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Exploring structure-property relationships in magnesium

dissolution modulators
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Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the
service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds
can be explored by machine learning-based quantitative structure-property relationship models, accelerating the discovery of
potent dissolution modulators. Here, we demonstrate how unsupervised clustering of a large number of potential Mg dissolution
modulators by structural similarities and sketch-maps can predict their experimental performance using a kernel ridge regression
model. We compare the prediction accuracy of this approach to that of a prior artificial neural networks study. We confirm the
robustness of our data-driven model by blind prediction of the dissolution modulating performance of 10 untested compounds.
Finally, a workflow is presented that facilitates the automated discovery of chemicals with desired dissolution modulating
properties from a commercial database. We subsequently prove this concept by blind validation of five chemicals.
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INTRODUCTION

As the lightest structural engineering metal, magnesium (Mg) is a
promising material for advanced technologies that will ameliorate
climate change through enhanced battery technologies and
improved transport applications’?. Magnesium is useful for
light-weight automotive®™ and aerospace components®’, as
anode material for energy storage systems®'' and as base
material for bioresorbable medical implants'>™'”. Due to high
abundance, relatively low cost, and versatility, Mg and Mg-based
alloys are being increasingly employed for these and other
industrial applications. However, due to its comparably high
chemical reactivity, many target implementations also require
domain-specific tailoring of the degradation behavior of Mg. In
transport applications, corrosion needs to be prevented to avoid
material failure. In medical applications, where Mg is used in stents
or bone screws, its corrosion rate needs to be controlled in an
environment-specific way, as different treatments and/or patients
imply different healing rates. For energy applications, for example,
Mg-air primary batteries in which Mg is employed as anode
material, a constant Mg dissolution rate is desired.

Clearly, benign degradation modulating strategies are needed
for these applications. Several strategies, such as alloying and
surface coatings, were developed to control the corrosion of Mg-
based engineering materials'®2°. However, these protective
schemes need to be improved to achieve better control over
the degradation properties of Mg. Small organic molecules, which
form complexes with ions (e.g., iron) that accelerate the corrosion
process, have shown great potential to control the dissolution
properties of pure Mg materials and its alloys?'. The properties of
these modulators of magnesium dissolution can be tailored to
specific target applications, e.g., as component of an active
protective coating or as a part of the electrolyte of an Mg-air
battery?>™?>. The massive advantage of organic dissolution

modulators is their almost unlimited chemical space, providing
countless potential solutions for almost all applications. The
number of available organic compounds is increasing rapidly, with
~120 million organic compounds being reported over the last
decade alone®. It has been estimated that the number of organic
compounds with potentially useful properties is ~ 10%% and is thus
essentially infinite?”. Automation and robotics technologies are
also expanding rapidly and enable modern combinatorial
chemistry techniques that can synthesize larger and more diverse
chemical libraries. Clearly, synergies with computer-assisted
synthesis approaches will further extend this exponential rise in
available organic compounds®.

Consequently, the most challenging task is to select molecules
with beneficial properties for specific applications from this
effectively infinite chemical space of small organic molecules.
Experimental approaches alone cannot possibly explore more than
a tiny fraction of the vast space of compounds with potentially
useful dissolution modulating properties, despite impressive devel-
opments in high throughput techniques®*2 Fortunately, data-
driven computational methods**™° can efficiently explore larger
areas of chemical space with orders of magnitude less time and
effort. Hence, they offer a very efficient way to preselect a short list
of promising candidates prior to experimental investigation.
Additionally, computational techniques can provide deeper insight
into the underlying chemical mechanisms and most important
chemical functional moieties*'™°. A combination of experimental
and computational methods constitutes a sound foundation for a
data-driven discovery of modulators. Machine learning techniques
that model complex quantitative structure-property relationships
can predict target properties of hitherto unsynthesized or
untested compounds®>7>>*78 These methods require large,
reliable, chemically diverse and balanced training data sets to
make the most accurate predictions that can be generalizable to a
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broad range of materials. As data-driven models are not capable
of reliably predicting the performance of molecules with poorly
represented features (e.g., functional groups, elemental species) in
the training data, the underlying training set has to reflect the
complexity of the relevant chemical environment. Predictions
made by these models are most accurate for compounds that lie
within or in the neighborhood of the domain of applicability of
the model (the span of values over which each molecular feature
in the training set varies).

In an extensive experimental study employing hydrogen
evolution experiments, Lamaka et al. measured the corrosion
inhibition performance of over 150 organic compounds for nine
distinct Mg-based materials®'. Previously, a workflow was devel-
oped for modeling the experimentally-derived corrosion inhibition
values in this database using high-throughput calculations and
machine learning algorithms*. It was demonstrated in recent
works®>*? that a single descriptor alone cannot adequately
describe the complexity of materials degradation. In our recent
study®’, we employed the Smooth Overlap of Atomic Positions
(SOAP) kernel’®®' and sketch-map®® to connect molecular
similarities of 74 compounds to their inhibition efficiencies (IEs)
for commercially pure Mg containing 220 ppm iron impurities
(CPMg220). The SOAP kernel condenses the structural properties
of all chemicals to pairwise similarity values, whereas sketch-map
projects the resulting high-dimensional similarity matrix onto two
dimensions. The resulting two-dimensional structure-property
landscape elucidated the relationships between the molecular
structure and corrosion inhibition performance by the formation
of similarity clusters. We demonstrated that projecting untested
organic compounds onto this map with out-of-sample embedding
allows qualitative predictions of their corrosion inhibition perfor-
mance by alignment to clusters in the similarity landscape.
Importantly, the computed SOAP kernel can be employed directly
as input to a kernel ridge regression (KRR)>*> model that performs
quantitative predictions of IEs for these unknown chemicals.

This study extends our previous modeling work and comprises
three parts. Firstly, the robustness of the KRR model is bench-
marked against an artificial neural network (ANN) model that was
trained on a combination of atomistic and structural molecular
descriptors®. To allow comparisons of the accuracy of the two
approaches, both models were trained using identical training
data. Secondly, the database was augmented by 74 additional
compounds with unknown performance, of which 10 were
subsequently used to validate the KRR model by blind prediction
of their IEs. Clusters of molecular similarity in the corresponding
sketch-map generated from all 152 molecules formed the basis for
the selection process. Finally, a proof of concept workflow is
presented that provides automated selection of untested com-
pounds with promising properties for experimental testing by
screening a large molecular database. These synergistic computa-
tional approaches should significantly improve the predictive
power and model interpretation of the underlying machine
learning models, thus paving the way for the discovery or rational
design of bespoke Mg dissolution agents.

RESULTS AND DISCUSSION
Comparison of model robustness

The KRR model was validated by comparing its key performance
indicators to those of an ANN model generated in a recently
published study®3. Despite the ANN performed well in terms of
prediction accuracy, its performance depends on the careful
selection of molecular descriptors that can strongly influence the
prediction outcome and interpretation of the models is often
problematic. Hence, combining all structural features in a global
similarity measure, defined by SOAP, provides an attractive
approach to reduce the complexity of the model input. Employing
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Fig. 1 Sketch-map representation of 71 tested molecular struc-
tures. The sketch-map is based on molecular similarities and IEs
(colored dots) of 71 compounds. Clusters with similar dissolution
modulating properties indicate a structure-property relationship.
Qualitative prediction of the inhibition efficiency for the seven
displayed test compounds is obtained using out-of-sample embed-
ding to project them onto the map.

the resulting SOAP kernel as input for KRR allows physically
interpretable predictions that can be directly ascribed to the
molecular structure. The KRR model was trained using the same
data set and was validated using the same seven untested
compounds as for the ANN model. The underlying SOAP kernel
was generated for all 78 compounds, of which 71 had structural
similarity values used as a training set and are represented on a
sketch-map (Fig. 1). Hyperparameters for the SOAP kernel and
KRR were fine-tuned in a grid search with k-fold cross validation
(see Supplementary Methods and Supplementary Fig. 1 in the
Supplementary Information), resulting in a hyperparameter set of
re=3.0A, =03, (=06 and y=0.3, as well as the regularization
parameter owrgr = 11. All hyperparameters are defined and
explained in the “Methods” section. The seven compounds used
for external test set validation of the model predictions are
projected onto this map and highlighted. It is clear that the four
stronger inhibitors cluster together (see Fig. 1, right) while the
three compounds having weak inhibition to strong dissolution
properties are clustered near each other on the left-hand side of
the sketch-map. The KRR model-predicted IEs (see Fig. 2) for the
seven test compounds with a higher R? of 0.79 and slightly higher
root mean square error (RMSE) of 36% compared to the ANN
model (R?=0.74, RMSE =33%) from the earlier study (see
Supplementary Fig. 2)*3. However, with only seven compounds
the difference between the ANN and KRR models is not highly
significant. A Pearson rank correlation test was also conducted on
the KRR-predicted and experimentally determined values. Similar
to the ANN study there was a strong correlation (r=0.89). The
p-value of 0.007 indicates acceptable statistical significance for the
model.

Validation of the predictive model

A blind prediction step is an excellent way to assess the predictive
power of a model. Therefore, a second sketch-map was generated
based on the SOAP kernel built from 74 small organic molecules
with unknown experimental IE values and the 78 chemicals used
to train the initial sketch-map and KRR models (Fig. 3). The
untested compounds are depicted as gray dots while the already
tested training set compounds are color-coded according to their
IE. The untested compounds comprise chemicals with similar
functional groups to those in the sketch-map training set. As these
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compounds sit in or near the domain of applicability of the
original sketch-map model, the predictions are expected to be
reliable. Only biologically benign, inexpensive, small organic
molecules were included in the untested set. The molecular
weight of training compounds was < 350 Da while the majority of
the test set molecules (64) used for prediction had molecular
weights <200 Da. Small anti-corrosion additives are required to
increase the efficiency of protective coatings without impairing
their structural integrity. Considering the IEs of the training
structures, we identified and selected six clusters by visual
inspection. Results of a k-means clustering substantiate the cluster
definitions (see Supplementary Fig. 4). In Fig. 3, the mean IE values
of molecules in the training set clusters decrease in the order
b (71 £15%) > d (65+6%) > ¢ (50+27%) > e (37+57%) > f (3+
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Fig. 2 Performance evaluation of the KRR model. Correlation of
predicted test set |IEs from the KRR model with experimental values
from a prior study®>. The blue line is a linear least square fit of the
predicted and measured values. The RMSE value is in absolute
percent. The orange, dashed line represents the ideal correlation.
The error bars depict the standard deviation of the experimentally
derived IE.

Magnesium dissolution accelerator
@ Magnesium dissolution inhibitor

Untested

O Blind test
Cluster MeanlE/ %

a —

b 7115

c 50 + 27

d 6516

e 37+57

f 3+24

T. Wirger et al.

np)j

24%). Clearly, some of the untested compounds mapped onto
clusters of modulators with inhibitory effects (b, ¢, d) while others
generated new clusters (a) or were located in map regions
corresponding to compounds with highly diverse properties,
ranging from strong accelerators to effective inhibitors (f). The
mean predicted IE values for molecules in the test set in defined
clusters decrease in the order b (51 +9%) = c (48 +14%) >d (39 +
10%) = a (35 11%) > e (24 +£5%) > f (—35 =+ 12%), indicating a
qualitatively accurate prediction.

A total of 10 chemicals representative of each cluster, were
randomly selected and tested experimentally under the same
conditions as the compounds used for training of the sketch-map
model. As the experimental performance of compounds located
within cluster a is an uncharted area of the sketch-map, the
number of compounds selected for the blind testing was in
proportion to the size of the cluster. The general agreement
between predicted and experimental values is good except for
benzamide (see Table 1) that is predicted to have a moderate
inhibiting effect (44%) whereas the experiment showed it was a
dissolution accelerator with an IE of —43 +30%. The discrepancy
may be due to benzamide precipitating at an inhibitor concentra-
tion of 0.01 m while the model was trained on data with a 0.05m
modulator concentration. Hence, compound 3 was excluded from
correlation of experimental and predicted results (see Fig. 4).
Additional information on the training and test errors of the KRR
are provided in Supplementary Fig. 3. More detailed information
on the experiments are provided in Supplementary Table 3. A
Pearson rank correlation for the remaining nine chemicals resulted
in a correlation coefficient of 0.85 and a p-value of 0.004. As Table 1
shows, most of the predicted IE values agree with the experimen-
tally determined values within experimental error. It is noteworthy
that the IE values of aliphatic compounds in the blind testing set (7,
8, 9, 10) are overestimated. The tetracarboxylic acid 7 is located in
one of the tightest clusters d which might explain the small IE
variation within the cluster (see Fig. 3). Chemicals in the training set
that cluster in d have a mean inhibition efficiency of 65+ 6%.

=75 -50 -25 0 25 50 75
Inhibition efficiency (IE) / %

Fig. 3 Sketch-map representation of 152 molecular structures. The sketch-map is based on molecular similarities of 78 tested (colored
according to IE) and 74 untested (depicted in gray) modulators. Six clusters are identified. The mean IEs of the clusters are shown in the lower

left corner.
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Table 1. Experimental and predicted IEs of 10 compounds not used to train the model.
Compound IE pred. [%] IE exp. [%] H, volume [mL - cm ™2 Final pH  Cluster
Reference: 0.5% Sodium chloride NadCl - 0 23.5+38 10.5 -
N
I A
1 Pyrazinecarboxylic acid [N/ OH 18 1+41 21.9+9.0 10.5 a
(o)
o}
2 2-Aminopyridine-3-carboxylic acid | N “OH 30 54+16 10.8+0.2 94 a
~
N7SNH,
Ox~NH,
3 Benzamide 44 —43 +30 353+6.1 10.5 a
| N
4 Dimethyl 2,6-pyridinedicarboxylate Me N? OMe 63 64+19 10.0+24 8.8 b
(0] 0
(o}
5 2-Nitroterephthalic acid I@ﬁ%H 60 68+ 16 78405 10.9 b
HO.
NO,
Me
6 Dimethyl 5-hydroxyisophthalate &id 55 29+24 146 +4.4 9.2 4
HO ©
0¥°0
7 1,2,3,4-Butanetetracarboxylic acid H OH 53 27 +17 176+1.7 9.1 d
(0] 07 OH
8  1,2-Hexanediol /\/\Og\o“ 28 2+19 21327 104 e
O
9 B-Alanine -7 —86+17 447 £1.7 10.1 f
HN ~ Aoy
NH
10 N,N-Trimethyleneurea N/gO —26 —37+26 33.2+49 10.5 f
H
IEs for compounds with a carboxylic acid moiety were determined as the sodium salt in the hydrogen evolution experiments. Experimental uncertainties were
calculated from three experiments, except for 1, 3, and 10 where four experiments were done. Values for final pH after immersion tests are provided.

Hence, untested compounds mapped close to this cluster should
exhibit a similar IE. The in silico model estimates the IE value
of 7 to be significantly lower than the mean value of the data
points defining the cluster, a trend in agreement with the lower
experimental value of 27 £ 17% IE. The complex speciation of the
tetracarboxylic acid at pH between 7 and 10 may be responsible
for some of the prediction error, which is nonetheless only slightly
outside one standard deviation of the experimental error. The
aliphatic diol 8 is located in cluster e (mean of 37 £ 57% IE). There
are only two compounds allocated to this cluster. One acts as an
efficient inhibitor while the other is a moderate corrosion
accelerator, consistent with the very large standard error in the
mean value of this cluster. However, the predicted performance of
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diol 8 has the correct trend with an IE value significantly lower than
the mean IE of the cluster. The urea 10 and the amino acid 9 are
located in cluster f that contains modulators also with highly
diverse IEs ranging from weak inhibitors to potent accelerators.
While the value of the piperidone compound 10 is quite accurate,
the model heavily underestimates the accelerant properties of
B-alanine (IEyeq =—7 %) compared to the measured IE (—86 +
17%) for CPMg220. Again, at a final pH around 10 the amino acid
will be ionized, and the chemotype may not be adequately
represented in the training data (a potential issue whenever the
chemical diversity is large compared to the size of the data set).
The accelerator properties of both compounds were confirmed by
subsequent validation experiments.
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Fig. 4 Validation of the KRR model. Correlation between the mean
of 10 experimental blind testing compounds and their predicted IE
values. The error bars depict the standard deviation of the
experimentally derived IE. The light blue line is the linear least
squares fit of the predicted and measured values. The RMSE value is
in percent. The orange, dashed line represents a perfect correlation.
Benzamide was omitted because of precipitation during the
experiment.

Contrary to the models’ general overestimation of IE values in
the four aliphatic compounds, the predicted IE values for the five
aromatic molecules 1, 2, 4, 5, 6 agree with the experimental IE
values within experimental error. The isophthalate 6 is associated
with the molecular cluster ¢ and the predicted value of 55% IE is in
good agreement with the mean of the compounds that were used
for training of the model. The pyrazine derivative 1 and the
pyridine derivative 2 are located within cluster a which represents
an uncharted area of the sketch-map. Although both predictions
are in good agreement with the experimentally derived values,
more experimental data points are necessary to provide
robustness for predictions in this region of similarity space. The
neighboring cluster b includes the pyridine derivative 4 as well as
the nitro-substituted modulator 5. The performance prediction of
the two modulators is in good agreement with the experimental
IEs. Modulators 4 and 5 have the highest predicted inhibiting
effect that was confirmed by the conducted hydrogen evolution
experiments. Furthermore, the similarity observed in trends for
molecules in clusters a and b suggest they may in fact be
members of a single larger cluster, something that could be
confirmed by experimental IE measurements of chemicals lying
between the two clusters. In summary, the predictions of the
compounds in the blind test set is in qualitative agreement with
the experimental IE values determined subsequently.

Uncharted similarity space

Of the 64 modulators whose predicted properties were not checked
experimentally, 9 are located outside the defined clusters. The
complete list of predicted values is provided in Supplementary
Table 2 (IExgg). One of these modulators lies close to cluster ¢ and is
likely to be a good inhibitor. Two others map to the top left area of
the sketch-map close to cluster f so they will probably also be
effective dissolution accelerators. The remaining six compounds map
between clusters a, b and f. As a and b contain inhibiting agents
while f contains weak inhibitors and accelerators, these six
compounds are expected to show values of IE near zero when tested.

Chemical space - the final frontier

Clearly, the search for effective dissolution modulators in the vast
chemical space of compounds with potentially useful properties
requires very efficient tools. Manual selection of compounds for
experimental screening is often biased by the individual chemical
intuition, compound availability, cost, toxicity, and experience. Hence,
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Fig. 5 Scheme for the similarity-based discovery of magnesium
dissolution modulators. Picking a structure of interest in the sketch-
map (based on database ) results in the visualization of the most
similar compounds of the second database (database II).

whole regions of chemical space that may contain highly effective
modulators (islands of utility) can easily be overlooked. This provided
the motivation for the development of data-driven methods for
unbiased identification of chemical leads, as depicted in Fig. 5.
For a molecule x, with a target property y,, a molecule
Xxg ~ Xa is likely to yield a target property yg ~ ya assuming a
structure-property relationship. Once a cluster containing, for example,
good corrosion inhibitors is identified, untested structures that map
onto this cluster should have similar or superior corrosion inhibiting
properties. Implementation of this approach requires a second,
extensive database of potential candidates and a SOAP-REMatch
kernel computed from the structures of both databases. Picking a
structure of interest in the sketch-map results in the visualization of
the most similar compounds of the second database, providing a basis
for the automated discovery of corrosion modulators.

The best-performing corrosion inhibitor 5 in the test set maps
onto the edge of cluster b that is formed from modulators with
high IE values. To check the model robustness concerning the
periphery of observed clusters, this structure constitutes a
promising starting point to screen a larger molecular database
for similar compounds. The QM7b database®*>® contains 7211
compounds, thus potentially providing a pool of compounds not
included in the training or test datasets. After computing the
SOAP-REMatch kernel (r.=3.0°A, £=0.3, (=06, y=1.0) for all
structures from this databases and the initial dataset (7211 + 152)
the global similarity matrix (7363 x 7363 diagonally symmetric)
was used to identify structurally similar compounds from the
QM7b database. A sketch-map complemented with KRR-based IE
predictions using this kernel is illustrated in Supplementary Fig. 5.

When searching for similar compounds in the QM7b database, a
similarity submatrix (7363 X 7211) was used to eliminate hits in the
152-member training and test sets. This identified five structures
with the highest similarity to 2-nitrophthalic acid (5) and predicted
their IE values (Supplementary Fig. 5). However, the hit molecules
found in this proof of principle example are biased because the
QM7b database only contains molecules with <7 heavy atoms,
whereas molecule 5 contains 13 heavy atoms. Clearly, the quality
of hits is highly dependent on the properties of the database used.
Screening of databases containing larger molecules (e.g. the GDB-
13 which contains roughly 1 billion structures) will undoubtedly
increase the value of the proposed workflow albeit with an
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Fig. 6 Sketch-map comprising compounds of a commercial database and 152 individual chemicals (7246 in total). The dots are colored
according to predicted IEs by means of KRR. The KRR model was trained on 78 experimental IEs (black-rimmed dots). By referencing the
selected 2-nitrophthalic acid (5, large black-rimmed dot) to the underlying SOAP kernel, five highly similar molecules can be determined from
the global similarity matrix (dashed black-rimmed dots) along with their predicted IE values. As illustrated in the inlay, high similarities in the
high-dimensional space do not automatically result in close proximity in two-dimensional space.

increased computational cost for computation of SOAP kernels.
Also, when screening large databases, it is very important to
understand how the model’s domain of applicability maps onto
the database, as molecules well outside the model domain will be
poorly predicted. Nevertheless, the hits in this example still
replicate local structural motifs in substantially smaller molecules
that may play a key role in corrosion inhibition behavior.

To assess the accuracy of the workflow in the discovery of lead
structures, a database provided by Thermo Fisher Scientific,
containing 7094 commercially available small organic chemicals,
was subsequently screened. Again, the SOAP-REMatch kernel
(re=3.0°A, £=0.3,{= 0.6, y = 1.0) was computed for all structures
(7094 + 152). A sketch-map colored with KRR-based IE predictions
using this kernel is depicted in Fig. 6. For the selected 2-
nitrophthalic acid (5), five chemicals yielding high structural
similarities are chosen from a similarity submatrix in the kernel
(7246 x 7094). Albeit these chemicals exhibit high similarities in
the high-dimensional space, they are not necessarily mapped in
close proximity in the two-dimensional space due to the nature of
the sketch-map algorithm as displayed in the inlay in the lower
right corner of Fig. 6. However, all selected structures are mapped
close to each other and to already tested structures. The predicted
IE values are subsequently validated in hydrogen evolution
experiments following the test procedure described in the
preceding section. A comparison between KRR-predicted and
experimental |Es is presented in Table 2. More detailed informa-
tion on the experiments is summarized in Supplementary Table 4.

Despite two outliers, the results show good to excellent
correlation between prediction and experiment (R* = 0.84, RMSE
= 36%). All five candidates were predicted to exhibit an inhibiting
effect. It is noteworthy, that the prediction for the two phthalic
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acid derivatives 12 and 13 as well as the tricarboxylic acid 14 are
in very good agreement with the experimental investigation.
However, compounds 11 and 15 only exhibit a moderate
inhibiting effect on the corrosion of CPMg in contrast to the
comparably high IE values that are predicted by the KRR model.
An important mechanism of corrosion inhibition for Mg-based
materials is the capability to form complexes with iron ions
(Fe*™/Fe*") that are released during the corrosion process. Here,
substitution of the aromatic system with electron withdrawing
groups also affects the interaction strength of the carboxylate with
Fe which in turn influences the IE*®. Although carboxylic acids 11
and 15 contain nitro groups in ortho and para position with similar
electron withdrawing effects, these two compounds also lack the
vicinal dicarboxylate moiety present in the other inhibitors that is
an important chelating functionality for metals (as in the chelating
agent EDTA)*’. This explains the differences in the experimental
performance. As mentioned previously, the KRR model that we
employed here is based on structural similarities and does not
consider electronic properties. Hence, it may only indirectly learn
that there is a correlation between electronic effects and structure.
It is obvious that the underlying training database does not
contain a sufficient amount of structures that exhibit the
substitution pattern. Thus, the performance of the two com-
pounds is overestimated but still qualitatively correct. Contrary to
this, the predicted values for the two phthalic acid derivatives 12
and 13 are highly accurate despite the presence of a nitro moiety.
This can be explained by the fact that each of the compounds
bears a second vicinal carboxyl group (chelating effect) that is not
affected by substitution of the aromatic system with a nitro
functionality. Hence, they display higher degrees of inhibition in
the experiment and are in excellent agreement with the predicted
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Table 2. KRR-predicted and experimental IEs of five compounds to
validate the similarity-based discovery workflow.
Compound IEkgr [%]  |Eexp [%]
o)
11 2-Nitrobenzoic acid @fLOH 72 23+25
NO,
HO O o
12 3-Nitrophthalic acid O,N on 83 73+17
HO 20
13  4-Nitrophthalic acid OH 82 70+20
ON
O -OH
14 1,2,4-Benzenetricarboxylic acid Ho@ 80 80+16
O oZ~oH
o)
. s HO
15 3-Hydroxy-4-nitrobenzoic acid D)koH 74 13£31
ON
IEs for compounds with a carboxylic acid moiety were determined as the
sodium salt in the hydrogen evolution experiments. Experimental uncertainties
were calculated from three experiments. R (0.84) and RMSE (36%) are derived
from a linear least squares fit of the predicted and measured values.

values. For a larger training dataset, the cutoff radius r. of the
SOAP kernel can be adapted to higher values to better capture the
impact of such structural features.

In summary, machine learning models based on structural
similarities and kernel ridge regression (KRR) were generated that
predict the ability of small organic compounds to modulate the
corrosion of commercially pure magnesium (CPMg220). The
accuracies of the models were determined by test set property
predictions and by comparison with an artificial neural network
(ANN) model from a prior study using identical training and
testing data. The ANN and the KRR-based models both make
qualitatively correct predictions of the modulation properties of
compounds in test sets for the corrosion of CPMg220. A total of 74
untested compounds were subsequently mapped into a sketch-
map model along with 78 modulators with experimentally known
IE values. The sketch-map contained six main clusters of molecular
similarity. While five of the clusters mapped both tested and
uninvestigated chemicals, one cluster was exclusively comprised
of unknown dissolution modulating molecules. To further assess
the robustness of the KRR model, 10 compounds were selected for
a blind testing study, taking at least one compound from each
cluster. The results support the claim that the model can predict
the effect of small organic molecules on the corrosion of
CPMg220, as the predicted values are in good agreement with
the experimental values. This suggests that the predicted IE values
for the remaining 64 compounds are likely to be good estimates.
These modeling methods constitute a promising way to rapidly
identify the most promising molecules for specific target
applications that have reduced toxicity, environmental impact,
and cost. Furthermore, the validation results of the employed
model show that solubility is an additional important factor that
needs to be considered in the selection process of target
chemicals, where such data is available. However, further
experimental validation is an important final step, especially for
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chemicals in unlabeled regions of the sketch-map. Expanding the
size, diversity, and quality of data used to train these models is
also needed to improve their robustness and domain of
applicability. This could include using molecular structures closer
to their “mode of action”, i.e. solvated, at correct pH or in complex
formations. Additionally, clustering the data already in high-
dimensional space, for example employing the probabilistic
analysis of molecular motifs (PAMM) approach, could increase
the accuracy of cluster definitions and thus the qualitative
predictive performance of the developed model. Finally, a
Python-based workflow for automated screening of large mole-
cular databases using chemical similarities has been developed.
The findings provide a proof of concept for the proposed
method—a promising strategy for an unbiased identification of
efficient candidates to combat the degradation of Mg-based
materials. Naturally, the presented concept is not limited to Mg
and can be adopted to explore the structure-property landscape
of e.g. Al-, Cu- and steel-based materials in a similar fashion by
employing a corresponding experimental database to train the
model. Clearly, the employed machine learning-based strategies
facilitate an intuitive and fast screening of large databases to
identify similar compounds, simplifying the search for modulators
with potentially useful properties, and dramatically decreasing the
time and resources required relative to those for experimental
discovery methods.

METHODS

Corrosion experiments
As commercial magnesium processing includes several steps®®, preventing
the inclusion of metallic impurities, such as iron, is nearly impossible. These
impurities generate local galvanic cells in the material that accelerate
corrosion and increase hydrogen evolution and Mg dissolution. As Mg
dissolution predominantly occurs in intermetallic contact areas, the process
releases impurities that re-deposit on the surface, thus increasing the
cathodic area and the corrosion rate®®. Molecules that form stable complexes
with the impurities (e.g. Fe>*®*) constitute a promising strategy to modulate
the degradation properties of Mg. They also provide starting points for
building an extensive database of magnesium dissolution modulators?"©°,
In corrosion experiments, hydrogen evolution is measured in the
presence of modulators and referenced to the sodium chloride electrolyte
in the absence of these compounds. The effect of a modulator is quantified
by the inhibition efficiency (IE), which is positive for corrosion inhibitors
and negative for corrosion accelerators. We used IEs for CPMg220 from an
experimental database of modulator performance, collected in a prior
work?', to train the machine learning model**. Only agents with a molar
concentration of 0.05 m in the experiment were selected. The full chemical
composition of CPMg220 from Optical Discharge Emission Spectroscopy
(SPECTROLAB with Spark Analyser Vision Software) is listed in Supplemen-
tary Table 1. Additional hydrogen evolution experiments were performed
to validate the predictions of the model and to extend the database using
the same experimental set-up and CPMg220 alloy as reported by Feiler
et al*>. Eudiometers (Art. Nr. 259110-500 from Neubert-Glas, Germany)
were used for these investigations. Water displaced by evolved hydrogen
was automatically quantified (SKX series from OHAUS coupled with USB
data logger OHAUS 30268984) and the data recorded for further
processing using an in-house Python script’’. A flask below the
eudiometer was filled with a piece of the bulk Mg sample and 500 mL
of electrolyte (0.5wt.% NaCl) without (reference) and with addition of a
dissolution modulator. The reference value was determined from the
normalized volume of hydrogen evolved (VO,Hz) after 20 h of immersion.
Mg samples were also exposed to an electrolyte solution containing 0.05 m
of dissolution modulator for 20 h with the initial pH being adjusted by
NaOH/HCI to 6.8 +0.5 and the volume of evolved hydrogen quantified
(th,Hz). The testing time is considered to be sufficient as the hydrogen
evolution rate is in a steady state after ~10h?"®". The impact of the
modulator on the corrosion of magnesium is given by the inhibition
efficiency according to the following equation:

~ Vo, = Vinhn,

IE -100% m

Vo,
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Molecular similarity

Apart from the quality, quantity, and diversity of data used to train machine
learning models, the largest determinant of model quality is the type of
molecular descriptors or features used to represent the organic molecule
modulators. SMILES strings (Simplified Molecular Input Line-Entry System, text-
based representations of the structure of almost any organic molecule) were
used to generate molecular structures using OpenBabel®2. In contrast to the
previous work where the molecular geometries were first optimized using
density functional theory (DFT) and an implicit solvent model** here the
structural optimization tool of Avogadro® is used that employs the accurate
but computationally less expensive GAFF force field® to obtain optimized
geometries in vacuo. The structural and chemical similarities between the
dissolution modulators were transformed to high-dimensional space using the
SOAP kernel in combination with a regularized entropy match (REMatch)
strategy”*°". While the SOAP kernel compares local atomic environments of
the molecular compounds, the REMatch kernel condenses the local similarities
between two structures into a global similarity measure. A local environment is
defined in a spherical region of radius r. around an atom and is built by a
superposition of Gaussian functions with width & The structural information
surrounding an atom directly correlates with the size of r.. The SOAP kernel
contains the translationally and rotationally invariant overlap between two
local environments and can be raised to a power ( for discrimination between
medium ({< 0.6) and large ({=0.9) similarities. The hyperparameter y of the
REMatch kernel controls which local similarities are combined. For small values
(y ~ 0.01) only the best matching pairs of local environments are included
while for large values (y ~ 10) similar weights are assigned to the local
similarities for computing the global similarity (see De et al. °' and the
Supplementary Methods for more details). To facilitate the interpretation of the
high-dimensional SOAP-REMatch kernel and to allow a correlation with
experimental data, the similarity information was transformed into distances®®
and projected into two-dimensions using a sketch-map representation®2. By
applying a sigmoid function to the distances (influenced by the switching
distance o, with a and b as hyperparameters), distant/close (dissimilar/similar)
structures in the high-dimensional space maintain their relationships in the
low-dimensional space. Due to the shape of the sigmoid function, points that
are far apart in the high-dimensional space are not necessarily represented
that way in the low-dimensional projection, making an interpretation of
distances between basins in the two-dimensional projection unphysical.
However, the relative positions of structures and the formation of clusters in
the two-dimensional similarity landscape are powerful aids for intuition
assessing the molecular similarity of molecules in the data set.

Supervised and unsupervised learning

Machine learning methods are trained on experimental data and molecular
descriptors (features) that are mathematical representations of molecular and
physicochemical properties of small organic molecules. After assigning the
IEs of magnesium dissolution modulators to all structures, the SOAP-REMatch
kernel and sketch-map methods can be used with KRR for qualitative and
quantitative prediction of the target values, respectively. Once a two-
dimensional sketch-map visualization is created and labeled with the
appropriate IEs, clusters can form that predominantly contain compounds
with similar molecular properties, thus indicating a structure-property
relationship. Clusters can be identified by visual inspection or using a variety
of different clustering algorithms in low- and high-dimensional space®*®’.
Untested candidates can be projected onto the sketch-map using out-of-
sample embedding, a reproduction of the distances to previously defined
landmark points®?, to obtain qualitative predictions of the potential
degradation modulating effect of these unknown materials based on their
relative locations to map clusters. Clearly, an unknown compound projected
into, or close to, a cluster dominated by a particular molecular property
would be expected to show similar behavior. Although this approach is
helpful to obtain an estimate of a compound’s effect on the corrosion rate,
some applications require quantitative predictions. The sketch-map visualiza-
tion can be complemented with quantitative predictions of the IE using a
KRR model. The synergistic combination of both methods provides a
powerful approach for the design of magnesium corrosion modulators that
exploits the great efficiencies of in silico methods. Thus, a comprehensive
sketch-map based on a SOAP-REMatch kernel from all structures in a training
and test set can be used to virtually screen a large number of potential
candidates. Concurrently, their degradation modulating performance can be
predicted with KRR, either to validate the inhibition performance of a known
modulator, or to predict the degradation modulating properties of
unsynthesized and/or untested organic compounds.
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