values decreases with time. However, the distribution type of the combined values does not change
substantially. Namely, the combined values of TH(x, t) exhibit approximately bell shaped behaviour
with tails that are heavier than in the Gaussian case, see Figures 8 and 9. Similar results were obtained
for various observation windows of S2. For example, for the second rectangular window shown in
Figure 7(b) Q-Q plots and histograms of observations in this window are given in Figures 8 and 9
respectively. These results about distributions of combined values are also confirmed by computing
the Shannon entropy

Ĥ = −∑
i=1

p̂i log( p̂i)

for the empirical distributions { p̂i} given by the histograms in Figure 9. Values of Ĥ do not change357

much over time t, see Table 1. They are not substantially different from the entropy upper bound358

log(16) ≈ 2.77.359

(a) Normal Q-Q plot of all TH(θ, ϕ, 0) values from
window 2 in Figure 7(b).

(b) Normal Q-Q plot of all TH(θ, ϕ, 0.05) values from
window 2 in Figure 7(b).

Figure 8

(a) Histogram of all TH(θ, ϕ, 0) values from window 2 in
Figure 7(b).

(b) Histogram of all TH(θ, ϕ, 0.05) values from window 2
in Figure 7(b)

Figure 9
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The q-statistics, see [40], was used to investigate heterogeneity between values of TH(θ, ϕ, t) in360

windows 1 and 2 from Figure 7(b). Table 1 indicates that heterogeneity is absent at time 0 and the361

evolution due to the model (2.1) does not introduce heterogeneity at least for short time periods.362

Time t 0 0.05 10
Mean for window 1 1.353 · 10−5 −5.62 · 10−6 3.501 · 10−7

Mean for window 2 7.083 · 10−6 −1.132 · 10−5 −5.166 · 10−8

IQR for window 1 2.877 · 10−4 1.307 · 10−4 6.78 · 10−6

IQR for window 2 3.252 · 10−4 1.452 · 10−4 7.11 · 10−6

Entropy for window 1 2.193 2.116 2.369
Entropy for window 2 2.302 2.221 2.387
q-statistics 1.986 · 10−4 7.272 · 10−4 1.5 · 10−3

Table 1

8. Entropy and hyperbolic diffusion363

This section discusses the evolution of Shannon entropy for hyperbolic diffusion. Theoretical364

analysis and several numeric examples are presented. To simplify the exposition and plots, only the365

case of x ∈ R and various non-random initial conditions are studied.366

For diffusive transport that arises from random motion of particles, the mass distribution may
indeed be regarded as a probability distribution, after which Shannon entropy may be calculated. For
a simple thermodynamic system governed purely by linear or nonlinear heat conduction, there is a
close analogy between thermodynamic entropy and Shannon entropy (e.g. [6,22]). When the transport
mechanism is modified to hyperbolic diffusion, the behaviour of entropy requires more scrutiny. In
order to illustrate this, consider one dimensional solutions q(x, t) on [−`, `]×R+, subject to Neumann
boundary conditions

qx(x, t) = 0, x = ±L.

This may represent transport in the x-direction through a linear conduit of cross section area A, with367

the variation of density in each cross section being effectively zero. It will be seen that the total mass M368

is constant. Therefore, the scaled density q∗ = qA/M has constant unit integral on [−L, L], from which369

physically relevant non-negative solutions q∗(x, t) may be regarded as distributions. By choosing370

length scale D/c and time scale D/c2, it may be assumed that the coefficients in the hyperbolic371

diffusion equation are normalised to ±1.372

Let t∗ = tc2/D, x∗ = xc/D and L∗ = Lc/D. Then

q∗t∗ + q∗t∗t∗ = q∗x∗x∗ ,

subject to boundary conditions
q∗x∗ = 0, x∗ = ±L∗

and initial conditions
q∗(x∗, 0) = u0(x∗), q∗t∗(x∗, 0) = v0(x∗).

Defining Shannon entropy density to be s = −q∗ log q∗, the hyperbolic diffusion equation for
q∗(x, t) implies

st +
D
c2 stt = D

q∗2x − 1
c2 q∗2t

q∗
. (8.1)

The case of unbounded speed of propagation is obtained by taking the limit c→ ∞, which results in373

a positive entropy production rate Dq∗2x /q∗. This is familiar from the theory of heat conduction, for374

which the entropy production rate is LeDT2
x /T, where T is absolute temperature and Le is the Lewis375

number, which is the order-1 ratio of thermal diffusivity to mass diffusivity.376
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For uni-directional waves of velocity ±c, the entropy production rate is zero. For bi-directional377

waves, the total Shannon entropy is constant when opposite-travelling waves are not superposing,378

increasing when opposite-travelling superposing waves are separating, and decreasing when they are379

superposing and approaching. However, non-constant travelling wave solutions of the hyperbolic380

diffusion equation must have speed less than c and they must have an amplitude that decreases with381

time. For the remainder of this section, the asterisk superscripts will be conveniently omitted.382

Some solutions of the hyperbolic diffusion equation may be of dissipative diffusive type while others383

may be dissipative bi-directional waves. In order to illustrate this, by the completeness of the Fourier384

transform, the general even solution by separation of variables is,385

q = a0 +
nc

∑
n=1

[ane−α+n t + bneα−n t] cos(knx) (8.2)

+
∞

∑
n=nc+1

ane−0.5t cos(ωnt) cos(knx), (8.3)

where nc = [L/2π]−, kn = nπ/L, ωn = kn
√

1− 1/(2kn)2 and α±n = 1
2 (1±

√
1− 4k2

n).386

The first summation covers modes that are purely dissipative in character, just as for the linear
heat diffusion equation. However in this case, the dissipative modes exist only when L ≥ 2π. The
second summation covers standing wave modes with decaying amplitude. These may be regarded as
a superposition of a decaying left-travelling wave and a decaying right-travelling wave. Note that the
dissipative mode with logarithmic decay rate α−1 decays more slowly than all other modes.
The above solution is mass-conserving with mean value a0 and constant mass integral 2La0 = 1
by normalisation. For a single decaying standing wave mode of a hyperbolic diffusion equation
distribution, for some value of t,

q =
1

2L
[1 + e−0.5t cos(ωnt) cos(knx)].

Then the total Shannon entropy is

S =
∫ L

−L
q log(1/q)dx.

At times t = (2m + 1)π/2ωn; m ∈ Z, the distribution is uniform, which is the state of maximum387

entropy S = log(2L). Overall, the total entropy oscillates as it approaches the limiting equilibrium388

state. However the negative excursions of entropy may be quite small since the amplitude of oscillation389

decreases exponentially.390

Figure 10 plots the total entropy for a wave with single harmonic, calculated by trapezoidal391

integration with 400 intervals, versus time.392
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Figure 10. Total entropy for standing wave with single harmonic. L = 3π, wave number k2 = 2π/L.



Version September 29, 2020 submitted to Entropy 27 of 30

It would be helpful to have a point-source solution for the hyperbolic diffusion equation. As393

far as we are aware, there is no known simple expression for the point source evolution but it has394

the standard uniform Fourier spectrum that evolves according to (8.2). It is plotted in Figure 11395

after truncating the Fourier series at 100 terms. As in the d’Alembert wave equation, two separating396

travelling delta waves emerge but now the amplitudes of the truncated spikes are decreasing and397

there is an additional central symmetric hump due to the purely diffusive terms. The leading edges of398

the spikes are travelling at maximum speed c. In two and three dimensions there would be similar399

solutions with a single travelling cylindrical or spherical shock wave surrounding a central hump.400
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Figure 11. Evolving spike solution for L = 3π.

It is instructive also to view the motion of an initial rectangular disturbance of finite amplitude.401

This is approximated in Figures 12-13 by a Fourier series of 200 terms. The truncated Fourier series is402

an exact solution but due to the truncation and the boundary conditions, the solution is negative at403

some values of the domain, so that Shannon entropy cannot be calculated. However, the solution is404

indicative of the behaviour of a non-negative solution with initial rectangle. As in the bidirectional405

wave equation, the symmetric solution consists of two superposed rectangles that increase entropy as406

they begin to separate by travelling in opposite directions. After they have separated, their amplitude407

decreases which leads to further entropy increase. The height of the leading edge decreases more408

rapidly than the trailing edge so each rectangle evolves to a trapezoid. The leading edge, which is the409

boundary of the disturbance, continues to move at maximum speed c. Between the trapezoids, there is410

a central hump that eventually dominates, and resembles a diffusive Gaussian, increasing entropy411

further. With this kind of peaked initial condition, there is no indication of any significant period of412

entropy decrease.413
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Figure 12. Evolving symmetric rectangle: emergent bidirectional wave.
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Figure 13. Evolving rectangle: dominant diffusive hump at large t, with leading edge of remnant
rectangle demarcating the extent of the disturbance.

9. Future research problems414

This paper investigated evolutions of random fields determined by hyperbolic diffusion equations415

with random initial conditions. Spherical random fields were modeled as restrictions of 3D solutions416

fields to the sphere. Compared to the previous publications, it resulted in a more realistic physical417

model. However, the solution field for the new model can not be represented by using Laplace series418

coefficients alm(0) of the initial condition directly. The more complicated representation involves419

spectral measures of initial random conditions.420

Detailed studies of the solutions and their approximations were presented. In particular, regularity421

properties and temporal dependencies of solutions were investigated. Approximations to the SPDE422

solutions were proposed and the upper bound analysis of approximation errors was provided. It423

was demonstrated that the magnitude of approximation errors is determined by the angular power424

spectrum Cl and decreases at the rate of the cumulative tail sums (∑∞
l=L(2l + 1)Cl)

1/2 .425

The numerical studies investigated the dependence of solution fields on parameters of the SPDE426

model and provided some insight in evolution of Shannon entropy for hyperbolic diffusion.427

Some important problems and extensions for future research are:428

• investigating the sharpness of the obtained upper bounds on approximation errors, see [8];429

• developing statistical estimators of the equation parameters and studying their asymptotic430

properties;431

• extending the methodology to tangent spherical vector fields, see [30];432

• developing numerical methods for the obtained representations to deal with spectra of initial433

conditions;434

• extending the analysis and numerical studies in Section 8 to other scenarios;435

• in line with the theme of this special issue, in future we intend to study the effect of nonlinear
diffusivity in the equation

qt +
1
c2 qtt = ∇ · [D(q)∇q].

For example, if q is the electron density in a plasma, D(q) is typically decreasing [7].436
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